2. Geological Investigation

2.1 Previous Exploration Works

The previous exploration works in the present exploration area and its vicinity are shown in Table 2-1, however the result of the works conducted by NEA (National Energy Administration) in 1977 is not available at present.

Table 2 – 1 Previous Exploration Works

Organization	NEA	EGAT	EGAT	DMR	EGAT	DMR-EGAT	DMR
Year	1977	1978	1982	1988	1994	1997	1997/98
(Thai year)	(2520)	(2521)	(2525)	(2531)	(2537)	(2540)	(2540/41)
Boreholes	25	16	12	22	_	12	21
Depth (m)	1,924	2,103	2,017	6,212	_	1,086	6,005
Σ Borehole	25	41	53	75	_	87	108
Seismic					18 lines		
survey					61.75km	_	_

Eighty-three (83) boreholes have been drilled in Ngao Coal basin and forty-one (41) boreholes have penetrated coal zones since 1978 in the exploration area. Those boreholes are concentrated at the northwest and the southeast areas, where the coal-bearing formation exists near the surface. Borehole spacing is various and irregular. One of the reasons is that three organizations had carried out the drilling program independently for 23 years. The seismic survey was conducted in 1994. The reflectance from the unconformity between the Basement and the Tertiary units and the bottom and the top of the Tertiary coal-bearing formation were recorded and

interpreted. The seismic survey is a very useful exploration method for estimating the three-dimensional geological condition. Interpretation of the seismic data is required to be restudied along with the new drilling result.

Proximate analysis results are available in the previous reports. The results from the following eighteen boreholes have been used for estimating coal quality in Ngao coal basin.

NG3/40, NG5/40, NG10/40, NG12/40, NG16/40, NGG1/40, NGG2/40, NGG3/40, NGG4/40, LN1/21, LN3/21, LN11/21, LN26/21, LN27/21, LN28/21,NG3/31, NG7/31, NG9/31

The coal bed is generally dipping toward the southwest or the west, so that the coal-bearing formation comes near the surface at the east and the northeast areas. A coal bed was found 2m below the ground surface near the borehole LN1/21 and some amount of coal samples were taken from a trench made by hand several times in the past. However those analysis results were not available.

2.2 Method of Geological Investigation

2.2.1 Field Geological Survey

The coal-bearing formation does not crop out in this field because of thick cover of soil (2 to 5 m thick) above the exposed coal bed in the past time. The surface of the study area shows gentle topographic features with some small shallow streams. That shows no deep erosive activities have been occurred. Drilling, trenching and geophysical exploration are useful for the Ngao coal basin.

A trench was excavated for taking a large amount of coal sample during this

exploration period. Three (3) preparatory 10 m-boreholes and five (5) exploration

boreholes were drilled. These borehole locations were designed based on the

previous borehole data and were fixed by mean of geological mapping, which is a

kind of simple survey method by using a tape, a compass and a hand level. In order

to improve the accuracy of mapping result, surveyors of DMR carried out the

traverse survey for seven control points and all these boreholes. Figure 2-1 shows

an example of mapping sheet.

2.2.2 Bulk Sampling

A large amount of coal sample was collected near the surface for quality upgrade

Based on the results of the three 10 m-preparatory boreholes, the sampling

location was selected close to PH3. A trench of 6m wide, 10m long and 7.5 m deep

was dug with a backhoe in order to collect a bulk sample. About 630 kg of coal

was sampled from 1m of coal section in the upper part of Zone I. Beside the bulk

sample, about 10kg of channel sample was taken manually as a standard sample.

Bulk sample was packed into plastic bags, about 20kg in each bag, in order to

prevent drying and transported to the laboratory of Lanna Lignite Public Company at

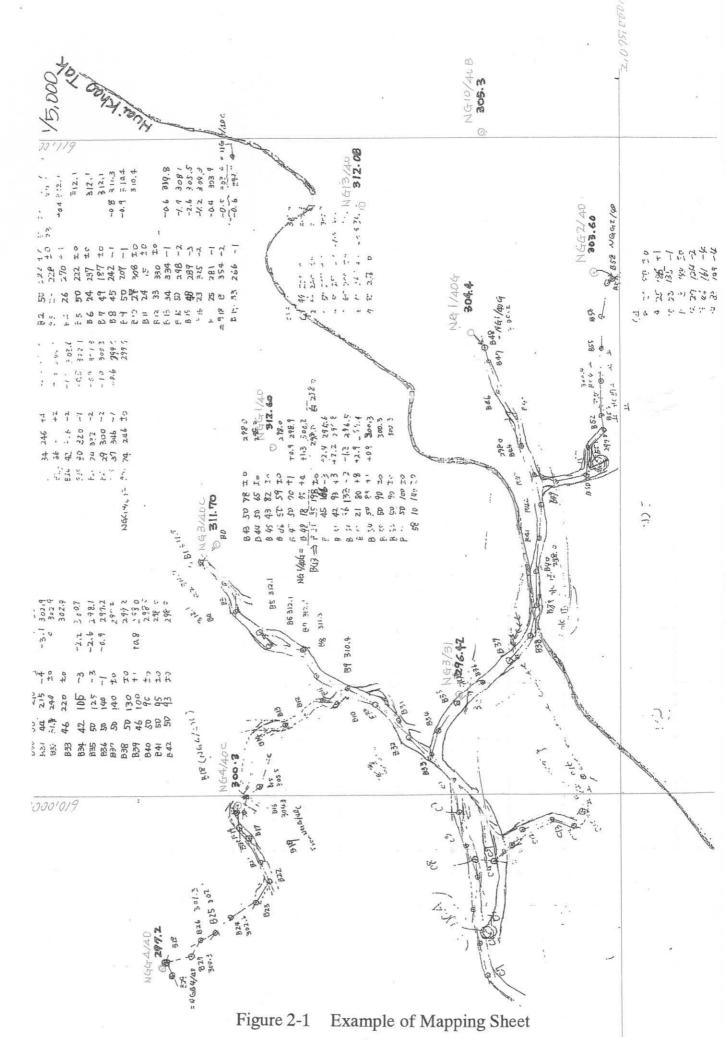
Li by pickup truck. (Ph-1, 2, 3)

Location of three preparatory boreholes and the trench are shown in Figure 2-2

and Figure 2-3 shows the columnar sections of those boreholes and the trench.

Specification of those boreholes is as follows.

• Name of Borehole : PH1,


PH2, PH3

• Depth of a Borehole: 10m

· Size of Borehole

: HQ (about 95mm in diameter)

- 35 -

Visual core-loggings were done and interpreted by geologist for selecting a location of a trench.

2.2.3 Exploration Drilling

Based on previous drilling and geophysical data, the geological structure was interpreted roughly. Five (5) drilling locations were selected through the geological study to get more detail information on coal beds in Ngao. Geophysical logging and Piezometric test were carried out in those boreholes. Specification of those works is as follows.

Name of Boreholes : NGJ1/43, NGJ2/43, NGJ3/43, NGJ4/43, NGJ5/43

• Total Depth : 1,052m in total

• Size of Drilling : HQ (about 95mm in diameter)

• Geophysical loggings: Self-electric potential log, Electric resistance log,

Density log, Natural gamma ray, Caliper

• Piezometic test : Done in the holes of NGJ1/43 and NGJ4/43

• Drilling Work : Carried out with two drilling rigs by two shifts

(3 to 4 members/shift, 24 hours operation) in order to

complete about 1,000m of total depth within two

months.

Locations of the above boreholes are shown in Figure 2-2 and specification of drill work was summarized in Table 2-2. Core-logging sheets, records of geophysical loggings and results of Piezometer test are attached in the Appendix 1, 2 and 3 respectively. Columnar sections of boreholes are shown in Figure 2-4.

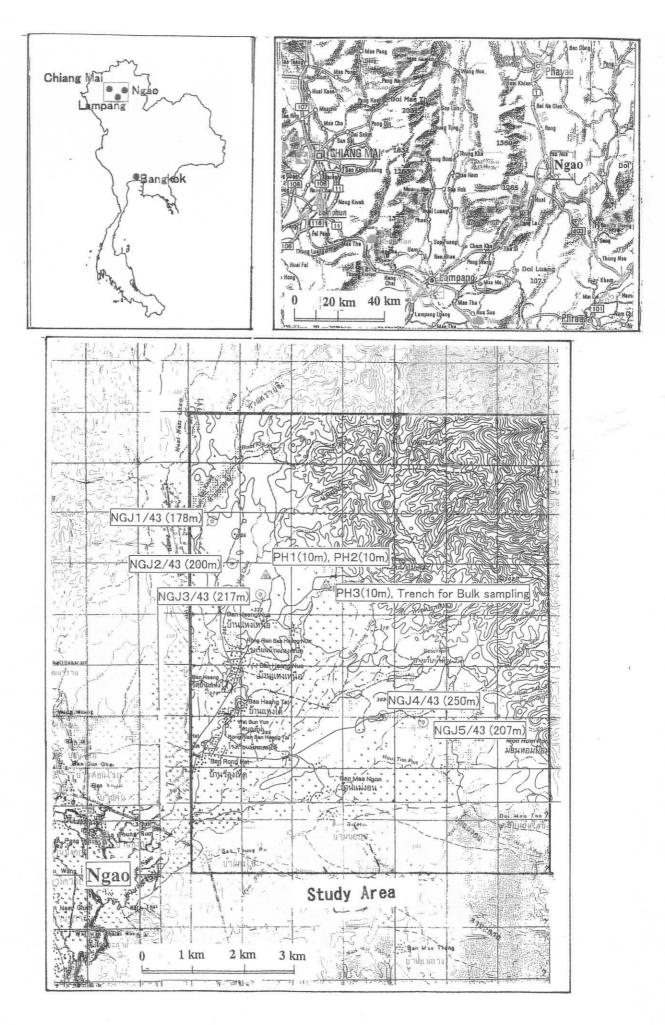


Figure 2-2 Location of Drilling and Trenching

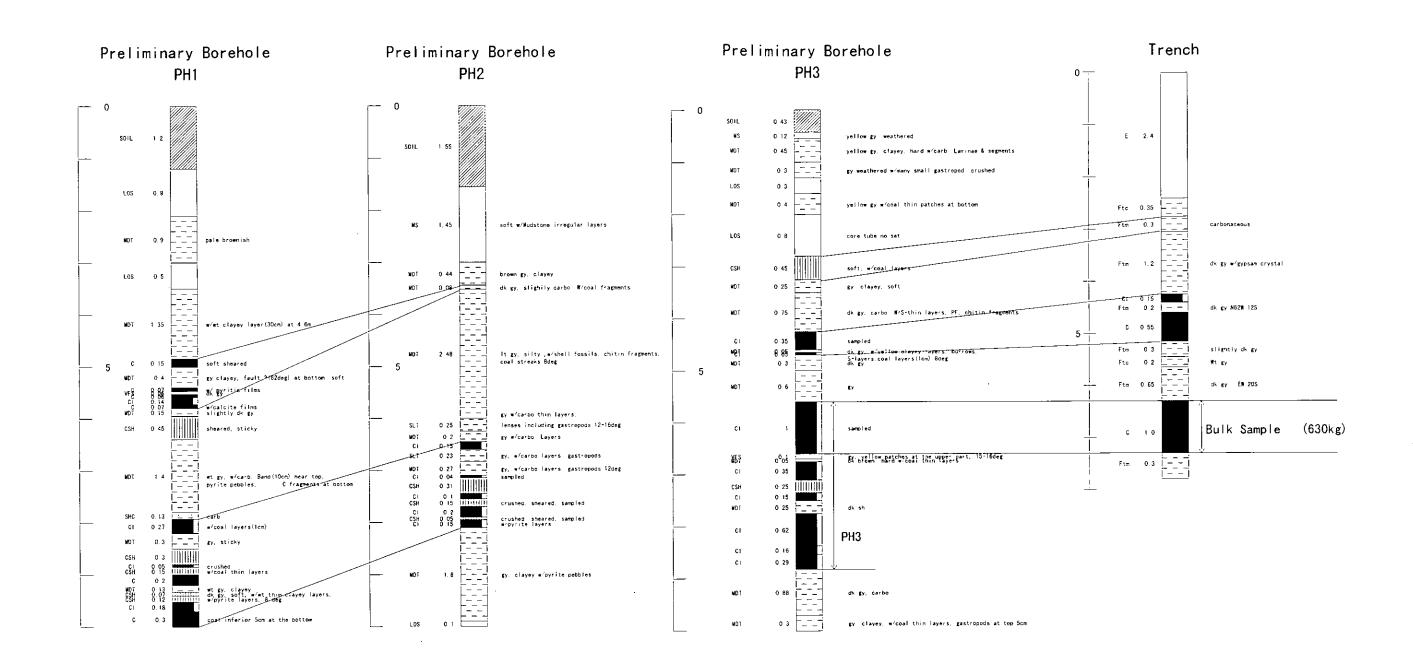


Fig2-3 Sections of Preliminary Boreholes and Trench

Tabele 2-2 Specification of drilling

		Prep	Preparatory drill h	holes		Expl	Exploration drill holes	noles	
		PH1	2 H G	PH3	NGJ 1	NGJ2	NGJ3	NGJ4	NGJ 5
	Easting	607,532	607,540	608,540	606,531	606,815	607,425	609,819	610,529
Location	Location Northing	2,077,896	2,077,904	2,077,688	2,078,915	2,078,123	2,077,475	2,075,209	2,075,068
	Elevation	304	304	303	316	302	308	304	299
Start of drilling	illing	2000.09.30	2000.10.01	2000.09.29	2001.01.17	2000.12.30	2000.12.05	2000.12.05	2001.01.01
Finish of drilling	rilling	2000.10.01	2000.10.02	2000.09.30	2001.01.30	2001.01.16	2000.12.30	2000.12.31	2001.01.21
Drill length	h	1 0 m	1 0 m	1 0 m	1 7 8 m	2 0 0 m	2 1 7 m	2 5 0 m	2 0 7 m
Diameter		H	HQ(about 95mm)	n)		H	HQ(about 95mm)	n)	
Drill machine	ine	Ac	Acker Marl	к Ш		A c	Аскег МагкШ	k III	
Piezometer test	r test	×	×	×	0	×	×	0	×
Geological logging	logging	×	×	×	0	0	0	0	0

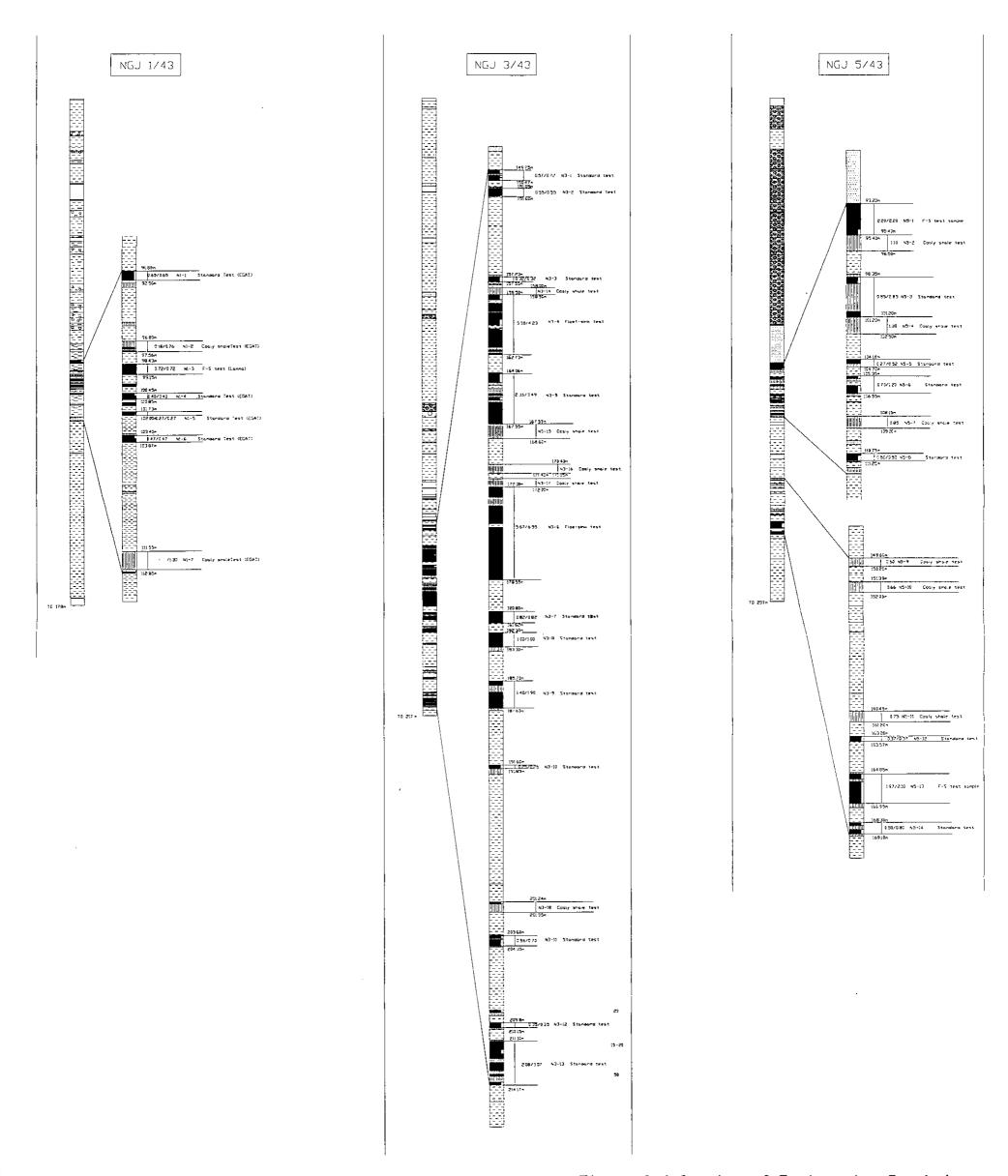


Figure 2-4 Section of Exploration Boreholes

2.2.4 Coal Sampling

Coal samples are taken from cores of three exploration boreholes (NGJ1/43, NGJ1/43, NGJ5/43) and one preparatory hole (PH3) for float-sink test and coal analysis. Coal beds of more than 20cm thick were sampled. Some of carbonaceous mudstone beds were also sampled for reference. Sampled cores were sent to Lanna Lignite Company's laboratory or EGAT's laboratory as soon as possible. Sampled parts and these sample numbers are shown in Figure 2-3 and 2-4 respectively.

2.2.5 Rock Sampling

Rock samples were taken from drill core at depth of around 50m and 100m of each drill hole for measuring the rock properties through uni-axial and tri-axial compression tests. Sampled were wrapped with cooking film to keep the moisture condition and packed in PBC tube to protect from break during transportation. Rock samples are listed in Table 2-3.

2.3 Regional Geology

2.3.1 Stratigraphy

Geologic map and stratigraphic section around the exploration area are shown in Figure 2-5 and Figure 2-6 respectively. The exploration area consists of basement unit, Tertiary unit and Quaternary unit. The basement unit is composed of sandstone, shale and limestone of Triassic (Mesozoic) in age. Miocene fluvial sediments (Unit A) unconformably overlie the basement rocks. Unit A, variegated with brown and reddish brown in color, consists of mudstone and sandstone with pebbles.

Table 2-3 NGAO ROCK TEST SAMPLES LIS

TIOIC IN	υ.			Sampling	Description			
Hole No.		DATE	Uni	axial Test	Tri	axial Test		Description
			J1/43-RU1	26.10 26.40	J1/43-RT1	28.80	29.00	
NGJ1/43	22,Jan,2001	J1/43-RU2	27.30 27.60	J1/43-RT2	29.00	29.30		
			J1/43-RU3	28.23 28.50	J1/43-RT3	29.30	29.60	
			J1/43-RU4	81.34 81.54	J1/43-RT4	83.00	83.23	mod red br mst
	100m	23,Jan,2001	J1/43-RU5	81.54 81.75	J1/43-RT5	83.23	83.45	
			J1/43-RU6	81.75 82.00	J1/43-RT6	83.65	83.90	
			J2/43-RU1	49.50 49.67	J2/43-RT1	55.00	55.24	
NGJ2/43	50m	07,Jan,2001	J2/43-RU2	49.69 49.98	J2/43-RT2	7		bl gy mst, w/granule
			J2/43-RU3	51.46 51.71	J2/43-RT3	55.50	55.75	
			J2/43-RU4	99.34 99.57	J2/43-RT4	104.18	104.41	
	100m	07,Jan,2001	J2/43-RU5	99.58 99.80	J2/43-RT5	104.41	104.72	bl gy mst, w/granule
			J2/43-RU6	101.72 102.00	J2/43-RT6	105.00	105.30	
50m			J3/43-RU1	46.00 46.30	J3/43-RT1	42.00	42.30	
	50m	16,Dec,2000	J3/43-RU2	46.56 46.80	J3/43-RT2	42.30	42.60	br gy mst, w/Lst grains
NGJ3/43			J3/43-RU3	47.20 47.40	J3/43-RT3	43.05		
			J3/43-RU4	92.18 92.43	J3/43-RT4	93.75	93.95	
	100m	19,Dec,2000	J3/43-RU5	92.43 92.68	J3/43-RT5	94.10	94.30	red br gy - br gy sandy mst
			J3/43-RU6	92.68 92.93	J3/43-RT6	94.45	94.65	
			J4/43-RU1	39.27 39.43	J4/43-RT1	34.10	34.35	
NGJ4/43 100m	50m	8.9.10,Dec, 2000	J4/43-RU2	39.46 39.70	J4/43-RT2	34.40	34.70	br gy mst, w/Lst grains
		2000	J4/43-RU3	39.70 40.00	J4/43-RT3	35.31	35.61	
			J4/43-RU4	87.25 87.48	J4/43-RT4	97.52	97.74	
	100m	19,Dec,2000	J4/43-RU5	91.72 92.00	J4/43-RT5	97.74	98.00	RU4 - 6 br gy mst, w/Lst grains RT4 - 6 mod br St
			J4/43-RU6	93.07 93.35	J4/43-RT6	99.00	99.29	grains RTT 0 mod of 5t
			J5/43-RU1	48.30 48.50	J5/43-RT1	55.30		
	50m	09,Jan,2001	J5/43-RU2	49.03 49.26	J5/43-RT2	55.70	55.90	RU1 - 3 bl gy mst RT1 - 3 red br mst
			J5/43-RU3	49.55 49.78	J5/43-RT3	55.90	56.10	KTT - 3 Ted of first
NGJ5/43	100m	11,Jan,2001	J5/43-RU4	90.19 90.37	J5/43-RT4	91.00	91.18	
1			J5/43-RU5	90.37 90.56	J5/43-RT5	91.18	91.35	gy St
			J5/43-RU6	90.73 90.88	J5/43-RT6	91.35	91.54	

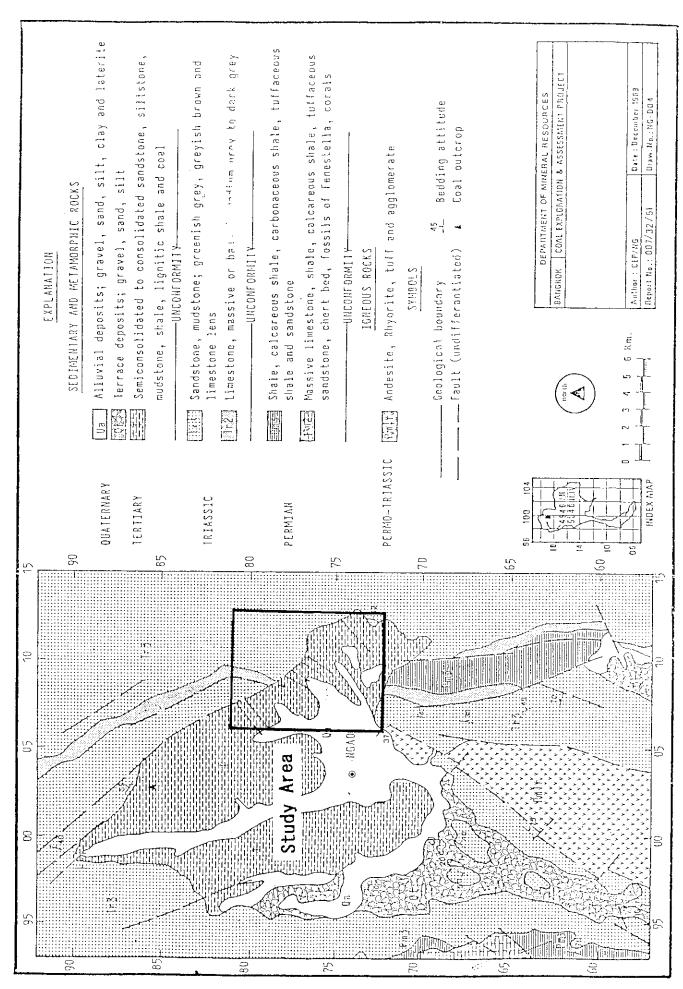


Figure 2-5 Geological Map

Depth		Strati-						
(m)	Age	column		Lithology	Environment			
0		surface						
100	PLIOCENE-PLEISTCENE		1	Congromerate Mudstone compact, dark yellowish brown w/pebbles, caricareous concretions (pebble of ss,qtz,cs) Mudstone, parly calcareous,	Fluvial fan deposits, high constructive slope of Pro-fluviol fan deposits, rud flown along the slope with some pebbles in a dry and wet region of the lake.			
200	JC E NE	0 	Unit	variegated brown grey				
								
300				Zone I				
400	'LIOCEN IIOCENE		-Unit B	Lignitic claystone Lignite, dense Claystone, mudstone, Lignitic claystone light clive grey dense, dull.	Lacustrine deposits Swampy area with plants deposits lignite			
				Zone II				
500	MIDCENE		Unit A-	Mudstone, sandy mudstone, pebbly mudstone, sandstone stiff, variegated brown, reddish brown	Fluvial fan daposits, pro-fluvial fan deposits			
600	$\sum_{i=1}^{n}$	0	\supset	 				
	TRIASSIC			Sandstone, shale limestone	Shallow marine deposit			
000	CONG	LOMERATE		MUDSTONE	LIGNITE			
SANDSTONE SANDSTONE								

by Water Resource Engineering CO. 1998 May

Figure 2-6 Stratigraphic Section

Lacustrine sediment (Unit B) was deposited in a subsided basin of the basement during Miocene to Pliocene (Neogene) in age. Unit B contains many coal beds and is characterized by fresh limestone.

Fluvial fan deposits (Unit C) from Pliocene to Pleistocene in age overlies the coal-bearing unit (Unit B). Unit C consists of mudstone and conglomerate with variegated brownish grey in color. The mudstone bed is characterized by containing pebble to cobble of weathered limestone. Clayey mudstone colored with pale blue comes at the lower part of Unit C. That mudstone is a kind of good indicator showing the horizon near coal zone when drilling.

Soil, 2 to 5 m thick, covers the whole exploration area. The coal-bearing formation does not crop out due to the thick soil and gentle topography.

2.3.2 Geological Structure

Geological structure in Ngao basin is mostly in monocline. The old rocks expose in the eastern part and younger to the west. The structure lies approximately in the N-S strike and west or southwest dipping. The major faults running northwest to southeast are normal faults with the west block moving downward relative to the east block. Other related faults are estimated as normal fault to run northeast to southwest dipping east. The exploration area is divided into ten blocks by those faults. Drill and seismic data shows that the coal bed is dipping toward the central part of the block F. There are only a few drill holes because the area was out of mining planning area due to the deep depth.

Six drill holes reached the basement limestone bed at the shallower depth between Block H and Block I. It is interpreted that there was a high mountains of limestone when peat swamps were formed around the area.

The geological structure map around the exploration area are shown in Figure 2-7

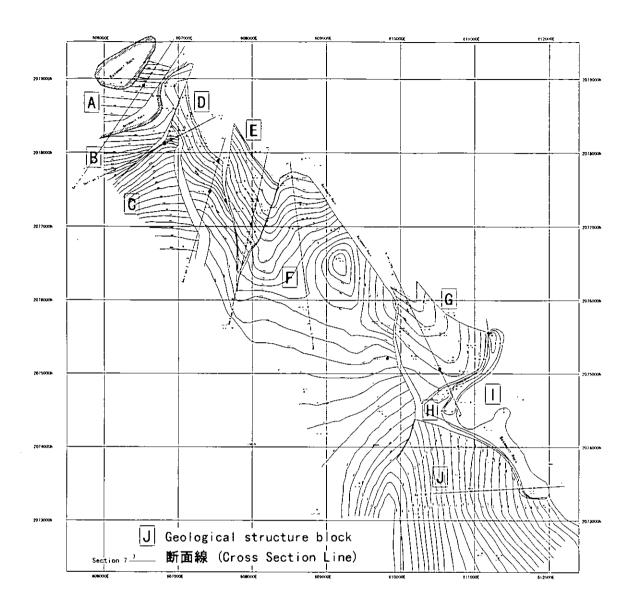


Figure 2-7 Structure Contour Map (Roof of Zone I)