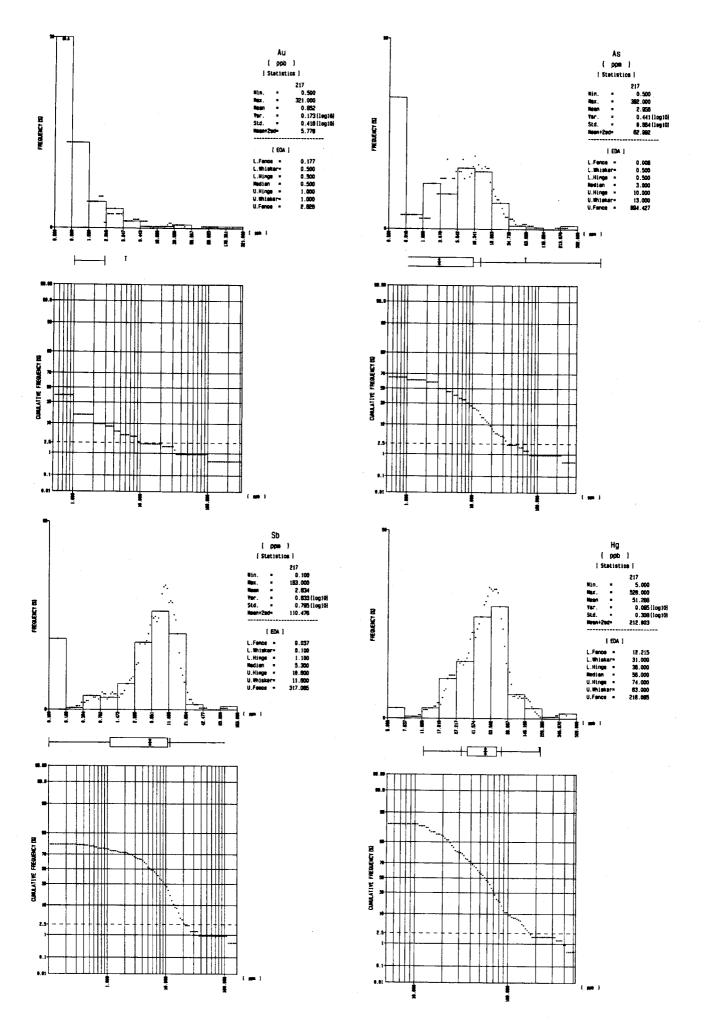
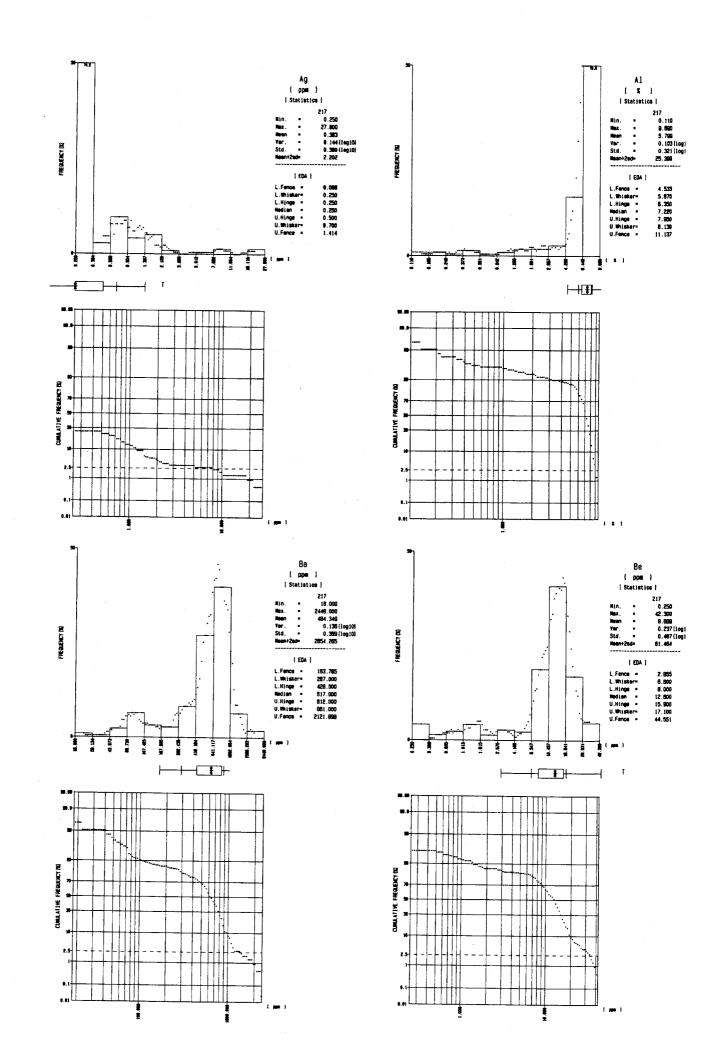
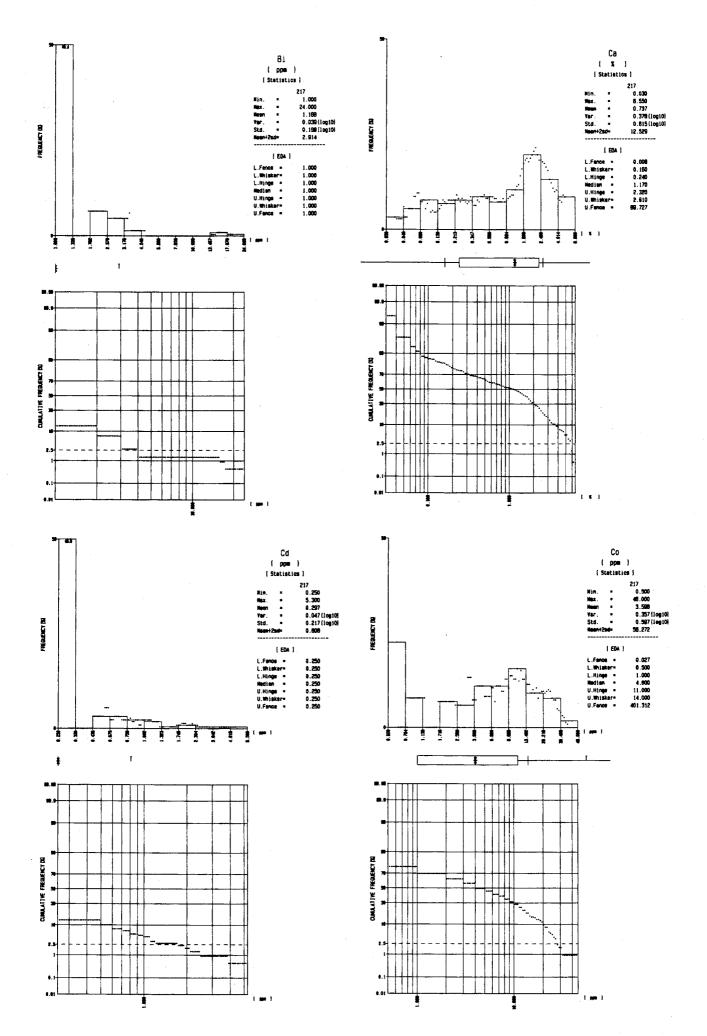
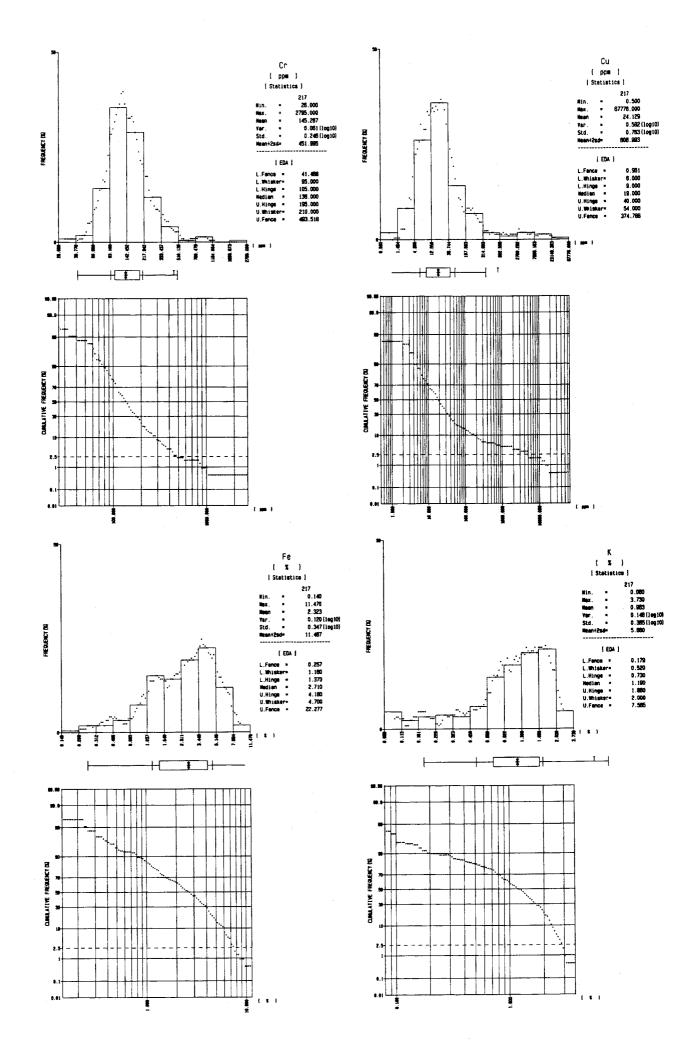
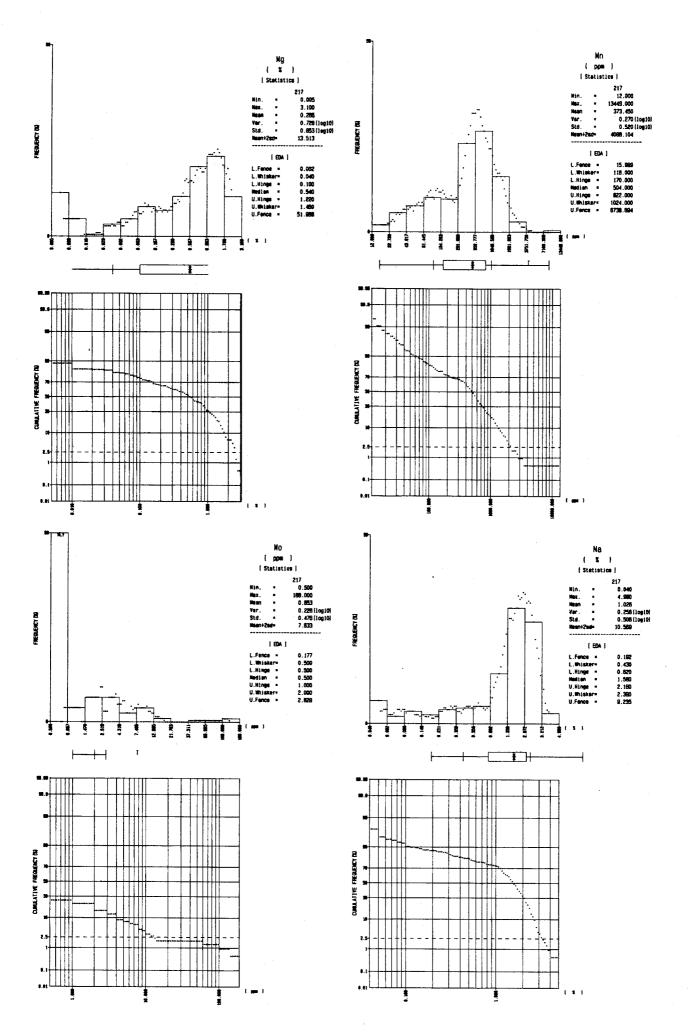

Appendix 8 Statistical data of rock chemical samples, histogram, EDA and cumulative frequency for each element in the western Erdenet area

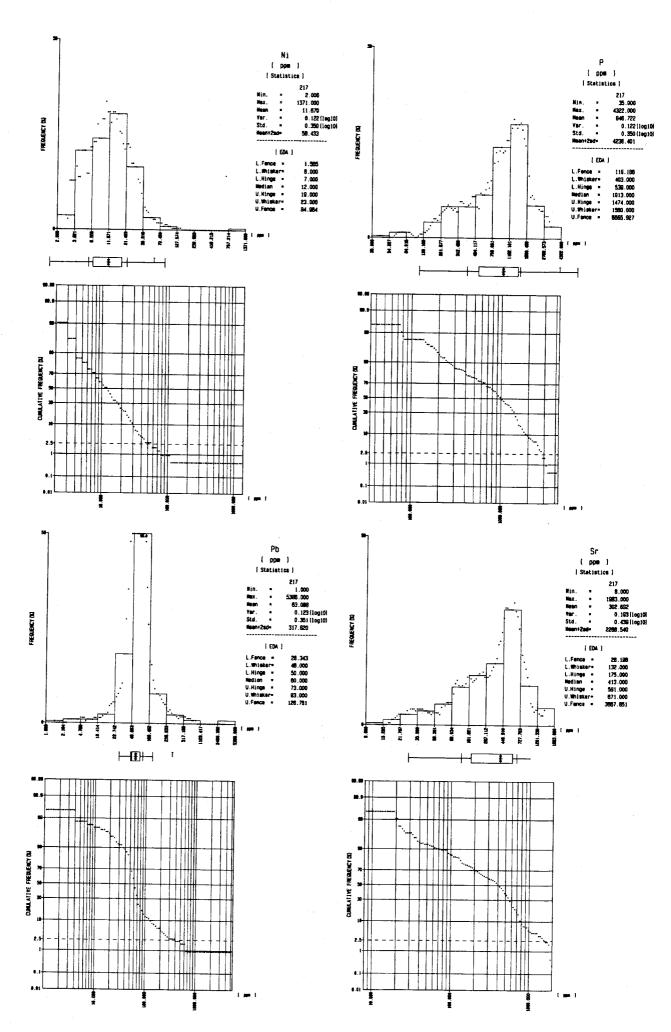

Elements	B.D.L(%)	Mean	Var.	S.D.	Min	Max	Mean+2SD	1
Au(ppb)	60.8	1	0.173*	0.416*	1	321	6 Wieari+23D	(LOC
As(ppm)	34.6	3	0.441*	0.664*	1	392	63	(LOC
Sb(ppm)	18.9	3	0.633*	0.795*	0	163	110	(LOG
Hg(ppb)	2.8	51	0.095*	0.308*	5	528	212	(LOG
Ag(ppm)	74.2	0	0.144*	0.380*	0	28	212	(LOG
AI(%)	0.0	6	0.103*	0.321*	0	10	25	(LOG
Ba(ppm)	0.0	484	0.136*	0.369*	18	2448		(LOG
Be(ppm)	4.1	9	0.237*	0.487*	0	42	81	(LOG
Bi(ppm)	86.2	1	0.039*	0.199*	1	24		(LOG
Ca(%)	0.0	1	0.378*	0.615*	0	7	13	(LOG
Cd(ppm)	86.6	0	0.047*	0.217*	0	5	1	(LOG
Co(ppm)	22.6	4	0.357*	0.597*	1	46	56	(LOG
Cr(ppm)	0.0	145	0.061*	0.246*	26	2795		(LOG
Cu(ppm)	1.8	24	0.582*	0.763*	1	67776	809	(LOG
Fe(%)	0.0	2	0.120*	0.347*	0	11	11	(LOG
K(%)	0.0	1	0.148*	0.385*	0	4	6	(LOG
Mg(%)	11.5	0	0.728*	0.853*	0	3		(LOG
Mn(ppm)	0.0	373	0.270*	0.520*	12	13449	4088	(LOG
Mo(ppm)	74.7	1	0.226*	0.476*	1	188		(LOG
Na(%)	0.0	1	0.256*	0.506*	0	5		(LOG
Ni(ppm)	0.0	12	0.122*	0.350*	2	1371		(LOG
P(ppm)	0.0	847	0.122*	0.350*	35	4322		(LOG
Pb(ppm)	0.5	63	0.123*	0.351*	1	5386		(LOG
Sr(ppm)	0.0	303	0.193*	0.439*	8	1983		(LOG
Ti(%)	0.0	0	0.130*	0.361*	0	1		(LOG)
V(ppm)	0.5	44	0.201*	0.448*	1	260		(LOG
W(ppm)	95.9	5	0.018*	0.133*	5	55		(LOG
Zn(ppm)	0.0	52	0.243*	0.493*	4	5664		(LOG)

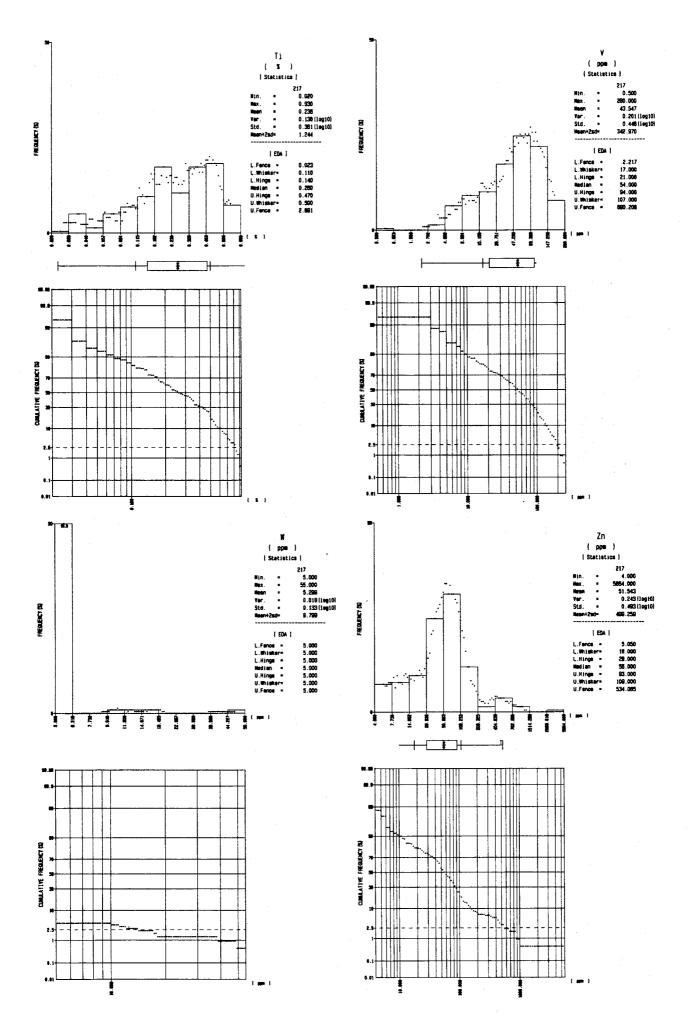

Elements	L.Fence	L.Wisker	L.Hinge	Median	U.Hinge	U.Wisker	U.Fence
Au(ppb)	0.177	0.500	0.500	0.500	1.000	1.000	2.828
As(ppm)	0.006	0.500	0.500	3.000	10.000	13.000	894.427
Sb(ppm)	0.037	0.100	1.100	5.300	10.600	11.600	317.085
Hg(ppb)	12.215	31.000	36.000	56.000	74.000	83.000	218.085
Ag(ppm)	0.088	0.250	0.250	0.250	0.500	0.700	1.414
AI(%)	4.533	5.870	6.350	7.220	7.950	8.130	11.137
Ba(ppm)	163.785	287.000	428.000	617.000	812.000	861.000	2121.898
Be(ppm)	2.855	6.600	8.000	12.600	15.900	17.100	44.551
Bi(ppm)	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Ca(%)	0.008	0.160	0.240	1.170	2.320	2.610	69.727
Cd(ppm)	0.250	0.250	0.250	0.250	0.250	0.250	0.250
Co(ppm)	0.027	0.500	1.000	4.000	11.000	14.000	401.312
Cr(ppm)	41.488	95.000	105.000	138.000	195.000	210.000	493.518
Cu(ppm)	0.961	6.000	9.000	19.000	40.000	54.000	374.788
Fe(%)	0.257	1.160	1.370	2.710	4.180	4.700	22.277
K(%)	0.179	0.520	0.730	1.190	1.860	2.000	7.565
Mg(%)	0.002	0.040	0.100	0.540	1.220	1.460	51.988
Mn(ppm)	15.989	118.000	170.000	504.000	822.000	1024.000	8739.894
Mo(ppm)	0.177	0.500	0.500	0.500	1.000	2.000	2.828
Na(%)	0.192	0.430	0.820	1.580	2.160	2.390	9.235
Ni(ppm)	1.565	6.000	7.000	12.000	19.000	23.000	84.964
P(ppm)	119.186	403.000	539.000	1013.000	1474.000	1560.000	6665.927
Pb(ppm)	28.343	48.000	50.000	60.000	73.000	83.000	128.781
Sr(ppm)	28.198	132.000	175.000	413.000	591.000	671.000	3667.851
Ti(%)	0.023	0.110	0.140	0.260	0.470	0.500	2.891
V(ppm)	2.217	17.000	21.000	54.000	94.000	107.000	890.206
W(ppm)	5.000	5.000	5.000	5.000	5.000	5.000	5.000
Zn(ppm)	5.050	18.000	29.000	56.000	93.000	109.000	534.085

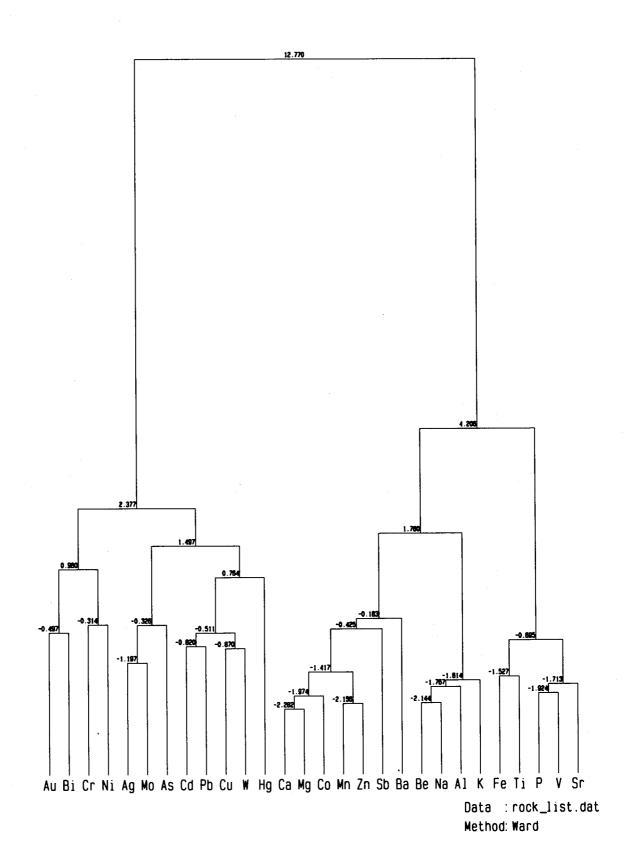

				7.11		-:-:1	ाः	-:-:-		:::::1		::::I		100	33.33			::::	· · · · ((((((((((((((((((((::-:I			35.3	
≯																											0.42
>																										0.00	0.30
Ę																									99.0	60:0-	0.40
																									_		_
ΐΣ																								0.51	0.69	90.0-	0.18
£																							0.25	0.03	0.20	0.37	0.58
۵																						0.24	17.0	0.52	0.74	0.04	0.31
ž																					0.32	0.13	0.32	0.33	0.44	0.05	0.41
ę Z																				0.18	0.26	0.32	0.42	0.42	0.16	0.01	0.48
ş																			-0.49	-0.15 (-0.19	0.18	-0.27	-0.42	-0.18 (0.34	-0.20
Н																		0				_					
Ā																		0.40	09:0	0.41	0.36	0.33	0.27	0.56	0.34	0.15	0.81
Mg																	0.83	-0.48	0.69	0.43	0.41	0.32	0.35	0.58	0.48	0.08	0.76
¥																0.41	0.32	-0.21	89.0	-0.02	0.10	0.39	0.15	0.12	90.0-	0.10	0.37
Fe															-0.03	89.0	0.61	-0.47	0.26	0.35	0.59	90:0	0.40	0.63	0.65	40.0	0.52
														23					_	_							
3													3	3 0.23	0.09	2 0.28	6 0.18	5 0.19	1 0.11	7 0.28	2 0.18	1 0.42	0.15	5 0.02	0.20	4 0.43	6 0.49
ပံ													0.03	-0.23	-0.34	-0.52	-0.36	0.25	-0.51	0.27	-0.22	-0.21	-0.20	-0.35	-0.20	0.04	-0.26
కి												-0.28	0.30	0.64	0.15	0.82	0.73	-0.27	0.45	0.60	0.49	0.25	0.40	0.58	0.60	0.13	0.67
В											0.27	0.15	0.42	0.15	0.04	0.22	0.31	0.05	0.10	0.33	0.05	0.42	0.09	0.05	0.11	0.30	0.45
S.										0.17	0.75	-0.45	0.14	0.64	0.32	0.85	97.0	-0.56	0.71	0.37	0.49	0.19	0.59	0.65	0.51	-0.01	0.57
Н									0.27	0.19	0.20			0.31	0.01	0.20	0.20		0.10	0.26	0.22	_	0.24	0.21	_	0.02	0.18
B:								•		2 0.	7 0.	10.01	6 -0.01	2 0.	2 0.	3 0.		5 -0.17		8 0.	.0	10.0-	7 0.	0	5 0.21	0.0	0
Be								0.04	0.61	0.12	0.4	-0.5	0.16	0.23	0.7	0.73	0.61	-0.3	0.81	0.18	0.18	0.3	0.1	0.3	00	0.0	0.59
Ва							0.47	0.09	0.44	0.05	0.33	-0.29	0.15	0.32	0.46	0.56	0.46	-0.34	0.41	0.15	0.11	0.10	0.19	0.33	0.02	0.05	0.45
₹						0.31	69.0	60.0	0.56	90.0	0.38	-0.56	0.10	0.18	0.65	0.56	0.42	-0.27	97.0	0.10	0.47	0.51	0.59	0.35	0.36	10.0	0.37
					90					0.39	_	0.08	0.45					-									
Ag					90.0-	3 -0.08	1 0.01	90.0	5 -0.31		t -0.13			3 -0.27	3 0.08	0.14	5 -0.13	3 0.53	0.14	3 -0.07	4 -0.20	3 0.46	3 -0.23	9 -0.35	5 -0.22	3 0.40	5 0.21
Hg				0.07	0.08	0.03	0.04	20.0	0.05	0.10	0.14	-0.05	0.08	0.13	0.13	0.10	0.15	90.0	0.10	90.0	0.14	0.23	0.08	60:0	0.15	0.08	0.16
Sb			0.02	0.07	0.33	0.23	0.43	0.08	0.57	0.16	0.51	-0.29	0.17	0.16	0.17	0.56	0.42	-0.07	0.39	0.28	0.10	0.25	0.21	0.14	0.21	90.0	0.36
As		9.0	0.02	0.29	-0.19	0.17	-0.24	-0.18	-0.41	90.0-	-0.34	0.11	0.04	-0.32	-0.12	98.0	-0.35	0.38	-0.26	-0.21	-0.14	0.08	-0.17	-0.26	0.18	0.13	-0.19
Αu	60.0	- 70.0	0.05	0.48	-0.06	10.0	0.03	0.33	-0.02	- 71.0	0.04	90.0	0.28	- 10.0	0.03	0.04	0.05	0.18	-0.02	- 70.0	0.01	0.15	-0.02	0.02	-0.01	0.07	0.19
Ľ			_		-			_		<u> </u>				Ľ.		_			_	ļ		_	-	_	-		
L	As	જ	£	Ą	₹	å	å	ã	ပ်	ខ	ဝိ	ပ်	3	Ę.	¥	Σ	Σ	Š	S.	ž	Δ.	ď	ý	F	>	*	Zn

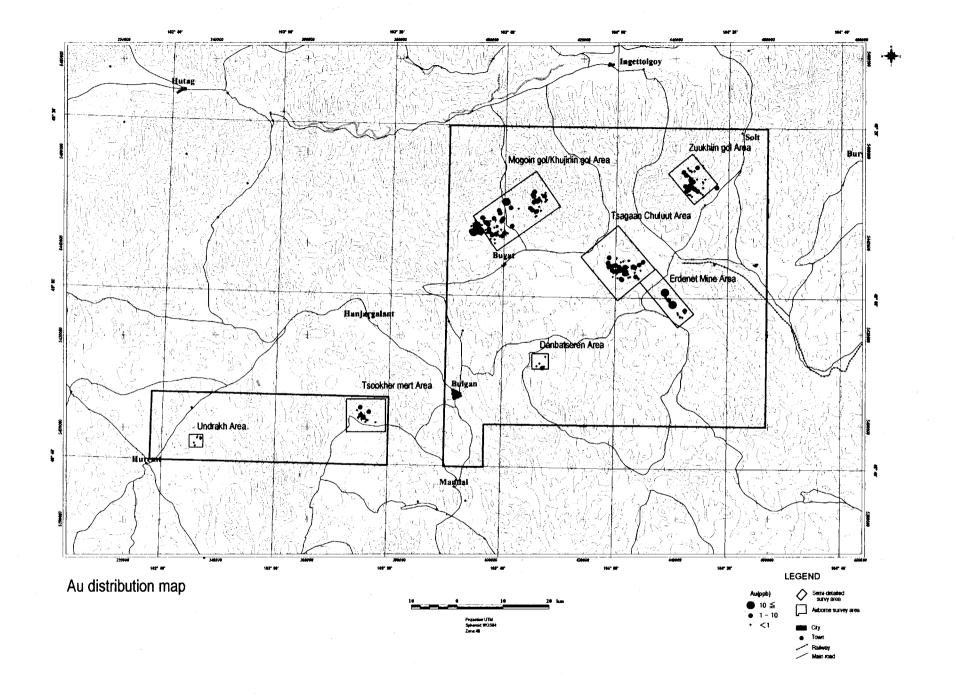


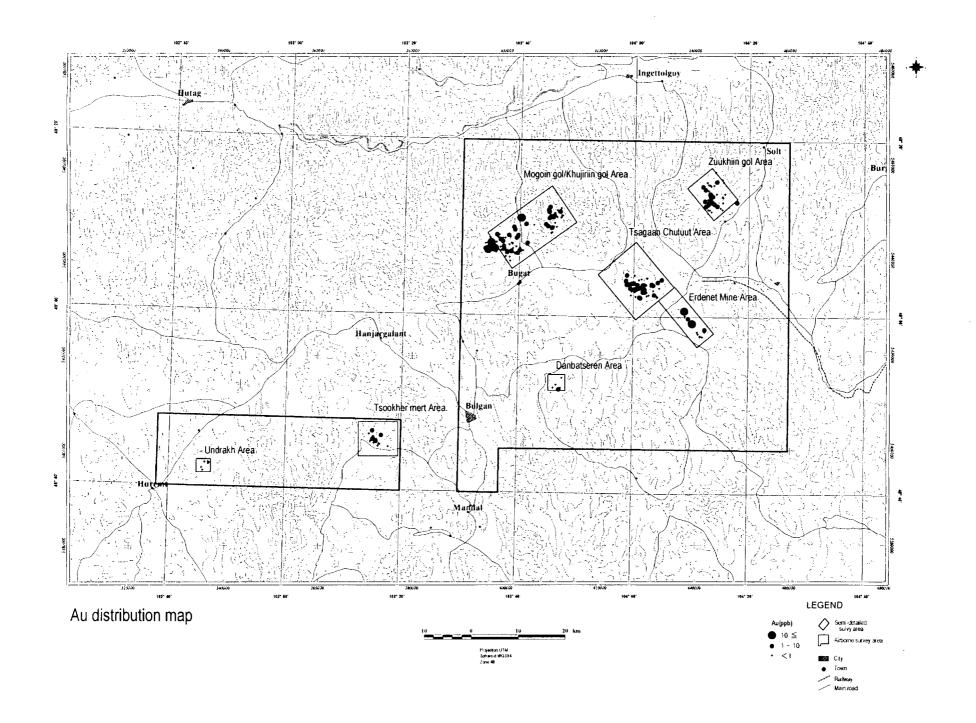

Cluster Dendrogram

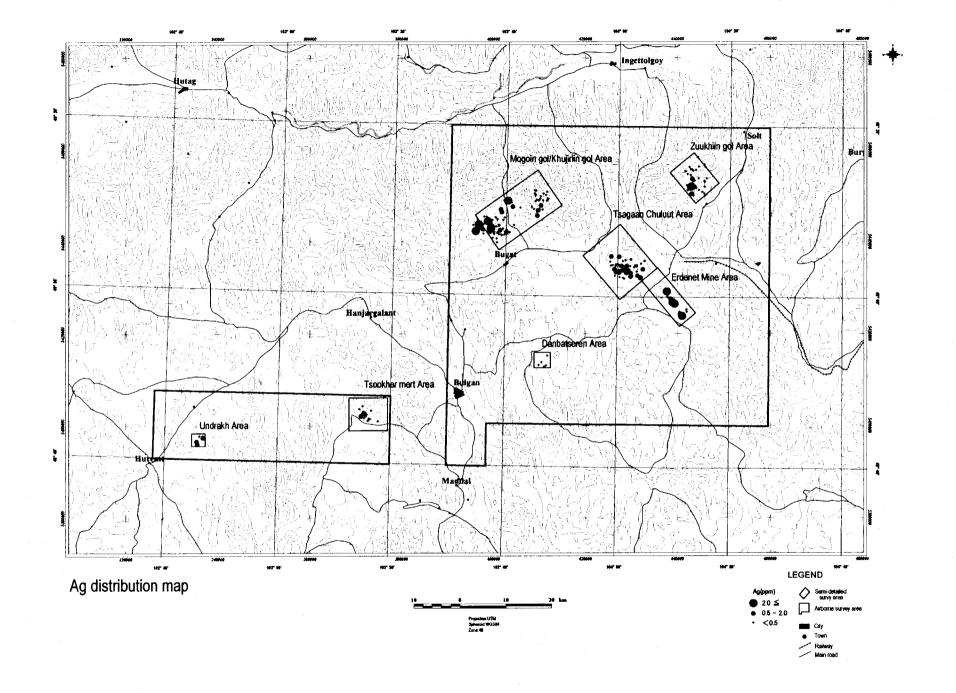


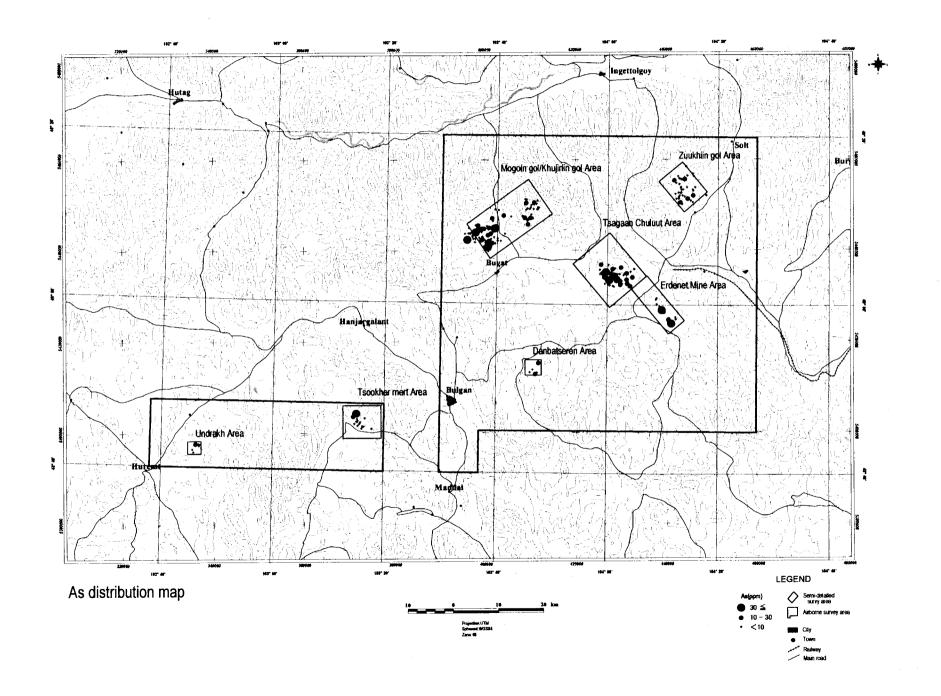


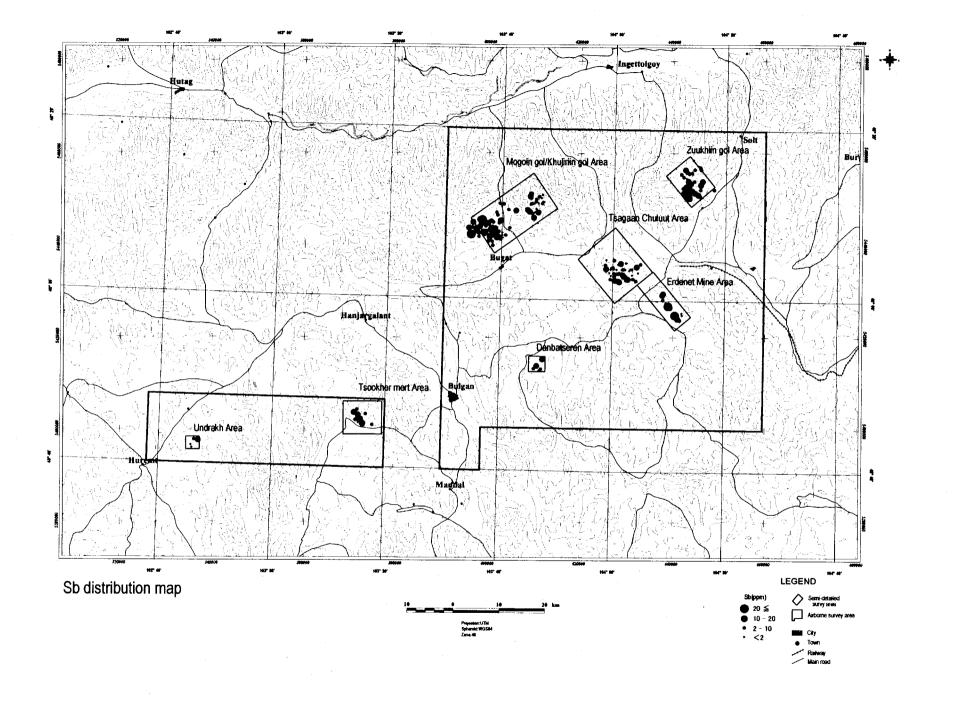


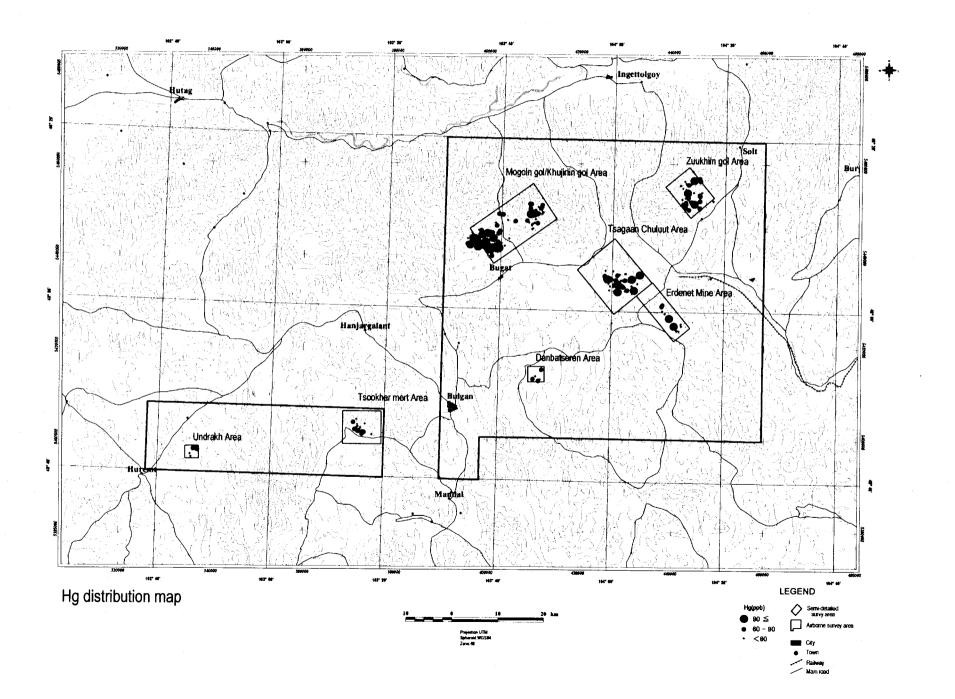


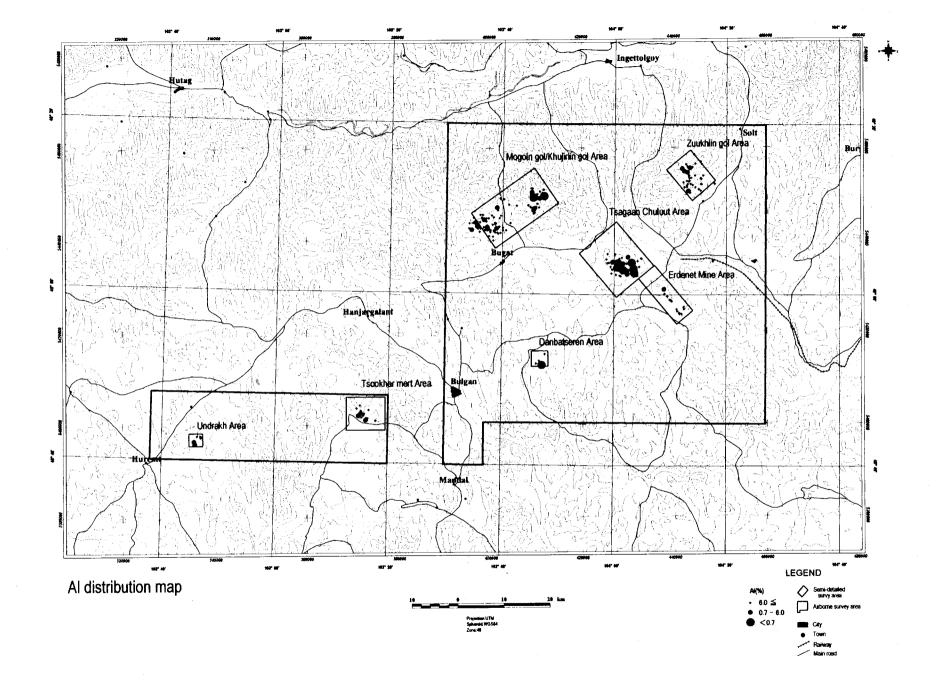


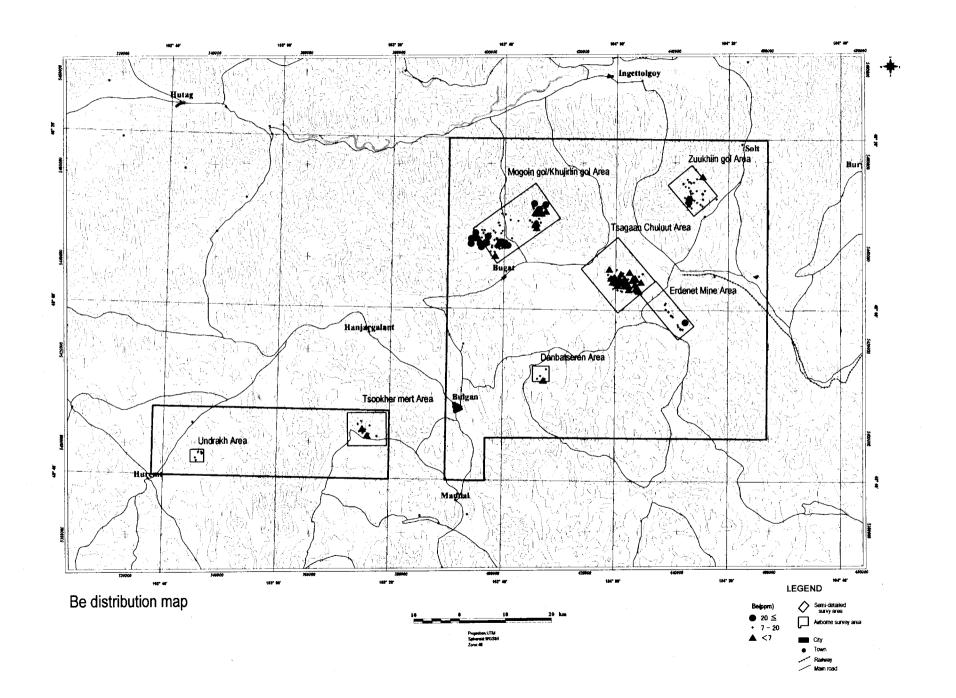


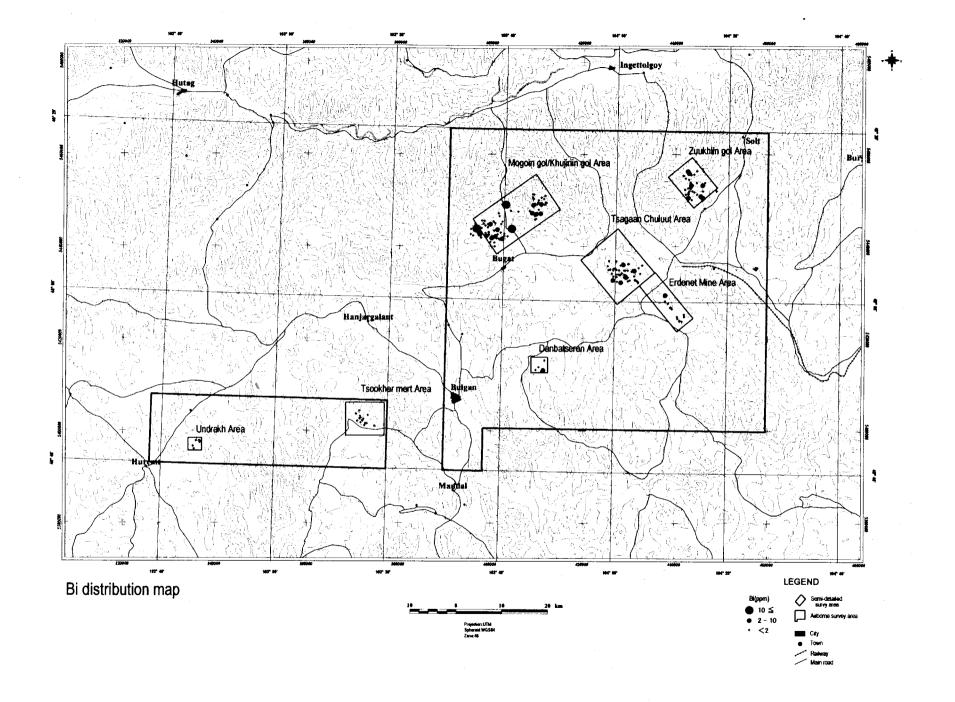


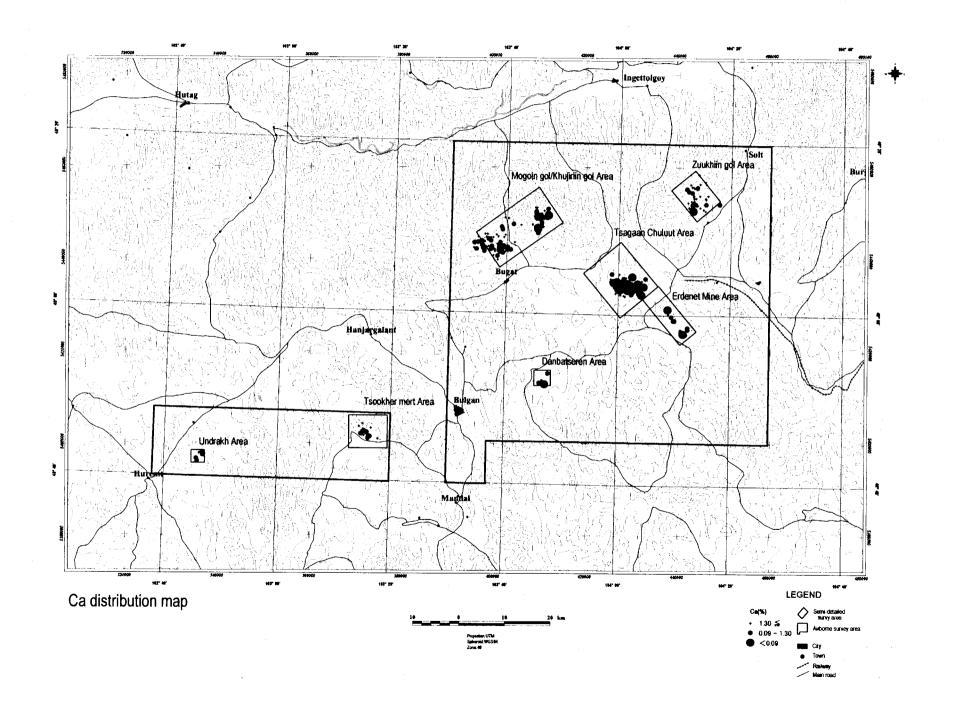

Cluster Dendrogram

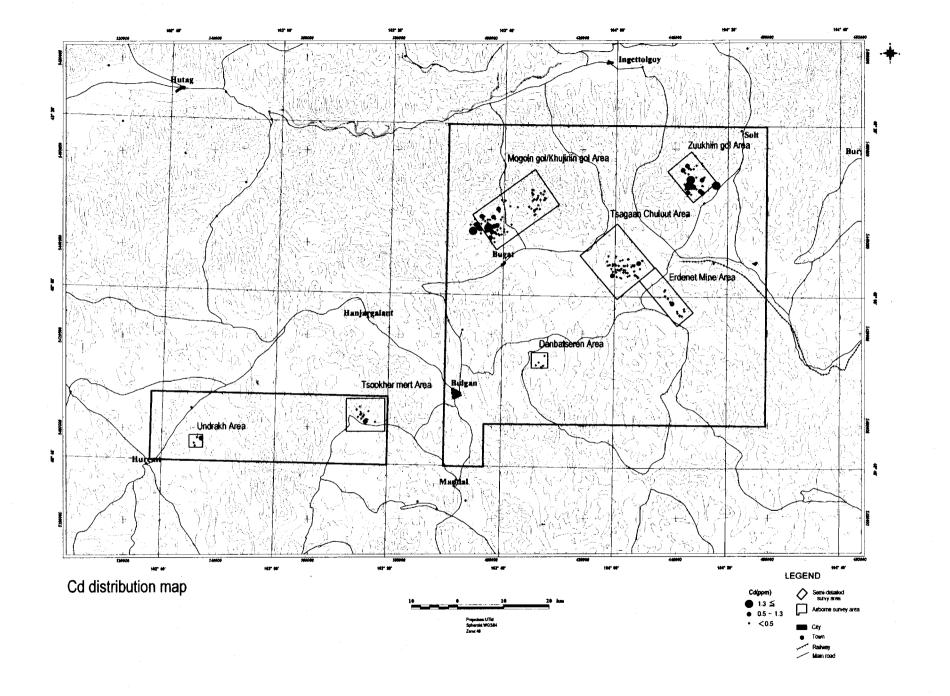


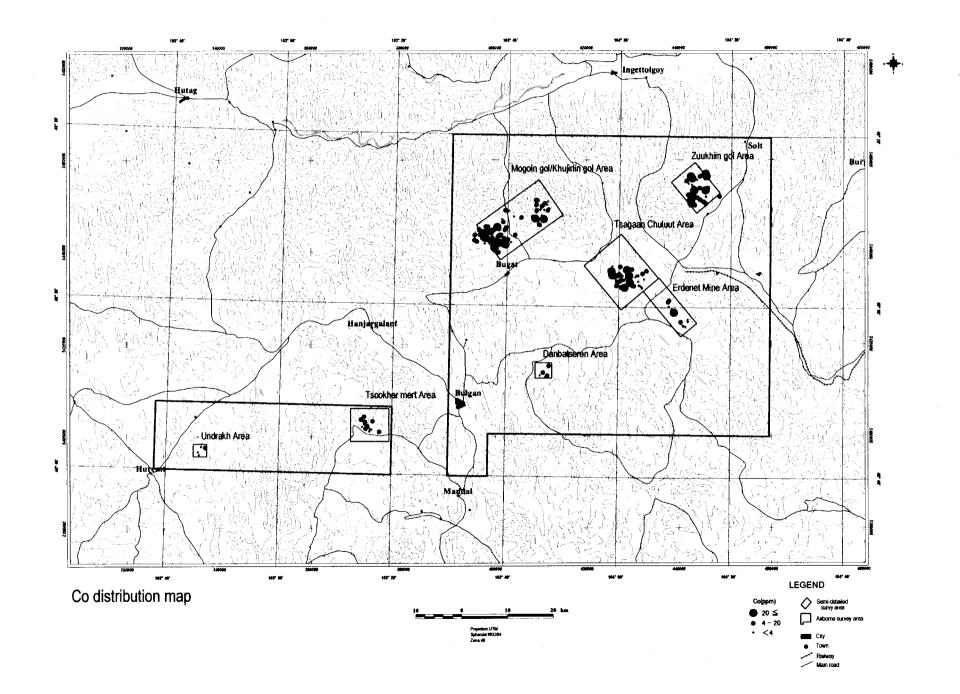


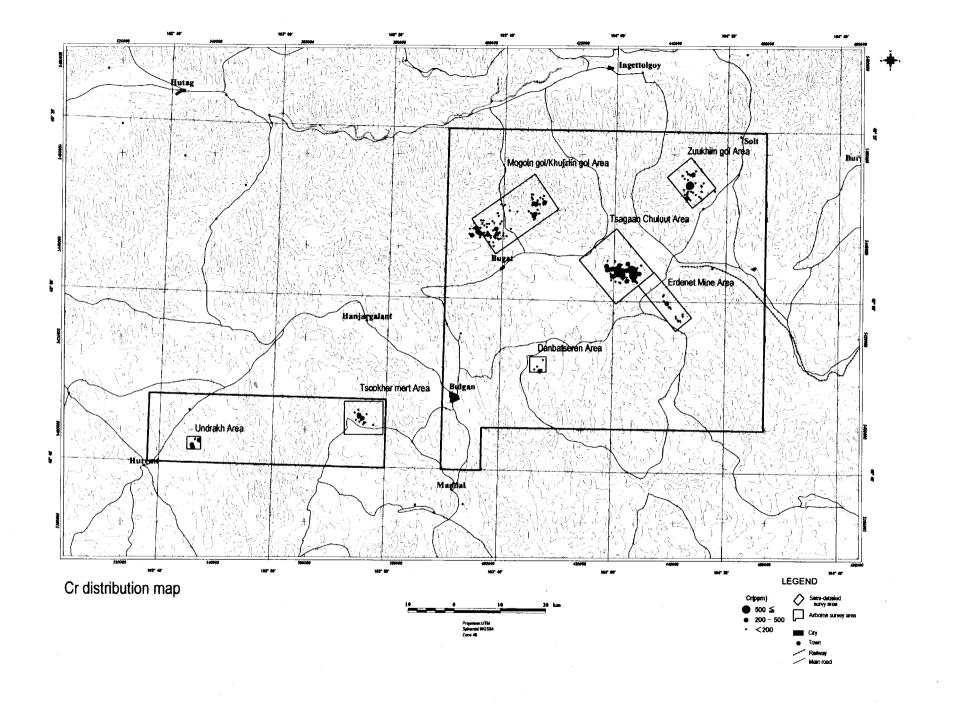


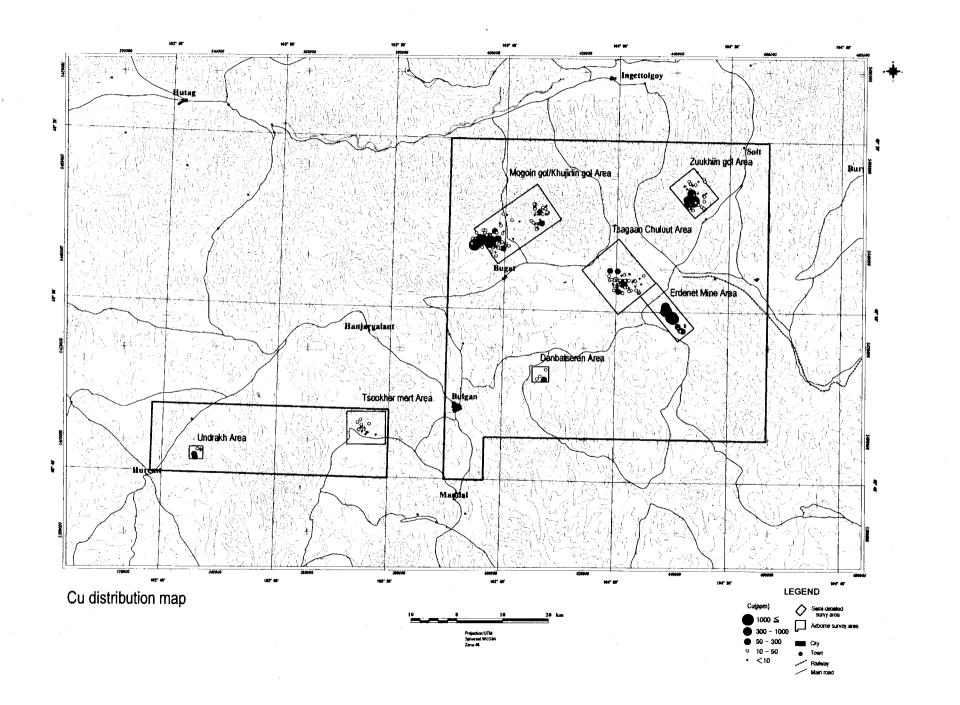


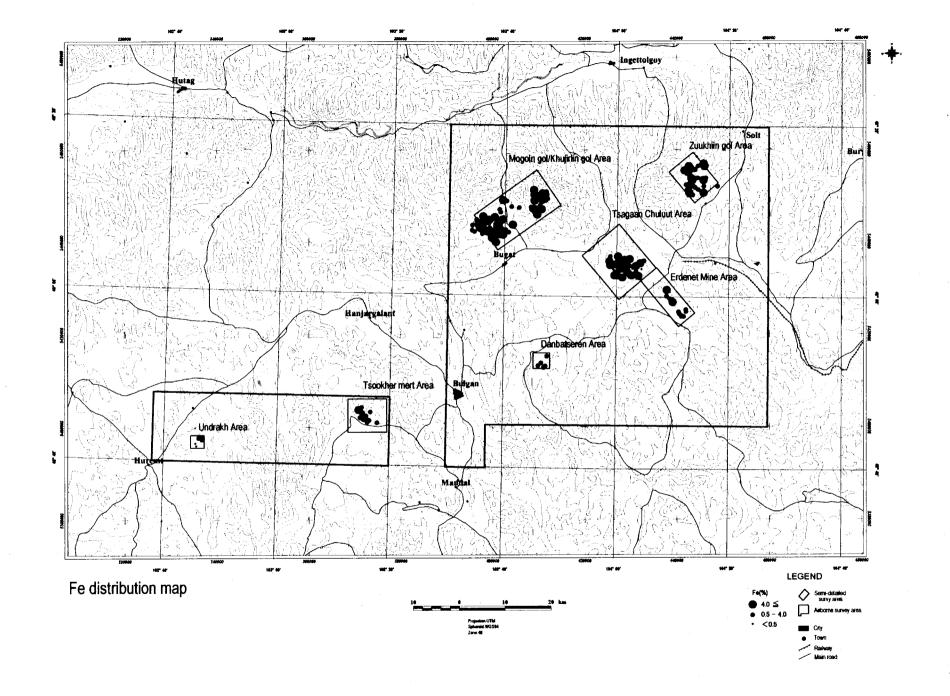


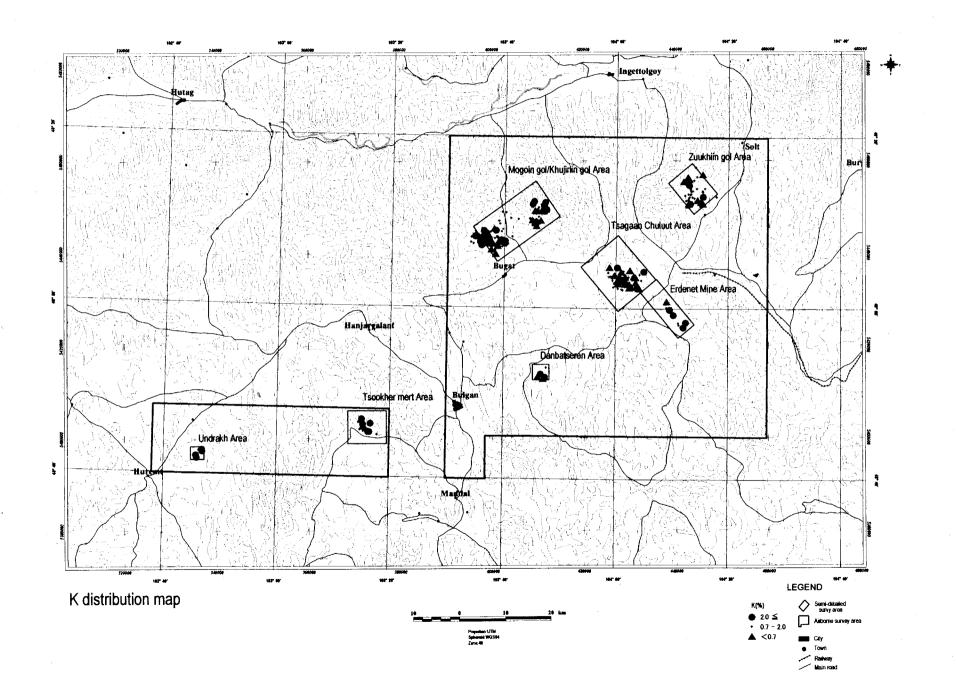


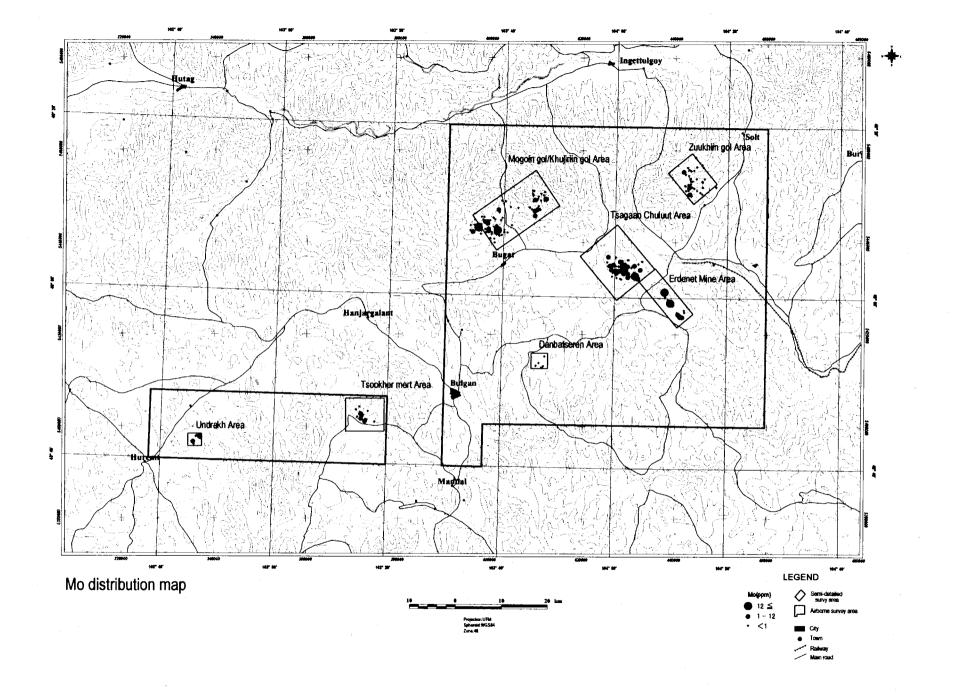


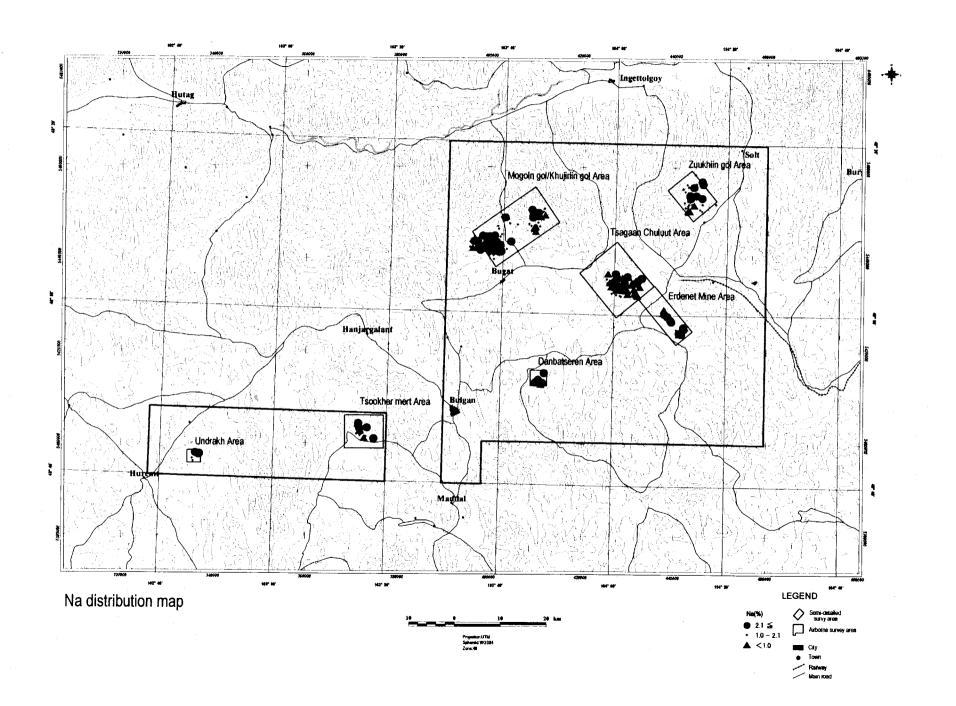


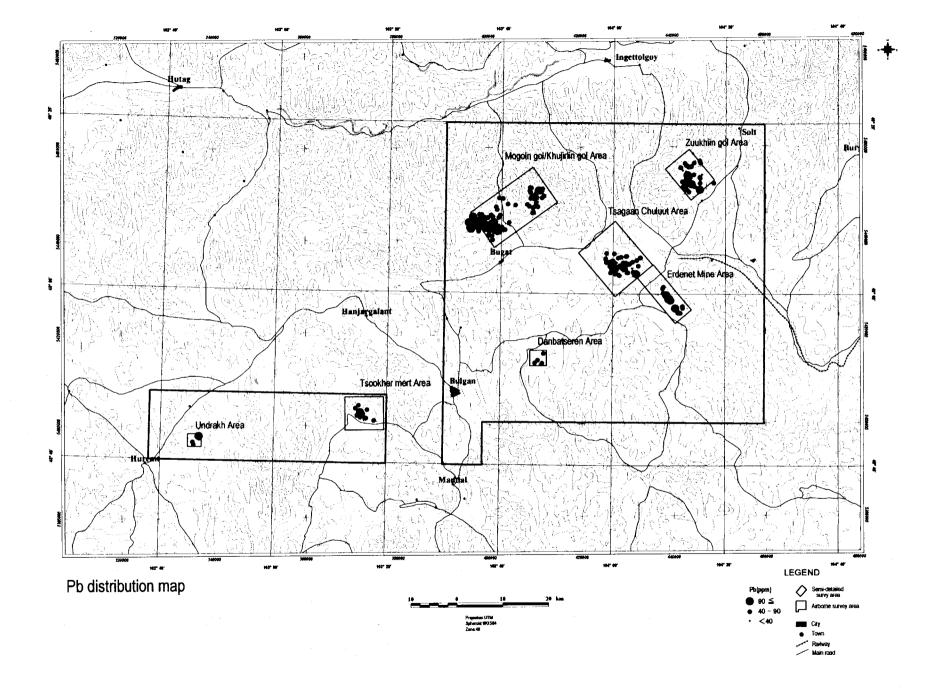


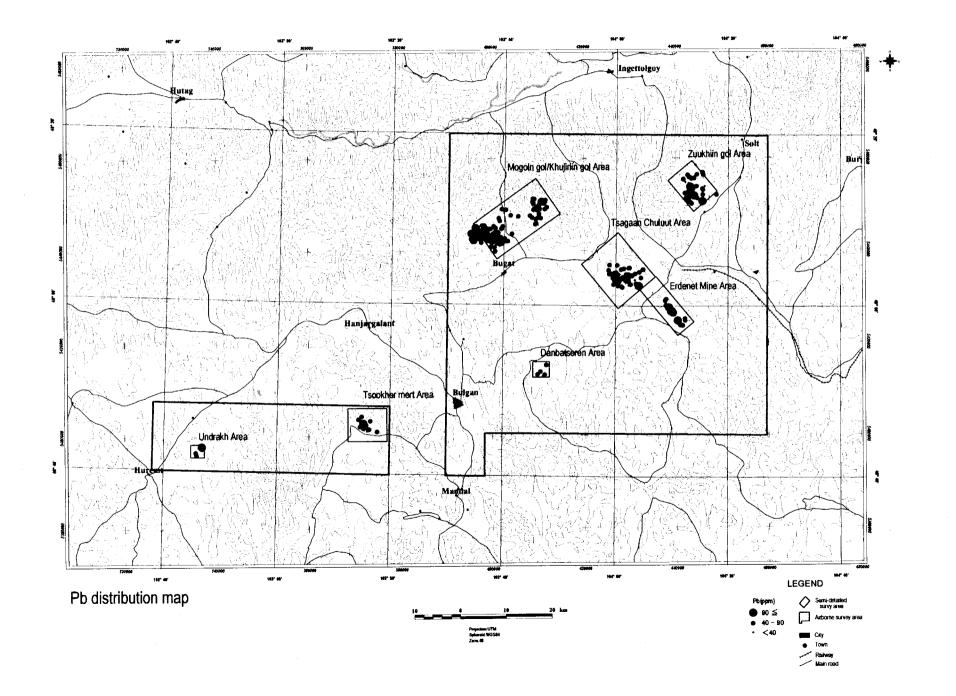


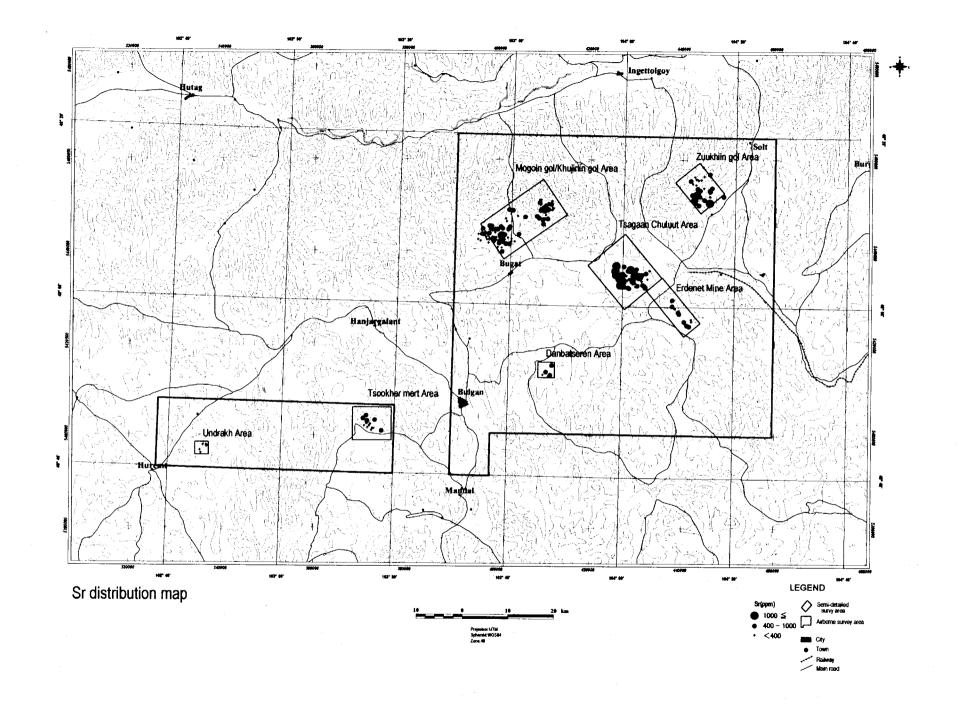


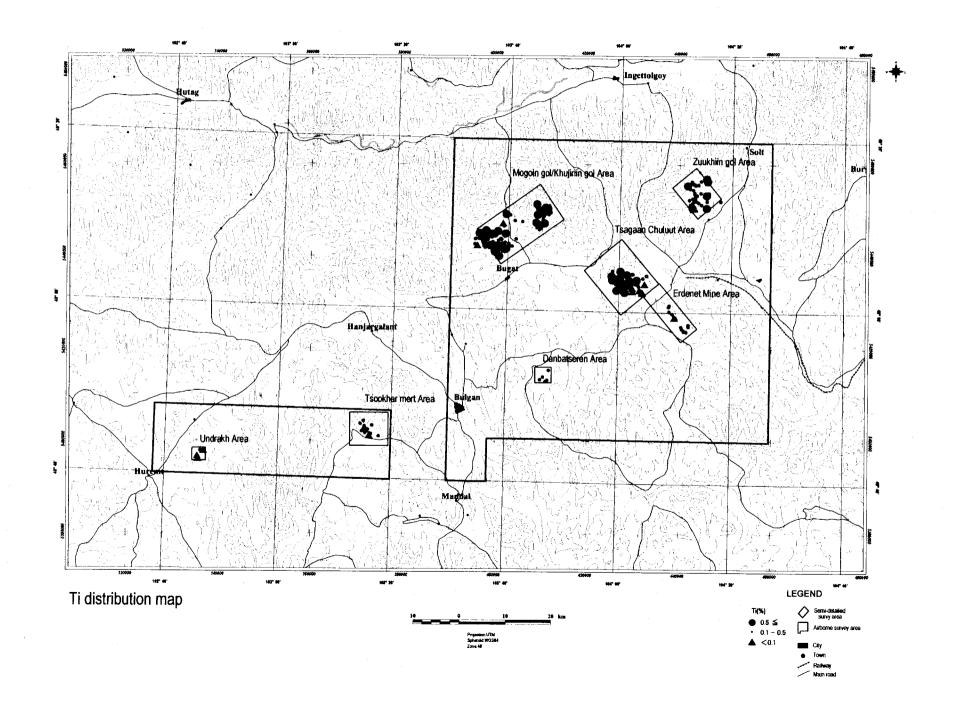


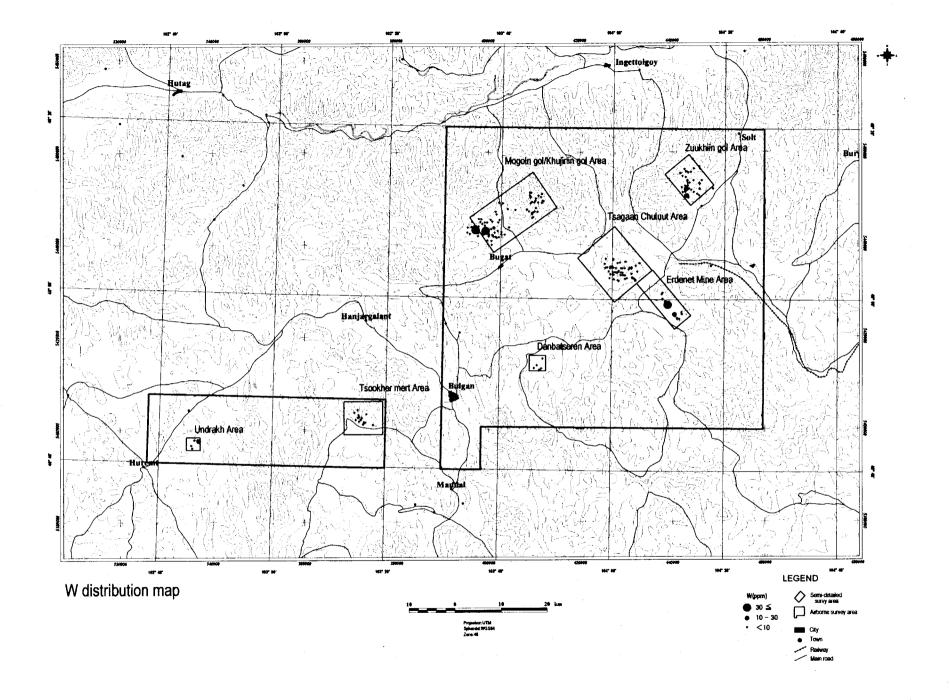


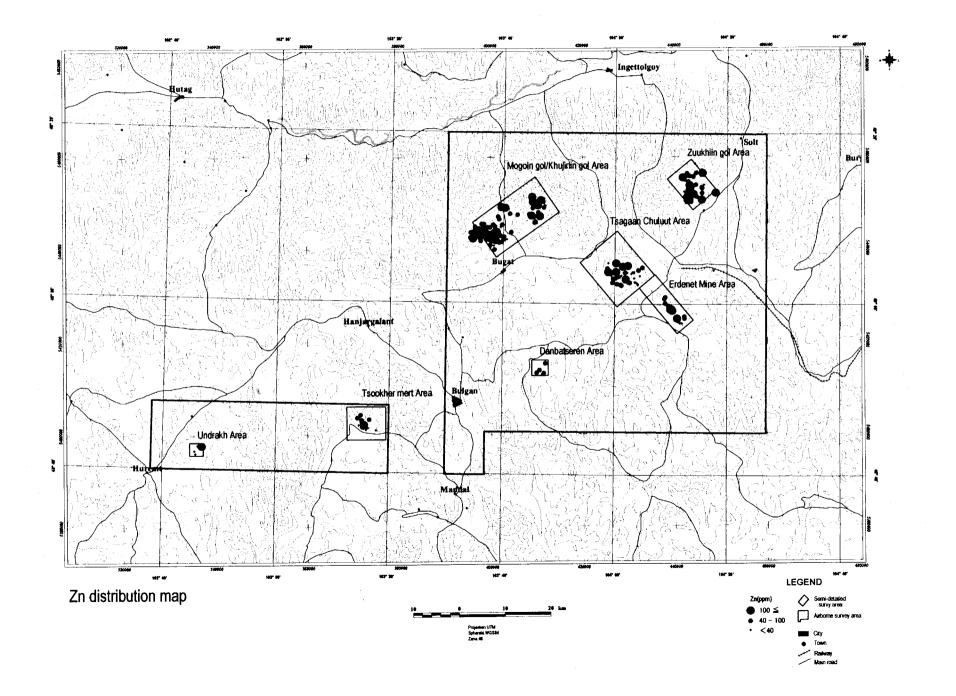


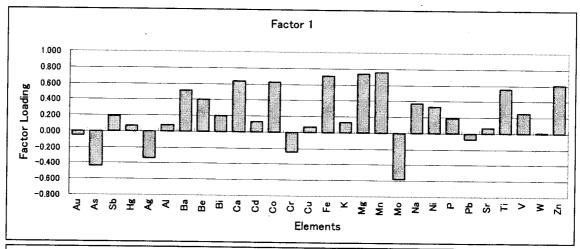


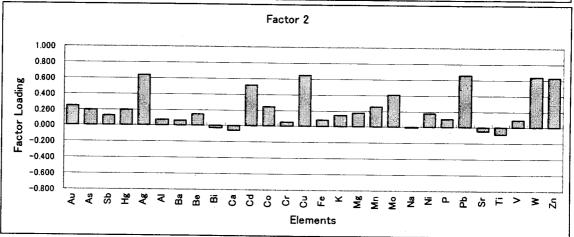


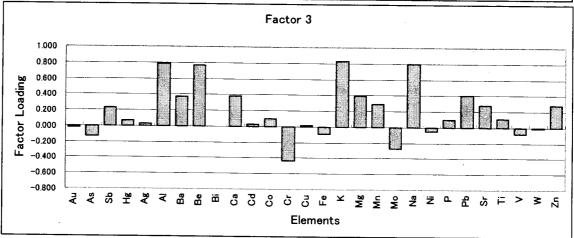


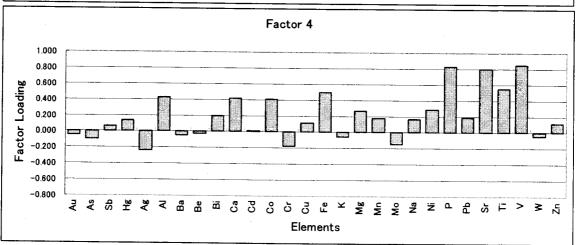


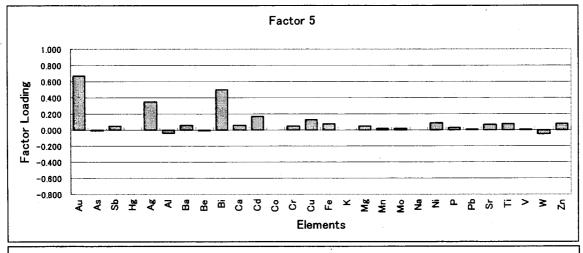


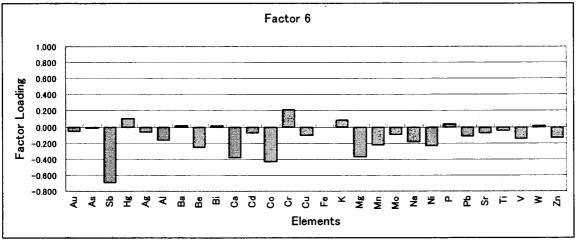


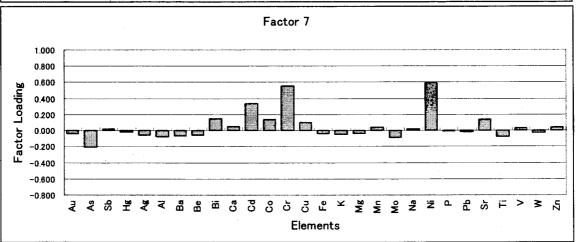





Elements	Factor1	Factor2	Factor3	Factor4	Factor5	Factor6	Factor7	Comm.
Au	-0.054	0.247	-0.020	-0.042	0.670	-0.054	-0.037	0.520
As	-0.433	0.191	-0.137	-0.097	-0.007	-0.010	-0.208	0.296
Sb	0.196	0.121	0.234	0.069	0.051	-0.695	0.020	0.599
Hg	0.067	0.193	0.067	0.139	0.003	0.107	-0.021	0.077
Ag	-0.330	0.634	0.025	-0.240	0.346	-0.069	-0.057	0.697
Al	0.077	0.071	0.785	0.431	-0.043	-0.160	-0.081	0.848
Ba	0.512	0.068	0.376	-0.042	0.062	0.012	-0.065	0.418
Be	0.404	0.147	0.763	-0.029	-0.009	-0.254	-0.058	0.836
Bi	0.202	-0.023	0.001	0.193	0.499	0.013	0.148	0.350
Ca	0.638	-0.051	0.385	0.415	0.065	-0.385	0.055	0.886
Cd	0.130	0.522	0.028	0.018	0.173	-0.076	0.333	0.437
Co	0.625	0.241	0.099	0.403	-0.002	-0.436	0.142	0.831
Cr	-0.243	0.051	-0.436	-0.178	0.046	0.214	0.555	0.639
Cu	0.072	0.651	0.019	0.112	0.126	-0.101	0.102	0.479
Fe	0.704	0.089	-0.093	0.498	0.078	-0.006	-0.035	0.768
K	0.126	0.143	0.831	-0.058	0.002	0.084	-0.044	0.739
Mg	0.736	0.179	0.392	0.262	0.045	-0.373	-0.034	0.939
Mn	0.758	0.253	0.296	0.173	0.020	-0.228	0.043	0.811
Мо	-0.576	0.408	-0.277	-0.145	0.020	-0.092	-0.086	0.612
Na	0.370	-0.005	0.796	0.164	0.004	-0.179	0.020	0.830
Ni	0.333	0.180	-0.051	0.285	0.086	-0.231	0.592	0.638
Р	0.196	0.109	0.103	0.827	0.030	0.031	-0.011	0.746
Pb	-0.071	0.662	0.402	0.189	0.006	-0.113	-0.015	0.653
Sr	0.069	-0.044	0.280	0.794	0.075	-0.074	0.144	0.748
Ti	0.559	-0.091	0.107	0.546	0.080	-0.041	-0.076	0.644
V	0.253	0.092	-0.086	0.848	0.010	-0.145	0.033	0.822
W	0.008	0.643	-0.013	-0.043	-0.052	0.012	-0.029	0.420
Zn	0.610	0.630	0.281	0.112	0.083	-0.135	0.040	0.887


Factor	Contribution	%	Cum%
1	4.70	26.81	26.81
2	2.95	16.80	43.61
3	3.77	21.51	65.13
4	3.56	20.32	85.45
5	0.92	5.24	90.68
6	1.35	7.68	98.36
7	0.93	5.32	103.67





Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 1)

Sample	X (m)	Y (m)	1	2	3	4	5	6	7
MA1045	444719. 58	5456390.07	0. 223	-0. 452	0. 479	-0. 327	0. 517	-0. 446	-0. 631
MA1050	445916.96	5456872. 25	0. 926	-0. 229	-0. 540	1. 200	-0. 479	-1. 042	-0.660
MA1052	446113. 56	5456314. 42	0. 982	-0. 027	-0. 308	0.812	-0. 603	-0. 429	-1. 367
MA1054	442206. 58	5453852. 51	0. 458	-0. 521	0. 618	-0. 698	-0. 437	-0. 073	0.066
MA1055	444105. 33	5455624. 13	-0. 030	-0. 388	0. 749	-1. 014	-0. 517	0. 105	0. 579
MA1056	443428. 07	5452666. 32	0. 608	-0. 252	0. 359	0. 546	-0. 410	-0. 392	0. 315
MA1058	443056.35	5451928. 91	0. 727	2. 730	0. 164	-0. 149	-0. 149	0. 398	0. 914
MA1059	442830. 28	5451591. 49	0.086	-0. 184	0. 354	0. 152	0. 466	-0. 741	0. 248
MA1061	448923. 72	5451994. 92	0. 151	2. 087	0. 423	-0. 208	0. 242	0. 325	0. 918
MA1062	442320. 69	5451226. 24	0. 222	-0. 300	0. 388	0. 169	0. 257	-0. 555	0. 282
MA1064	442109.47	5452309. 34	0. 082	-0. 517	0. 409	0. 231	0. 707	-0. 617	0. 322
MA1068	442840. 85	5452610. 57	0. 173	-0. 036	0. 320	0. 036	-0. 555	-0. 867	0. 259
MB1046	442296. 84	5454747. 23	0.078	-0. 910	0. 899	-1. 511	0. 249	0. 139	-0. 345
MB1048	442961. 82	5454524. 06	0. 279	-0. 524	0. 998	-1. 632	-0. 286	1. 630	0. 110
MB1054	445970. 16	5451992. 18	-0. 136	-0. 239	0. 720	-0. 734	-0. 418	0. 081	0. 019
MB1057	446412.66	5453809. 97	0. 084	-0. 927	0. 107	0. 245	-0. 295	-0. 836	0. 473
MB1058	445901.62	5453259. 07	1. 006	0. 051	0. 046	0. 916	0. 281	-0. 036	1. 365
MB1059	446000.62	5453041. 97	0. 614	-0. 329	0. 117	0. 395	-0. 342	-0. 487	-0. 111
MB1060	443318.77	5453840. 95	0. 237	-0. 712	0. 268	-0. 007	-0. 086	-0. 679	-0. 438
MB1061	443276.71	5453686. 95	0. 689	0.852	0. 486	0. 406	0. 214	0. 591	-1. 286
MB1062	443413. 54	5453222. 37	0. 581	1. 220	0. 390	0. 453	0. 905	0. 213	6. 135
MB1063	443798. 75	5453311. 04	0.020	-0. 619	0. 256	0. 692	0. 318	-0. 777	-0. 180
MC1069	441838. 01	5455338. 87	-0. 351	-0. 376	0. 328	-0. 961	-0. 580	-0. 594	-0. 044
MC1070	441777. 72	5455370. 31	0.872	-0. 380	-0. 063	0. 482	0. 220	0. 005	-0. 690
MC1074	442717. 31	5456287. 03	0. 902	-0. 247	-0. 655	0. 587	0. 322	-1. 365	0. 398
MC1075	443015.65	5455820. 64	0. 991	-0. 533	-0.852	0. 585	0. 109	-1. 627	0. 390
MC1076	443317. 61	5455694. 00	0. 273	-0. 787	0. 452	-0. 649	-0. 156	-0. 104	-0. 367
MC1077	443517. 87	5455506. 60	0.068	-0. 901	0. 405	-1.060	-0. 214	-0. 498	-0. 004
MC1078	443284. 86	5452513. 36	0.065	-0. 277	0. 134	0.055	0. 630	-0. 799	-0. 051
MC1079	443663. 81	5451984. 48	-0. 214	0. 586	0. 336	-0. 092	1. 083	-0. 444	0. 232
MC1080	444126. 56	5451732. 62	0. 353	0. 517	-0. 043	-0. 217	0. 090	-0. 631	0. 225
MC1081	444728. 77	5451263. 38	0. 276	-0. 025	-0. 230	0. 480	0. 793	-1. 084	-0. 621
MC1082	445473. 36	5450854. 49	0. 499	-0. 091	-0. 259	0. 565	-0. 006	-1. 005	0. 090

Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 2)

Sample	X (m)	Y (m)	1	2	3	4	5	6	7
MC1083	445874. 63	5450510.77	0. 613	0. 182	-0. 110	1. 455	0. 194	-0. 369	-0. 166
MC1084	442887. 74	5451282. 15	0. 375	-0. 388	0. 214	0. 028	-0. 427	-0. 775	0. 475
MC1086	442321. 01	5451257. 14	0. 146	-0. 145	0. 124	0. 106	-0. 539	-1. 020	-0. 239
MC1087	442798. 82	5450510. 93	1. 080	-0.052	-0. 695	1. 064	0. 727	-0. 873	1. 846
MC1089	443182. 64	5450445. 25	-0. 377	1. 349	-0. 217	-2. 124	-0. 566	-0. 363	-1. 600
MC1090	443563. 30	5450070. 67	0. 574	-0. 535	-0. 044	0. 452	-0. 279	-0. 731	-0. 121
MA1069	409756. 64	5445949. 07	0. 553	-0. 588	-0. 520	0. 971	-0. 279	-0. 925	0. 030
MA1070	409551.08	5445767. 19	-0. 551	-0. 096	0. 782	-0. 977	-0. 162	-0. 619	0. 691
MA1076	410726. 99	5447076. 15	1. 217	-0. 274	-0. 561	1. 010	0. 256	-0. 944	0. 737
MA1077	410356.31	5447947. 02	-0. 251	-0. 182	0. 936	-0. 991	0.060	0. 497	0. 498
MA1078	410100.83	5447178. 94	-0. 032	-0. 203	0. 775	-1. 284	-0. 512	1. 099	-0. 866
MA1079	409772. 80	5446937. 22	-0. 819	-0. 404	-2. 274	1. 237	0. 438	1. 995	0. 994
MA1080	409731. 84	5446906. 97	-1. 684	-0. 401	-1. 313	1. 032	-0.066	0. 571	0. 814
MA1081	409467. 10	5446818. 68	-0. 427	-0. 085	-2. 311	-0. 087	-0. 242	1. 147	0. 381
MA1082	408885. 98	5447198. 86	0. 906	-0. 146	-0. 674	0. 926	0. 939	-1. 488	0. 119
MA1083	408407. 20	5447639. 22	0. 638	-0. 109	0. 036	0. 421	-0. 123	-0. 533	0. 109
MA1085	409523. 77	5446570. 68	-0. 204	-0. 136	-2. 284	-0. 124	-0. 426	1. 802	0.715
MB1064	411761.60	5450982. 20	0. 367	-0. 697	1. 090	-1. 374	-0. 325	1. 522	-0. 857
MB1067	409337. 21	5451237. 71	0. 382	-0. 438	0.713	-0. 245	0. 024	0. 329	0. 037
MB1069	410348. 42	5449954. 77	0. 234	-0. 273	0. 527	0. 888	-0. 446	0. 259	-0. 252
MB1070	410218. 50	5449431. 82	0. 932	-0. 050	0. 480	0. 159	0. 217	0. 709	-0. 632
MB1073	410011.06	5449126. 30	-2. 016	-0. 413	-0. 712	1. 624	-0. 295	1. 644	0. 336
MB1074	409507. 12	5449258. 09	0. 344	0. 253	-3. 553	-1. 213	-0. 317	0. 572	0. 051
MB1075	409197. 91	5448923. 47	0. 937	-0. 635	0. 013	1. 223	0. 732	-0. 382	-0. 619
MC1095	410944. 81	5450531. 99	0.810	0. 392	-0. 058	0. 224	-0. 604	0.000	-1. 062
MC1096	411486.68	5450245. 28	1. 030	-0. 187	0.620	0. 236	0. 146	1. 151	-1. 353
MC1098	409034. 22	5451273. 61	0.830	0.009	0. 102	0. 374	-0. 329	-0. 057	-0. 658
MC1100	409023. 51	5450625. 19	0. 268	-0. 439	0.766	0.053	0.056	0. 158	-1. 179
MC1101	409152. 31	5448615. 32	-0. 038	-0. 644	-1. 217	-0. 586	-0. 541	-1. 168	-0. 779
MC1103	409198. 51	5450189. 86	0. 913	0. 174	-0. 302	0. 261	-0. 261	0. 547	-0. 573
MC1109	442638. 26	5448690. 47	-0. 118	-0. 412	-1. 064	1. 169	0. 488	2. 373	-0. 741
MC1110	483769. 12	5456012. 81	0. 434	-0. 407	0. 613	-0. 608	-0. 448	-0. 042	0. 019
MC1111	412060. 26	5449402. 15	-0. 143	-0. 273	0. 739	-1. 367	-0. 685	0. 121	-0. 050

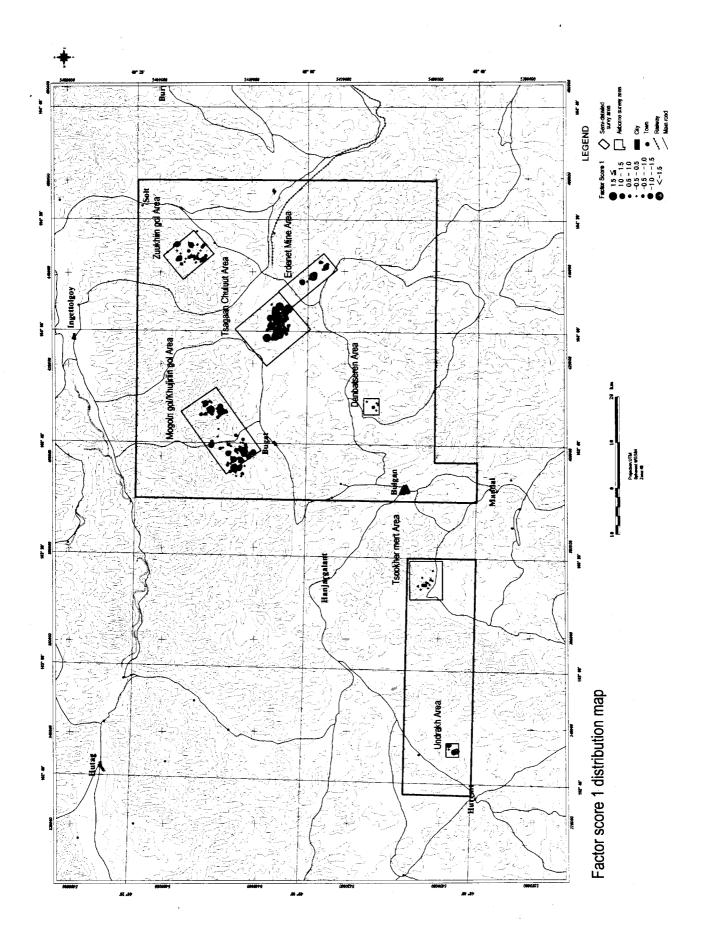
Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 3)

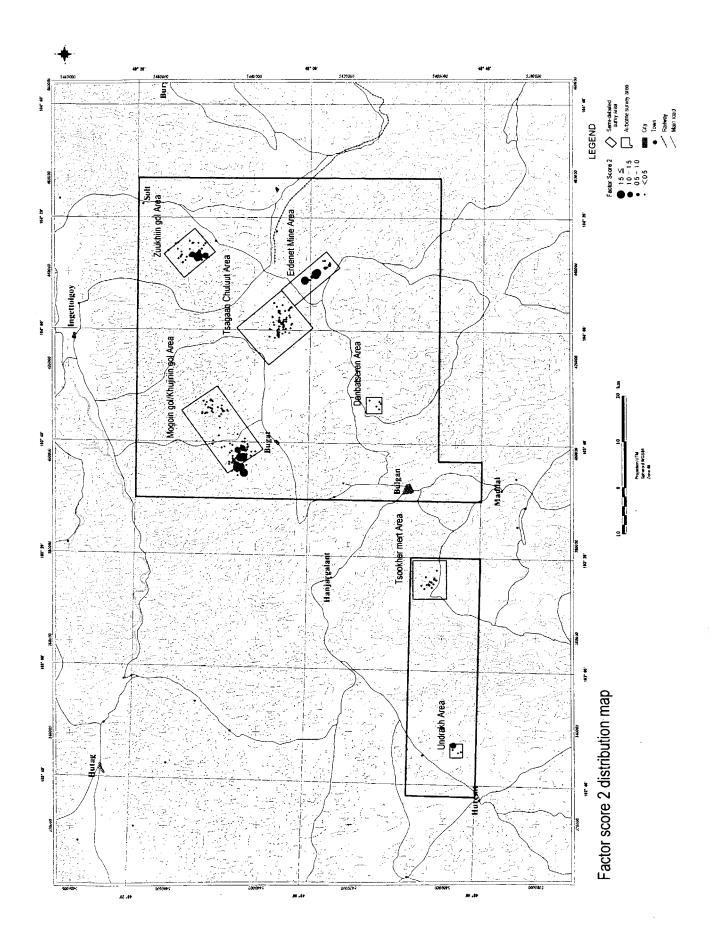
Sample	X (m)	Y (m)	1	2	3	4	5	6	7
MC1112	411839. 08	5449498. 30	0. 079	-0. 546	-3. 482	-1. 214	-0. 299	0. 544	0. 278
MA1088	402347. 04	5441627. 23	0. 813	-0. 155	-0.061	1. 136	0. 345	-0. 373	-0. 505
MA1089	401857. 85	5441481. 44	0. 493	-0. 196	0. 497	0. 395	-0. 409	0. 260	-1. 725
MA1090	402624. 82	5441282. 62	0. 612	-0. 216	-0. 228	0. 946	-0. 378	-1. 007	-0. 814
MA1091	402438. 46	5442212. 52	0. 695	0. 047	-0. 351	0. 723	-0. 801	0. 363	0. 114
MA1092	400896.06	5442116. 42	0. 830	0. 090	0. 256	0. 708	-0. 047	0. 501	-1. 207
MA1093	401447. 75	5443496. 54	-1. 290	1. 449	-1. 575	-1. 136	-0. 681	-1. 686	-0. 421
MA1095	402107. 09	5442959. 74	0. 240	-0. 088	0. 702	-0. 014	-0. 620	0. 034	0. 007
MA1096	402913. 26	5442698. 32	0. 134	-0. 242	0. 742	-0. 340	-0. 669	0. 993	-0. 233
MA1097	402843. 74	5442205. 38	0. 039	-0. 152	0. 904	-0. 744	0. 269	1. 069	-0. 761
MA1099	403593. 04	5442161. 35	-0. 552	-0. 215	0. 904	-0. 346	-0. 392	1. 231	-0. 811
MA1100	397949. 98	5443961. 58	0. 930	0. 967	-0. 336	1. 062	-0. 638	-0. 732	0. 142
MA1101	397323. 66	5444065. 82	1. 555	1. 214	-0. 221	-0. 148	-1. 036	1. 124	0. 685
MA1102	396997. 25	5443948. 35	1. 369	1. 269	-0. 419	0. 071	-0. 997	0. 632	0. 530
MA1103	396550. 36	5444976. 09	0. 593	-0. 122	0. 218	0. 548	-0. 424	-0. 648	0. 981
MA1104	395614. 92	5443727. 21	0. 193	-0. 071	0. 384	-0. 145	-0. 589	-0. 532	-0. 070
MA1105	396427. 07	5443804. 55	0. 123	-0. 078	1. 314	-0. 336	-0. 264	0. 638	-0. 201
MA1106	396770. 90	5443767. 31	-0. 092	0. 309	0. 845	0.078	5. 963	-0. 225	0. 358
MA1107	401846. 52	5446547. 41	0. 160	-0. 108	0. 359	-0. 169	0. 134	0. 157	-0.061
MA1108	401654.46	5447137. 74	-0. 762	0. 153	0. 884	-1. 644	0. 591	0. 156	-0. 018
MA1110	402377. 35	5449070. 89	1. 269	-0. 012	-0. 097	0.879	-0. 377	0. 227	-0. 885
MA1111	403205. 05	5448932. 76	0. 684	-0. 174	1. 147	-0. 960	5. 030	1. 320	-1. 113
MA1112	404236. 65	5447710. 03	-0. 358	-0. 144	0. 582	-0. 764	-0. 017	0. 146	-0. 764
MA1113	405893. 64	5447496. 27	0. 443	-0. 435	0. 256	0. 218	-0. 423	-0. 663	-0. 022
MA1114	404492. 27	5443751. 98	0. 753	-0. 558	0. 317	0. 687	2. 195	0. 261	0. 598
MB1076	400776. 23	5439956. 31	1. 041	-0. 256	-0. 666	1. 108	-0. 450	-0. 834	-2. 002
MB1077	400690. 38	5440822. 75	-0. 199	-0.066	0. 254	-0. 325	-0. 701	0. 297	-1. 789
MB1079	400994. 64	5441960. 20	1. 836	0. 285	-1. 021	0.054	-0. 342	0. 974	-2. 692
MB1080	400955. 18	5442022. 73	0. 047	-0. 219	0. 736	-0.065	0. 257	1. 444	-1. 807
MB1082	400208. 09	5442190. 51	0. 811	0. 070	-0. 596	1. 371	-0. 327	-0. 914	0. 012
MB1083	400140.07	5441790. 20	0. 720	-0. 314	0. 240	1. 021	0.650	-0. 609	0. 374
MB1084	399861. 50	5440961. 24	1. 110	0. 099	-0. 706	0. 997	-0. 445	-0. 336	-1. 121
MB1085	398952. 19	5442244. 24	0.846	-0. 162	0. 510	0.829	0. 028	0. 202	0. 132

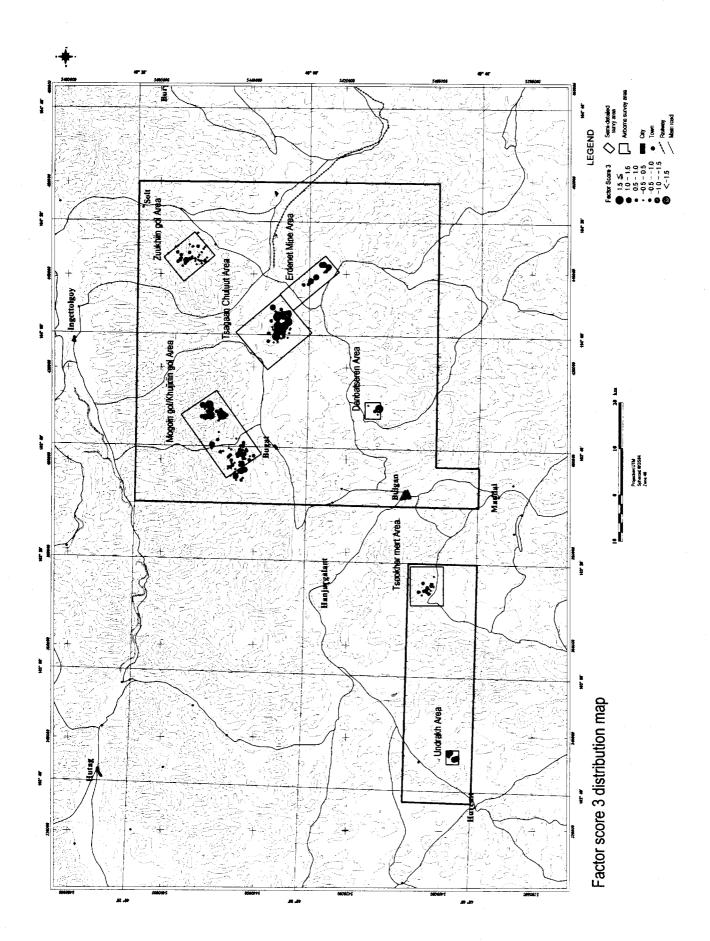
Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 4)

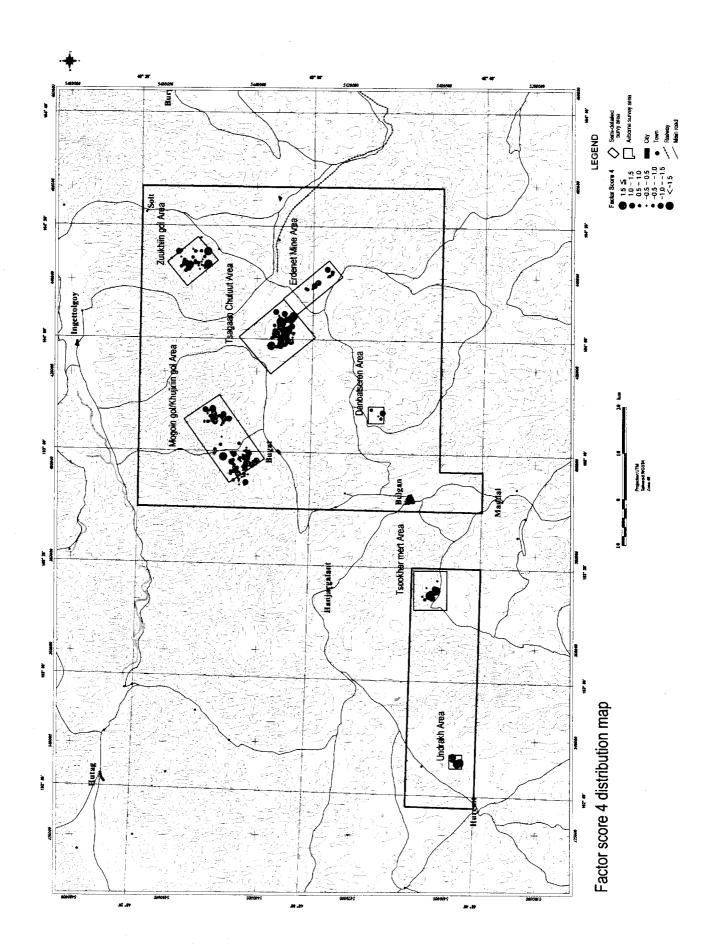
Sample	X (m)	Y (m)	: 1	2	3	4	5	6	7
MB1086	397809. 85	5441863.70	0. 123	-0. 025	1. 018	-0. 315	-0. 644	0. 962	-0. 183
MB1087	398761. 39	5442896. 48	0.460	-0. 092	0. 722	0. 230	-0. 498	-0. 219	0. 708
MB1088	397966. 58	5442663. 89	0. 206	0. 256	0. 351	-1. 027	-1. 131	-0. 752	1. 585
MB1089	397498. 78	5442579. 92	0. 198	-0. 441	1. 083	-0. 375	2. 417	1. 339	-0. 826
MB1090	396095. 28	5442328. 12	-0. 959	3. 932	-0. 241	-1. 287	1. 995	-1. 640	0.060
MB1093	395533. 15	5442616.72	0. 078	-0. 278	0.866	-0. 219	-0. 096	-0. 082	0.006
MB1100	397267. 11	5443202.06	0. 335	3. 610	-0. 071	-0. 108	-0. 808	-0. 016	0. 496
MB1101	397264. 24	5443047. 65	1. 090	2. 793	-0. 570	-0. 536	0. 038	0. 535	0. 645
MC1113	399237. 04	5442300. 87	0. 138	0. 486	0. 537	-0. 832	-0. 629	0. 546	-0. 345
MC1114	399503. 85	5442481. 27	0.003	0. 786	0. 393	-0. 667	-0. 303	0. 193	-1. 021
MC1115	399504. 42	5442512. 17	0. 182	2. 037	-0. 078	-1. 430	0.668	0. 108	-0. 269
MC1117	399450. 95	5442914. 69	0. 462	5. 867	0. 291	-0. 287	-0. 536	1. 503	0. 404
MC11190	D400675. 58	5443386. 82	0. 286	0. 548	0. 546	0. 414	-0. 286	-0. 456	0. 484
MC1121@	2401107.75	5443749. 70	0. 937	1. 214	0. 224	0. 539	-0. 784	0. 421	0. 087
MC1122	402180. 93	5444842. 58	0. 253	-0. 799	-0. 223	1. 354	-0. 054	-0. 617	-1. 340
MC1123	402493. 52	5445331. 33	0. 562	-0. 347	0. 160	0. 495	0.008	-0. 793	0.074
MC1124	399290. 53	5444122. 35	-1. 450	-0. 530	0. 204	-0. 796	0. 217	-1. 444	-0. 381
MC1125	398750. 34	5444502. 86	-0. 667	0. 918	0. 631	-1. 372	0. 575	-0. 241	-0. 503
MC1126	370380. 83	5445559. 26	0. 200	-0. 802	0. 672	0. 413	-0. 101	-0. 687	-0. 113
MC1127	398019. 61	5445535. 69	0. 466	-0. 426	0. 137	0. 745	0. 184	-0. 656	0. 444
MC1128	398525. 36	5445495. 45	0. 376	-0. 332	0. 218	0. 657	-0. 358	-0. 991	-0. 262
MC11290	D399302. 92	5444801. 67	0. 377	-0. 621	0. 097	0. 895	-0. 184	-1. 178	-0. 148
MC1130	399829. 57	5444792. 10	0. 334	-0. 477	0. 613	0. 680	0. 240	-0. 221	-0. 355
MC1131	400528. 82	5445366. 37	0. 952	-0. 035	-0. 776	1. 208	0. 514	-1. 015	0. 610
MC1132	400907. 02	5444988. 83	0. 417	-0. 472	0. 553	0. 468	-0. 198	-0. 379	-0. 018
MC1136	399454. 32	5443100.00	0. 495	2. 764	0. 313	-0. 425	1. 423	-0. 222	0. 766
MC1137	401328. 37	5443622. 21	0. 623	-0. 113	0. 231	0. 760	0. 120	-0. 563	0. 452
MC11380	2401309.74	5443715. 17	0. 794	0. 610	-0. 024	0. 177	-0. 703	-0. 135	0. 482
MA1024	425602. 48	5435829. 67	-2. 210	0. 120	-0. 836	1. 611	0. 887	0. 669	-1. 704
MA1025	354297. 54	5438235. 52	0.667	0. 172	0. 486	0.669	-0. 040	-0. 128	0. 392
MA1028	428441. 59	5434124. 52	-0. 618	0. 617	-2. 116	1. 095	-0. 044	2. 294	-0. 777
MA1029	429220. 23	5434701. 33	0. 431	-0. 016	0. 444	0. 799	0. 230	0. 405	0.964
MA1030	429748. 20	5434725. 52	-1. 975	0. 041	0. 623	1. 783	-0. 705	1. 358	1. 021

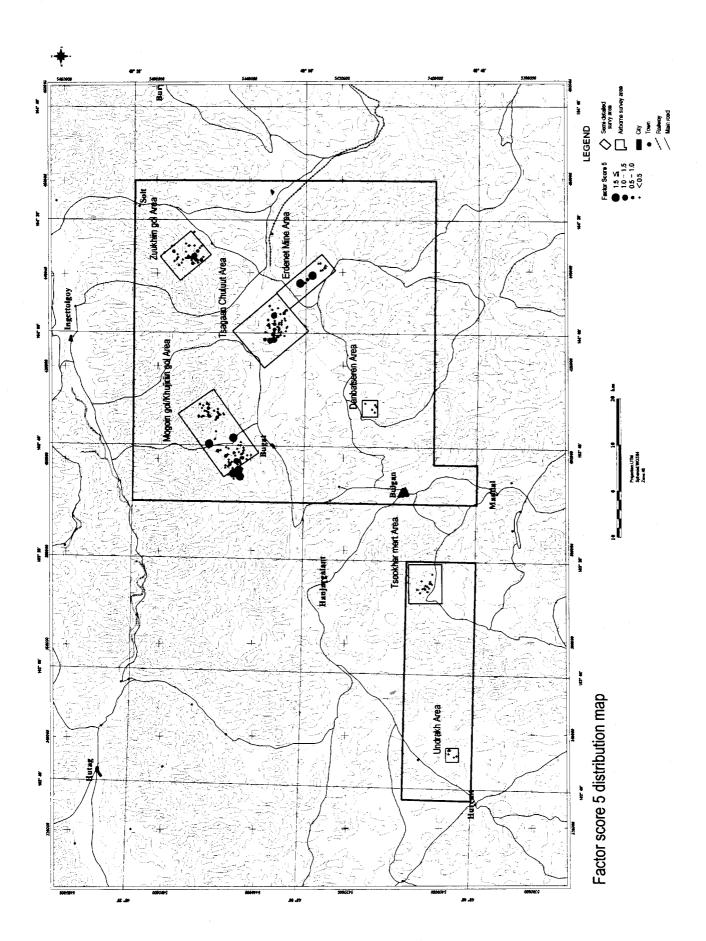
Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 5)

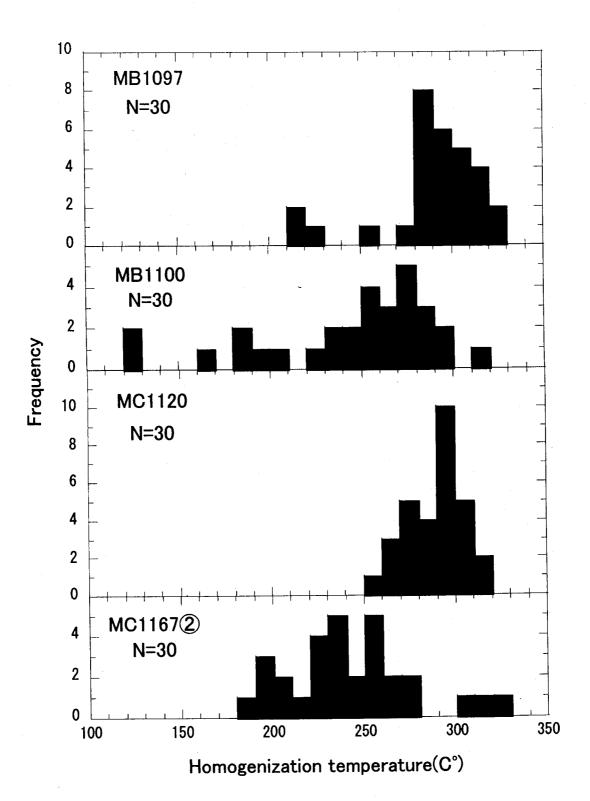

Sample	X (m)	Y (m)	1	2	3	4	5	6	7
MA1031	428936. 13	5434704. 97	-1. 128	0.664	-2. 264	-0. 935	0. 624	-0. 576	0. 396
MA1032	427820. 45	5434750. 30	0. 085	-0. 254	-2. 494	-0. 186	0. 535	1. 689	0. 829
MA1033	427249. 06	5432966. 51	0.815	0.054	0. 383	0. 645	-0. 382	0. 332	0. 534
MA1034	427054. 28	5435130. 91	0. 578	-0. 191	0. 364	0. 739	0.062	-0. 293	0. 630
MA1035	499715. 92	5434650. 67	-0. 880	-0. 151	-1. 853	0. 657	0.817	1. 656	-0. 240
MA1036	425548. 59	5434842. 07	0. 695	-0. 119	0.005	1. 314	1. 006	-0. 351	1. 000
MA1037	425935. 39	5434929. 62	-1. 917	0. 454	-0. 149	1. 260	-0.056	1. 576	0.888
MA1039	426582. 67	5434766. 57	0. 790	0.024	0. 409	0. 320	-0. 503	0. 399	0.665
MA1041	426289. 13	5434060. 11	-2. 386	0. 185	-0. 139	1. 587	0.656	0. 183	0. 337
MA1042	425788. 00	5434530. 10	0. 909	-0. 239	-0. 089	0.871	1. 303	-0. 380	0. 941
MA1043	426625. 94	5433437. 91	0. 243	0. 223	0. 480	-0. 726	-0. 210	0. 666	0. 846
MB1026	429908. 26	5436144. 18	1. 412	-0. 219	0. 407	0. 346	-0. 425	0.816	-0. 176
MB1028	432309. 67	5436731. 92	-1. 911	-0. 371	0. 459	-1. 435	-0. 685	-0. 001	0. 198
MB1029	430597. 39	5434467. 78	-1. 725	-0. 659	0. 083	1. 712	-0. 217	2. 042	0. 651
MB1030	430293. 36	5434502. 39	0. 128	-1. 103	-2. 897	-1. 449	-0. 099	1. 315	0. 378
MB1031	430293. 36	5434502. 39	-2. 554	-1. 077	0. 877	1. 185	-0. 525	0. 547	0. 119
MB1033	432866. 35	5435798. 67	0.057	-1. 027	1. 261	-1. 269	-0. 129	1. 031	-0. 306
MB1034	432967. 79	5435797. 44	0. 437	-0. 267	0. 645	-0. 171	-0.065	0. 174	-0. 138
MB1035	431786. 16	5435410. 39	-2. 139	-0. 789	0. 198	1. 379	-0. 315	1. 351	-0. 216
MB1036	431167. 53	5434615.09	-0. 613	-0. 558	-1. 595	0. 903	0. 663	2. 805	0. 937
MB1037	430825. 27	5434835. 49	1. 569	-2. 266	-3. 358	-3. 418	1. 186	0. 924	0. 687
MB1038	432128. 79	5435220. 85	0. 722	-0. 292	0. 391	0. 317	0. 111	-0. 030	0. 165
MC1034	431968. 07	5432041. 82	-2. 087	-0. 512	-0. 058	1. 696	-0. 088	0. 297	-0. 753
MC1035	431970. 34	5432227. 13	-3. 089	-0. 379	-0. 782	0. 649	-0. 482	-0. 823	-0. 412
MC1036	431709. 48	5432477. 38	-1. 029	-0. 288	-0. 559	1. 187	-0. 340	1. 107	-0. 706
MC1037	431304. 97	5432605. 90	-0. 258	-0. 347	-3. 111	-2. 083	0. 688	-0. 828	0. 164
MC1038	430228. 33	5432557. 53	0. 689	-0. 253	-0. 055	0. 562	-0. 342	-0. 577	-0. 050
MC1040	429779. 39	5432377. 97	-0. 610	-0. 565	-1. 833	-1. 368	-0. 044	-1. 623	0. 242
MC1041	428192. 33	5432120. 34	0. 652	-0. 105	-0. 087	0. 857	0. 311	-0. 657	0. 239
MC1042	427423. 26	5432315. 58	0. 502	-0. 114	0.079	0. 345	-0. 475	-0. 531	0. 316
MC1044	426452. 53	5432606. 33	0. 708	0. 042	0. 243	1. 041	0. 253	0. 249	0. 654
MC1046	428945. 35	5433840. 08	-2. 871	0. 084	-0. 373	0. 914	0. 001	-0. 524	-0. 211
MC1047	429289. 17	5433743. 06	-3. 404	-0. 031	0. 379	0. 410	-0. 421	-0. 834	0. 244


Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 6)


Sample	X (m)	Y (m)	1	2	3	4	5	6	7
MC1048	429789. 17	5433149. 89	-2. 259	-0. 166	-0. 159	-0. 411	-0. 088	-0. 414	-0.098
MC1049	429343. 42	5433217. 37	0. 748	0. 036	-0. 508	0. 772	0. 138	-1. 196	0. 107
MC1050	428897. 20	5433253. 99	-0. 448	-0. 662	-3. 030	-1. 664	0. 260	-0. 327	0. 135
MC1053	427335. 18	5433335. 95	-2. 744	0. 095	-0. 199	0. 875	-0. 227	0. 239	-0. 130
MC1056	427220. 26	5433862. 46	-2. 142	-0. 699	-0. 427	0. 703	-0. 210	-0. 175	-0. 302
MC1057	427606. 29	5433888. 32	0. 648	-0. 168	0.092	0. 241	-0. 168	-0. 263	0. 461
MC1058	427929. 78	5433791. 48	0. 119	-0. 591	-2. 558	-2. 262	-0. 347	-0. 830	0. 083
MC1059	428193. 61	5433788. 06	-2. 578	-0. 345	-0.062	0. 384	-0. 379	0.009	0. 320
MC1060	428413. 68	5431963. 04	0. 384	-0. 227	0. 097	0. 284	-0. 124	-0. 823	0. 241
MC1063	428159. 18	5435826. 82	-1. 904	-0. 359	-0. 323	1. 454	-0. 550	1. 184	0. 680
MC1064	428729. 65	5436004. 79	0. 930	-0. 316	-0. 092	1. 305	0. 457	-0. 412	0. 246
MC1066	430009.70	5436142. 90	-1. 198	-0. 755	-0. 761	0. 534	-0. 486	0. 934	0. 777
MA1005	439378. 76	5426427. 90	-1. 168	2. 118	1. 133	-0. 202	1. 765	-0. 635	0. 657
MA1008	439138. 31	5426739. 38	0. 023	2.611	0. 181	0. 976	-0. 026	0. 364	-0. 750
MA1012	438496. 92	5427549. 36	-0. 473	0. 672	1. 191	-1. 241	0.661	1. 452	0. 418
MA1014	438955. 08	5426710. 48	-1. 860	4. 786	-0. 303	0.066	0. 381	-1. 588	-1. 412
MB1004	437852. 61	5428081. 52	-0. 090	0. 082	0. 731	-0. 019	-0. 277	0. 033	-0.004
MB1009	441504.60	5423718. 32	-0. 999	-0. 276	1. 211	-0. 771	-0. 303	0. 356	-0. 237
MB1010	442023. 89	5424762. 94	0. 153	-0. 366	1. 102	-1. 308	-0. 414	1. 247	-0. 478
MB1011	441987.71	5425195. 56	0. 597	-0. 515	0. 952	-0. 518	0. 243	1. 407	-0. 463
MC1012	436888. 98	5429111. 56	-1. 174	1. 795	-0. 799	-0. 721	2. 078	-1. 270	-1. 142
MC1014	437887. 46	5429378. 24	0. 750	-0. 232	-0. 163	0.868	0. 212	-0. 776	0. 149
MC1015	440437. 61	5424717. 90	0. 284	0.872	0.068	0. 186	-0. 896	-0. 369	-0. 450
MC1021	440476. 36	5415020. 57	-0. 905	0. 175	0.842	-0. 671	-0.060	0. 145	-0. 452
MC1027	441018.65	5423908. 79	-1. 114	-0. 408	0.849	-0. 499	0. 047	-0. 772	-0. 478
MC1029	441017. 01	5423754. 38	-0. 995	0. 490	-0. 209	-0. 706	-0. 012	-0. 549	-2. 218
MA1116	410496. 23	5413846. 10	0. 463	-0. 235	0. 588	0. 233	-0. 351	-0. 148	0. 554
MA1118	411030. 93	5412880. 11	0. 188	-0. 129	-3. 610	-1. 051	-0. 063	1. 415	0. 115
MA1119	411442. 83	5413151. 52	0. 426	-0. 508	0. 658	0. 339	0. 122	-0. 051	0. 729
MB1103	411741. 38	5415277. 92	0.018	-0. 137	0. 384	0. 580	-0. 563	-0. 155	0. 359
MC1145	411664. 92	5524407. 25	-0. 131	-0. 500	0. 046	-0. 612	-0. 434	-0. 342	0. 456
MA1128	335371. 03	5396615. 24	-1. 216	-0. 182	1. 035	-1. 660	-0. 448	-0. 279	0. 937
MA1131	335558. 22	5396022.71	-1. 534	-1. 014	1. 425	-2. 652	-0. 208	0. 400	0. 847


Factor score for rock chemical analysis in the Western Erdenet area, Mongolia (No. 7)


Sample	X (m)	Y (m)	1	2	3	4	5	6	7	
MA1133	336600.81	5416263. 54	-0. 162	-0. 869	0. 787	-0. 552	-0. 168	-0. 796	0. 157	
MC1171	336755. 79	5397810. 78	-0. 801	-0. 278	1. 146	-0. 958	-0. 548	0. 482	-0. 245	
MC1174	336974. 30	5397588. 17	0. 530	1. 155	0. 504	-1. 108	-1. 119	0. 245	0. 284	
MC1175	336785. 90	5397439. 13	-0. 104	-0. 529	1. 267	-1. 121	-0. 037	0. 899	-0. 519	
MA1120	373415. 67	5403350. 64	0. 357	-0. 449	0. 615	0. 122	0. 093	-0. 016	0. 505	
MA1125	371582. 49	5404442. 71	0. 341	-0. 286	0. 545	0. 152	-0. 043	-0. 408	0. 188	
MA1126	371757. 55	5403172. 09	0. 482	-0. 626	0. 601	0. 128	-0. 302	-0. 199	0. 506	
MB1113	371867. 96	5401748. 60	0. 235	-0. 427	0. 347	-0. 376	-0. 439	-0. 666	0. 330	
MB1115	371161. 17	5402104. 58	-0.050	-0. 293	0. 529	-1. 245	-0. 255	-0. 282	-0. 182	
MB1117	370850. 49	5403687. 29	0. 431	-0. 211	0.074	0.666	-0. 407	-0. 808	-0. 317	
MB1120	371601. 25	5402588. 80	-0. 138	-0. 734	0. 592	-0. 638	-0. 032	-0. 528	-0. 582	
MB1122	371704. 03	5402617. 25	-1. 037	-0.861	-1. 044	-2. 021	0. 059	-1. 136	0. 582	
MB1125	371891. 27	5402767. 44	-0. 513	0. 165	0. 548	-1. 499	-0. 374	0. 207	-0. 978	
MB1128	372456. 41	5402476. 50	0. 023	-0. 659	0. 501	-1. 015	-0. 418	-0. 325	0. 393	
MB1130	372243. 89	5402110.68	0. 420	0. 045	0. 133	-0. 163	-0. 125	-0. 684	0. 390	
MC1152	374854. 50	5401032. 25	0. 150	-0. 904	0. 395	0. 130	-0. 321	-0. 541	0. 439	
MC1161	372865. 49	5401602. 20	-0. 165	-0. 766	0. 689	-0. 991	-0. 391	-0. 330	0. 085	
MC1164	372712. 02	5401142. 38	-0. 528	-0. 399	-0. 087	-2. 359	-0. 648	-0. 308	1. 272	
MC1166	373149. 93	5401534. 02	-0. 110	-0. 962	0.868	-1, 319	-0. 495	0 774	-0 087	



Appendix 9 Homogenization temperature and salinity of fluid inclusion of quartz samples in the western Erdenet area

Results of fluid inclusion test in the western Erdenet area, Mongolia.

Ser.	1		Coor	dination		Temperature (°C)			Salinity (%)		Au	Cu	Мо
No.	Sample No.	Area	N	Е	Description	Number	Range	Average	Number	NaCl eq.	(g/t)	(%)	(%)
3	MC10672	Zuukhiin gol	49°14′27″	104°13′00″	white stockwork quartz vein	30	189.3 - 320.6	241.3		3.9			
1	MB1097	Khujiriin gol	49°08′0-8″	103°35′20″	Quartz vein with malachite	30	213.5 - 323.7	288.7		4.0	<0.01	0.436	0.014
2	MB1100	Khujiriin gol	49°07′59″	103°35′30″	Quartz vein with malachite	30	125.2 - 313.2	244.2		3.0	<0.01	0.332	0.026
4	MC1120	Khujiriin gol	49°08′19″	103°38′39″	white quartz vein	30	255.2 - 314.4	289.0		3.2	<0.01	1.380	<0.001

Homogenization temperature of fluid inclusions

Temperatures and Salinities of Fluid Inclusions

Sample		Th: L+V			Tm: Ice		Salinity(%)
No.	Num.	Range	Ave.	Num.	Range	Ave.	(NaCl eq.)
MB1097	30	213.5 - 323.7	288.7	12	-4.21.2	-2.4	4.0
MB1100	30	125.2 - 313.2	244.2	10	-2.70.8	-1.8	3.0
MC1120	30	255.2 - 314.4	289.0	11	-3.20.5	-1.9	3.2
MC11672	30	189.3 - 320.6	241.3	10	-2.81.3	-2.3	3.9

MB1097		
Area%:V	Th:L-V	Tm:Ice
30	285.7	-1.3
30	295.5	-1.3
30	298.1	-1.5
20	213.5	-1.7
20	219.2	-1.4
25	285.0	-1.2
25	312.3	-1.2
30	300.9	-4.2
30	302.5	-4.1
25	290.1	-4.1
30	290.4	-3.2
25	294.5	−3.7
25	225.5	
30	251.9	
30	280.8	
30	287.1	
30	295.6	
25	309.1	
25	318.3	
30	289.1	
25	307.9	
25	285.9	
30	311.2	
25	307.1	
25	322.4	
30	323.7	
25	275.5	
25	283.7	
25	287.5	
30	312.0	

MB1100		
Area%:V	Th:L-V	Tm:Ice
15	164.8	-2.1
15	201.9	-2.2
20	194.0	-1.5
20	269.0	-1.2
20	255.4	-2.5
15	188.9	-0.9
15	281.7	-0.9
20	313.2	-0.8
20	231.8	-2.7
20	248.7	-2.7
15	125.2	
15	128.5	
20	256.7	
20	290.5	
15	220.0	
20	237.8	
20	249.1	
20	258.3	
20	269.3	
20	275.1	
15	189.7	
25	271.0	
20	276.4	
20	285.8	
25	292.2	
20	256.9	
20	262.9	
25	270.9	
20	278.1	
20	280.8	

MC1120		
Area%:V	Th:L-V	Tm:Ice
25	288.9	-3.0
25	294.1	-3.2
25	297.4	-3.1
25	303.0	-3.1
25	266.1	-0.6
25	277.3	-0.6
25	278.2	~0.5
25	297.5	-0.5
25	288.5	-2.3
25	290.2	-2.1
25	291.3	−2.1
25	290.3	
25	292.3	
25	300.2	
25	279.2	
25	288.2	
25	299.6	
25	301.1	
25	261.8	
30	291.2	
25	289.9	
25	314.0	
25	293.6	
25	303.2	
25	308.3	
25	314.4	
25	262.5	
25	273.7	
25	277.6	
25	255.2	

MC11672		
Area%:V	Th:L-V	Tm:Ice
20	255.9	-2.8
20	258.8	-2.5
20	270.7	-2.4
20	193.2	-2.5
20	213.9	-2.4
20	239.0	-2.8
25	242.2	-1.4
20	201.5	-1.3
20	225.9	-2.5
20	196.9	-2.3
25	315.3	
20	228.7	
20	232.8	
20	221.5	
20	202.9	
25	231.8	
20	233.4	
20	223.2	
20	235.9	
20	189.3	
20	194.6	
25	301.1	
25	320.6	
20	257.2	
20	250.4	
20	262.3	
20	242.1	
20	256.5	
20	264.9	
20	277.7	

Appendix 10 K-Ar radiometric age in the western Erdenet area

Results of K-Ar Dating for granites in the Western Erdenet area, Mongolia.

Ser. No.	Sample No.	Area	Coordina N		Geological Unit	Rock Name	Sample type	Potassium (K wt%)	Rad. ⁴⁰ Ar (10 ⁻⁸ cc/g)	K-Ar age (Ma)	Air Cont.
1	MC1074	Zuukhiin gol	49* 15 24"	104° 12 46"	δ 1P2-T1s	granodiorite	whole rock	1.12	837	183 ± 5	13.7
2	MA1095	Khujiriin gol	49° 07′54"	103" 39'29"	γδ2T1s	granodiorite	whole rock	4.44	3550	195 ± 4	7
3	MC1014	Erdenet Mine	49° 00 51"	104° 09 02"	λδπP2-T1e	granodiorite porphyry	whole rock	1.47	1088	181 ± 14	15.9
4	MA1121	Tsookher mert	48 * 46′15"	103° 16′43"	γξ3P2-T1s	granodiorite	whole rock	3.09	2228	176 ± 5	14.8

Appendix 11 Measurement results for remanent magnetization in the western Erdenet area

Sample No.	Intensity of Remanent Magnetization (A/m)	After Demagnetization (20mT), Remanent Magnetization Intensity (A/ m)	Declination (°)	Inclination (°)	
MA1106	4.807E-04	9.353E-05	121.5	5.8	
MA1111	8.623E-05	5.590E-05	162.2	-36.4	
MA1136	5.610E-04	1.403E-04	18.5	-33.4	
MC1176	6.688E-06	1.583E-04	106.2	74.3	
MA1114	4.890E-04	1.443E-04	140.4	54.1	
MA1122	4.553E−04	2.863E-02	35.4	74.1	
MC1131	3.320E-02	5.340E-03	150.1	-62.6	
MB1089	5.997E-02	9.113E-07	141.9	36.5	