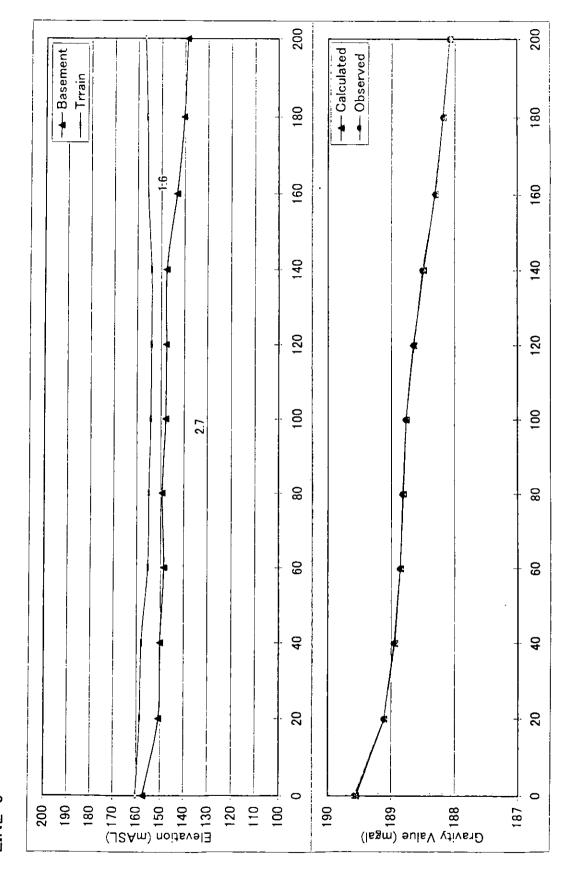
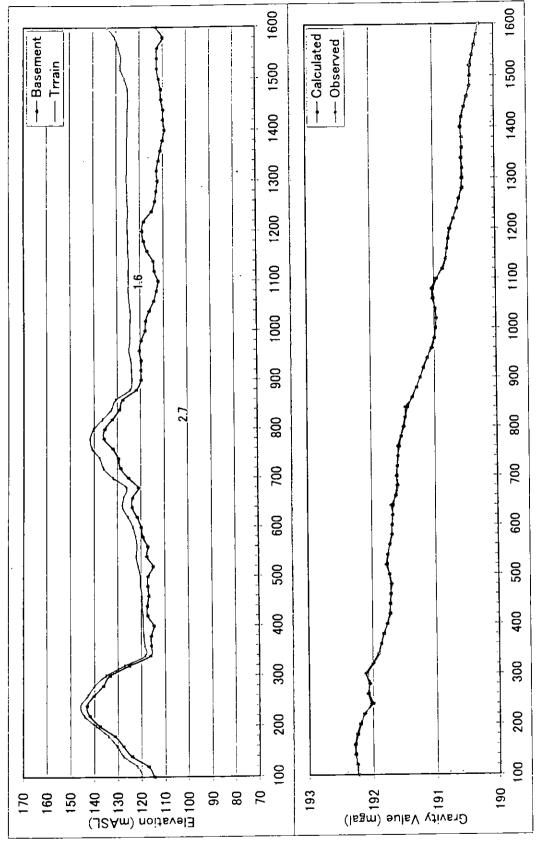


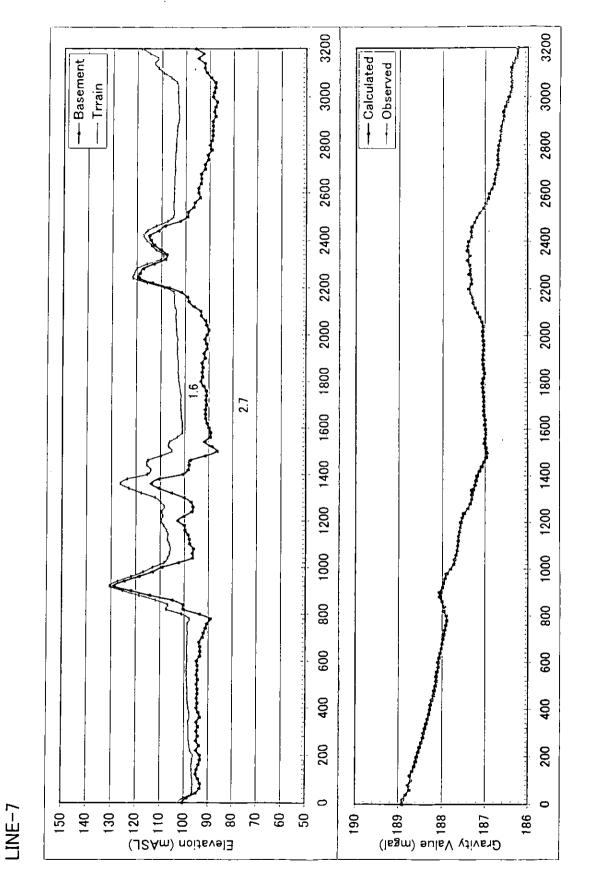
LINE-1

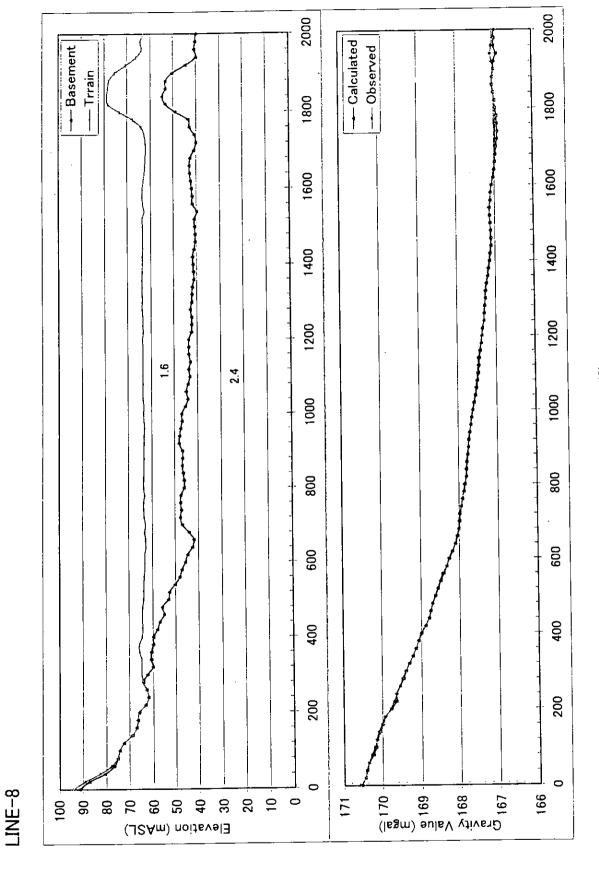


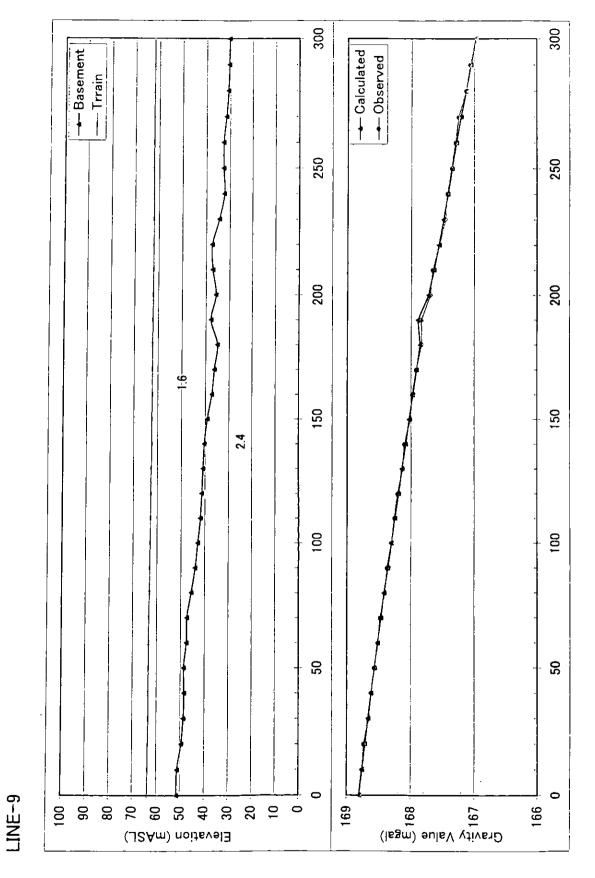
Gravity Section (2)

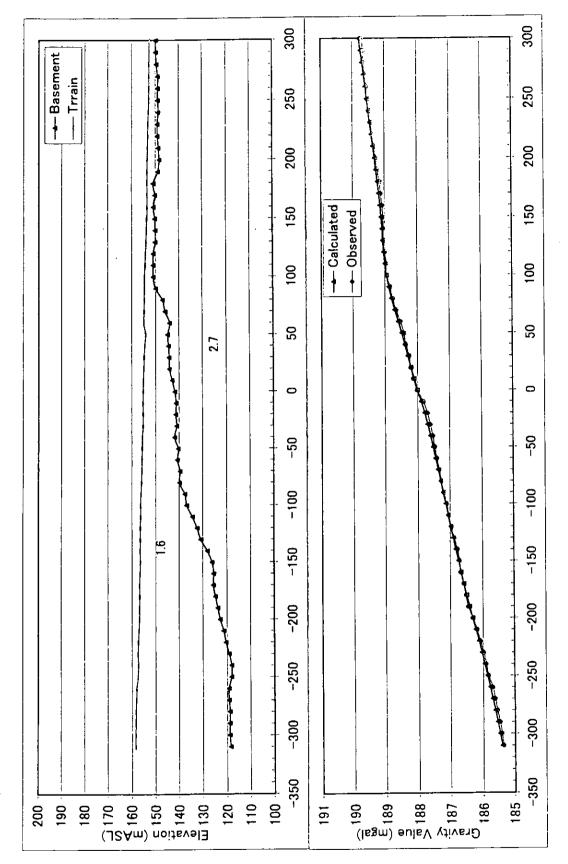


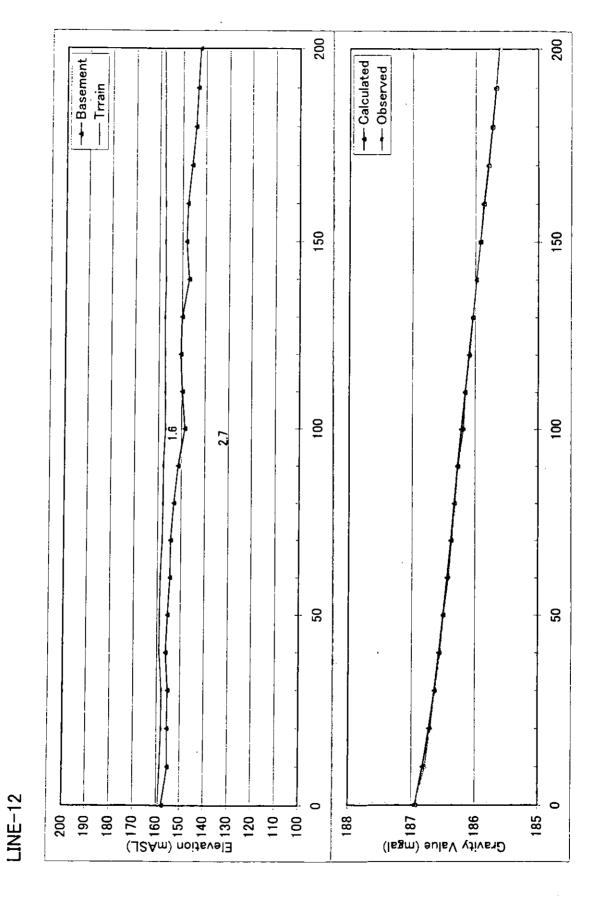
Gravity Section (4)



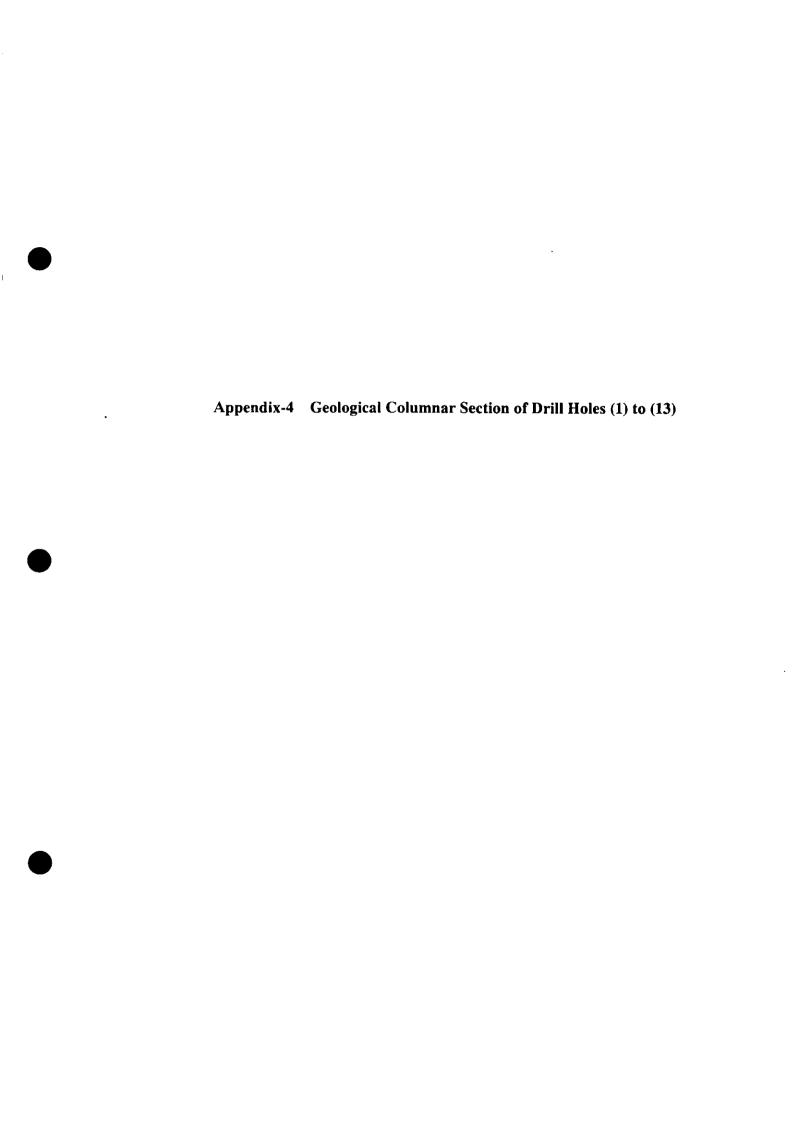



Gravity Section (6)


Gravity Section (7)



Gravity Section (8)



Gravity Section (10)

Gravity Section (12)

LINE-13

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-		Gravel & sand	Brown~brownish grey, muddy, including slightly clay and, silt		
	10.00-		Calcreted gravel & sand	Brown∼dark brownish grey, compact całcreted beds	-6.60m -	
	15.00 - 20.00-	v v v v v v v v v v v v v v v v v v v	Basaltic pi!low lava	Brownish grey~dark greenish grey, weathered strong chloritization		
	30.00-	* * * * * * * * * * * * * * * * * * *	Basaltic massive lava	Dark green, strong chloritization		
	32.00	· · · · · · · · · · · · · · · · · · ·	Basaltic pillow lava	Dark green, strong chloritization		

Geological Columnar Section of Drill Holes (1)

D. H. No. DH-2

Ele.	Depth (m)	Calum	Geology	Description	Groundwater	Remarks
	41.00	V Y	Basaltic pillow lava	Dark green, strong chloritization		
	45.00	* * * * *	Basaltic massive lava	Dark green, strong chloritization		
	-	>	Basaitic pillow lava	Dark green, strong chloritization, calcite	-	
	50.00-	٧	(End of hole.)			
	•		·		· -	
	-					
	_				_	
:	-				<u> </u>	
	1				-	
	1				-	
	-				-	
	1				-	
	4	:			}	
	,				-	
	-				_	

Remarks

Geological Columnar Section of Drill Holes (2)

le. Depti	1 Colum	Geology	Description	Groundwater	Remarks
<u> </u>	•	Gravel & sand	loose wadi sediments		· · · · -
1.0		Calcreted gravel & sand	Light grey~brownish grey, Gravel:0.5~8cm in diameter, round~sub-round, gravel: gabbro, dolerite, harzburgite matrix: fine~coarse sand	-4.98m	
10.00				_	
12.00	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Basaltic pillow lava	Dark greenish grey∼dark green		
15.0	* * *	Basaltic massive lava	Dark green , coarse grained	-	
20.00				=	
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Basaltic pillow lava	Light greenish grey, chloritization, calcite veinlets		
30.0) V V	Basaltic pillow	Brownish grey∼greenish grey	-	
31.0	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Basaltic pillow lava	Light greenish grey		
40.0	V V			_	

Geological Columnar Section of Drill Holes (3)

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-	Y Y Y V Y	Basaltic pillow	Light greenish grey		
	47.00	v v * * *	Basaltic massive	Dark green, chloritization, coarse grained		
	50.00	•	(End of hole.)		-	
	-				-	
					_	
	-					
	-					
	-					
	-	;				. :
	-					1

		Γ			
Eie. Depth (m)		Geology	Description	Groundwater	Remarks
1.00	•	Gravel & sand	Light brown~brownish grey, loose		
		Calcreted gravel & sand	calcreted, alluvial deposits, Light brown~brownish grey, compact calcreted, alluvial deposits,	-8.07m ▼	·
8. 00 10. 00		Limestone	Light brownish grey, weathered,	<u>V</u>	
30.00		Limestone	Grey∼dark grey.		

Geological Columnar Section of Drill Holes (4)

D. H. No. DH-5D

			,	, , , , , , _ , _ ,		
Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	45.00		Limestone	Grey∼dark grey.	-	
	50.00-				-	
	-		Siliceous mudstone	Reddish bro*n. siliceous mudstone∼chert,	-	·
	60.00-		(End of hole.)		_	
	-				-	
	_				-	
	-				-	
	_				-	

le.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	1.00	תידונים	Gravel & sand	Light brownish grey, loose sediment,		
	5.00		Calcreted gravel & sand	Light brownish grey, weak calcreted, loose, gravel:round~sub-round gabbro, dolerite, limestone,		
	10.00-		Calcreted gravel			
	15.00		& sand	Brownish grey, calcrete, compacted,	-10.78m	
	18.00-		Calcreted gravel & sand	Light brownish grey, calcrete, compacted,		
	18.00-					
	20.00-		Calcreted gravel & sand	Light brownish grey, calcrete, compacted, coarse sand.		
	23. 00	1///				
	30.00-		Calcareous mudstone	Dark grey, calcareous, weathered,		
	40.00-					

Geological Columnar Section of Drill Holes (5)

D. H. No. DH-6D

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	50.00-		Calcareous mudstone	Dark grey, calcareous, weathered,		
,	60.00-		(End of hole.)			
	-	:				
	-	ļ			_	
	-				-	
	-					
					-	
	_				-	
	_					

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	•	0.00	Gravel & sand	Brown∼brownish grey, loose, clay,	_	
	4.00-		Calcreted gravel & sand	Light brownish green, loose,	-	
	10.00-		Calcreted gravel & sand	₩hitish grey∼light brownish grey, calcrete, compacted,	-9.35m	
	16.50 19.00		Mudstone	Light greenish grey∼whitish grey, strongly weathered, soft, argillized	-	
	20.00-		· Mudstone	Light greenish grey∼whitish grey, strongly weathered, very soft,	-	
	30.00-	1	Mudstone	Light greenish grey∼whitish grey, silty mudstone,	1	

Geological Columnar Section of Drill Holes (6)

D. H. No. DH-7D

<u> </u>]	T				<u> </u>
Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-		Mudstone	Light greenish grey∼whitish grey, weathered, soft,	-	
	45.00 - - 50.00-		Mudstone	Light brownish grey, a little hard.	-	
	-		muustone	still weathered, soft, clay,	-	
	60.00-		(End of hole.)		-	
					-	
	-				-	

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-	0 0 0 0 0 0	Gravel & sand	Light grey, loose alluvial deposits, gravel:round~sub-round, gabbro, dolerite, harzburgite, matrix:fine~coarse sand.		
	10.00-		Calcreted gravel & sand	Light brownish grey~whity grey, compact calcreted, gravel:round~sub-round, gabbro, dolerite, harzburgite, matrix:fine~coarse sand,	-15. 24m □	
	21.00		Calcreted gravel & sand	Light brownish grey, loose calcrete, including much gravels, gravel:round~sub-round, gabbro, dolerite, harzburgite, matrix:fine~coarse sand,		
	-	**************************************	Tuffaceous sandstone ~ mudstone	Light greenish grey, argillized,		
	38.00~ 40.00-	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Conglomerate	Greenish grey, gravel:chert, gabbro, harzburgite, dolerite, silic-shale, sandstone		

Geological Columnar Section of Drill Holes (7)

D. H. No. DH-8D

e. Dep	th Colu (m)	m Geology	Description	Groundwater	Remarks
42	0.00 0.00 0.00	Conglomerate	Greenish grey, gravel:chert, gabbro, harzburgite, dolerite, silic-shale, sandstone		
50.	※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※	Tuffaceous sandstone ~ mudstone	Light greenish grey,		
53.	126.5	Tuffaceous	Light greenish grey,		
54.	※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※ ※	sandstone~	including much gravels.		
60.	127 7	Tuffaceous sandstone~ mudstone	Light greenish grey, larger diameter of gravel,	_	
61.00	**************************************	Tuffaceous sandstone~ mudstone	Light greenish grey, including much gravels,		·
70.	**************************************	2 7. 2.			
		(End of hole.)			
				1	
				+	
	1			4	

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
		0 0 0	Gravel & sand	Light brownish grey, loose, gravel:dolerite, gabbro,limestone, harzburgite	-	
	5.00		Calcreted gravel & sand	Light brownish grey, calcrete, compacted, gravel:dolerite, gabbro, limestone,harzburgite	-7. 57m ▼	
	10.00-		Calcreted gravel & sand	Light brownish grey, clay silty, fine sand.	-	
	14.00-		Calcreted gravel & sand	Brownish grey∼brown,loose, very fine sand		
	28.00	9 9	Calcreted gravel & sand	Brownish grey~brown, loose, include gravel tertiary reddish shale,		·*
30.	29.00		Calcareous mudstone	Light brownish grey, calcareous, silt, very fine sand~fine sand,		

Geological Columnar Section of Drill Holes (8)

D. H. No. DH-9

Ele.	Depth (m)	€olum	Geology	Description	Groundwater	Remarks
			Calcareous mudstone	Light brownish grey, calcareous, silt, very fine sand∼fine sand,		

Ele.	Depth (m)	Colum.	Geology	Description	Groundwater	Remarks
	1.00		Gravel and sand	Brown, sorting bad, loose, gravel: 0.5 - 8cm Matrix: fine to coarse sand Brownish grey, loose calcreted layer	•	
	4.00-		Calcreted Gravel & sand		-7.62m ▼	,
	8.00- 10.00-	* *	Massive lava	Dark green to greenish grey, basaltic massive lava, hard	-	
	15.00	v v v v v	Pillow lava	Dark greenish grey, basaltic pillow lava, crackly		
	20.00-	W	Massive lava	Dark green to greenish grey. basaltic massive lava, hard		
	30.00		(End of hole.)		-	

Geological Columnar Section of Drill Holes (9)

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-		Gravel & sand	Brown∼light brownish grey, loose		
	3.00 - 5.00		Calcreted gravel & sand	Brown∼light brownish grey loose calcreted		
	-	Y Y Y	Basaltic pillow lava	Light greenish grey, weathered		
	8.00-	* *	<u>-</u>		-9.58m ✓	
	10.00-	* *	Basaltic massive lava	Light greenish grey, weathered a little, coarse grained, hard		
	l4. 00 <i>~</i>	* * * *			_	
	-	Y Y Y	Basaltic pillow lava	greenish grey, fresh light grey		
	19.00 20.00~	v v				
		* * * * *	Basaltic massive lava	Light grey, fresh hard, coarse grained, chloritization		
	27.00	* *			_	
	-	v v v v	Basaltic pillow lava	Light grey, fresh quartz, chloritization		
	30.00-		(End of hole.)			
	•					
	-					
	_				-	

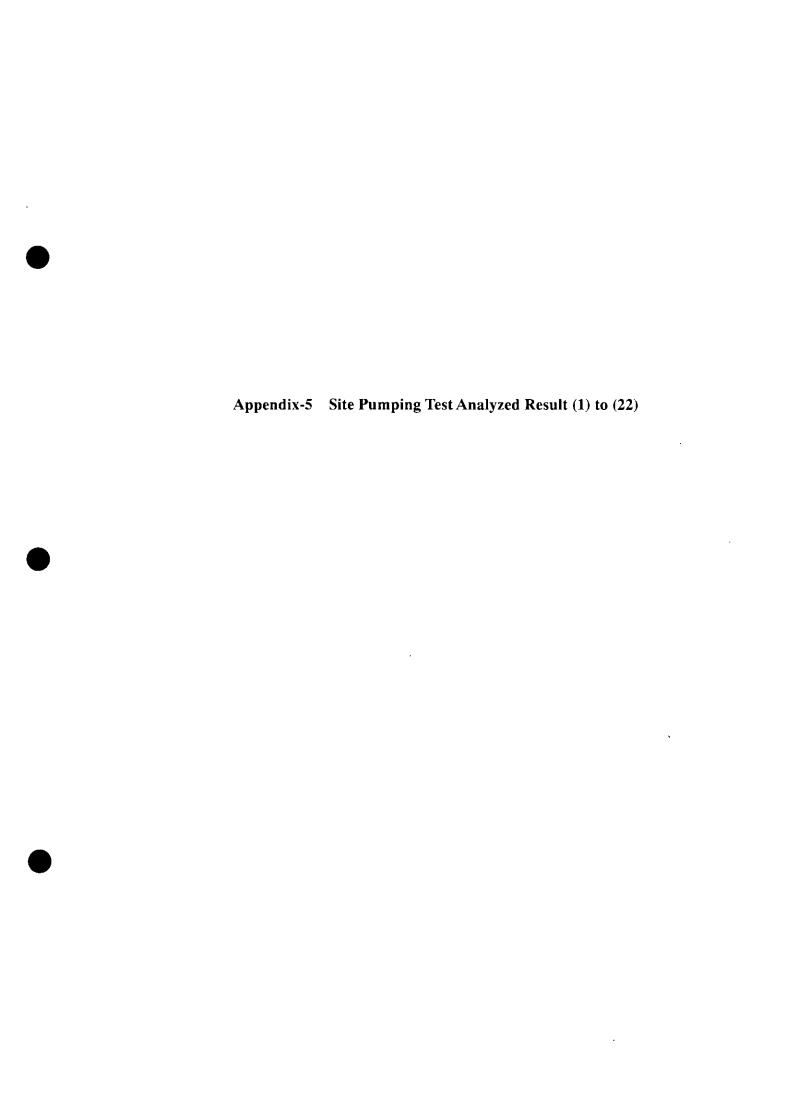
Geological Columnar Section of Drill Holes (10)

Calcreted gravel Light grey~brownish grey, loose. Light grey~brownish grey, a sand Light grey~brownish grey, calcreted, loose, Light grey~brownish grey, calcreted, loose, Calcreted gravel Light grey, weathered, partly brownish, chlorite, epidote, calcite, Calcreted gravel Light grey, weathered, partly brownish, chlorite, epidote, calcite, Calcreted gravel Light grey, weathered, partly brownish, chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, weathered, partly chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, weathered, partly chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, weathered, partly chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, weathered, partly chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, weathered, partly chlorite, epidote, calcite, Calcreted gravel Light grey~brownish grey, Light grey~brownish gre	Eie.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
Calcreted gravel Light grey~brownish grey, calcreted, loose, Calcreted gravel Brown~brownish grey, calcrete, compacted, 14.00 Basaltic massive lava brownish, chlorite, epidote, calcite, 17.00 Basaltic pillow Greenish grey, weathered, partly chlorite, epidote, calcite, 20.00 Basaltic massive lava Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Basaltic massive lava Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 27.00 Basaltic massive lava Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 27.00 Basaltic pillow Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Basaltic massive lava Greenish grey, weathered, partly chlorite, epidote, calcite, 27.00 Basaltic pillow Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Basaltic pillow Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Basaltic pillow Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Light greenish grey, massive,		2 00	6 . O	Gravel & sand	Light grey~brownish grey, loose,		
Calcreted gravel a sand Calcreted gravel a sand Brown~brownish grey, calcrete, compacted. 14.00 Basaltic massive lava Greenish grey, weathered, partly brownish, chlorite, epidote, calcite. Greenish grey, weathered, partly chlorite, epidote, calcite. Greenish grey, weathered, partly chlorite, epidote, calcite. Greenish grey, weathered, partly brownish, chlorite, epidote, calcite. Greenish grey, weathered, partly brownish, chlorite, epidote, calcite. Greenish grey, weathered, partly brownish, chlorite, epidote, calcite. Light greenish grey, massive.		-				-5.36m - <u>V</u>	
Basaltic massive lava 17.00 W Basaltic pillow Greenish grey, weathered, partly chlorite, epidote, calcite. 19.00 20.00 Basaltic massive Greenish grey, weathered, partly chlorite, epidote, calcite, Basaltic massive Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, 24.00 Basaltic pillow Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, Partly chlorite, epidote, calcite, 27.00 Basaltic pillow Greenish grey, weathered, partly chlorite, epidote, calcite, Light greenish grey, massive, Light greenish grey, massive,		10.00-				_	
Basaltic pillow chlorite, epidote, calcite, Basaltic massive freenish grey, weathered, partly brownish, chlorite, epidote, calcite, Basaltic massive freenish grey, weathered, partly brownish, chlorite, epidote, calcite, Basaltic pillow freenish grey, weathered, partly chlorite, epidote, calcite, The partly chlorite, epidote, calcite, Basaltic pillow freenish grey, weathered, partly chlorite, epidote, calcite, Basaltic pillow freenish grey, weathered, partly chlorite, epidote, calcite, Light greenish grey, massive,		-	* *			-	
Basaltic massive lava Basaltic massive lava Greenish grey, weathered, partly brownish, chlorite, epidote, calcite, Greenish grey, weathered, partly chlorite, epidote, calcite, Basaltic pillow lava Greenish grey, weathered, partly chlorite, epidote, calcite, Light greenish grey, massive,	i		Y			-	
Basaltic pillow Greenish grey, weathered, partly chlorite, epidote, calcite, 30.00- Basaltic pillow Greenish grey, weathered, partly chlorite, epidote, calcite, Basaltic massive Light greenish grey, massive,		1	* * * * *		_	_	
30.00- Basaltic massive lava Light greenish grey, massive,		24.00-	v			_	
Basaltic massive light greenish grey, massive,		27.00	* *			-	
lava Light greenish grey, massive,		30.00 -	*			-	
		-	*		Light greenish grey, massive,	-	
40.00		- 40.00 -	* *			-	

Geological Columnar Section of Drill Holes (11)

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-	* * * * * * * * * * * * * * * * * * *	Basaltic massive lava	Light greenish grey, massive,		
	50.00-	* *	(End of hole.)		_	
	_				- ;	
	-				-	
	-				-	
	-				-	
					- -	
	_ _ _				-	
					<u>-</u>	:

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
	-	0 0	Gravel & sand	Grey∼brownish grey, gravel:gabbro, dolerite,	_	
	4.00		Calcreted gravel & sand	Brownish grey, coarse sand, weak calcrete,	-7.85m -	
	9.00 10.00-	v v			-	
	_	v	Basaltic pillow lava	Greenish grey,	-	
•	14.00 • 15.00	v v		Basaltic pillow lava(altered zone)	-	
	20.00-	V V	Basaltic massive lava	Greenish grey∼dark greenish grey.	-	
		Y Y Y	Basaltic pillow lava	Greenish grey.		
	24.00-	* *	Basaltic massive lava	Dark greenish grey, coarse grained,	1	
	30.00-		Basaltic pillow lava	Light greenish grey, altered,	-	
	39.00 40.00	V V	Basallic massive lava	Dark greenish grey,	1	


Geological Columnar Section of Drill Holes (12)

D. H. No. DH13

Ele.	Depth (m)	Colum	Geology	Description	Groundwater	Remarks
		* *	Basaltic massive lava	Dark greenish grey,		
	44.00	v v v	Basaltic pillow lava	Light greenish grey,		
	50.00-	* * * * *	Basaltic massive lava	Dark greenish grey~dark green, fresh, coarse grained,		
			(End of hole.)			
	-					
					_	
					-	
					-	
		<u> </u> -			<u> </u>	
	-					

le.	Depth (m)		Geology	Description	Groundwater	Remarks
		0 0 0	Gravel & sand	Grey∼brownish grey, loose, gravel:gabbro, dolerite,	-	
	3.00 5.00		Calcreted gravel & sand	Grey~brownish grey, loose calcrete, gravel:gabbro, dolerite,		
	-	v	Basaltic pillow lava	Dark grey, weathered a little, wealth chlorite, epidote,	-8.70m	
	9.00	v v			=	
	10.00-		Basaltic massive lava	Light greenish grey~grey.	-	
	12.00-	Y Y				
	•	v v v	Basaltic pillow lava	Greenish grey∼dark grey, wealth chlorite, epidote,		
	18.00- 20.00-	*	Basaltic massive lava	Dark grey.		
	-	V V V V V	Basaltic pillow lava	Greenish grey∼dark grey.	-	
	25.00	v v	Basaltic massive			
	27.00	* *	lava	Dark grey∼greenish grey,	-	
	30.00-	v v	Basaltic pillow lava	Grey∼greenish grey,		
	33.00	v v				
	-	* * *	Basaltic massive lava	Greenish grey∼dark grey,		
	40.00-	v				
	10.00		(End of hole.)]	

Geological Columnar Section of Drill Holes (13)

Site Pumping Test Analyzed Result (1)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	nole (Unstationa	ry Method)	
Subject: The 1	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine		Area, Sultanate of Oman		Date to	Date tested: 06/07/2000
Name of drill hole: DH-1B	hole: DH-1B					Meas	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	1400	Classification of	Unconfined
Section tested (m)	(m)		17.50~31.50	Groundwater level: ho (cm)	-1750.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		6.35	Diameter of drill hole: D (cm)	9.75	Ground level (m)	261.39
Slope of linea	Slope of linear part of log~t curve : m (S ⁻¹ ,	e:m(S ⁻¹)	1.18E-03	Permeability Coefficient: k (cm/s)	5.49E-05	Weather	Fine
Elapsed time : t(s)	Elapsed time: Water level in t(s) hole: h (cm)	Level difference between original GWL: S (cm)	16 h (cm)	O O h~touve	90ē		logS~t curve
0	-2120.0	370.0	- 1950 - 1950	0	0 0 0		
30			-2000	0		0	
09			-2050		ice a		
90		_	3		eren 3	-	0
120		284.0	2100 -2100 -0				
180			Wat) lə		
240				200 300 400 500 600	vэ.J		
360				(8)			
480	-1878.0	128.0	-				
					02	- 86	_
							000
						IIme I (S)	
					•		
			Remarks:	Equations used for permeability test	permeability test		
				•	·	,	
				0.664 105(21.1.0)	log c. / c.		
				E	- W	72.	
				7	1, - 1,	_ · · ·	

Site Pumping Test Analyzed Result (2)

Site Pumping Test Analyzed Result (3)

	Based on JGS 1314	314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	
Subject: The I	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	1 7 1	Area, Sultanate of Oman		Date t	Date tested: 01/08/2000
Name of drill hole: DH-3	hole: DH-3					Meas	Measured by: mrc
Test method			Recovery test	Sectional length : L (cm)	2673	Classification of	Unconfined
Section tested (m)	(m)		$3.27 \sim 30.00$	Groundwater level: ho (cm)	-327.0	aquifer	i
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	162.24
Slope of linea	Slope of linear part of $\log \sim t$ curve : m (S^{-1})	e : m (S ⁻¹)	2.83E-03	Permeability Coefficient: k (cm/s)	6.28E-04	Weather	Fine
Elapsed time :	Elapsed time: Water level in	Level difference between original	. 0		1000		
(s)	noie : n (cm)	GWL: S (cm)	<u> </u>	h∼t curve			logS~t curve
0	0.809-	281.0					
30) -573.2	.[246.2	-200 -200		-6 -6 9 9		
09	.559.1	232.1			2	000	
06	-526.0	199.0	-300			_ c	
120	-491.0	164.0	9	0 0 0 0 0 0			-0-0
150	-456.0	129.0			5 5		0
180	-446.4	119.4	-500		71		
210	.435.0	108.0					
240	.423.0		-600				
270	-412.5						
330	-401.0	74.0	0 200	400 600 800 1000 1200 1400	0 200	400 600 800 1000	1200 1400 1600
390		64.0		Time (c)		Time t (s)	
450) -382.0	55.0		(6)		-	
510	-373.0	46.0					
570	-367.0	40.0					
069) -362.0		35.0 Remarks:	Equations used for permeability test	ermeability test		
. 810) -358.0			•		F	
930] -354.0	27.0					
1050	-350.0	23.0		$0.66d \log(2L/D)$	s)gol	5, / 5,	
1170] -345.0	18.0		W = X		7	
1470	.339.0	12.0		T	·,	$l_1 - l_1$	

Site Pumping Test Analyzed Result (4)

Site Pumping Test Analyzed Result (5)

	Based on JGS 1314	[314		Permeability Test using drill hole (Unstationary Method)	role (Unstationa	rry Method)	
Subject: The I	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine		Area, Sultanate of Oman		Date	Date tested: 10/10/2000
Name of drill hole: DH-4S	hole: DH-4S					Меа	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	1140	Classification of	Unconfined
Section tested (m)	(m)		$6.60 \sim 18.00$	Groundwater level: ho (cm)	0.099-	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	145.32
Slope of linea	Slope of linear part of log∼t curve: m (S¹	e:m(S ⁻¹)	1.79E-03	Permeability Coefficient: k (cm/s)	7.76E-04	Weather	Fine
Elapsed time:	Elapsed time: Water level in t(s) hole: h (cm)	Level difference between original GWL: S (cm)	hole h (cm)	h t curve	0001		logS~t curve
0	0.38:0	278.0	9100	000	. (1		
09	3.998-	5 206.5	-800		—о шэ)		
06) -816.0				O		
120		120.0	006-			- 0-	
180	0] -757.0	97.0	JEW		e)Jji	0	
240	.736.0	0.97	0 000	300 600 900 1200 1500 1800	ej q		
360				Time t (s)	Γ ς ν		
480	-712.0						•
009	0.869-	38.0					
006							
1800	0[-677.0	17.0					
3600	0.079-	10.0			09 0	120 180 240 100 360	420 480 540 600
						Time t (s)	
			Remarks:	Equations used for permeability test	permeability test		
						F	
·				0.66d log(2L / D)	log(s	log(s, / s,)	
					- E		
				7	<i>''</i>	Γ ₁ - Γ ₁	
•							

Site Pumping Test Analyzed Result (6)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	ole (Unstation	ary Method)	
Subject: The I	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine		Area, Sultanate of Oman		Date te	Date tested: 10/10/2000
Name of drill	Name of drill hole: DH-4D					Measu	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	4356	Classification of	Unconfined
Section tested (m)	(m)		$6.44 \sim 50.00$	Groundwater level: ho (cm)	-644.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		7.5	Diameter of drill hole: D (cm)	15.6	Ground level (m)	144.72
Slope of linear	Slope of linear part of log∼t curve : m (S-1	'e : m (S ⁻¹)	4.60E-04	Permeability Coefficient: k (cm/s)	1.08E-05	Weather	Fine
Elapsed time : t(s)	Elapsed time : Water level in hole : h (cm)	Level difference between original GWL: S (cm)	лоје у (сш)	h~t curve	00001		logS~t curve
0		0 1244.0	0		0001		
09	0.0171-		0041			0	
06					ıs ə	0	
120			-1800		ouə.		0
180	-1567.0	:	este/		ieli S		
240				1200 1800 2400 3000 3600 4200	ib la		
360				Time 1(e)) A		
480				(6)	- 01		
009	-1291.0	į					
006	.1181.0	0 537.0					
1800	0] -1007.0						
3600	-870.0	0 226.0			1 1 0 500	1000 1500 2000 2500	3000 3500 4000
						Time t (
			Domosto .	Lounting mean for memory for the	agemontility toot		
			Nelliai no .	Equations used for	ecimeaning test	,	
				$0.66d^{-1}\log(2L / D)$) Sol	108(s, / s,)	
						<u> </u>	
				1	·,	-1	

Site Pumping Test Analyzed Result (7)

Subject The Featblility Study on Mine Pollution Control in Sohat Mine Acts, Subbanic of Omac. Date tested: 18(07)2000		Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	hole (Unstation	ary Method)	
ne of drill hole: DH-SS In the blood intertion of the control of drill hole: D(cm) In the control of drill hole: D(cm)	Subject: The l	Feasibility Study on	Mine Pollution Contro	ol in Sohar Mine Area	, Sultanate of Oman		Date to	ested: 18/07/2000
Description	Name of drill	hole: DH-5S					Meası	ured by: mrc
Second Considerate Conside	Test method			Recovery test	Sectional length : L (cm)	993	Classification of	Unconfined
Second colored color	Section tested	(m)		8.07~18.00	Groundwater level: ho (cm)	-807.0	aquifer	
pec of linear part of log~1 curve: m (S ⁴) 1.54E-04 Permeability Coefficient: k (cm/s) 7.42E-05 Weather per of linear part of log~2 curve: m (S ⁴) 1.54E-04 Permeability Coefficient: k (cm/s) Percentificance Permeability (cm/s) Permea	Pipe inner dia	meter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	107.56
Posed time: Water level in Determine to (cm) Determine to (c	Slope of linea	r part of log~t curv	re: m (S ⁻¹)	1.54E-04	Permeability Coefficient: k (cm/s)	7.42E-05	Weather	Fine
hole : h (cm) Derweeting main and the control of the control o	Elapsed time :	Water level in	Level difference	050-			,	
-12340 4470 100 100 100 100 100 100 100 100 100 1	t(s)	hole: h (cm)	GWL: S (cm)		h~t curve			logS~t curve
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30						000000	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99					s e a		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	36			0110	0 0 0 0 0 0			
1132.0 388.0 2 120 0 20 400 600 800 100 120 1400 1600 1800 2000 10 10 105.0 200 400 600 800 100 100 100 100 100 100 100 100 1	120							
1195.0 388.0 38.0 388.0 39.1200 5-1200 6-1300 1300 1400 1500 1500 1500 1500 1500 1500 15	150			8 :		ib Is		
-1185.0 378.0 378.0 100 5 1250 6 1250 6 1250 100 1200 1200 1400 1600 1800 2000 100 100 100 100 100 100 100 100	180			-1200		1		
1171.0 364.0 1300 1300 1300 1400 1800 1800 1800 1800 1800 1800 18	210			-1250		1		
1132.0 355.0 0 200 400 600 800 1000 1200 1800 2000 10 10 10 10 10 10 10 10 10 10 10 10	240				-			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	300			200	900	;		
-1108.0 301.0 -1098.0 291.0 -1098.0 291.0 -1081.0 264.0 -1075.0 266.0 Remarks: Equations used for permeability test -1077.0 260.0 -1067.0 259.0 -1065.0 259.0 -1065.0 258.0 -1055.0 248.0 -1055.0 248.0 -1055.0 248.0 -1050.0 243.0	390				Time t (s)] 。	8	00 1600 1800 2000
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	420					•		2007
-1081.0 274.0 -1076.0 266.0 -1076.0 266.0 -1069.0 260.0 -1067.0 260.0 -1067.0 250.0 -1067.0 259.0 -1066.0 258.0 -1066.0 253.0 -1065.0 243.0 -1050.0 243.0	480						rime r (s)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	909							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	720				,			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	840			Remarks:	Equations used for	permeability test		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	996					•		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1080							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1200							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1326					_		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1440							
$\frac{-1055.0}{-1050.0} \frac{248.0}{243.0} $	1560							
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1680				0.66d log(2L/		10g(S1 / S2)	
, t ₂ ,	1800							
					7		$t_2 - t_1$	
							1	

Site Pumping Test Analyzed Result (8)

Site Pumping Test Analyzed Result (9)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	ole (Unstation	ary Method)	
Subject: The F	easibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine Area, Sultanate of Oman	I in Sohar Mine Area,	Sultanate of Oman		Date tes	Date tested: 18/07/2000
Name of drill hole: DH-6S	hole: DH-6S					Measur	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	750	Classification of	Unconfined
Section tested (m)	(m)		$10.50 \sim 18.00$	Groundwater level: ho (cm)	-1050.0	aquifer	
Pipe inner diameter	meter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	101.80
Slope of linear	Slope of linear part of log	re: m (S ⁻¹)	8.47E-04	Permeability Coefficient : k (cm/s)	5.04E-04	Weather	Fine
Elapsed time: Water level	Water level in	Level difference	1	w-coning	00001	0{	logS~t curve
t(s)	hole: h (cm)	GWL: S (cm)	e hole?				
0	-1095.0	0.45.0	-1500				<u> </u>
0.5	i	0 204.0	- 2000 mi	0	(ш		
	-1247.0	0.761	-2500		o) s		
1.5		0.161	-1000				
2	-1237.0	0.781		500 1000 1500 2000	199	0-0-0-	
2.5	-1234.0	0 184.0		Time I (s)	Jip I	0	
3					3A3*		
3.5		0.671			 		-
4		0.821					
4.5		0 178.0					
5		0.771					
9		0.771.0			801		
7					001 0	200 300 400 500 600 700 80	800 900 1000
8		0 175.0				Time t (s)	
6	-1225.0	0 175.0					
10	-1224.0		174.0 Remarks:	Equations used for permeability test	ermeability test		
12							
14							
91	-1223.0				L	Γ	
18							
20		0 172.0		,			
25	5 -1221.0	0 171.0		$0.66d^{-1}\log(2L/D)$		log (s1 / s2)	
30	-1221.0	0.171.0			= =		
35	-1220.0	0.071		7		$t_2 - t_1$	
40	1220.0	0.071			4	7	
45	-1219.0						
20	0-1218.0	0 168.0					
55	-1217.0	0.761 0.70					
09) -1217.0	0.751					
			#	1 T			

Site Pumping Test Analyzed Result (10)

	Based on JGS 1314	1314			Permeability Test using drill hole (Unstationary Method)	nole (Unstationa	ıry Method)	
Subject: The	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	l in Sohar Mir	1 - 1 1	Area, Sultanate of Oman		Date	Date tested: 18/07/2000
Name of drill	Name of drill hole: DH-6D						Meas	Measured by: mrc
Test method			Recovery t	est	Sectional length: L (cm)	4820	Classification of	Unconfined
Section tested (m)	1 (m)		10.80~60	00.	Groundwater level: ho (cm)	-1080.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		7.5		Diameter of drill hole: D (cm)	15.6	Ground level (m)	101.37
Slope of linea	Slope of linear part of \log \sim t curve : m (S^{-1})	e: m (S ⁻¹)	2.72E-03		Permeability Coefficient : k (cm/s)	5.85E-05	Weather	Fine
Elapsed time	Elapsed time : Water level in	Level difference between original			h~t curve			
t(s)	hole: h (cm)	GWL: S (cm)	-1200		0 0 0 0 0 0	0001		logS~t curve
	0 -1385.0	305.0		0000)	(u		
0.5	5 -1354.0		1250 50	day		10) :		
. —						00		
1.5	.5 -1287.0	207.0	0 7 9000				0 0 0 00000	0 -0
, 1	2 -1267.0					əlli S	-	
2.5	5 -1263.0	183.0	ləv O			ib Is		
	3] -1260.0	180.0	-1350 -1350			eve.		
3.5	5 -1258.0		ste,			T		-
7	4 -1256.0	176.0						
4.5			1400	5	20 30 40 50 60 70	9		
7 .	5 -1251.0	171.0					10 20 30 4	40 50 60
•	6] -1248.0	168.0			(3)		(2) 10 11 11	
	7 -1246.0	166.0					rime i (s)	
~	8 -1243.0) 163.0						
	9 -1241.0	0.161.0						
10	0 -1239.0		159.0 Remarks:		Equations used for permeability test	permeability test		
12								
14	4 -1233.0	153.0						
16								
18) 147.0					r	
20								
25	5 -1222.0) 142.0			0.664 10 = (21 + D)		log (s, / s,)	
30	0 -1220.0	140.0			105(22)	; 	/1_ 1_\0	
35		0.138.0			7	! :	1 1	
40	0 -1217.0	137.0			!	1	- -	
45	5 -1216.0	136.0						
20	0] -1212.0	132.0						
55		131.5						
09	0 -1210.0	130.0						

Site Pumping Test Analyzed Result (11)

Based on JGS 1314	JGS 1	314		Permeability Test using drill hole (Unstationary Method)	ole (Unstation	ary Method)	
Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	V no ybr	Aine Pollution Contra	ol in Sohar Mine Area	Area, Sultanate of Oman		Date t	Date tested: 25/07/2000
Name of drill hole: DH-7S						Meas	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	765	Classification of	Unconfined
Section tested (m)			$10.35 \sim 18.00$	Groundwater level: ho (cm)	-1030.0	aquifer	
Pipe inner diameter: d (cm)	(L)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	43.47
Slope of linear part of log~t curve : m (S ⁻¹)	~1 curve	: m (S ⁻¹)	1.13E-04	Permeability Coefficient: k (cm/s)	6.60E-05	Weather	Fine
Elapsed time: Water level in	in	Level difference		h~t minne	0001		lors~!~
1(s) hole: h (cm)		Detween original GWL: S (cm)	ale h (c		0		2410.1
0	-1610.0	580.0	ort an)))	G
30	-1515.5	485.5			(ша		
- 09	-1495.5	465.5	ri lə	-	o) s :		
	-1489.0	459.0	-1400		 2010-		
	-1486.0	456.0	1600		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		
	-1484.0	454.0	B21-	500 1000 1500 2000 2500	ib la		
	-1483.0	453.0		īme ((s)	Гел		
	-1481.0	451.0					
	-1477.0	447.0					
270	-1473.0	443.0					
300	-1469.0	439.0					
360	-1466.0	436.0			9 9	407 000 000 000	
420	-1464.0	434.0				000 000 000	
	1462.1					lime I (s)	
540	-1458.0	428.0					
- 009	-1454.0	424.0	424.0 Remarks :	Equations used for permeability test	permeability test		
720]	-1447.0	417.0		•	•	-	
840	-1434.0	404.0					-
	-1422.0	392.0				1	
1080	-1408.0	378.0					
1200]	-1391.0	361.0		·			
1500	-1360.0	330.0		$0.66d^{-1}\log(2L/D)$		log(s, / s,)	
1800	-1331.0	301.0		á	# #		,
2100	-1312.0	282.0		7		1, -1.	
					_1	-	-
	ŀ				1		
			:	6 · · · · · · · · · · · · · · · · · · ·			

Site Pumping Test Analyzed Result (12)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	iole (Unstationa	ıry Method)	
Subject: The	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	Mine Pollution Conti	ol in Sohar Mine Area.	Area, Sultanate of Oman		Date to	Date tested: 06/10/2000
Name of drill	Name of drill hole: DH-7D					Measu	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	4970	Classification of	Unconfined
Section tested (m)	1 (m)		10.30~60.00	Groundwater level: ho (cm)	-1030.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		7.5	Diameter of drill hole: D (cm)	15.6	Ground level (m)	43.24
Slope of linea	Slope of linear part of log∼t curve : m (S¹	e:m(S ⁻¹)	2.72E-03	Permeability Coefficient: k (cm/s)	5.70E-05	Weather	Cloudy
Elapsed time:	Elapsed time: Water level in t(s) hole: h (cm)	Level difference between original	one h (cm)	~(I	00001		NgS~1 curve
		OWL: S (CII	ore ho	0 0 0000	8		
)	0 -3521.0		oq ı		0001		
30			0056-	-	(cu		
09					- -	.0_	
06		2020.0	- 1000		ou a	0	
120	0 -2905.0	1875.0	-1500 M	400 600 800 1000 1200 1400 1600 1800 2000	ialli.	- !!!	
150		1613.0			ib la		
180	0 -2453.0	1423.0			-	0	
210	0 -2281.0	1251.0					
240		975.0			01		
270		826.0					
300		542.0			ļ		
360	0 -1459.0	429.0					
420	0 -1346.0	316.0			002 0	400 600 800 1000 1200 1400	0 1600 1800
480	0 -1231.5	201.5				Time t (s)	
540	0 -1155.0	125.0					
099	0 -1094.0		64.0 Remarks:	Equations used for permeability test	permeability test		
006	0 -1055.0	25.0			L	r	
1200	0 -1054.0	24.0					
1800	0 -1050.0	20.0		$0.66d^{-1}\log(2L/D)$	log	log(s, / s,)	
				- 1	#	<u></u>	
				7	1,	_ (, _	

Site Pumping Test Analyzed Result (13)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	i
Subject: The 1	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	- ~ ·	Area, Sultanate of Oman		Date te	Date tested: 22/10/2000
Name of drill	Name of drill hole: DH-8S					Measu	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	470	Classification of	Unconfined
Section tested (m)	(m)		15.30~20.00	Groundwater level: ho (cm)	-1530.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		7.6	Diameter of drill hole: D (cm)	30.6	Ground level (m)	22.31
Slope of linea	Slope of linear part of log∼t curve : m (S ⁻¹ ,	e : m (S ⁻¹)	2.96E-03	Permeability Coefficient: k (cm/s)	3.57E-04	Weather	Cloudy
Elapsed time : t(s)	Elapsed time: Water level in hole: h (cm)	Level difference between original GWL: S (cm)	ole h (cm)	O O O P-Curve	1000		log5~t curve
0	1734.0	204.0	0 1700		o		
30	-1685.0	155.0			<u>1</u>	0	
09	.1661.0	131.0	ni (s) s :	0-0-0	
06	1633.0	103.0	leve - 38		eoue	0	
120	.1617.0				цете	0	
150	1609.0	79.0	-2000		tib I		
180	1594.0	•	09 0	120	3v3,		0
210	1579.0			Time t (s)	 		
240	1568.0	38.0					
270	1560.0						c
300	.1553.0	[0.23.0])
360	0] -1541.0	1					900
420) -1532.0	2.0			9	8	
						Lime t (s)	
			Remarks:	Equations used for permeability test	ermeability test		
				•	` •	_	
				$0.66d^{-1}\log(2L/D)$	s) gor	log(s, / s2)	
				W = ¥		<u> </u>	
				1	·,	-7 -1, -2,	

Site Pumping Test Analyzed Result (14)

Site Pumping Test Analyzed Result (15)

	Based on JGS 1314	[314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	
Subject: The l	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine		Area, Sultanate of Oman		Date t	Date tested: 22/10/2000
Name of drill hole: DH-9	hole: DH-9					Meas	Measured by: mrc
Test method			Recovery test	Sectional length : L (cm)	4160	Classification of	Unconfined
Section tested (m)	(m)		$8.40\sim50.00$	Groundwater level: ho(cm)	-840.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	8.00
Slope of linea	Slope of linear part of $\log t$ curve : $m(S^{-1})$	e : m (S ⁻¹)	1.81E-02	Permeability Coefficient: k (cm/s)	2.80E-03	Weather	Fine
Elapsed time : 1(s) 30 40 50 60 60 90 120	Elapsed time: Water level in hole: h (cm) 1(s) hole: h (cm) 10 -3841.0 30 -2874.0 40 -2576.0 50 -2251.0 60 -1978.0 120 -863.0	Level difference between original GWL: S (cm) 3001.0 2034.0 1736.0 1451.0 166.0 23.0	Water level in bore hole h (cm)	0 0 0 h~1 curve	Level difference s (cm) \$\begin{align*} \text{\$\text{\$\sigma}\$} & \text{\$\sigma} & \$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	logS~! curve
			Remarks :	Equations used for permeability test	ermeability test	F	
				$k = \frac{0.66d^{2} \log(2L/D)}{L} \cdot m$	$m = \frac{\log\left(s_1 / s_2\right)}{t_2 - t_1}$	$\left(\frac{s_1+s_2}{s_1-t_1}\right)$	

Site Pumping Test Analyzed Result (16)

Site Pumping Test Analyzed Result (17)

	Based on JGS 1314	314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	
Subject: The	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	Mine Pollution Contro	Area,	Sultanate of Oman		Date t	Date tested: 18/07/2000
Name of drill	Name of drill hole: DH-11					Measi	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	1850	Classification of	Unconfined
Section tested (m)	d (m)		11.50~30.00	Groundwater level: ho (cm)	-1150.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	255.64
Slope of linea	Slope of linear part of log~t curve: m (S-1)	e : m (S ⁻¹)	2.88E-04	Permeability Coefficient: k (cm/s)	8.55E-05	Weather	Fine
Elapsed time	Elapsed time : Water level in	Level difference	(cm)	h~touve	00001		logS~t curve
t(s)	hole: h (cm)	GWL: S (cm)	1 2004 t				
	0 -2535.0	1385.0	-2000	0			
30			ni I		 (wɔ)		
09		1155.0	-2500				
06			tot.				
120			-3000		1000	0 0 0 0 0 0	
150			0 300	909	b lə		0
180				Time t (s)	iva.		-
210					[
240	0 -2150.0						
270							
300							
360							
420					001 0	200 300 400 500 600	700 800 900 1000
480						Time t (s)	
540							
909			800.0 Remarks:	Equations used for permeability test	ermeability test		
900							
1200							
1500					.	_	
1800	0 -1715.0	565.0					
				$0.66d \log(2L/D)$		log(s, / s,)	
				1 10	#		
				7		$t_{2} - t_{1}$	
					4	1	
			;				

Site Pumping Test Analyzed Result (18)

	Site Pumning Test Analyzed Result (19)
258.0	
845.0	

	Based on JGS 1314	314		Permeability Test using drill hole (Unstationary Method)	hole (Unstations	ıry Method)	
Subject: The l	Feasibility Study on I	The Feasibility Study on Mine Pollution Control in Sohar Mine	l in Sohar Mine Area,	a, Sultanate of Oman		Date 1	Date tested: 27/07/2000
Name of drill	Name of drill hole: DH-12S					Meas	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	1213	Classification of	Unconfined
Section tested (m)	1 (m)		5.87~18.00	Groundwater level: ho (cm)	-587.0	aquifer	
Pipe inner diameter:	ameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	200.10
Slope of linea	Slope of linear part of log~t curve : m (S ⁻¹)	e : m (S ⁻¹)	9.83E-03	Permeability Coefficient: k (cm/s)	4.06E-03	Weather	Fine
Elapsed time	Elapsed time: Water level in	Level difference	(cm)	à de la curve	00001		logS~1 curve
t(s)	hole: h (cm)	GWL: S (cm)	pole h				
)	0 -1720.0	1133.0		0			
0.5	5 -1665.0	1078.0		0 000	(w		
1	1 -1617.0	1030.0			o) s		
1.5			DOLL		uce		
			-1880 of		0001		
2.5		į	0	10 20 30 40 50 60	<u> </u>	000	
(*)	3 -1482.0	895.0		Time t (s)	<u> </u>		
3.5	-1467.0				די		
7	4 -1451.0						
4.5							
¥ 1	5 -1415.0						
	6 -1399.0				100		
. `	7 -1388.0				0	10 20 30 40	20 60
3	8 -1365.0					Time t(s)	
)	9 -1347.0						
10			739.0 Remarks:	Equations used for permeability test	permeability test		
12							
14							
16							
18					.		
20							
25		505.0		0.664 10=(21 / D)	-	100	
30	0 -1027.0	440.0		177)201			
35		387.0		7	 		
40	0 -921.0			ı	1	-1 -1, - 7,	-
45							
50							
55							
09	0 -845.0	258.0					

Based on JGS 1314			Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	
Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine Area, Sultanate of Oman	ution Contro	l in Sohar Mine Area	, Sultanate of Oman		Date te	Date tested: 23/07/2000
Name of drill hole: DH-12D					Meast	Measured by: mrc
Test method		Recovery test	Sectional length: L (cm)	4402	Classification of	Unconfined
Section tested (m)	•••••	5.98~50.00	Groundwater level: ho(cm)	-598.0	aquifer	
Pipe inner diameter: d (cm)		7.5	Diameter of drill hole: D (cm)	15.6	Ground level (m)	199.99
Slope of linear part of log~t curve : m (S ⁻¹)		2.01E-03	Permeability Coefficient: k (cm/s)	4.67E-05	Weather	Fine
Elapsed time: Water level in between original hole: h (cm) GWL: S (cm)	erence original cm)	hole h (cm)	O O P COUVE	00001		logS~t curve
0 -3198.0	2600.0	-2000		(u		
30 -2871.0	2273.0			<u>8</u>		
	2012.0	-2500		S 20	0	
90 -2360.0	1762.0			nete		0
120 -2125.0	1527.0	O 0000		ыü		
150 -1901.0	1303.0	0 200	1000 1500 2000 2500 3000 3500	ı ləv		
	1182.0		Time t (s)	3.J \$		
	1038.0					
	957.0					
	843.0					
	777.0			•		
	687.0				0000 0000 0000 0000	0000
1800 -1170.0	572.0	-			2007	900
3600 -1051.0	453.0				Time t (s)	
		Remarks ·	Fouglions used for nermeability test	ermeahility test		
			d tot page groupphy	cincacinty test	ſ	
					,	
			$0.66d^{-1}\log(2L/D)$	log (s, / s,	/ 5,	
			W	* = =		
			7	1	_ 'ı _	

Site Pumping Test Analyzed Result (20)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ary Method)	
ubject: The	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine		Area, Sultanate of Oman		Date to	Date tested: 04/10/2000
Vame of drill	Name of drill hole: DH-13					Measi	Measured by: mrc
Test method			Recovery test	Sectional length : L (cm)	4215	Classification of	Unconfined
Section tested (m)	I (m)		7.85~50.00	Groundwater level: ho (cm)	-785.0	aquifer	_
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	228.57
Slope of linea	Slope of linear part of log∼t curve : m (S¹	/e:m(S ⁻¹)	1.86E-03	Permeability Coefficient: k (cm/s)	2.84E-04	Weather	Fine
Elapsed time : t(s)	Elapsed time: Water level in t(s) hole: hole:	Level difference between original GWL: S (cm)	6 hole h (cm)	0 0 P T CUITYE	00001		logS~t curve
0		0 3865.0	-3000		9		
30			0		u2)	0	
09			-4000		s ə3	0	
06			 6 6 7			0	
120			0 50	100 150 200 250 300 350 400) 		0
160				Time t (s)	p [ə/		
180	.2520.0	0 1735.0		`	vəl		
220	-2190.0	0 1405.0					o
240	1 -2035.0	0.0221					
280	-1635.0	0.028					
300	1492.0	0.707					
360	-1165.0	380.0			001	100 150 200 250	300 350 400
						Time t (s)	
!							
			Remarks:	Equations used for permeability test	ermeability test		
				•	·	ŗ	
					`		
				$0.66d^{-1}\log(2L/D)$	log	log(s, / s,	
				, m	= #		
				7 .	<i>t</i> ¹	_ t, _	

Site Pumping Test Analyzed Result (21)

	Based on JGS 1314	1314		Permeability Test using drill hole (Unstationary Method)	ole (Unstationa	ry Method)	
Subject: The l	Feasibility Study on	Subject: The Feasibility Study on Mine Pollution Control in Sohar Mine	_ ~ .	Area, Sultanate of Oman		Date t	Date tested: 04/10/2000
Name of drill hole: DH-14	hole: DH-14					Measi	Measured by: mrc
Test method			Recovery test	Sectional length: L (cm)	3130	Classification of	Unconfined
Section tested (m)	(m)		8.70~40.00	Groundwater level: ho (cm)	-870.0	aquifer	
Pipe inner dia	Pipe inner diameter: d (cm)		20	Diameter of drill hole: D (cm)	30.6	Ground level (m)	230.95
Slope of linea	Slope of linear part of log~t curve : m (S-1	e:m(S ⁻¹)	5.67E-05	Permeability Coefficient: k (cm/s)	1.10E-05	Weather	Fine
Elapsed time : t(s)	Elapsed time: Water level in (s) hole: h (cm)	Level difference between original GWL: S (cm)	DIA	500000 0 0 0 0 0	10000		logS~t curve
0	1754.0	884.0	-1 200 -1 200 -1 200	(wa			
30	1580.5		D -1650) s			
09	0.777.0	707.0	ni (
06					1000		
120	0.1570.0		1750 0	Thip in		0000	
150	.1568.0		1800	[av)	
180				500 1000 1500 2000			
210				Time 1 (s)			
240				(6)			
300							
360					001		
420					0 250	500 750 1000 1250	1500 1750 2000
480						. Time t (s)	-
540							
009	0] -1542.0						
006	0.1542.0		672.0 Remarks:	Equations used for permeability test	ermeability test		
1200) -1542.0			•	_	 -	_
1500) -1542.0	672.0		•	_		·
1800) -1542.0	672.0		0.66d log(2L / D)	log (s, / s2	(1.81)	
				w7	i E	1 1	
						-	

Site Pumping Test Analyzed Result (22)