No. 5 N'Fifikh Upstream

No. 5 N'Fifikh Downstream

FEASIBILITY STUDY ON WATER RESOURCES DEVELOPMENT IN RURAL AREA

Figure XIIII2.2.2 Etude Alternative dans les Différents assolements dans le Périm etre N'Fifikh amont et Ava

[^0]

No. 10 Timkit (Ifegh)

XIIIF-28

No. 10 Timkit (Tinejdad)

Above present cropping pattern shows in covering area only

No. 10 Timkit (Chitam)

(2) Proposed Cropping Pattern

FEASIBILITY STUDY ON
WATER RESOURCES DEVELOPMENT IN RURAL AREA

Figure XIII2.2.4
Assolement Actuel Proposé dans les Projet de Priorité (Tinejdad et Chitam)

FEASIBILITY STUDY ON
WATER RESOURCES DEVELOPMENT IN RURAL AREA

Figure XIII2.2.5
Assolement Actuel Proposé dans les Projet de Priorité (Azghar)

L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au

Royaume Maroc
Rapport Final
Volume IV Rapport de Soutien (2.A) Étude de Faisabilité
Rapport de Soutien XIII
Sols, Agriculture et Irrigation

Attachment

Spécifications Techniques pour l'enquête de Sol

ATTACHMENT

TECHNICAL SPECIFICATIONS FOR SOIL SURVEY

1. Objective

The objectives of soil survey, soil analyses are the identification and classification of soil groups as well as suitability of the land for irrigated farming.

2. Location of Soil Survey

Locations of the Projects and survey locations are shown in the following table. The total area to be surveyed by this CONTRACT is sixteen thousand and three hundred $(16,300)$ hectares. Soil survey areas in each location are divided into one or more areas.

Details are shown attached Maps.

Project	Survey Location	Area	Total Area
(1)Azghar			2,200ha
	Left bank	300ha	
	Right Band (Upstream)	1,000ha	
	Right Band (Downstream)	900ha	
(2)N'fifikh			2,500ha
	Upstream area	1,100ha	
	Downstream area	1,400ha	
(3)Taskourt	Left bank	8,000ha	8,000ha
(4)Timkit			3,600ha
	Ifegh	300ha	
	Ait Labzen	1,900ha	
	Chitam	1,400ha	
Grand total			16,300ha

3. Soil Survey

Soil survey shall be carried out based on the Moroccan Standards justified by the Ministry of Agriculture, Rural Development and Fisheries.
Since the Ministry applied the French Soil Classification (C. P. C. S., 1967) as the Moroccan standard of soil classification, the soil survey shall be carried out in accordance with this system. The Ministry prepared its own classification system for land suitability for irrigation. Sampling condition and analysis shall be based on the system of land suitability classification. The criteria consist of various conditions for constraints of irrigation, which are shown in the table "Classification for Land Suitability" attached herewith.

The survey condition shall be as follows:

Survey Item	Sampling condition
(1) Photo Interpretation	Whole survey area
(2) Observation of soil profile	With Maximum of One (1) profile / 2.25ha (3) Topography Interpretation topographical and soil conditions
(4) Soil Feature	Slope, Hydric erosion, Micro-relief
(5) Drainage Feature	Sloopth, Texture, Stony, Salinity, Alkalinity

In the maps of land suitability, following items should be symbolized and/or mentioned.

	Analysis criteria		
(1)	Slope	(7)	Hydraulic erosion
(2)	Flood condition	(8)	Micro topography
(3)	Drainage	(9)	Soil depth
(4)	Permeability	(10)	Stony
(5)	Salinity	(11)	Alkalinity
(6)	Texture	(12)	Lime stone

Class of each criteria to be mentioned in maps of land suitability shall be followed by table "Classification for Land Suitability".

Maps of soils shall be prepared based on the Soil classification in Morocco.
Maps of soil and land suitability shall be prepared on the scale of 1/5,000.

Table: Classification for Land Suitability
4. Permeability

1. Slope

Class		Level $(\%)$
Gravity	Sprinkler	
V	IV	>8
V	III	$4-8$
IV	I	$2-4$
III	I	$1.5-2$
II	I	$1-1.5$
I	I	<1

Class		Level					
cm / h			$	$	Gravity	Sprinkler	<0.5
:---:	:---:	:---:					
V	IV	$0.5-1$					
IV	II	$1-2$					
III	I	$2-10$					
I	I	$10-20$					
II	II	$10<$					
IV	IV	$20<$					

5. Salinity
6. Flood condition

Class	Risk of Flood
I	None
II	Light
III	Moderate
IV	Important
V	Very Important

Class	Level (mmho/cm in extraction)
V	>32
IV	$16-32$
III	$8-16$
II	$4-8$
I	<4

3. Drainage

Class	Condition
I	Normal purification
II	Important purification
III	Very import. purification
IV	Normal drainage
V	Intensive drainage

6. Texture

Class		Texture
Gravity	Sprinkler	
IV	III	S
III	II	SL
II	II	SiL,
I	I	SC, SCL, L, LS, SiLS
II	I	C, CL, LC, SiCL
III	II	HC
II	II	Gravel (10-25\%)
III	III	Gravel (25-50\%)
IV	IV	Gravel (50-75\%)

Gravel : $2 \mathrm{~mm}-9 \mathrm{~cm}$
7. Hydraulic Erosion

Class	Condition
V	No use
IV	Strong erosion
III	Moderate erosion
II	Low erosion
I	No erosion

11. Alkalinity

Level (Na/CEC)	Class
$>30 \%$	V
$20-30$	IV
$15-20$	III
$11-15$	II
$<10 \%$	I

12. Lime stone
13. Micro topography

Class		Relief Level
(cm)		

Level (\%)	Class
<7	Ca1
$7-15$	Ca 2
$15-25$	Ca 3
>25	Ca 4

9. Soil depth

Condition in soil profile	Soil depth (cm) and Class				
	$0-20$	$20-40$	$40-60$	$60-80$	>80
S	IV	III	II	I	I
H	V	IV	III	II	I

S : The area where limestone
H: The area where found hard limestone
10. Stony

Level of stone (\%)	Class (S/SS*)			
$0-10$	I	II	III	IV
$10-25$	II	II	III	IV
$25-50$	III	III	III	IV
$50-75$	IV	IV	IV	IV
>75	-	-	-	-

S/SS: Surface (0-20)/Sub-surface (20-40)

4. Soil Samples and Form of Delivery

Soil samples shall be taken from representative soil profiles in the study area. The fresh soil samples shall be directly delivered to the Laboratory of the CONTRACTOR for the chemical and physical analysis.

5. Sampling and Analysis of Chemical and Physical Properties

Collected samples shall be subjected (but not limited to) the following chemical and physical properties based on the Moroccan Standard for Chemical and Physical Analysis:

- Sample preparation
- Particle size
- Total Limestone
- Active limestone
- Organic matter
- Total Nitrogen
- PH of $1 / 5$ water extract
- Equivalent water contents
- Available Phosphate
- Available Potassium
- EC of $1 / 5$ water extract
- CEC \& Exchangeable Bases
- EC \& pH in saturation water extract
- Bases in saturation water extract
- Total Phosphate
- Total Potassium
- Measurements of Permeability
- Measurements of Hydraulic Conductivity

Proposed quantities for each item are listed as shown in Annex - A hereinabove of this Contract Document.

6. Methods of Analysis

The chemical and physical analysis shall be performed in accordance with the following methods or equivalents:

(1)	Sample preparation	Breaking up of aggregates carefully after perfectly air-dried by use of porcelain mortar; and then, sieving by the specific mesh of 2 mm size. Weighing gravels and stones over 2 mm in size. This sieved fraction ($<2 \mathrm{~mm}$) is used for further analyses.
(2)	Particle size	Fine particles, i.e. clay and silt portion be determined by mean of the Hydrometer method, namely shaking with sodium hexametaphosphate / sodium carbonate until the soil is perfectly suspended, and then, measuring silt+clay ($0-50$ micron) and clay ($0-2$ micron) after 40 seconds and 2 hours respectively. Sand fraction (50-2,000 micron) is obtainable by subtracting the sum of silt and clay from a total volume of the sample.
(3)	Total Limestone	Measurement by $25 \% \mathrm{HCl}$
(4)	Active limestone	Measurement by Oxalic ammonium, (Drouineau Method)
(5)	Organic matter	Analysis Total carbon by Walkley and Black method. Organic matter is calculated from the amount of total carbon
(6)	Total Nitrogen	Kjeldal digestion method
(7)	PH of $1 / 5$ water extract	Measurement of $\mathrm{pH}(\mathrm{H} 2 \mathrm{O})$ be made using suspension as soil and water ratio at 1:5
(8)	Equivalent water contents	Air-dried soil sample and distilled water is mixed and let the soil keep maximum water. Excess water will be drained and find the water amount to be kept in soil.
(9)	Available Phosphate	Olsen or Trony method
(10)	Available Potassium	Ammonium acetate extraction and measured by Flame Photometer
(11)	EC of $1 / 5$ water extract	Measurement of EC be made using suspension as soil and water ratio at 1:5
(12)	 Exchangeable Bases	CEC be determined by mean of successive leaching method using the 1 N ammonium acetate $\left(\mathrm{NH}_{4} \mathrm{OAc}\right)$, which shall be surely adjusted at pH 7.0 . Extraction of Exchangeable Base by Ammonium acetate, Na \& K; by Flame-Photometer method, $\mathrm{Ca} \& \mathrm{Mg}$; by Atomic-Absorption spectro-photometer method
(13)	EC \& pH in saturation water extract	Extract the soil solution from saturated paste. Measurement by EC meter and pH meter
(14)	Bases in saturation water extract	Na \& K; Flame-Photometer method, $\mathrm{Ca} \& \mathrm{Mg}$; Atomic-Absorption spectrophotometer method, method, $\mathrm{CO} 3 \& \mathrm{HCO} 3$; H 2 SO 4 titration, Cl : titration by KCl with AgNO 3 , SO4; Weight method
(15)	Total Phosphate	Extract Phosphate by three acid mixture ($\mathrm{HNO} 3+\mathrm{HCl}+$ H2SO4) and analysis by Spectrophotometer
(16)	Total Potassium	Extract Potassium by three acid mixture ($\mathrm{HNO} 3+\mathrm{HCl}+$ H2SO4) and analysis by Flame-photometer

(17)	Measurements of Permeability	Measure in auger hole or inverse auger hole
(18)	Measurements of Measure in auger hole or inverse auger hole Hydraulic Conductivity	

7. Reporting

The CONTRACTOR shall submit the following documents and statements to JCA TEAM.
Draft Final Report (After 3 months from Date of Contract)
(1) Performance Progress Report with maps, 3 copies
(2) Performance Finalized Report, including Method of Analyses (copy of test manual) 3 copies
(3) Results of the Laboratory Test. 3 copies
(4) Draft Maps of Soil and Land Suitability on scale $1 / 5,000$ 3 copies
Final Report (After 4 months from Date of Contract)
(1) Performance Final Report with maps, 3 copies
(2) Performance Finalized Report, including Method of Analyses (copy of test manual) 3 copies
(3) Results of the Laboratory Test. 3 copies
(4) Finalized Maps of Soil and Land Suitability on scale $1 / 5,000$ 3 copies
(5) Data analyzed by Computer (Floppy diskette, CD) 1 copy
(6) Performance Statement (Invoice), include the following terms:
(a) Cost on a series of analysis for each soil sample
(b) Total cost and its breakdown

[^0]: JAPAN INTERNATIONAL COOPERATION AGENC!

