Appendix 19 Report on the airborne survey results in the Western Erdenet area, Mongolia

WESTERN ERDENET AREA MONGOLIA

Regional Structural Interpretation from Airborne Geophysics and Remote Sensing Imagery

February, 2002

Table of Contents

Exe	cuti	ve Su	mmary	iii
1	Į.	NTROE	DUCTION	1
	1.1	Ob	jectives and Products	3
2	N	NETHC	DOLOGY AND DATA	4
	2.1	Airl	borne Magnetic Data	4
	2	2.1.1	Image Processing – Magnetic Data	5
	2	2.1.2	Influences on Airborne Magnetic Data	8
	2	2.1.3	Uses of Airborne Magnetic Data	9
	2.2	Airb	oorne Gamma-ray Spectrometer Data	10
	2	2.2.1	Image Processing – Gamma-ray Spectrometer Data	11
	2	2.2.2	Influences on Airborne Gamma-ray Spectrometry	12
	2	2.2.3	Uses of AGRS Data	13
	2.3	Lar	ndsat TM	15
3	G	EOLO	GY REVIEW	16
4	lt	NTERP	RETATION RESULTS	19
	4.1	Lith	no-structural Domains	19
	4.2	Pro	spects	25
	4	.2.1	Erdenetiin Ovoo	26
	4	.2.2	Kujirin Gol	31
	4	.2.3	Prospect 1	34
	4	.2.4	Prospect 2	36
	4	.2.5	Davaa	38
	4	.2.6	Zuukhin Gol	40
	4	.2.7	Prospect 3	42
	4	.2.8	Prospect 4	
	4	.2.9	Prospect 5	48
	4	.2.10	Mogoin Gol 2	50
	4	.2.11	Mej Uul	52
	4	.2.12	Undrakh	54
			Umin Tsagaan Nuu	
	4	.2.14	Tsookhor Morit	58
5			USIONS/ RECOMMENDATIONS	
3ibli	ogra	aphy	5	9
\PP	END	IXI: Do	ocumentation for the GIS Data Package6	2

List of Figures

Figure 1.1:	Location map of the airborne geophysical surveys in Central - Northern Mongolia.
	Red Box = Area #01, Blue Box = Area #02, Green Box = Regional Overview from
	Remote Sensing Imagery2
Figure 2.1:	Factors that affect rock magnetisation (summarised by Isles et al 1998)4
Figure 2.2:	Total magnetic intensity reduced to pole (TMI-RTP) image6
Figure 2.3:	First vertical derivative (1VD) of TMI-RTP7
	Geophysical data from areas #01 and 02 overlying Landsat 4 TM (bands 741 as RGB
	respectively) overlying JERS-1/ SAR panchromatic imagery. Note the regional
	overview available from remote sensing data to assist interpretation of the airborne
	geophysical survey areas15
Figure 3.1:	Tectonic units of Mongolia (after Sengor et al., 1996)16
Figure 3.2:	Idealised model for a porphyry copper deposit and associated magnetic responses
	(after Clarke et al., 1992). Note that the magnetic response of the system varies with
	depth of erosion
Figure 4.1:	Division of the project area into five possible structural and litho-magnetic domains 19
Figure 4.2:	-
	Vitim Suture Zone
Figure 4.3:	Schematic representation of the major structural components that appear to affect
	domain 3B
Figure 4.4:	Schematic representation for the development of the major structural components that
	appear to affect at least domains 2 and 323
Figure 4.5:	Schematic representation of the major structural components that appear to affect
	domain 4
Figure 4.6:	Areas that are considered to contain either structures or intrusive units that could be
	prospective, particularly for porphyry mineralisation
Figure 4.7:	Detail around the Erdenetiin Ovoo deposit, (from Dejidmaa and Naito, 1998)26
Figure 4.8:	Schematic diagram for the possible evolution of the present low magnetic intensity
	zone associated with the Erdenetiin Ovoo porphyry deposit. Note the model requires
	zonation of the granitic bodies and compression between NW trending shear zones27
Figure 4.9:	Characteristics of the Erdenet prospect area
Figure 4.10:	Schematic end-member models for the possible interpretation for the Kujirin Gol
	prospect. In reality the true model is likely to represent a combination of both32
Figure 4.11:	Characteristics of the Kujirin Gol prospect area
Figure 4.12:	Schematic representation of the juxtaposition and alignment of granitic bodies along
	fault zones, and significant variations in granitic zonation34
Figure 4.13:	Characteristics of the Prospect 1 area35
Figure 4.14:	Schematic representation of the zoned granites within Prospect 236
	Characteristics of the Prospect 2 area37

Structural Interpretation of the Western Erdenet Area, Mongolia

Figure 4.16:	: Schematic representation of zoned multiple phases of early granitic bodies (1, 2 and	
	3), possibly overprinted by late minor sub-circular intrusive bodies.	
Figure 4.17:	Characteristics of the Davaa prospect area	
	Schematic representation of zoned multiple phases of early granitic bodies possibly	
	overprinted by late minor sub-circular intrusive bodies.	
Figure 4.19:	Characteristics of the Zuukhin Gol area	
Figure 4.20:	Schematic representation of a multiple level magnetic response within a basin	
	environment.	43
Figure 4.21:	Characteristics of the Prospect 3 area	
Figure 4.22:	Schematic representation of a small intrusive body within a basin environment	46
	Characteristics of the Prospect 4 area	
Figure 4.24:	Schematic representation of differential strain within domain 3A	48
Figure 4.25:	Characteristics of the Prospect 5area	49
	Schematic representation of possible thrusts and truncation of igneous bodies	
	Characteristics of the Mogoin Gol 2 area.	
Figure 4.28:	Characteristics of the Mej Uul area	53
	Schematic representation of radial fracturing around an intrusive body	
Figure 4.30:	Characteristics of the Undrakh area.	55
Figure 4.31:	Characteristics of the Umin Tsagaan Nuu area	57
Figure 4.32:	Schematic representation of radial fracturing around a possible intrusive body (from	
	Corbett and Leach 1995).	58
Figure 4.33:	Characteristics of the Tsookhor Morit prospect area	59
	List of Tables	
Table 1.1:	Datum, projection details for the project and location points of the aeromagnetic	
	survey boundary.	
Table 1.2:	Summary of the airborne geophysical survey acquisition parameters	1
Table 2.1:	A selection of common naturally occurring radioactive minerals	ი

EXECUTIVE SUMMARY

The project area lies approximately between longitudes 102°20' E and 104°50' E, and latitudes 48°30' N and 49°30' N, and includes a total combined airborne survey area (areas 1 and 2) of approximately 5,665 km².

The focus of this study was to determine the main structural components within the area that could be associated with porphyry Cu-Mo deposits. This work has identified fourteen areas that contain significant structural or litho-magnetic characteristics in association with known mineralisation to be of interest for either unravelling the complex structural history of the area or defining new targets.

From the structural interpretation and litho-magnetic associations it is possible to divide the area into 5 domains. The two most prospective domains are interpreted to be 3A and 2A, as they clearly contain multiple zoned igneous units and are cross-cut by major (E – W and NW – SE trending) regional structures. Domain 3B could contain similar structures to domain 3A, with prospective units at depth, buried by Triassic-Jurassic volcano-sedimentary units.

The predominantly E - W trending structural domain 2A, possibly provides evidence of thrusting having been active in the region which could be beneficial for the development of large porphyry deposits.

Even though structures with an E-W strike appear to be the dominant regional structures (such as the Vitim Suture Zone) this study proposes that the NW trending structures are equally if not more significant for focusing the position of large porphyry mineral deposits.

1 INTRODUCTION

The project area lies approximately between longitudes 102°20' E and 104°50' E, and latitudes 48°30' N and 49°30' N, and includes a total combined airborne survey area (areas 1 and 2) of approximately 5,665 km².

The co-ordinates of the airborne survey project areas are shown in Table 1.1. The location of the survey area is presented in Figure 1.1.

Datum and Projection		Easting	Northing		Easting	Northing
		Area #01		-	Area #02	
World Geodetic Spheroid 84	1	390622	5466594	1	325810	5408424
	2	460441	5465657	2	378011	5408063
Universal Transverse Mercator	3	459971	5398811	3	377687	5391242
Zone 48	4	398715	5399538	4	325350	5391600
	5	398547	5390325			
	6	389158	5390487			

Table 1.1: Datum, projection details for the project and location points of the aeromagnetic survey boundary.

This report provides a summary of the results from the aeromagnetic interpretation component. A separate operations report outlines details of the acquisition and processing (Churchwood, 2001), Table 1.1 provides a brief summary of the main acquisition parameters.

Survey Line Direction Tie Line Direction	000 – 180 degrees 090 – 270 degrees	Tie Line Spacing	2500 metres			
	090 - 270 degrees	Mean Terrain Clearance	~120 metres			
Survey Line Spacing	250 metres	Total Line Kilometres	~25,490 km			
Approx. Area Covered	Area #01 =	= 4,785 km ² Area #02 =	879.5 km ²			
Survey Aircraft	Piper Cheyenne PA-31T2 (C-GHRM)					

Table 1.2: Summary of the airborne geophysical survey acquisition parameters.

Verification of data quality was undertaken at the base of operations in Bulgan, Mongolia. Final data processing and image processing was carried out at Fugro Airborne Surveys offices in Perth, Western Australia.

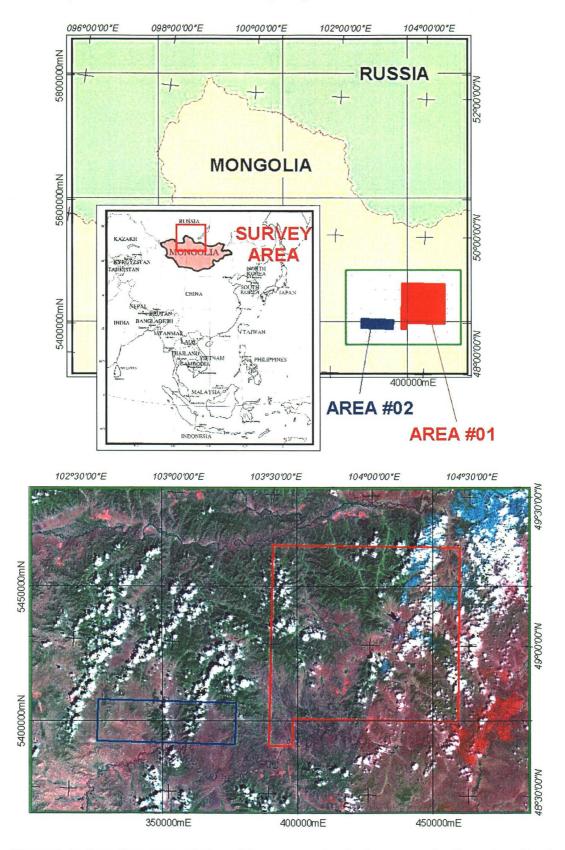


Figure 1.1: Location map of the airborne geophysical surveys in Central – Northern Mongolia. Red Box = Area #01, Blue Box = Area #02, Green Box = Regional Overview from Remote Sensing Imagery.

Structural Interpretation of the Western Erdenet Area, Mongolia

1.1 OBJECTIVES AND PRODUCTS

The project also provides a brief insight to possible mineral targets and prospects from the identification of magnetic characteristics of the multiple intrusive and zoned igneous rocks. The objectives for the interpretation phase are therefore to:

- delineate major and minor structures.
- · delineate zones of anomalous radio-element activity that may indicate alteration,
- integrate geophysical data with remote sensing imagery and also published data made available for the project by the clients, in order to assess the region's mineral potential.

The final products from this interpretation include:

- this report which provides a summary of the methodology applied for the interpretation,
 examples of data from the survey and the results of the interpretation,
- a 1:100,000 'factual' structural geological map in three parts (enclosures 1, 2 and 3) based upon interpretation of the new airborne geophysical data, and integration with remote sensing imagery.
- a 1:250,000 'synthesis' structural geological map (enclosure 4) that summarises the domains and possible fault displacement on the major structures.
- data and interpretation layers compiled in a geographic information system (ArcViewTM),

These final products provide an indication of the style and extent of geological information that can be gained from the airborne geophysical data. The report also provides examples of the processing, manipulation and interpretation of the geophysical data for the purpose of geological mapping.