CHAPTER 3 GEOCHEMICAL INVESTIGATION

CHAPTER 3 GEOCHEMICAL INVESTIGATION

The geochemical investigation was conducted to determine the distribution of chloride (CI⁻) ions in soils and wadi sediments. The purpose of this investigation is to identify soil contamination caused by the deposition of fugitive dust (dust fall) from the smelter and salt leakage from the tailings dam.

3.1 Soil (Dust fall) Investigation

3.1.1 Location of the Soil Sampling Points

The purpose of the soil investigation is to identify soil contamination caused by the deposition of dust from the copper smelter and other sources. Soils in the Study area are distributed on terrace surfaces, alluvial terrace plains, alluvial beds and weathered basement rocks. However, suitable places for the soil sampling, where stable soil exists with enough amounts to be sampled, are limited to the terrace plains only. Hence, the terrace plains were selected as soil sampling points. And these points are selected at random in zones of 500 m, 1 km, 2 km, and 3 km distance from the smelter.

A total of 31 soil samples were collected for the geochemical investigation. The locations of the sampling points are shown in Figure 3.1.

3.1.2 Soil Sampling and Pretreatment

At the time of soil sampling, the gravel on the land surface was removed. The soil samples were taken from 0 to 5 cm in depth. However, topsoil (alluvial soil) in the area is developed very weakly in general.

As a pretreatment for soil chemical analysis, samples were screened by a 50-mesh sieve after natural drying. The under-size materials (- 50 mesh) were used for analysis. Analytical parameters were, as follows:

: Hg, Cd, Cr, As, Pb, Cu, Mn, Fe, Ni, Sn, Zn, SO₄, and Cl (13)

3.1.3 Analytical Result

Analytical test results for the soil samples collected for the geochemical investigation are shown in Table 3.1. The concentration distribution for each component is shown in Figure 3.2 (1) to (3) and refers to Appendix -1.

Mercury (Hg) concentrations fluctuate within a small range from 0.04 to 0.2 mg/kg. Peaks of 0.2 mg/kg can be seen in the 1 km to 2 km zone on the southeast and 2km north. However, low-leveled distribution of mercury is found in an east-northeast to west-southwest direction.

Figure 3.1 Sample Points of Soil for Geochemical Investigation

İ

-					_	_	_	_			_	-	_	_							_				_				_	_		
a		190	360	580	340	190	250	210	180	200	140	190	170	130	0+1	150	170	190	180	170	220	150	170	120	180	140	100	150	110	120	184	150
SO4		2,100	900	3,900	2,000	600	006	160	630	950	460	610	850	930	800	680	510	500	690	140	120	420	1,530	1,160	880	1,150	2,140	1,110	950	920	54	427
Zn		750	150	110	125	220	220	85	10	235	270	45	30	35	20	55	225	40	100	20	65	70	60	660	155	550	500	25	35	45	93	66
Sn		350	350	400	500	200	250	250	300	100	100	100	100	200	100	200	200	200	250	600	300	400	100	100	150	150	150	150	300	300	06	09
Ni		16,250	17,750	14,000	3,900	950	18,100	20,800	19,950	1,400	630	16,700	9,550	10,000	16,050	13,600	8,150	10,150	16,850	24,650	2,900	1,600	13,000	1,550	1,750	1,400	200	18,750	10,550	12,900	733	1,085
Fe		39,900	43,700	26,000	50,000	45,400	35,100	23,000	39,300	26,400	29,200	25,000	25,100	21,800	25,600	19,700	31,500	31,200	31,300	42,500	41,800	38,700	24,200	69,400	48,300	43,700	65,200	23,100	27,500	22,900	25,533	29,645
Mn	mg/kg	9,350	10,800	8,350	11,300	10,100	9,300	9,400	9,650	9,850	9,750	9,650	7,300	8,500	8,900	7,850	8,700	9,200	9,500	11,750	9,300	13,900	7,600	7,500	12,450	10,850	11,350	8,000	8,900	8,600	537	551
J		14,750	1,170	865	940	2,675	750	645	255	6,050	510	550	760	906	330	255	435	485	1,320	425	340	865	1,180	9,550	4,700	4,150	5,575	880	750	510	671	194
Pb		285	10	10	200	65.	45	35	40	320	25	255	20	485	20	295	10	185	30	305	735	45	655	65	50	495	455	60	270	5	75	80
As		14	6	16	9	6	12	13	6	11	6	10	7	9	6	11	L	6	15	14	15	11	12	12	13	10	11	14	11	16	4	4
ŭ		350	455	320	150	90	410	430	430	500	280	375	245	300	380	270	245	300	510	560	160	115	270	135	145	155	115	375	330	340	70	70
CG		4	4	4	4	6	6	œ	œ	14	14	13	14	14	13	18	19	19	14	19	19	24	19	23	24	23	23	23	24	23	<0.01	<0.01
Hg		0.10	0.05	0.15	0.10	0.10	0.15	0.15	0.15	0.05	0.20	0.20	0.15	0.05	0.15	0.15	0.05	0.05	0.05	0.20	0.20	0.10	0.15	0.10	0.15	0.05	0.15	0.05	0.10	0.05	0.04	0.05
nates	Easting	440475	440800	441650	442230	442450	442330	441430	441010	440625	441435	442985	443460	439300	438830	440635	443475	444550	440000	439780	441525	443150	442980	441870	441950	441025	441220	438775	439980	444240	455685	437870
Coordi	Northing	2688025	2688775	2689430	2688880	2688300	2687525	2686975	2687125	2687525	2685975	2686780	2688210	2687975	2686560	2685100	2686020	2688870	2688800	2690650	2690025	2689180	2690200	2687875	2688350	2688325	2687820	2688750	2686800	2687850	2690370	2685720
Sample	Number	DS-1	DS-2	DS-3	DS-4	DS-5	DS-6	DS-7	DS-8	DS-9	DS-10	DS-11	DS-12	DS-13	DS-14	DS-15	DS-16	DS-17	DS-18	DS-19	DS-20	DS-21	DS-22	DS-23	DS-24	DS-25	DS-26	DS-27	DS-28	DS-29	DS-30	DS-31

Table 3.1 Analysis Result of Soil Geochemical Investigation

Figure 3.2 Concentration Contour map of soil (1)

Figure 3.2 Concentration Contour map of soil (2)

!

Cadmium (Cd) concentrations vary in a range from <0.01 to 24 mg/kg with a uniform tendency in direction. Relatively high concentrations are distributed near the border of the smelter plant site and at points 2 km or more from the smelter.

Chromium (Cr) concentrations fluctuate in a range from 70 to 560 mg/kg. A significant peak can be seen in the 1 km zone toward the south to southwest, and a low concentration plume extends more than 3km. It is possible that higher concentrations may exist in zones further than 3 km.

Arsenic (As) concentrations ranging from 4 to 16 mg/kg with some higher concentrations exist in the zone from 0.5 to 1.5 km from the smelter. In addition, a peak in arsenic concentrations was identified at a distance of 1.5 km toward north. This peak seems to be influenced by the tailing dam.

Lead (Pb) concentrations are distributed in a wide range from 5 to 735 mg/kg. Higher concentration zones can be seen in two places, i.e. from 0.5 to 2.3 km west from the plantsite and further than 1.5 km to the north. The tailing dam probably affects the northern side of the terrace.

Copper (Cu) concentrations are widely and uniformly distributed geographically and in a wide range of concentrations, i.e. from 194 to 14,750 mg/kg. However, on the west side of the smelter, peaks of higher concentration are found.

Manganese (Mn) concentrations are distributed in a very wide range from 537 to 13,900 mg/kg, including the background soil samples. Manganese concentrations are distributed rather uniformly as a whole. However, a peak exists 2 km toward east-northeast.

Iron (Fe) concentrations are also distributed in a very high range from 19,700 to 69,400 mg/kg dispersing in all directions with the peak values extending toward the northeast.

Nickel (Ni) concentrations are distributed in concentrations ranging from 200 to 24,650 mg/kg, with the higher concentration zones extending toward the east-southeast to west-southwest.

Tin (Sn) concentrations uniformly range from 60 to 600 mg/kg.

Zinc (Zn) concentrations range from 10 to 750 mg/kg and are dispersed in all directions. The highest zinc concentrations extend in along an east/west axis.

Sulfate (SO_4) concentrations range from 120 to 3,900 mg/kg, with the higher concentration zones distributed in the northern and central parts of the area. In the central part of the area, significant sulfate concentrations extend in a direction from east to west. High sulfate concentrations in the northern area appear to be attributable to the tailing dam.

Chloride (Cl) concentrations are rather low, i.e.100 to 580 mg/kg. However, chloride concentrations around the tailing dam tend to be higher.

By chemical analysis of topsoil samples obtained from the terraces, high heavy metal content, such as Cd, Pb, Cu, Fe, Zn and SO_4 , appear to be the result of fugitive dust emissions from the smelter stack. All of these metals appear to be dispersed a central point at the plantsite. Some of these metals are presumed to be dispersing beyond 3 km. Anomalies in the concentrations of Pb, Fe, Ni, SO_4 and Cl can be found around the tailing dam. These anomalies are apparently caused by wind transport out of the tailing dam.

3.2 Salt Concentration in the Soil

Samples of wadi sediments and alluvial soil along the wadis around the tailing dam were collected and analyzed to identify leakage of salt from the tailing dam.

3.2.1 Location of Soil Sampling Points

In order to identify leakage of salt from the tailing dam, sampling points were limited to the wadi. All small and large-scale valleys around the tailing dam were selected as sampling points. The sampling points selected in Wadi Suq extended especially far downstream in order to determine the extent of contaminant dispersion compared with background levels. Background levels were determined by sampling soils in the upper reaches of Wadi Bani Umar al Gharbi.

In collecting samples of wadi sediments, fine-grained soils were selected preferentially. A total of 102 soil samples were collected for analysis of their salt concentrations (Figure 3.3).

3.2.2 Soil Sampling and Pretreatment

Gravel on the land surface was removed prior to collecting the soil samples. Soil samples were dug from 0 to 10 cm in depth. As a pretreatment for soil chemical analysis, samples were screened using a 50-mesh sieve after natural drying. Only the under-sized materials (- 50 mesh) were submitted for laboratory analysis. Chloride (Cl) was the only analytical parameter measured for these samples.

3.2.3 Analysis Results

Analysis results of the soil for Cl are shown in Table 3.2, and the distribution of chloride concentration is shown in Figure 3.4 (1) to (2). Figure 3.4 (2) shows an enlarged detail of the results.

Chloride concentrations fluctuate in an extremely wide range, from 106 to 146,500 mg/kg. Background concentrations in the Study area range from 106 to 180 mg/kg. These background concentrations appear

Sample N0.	Coordi	nates	Cl	Sample No.	Coordii	Cl	
	Northing	Fasting	ma/ka		Northing	Fasting	ma/ka
C18-1	2689200	442075	200	C18-52	2687055	441660	220
C1S-2	2689300	442170	390	CIS-53	2687150	441960	220
CIS-3	2689375	442275	280	C1S-54	2690427	447520	410
C1S-4	2689730	441950	210	CIS-55	2690408	447526	8 4 5 0
CIS-5	2689875	441280	210	CIS-56	2690387	447542	55 500
CIS-6	2690075	441250	130	CIS-57	2690367	447536	143 000
CIS-7	2690290	441130	120	CIS-58	2690347	447540	61 300
CIS-8	2689770	437080	140	CIS-59	2690357	447520	5 850
CIS-9	2691030	439600	180	CIS-60	2690357	447520	25,000
CIS-10	2698870	441200	160	CIS-61	2690357	447520	25,000
CIS-11	2694315	441875	330	CIS-62	2691650	441080	187
CIS-12	2693370	441000	140	CIS-63	2691215	440825	157
CIS-13	2695425	442325	130	C1S-64	2691175	441350	167
CIS-14	2692890	440550	200	C18-65	2690500	441700	138
CIS-15	2692340	440570	300	C18-66	2690325	441575	1/18
CIS-15	2692340	440370	240	C1S-67	2690525	441373	597
CIS-10	2090483	440030	170	CIS-07	2690000	441470	167
CIS-17	2689800	439800	1/0	CIS-68	2690490	441423	167
CIS-18	2689090	439850	190	CIS-69	2691030	441290	16/
CIS-19	2689025	441620	20,120	CIS-/0	2692490	441500	3,415
CIS-20	2690675	440430	6,260	CIS-71	2691280	441810	502
CIS-21	2690500	440400	280	CIS-72	2691290	442000	207
ClS-22	2690200	440380	170	C1S-73	2690840	441990	443
CIS-23	2689725	440650	170	C1S-74	2687000	441510	246
CIS-24	2689920	440180	190	C1S-75	2687555	443070	266
C1S-25	2689550	439950	210	C1S-76	2688750	445575	344
C1S-26	2688500	441080	280	C1S-77	2688825	439840	197
ClS-27	2688125	442030	240	C1S-78	2690100	440070	266
ClS-28	2688120	442770	330	C1S-79	2690870	440425	3,415
ClS-29	2688800	443750	190	C1S-80	2691200	440585	6,653
C1S-30	2689675	445450	300	CIS-81	2692475	441360	276
ClS-31	2690330	447540	2,660	C1S-82	2693780	441605	404
CIS-32	2691425	448925	200	C1S-83	2695200	442205	394
C1S-33	2691700	447750	190	C1S-84	2691660	442200	650
CIS-34	2693350	451775	150	C1S-85	2690875	441305	266
C1S-35	2693350	451875	180	C1S-86	2692400	442905	157
CIS-36	2693325	451980	200	CIS-87	2691780	448675	472
ClS-37	2693285	452075	150	C1S-88	2691080	448630	325
CIS-38	2694630	453575	190	CIS-89	2691340	449250	266
CIS-39	2695950	455090	280	C1S-90	2691200	450410	246
CIS-40	2697320	456630	280	CIS-91	2690620	450600	285
CIS-41	2690225	443970	200	CIS-92	2690000	451020	207
C1S-42	2690310	443650	260	C18-93	2693770	451180	106
CIS-43	2690510	445540	200	C1S-94	2695565	452310	100
C1S-44	2692100	444900	150	C18-95	2696410	450750	1/7
C18-45	2691730	444/15	100	C18-96	2695820	449000	2/19
C15-45	2691750	443050	190	C1S 07	2693800	44,000	240
C13-40	2690855	443030	100	CIS-97	2073000	449030	240
C15-4 /	2690800	442090	190	C15-96	2073210	449230	780
C15-48	2090870	4420/3	200	CIS-99	2093030	450400	248
C15-49	2090487	447/40	3,190	015-100	2091900	4311/3	333
010-50	2090430	44/000	1,150	CIS-101 (surface)	2090530	44/540	146,500
CIS-51	2690390	44/580	47,000	CIS-102 (20cm d)	2691425	448925	14,050

Table 3.2 Analysis Result of Cl Soil Investigation

Figure 3.4 Concentration Contour Map of Cl in the Soil (1)

consistent with results of chloride concentrations from the soil dust fall investigation. Zones where the concentrations exceed 5,000 mg/kg are limited to areas downstream of the tailing dam and upstream of the KM14 point (Sagha village) i.e. OMCO PS-2 point, and upstream of Wadi Bani Umar al Gharbi.

Seepage from the tailing dam permeates downstream. Hence, chloride concentrations become higher immediately downstream of the tailing dam. OMCO's seawater pumping station PS-2 is located just upstream of KM14 (Sagha Village). It has been reported that seawater leaked from the pump station during its operation.

Aarja village is located on the northwest side of the tailing dam in the upper reaches of Wadi Bani Umar al Gharbi at the altitude of sampling point (ClS-20) at 230 m in elevation. Chloride concentrations in this area seem to be affecting groundwater around Bayda village. It is strongly suggested that the seepage out of the tailing dam migrates into the ClS-20 point through fractures in and along the faults that may strike toward the tailing dam and the ClS-20 point. It is possible based on the difference in elevations that a spring fed by the tailings dam exists at this point, i.e. the elevation of the tailing dam is at approximately 233 m and the sampling point ClS-20 is at 230 m (Figure 3.5).

It was estimated that leakage of brine occurred at backside of the tailing dam mainly through points near drilling hole of DH-11 and the impact of this leakage has reached Bayda village. The relationship between distance from tailing dam to Aarja and Bayda villages along Wadi Bani Umar al Gharbi and salt concentration in soil is presented in Figure 3.6.

Figure 3.5 Relationship between Distance from Contaminant Source and Cl Concentration of the Soil

Figure 3.6 Leakage Route of Contaminated Groundwater

CHAPTER 4 GEOPHYSICAL SURVEY

CHAPTER 4 GEOPHYSICAL SURVEY

The purpose of the geophysical survey is to identify the underground structure of the basement, assess the current conditions of the basement rock, evaluate the distribution and characteristics of the loose sediments (mainly sediments in the wadi, waste, and so on), and investigate groundwater conditions and groundwater quality. In order to accomplish this purpose, Nano-Transient Electromagnetic Method (Nano-TEM) with micro-gravity methods are expected to be effective based on the topography of the site, geological situation, rock characteristics, sediment situation, underground water situation, and situation of the contamination. Moreover, result of the geophysical survey are supplemented by the results of the drilling investigation in which the geophysical characteristics (density, resistivity etc.) of the rocks, soils, and sediments were directly determined.

The content and quantity of Nano-TEM and micro-gravity survey methods and measurement of rock characteristics are shown in Table 4.1.

Measurement	Length	Gravity survey	Nano-TEM survey			
Line No.	(m)	No.	No.			
L-1	1,000	51	51			
L-2	1,000	51	51			
L-3	300	32	26			
L-4	300	23	16			
L-5	200	19	11			
L-6	1,500	114	76			
L-7	3,200	255	161			
L-8	2,000	126	99			
L-9	300	31	-			
L-10-11	500	62	-			
L-12	200	21	-			
L-13	160	17	160			
Number of measure	ement points	802	651			
Total length (1	n)	10,660	9,660			
Physical		Density (g/cm^3)	Resistivity			
measurement		52 pieces	47 pieces			

Table 4.1 Contents and Quantities of Geophysical Survey

4.1 Nano-TEM Survey Method

4.1.1 Measurement and Analysis

Ten Nano-TEM survey lines were programmed in the upper, middle and lower parts of Wadi Suq. The location of each survey line is shown in Figure 4.1. Measurement intervals for each survey line were set at 20 m, and the positioning of each measurement point was performed by simple surveying methods.

1

The Nano-TEM instrument used for taking the site measurements consisted of a GDP-16/3ch receiver and transmitter manufactured by Zonge Co. The transmitting source consisted of a 20-meter square outer loop, while the receiving line consisted of a 5-meter square loop placed inside the transmitting loop. A stopping wave with a frequency of 32 Hz was used as the signal source. Three measurements were made at each measurement point in order to minimize influence of noise.

The GDP-16/3ch receiver was used to treat and analyze the measured data. The data from the multiple measurements were averaged, and then two-dimensional analysis was conducted using TEMIXX as the TEM analyzing software.

4.1.2 Analysis Result

Cross-sectional drawings illustrating the results of the Nano-TEM survey are shown in Figures 4.2 (1) to (4) and Appendix-2. In the cases of the measurement lines L-1 and L-2 passing through the tailing dam located in uppermost reach of Wadi Suq, the specific resistivity basement appears as an almost horizontal line about 30 m under the ground surface with a layer with low specific resitivity spreading horizontally over the basement.

Measurement line L-3 is located downstream of measurement lines L-1 and L-2. In this case, a low resistivity layer cannot be found, but a relatively low resistivity zone is distributed almost horizontally from approximately 10 m below the wadi ground surface to the deep part of a terrace. It can be inferred that there exists a basement with high resistivity under the low resistivity zone.

Under measurement lines L-4 and L-5 in the middle reach of Wadi Suq, high resistivity basements exist 50 to 100 m under the ground surface, relatively deep compared with the upstream lines. High resistivity basements under measurement lines of L-6, L-7 and L-85 located in the middle to lower reaches of Wadi Suq exist 50 to 100 m under ground surface at almost the same elevation as the basement in the middle reach of the wadi. Resistivity values associated with the high resistivity basement lines L-6 and L-7. Similarly, resistivity values of the low resistivity zone are relatively low, having zone thickness of about 30 m.

4.2 Gravity Survey

Gravity survey work was carried out at a total 13 measurement lines, i.e. 12 lines in upper to lower reaches of Wadi Suq and 1 line near Bayda village in Wadi Bani Umar al Gharbi. Each measurement line is shown in Figure 4.1. A micro (Precise) gravity meter of Lacoste D-type (Lacoste & Romberg Co. made in USA) was used to make the gravity measurements.

Measurement work was carried out using closed methods, closing more than twice a day to each measurement point installed on every measurement line and a tentative base point located in Magan to minimize drifts by frequent closing. Measurement methods and results of the analysis are described in the following sections of this report.

4.2.1 Measurement and Data Treatment

Relative gravity values were obtained by tidal correction and drift correction. Then, gravity anomalies (relative Bouguer anomaly) were obtained by surrounding topological correction and Bouguer correction. Gravity anomalies due to geological structure in wide range were deducted from relative Bouguer anomalies to extract shallow gravity anomalies (residue anomaly). Situations of the basement rocks were identified by execution of model structural analysis for the residue anomalies. In this Study, density difference was selected as 0.5 to 1.0 g/cm^3 .

4.2.2 Analysis Result

Generally speaking, gravity anomalies in this area exist in range of 5 mgal, relatively small fluctuation. Cross sectional gravity analysis drawings are shown in Figure 4.3 (1) to (4) and refer to Appendix-3. Under measurement lines of L-1 and L-2 in upper stream of Wadi Suq, basement is deemed to exist about 30 m under the ground surface in tailing dam.

Under the measurement line L-3 located downstream of L-1, a landform like a valley can be found on a large scale. Under the measurement lines of L-4 and L-5 in the upper and middle reaches of the wadi, there exists almost flat, relatively shallow basements with ranging from 5 to 10 m below ground surface. Under measurement lines L-6, L-7 and L-8 in middle to lower reaches of the wadi, the tendency that the basements exist at a slightly deeper depth of about 20 m. However, their form is almost flat on the whole.

Reanalysis shall be carried out after getting additional data regarding the specific gravity of the rocks in near future.

ł

4-9

•

. . .

LINE-3

Figure 4.3 Gravity Profile by Sectional Analysis (3)

:

LINE-6

4.3 Measurement of Physical Characteristics of Rocks

Knowledge of the physical characteristics of basement rocks is necessary for analysis of Nano-TEM and gravity surveys. Hence, the density of the rocks for gravity data and specific resistivities were measured on rocks distributed along each measurement line. Rock samples for measurement were taken from out-crops and drilling core samples. These measurements were made on a total of 52 rock samples. Rock samples were shaped into cylinders or cubes, and then measurements were conducted under wet conditions.

The measurement results are shown in Table 4.2.

4.3.1 Density

Densities of rock samples range from 1.8 g/cm³ to 2.9 g/cm³, averaging 2.56 g/cm³. Prevailing densities range between 2.6 and 2.7 g/cm³. The density of the alluvial layer was 2.4 g/cm³. Drilling core D-2 showed low density of 1.88 g/cm³. D-2 is basalt but weathered and altered. Densities of other rocks are distributed in a slightly narrow range of 2.48 to 2.75 g/cm³. Rocks along measurement line L-7 consist of shale and calcareous shale and so on, having relatively higher density of 2.71 g/cm³.

4.3.2 Specific Resistivity

A total of 47 samples were used for measurement of the specific resistivity. All samples showed higher resistivities than $1,000 \Omega$ -m. Measurement under the wet conditions during the drilling of core D-2 was difficult. Therfore, theresistivity values from this core are determined under dry conditions. Specific resistivities along each measurement line range between 1,409 and $12,359 \Omega$ -m, averaging $5,152 \Omega$ -m. In a frequency distribution chart, values in 103.4 to 103.7Ω -m are dominant. The specific resistivities of rock samples for basement rock of alluvial beds and calcareous shale exhibit relatively low values of 2,559 to 2,824 and $1,409 \Omega$ -m, respectively. All rocks along the measurement line L-7 show $10,000 \Omega$ -m.

Consequently, basement rocks and alluvial deposits along the measurement line L-8 correspond to rocks with low density and low specific resistivity, while the shaly rocks along the measurement line L-7 correspond to rocks with high density and high specific resistivity. In addition, it was found that the specific resistivity might fluctuate widely depending on the distribution of fissures even in the case of the same rock type.

Sar	nple point	Density	Average	Resistivity	Average	Remarks
				(ohm•m)		
1	Alluvium	2.38		2513		Sandy
2	(Drilling core)	2.41		2749		Coarse sand
3		2.42	2.40	3254	2824	Gravel
4	(1)-1	2.68		4051	-	
5	basalt	2.66		3440		
6		2.64	2.66	2505	3265	
7	(1)-2	2.60		4452		
8	basalt	2.58	2.59	5181	4787	
9	(1)-3	2.70		2557		Cracky
10		2.63	2.66		2559	Broken
11	L-3-1	2.59		2152		
12		2.65		6291		
13		2.65		5210		
14		2.61	2.62	2 9 01	3784	Cracky
15	L-3-2	2.61		3024		
16		2.55		1981		
17		2.64	2.60	4321	2958	
18	L-4-1	2.56				Broken
19		2.58		3220		
20		2.56		3270		
21		2.58	2.57	3526	3334	
22	L-4-2	2.70		44905		
23		2.68	2.69	2848	11298	Cracky
24	L-5	2.66		5071		
25	basalt.	2.70	2.68	3115	3971	
26	L-5	2.60		10850		
27	massive	-2.47		3468		
28]	2.37	2,48	4670	5598	
29	L-6	2.69		6433		
30		2.56		2548		
31		2.70	2.65	13050	5984	
32	L-6-1	2.82		4756		
33	chert	2.54		7200		
34		2.60	2.66	7073	6237	
35	L-6-2	2.71				Broken
36		2.71		3280		Cracky
37		2.68	2.70	5930	4405	Cracky
38	L-7 - 1	2.67		31100		
39		2.69	2.68	4215	11455	
40	L-7-2	2.64		4094		
41	silica	2.70		53300		
42		2.77	2.71	34710	19634	
43	L-7-3	2.73		23010		
44		2.81	·	9075		Cracky
45		2.71	2.75	9040	12359	
46	L-8	1.98				Broken
47	(D-2)	1.80		1705		Dry-base
48		1.85		1163		Dry-base
49		1.90	1.88		1409	Broken
50	L-8	2.43		7243		
51		2.41		7132		
52		2.41	2.42	4913	6324	
		Ave.	2.56	Áve.	5152	

Table 4.2 Measurement of Physical Feature of Rocks