LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in spring tide

SAMPLING TIME Om 0.5m Im 2m o.5m Im 2m 4m 5m 4m 5m 7m Y M D H Min Position 0.5m Im 2m 12.43 12.44 12.	Total Page 4	4					<u> </u>	Denth				-							Union I	Unit: umol/m2/s	. ,
H Min Position 118.4 122.6 123.9 124.8 125.2 126.2 128.8 128.6 07 3.7 deck 118.4 122.6 123.9 124.3 124.8 125.2 128.6 128.6 0. deck 143.2 493.4 522.2 533.0 505.4 491.7 0.7268 0.2692 0.3440 0. deck 143.2 493.4 522.2 533.0 505.4 491.7 0.7268 0.2692 0.3440 0. deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 133.4 135.8 0. deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 133.4 135.8 0. deck 1030 1017 1013 1008 1089 0.0873 0.1715 10 0 0 0 0 0. deck 1030 1017 1013	SAMPLIN Point No		MPLIN	<u>Z</u>	9	J TIN	Œ	mdac	0m	0.5m	1m	2m	3m	4m	5m	em	7m	8m	m6	10m	11m
07 37 deck 118.4 12.6 12.3 124.3 124.8 125.2 125.8 128.6 128.9 128.6 <td>M</td> <td>M</td> <td></td> <td></td> <td>)</td> <td>H</td> <td>-</td> <td>Position</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td>	M	M)	H	-	Position									_				
00 deck 443.2 58.6 16.04 2.646 0.2464 0.2772 0.7268 0.2692 0.3440 00 deck 443.2 493.4 522.2 533.0 505.4 491.7 7	12	12	12		10	07	37	deck	118.4	122.6	123.9	124.3	124.8	125.2	126.2	125.8	128.6	133.3	•		
00 deck 443.2 493.4 522.2 533.0 505.4 491.7 699.9 7 491.7 493.4 522.2 533.0 505.4 491.7 10.43 2.066 0.7147 0.3649 P 9 01 45 deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 153.4 135.8 08 30 deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 153.4 135.8 0. 4 deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 153.4 135.8 1. 4 4 15.64 15.18 0.224 0.151.7 0.08973 0.171.5 10.0 0								water	71.58	38.06	16.04	2.646	0.5464	0.2772	0.7268	0.2692	0.3440	0.1134			
0 445 36.54 10.43 2.066 0.7147 0.3649 9 07 45 deck 142.1 149.4 157.4 161.7 167.3 172.8 166.5 153.4 135.8 08 30 deck 310.7 333.3 316.8 329.5 356.7 70 0.0 0					10	60	00	deck	443.2	493.4	522.2	533.0	505.4	491.7							
10 45 deck 142.1 149.4 157.4 167.7 167.3 172.8 165.5 153.4 157.8 157.9 167.3 172.8 165.5 153.4 157.4 167.7 167.7 167.7 167.7 167.8 171.8 0.2246 0.1517 0 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>water</td> <td>88.65</td> <td>36.54</td> <td>10.43</td> <td>2.066</td> <td>0.7147</td> <td>0.3649</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	-							water	88.65	36.54	10.43	2.066	0.7147	0.3649							
1 0 deck 15.64 1.118 0.2246 0.1517 0					10	07	45	deck	142.1	149.4	157.4	161.7	167.3	172.8	166.5	153.4	135.8	144.9			
10 08 30 deck 310.7 333.3 316.8 318.6 329.5 356.7 9 10 08 3 deck 10.77 0.8993 0.1386 0.08973 0.1715 9 9 10 09 3 deck 1030 1017 1013 1008 1008 1029 1034 0.0 10								water	70.60	15.64	1.118	0.2246	0.1517	0	0	0	0	0			
10 09 03 check 10.77 0.8993 0.1386 0.08973 0.1715 9 10 09 03 check 1030 1017 1013 1008 1029 1034 0.0 1034 </td <td></td> <td></td> <td></td> <td>2</td> <td>10</td> <td>80</td> <td>30</td> <td>deck</td> <td>310.7</td> <td>333.3</td> <td>316.8</td> <td>318.6</td> <td>329.5</td> <td>356.7</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>·</td> <td></td>				2	10	80	30	deck	310.7	333.3	316.8	318.6	329.5	356.7						·	
10 09 0.3 deck 1030 1017 1013 1008 1008 1029 1034 8 10 6 4.5 water 234.1 54.48 10.82 0.8086 0.08973 0.09873 0.2203 9 10 6.6 4.5 deck Dark 1.0								water	54.79	10.77	0.8993	0.1386	0.08973	0.1715			,				
10 0.6 4.5 deck Dark 10.82 0.8086 0.08973 0.09873 0.2203 9.203 10 0.6 4.5 deck Dark				12	10	60	03	deck	1030	1017	1013	1008	1008	1029	1034						
10 66 45 deck Dark T								water	234.1	54.48	10.82	9808.0	0.08973	0.09873	0.2203						
10 69 55 deck 1378 1379 1397 1399 1414 1428 1454 8 10 3 3 deck 1378 1379 1397 1399 1414 1428 1454 8 10 1 4 deck 1269 1440 1152 1262 1081 1374 1361 1369 1660 10 1 4 4 1152 112.8 20.20 7.794 4.157 3.431 3.194 10 1 4 16.7 114.2 112.0 109.2 7.794 4.157 3.431 3.194 10 4 4 4.157 3.431 3.194 <td>P07 2000</td> <td>2000</td> <td></td> <td>12</td> <td>10</td> <td>90</td> <td>45</td> <td>deck</td> <td>Dark</td> <td></td>	P07 2000	2000		12	10	90	45	deck	Dark												
10 99 55 deck 1378 1392 1397 1399 1414 1428 1454 1454 10 1 4 4 152.3 14.00 10.43 7.564 2.443 0.06480 0.08792 0.03190 7 10 1 4 1464 1152 1262 1081 1374 1361 1560 1660 10 1 4 16.7 116.7 112.8 20.20 7.794 4.157 3.431 3.194 10 1 4 116.7 114.2 112.0 109.2 7.794 4.157 3.431 3.194 1 3 4 4.15.2 21.04 5.725 2.641 0.9478 7 7 7 7 1 4 <td< td=""><td></td><td></td><td>\vdash</td><td></td><td></td><td></td><td></td><td>water</td><td>Dark</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			\vdash					water	Dark												
10 11 04 deck 1269 14.00 10.43 7.564 2.443 0.06480 0.08792 0.03190 7.564 2.443 0.06480 0.08792 0.03190 7.00 10 11	P08 2000	2000	_	12	10	60	55	deck	1378	1379	1392	1397	1399	1414	1428	1454	_	-			
10 11 04 deck 1269 1404 1152 1262 1081 1374 1361 1369 1660 09 16 50 deck 118.2 116.7 112.8 20.20 7.794 4.157 3.431 3.194 10 16 50 deck 118.2 116.7 114.2 112.0 109.2 7.794 4.157 3.431 3.194 10 4 50 deck 118.2 116.7 112.0 109.2 7.794 4.157 3.431 3.194 10 50 deck 118.2 21.04 5.725 2.641 0.9478 7 7 7 7 10 65 66 deck Dark 7								water	552.3	14.00	10.43	7.564	2.443	0.06480		0.03190					
09 16 50 deck 118.2 116.7 117.0 119.2 110.9 110.9 110.0 <td>P09 2000</td> <td>2000</td> <td>_</td> <td>12</td> <td>10</td> <td>11</td> <td>04</td> <td>deck</td> <td>1269</td> <td>1404</td> <td>1152</td> <td>1262</td> <td>1081</td> <td>1374</td> <td>1361</td> <td>1369</td> <td>1660</td> <td>1540</td> <td></td> <td></td> <td></td>	P09 2000	2000	_	12	10	11	04	deck	1269	1404	1152	1262	1081	1374	1361	1369	1660	1540			
09 16 50 deck 118.2 116.7 114.2 112.0 10 05 00 deck Dark 5.725 2.641			-					water	752.1	633.8	364.5	112.8	20.20	7.794	4.157	3.431	3.194	1.086			
water 42.22 21.04 5.725 2.641 10 05 00 deck Dark 2.641	P10 2000	2000	_	12	60	16	50	deck	118.2	116.7	114.2	112.0	109.2								
10 05 00 deck								water	42.22	21.04	5.725	2.641	0.9478								
	P14 2000	2000		12	10	05	00	deck	Dark												

Intensive point in spring tide

0.3340 0.2851 1404 3.677 1022 11m 1661 Unit: umol/m2/s 0.3669 380.2 1.152 1419 10m1654 1249 0 0.5713 0.4656 0.1219 369.5 10.17 1168 1653 1423 9ш 9088.0 0.6957 369.4 18.60 1656 1.960 1433 1266 8т 0.07001 0.3269 0.3439 4.305 318.4 3.122 916.034.36 326.2 1.037 1183 1660 1439 1347 7m 0.3598 0.3678 321.9 372.0 6.300 1.318 1649 1470 3.048 1228 54.07 9.771 1285 1281 6m 0.7523 362.4 322.3 26.36 5.197 1.139 10.35 1095 94.66 1069 2.031 1100 1647 1480 5m 345.7 2.006 385.8 23.13 975.4 9.312 143.4 15.33 980.5 2.637 1642 61.60 1514 1180 4m 373.6 3.308 42.38 390.4 137.7 37.89 3.742 1242 243.7 282.5 794.1 1516 1026 1196 1657 12.91 3т 0 0 0.2289 0.9231 215.2 764.6 24.08 388.2 66.86 1072 16.56 401.7 382.7 25.50 282.3 1530 112.1 1072 1200 1659 2ш 718.8 376.4 643.6 347.6 50.98 6.200 528.8 3.882 288.4 222.7 98.96 285.4 1546 1179 87.30 1276 1652 1171 1m 76.16 719.6 375.0 348.5 340.4 807.9 14.74 522.9 0.5m 247.4 16.74 1545 161.2 1628 97.71 1147 7.06.7 1644 1431 369.8 414.2 159.8 329.3 87.14 700.9 60.83 881.4 202.2 653.5 240.1 68.38 1645 1206 1576 1429 1165 Dark 1601 Om O Depth water water water water water water water water water deck deck deck deck water deck deck deck deck deck Position Min 05 15 35 2 28 8 42 23 8 SAMPLING TIME 13 13 10 12 80 7 H 12 8 10 10 10 10 10 10 10 10 10 Ω 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 **>** Total Page 4 No Point No P16 P18 P23 P24 P25 P15 P17 P27 P21 35 25 53 30 24 27 32 33 36 37 38 20 21 22 23 26 28 31 8

 $\overline{\mathbf{D}}$

 $\overline{24}$

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in spring tide

Unit: umol/m2/s																					
Unit:	Remark		Monitoring time:	0700~1800																	
	В-1 ш												. <u>-</u>								
	20m																				
	19m														,						
	18m																				
	17m																				
-	16m																				
	15m																		_		
	14m	;																			
	13m	•																			
	12m																				
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck
	<u>н</u>	Min	37		00		45		30		03		45		55		40		20		8
	TIM	Н	07		60		07	_	- 80		60		90		60		11		16		05
	SAMPLING TIME	Ω	10		10		10		10		10		10		10		10		60		10
	MPL	Σ	12		12		12		12		12		12		12		12		12		12
	SA	7	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000
Total Page 4	Point No	<u> </u>	P02		P03		P04		P05	_	P06		P07		P08		P09		P10		P14
To	Š		1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19

D · 25

Intensive point in spring tide

Unit: umol/m2/s

Unit: umo																					
Uni	Remark			Monitoring	unite: 0700~1800													<u>-</u>			
	B-1m																				
	20m																				
	19m																	1215	0		
	18m																	1215	0.07296		
	17m																	1210	0.2039		
•	16m																	1268	0.4088		
•	15m																	1207	0.8775		
	14m		į															1176	1.301		
	13m					1397	0.007975			. <u>-</u> .								1232	1.908		
	12m					1680	0.2360			1396	0.2034							1100	2.834		
	Depth	Position	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	Œ	Min		00		28		50	•	15		8		42		25		35		15	
) TIN	Н		90		12		8		13		10		14		12		13		11	
	SAMPLING TIME	D		10		10		10		10		10		10		10		10		10	
	AMP	Σ) 12) 12		12) 12) 12) 12) 12		12) 12	_
		Y		2000		2000		2000		2000		2000	i	2000		2000		2000		2000	
Total Page 4	Point No			P15		P16		P17		P18		P21		P23		P24		P25		P27	
ĭ	Š		20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

Ď

26

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Intensive point in neap tide

1	Total Page 4	,									•	•						Unit	Unit: umol/m2/s
Š	Point No		AMF	SAMPLING TIME	G TII	ME	Depth	0m	0.5m	1.0	2m	3m	4m	Sm	m9	m/	8m	9m	10m
	-	>	Σ	Ω	Н	Min	Position												
-	P02	2000	12	2	07	39	deck	46.88	46.77	47.52	48.72	50.30	51.48	53.04	53.08	51.71	48.50		
C1							water	31.96	16.38	7.446	2.580	1.183	0.5872	0.4736	0.4566	0.2772	0.1057		
3	P03	2000	12	8	8	8	deck	19.46	12.67	29.54	28.96	29.30							-
4		<u> </u>					water	16.67	3.192	0.5042	0.07017	0.04644							
5	P04	2000	12	04	14	15	deck	61.69	97.30	109.7	83.59	118.5	107.5	97.39	116.6	93.61	112.8		
9							water	166.7	32.98	7.014	1.002	0.1317	0.01517	0.006917	0	0	0		
7	P05	2000	12	04	80	35	deck	142.4	143.8	145.2	147.4	149.5	151.4	153.8					
∞							water	104.1	49.83	26.79	11.14	4.458	1.380	0.3509					
6	P06	2000	12	95	60	25	deck	197.4	182.0	175.4	200.3	200.8	207.1	210.4					
10							water	149.6	60.19	60.22	13.68	4.630	2.204	0.9631					
Ξ	P07	2000	12	04	12	50	deck	75.44	66.53	69.92	58.16	65.38	63.42	73.86					
12		-					water	124.8	25.75	2.586	0.2872	0.03641	0	0					
13	P08	2000	12	04	10	20	deck	367.7	361.2	355.6	351.0	346.1	341.6	337.4	336.5				
14							water	256.2	125.6	59.68	24.14	5.494	2.678	0.8654	0.6530				
15	P09	2000	12	04	11	35	deck	748.6	764.2	777.4	786.2	798.4	804.2	796.8	780.5	763.4	733.2	714.4	700.5
16							water	520.3	311.1	151.0	99:59	22.92	10.22	3.716	1.397	0.7348	0.2772	0.1715	0.08075
17	P10	2000	12	04	18	40	deck	Dark											
28	_						water	Dark											
61	P14	2000	12	040	15	35	deck	266.9	266.3	265.8	266.7	265.5	266.3						
20					_		water	160.6	47.44	15.56	2.009	0.09770	0.1057						
		1																	

Intensive point in neap tide

Unit: umol/m2/s	10m				509.0	0.3012		:	· 417.1	0.5224			246.7	0.03112			205.0	4.012		
Unit	т6				515.6	0.2034			415.4	0.9063			242.0	0.1467			205.5	5.345		
	8m				515.9	0.3669			412.8	1.429			238.0	0.1142			212.7	7.871		
	7m				519.8	0.3598			415.6	2.270			239.2	0.5864			216.2	11.44		
	ш9		69.11	0.01615	522.9	0.5962			418.2	3.871	281.9	0.08101	237.7	1.171			217.4	15.64	362.6	0.03193
	mS		71.83	0.05748	522.4	1.902	133.5	0.01541	420.8	6.622	293.1	0.1045	234.5	3.032			217.7	22.18	359.0	0.08172
	4m		72.77	0.02426	520.8	4.958	143.0	0.03285	423.7	11.54	286.9	0.05715	233.0	10.62	329.4	0.1969	218.4	32.51	358.6	0.08981
•	3т		75.57	0.1112	518.5	15.52	136.2	0.01517	425.6	23.75	282.0	0.05696	232.8	18.94	333,4	0.1150	224.6	43.16	337.7	0.01691
	2m		78.39	0.07954	518.4	42.68	127.4	0.08975	428.3	46.26	270.5	0.04145	231.7	36.75	335.4	0.6495	221.3	09.69	345.9	0.01532
	1m		79.94	0.2394	523.1	94.14	125.4	0.3518	433.1	99.78	266.6	0.5643	231.4	62.33	322.6	8.802	217.6	99.57	350.7	0.01522
	0.5m		80.10	7.231	520.8	165.2	133.4	0.5239	440.1	144.7	274.8	2.021	235.3	113.3	327.1	15.91	229.7	112.4	335.4	0.4571
	0ш		81.82	64.00	528.1	316.8	122.0	119.43	439.1	236.6	228.1	126.1	246.3	161.2	328.6	16.90	251.8	141.6	338.4	1.446
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	E	Min	30		16		30		16		15		45		15		25		25	
	TIM	Н	80		13		60		14		10		14		12		13		11	
	SAMPLING TIME	D	04		04		04		04		04		04		04		8		04	
	MPI	M	12		12		12		12		12		12		12		12		12	
	SA	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000	
Total Page 4	Point No		P15		P16		P17		P18		P21		P23		P24		P25		P27	
Tot	°Z		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

D

28

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in neap tide

	To	Total Page 4				į						1	•						Uni	Unit: umol/m2/s
	Š	Point No		SAMPLING TIME	ĽĽ	G TII	ME	Depth	11m	12m	13m	14m	15m	16m	17m	18m	19m	20m	В-1ш	Remark
			7	Σ	Ω	王	Min	Position												
	-	P02	2000	12	9	0.7	39	deck												Monitoring
	2							water						j						time: 0700~1800
	3	P03	2000	12	9	60	90	deck												
	4							water												
1	5	P04	2000	12	04	14	15	deck												
	9							water												
1	7	P05	2000	12	94	90	35	deck												
I	∞							water								_				
) .	6	P06	2000	12	\$	60	25	deck												_
29	2			[water						_						
1	=	P07	2000	12	8	12	50	deck												
1	12			\Box				water												
1	13	P08	2000	12	9	10	20	deck												
_, [4							water												
1	15	P09	2000	12	8	11	35	deck	681.8											
	16							water	0.04885											
	12	P10	2000	12	4	18	40	deck												
1	-81							water												
	19	P14	2000	12	40	15	35	deck												
	20							water	•											
	Pri	Printer:Chen Jian Chang	ian Ch	out																

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Intensive point in neap tide

s/	 		1																	
Unit: umol/m2/s	Remark		Monitoring	0700~1800																
Uni	B-1m																			
	20m																			
	19m																186.6	0.2288	:	
	18m																191.9	0.3597		
	17m											,					191.0	0.4722		
	16т																196.7	0.7694		
İ	15m							_									196.0	0.9901		
•	14m																200.5	1.466		
	13m								436.8	0.1545							205.2	1.629		
	12m								426.6	0.2552	:						204.3	2.387		
	11m								420.4	0.4407						·	203.4	2.446		
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	Œ	Min	30		16		30		16		15		45		15		25		25	
	SAMPLING TIME	Н	80		13		60		14		10		14		12		13		=	\exists
	ING	D	04		\$		9		9		\$		9		40		8		홍	
	MPI	M	12		12		12		12		12		12		12		12		12	
	SA	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000	
Total Page 4	Point No		P15		P16		P17		P18		P21		P23		P24		P25		P27	
Tot	No		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38

D

30

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Intensive point in neap tide

	Tota	Total Page 4																	Unit	Unit: umol/m2/s
	°Ž	Point No	Š	₽₩₽	Ž	SAMPLING TIME	ME	Depth	m _O	0.5m	1m	2m	3m	4m	Sm	- em	7m	8m	m6	10m
<u> </u>			>	Σ	Ω	H	Min	Position												
		P02	2000	12	8	07	39	deck	46.88	46.77	47.52	48.72	50.30	51.48	53.04	53.08	51.71	48.50		
. ,	2							water	31.96	16.38	7.446	2.580	1.183	0.5872	0.4736	0.4566	0.2772	0.1057		
	3	P03	2000	12	04	60	00	deck	19.46	12.67	29.54	28.96	29.30							
-	4							water	16.67	3.192	0.5042	0.07017	0.04644			-				
	5	P04	2000	12	04	14	15	deck	61.69	97.30	109.7	83.59	118.5	107.5	97.39	116.6	93.61	112.8		
	9							water	166.7	32.98	7.014	1.002	0.1317	0.01517	0.006917	0	0	0		
	7	P05	2000	12	04	08	35	deck	142.4	143.8	145.2	147.4	149.5	151.4	153.8					
I	8							water	104.1	49.83	26.79	11.14	4.458	1.380	0.3509					
	6	P06	2000	12	8	60	25	deck	197.4	182.0	175.4	200.3	200.8	207.1	210.4					
31	10							water	149.6	60.19	60.22	13.68	4.630	2.204	0.9631					
	11	P07	2000	12	9	12	50	deck	75.44	66.53	76.69	58.16	65.38	63.42	73.86					
	12							water	124.8	25.75	2.586	0.2872	0.03641	0	0					
	13	P08	2000	12	8	10	70	deck	367.7	361.2	355.6	351.0	346.1	341.6	337.4	336.5				
	14							water	256.2	125.6	59.68	24.14	5.494	2.678	0.8654	0.6530				
	15	P09	2000	12	9	11	35	deck	748.6	764.2	777.4	786.2	798.4	804.2	796.8	780.5	763.4	733.2	714.4	700.5
	16							water	520.3	311.1	151.0	99.29	22.92	10.22	3.716	1.397	0.7348	0.2772	0.1715	0.08075
	17	P10	2000	12	Ş	18	40	deck	Dark											
	18							water	Dark					-						
	19	P14	2000	12	40	15	35	deck	266.9	266.3	265.8	266.7	265.5	266.3						<u>-</u>
-2	20							water	160.6	47.44	15.56	2.009	0.09770	0.1057		-		-		
	;		j .													1]

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Intensive point in neap tide

																	,			
Unit: umol/m2/s	10m				509.0	0.3012			417.1	0.5224			246.7	0,03112			205.0	4.012		
Unit	9m				515.6	0.2034			415.4	0.9063			242.0	0.1467			205.5	5.345		
	8m				515.9	6998.0			412.8	1.429		-	238.0	0.1142			212.7	7.871		
	7m				519.8	0.3598			415.6	2.270	:		239.2	0.5864			216.2	11.44		
	щ9	•	69.11	0.01615	522.9	0.5962			418.2	3.871	281.9	0.08101	237.7	1.171			217.4	15.64	362.6	0.03193
	5m		71.83	0.05748	522.4	1.902	133.5	0.01541	420.8	6.622	293.1	0.1045	234.5	3.032			217.7	22.18	359.0	0.08172
	4m		72.77	0.02426	520.8	4.958	143.0	0.03285	423.7	11.54	586.9	0.05715	233.0	10.62	329.4	0.1969	218.4	32.51	358.6	0.08981
	3т		75.57	0.1112	518.5	15.52	136.2	0.01517	425.6	23.75	282.0	0.05696	232.8	18.94	333.4	0.1150	224.6	43.16	337.7	0.01691
	2m		78.39	0.07954	518.4	42.68	127.4	0.08975	428.3	46.26	270.5	0.04145	231.7	36.75	335.4	0.6495	221.3	69.60	345.9	0.01532
	1m		79.94	0.2394	523.1	94.14	125.4	0.3518	433.1	99.78	266.6	0.5643	231.4	62.33	322.6	8.802	217.6	99.57	350.7	0.01522
	0.5m		80.10	7,231	520.8	165.2	133.4	0.5239	440.1	144.7	274.8	2.021	235.3	113.3	327.1	15.91	229.7	112.4	335.4	0.4571
	0m		81.82	64.00	528.1	316.8	122.0	119.43	439.1	236.6	228.1	126.1	246.3	161.2	328.6	16.90	251.8	141.6	338.4	1.446
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	田	Min	30		16		30		16		15		45		15		25		25	
	TIM	Н	80		13		60		14		10		14		12		13		11	
	SAMPLING TIME	D	04		95		2		8		94		04		04		04		04	
	4MP	M	12		12		12		12		12		12		12		12		12	
	'S	¥	2000		2000		2000		2000		2000		2000		2000		2000		2000	
Total Page 4	Point No		P15		P16		P17		P18		P21		P23		P24		P25	-	P27	
Tol	Š		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
;	t 								-	J) -	32								

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in neap tide

12m 13m 14m 15m 16m 17m 18m 19m 20m B-1m Remark 17m 18m 19m 20m B-1m Remark 17m 18m 19m 20m B-1m Remark 17m 18m 19m 20m 19m 17m 17m 18m 19m 17m 19m 17m 19m 17m 19m 17m 19m 17m 17m	Total Page 4	<u> </u>					 	Depth												nn	Unit: umol/m2/s
Monitori (ime: 0700–18	11m	SAMPLING TIME 11m	11m	11m	11m	11m	11m	11m		_		.3m	14m	15m	16m	17m	18m	19m	20m	B-1m	Remar
Monitoring (1/100-1800)	Y M D H Min Position	M D H Min	D H Min	H Min	H Min	Min	in Position			1											
	P02 2000 12 04 07 39 deck	12 04 07 39	12 04 07 39	04 07 39	07 39	39					_										Monitoring time:
	water	water	water	water	water	water	water														0700~1800
	P03 2000 12 04 09 00 deck	12 04 09 00	12 04 09 00	04 09 00	00 60	00															
	water	water	water	water	water	water	water														
	P04 2000 12 04 14 15 deck	12 04 14 15	12 04 14 15	04 14 15	14 15	15			ŀŀ												
	6 water	water	water	water	water	water	water		ı												
	P05 2000 12 04 08 35 deck	12 04 08 35	12 04 08 35	04 08 35	08 35	35	_		ı												
	water	water	water	water	water	water	water														
	P06 2000 12 04 09 25 deck	12 04 09 25	12 04 09 25	04 09 25	09 25	25															
	10 water	water	water	water	water	water	water		ı							-					
	11 P07 2000 12 04 12 50 deck	12 04 12 50	12 04 12 50	04 12 50	12 50	50			I												
	12 water	water	water	water	water	water	water														
	13 P08 2000 12 04 10 20 deck	12 04 10 20	12 04 10 20	04 10 20	10 20	20	_														
	14 water	water	water	water	water	water	water														
	15 P09 2000 12 04 11 35 deck 681.8	12 04 11 35 deck	12 04 11 35 deck	04 11 35 deck	11 35 deck	35 deck	deck	681.8										į			
	16 water 0.04885								KO I												
	17 P10 2000 12 04 18 40 deck	12 04 18 40	12 04 18 40	04 18 40	18 40	40			l												
	18 water	water	water	water	water	water	water														
	19 P14 2000 12 04 15 35 deck	12 04 15 35	12 04 15 35	04 15 35	15 35	35			I												
	20 water	water	water	water	water	water	water														

Intensive point in neap tide

•																				
Unit: umol/m2/s	Remark		Monitoring	0700~1800																
Uni	B-1m																			
	20m																			
	19m	٠															186.6	0.2288		
	18m																191.9	0.3597		
	17m																191.0	0.4722		
	16m											_					196.7	0.7694		
•	15m																196.0	0.9901		
•	14m			-						-							200.5	1.466		
	13m								436.8	0.1545							205.2	1.629		
	12m	·							426.6	0.2552							204.3	2.387		
	11m								420.4	0.4407							203.4	2.446		
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	ы	Min	30		16		30		16		15		45		15		25		25	
	, TIM	Н	80		13		60		14		10		14		12		13		=	
	SAMPLING TIME	Q	Ş		04		8		হ		ষ্ঠ		ষ্ট		40		2		8	
	\MP]	M	12		12		12		12		12		12		12		12		12	
	7S	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000	
Total Page 4	Point No		P15		P16		P17		P18		P21		P23		P24		P25		P27	
Tot	Š		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38
ľ									Í) •	34									

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

0.5055 0.4078 0.8973 0.4564 0.7587 0.4487 0.7187 0.3101 0.3509 0.6122 0.3021 38.09 414.9 1210 522.0 170.7 10m 878.3 1343 1255 1385 1383 881.1 Unit: umol/m2/s 0.3260 0.9302 0.6859 0.08075 0.5055 0.4646 0.5633 0.8153 0.2363 0.7507 171.9 37.66 416.5 873.0 1364 1080 1423 1.527 1405 883.7 1221 9m 0.2443 0.3010 0.7019 0.3669 0.5464 0.1386 0.5633 0.5055 850.9 0.8066 36.98 413.5 884.2 3.659 1.029 535.9 174.3 1180 1372 1466 1171 1331 8m 0.3589 0.3340 0.2443 0.3340 0.2522 0.2034 0.3589 0.2532 0.1386 537.0 35.95 412.7 874.3 1130 1422 1.625 891.7 174.6 1162 1384 1377 1.501 7m 0.4078 0.3829 0.5713 0.5464 0.1705 0.8574 0.1057 0.4975 882.4 2.850 533.9 35.35 410.7 1145 900.7 1.192 176.3 0.3021 1380 1242 1390 1151 em 0.6390 0.4646 0.08075 0.26920.3918 0.6939 0.5550 0.1057 897.0 1.306 178.8 34.70 409.1 1269 1134 5.684 903.4 1.086 532.5 1153 1311 1420 5m 0.7760 0.4646 0.1216 0.7916 0.7836 0.2851 406.3 0.5055 901.4 534.0 179.2 0.2772 880.7 1087 15.46 4.052 1.482 33.94 1146 1288 1520 1441 4m 0.1625 0.7258 0.4895 0.3101 33.13 0.9551 841.7 1113 1.315 2.017 905.0 14.18 402.1 1275 1539 1216 1394 36.25 541.4 7.782 180.7 1.764 3m 0.6939 0.81660.4407 769.2 917.0 546.6 32.75 0.661 402.7 1.094 5.440 14.41 115.5 41.44 50.09 184.8 8.966 1095 1331 1528 1333 1347 2m 0.6441 61.76 53.10 91.14 14.39 8.567 325.5 921.3 200.0 31.79 2.695 829.4 170.0 396.1 1148 1430 1503 546.4 1344 1204 182.1 61.01 1m 31.16 5.062 400.4 35.83 863.7 58.10 207.3 148.1 318.2 269.1 367.5 920.3 374.0 550.5 289.7 187.5 0.5m 1166 1433 1458 1163 116.1 1561 401.9 878.9 748.0 555.9 376.2 30.14 20.52 92.99 376.8 325.7 920.9 1417 1055 893.4 188.1 166.2 1183 1617 1304 1377 1071 1591 О Ш Depth water water water water water water water water deck deck water deck water deck deck deck deck deck deck deck water deck Position Min 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 12 13 Ξ 14 15 16 07 80 10 17 8 14 14 14 Ω 14 14 7 14 14 14 14 14 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 × Point No P01 P01 P01 P01 P01 P01 P01 P01P01 P01 P01 Total Page 16 ŝ 10 12 13 7 15 91 1 18 19 20 21 ∞ 6 Ξ 22 9

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

Fotal Page 16	age 16																	OIIII. 411101/11112/3	. [/7]
No	Point No		(MP)	CINC	SAMPLING TIME	/E	Depth	m ₀	0.5m	1m	2m	3m	4m	5m	em	7m	8m	9m	10m
		Y	M	D	Н	Min	Min Position												. — — — — — — — — — — — — — — — — — — —
23	P01	2000	12	14	18	00	deck	1.160	1.111	1.096	1.037	0.9880	0.9551	0.9143	0.8654	0.8254	0.7667	0.7006	0.6530
24							water	0.7099	0.6122	0.4078	0.1795	0.03190	0.3509	0.2772	0.3260	0.2363	0.03190	0.2114	0.1386
25	P11	2000	12	14	07	00	deck	33. 26	34.01	34.18	30.19	35.58	38.26	30.40	29.80				
26							water	24.01	12.17	7.393	1.116	0.3792	0.1124	0.02813	0.01496				
27	P11	2000	12	14	08	00	deck	401.9	392.7	428.6	434.7	431.6	428.9	430.0	416.5				
28							water	48. 66	32.60	7.863	2.465	0.9817	0.3479	0.1241	0.02853				
29	P11	2000	12	14	60	00	deck	216.3	483.1	528.3	212.0	210.2	209.2	208.1	206.6				
30							water	152.1	112.2	0	2.541	0	0	0	0				
31	P11	2000	12	14	10	8	deck	153.0	156.4	140.2	168.4	144.7	151.3	167.2	167.4				
32							water	227.1	16.51	0.4416	0	0	0	0	0				
33	P11	2000	12	14	11	90	deck	1229	1291	1341	1343	1363	1290	1280	1231				
34							water	966,4	21.94	5.886	0	0	0	0	0				
35	P11	2000	12	14	12	00	deck	1268	1266	1276	1298	1253	1237	1183	1213				
36							water	8.786	84.66	10.25	0	0	0	0	0				
37	P11	2000	12	14	13	8	deck	1379	1324	1343	1311	1199	812.6	1326	1401				
38		_	_				water	902.4	200.6	9.865	0	0	0	0	0				
39	P11	2000	12	14	14	8	deck	1030	1045	926.2	941.2	979.4	976.1	9.696	961.6				
9							water	186.6	37.88	0	0	0	0	0	0				
41	P11	2000	12	14	15	00	deck	870.7	867.3	868.1	873.2	870.0	873.5	881.1	892.4				
42							water	71.77	34.81	5.757	0	0	0	0	0				
43	P11	2000	12	14	16	8	deck	467.1	227.7	235.4	236.0	591.7	599.7	607.2	616.2				
4							water	60.75	16.83	0	0	0	0	0	0				

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

.16-2

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

10m Unit: umol/m2/s 9m 8т 7m em 102.8 2.177 5m 0 0 103.6 2.333 4m 0 0 103.4 2.440 3m 0 0 94.90 2.613 2m0 0 89.28 2.852 1.801 1m 0 86.62 8.043 0.5m 2.941 0 Raining 0.8107 25.92 3.207 88.41 <u>m</u>0 Depth water water water water water deck water deck deck water water water water deck deck deck deck deck water deck deck deck |Min|Position 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 17 8 15 16 17 18 10 07 80 8 4 12 12 12 12 13 13 13 13 Ω 14 13 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 > Point No P12 P12 P12 P12 P12 P12 P12 P12 P12 P11 P11 Total Page 16 2° 49 20 45 46 47 48 51 52 53 54 55 26 57 28 59 9 61 62 63 64 9 99

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

m2/s .	10m																							
Unit: umol/m2/s	9m																							
	8m																							
	7m					-																		
	m9																							
	5m																							
	4m															_								
,	ш£	_																						
•	2m																							
•	1m																							
	0.5m																							
	w0		Raining																					
	Depth	Min Position	deck	water																				
	ਬ	Min	00		00		8		8		00		00		00		90		8		8		8	
	TIM	Н	12		13		14		15		16		15		16		17		18		07		08	
	ING	D	13		13		13		13		13		12		12		12		12		13		13	
	SAMPLING TIME	M	12		12		12		12		12		12		12		12		12		12		12	
	SA	¥	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
je 16	Point No		P12		P12		P12		P12		P12		P19											
Total Page 16	N _o			68	69	70	7.1	72	73	74	75	76	77	78	79	80	81	82	83	84	85	98	87	88
F I										l		D -	38	l }				1	I	I	1	1	1	

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

No	Pag	Total Page 16																	Unit: umol/m2/s	I/m2/s .
Y M D H Minin Position Assisting Assisting <t< td=""><td>-</td><td>Point No</td><td>SA</td><td>\MP.</td><td>LINC</td><td>TIP.</td><td>ME</td><td>Depth</td><td>m0</td><td>0.5m</td><td>1m</td><td>2m</td><td>3m</td><td>4m</td><td>5m</td><td>em</td><td>7m</td><td>8m</td><td>М6</td><td>10m</td></t<>	-	Point No	SA	\MP.	LINC	TIP.	ME	Depth	m0	0.5m	1m	2m	3m	4m	5m	em	7m	8m	М6	10m
2000 12 3 60 deek Raining 9 9 9 deek Raining 9 <td></td> <td></td> <td>¥</td> <td>Σ</td> <td>D</td> <td></td> <td></td> <td>Position</td> <td></td>			¥	Σ	D			Position												
2000 12 1 water Raining 3 4		P19	2000		-				Raining											
2000 12 1 0 deck Raining man man <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>water</td> <td>Raining</td> <td></td>								water	Raining											
2000 12 11 00 deck Raining 3 4854<		P19	2000	$\overline{}$		\vdash	_		Raining											
2000 12 1 0 deck Raining -								water	Raining						_					
2000 12 1 a water Raining mater		P19	2000	-	\vdash	_	_		Raining											
2000 12 13 12 0 deck Raining m								water	Raining						-					
2000 12 13 deck Raining 1 1 1 0 deck Raining 1 <td>\vdash</td> <td>P19</td> <td>2000</td> <td></td> <td></td> <td>\vdash</td> <td></td> <td></td> <td>Raining</td> <td></td>	\vdash	P19	2000			\vdash			Raining											
2000 12 13 13 00 deck Raining </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>water</td> <td>Raining</td> <td></td>								water	Raining											
2000 12 13 14 00 deck Raining mater Mater <t< td=""><td>-</td><td>P19</td><td>2000</td><td></td><td></td><td></td><td></td><td></td><td>Raining</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-	P19	2000						Raining											
2000 12 13 14 00 deck Raining mater Raining Raining Raining Raining Raining	-							water	Raining											
2000 12 13 15 00 deck Raining 3 484.5 485.4 485.1 485.1 485.2 485.1 485.3 485.1 485.3 485.1 485.3 485.3 485.1 485.3 485.3 485.3 485.3	-	P19	2000		-	-	-		Raining											
2000 12 13 16 deck Raining And the companies And								water	Raining											
2000 12 13 16 00 deck Raining 477.6 484.5 485.4 483.5 485.1 485.3 485.1 485.3 487.2 486.1 486.1 2000 12 11 10 00 deck 468.7 477.6 484.5 485.4 483.5 485.1 485.3 487.2 486.1 86.1 2000 12 11 10 00 deck 609.7 592.4 572.2 552.5 530.9 509.0 485.9 471.9 454.8 2000 12 11 11 00 deck 609.7 592.4 572.2 552.5 530.9 509.0 485.9 471.9 454.8 2000 12 11 11 00 deck 609.7 592.4 572.2 552.5 530.9 509.0 485.9 471.9 454.8 2000 12 11 12 00 deck 371.1 406.1 405.7		P19	2000		\vdash				Raining											
2000 12 13 16 00 deck Raining A72.5 477.6 484.5 485.4 483.5 485.1 485.3 485.1 485.3	-							water	Raining											
2000 12 11 10 00 deck 468.7 47.5 47.6 484.5 485.4 483.5 485.1 485.3 485.3 485.1 485.3 485.3 485.3 486.1 486.1 2000 12 11 10 0 deck 625.5 609.7 592.4 572.2 552.5 530.9 509.0 485.9 471.9 454.8 2000 12 11 11 00 deck 609.7 592.4 572.2 552.5 530.9 509.0 485.9 471.9 454.8 2000 12 11 12 00 deck 201.3 102.2 47.56 23.09 11.07 4.054 3.259 1.596 0.8903 0.432.7 2000 12 11 12 00 deck 371.1 406.7 406.1 405.5 415.5 415.8 417.8 423.6 624.3 647.3 1 1 1 1	-	P19	2000			$\overline{}$	-4		Raining											
2000 12 11 10 00 deck 468.7 47.5 484.5 485.4 485.5 485.1 485.3 485.1 485.3 485.2 485.1 485.3							_	water	Raining											
2000 12 11 11 00 deck 625.5 212.8 141.2 71.94 22.68 10.19 8.225 4.500 2.172 1.257 0.5145 2000 12 11 11 10 deck 625.5 609.7 592.4 572.2 552.5 530.9 500.0 485.9 471.9 454.8 2000 12 11 12 00 deck 371.1 406.7 406.1 405.5 415.5 417.8 417.8 423.6 624.3 6.8405 2000 12 11 12 00 deck 371.1 406.7 406.1 405.5 415.5 417.8 417.8 423.6 424.3 6.8425 1 1 1 1 1 1 406.7 406.7 405.3 415.5 417.8 417.8 423.6 424.3 6.8425	_	P20	2000	\Box	_	-	-		468.7	472.5	477.6	484.5	485.4	483.5	485.1	485.3	487.2	486.8	486.1	483.2
2000 12 11 11 00 deck 625.5 609.7 592.4 572.2 552.5 530.9 520.9 509.0 485.9 471.9 454.8 2000 12 11 12 00 deck 371.1 406.7 406.1 405.5 415.5 418.8 417.8 423.6 624.3 60.43 2000 12 11 12 00 deck 371.1 406.7 406.1 405.5 415.5 418.8 417.8 423.6 424.3 634.3 1	_							water	235.5	212.8	141.2	71.94	22.68	10.19	8.225	4.500	2.172	1.257	0.5145	0.4566
2000 12 11 12 00 deck 37.1 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 406.7 416.8 417.8 423.6 424.3 431.4 Mater 208.8 159.7 125.3 60.73 31.83 23.93 12.71 7.980 2.720 1.339 0.8425	_	P20	2000		_				625.5	609.7	592.4	572.2	552.5	530.9	520.9	509.0	485.9	471.9	454.8	454.7
2000 12 11 12 00 deck 371.1 403.3 406.7 406.1 405.5 415.5 418.8 417.8 423.6 424.3 431.4 x	-							water	354.8	201.3	102.2	47.56	23.09	11.07	4.054	3.259	1.596	0.8903	0.4327	0.4577
208.8 159.7 125.3 60.73 31.83 23.93 12.71 7.980 2.720 1.339 0.8425	_	P20	2000	\rightarrow		\rightarrow			371.1	403.3	406.7	406.1	405.5	415.5	418.8	417.8	423.6	424.3	431.4	433.6
								water	208.8	159.7	125.3	60.73	31.83	23.93	12.71	7.980	2.720	1.339	0.8425	0.3509

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

Unit: umol/m2/s	10m		1027	0.8983	541.3	09660	480.8	0.1874	331.8	4 0.5876	71.22	0 0.4158												
Unit: u	9m		1045	0.9960	546.4	1.565	451.6	0.2861	319.8	0.1874	71.70	0.3430							_		-			
ļ	8m		1050	2.304	556.3	1.789	450.4	0.7916	324.2	0.1216	72.93	0.3848		_										
	7m		1098	4.770	559.1	2.883	473.4	0.9312	325.9	0.4736	73.51	0.7916												
	em		1042	12.68	564.1	7.009	493.8	1.152	320.1	0.6780	74.16	0.5962												
	m2		7.666	22.49	567.3	13.67	498.7	2.614	335.2	2.263	74.81	0.9063	0.4327	0.02361										
	4m		974.3	35.61	575.1	42.38	513.8	8.276	320.0	5.800	75.15	1.740	0.4816	0.03190										
٥	3т		966.1	116.1	578.9	34.68	8.629	27.78	316.5	21.83	75.39	2.957	0.5145	0.05689										
•	2m		953.2	171.4	9.985	68.26	544.3	11.31	327.8	50.05	96.92	6:636	0.5464	0.1137										
	1m		944.9	350.2	591.8	151.6	554.8	158.5	330.0	112.8	76.44	12.85	0.5882	0.2114										
	0.5m		931.8	450.1	598.8	281.5	573.3	248.2	342.5	170.5	77.18	36.14	0.6281	0.3021				,						
:	0m		927.8	456.2	602.4	316.5	286.2	375.2	350.9	203.9	77.75	14.61	0.6780	0.3589	Raining									
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	
	ш	Min	00		90		8		8		8		00		00		90		00		00		00	_
	SAMPLING TIME	н	13		14		15		16		17		18		07		08		00		10		11	_
		D	11		11		11		=	<u> </u>	=		11		12		12		12		12		12	
	WPI	М	12		12		12		12	<u> </u>	12		12		12		12		12		12		12	
	SA	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	_
ge 16	Point No		P20		P20		P20		P20		P20		P20		P20		P20		P20		P20		P20	
Total Page 16	No		111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in spring tide

0.05612 0.07996 0.03998 1112.0 0.4418 0.3729 0.2033 0.08939 428.4 729.8 1014 449.5 163.8 10m Unit: umol/m2/s 0.06424 0.1219 1019.1 0.2119 0.4829 0.1060 0.6627 428.0 400.4 693.4 406.4 162.2 1.711 1028 9m 0.4918 0.6217 0.4178 1.106 9.068 397.9 0.7777428.9 706.2 160.9 2.965 446.7 1059 1.441 8m 0.9416 0.5318 0.3928 874.6 1.114 406.8 428.7 730.4 2.269 3.554 417.1 2.564 160.0 1052 'n 760.8 850.0 0.7037 1.359 429.3 1.221 3.898 2.522 14.96 418.7 5.406 157.5 51.93 403.1 1082 щ9 0 0.01599 155.6 401.7 3.366 749.6 10.23 807.3 4.807 21.16 396.8 11.67 3.596 52.86 2.424 431.7 1017 7.740 5m 0 0.06497 0.1599 53.66 398.8 8.255 431.2 7.790 761.3 25.06 768.3 6.840 1065 78.21 372.7 19.14 154.2 6.234 7.983 4m 96/6.0 0.1799 51.42 54.37 398.5 17.63 21.23 755.2 19,03 377.9 10.14 429.3 794.1 156.7 39.53 159.2 8.022 1058 3т 0.8516 427.0 754.0 123.6 781.0 0.5151 26.98 55.17 59.54 217.5 374.1 158.7 17.32 56.44 81.23 7.952 396.1 1054 2m 56.46 103.4 756.8 238.3 761.8 230.6 373.6 62.18 0.06011 397.1 79.96 422.3 628.7 182.6 154.2 1.932 8.247 2.030 1055 <u>H</u> 0 0.06564 0.2432 429.6 14.28 8.050 2.744 392.2 290.6 418.1 211.3 751.4 782.4 406.3 379.8 201.8 152.4 78.14 57.22 0.5m872.1 1000 0.08401 Raining Raining 0.02748 7.843 337.6 30.50 412.0 274.5 739.8 727.2 720.3 704.3 614.7 388.6 311.7 152.6 126.5 59.71 6.020 399.3 1045 Æ Depth water water deck water deck water deck water water water water water deck deck deck deck deck deck deck water deck water Min Position 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 13 80 10 11 12 14 16 18 07 2 17 11 11 1 11 11 1 12 12 Ξ 1 1 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Point No P22 Total Page 16 ŝ 135 136 139 133 134 137 138 140 143 145 146 148 149 150 152 141 142 144 147 151 153 154

D

41

Printer:Chen Jian Chang
Checker:Kuang Zheng Chang
Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

Total Page 16	age 16																	Unit: umol/m2/s	ol/m2/s
ž	No Point No		MPI		SAMPLING TIME	1E	Depth	m ₀	0.5m	1m	2m	3m	4m	5m	ш9	7m	8m	ш6	10m
		Y	M	D	н	Min	Y M D H Min Position												
155	P22	2000	12	12 12	60	00	deck	Raining											
156							water	Raining											
157	P22	2000	12	12	12 12 10 00	00	deck	Raining											
158							water	Raining											
159	P22	2000 12 12 11 00	12	12	11	00	deck	Raining											
160							water	Raining		,									

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

Unit: umol/m2/s

Total Page 16

Monitoring 0700~1800 Remark time: 0.6919 0.3918 0.09873 0.02393 B-1m 0.5304 0.1216 0.09770 46.60 0.5053 0.6210 859.6 0.2847 433.6 0,6281 8.668 1356 1134 1327 1522 472.1 0.3998 0.5952 0.7836 0.2363 0.3260 0.1306 0.4736 0.02393 0.6366 45.50 435.1 852.5 1115 0.4327 1013 0.3101 873.6 20m 1241 1258 1298 0.70990.5384 0.9631 0.4656 0.2617 0.09770 0.1466 0.1874 0.8983 882.5 1.404 439.7 1360 9.968 19m 44.87 1097 1134 1002 1.167 505.1 153.3 1377 0.2283 0.5872 0.1874 0.2931 0.2931 0.6361 437.6 886.8 0.5633 0.4247 0.6042 0.2913 44.17 1150 1343 1123 1.086 0.668 1213 504.7 152.4 1464 18m 0.8325 0.5553 0.5484 0.2043 0.4816 0.2283 0.4327 0.70990.3180 0.9222 43.40 429.5 922.3 0.1057 886.1 903.9 1153 1351 154.7 1152 511.1 17m 1541 0.13860.3260 0.1386 0.1715 0.70190.13860.2363 0.4247 428.4 895.6 0.6859 0.1057 42.59 1.135 877.4 1172 1385 1240 1493 904.7 511.7 157.2 16m 0.1795 0.5304 0.4158 0.4975 0.8983 0.4566 0.7507 0.2851 873.0 0.3745 427.0 883.2 0.8086 0.1545 41.99 1383 1284 1147 512.8 1467 15m 1177 164.2 0.8160 0.4158 0.3998 0.7757 0.5055 0.1137 0.2771 425.9 880.00.1386 847.6 0.1216 0.1057 0.1545 40.96 1159 1359 1505 1050 1454 515.0 166.9 14m 0.5543 0.5872 0.4237 0.3509 0.3180 0.5790 0.8245 0.2612 0.1715 0.8973 0.6530 13m 40.42 426.0 913.4 1191 1379 1436 1425 830.7 515.4 167.7 1023 0.2772 0.6770 0.3589 0.5145 0.7346 0.4656 0.2772 0.3998 0.4327 836.7 0.1137 909.3 513.0 39.42 418.2 1.152 12m 1197 1347 1371 1209 1374 167.7 0.2114 0.6361 0.1954 0.23630.4033 0.4566 0.79960.3101 0.2443 0.1137 38.90 901.3 417.2 1.542 11m 1314 872.7 169.8 1205 1344 1308 1319 516.1 Depth water water deck water deck water deck water deck water deck deck water deck water water water deck deck deck Min Position deck 9 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 10 11 12 14 16 07 08 8 13 15 17 14 14 7 7 14 Ω 14 14 4 7 7 1 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 Point No P01 P01 P01 P01 P01 P01 P01P01P01 P01 P01 ž 9 [] 20 7 3 4 9 ∞ 0 걸 1 15 16 17 2 19 21 22

Printer:Chen Jian Chang
Checker:Kuang Zheng Chang
Examiner:Zhong Si Sheng

Continuous point in spring tide

iol/m2/s	Remark			Monitoring	time: 0700~1800																			—
Unit: umol/m2/s	B-1m																							
	20m																							
	19m																							
	18m																							
	17m		0.4088	0.04885																				
	16m		0.4158	0.2552																				
)	15m		0.4816	0.7996																				
•	14m		0.5145	0.04885																				
1	13m		0.5304	0.07975																			•	
	12m		0.5553	0.07278						·														
	11m		0.5952	0.1386																				
	Depth	Min Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	п	Min	80		8		00		00		00		8	-	00		00		8		00		8	\exists
	SAMPLING TIME	Н	18		07		80		60		10		11		12		13		14		15		16	
	ING	D	14		14		14		14		14		14		14		14		14		14		14	
	MPL	M	12		12		12		12		12		12		12		12		12		12		12	
	SAI	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
ge 16	Point No		P01		P11		P11		P11		P11		P11		P11		P11		P11		P11		P11	
Total Page 16	Š		23	24	25	26	27	28	29	30		32	33	34	35	36	37	38	39	40	41	42	43	4

D - 44

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

/m2/s .	Remark					Monitoring	ume: 0700~1800										-							
Unit: umol/m2/s			1	-		Ž	0.1						Ī			\neg		I						
Cnit	B-1m																							
	20m	!																						
	19m																							
	18m					·																		
	17m																							
	16m	:																						
	15m																							
•	14m																							
	13m																	-						
	12m																							
	11m																							
	Depth	Min Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
ŀ	m	Min	00		00		00		00		00		90		00		00		00		00		00	
	SAMPLING TIME	Н	12		13		14		15		16		15		91		17		18		07		80	
	ING	D	13		13		13		13		13		12		12		12		12		13		13	
	MPL	М	12		12		12		12		12		12		12		12		12		12		12	
	SAI	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
e 16	Point No		P12		P12		P12		P12		P12		P19		P19		P19		P19		P19		P19	
Total Page 16	N _O		29	89	69	70	71	72	73	74	75	9/	16	78	6/	80	81	82	83	84	85	98	87	88

D · 46

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

,,

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

. s/zm/lor	Remark					•	Monitoring	0700~1800	•															
Unit: umol/m2/s	B-1m	:																						
	20ш																				į			
	19m																							
	18m																							
	17m													į					409.1	0.03988	349.9	0.1216	506.2	0.03192
	16m																		427.2	0.2203	370.4	0.01595	489.2	0.07278
)	15m																		436.0	0.1715	380.4	0.1057	486.6	0.07275
•	14m					_		:											449.5	0.7757	386.9	0.1464	475.1	0.1715
•	13m																		456.5	0.2033	405.8	0.1534	466.9	0.1137
	12m	÷																	467.7	0.3918	414.2	0.1384	454.3	0.1874
	11m																		476.5	0.4895	428.2	0.1954	448.9	0.3260
	Depth	MinPosition	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	m m	Min	8	-	00		00		00		90		00		90		8		8		00		8	\dashv
	TIM	Н	60	-	10		11		12		13		14		15		16		2		11		12	\dashv
	SAMPLING TIME	D	13		13		13		13		13		13		13		13		=		11		=	
	MPI	M	12		12		12		12		12		12		12		12		12		12		12	
	SA	¥	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
ge 16	Point No		P19		61d		P19		P19		P19		P19		P19		P19		P20		P20		P20	
Total Page 16	Š		89	06	91	92	93	94	95	96	97	86	66	100	101	102	103	104	105	106	107	108	109	110

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

m2/s	Remark							Monitoring	nme: 0700~1800															
Unit: umol/m2/s								W ₀	0700.]					
Unit:	B-1m								:															
	20m														:									
	19m																							
	18m																				:			
	17m		1.086	0.1386	505.1	0.06488	578.4	0.2443	321.7	0.1545	53.07	0.3589												
	16m		1.686	0.1137	510.3	0.1057	529.6	0.4816	338.6	0.2612	47.19	0.1874												
	15m		994.0	0.1137	515.4	0.3260	503.6	0.5553	339.8	0.1795	66.23	0.5055												
	14m		5:566	0.1751	520.3	0.2851	498.0	0.4656	328.2	0.4975	67.38	0.3918												
	13m		998.1	0.2851	526.7	0.2771	485.4	0.1306	327.3	0.1137	68.77	0.3669												
	12m		1004	0.3021	530.6	0.2931	491.6	0.1386	332.0	0.1057	69.51	0.2941												
	11m		1010	0.5384	535.2	0.4816	494.2	0.4736	336.5	0.2443	99.02	0.4078												
	Depth	Min Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	(II)	Min	8		00		00		00		00		8		00		00		00		00		8	
	SAMPLING TIME	н	13		14		15		16		17		18		07		80		60		10		=	
	ING	α	=		11		11		11		11		=		12		12		12		12		12	
	MPL	M	12		12		12		12		12		12		12		12		12		12		12	
	SA	Y	2000		2000		2000	_	2000		2000		2000		2000		2000		2000		2000		2000	_
e 16	Point No		P20		P20		P20		P20		P20		P20		P20		P20		P20		P20		P20	
Total Page 16	No		111	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128	129	130	131	132

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

. s/Zm/lo	Remark	Inclination	, ,							Monitoring	0700~1800	•						_							
Unit: umol/m2/s	R.1m	יווז-מ																							
	20m	707																							
	10m	III																							
	18m	IIIOT																							
	17m	111/1																							
	16m	1101																			_				
	15m	11101																							
	1.7m	#																							
	13m	17111																							
	12m	1171		395.7	0	423.7	0.03188	644.2	0.04821	845.8	0	8.966	0.3678												
	11m	11177		397.5	0.01599	427.0	0.03998	707.0	0.08827	949.8	0.007998	9.986	0.6707	465.8	0	170.8	0								
	Depth	/	Min Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	E		Min	00		00		00		8		00		00		000		8		8		8		8	
	TIM		Н	10		11		12		13		14		15		16		17		18		07		90	
	ING		D	11		11		11		11		11		11		11		11		11		12		12	
	SAMPLING TIME		M	12		12		12		12		12		12		12		12		12		12		12	
	SA		Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
ge 16	Point No	ONI HITO I		P22		P22		P22		P22		P22		P22		P22		P22		P22		P22		P22	
Total Page 16	Ż	2		133	134	135	136	137	138	139	140	141	142	143	144	145	146	147	148	149	150	151	152	153	154

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in spring tide

Unit: umol/m2/s .

Total Page 16	age 16																	Unit: u	Unit: umol/m2/s
Š	No Point No		MPI	SAMPLING TIME	TIM	臣	Depth	11m	12m	13m	14m	15m	16т	17m	18m	19m	20m	B-1m	Remark
·		¥	М	D	н	Min	Y M D H Min Position												
155	P22	2000 12 12 09	12	12	66	00	deck												
156							water												
157	P22	2000 12 12 10 00	12	12	10	00	deck												
158							water												
159	P22	2000 12 12 11 00	12	12	11	00	deck												
160							water												

16 - 16

Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng Printer:Chen Jian Chang

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

0.1216 0.04885 0.2612 0.4895 0.4652 0.481631.40 392.0 430.7 0.8664 0.906 9808.0 441.2 116.6 0.1954 1195 1379 1430 1.806 1.340 1503 1129 10m Unit: umol/m2/s 0.07975 0.2203 0.3998 0.13160.8166 0.9472 0.3749 30.10 3668 0.5421 9.928 446.0 483.1 1188 1375 1433 119.3 1508 1.004 1136 1.307 1.062 9m 0.13960.07975 0.1625 0.8425 0.5633 0.5065 0.1067 484.8 28.69 397.7 1380 1.013 1.119 865.0 446.7 119.8 1428 1.882 1.095 1191 1511 1134 8m 0.1954 0.4407 0.6042 0.22830.1625 0.2114 0.9063 406.8 482.8 27.53 1178 1378 3.152 1.167 2.778 865.2 1.838 448.4 118.6 1431 1507 1127 7m 0.2114 0.5065 0.7348 0.2532 0.4158 0.1715 0.8006 418.6 530.7 26.65 1164 1360 1430 6.780 4.134 860.2 449.2 121.2 1506 1130 4.984 2.802 6m 0.2203 0.2034 0.7996 0.4078 419.8 1.119 533.8 0.5801 17.45 1.740 448.9 1.070 25.41 1087 1358 1434 1500 1125 10.65 861.1 4.184 121.1 5m 0.3340 549.9 0.8654426.2 1.069 1.586 850.7 1.951 1439 51.64 1.658 17.42 861.8 7.967 449.7 3.195 121.3 24.61 1401 1137 1.291 1491 4_m 0.4078 573.9 428.4 2.458 4.026 3.544 143.6 857.8 450.0 122.0 23.90 770.1 4.654 2.296 47.95 14.50 1.552 1409 1494 1140 1444 7.681 3m 0.7181 423.8 18.26 670.4 15.40 7.782 593.3 21.86 245.9 3.015 23.22 1439 1440 132.4 861.1 38.83 450.4 21.76 122.7 6.880 1494 1136 2m 422.7 31.38 637.8 106.4 621.4 36.59 137.0 22.69 2.328 1450 508.3 3.348 301.2 2.698 183.1 451.0 123.8 16.92 1409 1498 1135 61.34 1m 416.3 120.9 673.4 243.8 815.0 52.44 492.6 561.6 291.9 22.04 7.722 1419 124.6 761.1 3.366 873.4 452.5 152.4 42.88 0.5 m1463 1505 1133 645.6 409.4 944.0 290.1 296.3 951.5 21.66 107.3 1310 749.2 878.2 425.6 253.2 123.7 74.42 13.71 1449 1510 457.4 1081 1068 1135 E) Depth water water water water water water water water deck deck deck deck water water deck deck deck deck deck water deck deck Position Min 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 10 12 13 7 15 16 H 07 80 8 Ξ 17 80 Ω 80 80 80 80 80 80 80 8 8 80 12 12 12 12 12 12 12 12 12 15 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 > No Point No P01 P01 P01 P01 PO <u>1</u> P01 P01 P01 P01 P01 P01 Total Page 16 61 10 15 16 = 7 13 17 <u>∞</u> 3 Ś 9 00 6 7 20 N 4 7 22

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in neap tide

۰۲			\neg																					
Unit: umol/m2/s	10m																							!
Unit: ur	9m																							
	8m						283.4	0.0809	670.5	0.07564	849.3	0.2928	9.688	1.800										
•	7m				11.17	0.1329	276.9	0.3595	658.3	1.008	841.6	0.3648	931.7	4.603	1094	0.4169	1100	0.04896	1159	0.5783	610.3	1.220	430.8	1.094
	ш9				11.09	0.1415	277.6	1.325	654.7	2.228	843.5	1.718	928.0	11.37	1095	1.597	1093	0.9496	1156	0.8322	617.1	2.736	435.9	5.234
	Sm		0.07278	0.002396	11.11	0.1415	280.1	2.858	649.4	5.234	829.1	5.472	945.9	26.41	1085	7.028	1097	5.741	1182	1.441	687.3	4.926	439.7	14.92
	4m		0.07278	0.006490	11.07	0.3847	277.6	6.635	635.4	10.33	826.7	14.09	957.9	54.91	1083	35.10	1001	22.08	1185	2.976	663.4	10.77	438.2	32.65
	3m		0.08973	0.007975	11.08	0.7068	273.4	18.68	636.3	23.89	814.6	42.67	972.3	118.2	1081	53.04	1084	49.57	1185	4.373	681.7	22.52	437.8	59.94
	2m		0.1057	0.03189	10.89	1.601	272.7	33.36	623.7	43.55	822.7	116.9	965.4	136.8	1088	114.0	1077	64.62	1188	19.55	657.8	38.15	440.1	134.5
-	18		0.1057	0.03988	10.86	2.928	265.1	50.18	623.7	69.12	815.0	361.9	938.7	163.5	1089	169.9	1069	105.8	1190	29.81	681.3	72.14	440.9	272.2
	0.5m		0.1216	0.05863	10.83	4.377	280.6	59.44	629.8	89.42	811.8	529.3	919.4	542.6	1081	194.4	1078	144.0	1184	87.14	705.0	104.5	454.6	337.5
	0m		0.1386	0.08973	10.52	5.594	267.8	86.92	606.4	122.0	800.2	0'699	921.0	932.7	1075	246.0	1087	220.2	1187	135.2	657.8	119.3	458.0	563.4
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
		Min	00		00		00		00		00		00		00		00		00		00		00	
	SAMPLING TIME	Н	18		07		80		60		10		11		12		13		14		15		16	
	ING	D	80		80		80		80		80		08		80		80		80		80		80	
	AMPI	Σ	12		12		12		12		12		12		12		12		12		12		12	
	Š	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
ıge 16	Point No		P01		P11		P11		P11		11 d		P11		P11		P11		P11		P11		P11	
Total Page 16	No		23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Total Page 16

Continuous point in neap tide

Unit: umol/m2/s

No	Point No		ЗАМ	SAMPLING TIME	G TIP	ME	Depth	ш0	0.5m	1m	2m	3т	4m	5m	w9	7m	8m	9m	10m
_		Y	M	D	H	Min	Position							-					
45	P11	2000) 12	2 08	17	00	deck	146.7	147.0	147.3	147.0	146.0	144.4	143.8	142.5				
46							water	118.0	95.40	68.38	37.36	16.61	5.070	1.040	0.5158				
47	P11	2000	12	2 08	18	00	deck	0.7818	0.7350	9269.0	0.6835	0.6509	0.6412						
48							water	0.6877	0.6057	0.4748	0.1469	0.4462	0						
49	P12	2000	12	2 06	15	00	deck	847.0	834.0	832.4	816.0	819.4	822.6	825.8	823.4	821.8	812.8	802.9	789.4
50							water	298.0	430.0	243.7	110.6	50.02	20.12	10.78	5.865	2.254	0.5872	0.2034	0.1831
51	P12	2000) 12	90 7	16	00	deck	433.3	425.1	393.8	381.5	376.6	377.4	381.9	373.4	370.7	381.3	379.6	371.7
52							water	389.1	230.4	147.5	19:89	31.84	15.27	14.06	7.518	3.962	2.108	1.299	1.004
53	P12	2000) 12	2 06	17	00	deck	134.4	132.8	131.6	130.2	128.6	127.6	126.3	124.7	122.6	120.2	118.3	116.5
							water	77.82	53.94	35.92	19.03	7.916	2.247	0.4975	1.465	0.5793	0.6451	0.4656	0.4247
53 53	P12	2000) 12	2 06	18	00	deck	0.4158	0.3749	0.3430	0.3260	0.2851	0.2692	0.2522	0.2124	0.2034	0.1874	0.1545	0.1466
99							water	0.1795	0.1306	0.08075	0.1514	0.03988	0.06580	0.007975	0.02393	0.07278	0.05682	0.08175	0.03679
57	P12	2000) 12	2 07	07	00	deck	16.24	16.71	17.19	17.65	18.16	18.56	19.20	16.61	20.18	20.80	21.47	21.88
58							water	7.822	5.854	4.011	1.616	0.7507	0.3589	0.3342	0.1306	0.1795	0.04855	0.08933	0.04855
59	P12	2000	12	2 07	08	00	deck	243.3	245.7	247.4	250.2	251.6	263.2	259.1	256.9	261.9	256.7	257.3	257.9
09				_			water	146.8	104.7	67.94	37.65	14.92	6.649	2.990	1.535	0.7587	0.3430	0.1306	0.04855
61	P12	2000) 12	2 07	00	8	deck	577.3	578.2	581.4	577.6	589.8	595.4	607.6	605.5	616.4	632.9	646.3	676.1
62							water	346.5	277.7	160.4	95.95	50.86	24.38	16.47	10.72	6.525	3.822	2.099	0.1954
63	P12	2000) 12	2 07) 10	00	deck	819.9	839.5	855.0	816.6	827.3	812.6	793.7	778.3	780.8	785.6	794.6	810.0
2							water	598.8	474.7	323.4	174.3	101.5	56.10	31.62	18.61	10.67	3.471	0.3260	0.2851
65	P12	2000) 12	2 07	11	8	deck	1631	2127	2170	2138	1477	1601	1411	1566	1388	1358	1108	1688
99							water	1281	1129	726.1	380.8	123.8	73.91	35.91	18.91	5.686	1.814	0.7348	0.1306

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in neap tide

\rfloor			Danth											Unit: umol/m2/s	. s/zw/lou
			<u> </u>	0	0.5m	1m	2m	3m	4m	Sm	ę, m	7m	8т	m6	10m
sition	Min Position	Position													
deck 1654			1654		1665	1653	1657	1644	1624	1626	1634	1643	1637	1625	1614
water 1233			1233		870.8	624.8	364.6	162.9	94.10	39.12	8.863	3.848	0.8348	0.5962	0.2363
deck 1237			1237		1218	1201	1206	1191	1208	1194	1206	1210	1209	1171	1246
water 1227			1227	_	1042	786.4	782.0	360.0	169.2	60.09	15.01	8.268	4.428	2.524	1.364
deck 945.9			945.9	-	946.1	940.3	942.0	940.3	937.0	932.2	938.2	934.8	938.6	933.0	919.9
water 925.0			925.0	\vdash	446.1	202.9	31.02	11.39	6.971	1.610	0.5882	0.2532	0.1057	0.07278	0.05632
deck 611.8			611.8		564.4	573.7	552.3	543.2	540.2	543.1	476.2	468.5	475.5	474.4	476.3
water 274.6			274.6		272.0	280.1	79.82	24.64	11.07	6.790	4.265	2.680	2.001	1.365	0.8415
deck 321.8			321.8		322.1	314.5	314.0	317.6	317.1	309.7	313.0	311.9	310.1	311.0	308.0
water 171.6			171.6		149.2	101.6	49.82	30.76	16.02	5.294	1.111	0.6291	0.3509	0.2369	0.05692
deck 692.9			692.9		707.5	693.6	700.9	705.6	691.6	688.2	698.2				
water 689.1			689.1		549.3	358.8	176.8	100.3	53.20	26.91	11.39				
deck 435.9			435.9		429.8	441.7	433.1	428.4	438.2	448.3	422.6				
water 535.9			535.9		377.6	303.1	174.9	102.1	99.95	32.81	11.83				
deck 90.55			90.55		93.60	96.54	97.29	92.51	94.76	91.39	90.18	91.34			
water 133.0			133.0		101.2	72.48	49.77	25.38	15.12	7.661	3.964	1.506			
deck 0.05612			0.05612		0.1683	0.1497	0.1446	0.1309	0.1263	0.1217	0.1074		}		
water 0.1879			0.1879		0.1019	0.03196	0.02341	0.02324	0.007865	0.05698	0.02482				
deck 20.32			20.32		20.39	21.03	20.98	21.14	21.37	21.35	21.54			_	
water 15.94			15.94		8.533	10.48	5.602	3.112	1.719	0.9416	0.5398				
deck 93.12			93.12	-	92.99	107.6	104.8	108.3	109.0	115.5	114.6				
water 90.82			90.82		73.78	55.55	34.19	18.31	8.110	3.308	1.351				

D · 54

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in neap tide

0.8485 1.699 1272 1.814 1391 1487 10m Unit: umol/m2/s 2.490 788.1 2.533 1265 1428 2.621 9 2.638 5.122 5.440 1389 1519 1262 8m 8.215 1246 1405 3.903 1529 9.622 7m 848.9 18.08 988.7 9.762 7.788 721.0 24.02 440.6 17.33 1542 17.82 357.0 5.478 495.2 7.125 12.55 14.60 24.67 1258 4.460 1045 1382 6m 0.966 93.6 647.0 573.3 437.4 30.83 5.438 27.29 29.84 813.7 18.51 45.86 30.91 340.3 8.625 546.9 11.05 1015 26.61 1259 1356 1528 Sm 988.6 812.2 863.9 451.3 82.54 6.420 593.2 972.5 55.82 42.95 518.3 71.77 54.74 15.94 30.98 69.11 55.81 1257 1424 1520 340.1 1018 4m 135.8 447.6 134.5 119.4 9.688 116.0 918.6 103.4 100.3 791.7 101.4 692.5 1235 9.600 133.4 51.74 489.7 1000 1434 1529 338.7 69.77 3ш 443.8 546.0 130.9 205.6 926.3 193.9 189.6 810.8 262.5 699.3 242.8 186.4 253.6 81.74 859.1 999.4 217.7 9.974 337.0 1303 1426 1515 2m432.5 721.4 354.6 440.6 261.5 1311 441.2 173.0 314.8 831.6 276.8 944.8 339.2 346.7 803.4 10.26 672.1 326.4 602.1 1009 1456 1553 Ħ 324.6 808.4 724.0 559.5 363.6 532.4 784.7 405.4 959.4 1010 454.3 440.2 397.3 1276 703.7 12.54 1092 322.5 219.7 432.1 1442 1554 0.5m 583.9 6.896 804.8 629.1 695.3 770.6 593.8 569.4 916.8 359.3 455.2 332.8 296.1 502.1 750.1 1026 1252 1254 1448 14.68 1522 1183 EO Depth water deck Position Min 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 10 Ξ 13 14 15 16 10 1 12 Ħ 12 8 S 05 05 03 0 0 07 07 0 0 03 Д 12 12 12 12 12 2 12 12 7 7 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 × Point No P20 P20 P19 P19 P19 **P**19 P19 P19 P19 P19 P20 Total Page 16 105 107 109 ŝ 100 101 102 103 104 106 108 110 68 93 95 4 66 90 92 46 86 96 91

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in neap tide

Total P	Total Page 16																	Unit: umol/m2/s	ol/m2/s
Ž	Point No		AMP	SAMPLING TIME	TIN	Æ	Depth	0m	0.5m	m1	2m	3m	4m	Sm	em	7m	8m	m6	10m
		¥	М	D	Н	Min	Position												
111	P20	2000	12	05	13	00	qeck	1505	1514	1507	1502	1516	1502	1519	1523	1514	1436	1400	1466
112			<u>. </u>				water	1148	1076	699.1	305.8	166.3	86.02	48.50	29.86	16.73	10.59	6.446	3.692
113	P20	2000	12	05	14	00	deck	1202	1177	1197	1195	1189	1198	1209	1199	1176	1162	1175	1166
114							water	1078	863,4	622.4	336.3	181.9	171.8	71.18	43.95	25.26	16.95	10.94	7.369
115	P20	2000	12	05	15	8	deck	0.666	925.4	934.4	930.2	921.3	913.3	8.106	890.4	882.4	884.7	880.6	883.8
116		_					water	487.6	433.0	196.4	103.2	41.14	22.58	11.77	6.436	2.933	2.590	1.618	0.7916
117	P20	2000	12	05	16	00	deck	590.8	590.5	590.6	9.965	592.7	585.4	585.2	582.0	565.1	564.1	560.5	553.8
118			<u> </u>		<u> </u>		water	578.3	352.2	209.4	29.06	34.46	12.68	7.128	7.012	3.856	1.464	09660	0.4078
119	P20	2000	12	05	17	00	deck	119.1	118.4	117.4	116.8	112.7	112.8	109.5	105.9	103.4	91.58	88.61	82.01
120							water	145.2	86.50	60.83	24.11	11.28	7.164	4.092	2.002	1.348	0.5882	0.3430	0.2931
121	P20	2000	12	05	18	00	deck	0.5872	0.5474	0.4975	0.4487	0.4158	0.3509	0.3269	0.2851	0.2772	0.2612	0.2363	0.2124
122	-						water	0.4158	0.3266	0.2497	0.2432	0.1795	0.03988	0.1057	0.08057	0.03190	0.09770	0.06480	0.02493
123	P20	2000	12	90	07	00	deck	24.21	25.32	27.70	28.41	29.45	30.12	30.70	32.08	32.97	33.78	34.92	35.86
124							water	16.00	12.40	11.06	5.201	3.117	2.082	1.152	0.7428	0.5304	0.3918	0.2363	0.2114
125	P20	2000	12	90	08	00	deck	259.8	379.2	360.2	400.0	385.0	387.0	386.0	369.7	376.5	377.0	368.8	369.5
126							water	399.7	250.6	220.2	93.90	51.62	30.72	19.06	13.07	8.241	5.16	3.193	2.164
127	P20	2000	12	90	60	00	deck	9.289	8.069	729.1	727.5	722.5	723.4	713.7	706.3	703.1	725.1	695.7	713.7
128							water	596.6	482.9	174.8	80.51	40.62	17.34	8.290	4.606	1.927	1.216	1.111	0.6042
129	P20	2000	12	90	10	00	deck	749.8	738.4	675.4	710.4	674.5	673.3	621.4	622.3	620.9	738.8	681.1	723.6
130							water	733.3	443.5	306.3	233.1	138.7	76.36	51.58	48.16	42.76	24.78	24.17	14.32
131	P20	2000	12	90	11	8	deck	1433	1379	1361	1374	1364	1303	1398	1397	1371	1382	1394	1421
132							water	1181	1092	757.2	490.9	317.7	185.2	128.0	80.04	50.96	31.52	20.74	12.38

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in neap tide

Total Page 16	age 16									•		•						Unit: umol/m2/s	ol/m2/s
S _O	Point No		4MP	SAMPLING TIME	TIM	田	Depth	Om	0.5m	1m	2m	3m	4m	5m	еш	7m	8m	ш6	10m
		Y	Σ	D	Н	Min	Position												
133	P22	2000	12	05	10	00	deck	856.4	881.4	901.4	888.5	830.2	861.1	915.9	845.6	890.4	961.3	885.7	919.7
134							water	632.1	602.3	372.1	271.4	124.5	74.75	45.94	33.94	21.18	9.697	7.959	4.654
135	P22	2000	12	05	11	00	deck	1046	1082	1082	1100	1103	1099	1100	1086	1036	1088	1150	1086
136							water	1019	705.9	508.8	288.6	116.2	106.7	48.76	24.45	12.39	8.625	7.231	3.232
137	P22	2000	12	0.5	12	06	deck	1287	1274	1291	1292	1285	1276	1283	1291	1288	1299	1294	1305
138							water	1053	705.9	472.4	2.77.2	153.5	84.48	49.88	29.00	15.18	7.745	6.341	3.226
139	P 22	2000	12	05	13	00	deck	1153	1128	1127	1128	1114	1128	1157	1160	1167	1175	6/11	1156
140							water	1133	754.3	472.6	218.3	134.2	80.78	39.42	27.62	18.20	14.00	7.528	5.398
141	P22	2000	12	05	14	00	deck	875.1	8'606	876.5	6'068	863.4	893.7	6.906	899.4	821.5	878.3	883.8	824.1
142							water	849.9	5.999	578.2	270.5	89.41	47.13	28.19	14.12	8.784	3.407	2.015	1.227
143	P22	2000	12	0.5	15	96	deck	284.0	270.0	261.5	274.1	313.1	534.0	530.4	614.2	612.5	625.1	602.9	645.2
144							water	327.9	354.9	195.7	103.2	92.44	44.18	30.85	15.98	11.51	4.463	2.063	1.383
145	P22	2000	12	05	16	90	deck	528.1	489.7	538.4	532.6	471.9	424.6	482.5	421.8	481.4	474.7	458.8	499.6
146							water	673.1	524.0	377.8	191.4	101.5	51.26	30.88	19.02	11.20	6.011	3.014	1.367
147	P22	2000	12	05	17	8	deck	132.8	139.1	132.9	134.9	131.5	131.3	128.1	123.0	126.7	121.7	123.2	121.4
148							water	155.4	149.0	100.6	53.99	23.81	12.72	10.19	5.832	3.866	1.826	1.285	0.5977
149	P22	2000	12	05	18	00	deck	1.428	1.363	1.311	1.278	1.241	1.217	1.161	1.124	1.109	1.002	0.9596	0.9133
150							water	1.400	1.007	0.7289	0.2859	0.1799	0.3928	0.1598	0.02399	0.02996	0	0	0
151	P22	2000	12	90	07	00	deck	11.17	11.42	11.58	11.84	12.13	12.15	11.38	10.32	9.234	9.445	9.334	10.85
152							water	10.45	8.510	7.116	3.146	1.801	0.9656	0.7777	0.7207	0.2699	0.1148	0.09096	0.8086
153	P22	2000	12	90	80	8	deck	197.5	190.4	215.4	191.4	200.8	204.5	212.0	218.8	220.5	220.7	219.4	193.4
154							water	323.2	301.0	152.3	100.6	26.67	33.93	22.80	15.27	9.864	6.250	2.989	1.857

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

Continuous point in neap tide

Unit: umol/m2/s .

Total P	Total Page 16						i											Unit: umol/m2/s	nol/m2/s .
		ý.	SAMPI ING TIME	N.		Ē.	Depth												
Š.	No Point No					.		0m	0.5m	1m	2m	3т	4m	5m	em	Jm	8m	ш6	10m
		>	Υ	Ω	н	Min	H Min Position												
155	P22	2000	12	90	60	00	deck	556.4	574.8	477.6	518.3	547.8	487.7	517.4	532.1	512.2	479.4	517.4	514.6
156							water	497.8	385.7	238.8	218.9	126.8	75.1	50.46	32.25	16.86	8.245	5.331	3.612
157	P22	2000	12	12 06	10	00	deck	983.2	991.0	998.2	965.4	932.2	980.5	947.8	958.1	975.1	944.7	931.8	925.7
158							water	1069	759.4	539.3	321.7	121.4	112.3	83.06	50.88	31.42	23.64	10.53	8.150
159	P22	2000 12 06	12	90	11	11 00	deck	1133	1125	1150	1106	1058	1058	1106	1122	1118	1059	1103	1096
160							water	1287	1060	733.4	459.0	364.4	243.3	166.5	118.5	78.7	59.57	45.4	33.76

16.8

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in neap tide

Monitoring 0700~1800 Remark Unit: umol/m2/s time: 0.07586 0.04808 0.07278 0.1715 0.03988 0.1137 B-1m 43.13 0.01488 0.03988 0.8933 0.4566 0.1954 861.9 450.3 1415 1410 1117 421.1 106.1 433.4 1194 1489 0.03988 0.08075 0.08972 0.02393 0.08973 0.09770 0.02393 0.2179 0.5200 0.2116 0.4736 7.7.7 867.2 107.2 432.2 1173 1405 1492 44.31 1423 1128 422.1 20m 0.07975 0.07278 0.01595 0.4012 0.1466 0.1057 0.1625 0.6700 0.3883 0.1175 0.1446 431.0 546.2 872.4 415.6 44.75 1490 1126 106.2 1179 1392 1427 19m 0.03988 0.07975 0.2772 0.1505 0.1795 0.3021 0.1957 0.2283 0.1725 0.1386 0.4168 872.6 442.9 423.6 1200 1388 1437 1492 416.7 108.4 44.62 1131 18m 0.05682 0.06480 0.5065 0.8903 0.1306 0.1715 0.13860.1545 0.1057 0.4487 0.2393 871.7 109.6 439.0 299.3 415.4 1442 1130 43.60 1179 1379 1501 17m 0.6610 0.1795 0.03190 0.03190 0.5881 0.3669 0.1545 0.3918 0.2203 866.0 0.1137 280.8 1.299 445.3 1185 1133 424.2 110.7 42.08 1362 1448 1501 16m 0.01595 0.08933 0.2443 0.2203 0.05682 0.3918 0.1057 0.1147 0.7507 0.3981 111.8 444.7 253.4 1445 869.3 1.062 429.1 39.90 1189 1352 1134 1497 15m 0.02393 0.06480 0.3010 0.2696 0.7757 0.2443 0.1715 0.48610.5304 0.1057 435.4 0.4237 1111 432.2 112.7 288.1 1182 1371 1438 874.1 37.61 1497 14m 0.03988 0.01595 0.1446 0.4486 0.1386 0.2851 0.3998 436.5 0.1466 0.2851 294.4 0.6221 0.7361 397.2 1366 877.4 113.3 35.82 1191 1432 1480 1125 13m 0.01595 0.4812 0.08973 0.3269 0.2046 0.4156 0.6451 0.5394 0.3883 0.1466422.6 1.070 34.50 385.5 875.7 437.1 113.7 1379 1428 1132 1208 1503 12m 0.03190 0.2851 0.2692 0.3340 0.14460.5916 0.7109 0.9080 0.6201 0.1057 33.19 387.7 429.1 1378 1426 1504 1.013 888.0 440.8 115.3 1200 1126 11m Depth water water water water water water water water water deck deck deck deck water water deck deck deck deck deck deck deck Position Min 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME 11 16 10 13 15 Η 12 7 17 07 08 8 8 88 80 80 80 80 80 Ω 8 80 80 80 12 12 12 17 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 × Point No P01 Total Page 16 ŝ 13 15 19 17 20 10 Ξ 38 7 4 16 **C**1 m 4 Ś 9 œ 6 2 22

Printer:Chen Jian Chang Checker:Kuang Zheng.Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

	Remark			Monitoring	0700~1800																			
	B-1m																							
	20m																							
	19m																							
	18m		•										:											-
	17m																							
	16m																							
	15m												İ											
	14m																							
	13m	_																						-
	12m																							
	11m																							
	Depth	Position	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water	deck	water
	n n	Min	00		8		00		00		00		8		00		00		00		00		00	
	TIM]	Н	18		07		08		60		10		11		12		13		14		15		16	
	SAMPLING TIME	q	80		80		80		80		80		90		80		80		08		08		80	
	\MPI	M	12		12		12		12		12		12		12		12		12		12		12	
	'S	Y	2000		2000		2000		2000		2000		2000		2000		2000		2000		2000		2000	
1gc 10	Point No	•	P01		P11		P11		P11		P11		P11		P11		P11		P11		P11		P11	
total Fage 10	No		23	24	25	56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

time: 0700~1800 Monitoring Remark Unit: umol/m2/s B-1m 20m 19m 18m 17m 16m 15m 14m 0.02493 0.008972 0.08075 0.05393 0.08973 0.1057 0.3595 374.6 110.1 786.7 13m 0.2034 0.4078 0.1137 780.0 376.1 111.6 0.2283 1115 12m 0.1386 0.1306 0.02763 0.9551 0.1795 0.02483 0.04885 373.0 780.8 113.2 0.1137 0.1316 0.3304 260.3 848.4 22.61 842.7 1586 11mDepth water water water water water water water water water water water deck deck deck deck deck deck deck deck deck deck deck Min Position 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME Н 17 17 18 15 10 16 18 1 07 8 8 98 80 90 90 90 90 07 02 03 03 07 Ω 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 > Point No P12 P12 P12 P12 P12 P12 P12 P12 P12 PII P11 Total Page 16 ŝ 45 46 49 20 51 59 63 47 48 52 53 55 57 65 56 58 9 61 62 4 54 99

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

la /										Depth									:			Ount: union/mz/s
11m 12m	11m	11m	11m	11m	11m	11m	11m	11m	11m		12m		13m	14m	15m	16т	17m	18m	19m	20m	B-1m	Remark
, u	n Position	Min Position	H Min Position	-	н	н	-	-	n Position													
sk 1632	deck	00 deck	12 00 deck	00 deck	12 00 deck	12 00 deck	12 00 deck	00 deck	deck	1632												······································
er 0.1795	water 0.1795									0.1795												
sk 1221	deck	00 deck	13 00 deck	00 deck	13 00 deck	13 00 deck	13 00 deck	00 deck	deck	1221												
ter 0.7594	water 0.7594									0.7594			·		3							Monitoring
ck 918.2	deck	00 deck	14 00 deck	00 deck	14 00 deck	14 00 deck	14 00 deck	00 deck	deck	918.2		916.7									_	0700~1800
ter 0.03192	water 0.03192									0.03192		0.007091										
ck 466.7	deck	00 deck	15 00 deck	00 deck	15 00 deck	15 00 deck	15 00 deck	00 deck	deck	466.7		427.2										
ler 0.5882	water 0.5882									0.5882		0.3918								ì		
ck 304.2	deck	00 deck	16 00 deck	00 deck	16 00 deck	16 00 deck	16 00 deck	00 deck	deck	304.2												
ter 0.03190	water 0.03190									0.03190												
ck) deck	00	15 00	00	15 00	15 00	15 00	00	_													
ler	water	water	water	water	water	water	water	water	water		\rightarrow											•
ck) deck	00	16 00	00	16 00	16 00	16 00	00			$\overline{}$											1
ter	water	water	water	water	water	water	water	water	water		$\overline{}$								ļ			
çk) deck	00	17 00	00	17 00	17 00	17 00	00								-						1
ler	water	water	water	water	water	water	water	water	water		-											
ck) deck	00	18 00	00	18 00	18 00	18 00	00	_													
ter	water	water	water	water	water	water	water	water	water													
ck) deck	00	00 00	00	00 00	00 00	00 00	00														1
ter	water	water	water	water	water	water	water	water	water													F
 ck) deck	00	00 80	00	00 80	00 80	00 80	00						Ì								 -
ter	water	refers	rotori	29000	_				_	_					•							

D - 62

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

time: 0700~1800 Monitoring Remark Unit: umol/m2/s B-1m 20m 19m 18m 0.09770 0.3180 0.2772 1396 1519 17m 1219 0.5105 0.2114 0.1625 1139 1480 1397 16m 0.1795 0.1306 0.1057 1226 15m 1391 1491 0.6144 0.2443 0.2772 14m 1264 1371 1459 0.8180 0.3998 0.3838 1268 1379 1450 13m 0.6690 0.5713 0.6361 1284 1447 12m 1401 0.7507 0.9392 1386 1.094 1455 1304 11m Depth water water water water water water water water water water water deck deck deck deck deck deck deck deck deck deck deck Position Min 8 8 8 8 8 8 8 8 8 8 8 SAMPLING TIME H 10 15 16 10 12 Ξ 12 13 7 8 Ξ 07 0 07 07 07 0 0,7 05 05 9 07 Ω 12 12 12 12 12 12 12 12 12 12 12 Σ 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 > Point No. P19 P19 P19 P20 P20 P19 P19 P19 P19 P19 P20 Total Page 16 S S 102 103 105 106 107 108 109 100 101 104 95 26 66 88 92 93 94 96 98 9 91

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

Total P	Total Page 16																	Unit: ur	Unit: umol/m2/s .
N _o	Point No		AMP.	 - -	SAMPLING TIME	旦	Depth	11m	12m	13m	14m	15m	16m	17m	18m	19m	20m	В-1ш	Remark
		Y	M	D	Н	Min	Position												
111	P20	2000	12	05	13	00	deck	1487	1485	1490	1470	1484	1480						
112							water	2.507	1.609	1.070	0.8903	0.4895	0.2532						
113	P20	2000	12	05	14	00	deck	1159	1152	1144	1169	1160	1176						
114							water	4.762	2.998	1.944	1.127	0.7836	0.4078						
115	P20	2000	12	05	51	00	deck	873.3	888.8	891.2	892.2	894.4							
116							water	0.5872	0.4816	0.3759	0.3701	0.1795							Monitoring
117	P20	2000	12	05	16	00	deck	549.2	549.5	549.5	536.8	521.8							time: 0700~1800
118							water	0.3012	0.2815	0.1795	0.2283	0.03193							
119	P20	2000	12	05	17	00	deck	79.36	74.82	72.86	71.06								
120							water	0.1625	0.1792	0.1602	0.1057								
121	P20	2000	12	05	18	90	deck	0.2034	0.1715	0.1545	0.1306	0.1216	0.1137	0.08973					
122							water	0.02393	0.02154	0.09770	0.05688	0.01598	0.02851	0.02445					
123	P20	2000	12	06	07	00	deck	36.95	37.82	39.08	39.99	41.36	42.75	45.00					
124							water	0.1715	0.1057	0.1306	0.09770	0.2522	0.1625	0.3589					
125	P20	2000	12	90	08	8	deck	364.3	349.9	350.3	340.4	349.4	350.3	358.5					
126							water	1.478	1.143	0.8574	0.5145	0.3260	0.2522	0.2363					
127	P20	2000	12	90	60	00	deck	698.2	712.0	755.3	787.2	778.2	793.0						
128							water	0.4816	0.3589	0.3340	0.2522	0.1795	0.1545						
129	P20	2000	12	90	10	99	deck	748.9	865.7	918.6	871.4	897.5	113.8						
130							water	10.14	7.016	4.458	2.434	1.127	1.054						
131	P20	2000	12	99	Ξ	90	deck	1437	1427	1409	1386	1386	1380						
132							water	7.134	4.076	2.312	1.200	0.8166	0.6610						
																			ı

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in neap tide

Printer:Chen Jian Chang Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng

LIGHT QUANTUM DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY

Continuous point in neap tide

Total Page 16	age 16																	Unit: u	Unit: umol/m2/s
		3				ŗ	Depth												
oN.	No Point No		SAMPLING HME	רוואכ) IIIW	<u> </u>		11m	12m	13m	14m	15m	16m	17m	18m	19m	20m	B-1m	Remark
		Y	M	D	Н	Min	Y M D H Min Position												
155	P 22	2000	12	06	60	00	deck	517.0	478.4										
156							water	1.179	0.9032										
157	P22	2000 12 06 10 00	12	90	10	00	deck	892.9	905.7										
158							water	4.520	1.090							1			 1
159	P22	2000 12 06 11 00	12	90	11	00	deck	1089	1140	1092									
160							water	26.49	16.72	8.363									

16 - 16

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in spring tide

Total page: 6

			1		Т					т				<u> </u>			-			_
NO ₂ -N (ug/dm³)		0.5	118.5	121.4	119.3	64.0	62.1	26.8	27.9	29.8	94.8	96.5	95.6	95.1	92.6	95.1	71.8	72.2	69.4	73.9
SiO ₂ -Si (ug/dm ³)		14	2906	2779	2818	3043	2932	2270	2350	2383	2743	2370	2468	2615	2173	2881	2850	2715	2724	1764
PO₄-P (ug/dm³)		1.0	0.09	62.0	59.0	34.2	34.2	21.5	22.8	24.8	80.8	70.4	66.4	72.7	72.1	77.4	41.9	38.9	37.2	42.6
TP (ug/dm³)		1.6	109.3	90.6	99.9	85.3	77.3	62.6	9.99	103.9	165.2	199.9	123.9	94.6	9.98	99.9	52.0	85.3	68.0	60.0
TN (mp/gn)	n limit	14	1109	1208	1030	296	096	987	1076	1030	1927	608	1026	1000	871	1069	878	993	901	1287
TOC (mg/dm ³)	Detection limit	0.18	4.02	3.25	3.16	6.00	5.18	3.05	3.10	3.41	3.21	2.92	2.92	3.00	3.86	3.29	4.80	4.57	6.88	3.02
Нď		0.10	7.83	7.80	7.79	7.74	7.79	8.00	7.98	7.90	8.01	7.96	7.94	7.99	7.98	7.96	7.93	7.89	7.88	8.07
BODs (mg/dm³)		0.20	87.0	0.70	1.02	1.71	0.56	0.58	0.56	0.87	0.88	1.03	1.07	0.65	0.67	0.85	0.73	0.56	0.52	0.70
COD _{Mn} (mg/dm ³)		0.10	1.29	1.30	1.33	1.55	1.43	1.09	1.16	1.21	1.44	1.54	1.52	1.08	0.99	0.99	1.55	1.38	1.32	. 1.29
DO (mg/dm³)		0.12	6.16	6.12	6.04	7.06	7.35	7.07	7.07	7.44	6.46	6.53	6.49	6.75	6.77	6:59	7.07	7.44	7.27	6.93
3,110	Sammy		18.337	18.196	18.762	6.709	8.624	0.254	0.680	1.541	22.331	22.322	22.312	22.933	23.045	23.118	9.289	10.260	11.009	25.090
Water	(C)		21.26	21.22	21.36	20.77	20.61	20.47	20.50	20.57	21.27	21.27	21.27	21.68	21.56	21.58	20.89	21.08	21.17	21.30
0.0	(E)		1.0	4.0	7.0	1.0	3.8	1.0	4.5	8.0	1.0	2.5	4.0	1.0	2.8	4.5	1.0	3.6	6.2	1.0
0	<u>a</u> →	4	S	M	В	S	В	S	W	В	S	Ψ	В	S	Σ	В	S	Σ	В	S
iie iie		Min	30			00		, 50			3 40) 10			5 45			58
Sampling time		H a	10 07			10 09		10 07			10 08			10 09			10 06			2000 12 10 09
ampl		×	_			12		12			12			12			12			12
8		¥	2000 12			2000		2000			2000			2000			2000			2000
Point	Š.		P02			P03		P04			P05			P06			P07			P08
			1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 6

No. Point ~ <u>~</u> _																					
No. No.			0.5	74.4	75.4	62.7	53.2	49.7	162.4	166.4	99.3	97.5	79.5	80.7	77.3	53.1	46.3	38.0	67.7	71.5	717
No. Point SiO ₂ -Si (ug/dm³)		14	1863	1804	1429	1079	1149	3420	3152	2526	2428	2339	2379	2002	1109	1079	1039	1824	1844	1014	
No. Sampling time E. Sampling Water Salinity Point CODA, PO ₄ -P (ug/dm³)		1.0	41.9	43.2	64.4	55.3	51.0	414.0	429.9	37.2	40.6	14.1	24.8	19.4	37.5	34.5	27.2	11.4	7.7	17.0	
Point No. Sampling time (mp) e Sampling time (mp) Value (mp) CODA BODA PH (mg/dm²) (mg/dm³) (mg/dm³) (mg/dm³) mg/m³ PH (mg/dm³) TOC No. Y M D H Min 3.0 21.20 25.022 6.89 1.27 0.50 8.07 2.73 PP9 2000 12 10 11 10.5 S 1.0 21.20 25.026 6.89 1.27 0.49 8.06 5.27 PP9 2000 12 10 11 10.5 S 1.0 21.83 29.568 6.48 0.73 0.42 8.07 2.73 PP9 2000 12 10 11 10.5 S 1.0 21.83 29.568 6.48 0.73 0.42 8.05 2.74 PP9 2000 12 10 11 10.5 S 1.0 21.64 31.224 6.46 0.62 0.42 8.04 3.71 PP1 2000 12 10 10 10.5 S 1.0 21.64 31.224 6.46 0.62 0.24 8.05 2.74 PP1 2000 12 10 10 10.	TP (ug/dm³)		1.6	65.3	48.0	72.0	61.3	57.3	611.7	614.3	61.3	80.0	98.6	93.3	68.0	44.0	41.3	37.3	20.0	13.3	301
No. Sampling time Sampling Water No.	TN (ug/dm³)	n limit	14	1366	1165	1314	2188	1947	2208	2531	941	799	815	762	525	1122	924	1264	584	683	103
No. Sampling time E. Sampling Water No. (mg/dm²) (mg	TOC (mg/dm³)	Detection	0.18	2.73	5.52	3.92	3.51	2.74	4.77	4.70	4.05	5.32	3.03	3.13	3.10	3.01	2.75	2.63	2.67	3.38	, ,
Point Sampling time b Gepth (m) temperature (m) Salinity (mg/dm) (mg/dm) (mg/dm) Y M D 1 (m) 0.12 0.10 0.00 Y M D H Min 3.0 21.20 25.092 6.89 1.27 P09 2000 12 10 11 05 S 1.0 21.20 25.092 6.89 1.27 P19 2000 12 10 11 05 S 1.0 21.20 25.092 6.89 1.27 P19 2000 12 10 11 05 S 1.0 21.20 25.123 6.89 1.27 P19 2000 12 10 10 S 1.0 21.23 25.062 6.46 0.62 P14 2000 12 10 S 1.0 22.22 25.962 5.17 2.16 P15 2000 10 S 1.0 <th>Hď</th> <td></td> <td>0.10</td> <td>8.07</td> <td>8.06</td> <td>8.02</td> <td>8.04</td> <td>8.05</td> <td>7.66</td> <td>7.69</td> <td>7.92</td> <td>7.95</td> <td>7.99</td> <td>8.01</td> <td>8.01</td> <td>8.16</td> <td>8.15</td> <td>8.15</td> <td>8.10</td> <td>8.13</td> <td>27.0</td>	Hď		0.10	8.07	8.06	8.02	8.04	8.05	7.66	7.69	7.92	7.95	7.99	8.01	8.01	8.16	8.15	8.15	8.10	8.13	27.0
Point Sampling time beach of temperature (°C) Water (°C) Water (°C) O12 No. Y M D H Min h depth (°C) (°C)	BOD ₅ (mg/dm ³)		0.20	0.50	0.49	0.42	0.45	0.24	1.93	1.92	0.20	0.32	0.36	0.38	0.35	0.10	0.73	0.36	0.32	0.31	0.30
Point Sampling time e Sampling time depth temperature Salinity No. Y M D H Min h 3.0 21.20 25.022 Procedular Color 12 10 11 0.5 S 1.0 21.20 25.023 Procedular Color 12 10 11 0.5 S 1.0 21.20 25.023 Procedular Color 12 10 11 0.5 S 1.0 21.64 31.234 Procedular Color 12 0.0 16 50 S 1.0 22.22 25.962 Procedular Color 16 50 S 1.0 22.22 25.962 Procedular Color 16 50 S 1.0 20.94 19.412 Procedular Color 10 0.8 0.0 S 1.0 21.03<	COD _{MB} (mg/dm ³)		0.10	1.27	1.27	0.73	69:0	0.62	2.16	2.09	1.56	1.61	0.85	0.71	0.81	0.81	69.0	0.71	0.64	0.59	1 34
Point Sampling time e Sampling time depth temperature Salinity No. Y M D H Min h 3.0 21.20 25.022 Procedular Color 12 10 11 0.5 S 1.0 21.20 25.023 Procedular Color 12 10 11 0.5 S 1.0 21.20 25.023 Procedular Color 12 10 11 0.5 S 1.0 21.64 31.234 Procedular Color 12 0.0 16 50 S 1.0 22.22 25.962 Procedular Color 16 50 S 1.0 22.22 25.962 Procedular Color 16 50 S 1.0 20.94 19.412 Procedular Color 10 0.8 0.0 S 1.0 21.03<	DO (mg/dm³)		0.12	68.9	6.88	6.48	6.43	6.46	5.17	5.17	6.99	7.15	6.92	6.93	6.98	6.46	7.07	7.07	7.64	7.35	7.68
Point Sampling time e Sampling time p depth No. Y M B 3.0 B 3.0 P10 2000 12 10 11 05 S 1.0 P11 2000 12 10 05 S 1.0 P12 2000 12 10 05 00 S 1.0 P15 2000 12 10 08 00 S 1.0 P16 2000 12 10 08 S 1.0 P17 2000 12 10 09 S 1.0 P17 2000 10 S 1.0 P17 2000 10 S 1.0 P18 2000 10				25.092	25.123	29.568	30.661	31.224	25.962	25.958	19.339	19.412	25.224	25.212	25.324	28.721	31.323	31.809	26.642	26.717	289 90
Point Sampling time e Sampling time p depth No. Y M B 3.0 B 3.0 P10 2000 12 10 11 05 S 1.0 P11 2000 12 10 05 S 1.0 P12 2000 12 10 05 00 S 1.0 P15 2000 12 10 08 00 S 1.0 P16 2000 12 10 08 S 1.0 P17 2000 12 10 09 S 1.0 P17 2000 10 S 1.0 P17 2000 10 S 1.0 P18 2000 10	Water	(၁)		21.20	21.20	21.83	21.68	21.64	22.22	22.22	20.90	20.94	21.02	21.00	21.04	21.63	21.41	21.35	21.11	21.11	21.11
Point Sampling time e Pool No.				3.0	5.0	1.0	5.5	10.0	1.0	2.3	1.0	3.0	1.0	3.4	5.8	1.0	6.5	12.0	1.0	3.0	2.0
Point No. Sampling time No. Y M D H P10 2000 12 10 11 P10 2000 12 10 16 P14 2000 12 10 05 P15 2000 12 10 08 P16 2000 12 10 12 P17 2000 12 10 12 P17 2000 12 10 09		<u></u>	<u> </u>	Σ	В	S	Σ	В	S	Ω	S	æ	S	Σ	Ф	S	Σ	В	S	Σ	- E
Point Y No. Y P10 200 P14 200 P15 200 P17 200) e		Min						1				l								
Point Y No. Y P10 200 P14 200 P15 200 P17 200	ng tin				\dashv				9 16	\dashv	00	$\overline{}$			\dashv		$\overline{}$	\dashv		-	
Point Y No. Y P10 200 P14 200 P15 200 P17 200	ampli					12	\dashv		12			\dashv	12				\dashv	\dashv	12	\dashv	
Point No. P109 P109 P115 P114 P115 P116 P116 P116 P116 P116 P116 P117 P117	Š		Y			2000			2000		2000		2000			2000			2000		
	Point	Š.				1			1				$\neg \neg$								
				19	20	21	22	23	24	23		27	78	62	.g	31	32	33	34	35	36

D - 68

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 6

	14 0.5 1169 51.8 1149 51.3			
1.0	31.5	31.5 28.2 25.5 6.4 5.4 11.1	31.5 28.2 25.5 6.4 6.4 5.4 11.1 11.1 12.4 16.8 16.8	31.5 28.2 25.5 6.4 6.4 5.4 5.4 11.1 11.1 11.1 11.1 11.1 11.1
imit 14 1.6 990 44.0				
Detection limit 0.18 14 2.72 990	2.72			
0.10	8.18			
0.20	0.57	0.57 0.10* 0.59 0.32 0.43	0.57 0.10* 0.59 0.43 0.48 0.67 0.67	0.57 0.10* 0.59 0.32 0.48 0.40 0.90 0.90 0.30 0.40 0.40 0.40 0.30 0.40
0.10	0.37	0.37 0.68 0.77 0.70	0.37 0.68 0.77 0.70 0.39 0.36 0.36	0.37 0.68 0.68 0.77 0.70 0.39 0.64 0.64 0.64 0.64 0.70 0.70 0.70 0.70 0.70
0.12	7.44	7.44 7.03 7.82 7.82 7.82	7.03 7.03 7.82 7.82 7.86 8.49 8.28 8.28 8.28 8.28	7.44 7.03 7.82 7.82 7.82 8.28 8.28 8.28 8.28 8.10 7.84 7.47 7.47
28.880 28.880		32.058 31.332 31.341 32.092	32.058 31.332 31.341 32.092 31.917 32.195 32.195 25.980 28.411	32.058 31.332 31.341 32.092 31.917 32.195 32.189 25.980 25.980 25.980 25.980 32.344 32.344 32.359
(°C) (°C) 21.79 21.36		21.21 21.15 21.12 21.10	21.15 21.15 21.10 21.10 21.90 21.34 21.18 21.30 21.03	21.21 21.15 21.12 21.10 21.30 21.30 21.03 21.03 21.06 21.03 21.06 21.06 21.03
(m) (m) 1.0		11.0	11.0 1.0 4.0 7.0 7.0 1.0 10.0 10.0	11.0 1.0 4.0 7.0 7.0 10.0 10.0 1.0 6.0 6.0 10.0
Min h t t P Min R Min W W W W W W W W W W W W W W W W W W W		9 W B		╶╶┧╸┝╸╇ ╸ ┡ ╶╂╴╂ ╶╏ ╌╂ ╸╏╸
Y M D H 2000 12 10 13	+++++++++++++++++++++++++++++++++++++++	2000 12 10 10	2000 12 10 10 2000 12 10 11 2	2000 12 10 10 2000 12 10 14 2000 12 10 12 2000 12 10 13
No. No. 37 P18	·	39 40 P21 41 42		

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 6

Remark			*: Half value	limit									,	. ,	_					
Coliform (ind/100cm ³)		7																		
Chi-a (mg/m³)		0.10	1.12	1.08	1.04	3.53	3.70	8.58	6.54	5.72	1.66	1.71	1.49	2.63	2.62	2.11	1.55	1.83	1.48	3.16
SS (kg/m³)		0.0015	0.0299	0.0246	0.0437	0.0228	0.0356	0.0254	0.0203	0.0371	0.1072	0.1237	0.1046	0.0219	0.0277	0.0497	0.0449	0.0400	0.1063	0.0404
Oil (UV) (mg/dm ³)		0.010	0.044			0.035		0.030			0.043			0.045			0.040			0.027
As (ug/dm³)		0.05	2.57		2.93	2.77	2.83	2.04		2.33	3.95		3.87	3.29		2.70	3.79		4.93	3.99
Cd (ug/dm³)	Detection limit	0.01	0.25		0.30	0.22	0.19	0.05		0.17	0.42		0.15	0.29		0.09	0.21		0.31	0.10
Pb (ug/dm³)	Det	0.03	0.45		0.44	1.79	1.76	1.26		1.83	1.05		0.81	0.23		0.37	0.37		0.52	1.90
Zn (ug/dm³)		3.1	37.2		34.4	38.2	39.2	30.3		37.2	26.0		25.9	36.2		37.7	37.5		26.6	46.6
Cu (ug/dm³)		0.2	0.8		6:0	1.6	1.3	1.9		2.7	2.0		1.8	1.2		2.0	1.1		6.0	0.4
Hg (ug/dm³)		0.0034	0.0262		0.0172	0.0189	0.0165	0.0049		0.0070	0.0334		0.0275	0.0265		0.0174	0.0088		0.0233	0.0062
NH3-N (ug/dm³)		5.0	158.2	153.5	153.8	102.1	110.0	115.0	127.6	138.7	130.8	123.3	131.9	157.4	142.3	136.6	80.9	9.98	0.96	85.5
NO ₃ -N (ug/dm³)		6.0	534.1	527.4	598.7	714.4	664.6	783.0	768.2	769.6	554.3	499.2	546.2	500.5	468.2	519.3	668.7	648.5	675.4	438.6
D •	a,	<u> </u>	S	M	В	S	B	S	M	B	S	Σ	В	S	Σ	B	S	Σ	В	S
ne		Min	30			90		50			40			10			45			28
Sampling time		H	0 07			60 0		12 10 07			10 08			10 09			10 06			50
mpliidu		M	12 10			12 10		12 1			12 1		\vdash	12 1		-	12 1			12 1
Sai		7	2000			2000		2000			2000			2000			2000		-	8
Point		<u> </u>	P02 20			P03 2C		P04 20			P05 20			P06 20			P07 20			P08 2000 12 10 09
			 -					-			-	10	1	12 P	13	14	15 P	16	17	18 P
2	ė Ž		-	2	ω	4	ς.	9	7	90	6	=	11	1.	1.	1,	1.	1	1	

D - 70

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in spring tide

Total page: 6

Remark			*: Half value	limit							,	,								
Coliform (ind/100cm ³)		2																		
Chl-a (mg/m³)		0.10	1.98	1.39	2.75	2.11	2.08	10.63	7.15	1.47	1.74	1.97	1.89	1.88	4.70	2.71	3.08	4.76	5.57	4.94
SS (kg/m³)		0.0015	0.0458	0.0657	0.0131	0.0108	0.0079	0.0138	0.0099	0.0352	0.0477	0.0515	0.0494	0.0543	0.0106	0.0076	0.0116	0.0250	0.0169	0.0158
Oil (UV) (mg/dm³)		0.010			0.028			0.078		0.027		0.033			0.030			0.027		
As (ug/dm³)		0.05		3.28	2.03		2.30	3.15	3.02	4.18	4.12	3.36		3.57	3.38		2.73	3.21		4.05
Cd (ug/dm³)	Detection limit	10:0		0.17	0.03		0.21	0.22	0.16	0.22	0.44	0:30		0.28	0.07		0.10	0.94		0.93
Pb (ug/dm³)	Det	0.03		2.36	1.48	:	1.16	0.73	1.35	0.77	0.68	0.74		1.46	1.76		1.25	2.32		0.85
Zn (ug/dm³)		3.1		38.8	32.2		36.8	27.2	29.7	48.9	48.5	32.2		47.2	31.9		32.5	32.8		30.1
Cu (ug/dm³)		0.2		1.0	9.0		1	2.6	2.0	1.1	1.3	0.3		0.4	9.0		0.5	1.1		0.4
Hg (ug/dm³)		0.0034		0.0149	0.0074		0.0062	0.0127	0.0129	0.0149	0.0235	0.0230		0.0291	0.0136		0.0118	0.0161		0.0104
NH3-N (ug/dm³)		5.0	83.8	88.1	194.8	103.2	95.3	122.6	127.2	70.5	58.6	23.4	13.3	13.3	46.4	37.4	33.4	18.0	10.4	22.3
NO ₃ -N (ug/dm ³)		0.0	421.1	360.6	255.6	247.6	218.0	314.8	263.7	538.2	588.0	406.3	418.4	371.3	277.2	232.8	142.6	383.5	359.2	333.7
O e s	<u></u>		Μ	В	S	M	В	S	B	S	B	S	Σ	В	S	Σ	В	S	Σ	В
Sampling time		Y M D H Min			2000 12 10 11 05			2000 12 09 16 50		2000 12 10 05 00		2000 12 10 08 00			2000 12 10 12 30			2000 12 10 09 00		
Point	Š.				P09			P10		P14		P15	-		P16			P17		
			19	20	21	22	23	24	25	56	27	28	29	30	31	32	33	34	35	36

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 6

Remark	Neillai A		*: Half value	limit									-					_		
Coliform (ind/100cm ³)		2																		
Chl-a (mg/m³)		0.10	3.76	4.39	1.65	12.42	12.48	9.74	5.16	9.58	9.21	6.29	10.79	9.74	3.37	3.73	1.70	15.69	16.16	13.74
SS (kg/m³)		0.0015	0.0103	0.0099	0.0109	0.0189	0.0107	0.0180	0.0106	0.0065	0.0126	0.0131	0.0088	0.0080	0.0083	0.0022	0.0048	0.0116	0.0000	0.0151
Oil (UV) (mg/dm³)		0.010	0.029			0.026			0.027			0.023			0.024			0.032		
As (ug/dm³)		0.05	2.12		2.02	3.06		3.64	9.80		4.48	3.38		3,42	4.31		2.86	3.27		4.02
Cd (ug/dm³)	Detection limit	10:0	0.45		0.13	0.24		0.39	0.13		0.10	0.32		0.32	0.08		0.09	0.34		0.35
Pb (ug/dm³)	Det	0.03	2.71		1.83	0.81		1.28	3.61		3.32	0.84		0.20	0.91		0.64	3.61		1.70
Zn (ug/dm³)		3.1	41.2		46.2	27.0		25.6	16.2		18.3	30.7		16.1	29.8		18.2	38.9		30.5
Cu (ug/dm³)		0.2	0.8		9.0	1.1		0.2	8.0		1.6	0.5		0.7	0.3		0.2	6.0		0.5
Hg (ug/dm³)		0.0034	0.0072		0.0067	0.0321		0.0223	0.0157		0.0211	0.0142		0.0179	0.0146		0.0163	0.0138		0.0178
NH3-N (ug/dm³)		5.0	14.0	21.2	8.6	20.5	13.3	10.1	8.6	13.7	7.9	15.5	18.3	8.3	18.3	22.6	13.3	9.3	13.7	6.1
NO ₃ -N (ug/dm ³)		0.9	374.0	252.9	165.5	107.6	78.0	117.1	100.9	113.0	102.3	273.1	399.6	212.6	118.4	114.4	119.7	166.8	134.5	104.9
D 9	2 		S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В
<u> </u>		Min	15			8			42			25			35			15		
Sampling time		H	13) 10) 14) 12		_	0 13			0 11		\dashv
 nilqn		MD	2 10			12 10			12 10			12 10			2 10			12 10		
San		Y	2000 12 10			2000			2000			2000			2000 12			2000		\dashv
Point	·		P18 20				$\overline{}$		P23 20			P24 20			P25 20			P27 20		
	Š			~		0 P21				_	<u>_</u>	\longrightarrow		- m				-	~	-
3	ξ		37	38	39	9	41	42	43	4	45	9	47	84	6	50	51	52	53	54

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 6

1			1	т	— т	— т	$\overline{}$		Ţ						- -			T	<u> </u>	
NO ₂ -N		0.5	162.0	108.7	97.3	102.8	121.1	28.7	28.1	65.8	167.2	164.0	134.8	140.0	128.0	81.0	60.1	80.3	87.3	174.2
SiO ₂ -Si (ug/dm ³)		14	3635	2542	2089	3916	3670	2971	2797	3186	3463	3432	2725	3052	2674	1544	2967	3235	3485	3523
PO₄-P (ug/dm ³)		1.0	87.9	80.3	74.0	40.1	32.5	26.5	25.2	29.2	65.0	67.0	67.7	73.6	84.6	67.3	30.8	36.5	34.2	60.7
TP (ug/dm³)		1.6	121.7	94.3	88.8	139.4	161.3	102.5	9:08	114.8	71.1	102.5	98.4	75.2	105.2	95.7	108.0	92.9	118.9	86.1
TN (ug/dm³)	Detection limit	14	1383	1178	827	1210	1272	1137	1335	1123	1613	1602	1314	1345	994	928	1102	1022	1046	1217
TOC (mg/dm ³)	Detect	0.18	4.82	5.34	4.46	8.69	5.73	4.17	3.14	3.44	3.94	4.37	5.16	4.35	3.83	3.77	1.99	2.03	3.47	4.77
Hd		0.10	79.7	7.77	7.87	7.76	7.87	8.07	8.04	7.92	7.77	7.81	7.83	7.91	7.92	7.91	7.99	7.97	7.94	8.00
BOD _s (mg/dm ³)		0.20	0.45	0.74	0.55	1.28	0.97	0.67	0.54	09:0	0.73	0.65	0.26	0.75	0.78	0.37	0.42	0.40	0.24	0.79
COD _{Mn} (mg/dm ³)		0.10	1.29	0.76	0.67	1.34	1.46	1.09	1.02	1.15	1.06	1.00	0.78	0.81	69.0	0.45	1.30	1.44	1.12	0.64
DO (mg/dm³)		0.12	66.9	6.53	6.41	7.55	7.41	7.60	7.66	7.33	7.22	7.18	6.93	7.13	7.20	6.49	8.18	7.17	7.37	7.27
	Salling		15.995	19.958	27.417	3.392	3.628	0.224	0.825	4.822	15.806	15.975	23.327	19.999	22.588	27.839	4.929	9.004	12.756	15.125
Water	remperature (°C)		20.51	21.16	21.64	19.88	19.91	20.20	20.17	20.12	20.30	20.35	21.15	20.54	20.78	21.17	19.18	19.84	20.21	20.20
0.0	(m)		1.0	4.0	7.0	1.0	3.5	1.0	4.8	8.5	1.0	2.5	4.0	1.0	2.3	4.5	1.0	3.3	5.5	1.0
C e	a +		S	Ψ	æ	s	8	s	Σ	В	S	Σ	В	S	W	В	S	Σ	В	S
Sampling time		M D H Min	2000 12 04 07 30			2000 12 04 08 50		2000 12 04 14 20			2000 12 04 08 35			2000 12 04 09 25			0 12 04 12 55			2000 12 04 10 20
	-	>				1		1	<u> </u>								2000			
Point	Š		P02			P03		P04			P05			P06			P07			P08
2	Š		-	2	3	4	S	9	7	∞	9	10	Ξ	12	13	14	15	91	17	18

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cat Jian Dong

Total page: 6

NO ₂ -N (ug/dm³)		0.5	142.8	109.7	61.0	59.0	61.0	195.1	191.0	102.6	107.8	102.8	98.8	95.1	87.5	71.2	42.4	103.4	102.1	104.5
SiO ₂ -Si (ug/dm³)		14	3878	2297	1639	1349	1203	3180	2871	2978	3179	1976	1986	1924	1780	1577	985	2521	2089	2542
PO ₄ -P (ug/dm ³)		1.0	68.7	65.3	57.7	68.3	77.6	416.3	346.6	56.1	77.6	53.7	47.8	62.4	64.7	52.7	47.8	87.9	51.4	81.9
TP (ug/dm³)	•	1.6	94.3	92.9	71.1	95.7	120.3	567.2	410.1	101.1	118.9	75.2	88.8	95.7	105.2	110.7	95.7	92.9	79.3	87.5
TN (ug/dm³)	Detection limit	14	1126	1008	803	921	1178	1262	1109	1192	709	1248	1008	1036	692	1005	1025	1078	1213	925
TOC (mg/dm³)	Detect	0.18	3.91	3.66	3.89	4.48	3.50	5.02	4.36	3.25	4.08	4.12	3.47	3.28	4.41	3.95	3.64	3.85	3.44	3.48
Нф		0.10	7.92	7.96	7.97	7.98	7.99	7.69	7.69	7.76	7.69	7.88	7.97	8.00	7.78	7.75	7.80	8.02	8.02	8.02
BODs (mg/dm³)		0.20	0.46	0.10*	0.58	0.36	0.27	99.0	99.0	0.56	0.57	0.91	08.0	0.64	0.35	0.30	.01.0	0.80	0.76	0.48
COD _{Mn} (mg/dm ³)	•	0.10	0.78	0.51	0.36	0.37	0.40	1.38	1.23	0.24	1.27	1.24	0.81	0.92	0.47	0.44	0.28	96.0	0.94	0.95
DO (mg/dm³)		0.12	6.93	6.61	6.30	6.20	6.13	6.08	6.04	7.77	7.66	7.40	6.97	6.96	7.15	7.01	6.90	7.37	7.41	7.33
Salinity			18.461	22.796	30.945	31.007	31.096	26.169	27.880	14.181	19.750	26.131	26.164	26.388	27.385	30.716	32.340	25.549	25.549	25.579
Water temperature	(၁့)		20.57	20.82	21.81	21.82	21.90	20.29	20.86	19.38	19.89	20.81	20.80	20.84	20.64	21.16	21.25	20.36	20.35	20.36
Sampling depth	Œ		3.0	5.0	1.0	5.5	10.0	1.0	2.5	1.0	3.0	1.0	3.5	6.0	1.0	5.0	9.0	1.0	3.0	5.0
D e p	.	n	Σ	В	S	Σ	В	S	В	S	В	S	Σ	В	S	Σ	В	S	Σ	В
2		Min			40			40		35		8			20			20		
Sampling time	ļ	H			04 11			81		115		80		\Box	13			60		
nplin	ŀ	M D	$\vdash \vdash$	\dashv	12 04	\dashv	\dashv	12 04	\dashv	12 04		2 04	_	-	12 04	\dashv		12 04	\dashv	\dashv
San	ļ	Y		\dashv	2000			2000 12 04 18		2000 12 04 15		2000 12 04	\dashv		2000 12 04 13	\dashv	\dashv	2000 12 04	\dashv	\dashv
1 ,				\dashv		\dashv		\neg					\dashv	\dashv			\dashv		\dashv	\dashv
Point	ž —–				P09			P10		P14		P15		_	P16		\dashv	P17		_
Ž.			19	70	21	22	33	24	25	56	27	28	29	30	31	32	33	8	35	36

D - 74

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in neap tide

Total page: 6

NO ₂ -N (ug/dm³)		0.5	40.7	45.7	21.1	67.0	63.3	64.4	13.1	12.8	15.0	67.0	84.0	22.4	21.6	19.8	106.3	107.3	104.3
SiO ₂ -Si (ug/dm³)		14	1058	1027	882	1442	1878	1504	1027	975	934	2235	2151	1089	975	923	2491	3399	3143
PO₄-P (ug/dm³)		1.0	34.8	33.2	24.2	81.6	38.5	49.4	19.9	22.2	18.6	45.4	46.8	23.5	20.2	23.2	48.8	71.6	77.3
TP (ug/dm³)		1.6	43.7	46.5	27.3	114.8	58.8	57.4	23.2	36.9	42.4	60.1	82.0	34.2	49.2	47.8	76.5	98.4	83.4
TN (ug/dm³)	Detection limit	14	351	448	236	872	723	744	424	587	650	1230	817	653	629	539	1133	1220	1015
TOC (mg/dm³)	Detecti	0.18	3,35	3.27	3.64	3.56	3.18	2.48	5.67	3.63	3.85	3.81	3.37	5.32	6:59	6.55	3.33	3.66	3.64
ЬН		0.10	7.75	7.72	7.83	7.99	8.01	8.02	8.09	8.14	8.14	7.92	7.95	8.04	8.08	8.09	7.93	7.94	7.95
BOD _s (mg/dm ³)		0.20	0.33	0.31	0.36	0.72	0.65	0.39	0.61	0.32	0.38	0.68	0.64	0.34	0.10*	0.33	0.74	0.57	0.65
COD _{Mn} (mg/dm³)		0.10	0,32	0.40	0.36	0.93	0.90	0.92	1.13	1.32	1.23	1.07	1.10	0.92	0.97	0.93	1.38	1.18	1.26
DO (mg/dm³)		0.12	7.05	7.05	7.17	7.07	7.06	6.59	7.33	6.85	7.31	7.53	7.28	7.06	7.17	7.10	7.66	7.33	7.33
Solinity	Sammy		31.920	32.239	32.568	30.024	30.080	30.115	32.523	32.534	32.482	21.225	25.715	29.416	32.550	32.597	22.912	24.598	28.772
Water	(C)		20.90	21.04	21.21	20.69	20.70	20.71	21.13	21.05	21.06	19.84	20.59	21.24	21.22	21.21	20.18	20.23	20.46
Sampling	(w)		1.0	6.5	12.0	1.0	3.5	6.0	1.0	5.5	10.0	1.0	3.8	1.0	10.0	19.0	1.0	3.5	6.0
D	<u>.</u> ↔	4	S	X	В	S	M	B	S	Σ	В	S	В	S	Σ	В	S	Σ	В
ē		Min	10			30			45			15		25			25		
ıg tim		Ξ	04 14			10			04 14			4 12		4 13			11		\Box
Sampling time		M	12 04			12 0			12 04			12 0		12 04		_	12		
San		- -	2000 12			2000 12 04 10			2000 12			2000 12 04		2000 12 04			2000 12 04 11		一
Point	ō	<u> </u>	P18 20			P21 20			P23 20			P24 20		P25 20			P27 2	_	\dashv
	ģ Ž				_										_	_			_
2	<u> </u>		37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 6

Remark			*: Half value	limit																
Coliform (ind/100cm ³)		2	20		224	268	76	150		112	30		26	130		296	50		22	14
Chl-a (mg/m³)		0.10	0.19	0.16	0.13	2.47	2.48	10.69	9.11	3.35	0.12	0.10	0.13	0.10	0.12	0.11	2.78	2.10	1.52	0.19
SS (kg/m³)		0.0015	0.0121	0.0158	0.0171	0.0192	0.0348	0.0146	0.0155	0.0227	0.0122	0.0109	0.0133	0.0084	0.0180	0.0186	0.0259	0.0242	0.0453	0.0106
Oil (UV) (mg/dm³)		0.010	0.043			0.046		0.028			0.056			0.036			0.039			0.032
As (ug/dm³)		0.05	1.70		2.12	2:92	4.90	2.63		92.9	2.15		2.18	1.97		1.73	4.62		3.72	2.60
Cd (ng/dm³)	Detection limit	10.0	0.48		0.25	0.24	0.26	90:0		0.19	0.14		0.22	0.32		0.16	0.13		0:30	0.31
Pb (ug/dm³)	Detect	6.03	3.31		2.91	99.0	0.58	0.95		0.95	1.70		1.39	3.86		1.73	0.40		0.37	3.05
Zn (ug/dm³)		3.1	27.2	_	28.9	15.4	9.6	3.3		6.9	34.0		25.9	9.6		1.6*	6.9		11.2	19.8
Cu (ug/dm³)		0.2	3.0		2.9	2.4	2.0	4.1		3.3	2.4		4.1	2.3		2.7	3.1		5.0	2.8
Hg (ug/dm³)		0.0034	0.0079		0.0157	0.0111	0.0125	0.0053		0.0082	0.0347		0.0259	0.0293		0.0160	0.0127		0.0286	0.0215
NH3-N (ug/dm³)		5.0	59.2	48.0	29.6	76.9	40.7	118.3	111.4	106.5	58.1	107.9	106.2	131.6	139.9	137.8	28.2	87.0	102.0	94.7
NO ₃ -N (ug/dm³)		6.0	245.2	236.3	236.3	802.4	780.1	855.9	870.7	821.7	245.2	236.3	228.8	230.3	221.4	251.1	814.3	799.4	775.6	276.4
Q a	.	_	S	Σ	В	S	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S
že		Min	30			50		20			35			25			55			20
Sampling time		Н	4 07			4 08		4 14			4 08			4 09			4 12			2000 12 04 10
nplin		αм	12			120		12 0.		\dashv	12 04 08		\dashv	12 0			12 0			12
San		Y	2000 12 04 07			2000 12 04 08		2000 12 04 14			2000		_	2000 12 04			2000 12 04			8
Point	ö		P02 20			P03 20		P04 20		\dashv	P05 20		\dashv	P06 20			P07 20	\dashv		P08 20
	ģ —		Н																_	
ž	=		-	2	3	4	5	9	7	∞	6	10	11	12	13	14	15	91	17	18

D - 76

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Intensive point in neap tide

Total page: 6

Remark			*: Half value	limit																
Coliform (ind/100cm³)		2		16	836		1732	1724	1136	10	9	8		1*	8		2	1*		2
Chl-a (mg/m³)		0.10	0.11	0.20	0.22	0.20	0.21	4.00	3.56	0.22	0.22	0.63	98.0	0.99	0.14	0.22	0.24	0.36	0.39	0.45
SS (kg/m³)		0.0015	00127	0.0128	0.0118	0.0138	0.0122	0.0078	0.0149	0.0367	0.0506	0.1119	0.0635	0.0820	0.0092	0.0141	0.0093	0.0788	0.0874	0.1042
Oil (UV) (mg/dm³)		0.010			0.067			0.054		0.033		0.033			0.063	i	i	0.027		
As (ug/dm³)		90.0		1.89	1.98		1.77	4.19	2.54	2.64	3.06	4.37		3.69	1.95		2.14	4.41		6.00
Cd (ug/dm³)	Detection limit	0.01	:	0.26	0.35		0:30	0.21	0.35	0.39	0.76	0.71		0.33	09:0		0.27	0.71		0.68
Pb (ug/dm³)	Detect	0.03		3.26	1.64		1.80	1.40	0.95	2.03	1.88	2.61		1.94	3.15		4.30	1.86		3.15
Zn (ug/dm³)		3.1		8.4	18.4		14.6	28.5	38.7	21.3	19.6	33.4		31.8	26.8		20.1	20.3		25.9
Cu (ug/dm³)		0.2		2.1	2.6		1.8	4.3	3.8	3.3	2.3	3.4		2.1	2.6		3.2	1.6		1.0
Hg (ug/dm³)		0.0034		0.0097	0.0363		0.0314	0.0210	0.0193	0.0296	0.0175	0.0442		0.0240	0.0180		0.0134	0.0336		0.0335
NH3-N (ug/dm³)		5.0	54.0	58.1	134.4	92.9	126.0	139.9	155.9	91.9	88.4	44.6	52.2	47.7	90.1	7.07	40.0	44.9	51.9	87.7
NO3-N (ug/dm³)		6.0	344.7	425.0	132.2	114.4	111.4	542.3	527.5	127.8	115.9	456.2	433.9	420.5	127.8	130.8	147.1	422.0	425.0	389.3
Q e c	2 -		Σ	В	S	Σ	В	S	В	S	В	S	Σ	В	S	Σ	В	S	M	В
a		Min			40			40		35		00			20			20		
Sampling time		на)4 11			2000 12 04 18)4 15		2000 12 04 08			2000 12 04 13			2000 12 04 09		
mplii		M M	 		12 0			12 0		12 0		12 0			12 6			12 6		
S.		¥			2000 12 04			2000		2000 12 04		2000			2000			2000		
Point	No.	<u> </u>			P09			P10		P14		P15			P16			P17		
			19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 6

Remark			*: Half value	limit															
Coliform (ind/100cm ³)		7	12		1*	34		2	1*		1*	100	89	1*		1*	10		2
Chl-a (mg/m³)		0.10	99.0	09.0	09.0	0.99	0.97	0.90	4.55	4.25	4.86	3.22	0.98	2.26	2.35	2.32	0.65	0.56	0.61
SS (kg/m³)		0.0015	0.0112	0.0057	0.0076	0.1388	0.1230	0.0822	0.0072	0.0129	0.0128	0.0524	0.1300	0.0318	0.0095	0.0109	0.1438	0.0678	0.1098
Oil (UV) (mg/dm³)		0.010	0.016			0.036			0.028			0.025		0.016			0.042		ļ
As (ug/dm³)		0.05	1.78		1.72	5.48		6.45	2.66		3.44	3.96	5.80	3.13		2.90	6.38		89.9
Cd (ug/dm³)	Detection limit	10.0	0.08		0.19	0.42		0.44	0.22		0.12	0.62	0.57	0.10		0.39	0.34		0.24
Pb (ug/dm³)	Detecti	0.03	2.09		2.59	3.61		3.86	99.0		0.54	1.89	0.25	0.38		0.97	0.42		0.38
Zn (ug/dm³)		3.1	25.3		27.8	27.1		25.4	26.1		22.4	25.7	21.3	28.1		19.0	39.0		33.7
Cu (ug/dm³)		0.2	2.8		3.7	3.7		1.5	2.1		1.0	3.5	2.2	1.0		9.0	6.0		0.2
Hg (ug/dm³)		0.0034	0.0203		0.0211	0.0452		0.0423	0.0246		0.0189	0.0226	0.0316	0.0271		0.0484	0.0319		0.0425
NH3-N (ug/dm³)		5.0	29.2	22.3	22.3	63.3	49.8	70.0	23.0	13.9	12.5	54.0	20.5	33.8	36.5	27.5	42.8	65.1	45.2
NO ₃ -N (ug/dm ³)		6.0	164.9	147.1	148.6	263.0	276.4	276.4	80.2	83.2	81.7	566.1	280.8	107.0	102.5	83.2	545.3	450.2	401.2
0 = 0	.	-	S	Σ	В	S	Σ	В	S	Σ	В	S	В	S	M	В	S	Σ	В
je je		Min	10			30			45			15		25			25		
Sampling time		на	4 14			10			41		\dashv	12	_	и 13			11		
mplii			12 0			12 0			12 0	\dashv		12 0		12 0			12 6		\equiv
Saı		¥	2000 12 04 14			2000 12 04 10			2000 12 04 14			2000 12 04 12		2000 12 04 13			2000 12 04 11		
Point	ŝ	<u> </u>	P18 2			P21			P23			P24		P25			P27		
2			37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 12

	I Otal Dage	╬																
- Š			Sampling tíme	g tím		e Sampling p depth	Water	Salinity	DO (mg/dm³)	COD _{Mn} (mg/dm ³)	BOD ₅ (mg/dm ³)	Hď	TOC (mg/dm³)	TN (ug/dm³)	TP (ug/dm³)	PO ₄ -P (ug/dm ³)	SiO ₂ -Si (ug/dm³)	NO ₂ -N (ug/dm³)
	ġ Ż				,		(၁၂)	•					Detection limit	on limit				
		¥	М	D H Min		ከ			0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
-	P01		2000 12 13 20 00	3 20	00 S	3 1.0	92.61	9.108	5.15	1.74	0.56	7.62	3.07	947	126.6	55.3	2877	149.5
7					Σ	12.0	20,44	13.582	6.13	2.06	1.22	7.50	3.15	947	106.6	45.6	3012	160.8
3				\dashv	В	3 23.0	20.42	15.237	80:9	3.27	1.71	7.46	3.67	901	106.6	41.6	3852	147.9
4		2000	2000 12 1:	13 23	00 S	3 1.0	20.09	13.708	6.42	1.76	0.82	7.47	3.16	1003	61.3	59.7	3645	158.4
S					Σ	12.0	20.25	14.146	6.34	1.74	0.93	7.43	3.00	1036	66.6	49.9	3808	152.3
9	_	_	_		B	3 23.0	20.29	14.876	6.71	2.03	0.97	7.41	3.52	868	68.0	44.3	3674	149.5
7		2000	2000 12 14 02		S 00	3 1.0	19.88	14.958	6.81	1.54	0.83	7.65	2.87	1023	68.0	63.4	3501	148.3
∞					Σ	11.5	19.93	16.013	6.61	1.52	1.07	7.66	3.44	914	70.6	56.7	3277	140.7
6	_				В	3 22.0	20.00	17.302	6.73	1.43	1.52	7.66	3.74	1073	81.3	54.0	3647	134.3
10		2000	2000 12 14 05		00 S	3 1.0	19.80	12.836	6.51	2.01	69.0	7.65	3.67	924	66.6	58.0	3837	157.2
1					Σ	11.8	20.00	13.753	6.32	2.02	1.03	7.65	3.47	891	114.6	54.0	3645	155.5
12	_	\dashv		$ \downarrow $	<u>B</u>	3 22.5	20.06	14.006	6.34	3.30	1.65	7.65	3.05	934	111.9	51.6	3923	152.3
13	_	2000	2000 12 1	14 08	00 S	3 1.0	19.10	7.958	6.94	1.68	0.75	7.78	2.87	1208	66.6	65.7	2611	134.7
14					Σ	12.0	20.06	11.354	5.84	2.59	1.56	7.65	3.72	1271	77.3	711.7	2513	170.4
15		_			m	3 23.0	20.03	11.749	5.79	3.14	1.86	7.62	3.25	1152	69.3	46.6	3904	172.0
16		2000	2000 12 14 11	$\overline{}$	S 00	1.0	19.23	6.229	6.35	2.44	1.25	7.68	2.88	1462	72.0	43.2	4367	172.8
1	_	_	\exists	\rightrightarrows	Σ	11.5	19.89	11.060	5.78	3.05	1.92	7.62	3.69	1571	80.0	41.9	3875	175.2
18	_		_	\exists	В	3 22.0	19.85	15.731	6.58	3.20	2.25	7.66	3.18	1033	85.3	49.6	4993	142.7
19		2000	0 12 14	4	S 00	1.0	19.90	10.303	90.9	1.82	1.19	7.71	2.78	1505	81.3	69.7	3722	168.8
20		_	\exists	_	Σ	11.5	19.92	11.991	5.90	2.14	0.83	7.66	2.92	1257	70.6	68.4	3722	175.6
21		_	\exists	\rightrightarrows	<u> </u>	3 22.0	20.01	13.046	6.02	3.50	1.98	7.64	3.12	1548	97.3	51.3	3588	171.2
22		2000	0 12 14	17	S 00	1.0	19.89	10.728	6.35	1.83	0.81	7.71	2.71	974	57.3	50.3	3981	168.8
23		-	_	_	Σ	11.0	19.90	12.596	6.30	2.11	1.46	7.66	2.86	1432	78.6	69.1	3626	165.2
24			\dashv		m m	21.0	19.87	13.427	6.14	3.61	1.85	7.65	2.58	1307	80.0	54.6	3664	158.4
25	P11		2000 12 13 20 00	3 20	S 00	1.0	19.72	28.094	7.22	0.60	0.43	7.97	3.40	809	78.6	22.5	1439	54.7
Printe	Printer Yn Han Sheng He Xiao Yuan	an Shen	o He	Viso V	Vuan													

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

	SiO ₂ -Si NO ₂ -N (ug/dm ³)		14 0.5	1419 53.4	1499 53.7	1619 43.3	1998 55.2	1799 37.2	1339 41.5	1599 39.6	2038 26.1	1695 57.9	1913 57.6	2091 58.1	2320 69.8	2045 68.0	1789 68.0	4173 69.4	2200 67.8	2359 67.4	1705 56.9	2290 60.5	2488 56.1	1715 57.9	1497 47.3	580 42.3	1449 54.4	1579 48.1
-	PO₄-P (ug/dm ³)	ļ	1.0	29.2	44.6	38.6	32.5	27.8	37.9	36.9	25.8	33.2	38.6	35.9	38.6	39.2	35.2	54.0	48.9	50.6	50.3	67.4	54.6	52.0	46.9	61.0	32.9	40.9
	TP (ug/dm³)		1.6	80.0	98.6	62.6	74.6	73.3	73.3	61.3	50.6	56.0	40.0	56.0	68.0	64.0	88.0	157.2	123.9	163.9	98.6	114.6	129.3	94.6	77.3	97.3	113.3	9.05
	TN (ug/dm³)	Detection limit	14	997	891	822	838	921	917	828	828	884	911	703	630	601	574	545	475	822	548	888	604	541	574	512	561	989
	TOC (mg/dm³)	Detect	0.18	2.36	3.18	3.80	3.62	3.68	3.52	2.66	2.58	3.03	3.40	2.97	6.77	4.87	5.06	3.05	3.09	3.31	2.50	3.29	4.48	3.34	3.13	2.99	2.68	2.84
	Hd		01.0	7.98	7.98	7.99	8.02	8.03	7.99	8.01	8.07	7.95	7.97	76.7	7.90	7.92	7.92	7.90	7.92	7.93	7.92	7.95	7.96	7.92	7.95	7.98	7.91	7.91
	BODs (mg/dm³)		0.20	0.50	0.32	0.83	0.56	0.74	0.58	0.37	0.37	1.02	1.02	1.23	66'0	96.0	1.29	0.52	9.65	0.65	0.72	0.41	0.35	0.61	0.48	0.38	0.45	0.34
ļ	COD _{Mn} (mg/dm ³)		01.0	0.68	79.0	0.70	0.84	1.43	0.71	29.0	0.74	2.25	2.17	2.15	2.28	2.48	2.53	1.07	1.02	1.23	0.85	0.72	0.76	0.59	0.47	0.54	0.64	99.0
	DO (mg/dm³)		0.12	7.45	7.28	7.38	7.15	7.17	7.23	7.23	7.18	7.16	7.12	7.21	7.14	7.19	7.21	7.22	7.20	7.11	7.35	7.12	7.10	7.28	7.18	7.05	6.72	6.64
	Salinity	Samuel		28.079	28.695	30.920	30.927	31.146	30.468	31.302	31.929	26.843	26.844	26.837	24.940	24.952	24.985	25.271	25.278	25.557	27.409	27.581	28.985	27.186	27.491	30.384	29.609	30.081
	Water	(2C)		19.71	19.97	19.86	19.88	19.98	19.54	19.88	20.25	19.46	19.47	19.47	19.28	19.28	19.29	19.29	19.29	19.28	19.32	19.29	19.35	19.32	19.32	19.47	21.27	21.30
į	Sampling	(m)		3.5	6.0	1.0	3.5	6.0	1.0	3.8	6.5	1.0	3.5	0.9	0.1	3.5	6.0	1.0	3.5	6.0	0.1	3.5	6.0	1.0	3.5	6.0	1.0	0.9
	D	<u>.</u>	£	Σ	М	_		В	<u> </u>		В			m	<u> </u>		m	_		m		1	<u>m</u>			В	S	Σ
	ime		H Mir		\vdash	00		\vdash	32 00		\vdash	35 00		-	8		_	8		_	14 00		<u> </u>	17 00		-	15 00	
	ling t		Ω			132			41,0		L	1 4 5		İ	<u>4</u>		L	2 14		1	2 14 14			14		<u> </u>	2 12 15	
	Sampling time		Y M	-	-	2000 12 13 23	:	\vdash	2000 12 14 02		\vdash	2000 12 14 05		-	2000 12 14 08	1	├-	2000 12 14 11		-	2000 12		-	2000 12			2000 12	-
: 12						<u>7</u> 07	-	+	102	-	-	70		-	30	i _	-	1 20	i]		1 2	-	+	7	-	 	P12 20	
Fotal page:	Po	ģ .		_	_	-	<u> </u>	-	-	-	-	-					<u> </u>	 	_	<u> </u>		, ++	- V	2 5	-	 œ	ļ	Ļ
[otal				26	27	, ×	3 8	F .	3 5	32	1 5	£	7 %	3 %	3 2	, e	30	₹ €	4	54	4	4	4	\$	47	4	4	S.

Printer: Yu Han Sheng, He Xiao Yuan

Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 12

Total	Total page: 12	12						f											
Ž			Sampling time	ng ti	Ę	D 9 0	Sampling	Water	Salinity	DO (mg/dm³)	COD _{Mn} (mg/dm³)	BOD _s (mg/dm ³)	Hď	TOC (mg/dm³)	TN (ug/dm³)	TP (ug/dm³)	PO ₄ -P (ug/dm ³)	SiO ₂ -Si (ug/dm³)	NO ₂ -N (ug/dm ³)
	Š.							(၃)	,					Detection limit	on limit				
		Y	M	DH	H Mir	<u> </u>			•	0.12	0.10	0.20	0.10	0.18	14	9.1	1.0	14	0.5
51				\vdash	Щ	В	11.0	21.62	31.018	89.9	69:0	98.0	7.90	3.50	779	52.0	44.3	1359	39.1
52		2000	12	12 18	8 00	S	1.0	21.34	29.707	96.9	0.63	0.93	7.90	2.81	630	62.6	30.2	1609	56.8
53					Щ	M	6.0	21.39	29.902	6.55	99'0	0.78	7.90	3.32	545	56.0	39.9	1639	51.3
54				\vdash		В	11.0	21.39	29.915	6.63	99.0	0.44	7.90	3.10	881	49.3	42.9	1888	52.0
55		200	2000 12 12	12 21	1 00	S	1.0	21.21	30.476	6.83	0.54	0.53	7.96	3.31	439	40.0	37.9	1129	46.8
98				Н	ļ	М	6.0	21.24	30.530	97.9	0.58	0.45	7.94	2.98	502	54.6	41.9	1449	53.1
57				\dashv		В	11.0	21.46	30.997	6.75	0.73	9.65	7.93	3.06	495	65.3	40.6	1019	45.5
58		2000	12	13 00	00 0	S	1.0	20.94	30.737	6.88	0.57	0:30	7.96	2.74	518	37.3	33.5	959	41.1
59						M	5.8	21.24	31.338	6.77	0.62	0.26	.96.	3.06	508	38.6	37.5	1049	39.9
9						В	10.5	21.31	31.474	6.72	0.77	0.10*	7.97	3.39	373	46.6	41.2	939	35.1
61		200	2000 12 1	13 03	3 00	S	1.0	21.05	30.746	6.91	0.74	0.67	7.88	3.23	637	34.6	32.5	1039	49.4
62						Σ	6.0	21.15	30.801	89.9	0.72	0.56	7.87	3.19	597	49.3	36.5	1059	43.3
63				_		В	11.0	21.25	31.059	6.71	1.39	1.12	7.87	3.25	766	70.6	38.6	1139	42.5
64		2000	12	13 06	900	S	1.0	20.62	29.985	28.9	68'0	1.14	7.82	4.00	989	40.0	32.2	1139	50.7
65				-		M	6.0	20.65	29.987	6.83	06'0	1.32	7.83	3.94	927	54.6	34.2	1119	51.2
99				\dashv		В	11.0	20.88	30.356	89.9	0.41	1.50	7.84	3.04	762	102.6	35.2	1129	47.0
<i>L</i> 9		2000	12	13 09	00	S	1.0	20.61	29.123	6.65	0.65	0.46	7.77	3.54	723	36.0	34.2	1309	65.4
89				\dashv		Σ	6.0	20,66	29.218	6.59	0.61	0.40	7.78	3.48	733	42.6	41.2	1249	63.5
69	_			\dashv		В	11.0	20.81	29.432	6.49	0.77	0.49	7.80	2.63	868	42.6	33.9	1409	57.1
20	_	200	2000 12	13 12	8	S	1.0	20.55	29.638	6.80	0.58	0.61	7.80	3.21	809	46.6	30.8	1289	59.0
71	_	\dashv		\dashv	_	Σ	5.5	20.75	30.149	92.9	0.62	0.44	7.81	3.78	924	53.3	38.9	1229	56.0
72		-		\dashv		В	10.0	21.19	30.868	6.56	08.0	0.46	7.81	2.99	894	89.3	34.2	1119	45.5
73	P19		2000 12 1	12 15	8	S	1.0	20.96	30.109	7.12	0.92	0.53	8.04	3.11	637	9.06	31.2	1189	42.5
74		_		\dashv	_	Σ	3.0	21.00	30.123	7.04	0.82	0.41	8.04	4.44	647	84.0	40.6	1958	48.4
75		_		-		В	5.0	21.02	30.186	7.11	0.92	0.52	8.05	5.47	756	89.3	33.2	1089	39.4
Printe	Printer: Yu Han Sheng, He Xiao Yuan	ın She	ng,He	Xiac	y Yug	an													

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 12

0.13	lotal page: 12	77																	
					Q				00	CODMn	BODs	H	TOC	Ę	TP	PO4-P	SiO ₂ -Si	N-ZON	
Ż			Sampling time	ime	<u>.</u>	Sampling depth t	Water temperature	Salinity	(mg/dm³)	(mg/dm³)	(mg/dm³)		(mg/dm³)	(ug/dm³)	(ng/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	
	ż						(၃)						Detecti	Detection limit					
		>	MDH	HMin	£			-	0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5	
76		2000	2000 12 12 18	00	s	1.0	20.89	30.393	7.00	66'0	0.49	8.01	4.79	828	106.6	40.6	1049	37.5	
77					Σ	3.0	20.88	30.432	7.04	86.0	0.52	8.05	3.85	785	98.6	41.6	1109	38.0	
78					В	5.0	20.88	30.453	6.92	86.0	0.42	8.03	5.62	785	115.9	34.2	1029	35.6	
79	_	2000	12 12	21 00	S	1.0	20.57	28.819	7.28	06:0	12.0	8.05	4.28	614	86.0	25.5	1609	36.9	
8	_				Σ	4.0	20.79	30.851	7.25	28.0	0.42	8.06	2.76	713	92.0	31.8	1339	34.3	
81					æ	7.0	20.81	30.871	7.29	0.92	99'0	8.08	3.54	766	85.3	34.5	1409	30.6	
82	_	2000 12	12 13 00	98 92	s	1.0	20.68	30.942	7.22	06'0	0.32	8.05	7.79	330	82.6	26.5	1149	32.7	
83					Σ	4.1	20.70	30.940	7.23	0.87	0.40	8.06	6.12	436	72.0	34.2	1279	36.4	
22					m	7.2	20.70	30.937	7.28	0.92	86:0	8.07	2.79	330	65.3	31.8	1279	32.2	
85		2000 12	13	03 00	s	1.0	20.33	29.136	6.83	2.04	1.09	7.98	6.05	409	93.3	25.5	1659	46.2	
98	_				Σ	4.0	20.35	29.109	6.87	1.78	66'0	8.00	5.49	769	88.0	36.5	1479	45.5	
87					m	7.0	20.36	29.147	6.85	2.01	1.36	8.00	4.95	818	103.9	32.2	1369	43.6	
88	_	2000	12 13 06	00 90	S	1.0	19.85	24.789	60°L	2.40	1.20	7.93	4.45	617	93.3	27.2	1927	62.7	
86		_			Σ	3.4	19.88	24.858	7.10	2.31	1.17	7.94	4.60	594	85.3	32.5	1809	62.1	
8					В	5.8	19.93	25.011	7.02	1.67	1.43	7.94	4.04	729	88.0	26.8	1953	59.2	
2		2000	2000 12 13 09	00 60	S	1.0	19.94	28.148	88.9	2.21	0.89	7.96	3.82	991	89.3	33.9	1689	51.6	
92					W	3.3	19.98	28.162	28.9	2.40	1.05	7.97	3.61	805	98.6	37.2	3937	82.1	
93					В	5.5	19.98	28.260	6.97	2.46	0.91	7.98	4.24	785	6.66	49.9	3677	82.9	
94		2000	12 13	12 00	S	1.0	20.05	30.397	86.9	2.06	0.64	7.96	5.43	759	9.98	32.9	1309	39.0	
95					Σ	3.0	20.03	30.404	66'9	1.76	0.70	7.99	3.59	099	127.9	34.2	2108	43.5	
96					В	5.0	20.02	30.439	6.93	1.67	0.58	8.01	2.98	541	111.9	41.2	1079	35.0	
97	P20		2000 12 11 10	10 00	S	1.0	21.26	29.984	7.31	0.48	0.65	8.00	2.59	403	34.6	28.8	1179	41.4	
86					M	8.5	21.23	31.930	7.30	0.50	0.47	8.01	2.53	389	30.7	26.5	1069	34.6	
66					В	16.0	21.23	31.941	7.26	0.54	0.55	8.03	2.76	429	42.6	19.1	1139	23.6	
100		2000	2000 12 11 13 00	13 00	S	1.0	21.34	30.335	7.27	0.58	0.56	8.04	3.08	330	34.6	22.8	1239	32.6	
Print	Printer: Yu Han Sheng, He Xiao Yuan	an Shen	g,He Xi	зо Упа	=														

Checker: Kuang Zheng Chang
Examiner: Zhong Si Sheng, Cai Jian Dong

(ug/dm³) NO2-N

22.8 39.8 25.3 27.7 29.5 22.8 24.7 20.019.2 17.5 24.4 24.2 20.5 38.8

23.7 0.5

_				Ē	102	103	5	50	106	107	108	100	110	=======================================	112	1:13	114	115	116	117	118	119	120	121	122	123	124	125
		ś Ż		_				_	 	 -	-	 	 -	_		<u></u>		 	_			_		1 P22	<u> </u>		_	
			>	<u> </u>		2000	_	<u></u>	2000	_	-	2000	_	_	2000			2000	_	_	2000	_		2000	<u> </u>		2000	\perp
	Sampling time		Σ			2000 12 11 16		匚	12 11			2000 12 11 22			2000 12			2000 12 12 04			2000 12 12 07			0 12 11			2000 12 11	L
	ng tin		HQ	<u> </u>		1 16		├-	11 19	-	\vdash	11 22	\vdash	_	12 01	-		12 04	_	-	1207	-	\vdash	11 10			11 13	
	<u> </u>		HMir			00			8			8			8			8			8			8			00	
Q	<u>ه</u> ه		<u>_</u>	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	Σ	В	S	
	Sampling depth	(m)		8.0	15.0	1.0	8.5	16.0	1.0	8.5	16.0	1.0	8.5	16.0	1.0	8.0	15.0	1.0	9.0	17.0	1.0	8.5	16.0	1.0	6.5	12.0	1.0	
	Water temperature	(၃)		21.23	21.22	21.53	21.20	21.16	21.24	21.19	21.16	20.97	20.99	21.00	21.10	21.15	21.14	21.07	21.14	21.14	21.16	21.14	21.14	21.21	21.21	21.21	21.23	3
	Salinity	•		31.938	31.981	30.264	31.849	32.109	31.671	32.049	32.144	32,154	32.152	32.145	32.089	32.165	32.151	30.631	31.587	31.574	30.994	31.556	31.717	32,192	32.199	32.213	31.953	
00	(mg/dm³)		0.12	7.34	7.27	7 41	7.25	7.33	7.47	7.31	7.31	7.26	7.22	7.27	7.33	7.23	7.28	70.7	7.09	7.12	68.9	6.93	7.01	7.42	7.39	7.39	7.52	ç
CODM	(mg/dm³)		0.10	0.59	0.57	69'0	0.74	99.0	1.08	080	0.85	0.72	99'0	0.72	0.34	0.38	0.49	0.44	97.0	0.43	0.54	0.57	0.57	0.37	0.33	0.36	0.39	, ,
BODs	(mg/dm³)		0.20	19.0	0.56	0.56	0.46	0.50	0.64	0.43	0.46	0.21	0.32	0.29	0.30	0.30	0.37	0.38	0.36	0.28	0.35	0.31	0.36	0.73	0.53	09:0	0.48	200
;	рН		0.10	8.04	8.05	8.02	8.04	8.03	8.06	8.06	8.06	8.05	8.05	8.05	8.05	8.05	8.05	8.02	8.03	8.04	8.01	8.02	8.02	8.10	8.12	8.13	8.10	
TOC	(mg/dm³)	Detecti	0.18	2.96	2.79	3.03	3.65	3.00	3.29	2.78	3.37	2.62	2.83	2.78	2.37	2.82	3.47	3.12	2.82	3.32	2.99	2.36	2.61	2.35	3.64	2.75	3.01	1,0
Ž	(ug/dm³)	Detection limit	14	215	238	363	294	224	274	231	284	442	290	248	224	261	254	409	330	234	584	706	693	277	218	218	257	2,0
TP	(ug/dm³)		1.6	22.7	33.3	30.7	32.0	0.09	32.0	34.6	45.3	45.3	42.6	40.0	40.0	34.6	26.7	38.6	32.0	44.0	48.0	53.3	54.6	26.7	17.3	24.0	34.6	1 /0
PO ₄ -P	(ug/dm³)		1.0	19.8	18.4	26.1	18.8	54.6	21.1	17.8	26.5	38.2	41.2	23.1	22.8	23.5	17.4	30.8	25.1	29.5	33.2	28.2	20.1	9.4	17.1	13.1	16.8	10.1
SiO ₂ -Si	(ug/dm³)	į	14	1159	1169	1269	1189	1739	696	1039	1109	1159	1009	696	1079	1019	1009	1209	626	1049	1339	1019	1039	606	1099	606	1349	1230
			\rightarrow	-	-		$\overline{}$	\rightarrow	\neg			- 1			$\overline{}$		_ ,		1	- 7	T					,	T	

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang

Examiner: Zhong Si Sheng, Cai Jian Dong

22.6

22.9

19.4

30.0

40.6 29.0 27.9 21.0 20.5

30.5

2	1
9	'n.
C	ŝ
_	5
-	Š

No. Voint Sampling time of Line (CC) Sampling (L) (CC) Water (L) (CC) COD No. COD No. BOD No. TOC TTN TPP PO-4 PO (L) (L) (L) (L) (L) (L) (L) (L) (L) (L)	clai	I otal page: 12	21																	
Point Sampling time Column Sampling time Column Colu			<u>.</u>				Ω				DO	CODMn	BODs	H	TOC	Z	TP	PO ₄ -P	SiO ₂ -Si	NO2-N
No. No.	ź			impli	ing t	ime		Sampling depth	Water temperature	Salinity	(mg/dm³)	(mg/dm³)	(mg/dm³)	TIM.	(mg/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)
Y M D C11 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.11 0.10 0.12 0.11 0.10 0.10 0.12 0.11 0.10 0.12 0.11 0.10							- ,	(m)	(၃)						Detectiv	on limit				
10 10 11 12 12 12 12 12			7	M	l a	H					0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
2000 12 1 16 00 S 1.0 21.24 31.717 7.42 0.46 0.66 8.10 3.08 185 37.3 19.1 2000 12 1 16 0 1 1 1 1 1 1 1 1 1	126						В	11.5	21.17	32.092	7.35	0.39	0.34	8.12	2.86	221	38.6	15.1	1139	21.8
Mathematical Control	127		2000) 12	11			1.0	21.24	31.717	7.42	0.46	99.0	8.10	3.08	185	37.3	19.1	1189	21.5
2000 12 III 1 IIII 1 III 1 III <t< th=""><th>128</th><td></td><td></td><td></td><td></td><td>_</td><td>Σ</td><td>6.5</td><td>21.23</td><td>32.045</td><td>7.21</td><td>0.40</td><td>0.38</td><td>8.11</td><td>3.07</td><td>257</td><td>28.0</td><td>17.4</td><td>1229</td><td>20.5</td></t<>	128					_	Σ	6.5	21.23	32.045	7.21	0.40	0.38	8.11	3.07	257	28.0	17.4	1229	20.5
2000 12 11 10 5 1.16 21.16 32.219 7.54 0.45 0.45 8.09 2.93 198 32.0 17.4 2 00 12 11 10 6.5 21.17 32.218 7.51 0.42 0.36 8.11 2.78 175 29.3 19.1 2 000 12 11 2.0 21.17 32.217 7.44 0.39 0.36 8.10 211 28.0 18.1 2 000 12 11 2.0 2.107 32.173 7.35 0.43 0.28 8.10 3.02 257 22.1 21.1 2.10 7.44 0.43 0.36 8.10 3.02 257 2.11 2.10 <	129						В	12.0	21.15	32.121	7.16	0.48	0.32	8.11	2.73	221	48.0	24.8	1349	22.0
2000 M 6.5 21.17 32.18 7.51 0.42 0.36 8.11 2.78 175 29.3 19.1 2000 1 B 12.0 21.17 32.217 7.44 0.39 0.34 8.12 2.90 211 28.0 18.1 2000 11 2 1.0 21.07 32.17 7.56 0.49 0.50 8.10 20.7 22.7 21.1 2000 11 2 1 M 6.5 21.07 32.178 7.44 0.43 0.50 8.10 20.7 22.7 21.1 2000 12 1 M 6.5 21.07 32.178 7.44 0.43 0.36 8.10 5.69 149 14.7 11.4 2000 12 2 1 M 6.3 21.09 32.18 7.44 0.43 0.36 8.11 2.19 14.7 11.4 2000 12 1 M	130		2000	12	=		_	1.0	21.16	32.219	7.54	0.45	0.42	8.09	2.93	198	32.0	17.4	1179	18.6
2000 21 12 200 B 12.0 21.17 32.217 7.44 0.39 0.34 8.12 2.90 211 28.0 18.1 28.0 18.1 2000 12 12 200 S 1.0 21.07 32.177 7.56 0.49 0.50 8.10 257 25.7 21.1 2000 12 12 0.0 S 1.0 21.07 32.178 7.44 0.43 0.28 8.11 277 221 29.3 21.8 2000 12 12 10 10 10 10 10	131		_		_		Σ	_	21.17	32.218	7.51	0.42	0.36	8.11	2.78	175	29.3	19.1	1269	19.1
2000 12 12 20 0 5 1.0 21.07 32.177 7.56 0.49 0.50 8.10 3.02 257 25.7 21.1 2000 12 12 12 12 10 10 12 12	132					\dashv	В	12.0	21.17	32.217	7.44	0.39	0.34	8.12	2.90	211	28.0	18.1	1069	18.1
2000 M 6.5 21.07 32.179 7.35 0.43 0.28 8.11 2.77 221 29.3 21.8 2000 12 1 0 0 S 1.00 21.07 32.178 7.44 0.43 0.36 8.12 3.66 221 25.3 16.8 16.8 2000 12 12 0 1 00 S 1.0 21.08 32.173 7.38 0.51 0.36 8.10 5.69 149 14.7 11.4 11.4 2000 12 12 0 1 00 S 1.0 21.09 32.168 7.44 0.54 0.40 8.11 2.18 21.3 17.4 2000 12 12 0 4 00 S 1.0 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 2000 12 12 0 4 00 S 1.0 21.11 32.092 7.32 0.37 0.36 8.14 2.92 261 49.3 17.8 2000 12 12 0 7 00<	133		2000	12	11			1.0	21.07	32.177	7.56	0.49	0.50	8.10	3.02	257	22.7	21.1	979	18.6
2000 12 12 01 00 S 1.0 21.07 32.178 7.44 0.43 0.36 8.12 3.66 221 25.3 16.8 2000 12 12 01 00 S 1.0 21.08 32.173 7.38 0.51 0.36 8.10 5.69 149 14.7 11.4 11.4 2000 12 12 01 00 S 1.0 21.09 32.170 7.63 0.51 0.56 8.11 2.18 254 18.7 16.1 2000 12 12 04 00 S 1.0 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 2000 12 12 04 00 S 1.0 21.11 32.092 7.32 0.37 0.51 8.14 2.92 267 46.6 15.1 2000 12 12 07 00 S 1.0 21.12 32.102 7.36 0.39 0.36 8.14 2.92 261 69.3 21.1 2000 12 12 07 00 S 1.0 21.02 32.101 7.24 0.44 0.29 8.12 3.06 <td< th=""><th>134</th><td></td><td></td><td>\Box</td><td>\exists</td><td>\dashv</td><td>Σ</td><td></td><td>21.07</td><td>32.179</td><td>7.35</td><td>0.43</td><td>0.28</td><td>8.11</td><td>2.77</td><td>221</td><td>29.3</td><td>21.8</td><td>698</td><td>18.0</td></td<>	134			\Box	\exists	\dashv	Σ		21.07	32.179	7.35	0.43	0.28	8.11	2.77	221	29.3	21.8	698	18.0
2000 12 12 01 S 1.0 21.08 32.173 7.38 0.51 0.36 8.10 5.69 149 14.7 11.4 200 1 M 6.3 21.09 32.168 7.44 0.54 0.40 8.11 2.18 238 21.3 17.4 2000 12 1.15 21.10 32.170 7.63 0.51 8.13 4.23 254 18.7 17.4 2000 12 1.0 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 1 A 7.0 21.11 32.092 7.32 0.37 0.51 8.13 3.30 211 49.3 17.8 2000 12 12 21.02 32.101 7.28 0.42 0.40 8.10 5.18 24.0 17.8 17.8 2000 1 1 M 6.5 21.02 32.10 7.24 <	135		_				В	12.0	21.07	32.178	7.44	0.43	0.36	8.12	3.66	221	25.3	16.8	869	18.9
2000 12 M 6.3 21.09 32.168 7.44 0.54 0.40 8.11 2.18 238 21.3 17.4 2000 12 1 1 21.10 32.170 7.63 0.51 0.56 8.12 4.03 254 18.7 16.1 2000 12 1 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 2000 1 M 7.0 21.11 32.092 7.32 0.37 0.51 8.13 3.30 211 49.3 17.8 2000 1 B 13.0 21.12 32.112 7.36 0.39 0.36 8.14 2.92 261 69.3 11.8 2000 1 1 M 6.5 21.02 32.10 7.24 0.44 0.29 8.12 3.06 21.0 17.8 4 1 1 1 1 1 <td< th=""><th>136</th><td></td><td>2000</td><td>12</td><td>17</td><td>\rightarrow</td><td></td><td>1.0</td><td>21.08</td><td>32.173</td><td>7.38</td><td>0.51</td><td>0.36</td><td>8.10</td><td>5.69</td><td>149</td><td>14.7</td><td>11.4</td><td>949</td><td>21.5</td></td<>	136		2000	12	17	\rightarrow		1.0	21.08	32.173	7.38	0.51	0.36	8.10	5.69	149	14.7	11.4	949	21.5
2000 12 1 B 11.5 21.10 32.170 7.63 0.51 6.46 8.11 4.03 254 18.7 16.1 2000 12 12 0 5 1.0 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 2000 12 2 1 4 2.11 32.092 7.32 0.37 0.51 8.13 3.30 211 49.3 17.8 2000 12 2 1 8 13.0 21.12 7.36 0.42 0.40 8.10 5.18 24.0 17.8 17.8 2000 12 2 1 8 1.02 32.10 7.24 0.42 0.40 8.10 5.18 24.0 17.8 17.8 2000 1 1 8 12.0 21.05 32.115 7.26 0.38 0.32 8.13 3.05 21.3 21.3 <td< th=""><th>137</th><td></td><td></td><td></td><td></td><td></td><td>Σ</td><td></td><td>21.09</td><td>32.168</td><td>7.44</td><td>0.54</td><td>0.40</td><td>8.11</td><td>2.18</td><td>238</td><td>21.3</td><td>17.4</td><td>1239</td><td>23.1</td></td<>	137						Σ		21.09	32.168	7.44	0.54	0.40	8.11	2.18	238	21.3	17.4	1239	23.1
2000 12 12 04 0 5 1.0 21.00 31.747 7.33 0.40 0.46 8.11 4.23 267 46.6 15.1 2000 12 12 1 21.12 32.092 7.32 0.37 0.51 8.13 211 49.3 17.8 2000 12 1 1 1 22.11 32.112 7.36 0.39 0.36 8.14 2.92 261 69.3 21.1 2000 12 1 1 1 21.02 32.101 7.28 0.40 8.10 5.18 24.0 17.8 2000 1 1 1 2 1 0 21.02 32.100 7.24 0.44 0.29 8.12 3.06 310 20.0 15.4 8 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>138</th> <td></td> <td></td> <td></td> <td></td> <td>\dashv</td> <td>В</td> <td>11.5</td> <td>21.10</td> <td>32.170</td> <td>7.63</td> <td>0.51</td> <td>0.56</td> <td>8.12</td> <td>4.03</td> <td>254</td> <td>18.7</td> <td>16.1</td> <td>1179</td> <td>18.3</td>	138					\dashv	В	11.5	21.10	32.170	7.63	0.51	0.56	8.12	4.03	254	18.7	16.1	1179	18.3
2000 12 1 21.12 32.092 7.32 0.37 0.51 8.13 3.30 211 49.3 17.8 2000 12 12 13.0 21.12 32.112 7.36 0.39 0.36 8.14 2.92 261 69.3 21.1 2000 12 12 1.0 21.02 32.101 7.28 0.42 0.40 8.10 5.18 264 24.0 17.8 8 1 4 6.5 21.02 32.100 7.24 0.44 0.29 8.12 3.06 310 20.0 15.4 9 1	139		2000	12	12(1.0	21.00	31.747	7.33	0.40	0.46	8.11	4.23	267	46.6	15.1	1279	23.3
2000 12 12 13.0 21.12 32.112 7.36 0.39 0.36 8.14 2.92 261 69.3 21.1 2000 12 12 07 00 S 1.0 21.02 32.101 7.28 0.49 8.10 5.18 264 24.0 17.8 A 6.5 21.02 32.100 7.24 0.44 0.29 8.12 3.06 310 20.0 15.4 B 12.0 21.05 32.115 7.26 0.38 0.32 8.13 3.02 396 21.3 21.1	5	_				\dashv	Σ	_	21.11	32.092	7.32	0.37	0.51	8.13	3.30	211	49.3	17.8	1019	21.2
2000 12 12 07 00 S 1.0 21.02 32.101 7.28 0.42 0.40 8.10 5.18 264 24.0 17.8 M 6.5 21.02 32.100 7.24 0.44 0.29 8.12 3.06 310 20.0 15.4 M 6.5 21.05 32.115 7.26 0.38 0.32 8.13 3.02 396 21.3 21.1	141				_	\dashv	В	13.0	21.12	32.112	7.36	0.39	0.36	8.14	2.92	261	69.3	21.1	1279	22.6
M 6.5 21.02 32.100 7.24 0.44 0.29 8.12 3.06 310 20.0 15.4 B 12.0 21.05 32.115 7.26 0.38 0.32 8.13 3.02 396 21.3 21.1	142		2000	21	77	2		1.0	21.02	32.101	7.28	0.42	0.40	8.10	5.18	264	24.0	17.8	1309	22.5
B 12.0 21.05 32.115 7.26 0.38 0.32 8.13 3.02 396 21.3 21.1	143			\Box	_	\dashv	Σ	_	21.02	32.100	7.24	0.44	0.29	8.12	3.06	310	20.0	15.4	1119	21.3
	144	_				\dashv	В	12.0	21.05	32.115	7.26	0.38	0.32	8.13	3.02	396	21.3	21.1	696	42.7

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

	Remark			*:Half	value of	limit																						*: Half
	Coliform (ind/100cm ³)		2																									
	Chl-a (mg/m³)		0.10	0.34	0.74	0.51	0.44	0.61	99.0	0.40	0.36	0.43	0.38	0.46	0.58	0.70	0.27	0.42	1.02	0.51	0.51	0.43	0.34	0.44	0.55	0.43	0.52	19:0
	SS (kg/m³)		0.0015	0.0223	0.0645	0.1841	0.0297	0.0358	0.2410	0.0206	0.0235	0.0557	0.0403	0.0500	0.1704	0.0254	0.1357	0.1598	0.0434	0.1408	0.3272	0.0237	0.0309	0.1844	0.0143	0.0375	0.1694	0.0262
ē	(UV) (mg/dm ³)		0.010	0.058						0.043			-			0.052						0.056						0.027
	As (ug/dm³)		0.05				2.76		6.10	,						2.98		5.02										
	Cd (ug/dm³)	Detection limit	0.01				0.30		0.35							0.26		0.52										
	Pb (ug/dm³)	Detect	0.03				1.94		2.59							1.94		1.82										
	Zn (ug/dm³)		3.1				32.0		35.2							38.0		39.2										
	Cu (ug/dm³)		0.2				9.0		0.3							1.0		0.8										
	\mathbf{Hg} (ug/dm 3)		0.0034				0.0097		0.0185							0.0044		0.0062										
	NH ₃ -N (ug/dm ³)		5.0	128.0	111.8	108.9	121.1	135.9	120.4	110.4	117.5	114.7	128.7	107.8	102.8	102.1	98.1	92.0	84.5	102.1	79.1	101.4	92.6	100.6	104.2	128.0	103.9	45.7
	NO ₃ -N (ug/dm ³)		6.0	605.4	514.0	582.6	483.0	464.2	122.4	559.7	573.2	551.6	593.3	597.4	601.4	625.6	386.1	240.8	546.2	613.5	614.9	577.2	596.0	536.8	371.3	336.4	491.1	7.07.7
	<u>و</u> 0		£	S	М	В	S	М	В	S	M	В	S	Σ	В	S	M	В	S	Σ	В	S	М	В	S	Σ	В	S
	ime		M D H Min	00 0			3 00			2 00			5 00			00 8			1 00			4 00			17 00			00 00
	Sampling time		1 (1	13 20			2000 12 13 23			2000 12 14 02			2000 12 14 05			2000 12 14 08			2000 12 14 11			12 14 14			14			2000 12 13 20
	ampl		$\overline{}$	2000 12			0 12			0 12			0 12			0 12			0 12			0 12			12			0 12
Ļ			>	200			200			200			200			200			200			2000			2000		\square	200
	Point	ė Ž		P01																								P11
	o Z				2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Examiner:Zhong Si Sheng,Cai Jian Dong Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang

value of detection value of dotantion Remark (ind/100cm³) Coliform ~ (mg/m^3) Chl-a 1.48 0.38 1.44 1.03 1.09 1.09 1.43 1.90 0.10 0.50 1.18 0.94 0.52 1.05 1.47 0.64 0.97 0.74 0.84 0.87 0.94 0.61 1.21 1.31 0.81 0.0600 0.0178 0.0015 0.1278 0.2438 0.0370 0.0658 0.0584 0.3630 0.3970 0.4840 0.3240 0.3650 0.4395 0.0358 0.0536 0.1340 0.0689 0.1090 0.0229 0.0262 0.0473 (kg/m³) 0.1104 0.0121 0.0262 0.0321 SS (mg/dm³) 0.0100.0390.034 0.034 <u>ā</u> (2) 0.03(ug/dm³) 9.73 7.03 0.05 9.23 6.07 As (ug/dm³) **Detection limit** 0.36 0.49 0.58 0.51 0.01 g (ug/dm³) 0.14 0.031.46 0.57 0.77 (ug/dm³) 27.6 25.8 33.0 27.1 3.1 Zn (ug/dm³) 1.0 0.8 0.8 J 0.2 0.7 (ug/dm³) 0.0034 0.0315 0.0188 0.0573 0.0257 Hg (ug/dm³) NH3-N 73.0 66.5 28.8 42.8 39.9 61.8 47.8 23.7 44.2 45.3 59.3 52.8 55.7 83.4 78.4 71.5 69.4 63.3 34.5 44.9 78.7 50.7 42.1 70.1 5.0 47.1 (ug/dm^3) NO3-N 461.5 719.8 740.0 415.7 271.8 335.0 670.0 360.6 383.5 371.3 239.5 581.2 773.6 667.3 668.7 625.6 764.2 375.4 344.4 449.4 386.1 277.2 581.2 787.1 347.1 6.0 Σ Σ В Σ B S Σ В Σ 8 Σ B S Σ В S Σ 89 Θ S S **a** a Σ S S S 8 8 8 8 8 8 90 8 D H Mir Sampling time 14 11 12 14 14 23 2000 12 14 05 12 14 08 12 14 17 2000 12 12 15 12 14 02 2000 12 13 Σ 12 2000 2000 2000 2000 2000 Total page: 12 Point No. P12 ż 49 28 30 34 40 41 42 43 4 45 46 47 48 37 38 39 26 જ 31 32 33 35 36 27 \mathbf{D} -86

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

						Q	NO ₃ -N	NH3-N	Hg	Cn	Zn	Pb	ΡϽ	As	<u> </u>	SS	Chl-a	Coliform	
Š	Point	Sar	nplin	Sampling time		۰ و	(ug/dm³)	(mp/gn)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(mg/dm ³)	(kg/m³)	(mg/m³)	(ind/100cm ³)	Remark
	ė Ž											Detec	Detection limit						
-		Y	qW	HMir		_	6.0	5.0	0.0034	0.2	3.1	0.03	0.01	0.05	0.010	0.0015	0.10	2	
51			_		\vdash	В	540.9	35.6								0.0762	2.11		limit
52		2000 12	12 1.	12 18 (8	S	504.5	33.1								0.0135	0.78		
53					<u> </u>	Σ	391.5	44.2								0.0141	1.52		
54					 -	В	618.9	37.0								0.0171	1.32		_
55		2000	12 12	21	8	s	251.6	20.8							0.036	0.0273	1.11		
56					广	Σ	201.8	22.3								0.0429	1.05		
57					\vdash	В	195.1	34.9								0.0598	1.22		
58		2000	12 13	8	8	S	149.3	31.3	0.0174	1.2	31.6	0.79	0.51	2.58		0.0165	1.25		
59					\vdash	Σ	139,9	33.1								0.0194	0.92		
09						В	196.4	42.8	0.0251	0.4	28.1	0.79	0.56	2.29		0.0220	1.98		
61		2000	12	13 03	8	S	426.5	26.2							0.036	0.0760	0.76	3	
62					\vdash	M	464.2	28.8								0.0796	0.70		
63			_		H	В	624.3	35.2								0.1791	0.27		
64		2000	12	13 06 (00	S	484.4	44.9	0.0440	9.0	27.0	1.13	0.24	5.57		0.1561	0.39		
65					┝▔	Σ	407.7	51.4								0.1788	0.78		
99					\vdash	В	648.5	51.0	0.0364	5.0	35.4	0.58	0.52	4.46		0.3722	0.51		
67		2000 12	12 1	13 09	90	S	391.5	49.6							0.039	0.0317	1.02		
89						М	538.2	50.7				:				0.0307	0.75		
69						В	705.0	48.5								0.0509	0.39		
70		2000 12	121	13 12	00	S	670.0	50.0								0.0164	1.07		
71						M	744.0	51.0								0.0214	1.00		
72						В	734.6	43.1								0.0446	1.04		
73	P19	2000	12	12 15	00	S	477.6	53.9							0.030	0.1054	1.23		*:Half
74				\square		Σ	480.3	43.1								0.1144	96.0		value of detection
7.5			_			-	6.01	t t								1			10111111

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Remark

*: Half value of detection limit

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in spring tide

		Remark																-							*: Half	vanue or detection	limit		
	Coliform	(ind/100cm)		2																									
	Chl-a	(mg/m²)		0.10	4.46	3.98	3.11	4.37	69.0	3.68	2.02	2.31	2.07	2.25	1.98	2.24	2.23	4.21	0.95	1.75	1.68	1.38	2.11	2.28	2.99	3.37	3.82	4.21	4.73
	SS	(kg/m²)		0.0015	0.0121	0.0185	0.0062	0.0183(*)	0.0252	0.0033	0.0063	0.0264	0.0089	0.0085	0.0167	0.0102	0.0095	0.0326	0.0541	0.0253	9690.0	0.1352	0.0384	0.0439	0.0090	0.0054	0.0067	0.0034	0.0031
	5 (2)	(mg/dm³)		0.010			0.022						0.019						0.027						0.018				
	As	(ng/dm')		0.05									2.18		2.09				2.36		4.99								
	5	(ng/dm_)	Detection limit	0.01	i								0.35		0.50				0.58		0.70					į			
	Pb .	(ug/dm²)	Detect	0.03									0.26		0.33				0.35		0.53								
	Zn	(ug/dm²)		3.1									48.3		52.2				45.4		55.8								
	Cu ,	(ug/dm²)		0.2									7.0		6.0				0.2		0.2								
	Hg	(ug/dm²)		0.0034									0.0088		0.0123				0.0489		0.0332								
	NH3-N	(ng/dm²)		5.0	30.6	28.4	54.3	48.2	20.1	28.4	16.5	23.4	17.3	17.3	19.1	23.0	25.5	29.5	35.9	30.2	15.1	50.3	44.6	47.8	24.8	22.3	13.7	11.1	15.5
	NO3-N	(ng/dm²)		6.0	144.0	138.6	208.5	148.0	6.96	129.2	138.6	139.9	384.8	213.9	199.1	150.7	153.4	203.2	236.8	153.4	164.1	462.8	578.5	582.6	183.0	126.5	138.6	153.4	199.1
	ū	ם מ		Ч	M	8	S	Σ	В	Š	Σ	В	s	Σ	В	S	Ψ	В	s	¥	В	S	Σ	В	S	Σ	В	S	Σ
		me		HMin			9 00			00			00	<u> </u>	_	1 00			8			2 00			00 0			3 00	
		Sampling time		DH DH			11 16	\vdash	-	11 19	_	\vdash	11 22	\vdash		2000 12 12 01	_	\vdash	2000 12 12 04	\vdash	_	12 12 07	_	-	11 10			11 13	\Box
		mpli		MD			12	Ī.		12			12			12			112			12			112			12	\square
		Sa		Y			2000			2000			2000			2000			2000			2000			2000 12			2000	
ge . 12		Point	Z																						P22				
Total page :	· -	Š.			101	102	103	<u>4</u>	105	106	107	108	109	110	Ξ	112	113	114	115	116	117	118	119	120	121	122	123	124	125

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

12	
٠.	
page	
Total	

	Remark																					
Coliform	(mg/m³) (ind/100cm³)		2																			
Chl-a	(mg/m³)		0.10	4.79	4.21	4.73	4.30	4.30	4.24	4.80	3.56	3.97	3.71	3.71	2.68	3.88	4.12	3.77	5.19	1.75	1.91	1.97
SS	(kg/m³)		0.0015	0.0071	0.0041	0.0044	0.0148	0.0106	0.0112	0.0192	0.0106	0.0101	0.0152	0.0153	0.0124	0.0186	0.0294	0.0251	0.0262	0.0183	0.0152	0.0205
io S	(mg/dm ³)		0.010		0.03						0.018						0.018					
As	(ug/dm³)		0.05								3.01		4.60				3.03		3.24			
25	(ug/dm³)	Detection limit	0.01								0.27		0.33				0.38		0.30			
Pb	(ug/dm³)	Detec	0.03								1.81		0,38				0.12		1.16			
Zn	(ug/dm³)		3.1								23.8		20.5				25.6		27.0			
n)	(ng/dm³)		0.2								0.2	:	0.4				0.2		0.2			
Hg	(ug/dm³)		0.0034								0.0177		0.0142				0.0188		0.0244			
NH3-N	(ug/dm³)		5.0	19.4	30.2	27.0	29.5	16.9	30.2	15.1	10.8	16.9	12.6	12.2	11.5	6.8	20.1	15.5	10.1	18.0	11.5	11.1
N- _t ON	(ug/dm³)		6.0	152.0	133.2	148.0	142.6	122.4	121.1	119.7	118.4	125.1	129.2	6.96	109.0	90.1	121.1	88.8	104.9	71.3	121.1	183.0
a	ے ب	. .	4	В	S	Σ	В	·S	Σ	В	S	Σ	В	S	Σ	В	S	Μ	В	S	Σ	В
	ne E		H Min		5 00			9 00			2 00			1 00			4 00			7 00		
	Sampling time		HП		2000 12 11 16	_		2000 12 11 19			2000 12 11 22			2000 12 12 01			12 04			2000 12 12 07		\dashv
	ildm		M D) 12) 12			12) 12			2000 12 12) 12		
L	Sa		Y		2000			2000			2000			2000			2000			2000		
	Point																					
	Š.			126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144

D - 90

*)SSオリジナルデータイは0.6183であったが、これは0.0183の製り。0.0183に訂正(2001年2月14日16時川村) *)TPオリジナルデータイは0. 036であったが、これは0. 086の製り。0.086に訂正(2001年2月16日川村)

> Printer:Yu Han Sheng, He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng, Cai Jian Dong

Total page: 12

otal	Total page: 12	71																
							ì	•	00		BODs	Ha	TOC	N.	TP	PO4-P	SiO ₂ -Si	NO _z -N
Š	_		Sampling time	ng tin	ne ne	e Sampling p depth	water temperature	Salinity	(mg/dm²)	(mg/dm³)	(mg/dm²)	<u> </u>	(mb/dm)	(ng/dm²)	(ng/dm²)	(ug/dm³)	(ug/dm²)	(ug/dm²)
	ė —–						(S)	•					Detection	Detection limit			:	
		>	M	D H Min	Min	_		•	0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
_	P01		2000 12 07 20 00	720	8	S 1.0	21.10	16.707	5.60	1.84	09:0	7.72	3.46	226	75.2	48.4	3969	150.4
2						M 14.0	21.10	19.437	5.92	1.72	1.25	7.73	3.55	945	91.6	58.4	2784	136.9
3		_				B 27.0	21.12	24.408	6.04	1.75	1.07	7.83	4.11	970	102.5	53.1	2103	111.2
4		2000	12 07	7 23	00	S 1.0	21.14	16.344	5.80	1.67	0.62	7.73	3.32	1151	83.4	52.4	3807	140.7
3						M 14.5	21.12	22.399	5.97	0.94	0.53	7.73	2.93	824	71.1	53.4	2440	116.5
9	_						21.20	24.427	6.08	1.23	89.0	7.81	3.16	765	131.2	63.7	2246	112.8
7		2000	0 12 08 02	802	8	S 1.0	21.43	13.766	5.78	1.57	0.24	7.78	3.54	1352	90.2	55.1	3695	128.5
∞		_				M 13.0	21.16	18.812	5.78	1.43	0.43	7.76	3.40	1071	95.7	57.0	3442	145.4
9		_		F	-	B 25.0	21.16	22.470	5.87	1.54	1.07	7.75	3.27	952	90.2	62.0	2582	128.5
10		2000	2000 12 08 05	805	8	S 1.0	20.66	10.376	5.62	1.82	0.73	7.65	3.13	1091	94.3	52.1	3754	145.2
=					-	M 13.5	21.12	19.385	5.40	1.88	0.97	7.58	3.50	935	95.7	55.1	3857	156.6
12						В 26.0	21.12	21.150	5.70	1.47	0.98	7.73	3.47	7.26	132.6	60.7	2766	135.0
13		2000	2000 12 08 08	808	00	S 1.0	20.90	15.121	5.65	1.37	0.61	7.65	3.51	1258	118.9	63.0	3625	148.1
14						M 13.0	21.10	20.306	5.66	06.0	0.43	7.66	2.99	1147	91.6	59.7	3205	140.6
15						B 25.0	21.17	23.683	5.87	76.0	0.55	7.78	3.23	962	123.0	57.4	2521	127.4
16		2000	2000 12 08 11	8 11	00	S 1.0	20.98	16.651	6.10	1.11	0.48	7.76	3.25	1067	8.66	57.4	3392	133.9
17						M 13.5	21.20	21.806	5.85	0.76	0.47	7.76	2.79	942	92.9	59.4	2736	132.1
18						B 26.0	21.12	23.853	5.84	1.51	0.48	7.84	2.76	799	118.9	80.3	3562	121.0
19		2000	2000 12 08 14	8 14	00	S 1.0	21.38	12,855	5.70	1.62	0.65	7.59	3.01	1321	8.66	57.4	3794	147.2
20						M 13.0	21.26	18.786	5.72	1.36	0.48	7.58	3.46	1074	106.6	59.0	3371	144.1
21						B 25.0	21.14	21.955	5.84	1.11	0.31	7.60	2.94	1147	97.0	59.4	3215	141.5
22		2000	2000 12 08 17	817	90	S 1.0	21.13	11.815	5.38	1.80	0.48	7.54	2.93	1528	61.3	31.2	3607	118.5
23						M 13.5	21.12	20.672	5.62	1.18	0.61	7.67	3.66	931	44.0	22.8	3225	111.6
24						B 26.0	21.13	22.744	5.62	2.31	0.79	7.78	3.79	099	9.99	46.6	2458	105.5
25	P11		2000 12 07 20		00	S 1.0	21.28	28.442	7.17	0.82	89.0	8.00	3.56	591	79.3	13.3	2459	92.8
Printe	Printer: Yu Han Sheng, He Xiao Yuan	lan Shei	ng,He	Xiao	Yuan													

Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 12

	. Aged Inc.	<u>.</u>																	
						Q	:	,		OO		BODs	щ	TOC	Ž,	TP	PO ₄ -P	SiO ₂ -Si	N-zON
ģ	Point		Sampling time	ling t	ime	ა ი	Sampling	water temperature	Salinity	(mg/dm³)	(mg/dm³)	(mg/dm³)		(mg/dm³)	(ng/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ng/dm³)
						Ψ.	(m)	(2)						Detection	Detection limit				
		Y	M	DH	HMin	n n				0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
26						M	4.0	21.09	30.774	68'9	0,46	95.0	8.04	3.13	539	9.08	10.6	2012	61.6
27						В	7.0	21.16	31.661	19'9	0.81	0.31	8.02	4.45	504	80.6	11.3	1846	52.2
28		2000	2000 12 07 23	07[2]	3 00	S	1.0	21.23	21.769	7.09	0.52	0.36	7.98	3.76	299	73.8	9.3	2858	2.66
29						М	4.3	21.17	31.860	66.9	0.31	08.0	8.03	3.06	685	61.5	11.6	1815	72.1
30						В	7.5	21.18	31.896	7.07	0.46	0.75	8.05	3.83	421	54.7	19.9	1722	42.4
31		2000	2000 12 08 02	080	2 00	S	1.0	20.87	14.346	7.19	0.94	09'0	7.93	2.78	1067	6.77	29.9	3675	140.4
32						M	3.8	21.12	30.471	6.94	0.50	0.48	8.05	2.56	539	97.0	27.9	1608	50.1
33						В	6.5	21.13	31.035	06'9	0.44	0.29	8.06	2.78	657	95.7	19.9	1400	49.2
34		2000	200d 12 08los	080	S 00	S	1.0	21.21	20.807	7.07	68:0	0.35	7.67	2.40	859	46.5	36.8	2613	113.6
35						M	4.0	21.13	28.426	6.94	0.51	0.45	8.03	3.33	726	61.5	34.8	2365	9.06
36						В	7.0	21.10	30.062	6.93	0.53	0.32	8.06	3.38	535	39.6	33.8	2386	76.8
37		2000	d 12	12 08 08	8 00	S	1.0	20.69	21.576	6.97	69'0	0.31	8.02	2.89	775	39.6	36.5	1909	82.5
38				_		M	4.0	21.11	30.172	7.01	0.62	0.32	8.03	3.43	619	47.8	36.2	1971	79.9
39						В	7.0	21.11	30.250	6.95	0.64	0.26	8.06	2.85	549	46.5	31.8	1649	59.0
6		2000	2000 12 08 11	08	1 00	S	1.0	21.07	24.197	7.11	0.80	0.42	8.04	2.68	1675	45.1	36.2	2246	6.66
41						М	4.0	21.09	29.753	68'9	09'0	0.32	8.06	2.03	1043	36.9	35.2	1701	69.2
42						В	7.0	21.18	31.085	6.85	69:0	0.31	8.08	4.51	518	42.4	30.2	1183	50.1
43		200C	2000 12 08 14	08	4 00	S	1.0	21.92	22.993	7.32	0.77	0.43	8.03	3.14	685	47.8	43.4	2307	96.5
4						Μ	3.9	21.18	29.301	6.87	09:0	0.26	8.07	3,43	584	35.5	29.2	1826	66.2
45						В	8.9	21.15	30.059	98.9	69'0	0.25	8.07	4.24	615	62.9	30.8	1473	65.5
46		700C	2000 12 08 17	8	9	S	1.0	21.91	24.078	7.40	0.83	0.51	8.04	3.38	744	75.2	39.5	2327	98.2
47		\dashv				Σ	4.0	21.19	29.604	7.38	0.83	0.52	8.05	3.04	751	62.9	39.1	2064	90.4
48						В	7.0	21.17	29.912	68.9	0.72	0.52	8.05	2.79	462	102.5	55.4	1826	71.6
49	P12	╗	2000 12 06 15	8	8	S	1.0	21.36	29.880	6.85	0.71	0.32	7.99	3.60	865	92.9	82.6	1691	80.5
50						M	6.0	21.29	30.957	6.61	89:0	0.33	8.00	3.70	617	113.4	85.6	1639	79.9
inte	Printer: Yu Han Sheng, He Xiao Yuan	ın Shei	ng,H	e Xi	30 Yu	an													

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang

Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

Total page: 12

otal p	otal page 12	71																	
	_							i i		DO O		BODs	Hd	TOC	ZI :	TP	PO ₄ -P	SiO ₂ -Si	NO2-N
Ž	Point		Sampling time	ing ti	me	. .	Sampling	water temperature	Salinity	(mg/dm²)	(mg/dm²)	(mg/dm ₂)		(mg/dm²)	(ng/dm²)	(ug/dm²)	(ug/dm²)	(ug/dm²)	(ng/dm/)
	Š					. 		(၁)						Detection	Detection limit				
_		>	Σ	D H Min	Min	<u>-</u>			•	0.12	0.10	0.20	0.10	0.18	14	9.1	1.0	14	0.5
51						В	11.0	21.53	31.552	6.28	0.70	0.56	8.00	3.30	1098	77.9	52.7	1141	56.8
52	ļ	2000	2000 12 06 18	96	8	S	1.0	21.45	31.134	6.81	0.47	0.70	8.03	3.45	879	68.3	64.3	1193	62.3
53						Σ	6.5	21.55	31.950	6.49	0.40	0.48	8.02	3.27	619	69.7	55.1	1224	59.2
54						В	12.0	21.56	31.986	6.10	0.59	0.29	8.02	3.14	407	73.8	47.8	1234	47.3
55		2000	2000 12 0621	1290	90	s	1.0	21.45	31.451	6.73	0.51	0.44	8.05	3.12	563	62.9	50.1	1349	58.6
56	_	_				Σ	6.3	21.48	31.754	69.9	0.45	0.33	8.06	3.28	438	54.7	44.1	1307	56.2
57		_		 		m	11.5	21.52	32.049	61.9	0.58	0.33	8.06	2.94	445	50.6	42.5	1234	42.0
58		2000	2000 12 07 00	07 00	00	S	1.0	21.11	30.064	6.54	0.70	0.42	8.02	3.08	633	77.9	69.7	1680	76.2
59		_		_		Σ	0.9	21.53	31.821	6.32	0.55	0.20	8.01	3.13	574	57.4	53.7	1338	57.5
09				<u> </u>		В	11.0	21.54	31.995	6.28	0.51	0:30	8.01	2.79	327	49.2	44.4	1234	44.9
19		2000	2000 12 07 03	07 03	8	S	1.0	21.18	27.681	6.62	0.54	0.46	8.02	3.48	786	98.4	61.0	1955	90.1
62				\vdash		Σ	5.5	21.38	30.835	6.43	0.48	0.70	8.01	2.93	299	103.9	61.0	1732	7.77
63						В	10.0	21.50	31.455	6.38	0.46	0.33	8.03	2.85	601	103.9	57.4	1608	61.8
64		2000	0 12 (12 07 06	00	S	1.0	21.00	28.666	6.49	0.35	0.44	8.03	2.76	664	86.1	58.4	1691	81.0
65		_		_		Σ	0.9	21.50	31.699	6.33	0.29	0.44	8.03	2.93	525	92.9	55.7	1494	56.6
99						8	11.0	21.50	31.775	6.41	0.48	0.56	8.04	3.03	494	88.8	44.4	1369	49.6
29	_	2000	0 12	12 07 09	00	S	1.0	21.34	30.782	6.41	0.44	0.42	8.04	2.71	615	91.6	55.4	1670	64.7
89	<u></u>					Σ	5.5	21.39	31.472	6.58	0.49	99.0	8.04	3.12	681	92.9	51.1	1566	57.9
69		_		<u> </u>		В	10.0	21.44	31.878	6.29	0.55	0.51	8.04	2.96	396	131.2	54.1	1483	48.8
2	_	200 <u>K</u>	2000 12 07 12	0712	00	S	1.0	21.58	28.519	6.70	0.48	0.64	8.02	2.88	657	53.3	44.1	2324	83.2
7	_	_		-		Σ	5.5	21.47	31.029	6.45	0.49	0.35	8.01	3.37	424	34.2	25.5	1961	76.6
72						В	10.0	21.45	31.035	6.30	0.55	0.34	7.98	2.79	365	58.8	15.3	2178	70.1
73	P19	2000	0 12 (12 06 15	00	S	1.0	21.78	23.200	7.78	0.29	0.75	8.04	4.28	622	39.6	38.8	2266	87.5
74				H		×	3.3	20.70	28.297	7.66	0.62	0.64	8.07	4.28	584	58.8	31.2	2116	64.9
75		_				В	5.5	20.66	30.665	7.17	0.44	0.26	8.08	3.63	504	47.8	21.9	2137	44.2
Printer	Printer: Yu Han Sheng, He Xiao Yuan	an She	mg,He	e Xia	o Yua	Ē													

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

D · 93

Total page: 12

1012	rotat page · 12	71																
Ž			Sampling time	g tim		e Sampling	Water	Salinity	DO (mg/dm³)	COD _{Ma} (mg/dm³)	BOD _s (mg/dm ³)	Hď	TOC (mg/dm³)	TN (ug/dm³)	TP (ug/dm³)	PO ₄ -P (ug/dm ³)	SiO ₂ -Si (ug/dm ³)	NO ₂ -N (ug/dm ³)
-	ģ —	_					(၁,)						Detection limit	on limit				
		>	Q W	HMin		_			0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
76		2000	2000 12 06 18		S 00	3 1.0	21.04	27.105	7.76	0.54	99:0	8.07	3.23	809	39.6	34.5	1533	77.5
77					_	M 3.5	20.77	31.271	7.70	0.59	0.40	8.09	4.25	421	47.8	27.5	1722	59.7
78						B 6.0	20.80	31.528	7.33	0.62	0.52	8.07	4.00	327	46.5	21.9	1120	36.6
79		2000 12	12 06	06 21 (3 00	S 1.0	20.72	29.791	7.45	0.26	0.41	8.10	3.53	452	2.69	31.8	1328	61.2
80					_	M 3.3	20.72	31.561	7.21	0.23	0.44	8.10	3.92	459	47.8	26.5	1224	39.2
81						B 5.5	20.74	31.684	96.9	0.29	0.23	8.11	4.03	417	57.4	21.9	985	31.6
82		2000	12 07 00		00	S 1.0	20.19	21.696	7.32	0.57	0.22	7.98	3.19	1001	47.8	35.2	3215	122.4
83						M 3.3	20.77	31.330	6.93	0.32	0.23	8.09	3.53	872	41.0	19.9	1826	43.1
8						B 5.5	20.80	31.486	6.70	0,36	0.10	8.11	2.93	1105	54.7	15.3	1546	30,3
85		2000	2000 12 07 03		3 00	S 1.0	20.41	20.761	7.41	65.0	0.39	8.00	4.82	946	67.0	40.1	2542	121.3
98					<u> </u>	M 3.3	20.81	31,444	7.35	0.64	0.35	8.02	4.19	973	41.0	33.8	2365	95.4
87	_					B 5.5	20.80	31.554	7.21	0.48	0.35	8.09	2.87	476	21.9	19.9	1774	44.8
88		2000	2000 12 07 06		3 00	S 1.0	20.36	18.011	7.48	0.70	0.40	8.02	3.03	907	49.2	36.2	2906	110.8
86	_				_	M 3.5	20.75	31.440	7.28	09.0	0.36	80.8	3.56	580	43.7	22.6	2002	60.1
8	_				_	B 6.0	20.75	31.561	6.97	0.41	0.31	8.10	2.86	455	45.1	17.2	1276	30.0
16		2000	2000 12 07 09		3 00	S 1.0	20.65	22.322	7.66	0.78	0.39	96'L	2.74	956	53.3	41.1	3297	137.8
92					_	M 3.3	20.78	28.300	7.05	0.45	0.32	8.10	2.94	469	46.5	21.2	1577	52.5
93					1	B 5.5	20.74	31.507	7.05	0.34	0.35	8.11	3.13	393	45.1	22.2	1566	35.7
94		2000 12	12 07	12	3 00	S 1.0	20.85	22.460	7.66	0.25	0.64	7.94	2.77	1071	86.1	38.5	3389	145.2
95					<u> </u>	M 3.3	20.80	30.816	7.01	0.48	0.32	8.07	2.24	563	34.2	26.2	1504	47.0
96		_				B 5.5	20.80	31.192	6.93	0.53	0.31	8.10	2.86	334	35.5	21.9	1400	38.8
97	7 P20		200d 12 05 10		00	S 1.0	21.10	32.086	7.17	0.40	0.52	8.10	3.63	195	32.8	25.2	861	25.0
86					_	M 8.0	21.12	32.597	7.09	0.44	0.34	8.13	3.72	504	53.3	21.2	799	20.9
8	_				┦	B 15.0	21.12	32.595	7.12	0.48	0.38	8.14	3.43	393	46.5	18.9	1027	25.7
8	_	2000	2000 12 05 13		00	S 1.0	21.23	32.572	7.22	0.51	0.37	8.10	3.30	309	36.9	24.9	799	19.4
Print	Printer: Yu Han Sheng, He Xiao Yuan	an Sher	ıg,He,	Xiao	Yuan													

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 12

-	r				L									Ì				
					<u> </u>		į		DO	CODMn	BOD ₅		TOC	N.	TP	PO ₄ -P	SiO ₂ -Si	NO ₂ -N
ģ	Point	San	npling	Sampling time	<u>. ი</u>	8 3	Water temperature	Salinity	(mg/dm³)	(mg/dm³)	(mg/dm³)	nd	(mg/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)
	<u> </u>	-	-	}	<u> </u>	Œ	(၁)					į	Detection limit	on limit				
		<u>~</u>	M	H Min	= <u>:</u>				0.12	0.10	0.20	0.10	81.0	14	1.6	1.0	14	0.5
101	+	寸	\neg	_	Σ	7.5	21.16	32.561	7.21	0.70	89.0	8.12	3.13	386	46.5	20.9	737	22.0
102	\dashv	7	\exists	_	<u>=</u>	14.0	21.14	32.580	7.05	0.36	0.40	8.12	3.42	995	34.2	19.6	799	24.4
103	77	2000 12 05 16	12 05	16 00	S	1.0	21.19	32.467	7.40	0.45	0.32	8.16	3.59	441	46.5	22.2	840	12.4
104	+	\dashv	\dashv	\dashv	Σ	0.8	21.15	32.492	6.83	0.36	0.31	8.16	2.79	302	35.5	18.2	608	14.8
105			1		<u>m</u>	15.0	21.17	32.513	7.32	0.35	0.57	8.14	3.23	487	43.7	18.6	820	16.3
106	7	2000 12 05 19	12 05	19 00	S	1.0	21.22	32.418	7.29	0.36	0.58	8.11	3.25	361	24.6	19.2	1297	15.5
107	7	+	7		Σ	8.3	21.23	32.417	7.29	0.40	0.35	8.12	2.80	337	28.7	6.61	840	11.7
108		_	7	_	<u> </u>	15.5	21.22	32.430	7.28	0.36	0.42	8.12	3.28	445	26.0	19.2	747	11.7
109	7	2000 12 05 22	12 05	22 00	S	1.0	21.24	32.401	7.32	0.40	0.65	8.12	3.24	282	24.6	17.9	1535	14.1
110	+	+	7	\dashv	Σ	8.0	21.25	32.402	7.30	0.36	0.48	8.14	3.10	327	31.4	21.6	1172	14.2
Ξ	+	\dashv	7	\dashv	<u>m</u>	15.0	21.19	32.435	7.32	0.36	0.47	8.14	2.94	452	32.8	17.6	1120	16.5
112	2	2000 12 0601	12 06	- - - - - - - -	S	1:0	21.13	32.403	7.30	0.46	0.43	8.11	2.94	209	34.2	30.5	1442	16.5
113	\dagger	\dashv	7	+	Σ	8.3	21.17	32.427	7.30	0.51	0.55	8.12	2.99	261	28.7	20.9	1317	15.5
114	\dashv	\dashv	\dashv	-	<u> </u>	15.5	21.17	32.447	7.32	0.55	0.45	8.13	3.19	143	34.2	19.2	1131	15.5
115	5	2000 12 06 04	2 06	8	S	1.0	21.12	32.426	7.17	0.48	0.40	8.11	2.85	414	38.3	19.9	1349	15.5
911	+	\dagger	7	_	Σ	8.0	21.15	32.422	7.18	0.54	0.33	8.11	3.31	261	67.9	27.9	1359	15.5
117	\dagger	\dagger	7	\dashv	_	15.0	21.16	32.423	7.19	0.63	0.40	8.12	3.05	174	61.5	17.6	1504	16.8
118	7	2000 12 06 07	2 06	8	S	1.0	21.10	32.433	7.21	0.44	0.44	8.11	2.97	222	32.8	19.2	1203	15.9
119	\dagger	+	7	+	Σ	8.1	21.13	32.428	7.25	0.44	0.52	8.11	3.33	192	39.6	19.6	1317	15.5
-	- [+	7	\dashv	B	15.2	21.14	32.430	7.21	0.38	0.54	8.11	3.00	288	43.7	17.2	1172	15.2
\dashv	P22 20	2000	12 05 10	00	S	1:0	20.99	32.393	7.15	0.18	0.40	8.10	3.24	594	38.3	19.6	1483	14.8
122	\dashv	\dashv	#	4	Σ	0.9	21.07	32.489	7.24	0.14	0.39	8.16	2.97	212	41.0	17.6	1048	15.7
123		\dashv	4	\dashv	m	11.0	21.07	32.493	7.24	0.16	0.47	8.17	3.42	198	36.9	16.6	1452	15.4
124	7	2000 12	2 05 13	13 00	S	1.0	21.12	32.443	7.29	0.26	0.52	8.11	2.87	393	38.3	24.2	1245	21.1
125	\dashv	\dashv	\exists	\dashv	Σ	6.5	21.09	32.443	7.25	0.22	0.34	8.12	2.55	236	34.2	18.9	1048	20.7
Printer: Yu Han Sheng, He Xiao Yuan	Han S	heng,	He X	iao Yı	ıan							!				1		

Checker: Kuang Zheng Chang
Examiner: Zhong Si Sheng, Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY CONTINE OF THE PEARL RIVER ESTUARY

Total page: 12

lotal page . 12	1 26	,																
	_ 				_			•	00	CODMn	BOD,		TOC	Ž.	Ē	PO ₄ -P	SiO ₂ -Si	NO2-N
Ž	Point		Sampling time	time	<u> </u>	Sampling depth	Water	Salinity	(mg/dm³)	(mg/dm³)	(mg/dm³)	н	(mg/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)
	Š						(၁)	•					Detecti	Detection limit				
		<u>~</u>	M	H Min	<u> </u>				0.12	0.10	0.20	0.10	0.18	14	1.6	1.0	14	0.5
126				_	B	12.0	21.09	32.466	7.19	0.23	0.46	8.13	2.92	153	35.5	17.6	985	17.8
127		2000	2000 12 05 16	8	s	1.0	21.32	32.445	7.36	0.29	0.53	8.14	3.37	282	41.0	21.9	966	16.5
128				_	Σ	6.3	21.22	32.495	7.33	0.31	0.56	8.16	3.27	434	47.8	17.9	1017	16.6
129				ļ	В	11.5	21.19	32.493	7,23	0.23	99.0	8.15	3.24	229	41.0	17.9	1328	17.8
130		2000	2000 12 05 19	8	S	1.0	21.20	32.491	7.32	0.25	0.47	8.12	3.33	216	57.4	21.9	1017	15.7
131			_	 	Σ	0.9	21.18	32.498	7.32	0.26	0.39	8.14	3.08	365	57.4	25.2	1006	15.7
132			F	\vdash	B		21.19	32.496	06.7	0.26	0.55	8.14	3.56	483	38.3	30.8	1214	15.9
133		7000 7000	2000 12 05 22	22	s o	1.0	21.21	32.510	7.23	0.35	0.48	8.12	3.65	403	51.9	31.5	830	14.8
134			_		Σ	5.5	21.18	32.503	7.29	0.23	0.39	8.13	3.00	525	62.9	28.5	892	15.4
135				-	m m	10.0	21.17	32.492	7.41	0.32	0.10*	8.13	2.95	247	54.7	38.1	871	16.1
136		2000	2000 12 06 01	8	S	1.0	21.09	32.489	7.09	0.19	0.20	8.13	2.59	240	47.8	15.9	1857	16.6
137					Σ	0.9	21.09	32.495	7.09	0.22	0.10*	8.14	2.57	184	41.0	16.9	1929	15.4
138				\vdash	æ	11.0	21.09	32.498	7.18	0.16	0.85	8.14	2.39	261	42.4	14.9	1546	15.7
139		2000	2000 12 06 04		S 00	1.0	21.13	32.502	7.30	0.37	0.25	8.13	3.06	268	31.4	14.9	1276	15.9
140				H	W	5.5	21.13	32.503	7.16	0.29	0.64	8.14	3.08	212	32.8	16.6	1732	15.5
141					B	3 10.0	21.13	32.503	7.16	0.43	0.52	8.15	2.68	368	35.5	14.9	1452	15.4
142		2000	2000 12 0607		S 00	3 1.0	21.15	32.508	7.26	0.37	0.57	8.10	3.08	323	47.8	15.9	1743	14.8
143				-	Σ	1 5.5	21.15	32.504	7.18	0.29	0.49	8.10	2.96	240	47.8	17.6	1784	15.0
144			H	H	B	3 10.0	21.15	32.498	7.23	0.26	0.39	8.11	5.79	452	39.6	17.2	1452	15.5

Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in neap tide

	Remark			*: Half	value of	limit																				·		*:Half
Coliform	(ind/100cm ³)		2	126		48	89		14	58		40	116		32	648		30	92		78	204		158	116		62	2
Chl-a	(mg/m³)		0.10	0.52	0.73	0.20	0.43	0.40	0.39	0.30	0.38	0.43	0.39	0.37	0.44	1.01	0.80	0.44	0.63	0.38	0.44	1.39	0.87	0.47	0.42	0.25	0.30	2.14
SS	(kg/m³)		0.0015	0.0052	0.0844	0.1104	0.0072	0.0235	0.0440	0.0062	0.0079	0.0882	0.0283	0.0008*	0.0302	0.0107	0.0149	0.0405	0.0082	0.0097	0.2408	0.0100	0.0081	0.0102	0.0082	0.0364	0.2028	0.0059
ii O	(UV) (mg/dm³)		0.010	0.050						0.045						0.050						0.048						0.027
As	(ug/dm³)		0.05	2.58		4.94							3.10		2.85						_							2.53
Cq	(ug/dm³)	Detection limit	0.01	0.12		0.17							0.10		0.21					i								0.32
Pb	(ug/dm³)	Det	0.03	1.20		1.89							1.64		1.73													3.43
Zn	(ug/dm^3) (ug/dm^3)		3.1	23.6		27.9							31.5		35.6													14.5
ű	(ug/dm³)		0.2	0.4		1.2							8.0		0.4													0.5
Hg	(ug/dm³)		0.0034	0.0450		0.0293							0.0132		0.0277													0.0104
NH3-N	(ug/dm³)		5.0	66.1	50.8	51.9	52.6	56.0	67.9	65.1	65.8	88.4	58.1	58.8	59.5	81.1	61.6	89.1	73.4	84.9	81.4	74.8	99.5	87.7	96.3	24.8	27.3	25.4
NO3-N	(ug/dm³)		6.0	705.8	649.3	490.3	634.5	531.9	493.3	708.8	659.7	578.0	711.7	711.7	606.2	708.8	677.6	578.0	655.3	609.2	542.3	710.3	650.8	644.9	604.1	567.8	522.0	350.7
O	е С		4	S	Σ	В	S	M	В	S	M	В	S	W	В	S	M	В	S	Σ	В	S	М	В	S	M	В	S
	Sampling time		Y M D H Min	2000 12 07 20 00			2000 12 07 23 00			2000 12 08 02 00			2000 12 08 05 00			2000 12 08 08 00			2000 12 08 11 00			2000 12 08 14 00			2000 12 08 17 00			25 P11 2000 12 07 20 00
	Point	ė Ž		P01																								P11
	Š		_	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25

Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

1	•	71
		מאלים
		2

	Remark			value of	limit																						*: Half	value of	
Coliform	(ind/100cm³)		2		4	1,*		2	4		2	2		1*	2		4	2		2	1*		2	1*		4	198		
Chl-a	(mg/m³)		0.10	1.62	2.81	1.88	2.22	3.43	1.49	1.88	1.90	1.23	1.62	1.56	2.71	2.77	1.47	3.23	1.48	1.60	3.22	1.91	1.52	3.88	4.30	0.72	2.10	1.82	
SS	(kg/m³)		0.0015	0.0127	0.0154	0.0065	0.0056	0.0114	0.0025	0,0181	0.0270	0.0087	0.0092	0.0111	0.0067	0.0074	0.0138	0.0062	0.0083	0.0105	0.0063	0.0232	0.0084	0.0074	0.0093	0.0322	0.0100	0.0074	
iio S	(UV) (mg/dm³)		0.010						0.033						0.028						0.033						0.028		
-SA	(ug/dm³)		50.0		3.17	-															2.40		3.08						
కె	(ug/dm³)	Detection limit	0.01		0:30											:					0.26		0.19	:					
£	(ug/dm³)	Det	0.03		2.03																3.41		1.77						12 - 8
Zn	(ug/dm³)		3.1		17.1																20.4		28.5						
రే	(ug/dm³)		0.2		1.1																1.3		1.1						
Hg	£.		0.0034		0.0152																0.0074		0.0215						
NH3-N	(ug/dm³)		5.0	23.7	24.7	30.3	23.7	27.5	74.1	54.0	13.6	6 66	62.7	9.89	81.4	76.2	2.79	88.4	6.91	65.4	74.1	62.7	60.2	53.3	69.3	57.4	83.5	246.4	
NO3-N	(ug/dm³)		6.0	199.1	118.9	481.4	300.1	160.5	692.4	215.5	169.4	500.7	410.1	2.67.5	401.2	407.1	252.6	463.6	288.3	206.5	490.3	298.7	271.9	531.9	468.1	282.3	124.8	254.1	
a	а С	.	£	Σ	В	S	M	В	S	Z	В	S	M	В	S	M	В	S	M	В	S	M	В	S	M	В	ļ	M	an Dong
	Sampling time		Y M D H Min			2000 12 07 23 00			2000 12 08 02 00			2000 12 08 05 00			2000 12 08 08 00			2000 12 08 11 00			2000 12 08 14 00			2000 12 08 17 00			2000 12 06 15 00		Printer: Yu Han Sheng, He Xiao Yuan Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong
	Point	ė Ž	<u> </u>	<u> </u>		7			24			(7			-			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \						, 4			P12		Yu Han :Kuang :r:Zhon
	Z.			56	27	28	29	30	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47	48	49	20	Printer: Checker Examine

D · 98

WATER QUALITY DATA SHEET ON DRY SEASON FOR SINO-JAPAN JOINT STUDY ON THE PEARL RIVER ESTUARY Continuous point in neap tide

limit

detection Remark *: Half value of (ind/100cm³) Coliform 1700 1072 216 216 236 520 806 212 292 300 604 26 34 28 <u>*</u> 52 ~ (mg/m³) Сн1-а 0.10 1.37 1.00 0.70 1.35 1.05 0.840.93 0.84 0.72 0.90 0.94 0.78 1.08 0.89 1.66 1.10 0.84 1.82 0.80 2.72 4.34 6.29 0.77 0.81 1.71 (kg/m^3) 0.0015 0.0120 0.0273 0.0092 0.0125 0.0120 0.0145 0.0176 0.0048 0.0103 0.0140 0.0077 0.0050 0.0420 0.0273 0.0036 0.0042 0.0055 0.0052 0.0053 0.0047 0.0008 0.0131 0.0081 0.0351 0.0071 SS (mg/dm^3) 0.010 0.028 0.027 0.035 <u>G</u> <u>G</u> 0.041 (ug/dm^3) 0.05 2.78 1.89 2.02 1.72 As (ug/dm³) **Detection limit** 0.590.32 0.15 0.08 0.01 ζ (ug/dm³) 0.73 0.26 0.030.49 0.37 P $(ug/dm^3) \left[(ug/dm^3) \right] (ug/dm^3)$ 13.9 18.9 17.3 16.5 Zn 3.1 Ş 0.2 1.4 0.5 3.2 2.2 0.0034 0.0206 0.0294 0.0246 0.0361 (ug/dm³) N-,HN 148.6 161.5 151.4 153.8 111.0 155.9 173.3 150.0 118.3 103.4 173.0 142.7 164.3 159.4 120.4 136.1 108.2 8.06 83.9 689 84.9 44.2 15.3 58.5 96.1 5.0 (ug/dm³) No.-N 175.3 263.0 349.2 252.6 378.9 277.9 264.5 179.8 228.8 276.4 390.8 163.4 196.1 237.7 328.4 270.4 184.2 413.1 185.7 208.0 438.3 344.7 205.1 199.1 257.1 6.0 Σ В Σ 8 æ Σ B Σ B Σ Σ В Σ e a = S Σ S S B S S æ S Ś M D H Min 8 8 8 8 8 8 8 8 Sampling time 2000 12 06 18 2000 12 07 03 2000 12 07 06 2000 12 07 12 2000 12 06 15 2000 12 06 21 200d 12 07 od 2000 12 0709 > Total page: 12 Point No. P19 ŝ 70 73 74 52 53 54 55 59 63 2 65 99 67 89 69 56 57 28 9 62 7 75 51 9 7 D 99

Printer: Yu Han Sheng, He Xiao Yuan

limit

Examiner: Zhong Si Sheng, Cai Jian Dong Checker: Kuang Zheng Chang

Total page: 12

lolai	olai page · 14	77																	
						Q	NO3-N	NH3-N	Hg	సే	υZ	Pb	2	As	Oil	SS	Chl-a	Coliform	
Š.		_	Sampling time	ing ti	ine	e c.	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(ug/dm³)	(mg/dm ³)	(kg/m³)	(mg/m³)	(ind/100cm³)	Remark
	<u>.</u>					. .						Dete	Detection limit						
		Y	Σ	Ha	D H Min	4	0.9	5.0	0.0034	0.2	3.1	0.03	0.01	0.05	0.010	0.0015	0.10	2	
76		2000	00 12	12 06 18	00	S	386.3	71.4	0.0473	1.1	17.7	1.42	0.42	2.24		0.0062	4.82	4	
77						М	234.8	55.0								0.0064	6.23		
78						В	181.3	39.7	0.0361	1.0	18.4	1.60	0.09	2.58		0.0071	6.33	2	
79		200	2000 12	06 21	00	S	323.9	65.8		,					0.024	0.0095	3.14	32	
8	_					М	147.1	40.0								0.0000	5.70		
81		_				В	208.0	36.2								0.0114	4.68	1*	
82		200	2000 12 07 00	07/0	00	S	638.9	58.8								0.0078	0.89	10	
83						Σ	225.9	20.2								0.0057	5.94		
<u> </u>						В	178.3	23.0								0.0073	6.57	1*	
88	_	2000	20 12	12 07 03	3 00	S	554.2	89.5							0.028	*80000	96'0	9	
96 10						W	456.2	70.0								0.0040	2.71		
87						В	236.3	38.3								0.0043	4.70	1*	
88		2000	00 12	12 07 06	5 00	S	499.3	75.5								0.0040	1.55	22	
8		_				M	276.4	33.1								0.0053	4.42		
06	_	\vdash				В	176.8	28.9								0.0053	5.30	2	
91		200	2000 12 07 09	07 09	00 6	S	659.7	79.0							0.029	0.0047	2.39	8	
92						Σ	266.0	31.3								0.0058	5.12		
93			-			В	191.7	35.2								0.0058	3.64	2	
94		200	2000 12 07 12	07 1.	2 00	S	618.1	101.6	0.0243	1.0	21.0	1.73	0.29	2.33		0.0046	1.17	12	
95	15	-				Σ	233.3	39.0								0.0059	6.05		
96		Щ				В	233.3	35.5	0.0224	1.0	23.7	1.77	0.03	2.91		0.0019	4.74	*	
97	7 P20		2000 12 05 10	05 1(00	S	111.4	11.8	0.0168	1.0	31.6	2.76	0.21	1.71	0.019	9900'0	1.53	4	*:Half
86						Σ	9.66	13.9								0.0070	09.0		value of
66	_		\dashv			B	77.3	18.1	0.0195	3.0	26.2	1.17	0.27	2.10		0.0102	1.58	1*	limit
100	_	20K	2000 12 05 13	05/1:	3 00	S	83.2	19.1								0.0068	0.73	2	
Print	Printer: Yu Han Sheng, He Xiao Yuan	Han Sh	eng,H	le Xia	no Yus	E.													

Checker: Kuang Zheng Chang Examiner: Zhong Si Sheng, Cai Jian Dong

Total page: 12

	·-	Remark	•					·	•											-					*: Half	value of	limit		
		_				-			· · ·		·· •	<u> </u>						-1		<u> </u>	,		1		*	vain			
	Coliform	(ind/100cm ³)		2		9	2		2	*.		2	2		4	74		9	2		2	4		2	1*		2	4	
	Chl-a	(mg/m³)		0.10	0.72	2.50	1.63	09:0	0.87	3.20	0.74	99'0	2.86	2.99	3.35	4.24	2.77	3.98	2.39	2.39	1.73	3.02	3.37	3.52	2.10	2.57	3.16	3.91	3.55
	SS	(kg/m³)		0.0015	0.0094	0.0068	0.0059	0.0150	0.0179	0.0078	0.0095	0.0067	0.0054	0.0082	0.0069	0.0055	0.0063	0.0087	0.0078	0.0055	0.0105	0.0080	0.0131	0.0156	0.0091	0.0052	0.0070	0.0069	0.0098
	io ((mg/dm³)		0.010			0.018						0.022						0.019						0.016				
	As	(ng/dm³)		0.05						1.86		1.87													2.47		2.19		
	P)	(ug/dm³)	Detection limit	0.01						0.07		0.08													0.16		0.10		
	Pb	(ug/dm³)	Det	0.03						1.88		1.25													1.91		3.03		
	Zn	(ug/dm³)		3.1						26.2		25.4													16.5		13.9		
	<u>ವ</u>	(ng/dm ³)		0.2						6.0		0.5													9.0		0.2		
	Hg	(ug/dm³)		0.0034						0.0201		0.0269													0.0199		0.0197		
	NH3-N	(ng/dm³)		5.0	10.8	6.3	23.3	10.1	15.3	19.5	9.4	25.8	19.1	11.5	20.2	15.7	11.1	12.5	7.3	14.6	16.0	27.1	19.1	25.1	23.0	13.9	24.0	19.5	10.1
	NO ₃ -N	(ug/dm³)		6.0	80.2	9.66	92.1	90.6	104.0	104.0	75.8	75.8	98.1	92.1	9.96	86.2	92.1	7.78	121.8	86.2	92.1	9.96	111.4	120.4	114.4	124.8	117.4	117.4	112.9
	Q	е С		£	M	В	S	Μ	В	S	W	В	S	М	В	S	M	В	S	M	В	S	М	В	S	M	B	S	×.
12		st Sampling time		Y M D H Min			2000 12 05 16 00			2000 12 05 19 00			2000 12 05 22 00			2000 12 06 01 00			2000 12 06 04 00			2000 12 06 07 00			2000 12 05 10 00			2000 12 05 13 00	
Total page: 12																									P22				
Total 1	_	ź	_		101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120	121	122	123	124	125

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong

$^{\prime\prime}$
_
• •
30
age
ã
_
В
-
.0
_

	Remark						•															
Coliform			2	1*	24		2	*		22	4		4	*		2	4		1*	8		1*
Chi-a	(mg/m³) (0.10	3.37	3.91	3.64	3.29	3.65	3.55	3.65	3.91	3.28	3.52	2.98	2.39	2.29	2.69	1.73	3.44	3.77	4.09	3.46
SS	(kg/m³)		0.0015	0.0076	0.0045	0.0110	0900.0	0.0059	0.0091	0.0065	0.0008*	0.0043	0.0049	0.0043	0.0042	0.0063	0.0076	0.0045	0.0052	9900:0	0.0000	0.0088
iio	(UV) (mg/dm³)		0.010		0.022						0.018						0.019					
As	೨		0.05					2.21		2.08												
25	³	Detection limit	0.01				ļ	0.27		0.31												
£	(ug/dm³)	Dete	0.03					3.16		1.77												
Zn	(ug/dm³) (ug/dm³)		3.1					18.9		17.3							·					
సే	(ug/dm³)		0.2					1.0		1.2												
H	(mp/gn)		0.0034					0.0220		0.0249												
NH3-N	_		5.0	8.4	10.4	7.3	11.5	13.9	8.0	9.4	13.9	8.4	17.1	9.4	8.4	13.6	11.8	17.4	11.1	9.7	12.2	9.4
NO ₃ -N	(mg/dm³)		6.0	89.2	111.4	108.5	102.5	101.0	98.1	9,66	114.4	89.2	117.4	117.4	86.2	9.66	105.5	115.9	115.9	123.3	117.4	107.0
a	9 C	Ψ,	=	В	S	M	В	S	М	В	S	M	В	S	M	В	S	М	В	S	М	В
	Sampling time		Y M D H Min		2000 12 05 16 00			2000 12 05 19 00			2000 12 05 22 00			2000 12 06 01 00			2000 12 06 04 00			2000 12 06 07 00		
	No. Point	ė Ž		126	127	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144

12 - 12

Printer:Yu Han Sheng,He Xiao Yuan Checker:Kuang Zheng Chang Examiner:Zhong Si Sheng,Cai Jian Dong