THE FEASIBILITY STUDY
ON
MINE POLLUTION CONTROL
IN
SOHAR MINE AREA,
SULTANATE OF OMAN

FINAL REPORT

DECEMBER 2001

MITSUBISHI MATERIALS NATURAL RESOURCES DEVELOPMENT CORP.
E & E SOLUTIONS INCORPORATION

JAPAN
ABSTRACT

The abstract of the Study are, as follows:

(Topography, geology, hydrologeology investigation)
- The topography of the Study area mainly consists of the moderate and low relief mountain, hilly land, fans and terraces, alluvial plain and coastal plane.
- Wadi Suq has a river length of 34 km with an average slope of 0.008 (1:125), 275 m in maximum elevation of the wadi, 71 km² as the catchment area, and of Wadi Suq, and the mountainous area of the basin occupies approximately 29 km². The downstream portion has a gentle slope and forms wide floodplain.
- Wadi Suq is topographically divided into seven subareas, including Subarea 1 to 7.
- The geology of the Study area consist of the Samail Nappe, which is composed of the Ophiolite and Batinah Olistostromes of the Pre-Tertiary, Tertiary Deposits in the eastern part of the area, and Quaternary Deposits.
- The Quaternary Deposits consist of terrace deposits in diluvium, wadi sediments and screes. The Alluvial Terrace Deposits generally is almost consolidated by calcretie, and the permeability is relatively low.
- The dominant directions of faults are northeast to southwest and northwest to southeast. A narrow graven structure from 1 km to 1.5 km wide runs along Wadi al Jizi in an east-northeast to west-southwest direction.

Geochemical investigation)
- High concentration zones of Cd, Pb, Cu, Fe, Zn, and SO₄, which are caused by the smelter and tailings dam, were found by soil investigation and locally dispersed beyond 3 km.
- Leakage of contaminated groundwater in a northwest direction from the tailing dam was confirmed and its impact has reached downstream to Bayda village.
- Leakage of seawater occurred out of pumping station PS-2, and there exists a high chloride concentration zone approximately 400 m in length.

(Geophysical survey)
- In the tailing dam, the specific resistivity basement appears as an almost horizontal line about 30 m under the ground surface with a layer of low specific resistivity spreading horizontally.
- In the middle reach of Wadi Suq exist 50 to 100 m under ground surface, and it is deeper than upper reach of the wadi.
- In the upper and middle reaches, the depth of the basement is distributed almost horizontally from 5 to 10 m below the wadi ground surface.
- In the middle and lower reaches, the basements exist at a slightly deeper depth of about 20 m. However, their form is almost flat on the whole.

(Drilling investigation)
- There exists an aquifer with very shallow groundwater level of –4m upstream of Sagha village. The shallowness of the aquifer in this area is caused by a natural constriction in the topography that results in a damming effect on the groundwater.
Deep groundwater in DH-4, DH-5 and DH-8 is slightly confined. Compact calcereated sand and gravel beds may act as confining beds.

Permeability coefficients obtained by the field pumping tests ranged from 10^{-3} to 10^{-6} cm/sec. Permeability is lower in calcereated sand and gravel beds.

Elevated concentrations of Cd and Pb were observed in seepage out of the tailing dam and slightly higher concentrations were observed in downstream areas until DH-5 and in mine water out of Aarja and Bayda mines. Other areas presented low concentration not exceeding Omani drinking water standards.

Cl concentration ranged from 45 to 34,578 mg/L with the high concentrations obtained from seepage out of the tailing dam, including its downstream area near DH-5 and northwestern part of the tailing dam.

All chemical constituents in the shallow and deep groundwater exhibited marked attenuation with distance from the sources. The concentrations generally decreased with distance downstream until approximately the area of borehole DH-5 is reached in Wadi Suq. The entire area form the tailing dam downstream to Sagha village is considered contaminated.

There exist water quality differences between the deep layer groundwater and that of shallow layer.

Peak concentrations of Cd, Cr, Pb and Cu are observed at DH-5, while peak concentrations in Mn and Fe were observed at DH-6. The presence of weak natural mineralization in area around DH-5 and -6 seems to be causing elevated concentrations of metals in this area.

SO$_4$ concentrations exhibit attenuation with distance downstream from the source and a peak was observed at DH-7 borehole. This sulfate peak may be the result of natural sulfate minerals in the area of DH-7.

A high concentration peak of Cl was detected at DH-5. This chloride peak could be caused by leakage out of the seawater pipeline.

(Pollutant source investigation)

High salinity groundwater is flowing out from the tailing dam, and the tailings from the surface to the tailing dam are scattered by wind.

Wastes were dumped in dumping areas, located in Lasail, Lasail West, Aarja, and Bayda mines.

Abandoned open pits of Lasail West and Aarja mines are filled by mine water.

Off-gas is directly discharged out of the main stack after simple dust collection without desulfurization.

Waste liquid out of tank house is neutralized by hydrated lime after liberating electrolysis to decopper, and finally transported by tank truck to the evaporation ponds.

Tailings contain a great amount of sulfur, which might produce a lot of acidic water. But it is believed the surplus lime in tailings; calcereated beds and basement rock might act as buffering agents to prevent the onset of acid drainage.

Wastes of both Lasail and Aarja mines have high sulfur contents ranging between 10 and 13 %. Some of these wastes might produce acidic water with leached heavy metals in the future as oxidation progresses further.

Aarja mine water contains high concentration of Hg, Na, Ca and Cl is different from shallow layer groundwater in the surrounding area. On the other hand, Lasail West mine water presents slightly
low pH, but has some correlation with the groundwater in the surrounding area.

(Environmental (water quality) investigation)
- pH values are almost neutral.
- Electric Conductivity presented a high value of 7.66 S/m at the tailings impoundment and decreased with distance downstream along Wadi Suq.
- Cd, As, Pb, Cu, Zn, and SO₄ presented higher values at the tailings impoundment, northwest of the tailing dam, and mine water of Aarja and Lasail West.
- Cl presented high concentration at the tailings impoundment, extending to the northwest, and downstream along Wadi Suq.
- Extent of water contamination impact in Sohar mine area is summarized, as follows:
 - Cd, Pb, Cu, SO₄ and Cl as pollutants originate from the tailing dam and are observed downwards along Wadi Suq. The extent of water contamination is limited from the tailing dam to the KM-14 point of Sagha Village along Wadi Suq.
 - A high concentration zone of Cl in the area downstream of Wadi Suq could be influenced by old seawater based on the results of radioactive dating by tritium. The age of this water was estimated at 27 year and contains Cl contamination from before mine development.
 - Contaminated groundwater is leaking toward the northwest out of the tailing dam and is impacting Wadi Bani Umar al Gharbi.
- The groundwater modeling of Wadi Suq was performed using Groundwater Modeling System (GMS) v3.0.
- Steady state simulation results of the Wadi Suq model presented excellent comparison with measured groundwater levels.
- Calculated simulation results of contaminated groundwater showed excellent correlation with measured concentrations obtained by monitoring. In the future, however, further study will be made.

(Air quality investigation)
- The 1-hour average SO₂ concentrations varied from 0.001 ppm (3 µg/m³) to 0.835 ppm (2,404 µg/m³).
- The 24-hour average TSP concentrations varied from 49 µg/m³ to 332 µg/m³.
- The 24-hour average PM₁₀ concentrations varied from 33 µg/m³ to 205 µg/m³.
- Measured dustfall masses varied from 0.42 t/km²/30days to 2.90 t/km²/30days.
- 24-hour average SO₂ ranged from 19 to 225 µg/m³, and exceeded the EEC standard at 2 points.
- The predicted result of ground level concentrations in air showed relatively excellent comparison with measured concentrations. The predicted SO₂ concentration of the ground level for 24-hour is 120 µg/m³ as diluted value on west side of the OMCO smelter.

(Investigation on expansion program for smelter and refinery plant)
- It has been stated that plans for expanding the annual production of OMCO’s smelter ranging from 40,000 to 100,000 t/year have been drafted. The JICA Team concluded there is no feasible plan for expansion of the plant at this time.

(Environmental impact investigation)
- Environmental impact investigation was performed by personal interview with local residents, health and medical facilities based on an environmental questionnaire. Consequently, diseases, such as
respiratory symptom, decrease of livestock, and some impact on plants and insects were observed.

Socio-economic survey
- Population in Sohar prefecture is estimated to be 104,169 persons. Agriculture and fishery are active but industrialization has progressed rapidly in recent years.
- There are 8 communities around Sohar mine with 119 families and 870 residents.
- Areas around mine have suffered from salinization of groundwater and offensive odor etc.
- The results of the interview investigation are, as follows:
 - About half of the interviewee do not the situation of Sohar mine area.
 - Almost all persons who visited Sohar mine area know the existing environmental negative effects.
 - Some of persons think they do not use the land in Sohar mine area, but others may use it.
 - Their willingness-to-pay for improving the environmental condition in Sohar mine area is considered to be reasonable.

Technical transfer
- Technology transfer was implemented through cooperative efforts during study, including the practice of on-site training, the explanation of the analysis results with the counterparts, counterpart study and training in Japan and so on.
- Some of the problems experienced in implementing the technology transfer element of the study included a shortage of technical experts within MCI and MMEW and the differences in the social environments between Oman and Japan, but the anticipated object of the study was achieved sufficiently and the study was completed with the sincere attitude and efforts of Omani and Japanese study teams.

Environmental countermeasures
- The environmental countermeasures in the Sohar mine area consist of the tailing dam and along Wadi Suq.
- The countermeasures between the tailing dam and Trenches -1 and -2 in Subarea 1 are examined by OMCO. A part of construction of evaporation pond is commenced. The tailing dam will be capped with a bitumen liner material, and the contaminated groundwater at Trenches-1 and 2 will is pumped to and treated at the evaporation pond.
- The contamination countermeasures in Subarea 1, 3, 4, and 5 along Wadi Suq were examined and evaluated.
- The contaminated soil in Subarea 3 is necessary to be extracted by excavation, and the excavated zone should be replaced clean soil. The contaminated soil would be transported to seashore for use as fill material in the construction of seaport facilities.
- The countermeasure alternatives at KM 14 in the Subarea 4 consist of two alternatives, including cutoff trench and pumping wells. During construction of countermeasures at the Subarea 4, measures would be taken to protect the natural gas pipeline and seawater pipeline buried in the wadi gravel, and the highway would have to be temporarily rerouted during construction.
- The countermeasure in the Subarea 5 consists of the pumping wells.
- The contaminated groundwater extracted from the Subarea 4 and/or 5 would be transported and treated at the water treatment facility.
- The contaminated groundwater will be removed the salt and heavy metals in the water treatment system. The treatment system would use a membrane separation technology known as reverse osmosis (RO). The permeate stream would be suitable for domestic or agricultural uses. The permeate stream would either be re-injected into the wadi gravels downstream of KM 14, or provided to local residents for domestic or agricultural purposes.

- The condensed water will send to the evaporation ponds and evaporated at there, and finally will be stocked at warehouse after packed.

- Three assemblages of alternatives were selected based on the engineering judgment and cost evaluation, as 1) Countermeasures-A as thought to be the best overall, 2) Countermeasures-B as thought to be second best overall, and 3) Countermeasures-C as technically thought to be necessary minimum.

- The total cost for the Countermeasures-A are estimated at US$ 11,900,000. The total cost for the Countermeasures-B are estimated at US$ 5,300,000. The total cost for the Countermeasures-C are estimated at US$ 2,500,000. The construction period is 12 months.

(Economic analysis)
- The economic cost of the Countermeasures-A was estimated at US$ 10,120,000, and the yearly financial maintenance cost was estimated at US$ 170,000.
- The value of land would fall since the quality of the dates deteriorates as contamination increases. If the implementation of countermeasures can make the groundwater clean, the fall in land values will be stopped, and may even rise. The benefit for land is calculated at 59,700 R.O./year.
- The number of goats, etc. has dropped drastically. If countermeasures will be taken, the number of goats, etc. will increase. The estimated benefit is 37,500 R.O./year.
- If the countermeasures will be implemented, the cost-saving benefit for supplying with free drinking water by OMCO is calculated at 11,984 R.O./year.
- The estimated mean of willingness to pay was 7 R.O./year for Muscat city and 8 R.O./year for Sohar city. Using the estimated mean of willingness to pay, the total amounts of willingness to pay in Muscat were estimated at 800,000 to 1,000,000 R.O./year. That of Sohar was estimated at 350,000 to 450,000 R.O./year.
- As a result of the economic analysis, IRR is 14.0 %, the present net value is considerably large, and the cost benefit ratio is indicated to be greater than 3.0. Therefore, the recommended countermeasures can be judged to be sufficiently feasible.

- Other benefits, including improvement of existing orchard land, growing of trees in the “Al Ons Nature Reserve”, returning of honeybees to the mine area, increasing of tourists, etc. will be obtained after the countermeasures will be implemented.

(Countermeasure project implementation)
- The government should burden for this project, which contributes to the improvement of regional environment. In specialty since the construction cost is necessary for a large amount of money, the government is requested for giving its help to OMCO as much as possible by granting subsidy, borrowing soft loans, etc.
- Although it is desirable that the government should pay construction cost, the assignment of the government subsidy is desired to examine. It is necessary to negotiate on loan conditions for
borrowing from domestic banks. In this case, repayment of capital and interest is sufficiently possible by assigning only 0.01 % of GDP to the projects.

- For the implementation of the countermeasure project, it is necessary to execute making of detailed implementation plans, detailed design works and the construction management and so on. After completion of the countermeasure project, operations and management of the water treatment facilities are very important. There is a good solution to use the technology support scheme by foreign countries as the means that cuts these expenses and moreover can receive technology transfer.

Countermeasures for the air pollution

- Wet limestone/gypsum scrubber Flue gas desulfurization (FGD) system is recommended to reduce SO₂ emissions from OMCO. SO₂ removal is approximately 90 % or more.
- If 90 % SO₂ removal FGD system is installed in the OMCO plant, the ambient air quality standard is not violated in the area over 20 km x 20 km surrounding OMCO plant.
- The total installation cost of the wet limestone/gypsum scrubber FGD system into OMCO plant is estimated approximately US$ 20,000,000.

Environmental monitoring system

- On the monitoring system in the Sohar mine area, total 40 monitoring locations including the existing monitoring places and JICA Team’s 25 new monitoring wells are recommended.
- On the monitoring work, establishing of the standard operating procedures (SOPs) for the water sampling and treatment in the field, chemical analysis in the laboratory, data-analysis technique are recommended.
- Another national ambient air quality monitoring station would be necessary in order to monitor impact of stack emission from OMCO.

Environmental management system

- The JICA Team recommends no changes in Oman’s current wastewater discharge and drinking water standards. The current Omani standards are consistent with world standards.
- The JICA Team recommends that a permanent liaison position be created within DGM to foster coordination and cooperation between MCI and MMEW.
- The government of Oman has not yet established national ambient air quality standards. US EPA ambient air quality standards (NAAQS) are tentatively used as a substitute for ambient air quality standards of Oman.
- Although MMEW presently only reviews these monitoring data/reports and keep them by filing, development of database system of the data/reports gathered in MMEW will certainly contribute to air quality management policy planning.
- OMCO should develop database system, as the database system is helpful to understand ambient air quality monitoring condition and trend around OMCO area, and effective to make and review air quality management plan.
PREFACE

In response to a request from the Government of Sultanate of Oman, the Government of Japan decided to conduct the Feasibility on Mine Pollution Control in Sohar Mine Area, Sultanate of Oman, and entrusted the Study to the Japan International Cooperation Agency (JICA).

JICA sent to the Sultanate of Oman a Study Team headed by Mr. Soichiro Matsuzaka of Mitsubishi Materials Natural Resources Development Cooperation between February 2000 and December 2001.

The Study Team held discussions with the officials concerned of the Government of Sultanate of Oman, and conducted field investigation at the study area. After the Study Team returned to Japan, further studies were made and the present report was prepared.

I hope that this report will contribute to the promotion of the project and to the enhancement of friendly relations between two countries.

I wish to express my sincere appreciation to the officials concerned of the Government of Sultanate of Oman for their close cooperation extended to the Study Team.

December 2001

Takao Kawakami
President
Japan International Cooperation Agency
LETTER OF TRANSMITTAL

December, 2001

Mr. Takao Kawakami
President
Japan International Cooperation Agency
Tokyo, Japan

We are pleased to submit to you the Final Report on the Feasibility on Mine Pollution Control in Sohar Mine Area, Sultanate of Oman.

Mitsubishi Materials Natural Resources Development Cooperation and E & E Solutions Incorporation conducted the Study under a contract to JICA, during the period from February 2000 to December 2001. In conducting the Study, we have examined the various environmental aspects related to the mine pollution in the Sohar mine area in the Sultanate of Oman.

We wish to take this opportunity to express our sincere gratitude to the officials concerned of JICA and the Ministry of Foreign Affairs. We would also like to express our gratitude to the officials concerned of the Ministry of Commerce and Industry of the Sultanate of Oman and the Embassy of Japan in the Sultanate of Oman for their cooperation and assistance throughout our field investigations.

Finally, we hope that this report will contribute to further promotion of the project.

Very truly yours,

[Signature]

Soichiro Matsuzaka
Project Manager
Mitsubishi Materials Natural Resources Development Co.
Locality Map

The Feasibility Study on Mine Pollution Control in Sohar Mine Area, Sultanate of Oman
PART 1 ENVIRONMENTAL INVESTIGATION AND RESULTS

CHAPTER 1 INTRODUCTION
1.1 Background of the Study
1.2 Purpose of the Study
1.3 Objective Area of the study
1.4 Scope of the Study
1.5 Flow of the Study
1.6 Study Organization

CHAPTER 2 TOPOGRAPHY • GEOLOGY AND HYDROGEOLOGY
2.1 Topography
2.2 Geology
2.3 Hydrogeology

CHAPTER 3 GEOCHEMICAL INVESTIGATION
3.1 Soil (Dustfall) Investigation
3.2 Salt Concentration in the Soil

CHAPTER 4 GEOPHYSICAL SURVEY
4.1 Nano-TEM Survey Method
4.2 Gravity Survey
4.3 Measurement of Physical Characteristics of Rocks

CHAPTER 5 DRILLING SURVEY
5.1 General
5.2 Geological Condition
5.3 Hydrogeological Investigation
5.4 Result of Water Quality Analysis

CHAPTER 6 CONTAMINATION SOURCE INVESTIGATION
6.1 Tailing Dam
6.2 PS-2 Pumping Station
6.3 Waste Dump Areas
6.4 Underground and Open Pit Mined-out Areas ... 6-21
6.5 Copper Smelter ... 6-23

CHAPTER 7 ENVIRONMENTAL (WATER QUALITY) INVESTIGATION 7-1
 7.1 Groundwater Quality Monitoring ... 7-1
 7.2 Collection of Existing Monitoring Data for Groundwater 7-1
 7.3 Water Quality Monitoring Investigation ... 7-4
 7.4 Groundwater Modeling of Wadi Suq and Simulation 7-22

CHAPTER 8 AIR QUALITY INVESTIGATION ... 8-1
 8.1 Ambient Air Quality Monitoring .. 8-1
 8.2 Meteorological Monitoring ... 8-13
 8.3 Data Collection of Stack Emission Gas of OMCO Plant 8-18
 8.4 Data Collection of Existing Ambient SO₂ Measured by OMCO 8-18
 8.5 Air Dispersion Modeling Analysis ... 8-18

CHAPTER 9 INVESTIGATION ON EXPANSION PROGRAM FOR SMELTER AND REFINERY PLANT ... 9-1
 9.1 Investigation Result .. 9-1

CHAPTER 10 ENVIRONMENTAL IMPACT INVESTIGATION 10-1
 10.1 Methodology ... 10-1
 10.2 Interview Investigation Results ... 10-1

CHAPTER 11 SOCIO-ECONOMIC INVESTIGATION 11-1
 11.1 National Economy ... 11-1
 11.2 Socio-economy in National Level ... 11-5
 11.3 Socio-economy in Sohar Region ... 11-5
 11.4 Socio-economy in Objective Area .. 11-8
 11.5 Results of Interview Investigation .. 11-10

CHAPTER 12 TECHNOLOGY TRANSFER ... 12-1
 12.1 Technology Transfer .. 12-1

PART II COUNTERMEASUREMENTS FOR THE GROUNDWATER CONTAMINATION

CHAPTER 13 ENVIRONMENTAL COUNTERMEASURES 13-1
 13.1 Countermeasures for the Water Quality ... 13-1
 13.2 Contamination Countermeasures along Wadi Suq 13-10
 13.3 Simulation Results with Countermeasures along Wadi Suq 13-32
 13.4 Selection of the Preferred Assemblage of Alternative 13-42
 13.5 Cost Estimation .. 13-57

CHAPTER 14 ECONOMIC ANALYSIS .. 14-1
 14.1 Project Costs ... 14-1
 14.2 Project Benefits .. 14-1
CHAPTER 15 COUNTERMEASURE PROJECT IMPLEMENTATION

15.1 Procurement of Project Fund

15.2 Technical Support

PART III RECOMMENDATIONS AND SUMMARIES

CHAPTER 16 COUNTERMEASURES FOR THE AIR POLLUTION

16.1 Selection of Mitigation Measure

16.2 Basic Design

16.3 Air Dispersion Simulation for the Case with Mitigation Measure

CHAPTER 17 ENVIRONMENTAL MONITORING SYSTEM

17.1 Recommendations for Water Quality Monitoring System

17.2 Recommendations for Air Quality Monitoring System

CHAPTER 18 ENVIRONMENTAL MANAGEMENT SYSTEM

18.1 Recommendations for Water Quality Management System

18.2 Recommendations for Air Quality Management System

CHAPTER 19 SUMMARIES

19.1 Conclusions

19.2 Recommendations

REFERENCES

APPENDICES

Appendix-1 Concentration Contour Map of the Soil (Geochemical Investigation) (1) to (13)

Appendix-2 Resistivity Section Analyzed by Nano-TEM Geophysical Survey (1) to (10)

Appendix-3 Gravity Section (1) to (12)

Appendix-4 Geological Columnar Section of Drill Holes (1) to (22)

Appendix-5 Site Pumping Test Analyzed Result (1) to (22)

Appendix-6 Concentration Contour Map of Water Quality in Drill Holes (1)～(64)

Appendix-7 Concentration Contour Map of Water Quality Monitoring (1)～(36)

Appendix-8 Meteorological Monitoring Result (1)～(30)
LIST OF FIGURES AND TABLES

(FIGURES)

Figure 1.1 Objective Area of the Study .. 1-3
Figure 1.2 Flow of the Study Work (1)〜(2) .. 1-5
Figure 2.1 Topographic Map of the Study Area .. 2-2
Figure 2.2 Classification of Landform in the Study Area 2-3
Figure 2.3 Topographic Gradient Map .. 2-4
Figure 2.4 Catchments area of Wadi Suq ... 2-6
Figure 2.5 Geologic Map of the Study Area ... 2-8
Figure 2.6 Geologic Structural Map of the Study Area 2-10
Figure 2.7 River System in the Study Area .. 2-11
Figure 2.8 Topographical and Geological Features along Wadi Suq (1)〜(2) 2-13
Figure 2.9 River Section of the Wadi Suq .. 2-16
Figure 2.10 Existing Water wells in the Study Area 2-19
Figure 3.1 Sample Points of Soil for Geochemical Investigation 3-2
Figure 3.2 Concentration Contour map of soil (1)〜(3) 3-4
Figure 3.3 Sample Points of Soil for Cl Investigation 3-9
Figure 3.4 Concentration Contour Map of Cl in the Soil (1)〜(2) 3-11
Figure 3.5 Relationship between Distance from Contaminant Source and Cl Concentration of the Soil ... 3-14
Figure 3.6 Leakage Route of Contaminated Groundwater 3-15
Figure 4.1 Location of Geophysical Survey Lines 4-2
Figure 4.2 Resistivity section analyzed by Nano-TEM Geophysical Survey (1)〜(4) 4-4
Figure 4.3 Gravity Profile by Sectional Analysis (1)〜(4) 4-9
Figure 5.1 Location of Drill Holes in the Study Area 5-2
Figure 5.2 Arrangement of Shallow and Deep Drill Holes 5-4
Figure 5.3 Geological Section of Drill Holes (1)〜(12) 5-5
Figure 5.4 Geologic Profile along Wadi Suq .. 5-17
Figure 5.5 Groundwater Table in the Drill Holes 5-19
Figure 5.6 Site Pumping Test ... 5-22
Figure 5.7 Concentration Contour Map of Water Quality in Drill Holes (1)〜(6) 5-27
Figure 5.8 Relationship between Distance from Contaminant Source and Water Quality (1)〜(4) ... 5-37
Figure 5.9 Correlation Map of Water Quality in Drill Holes 5-44
Figure 5.10 Extent of Groundwater Contamination 5-46
Figure 6.1 Scattered Distribution map of Tailings 6-4
Figure 6.2 Cl Concentration Contour Map in the Soil at SP-2 Point 6-9
Figure 6.3 Distribution of Mine Wastes ... 6-10
Figure 13.6 Contamination Countermeasures of Wadi Suq Subarea 3, 4 and 5 13-14
Figure 13.7 Subarea 4, Cutoff Trench Conceptional Design 13-20
Figure 13.8 Process Flow Design for Reverse Osmosis Treatment System 13-27
Figure 13.9 Estimated Chloride Concentration After 10 Years with Cutoff Trench at KM14 13-33
Figure 13.10 Estimated Chloride Concentration After 20 Years with Cutoff Trench at KM14 13-34
Figure 13.11 Estimated Chloride Concentration After 30 Years with Cutoff Trench at KM14 13-35
Figure 13.12 Estimated Chloride Concentration with Time Just Downstream of Trench-2 with and without Cutoff Improvement at Trench-2 13-36
Figure 13.13 Estimated Chloride Concentration with Time at KM14 with and without Cutoff Improvement at Trench-2 13-37
Figure 13.14 Estimated Chloride Concentration in Upper Wadi Suq, Cut off at Trench-2 and KM14 After 5 Years of Installation 13-38
Figure 13.15 Estimated Chloride Concentration in Upper Wadi Suq, Cut off at Trench-2 and KM14 After 10 Years of Installation 13-39
Figure 13.16 Estimated Chloride Concentration in Upper Wadi Suq, Cut off at Trench-2 and KM14 After 20 Years of Installation 13-40
Figure 13.17 Estimated Chloride Concentration in Upper Wadi Suq, Cut off at Trench-2 and KM14 After 25 Years of Installation 13-41
Figure 13.18 Flow of Mine Pollution Countermeasures-A in the Sohar Mine Area 13-46
Figure 13.19 Flow of Mine Pollution Countermeasures-B in the Sohar Mine Area 13-50
Figure 13.20 Flow of Mine Pollution Countermeasures-C in the Sohar Mine Area 13-54
Figure 14.1 Survival Curve in Muscat 14-11
Figure 14.2 Survival Curve in Sohar 14-12
Figure 16.1 Process Flow Diagram of Wet Limestone/Gypsum Scrubber System for OMCO Plant 16-3
Figure 16.2 Isopleth Map of SO2 24-hour Maximum Concentration with Flue Gas Desulfurization 16-7
Figure 16.3 Isopleth Map of SO2 Annual Average Concentration with Flue Gas Desulfurization 16-8
Figure 17.1 OMCO Monitoring Stations 17-20
Figure 18.1 Environmental Management Organization of OMCO 18-5

(Table)

Table 2.1 Summary of Hydrological Features of Wadis in the Study Area 2-12
Table 2.2 Hydrological Features on the Wadi Suq 2-15
Table 2.3 Water Wells in the Study Area 2-20
Table 2.4 Water Quality of Surface Water and Falaj 2-17
Table 3.1 Analysis Result of Soil Geochemical Investigation 3-3
Table 3.2 Analysis Result of Cl Soil Investigation 3-10
Table 4.1 Contents and Quantities of Geophysical Survey .. 4-1
Table 4.2 Measurement of Physical Feature of Rocks .. 4-13
Table 5.1 Content of Drilling Survey ... 5-3
Table 5.2 Groundwater Level in Drill Holes ... 5-20
Table 5.3 Level Difference of Groundwater in Each Shallow and Deep Drill hole 5-21
Table 5.4 Result of Site Pumping Test ... 5-23
Table 5.5 Measurements and Analysis Results of Water Quality (1)~(2) 5-24
Table 5.6 Sampling Points of Groundwater ... 5-33
Table 5.7 Relationship between the Distance from Tailing Dam and Water Quality (1)~(4) 5-35
Table 5.8 Correlation Table of Groundwater Quality of Drill Holes along Wadi Suq (1)~(2) 5-42
Table 5.9 Water Quality Standards in Oman .. 5-45
Table 6.1 On the Tailing Dam .. 6-2
Table 6.2 On the Tailings ... 6-3
Table 6.3 On the Tailings and Mine Wastes .. 6-5
Table 6.4 Analysis Result of Leaching Test (1)~(2) .. 6-6
Table 6.5 Mine Wastes .. 6-15
Table 6.6 Water Quality of Mine Water .. 6-22
Table 6.7 Production Summary ... 6-24
Table 6.8 Equipment Specifications of OMCO Smelter ... 6-28
Table 6.9 Annual sulfur balance in 1999 ... 6-31
Table 6.10 Measuring points of sulfur dioxide gas ... 6-34
Table 7.1 Investigation Results of Existing Water Wells (1)~(3) .. 7-5
Table 7.2 Analysis Results of Water Monitoring Investigation (1)~(4) 7-8
Table 7.3 Correlation Table of the Water Quality (1)~(2) ... 7-19
Table 7.4 Summary of Remedial Measures .. 7-25
Table 7.5 Water quality of Contaminated Groundwater along Wadi Suq 7-28
Table 7.6 Summary of Ambient Air Quality Monitoring Method ... 8-2
Table 8.1 Monitoring Results of SO₂, TSP, and PM10and Comparison with Standards (1)~(2) 8-5
Table 8.2 Monitoring and Chemical Analysis Results of Dustfall (1)~(2) 8-7
Table 8.3 Summary of Meteorological Monitoring Method ... 8-14
Table 8.4 Meteorological Monitoring Result of Each Parameter from June 2000 to February 2001 8-17
Table 8.5 Comparison of Characteristics between Simulation Models 8-21
Table 8.6 SO₂ Concentration Prediction Result in Sensitive Areas by ISCST3Air Dispersion Simulation Model .. 8-28
Table 10.1 Result of Interview Investigation ... 10-3
Table 11.1 Past Trend of Gross Domestic Product (GDP) by Economic Activity 11-2
Table 11.2 Export and Import ... 11-3
Table 11.3 Recorded Merchandise Import by Country 11-4
Table 11.4 Merchandise Export and Re-export by Country 11-4
Table 11.5 Population by Administrative Region 11-5
Table 11.6 Population by Al Batinah Region 11-6
Table 11.7 Employment by Administrative Region 11-6
Table 11.8 Population by Communities in Objective Area 11-8
Table 11.9 Operated or Planned Factory and Company 11-10
Table 12.1 Technical Transfer Program 12-2
Table 12.2 Results of the Counterpart-training Program in Japan 12-3
Table 13.1 Evaluation of Tailing Dam Alternatives for Effectiveness, Implementability, and Cost ... 13-9
Table 13.2 Cost Comparison of Tailing Dam Countermeasure Alternatives .. 13-10
Table 13.3 Work schedule of the Grouting Work 13-13
Table 13.4 Work schedule of the Excavating Work 13-15
Table 13.5 Work schedule of the Pumping Work 13-18
Table 13.6 Work schedule of the Cutoff Trench Work 13-22
Table 13.7 Work schedule of the Pumping Work 13-24
Table 13.8 Treatment Efficiency ... 13-26
Table 13.9 Work schedule of the Water Treatment Facility Construction Work .. 13-29
Table 13.10 Work schedule of the Evaporation Pond, etc. Construction Work .. 13-31
Table 13.11 Wadi Suq Alternatives for Effectiveness, Implementability, and Cost ... 13-41
Table 13.12 Countermeasures-A Thought to be the Best Overall 13-45
Table 13.13 Work schedule of the Water Treatment Facility Construction Work of Countermeasures -A ... 13-48
Table 13.14 Countermeasures-B Thought to be Second Best Overall 13-49
Table 13.15 Work schedule of the Water Treatment Facility Construction Work of Countermeasures -B ... 13-52
Table 13.16 Countermeasures-C Technically Thought to be Necessary Minimum ... 13-53
Table 13.17 Work schedule of the Water Treatment Facility Construction Work of Countermeasures -C ... 13-56
Table 13.18 Cost for Countermeasures-A as Thought to be the Best Overall ... 13-58
Table 13.19 Cost for Countermeasures-B Thought to be Second best Overall ... 13-59
Table 13.20 Cost for Countermeasures-C Technically Thought to be Necessary Minimum ... 13-60
Table 14.1 Benefit from Increased Value of Fruit Garden Land in Group 1 ... 14-3
Table 14.2 Benefit from Increased Value of Fruit Garden Land in Group 2 ... 14-4
Table 14.3 Benefit from Increase in Number of Goats in Group 1 14-5
Table 14.4 Benefit from Increase in Number of Goats in Group 2 14-6
Table 14.5 Savings in Supply of Free Drinking Water by OMCO 14-7
Table 14.6 Summary of Results of Questionnaire .. 14-11
Table 14.7 Results of Analysis (Muscat) ... 14-11
Table 14.8 Summary of Results of Questionnaire .. 14-12
Table 14.9 Results of Analysis (Sohar) .. 14-12
Table 14.10 Willingness to Pay for Muscat City ... 14-13
Table 14.11 Willingness to Pay for Sohar City ... 14-14
Table 14.12 Values of Economic Indicators ... 14-15
Table 14.13 Cost and Benefit (1)~(3) ... 14-16
Table 14.14 Results of Sensitivity Analysis .. 14-19
Table 15.1 Loan Conditions ... 15-2
Table 15.2 Repayment Schedule by Case ... 15-3
Table 15.3 Loans from Domestic Banks ... 15-4
Table 15.4 Loans from World Bank, JBIC, etc. .. 15-5
Table 15.5 Loans through the Bilateral Relationship (Standard project) 15-6
Table 15.6 Loans through the Bilateral Relationship (Environmental project) 15-7
Table 17.1 Recommended Sampling and Analysis Plan Elements for Ongoing Water Quality Monitoring in the Sohar Mine Area .. 17-2
Table 17.2 Recommended Locations for Ongoing Water Quality Monitoring in the Sohar Mine Area ... 17-3
Table 17.3 Recommended Field and Laboratory Parameters for Ongoing Water Quality Monitoring in the Sohar Mine Area (1)~(3) 17-8
Table 17.4 Data Required for Documenting Field Activities For the Water Quality Monitoring Program in the Sohar Mine Area ... 17-13
Table 17.5 Recommended QA/QC Samples for Ongoing Water Quality Monitoring in the Sohar Mine Area ... 17-16
Table 17.6 Minimum Recommended Record Keeping Requirements for Ongoing Water Quality Monitoring in the Sohar Mine Area .. 17-17
Table 17.7 Monitoring Parameters Measured by MMEW 17-19
Table 17.8 Monitoring Result of 1999 Measured by MMEW 17-19
Table 17.9 SO2 Monitoring Result by OMCO (1st November 1998~31st October 1999) (1), (2) ... 17-21
Table 17.10 US National Ambient Air Quality Standards (NAAQS) 17-24
Table 17.11 Example of Meteorological Monitoring Instrument 17-27
Table 18.1 Ambient Air Quality Standard of US, Japan, World Bank and WHO 18-7
Table 18.2 Number of National Ambient Air Quality Monitoring Stations of US, Japan and UK ... 18-8
Table 18.3 Comparison of Copper Smelter Emission Standard of World Bank, Japan and Oman ... 18-9
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOD</td>
<td>Biochemical Oxygen Demand</td>
</tr>
<tr>
<td>CERCLA</td>
<td>Comprehensive Environmental Response, Compensation, and Liability Act</td>
</tr>
<tr>
<td>CFR</td>
<td>Code of Federal Regulations</td>
</tr>
<tr>
<td>CVM</td>
<td>Contingent Valuation Method</td>
</tr>
<tr>
<td>CWA</td>
<td>Clean Water Act</td>
</tr>
<tr>
<td>DH</td>
<td>Drill Hole</td>
</tr>
<tr>
<td>EIA</td>
<td>Environmental Impact Assessment</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GDP</td>
<td>Geophysical Data Processor</td>
</tr>
<tr>
<td>EC</td>
<td>Electric Conductivity</td>
</tr>
<tr>
<td>E&E</td>
<td>E & E Solutions Incorporation</td>
</tr>
<tr>
<td>FGD</td>
<td>Flue Gas Desulfurization</td>
</tr>
<tr>
<td>GPS</td>
<td>Global Positioning System</td>
</tr>
<tr>
<td>IRR</td>
<td>Internal Rate of Return</td>
</tr>
<tr>
<td>IS CST3</td>
<td>Industrial Source Complex Short Term version 3</td>
</tr>
<tr>
<td>JICA</td>
<td>Japan International Cooperation Agency</td>
</tr>
<tr>
<td>MCI</td>
<td>Ministry of Commerce and Industry</td>
</tr>
<tr>
<td>MMEW</td>
<td>Ministry of Regional Municipalities, Environment and Water Resources</td>
</tr>
<tr>
<td>MPA</td>
<td>Maximum Potential Acidity</td>
</tr>
<tr>
<td>MRC</td>
<td>Mitsubishi Materials Natural Resources Development Corporation</td>
</tr>
<tr>
<td>Nano-TEM</td>
<td>Nano-Transient Electromagnetic Method</td>
</tr>
<tr>
<td>NAAQS</td>
<td>US Ambient Air Quality Standards</td>
</tr>
<tr>
<td>NCP</td>
<td>National Oil and Hazardous Pollution Contingency Plan</td>
</tr>
<tr>
<td>NPV</td>
<td>Net Present Value</td>
</tr>
<tr>
<td>O&M</td>
<td>Operation and Maintenance</td>
</tr>
<tr>
<td>OMCO</td>
<td>Oman Mining Co. LLC</td>
</tr>
<tr>
<td>OPEC</td>
<td>Oil Product Economic Committee</td>
</tr>
<tr>
<td>ORP</td>
<td>Oxidation-Reduction-Potential</td>
</tr>
<tr>
<td>PEIE</td>
<td>Public Establishment operates the Sohar Industrial Estate</td>
</tr>
<tr>
<td>PM10</td>
<td>Particulate Matter</td>
</tr>
<tr>
<td>PS-2</td>
<td>Pump Station No.2</td>
</tr>
<tr>
<td>PVC</td>
<td>Poly-Vinyl Chloride</td>
</tr>
<tr>
<td>QA/QC</td>
<td>Quality Assurance/Quality Control</td>
</tr>
<tr>
<td>RO</td>
<td>Reverse Osmosis</td>
</tr>
<tr>
<td>Acronym</td>
<td>Definition</td>
</tr>
<tr>
<td>---------</td>
<td>------------</td>
</tr>
<tr>
<td>R.O</td>
<td>Omani Rial</td>
</tr>
<tr>
<td>SAP</td>
<td>Sampling and Analysis Plan</td>
</tr>
<tr>
<td>SOP</td>
<td>Standard Operating Procedures</td>
</tr>
<tr>
<td>S/R</td>
<td>Smelter/Refinery</td>
</tr>
<tr>
<td>TDS</td>
<td>Total Dissolved Solids</td>
</tr>
<tr>
<td>TEMIXX</td>
<td>Transient Electromagnetic Method</td>
</tr>
<tr>
<td>TEM</td>
<td>Transient Electromagnetic Method</td>
</tr>
<tr>
<td>TSP</td>
<td>Total Suspended Particles</td>
</tr>
<tr>
<td>USEPA</td>
<td>Environmental Protection Agency of United States of America</td>
</tr>
<tr>
<td>UV</td>
<td>Ultra Violet</td>
</tr>
<tr>
<td>WHO</td>
<td>World Health Organization</td>
</tr>
<tr>
<td>WTP</td>
<td>Mean of Willingness to Pay</td>
</tr>
</tbody>
</table>
PART Ⅰ: ENVIRONMENTAL INVESTIGATION AND RESULTS
CHAPTER 1 INTRODUCTION
CHAPTER 1 INTRODUCTION

1.1 Background of the Study

Mining activities in Oman were initiated during the beginning of His Majesty Sultan Qaboos Bin Said’s rule together with the opening of a country in 1970. Mineral exploration was actively promoted simultaneously with petroleum and natural gas development.

Consequently, Oman Mining Co. LLC. (OMCO) was established in 1978 and development of copper mines in the Sohar districts was commenced. In 1982, operations of the Sohar Mine and Smelter were started. However, the mines were closed in 1994 due to the exhaustion of the copper ore reserves. The copper smelter started toll smelting mainly on consignment in order to compensate for the shortage of domestic concentrate production. This type of smelter operation continues to the present.

The Sohar mining district produced a total of about 15,000,000 t/y of crude copper ore from four deposits named Lasail, Bayda, Aarja, and Lasail West. The entire concentrate production from the on-site dressing plant was supplied to the adjacent smelter. Approximately 11 million tons of sulfide rich tailings from the dressing plant were disposed of in the adjacent tailing dam. The tailing dam was constructed by damming up the shallow valley at the approximate up-stream end of Wadi Suq.

In the initial stage of operation, the whole tonnage of industrial water for ore dressing was supplied by sea water. The total amount of sea water used at the dressing plant and then discharged to the tailings dam is estimated to be about 5 million m³.

At present, salt damage and heavy metal contamination of groundwater have occurred due to seepage from the tailing dam, which is one of the auxiliary facilities of the Sohar mining district. Hence, it is suspected that dispersion of pollution to the lower reaches of Wadi Suq may be occurring. Air pollution damage due to sulfur dioxide (sulfurous acid gas) rich off gas discharged from the operating smelter is occurring also.

Government officials in Oman, such as MMEW have expressed strong interest in the pollution originating from the mining and smelting facilities in the Sohar region and have expressed concern about the dispersion of groundwater contamination and air pollution. Officials are especially concerned about the possible contamination of the series of green belts that run along the coastline of the Gulf of Oman. These green belts comprise the largest agricultural zone in the country and are also densely populated, with Sohar, the third largest city in Oman, at the center. Concerns about the potential impacts of groundwater and air pollution on this densely populated and important agricultural area are taken very seriously.
1.2 Purpose of the Study

Purpose of the study is as follows:

1) Investigate groundwater contamination and air pollution sources originating from the past copper mining and current smelting activity and identify the contamination and pollution mechanisms;
2) Propose countermeasures that would reduce and control the dispersion of pollutants in the Sohar mining district and execute a feasibility study for the proposed countermeasures;
3) Transfer technology on mine site pollution and its control to the Ministry of Commerce and Industry (MCI) and Oman Mining Co. LLC. (OMCO) who are the Omani counterpart organizations during the study period.

1.3 Objective Area of the Study

The Study area includes Wadi Suq and its surroundings from Falaj al Qabail on the east to Suhaylah village on the west side of the OMCO plant site. This area encompasses approximately 300 km² (Figure 1.1).

1.4 Scope of the Study

The Study consists of three stages, including the Basic Study Stage, Detailed Study Stage, and Feasibility Study Stage. To achieve the Study’s objectives, the scope of the three stages of the Study consists of the following:

1) Basic Study Stage
 - Hydrogeologic and environmental investigation
 - Geophysical exploration
 - Drilling survey
 - Chemical analysis etc.
 - Examination of hydrogeologic features and contamination mechanism of groundwater
 - Examination of simulation model for the air pollution
2) Detailed Study Stage
 - Hydrogeologic and environmental investigation
 - Drilling survey
 - Chemical analysis etc.
 - Hearing investigation
 - Socio-economic investigation
 - Clarification of water contamination mechanism and simulation of water contamination
Figure 1.1 Objective Area of the Study
- Simulation of air pollution (sulfur dioxide)
- Planning of countermeasures for water contamination and air pollution

3) Feasibility Study Stage
- Conceptual design of countermeasures for water contamination
- Examination of countermeasures for air pollution
- Cost estimation for countermeasures of mine pollution
- Clarification of socio-economic, economic and financial analyses
- Evaluation and examination of feasibility of the remedial countermeasures
- Technical transfer related to the study for the Omani counterparts’ engineering staff.

1.5 Flow of the Study

The Study was executed according to the flow chart shown in Figure 1.2 (1) and (2).

1.6 Study Organization

The Study Team included following Japanese Study Team and Omani Counterparts.

<table>
<thead>
<tr>
<th>Japanese Study Team</th>
<th>Oman Counterparts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Team Leader : Soichiro Matsuzaka (mrc)</td>
<td>CM Hilal Mohamed Al-Azri (MCI)</td>
</tr>
<tr>
<td>Sub-leader : Mikio Kajima (mrc)</td>
<td>C/P Khalid.Nasir.Al-Toobi (MCI)</td>
</tr>
<tr>
<td>Sub-leader : Kensiro Matsuzaki (E&E)</td>
<td>C/P Mohammed.S.Al-Aufi (MMEW)</td>
</tr>
<tr>
<td>Expert : Hisashi Ogawa (mrc)</td>
<td>C/P Salim.Omar.Ibrahim (MCI)</td>
</tr>
<tr>
<td>Expert : Randolph C. Fischer (E&E)</td>
<td>C/P Mohad Saeed Al-Masry (MMEW)</td>
</tr>
<tr>
<td>Expert : Takao Yamane (mrc)</td>
<td>C/P Mohammed Javed Mirza (MCI)</td>
</tr>
<tr>
<td>Expert : Kazuo Matsukubo (mrc)</td>
<td>C/P Perfecto C. Lagapa (OMCO)</td>
</tr>
<tr>
<td>Expert : Toshihisa Ishibashi (mrc)</td>
<td>C/P Saif Au Al-rashdi (MCI)</td>
</tr>
<tr>
<td>Expert : Kohei Sugawara (mrc)</td>
<td>C/P Raul S. Tumaliwan (OMCO)</td>
</tr>
<tr>
<td>Expert : Mazen E. Adib (E&E)</td>
<td></td>
</tr>
<tr>
<td>Expert : Takahide Kawamura (mrc)</td>
<td></td>
</tr>
</tbody>
</table>

Remarks: mrc : Mitsubishi Materials Natural Resources Development Corp.
E&E : E & E Solutions Incorporation
MCI : Ministry of Commerce and Industry
MMEW : Ministry of Regional Municipals, Environment and Water Resources
CM : Chairman of Stirring Committee and Technical Committee
C/P : Counterpart
FEASIBILITY STUDY OF MINE POLLUTION CONTROL IN SOHAR AREA SULTANATE OF OMAN

《Basic study work》

Domestic preparatory work

Inception report
Questionnaire

First site investigation
Submit/Explanation/Discussion
Preparatory site investigation
Study of subcontract work

First domestic work
Periodical progress report

Second site investigation
Geochemical/Physical exploration
Air quality investigation
Drilling investigation

SECOND

Second domestic work
Compiling/Analysis
Contamination mechanism

Progress report

Third site investigation
Submit/Explanation/Discussion
Pollution source/Environment/
Soil/Drilling
Air quality investigation

Third domestic work
Water contamination/
Air pollution/mechanism
Environmental management structure
Assistance for Reception of C/P

To (2)

THE

THE

FIRST

YEAR

(1999)

(2000)

Figure 1.2 Flow of the Study Work (1)
Figure 1.2 Flow of the Study Work (2)