AGENCE JAPONAISE DE COOPERATION INTERNATIONALE LE GOUVERNEMENT DU ROYAUME DU MAROC

L'ÉTUDE DE FAISABILITÉ POUR LE DÉVELOPPEMENT DES RESSOURCES EN EAU PAR LES BARRAGES MOYENS DANS LE MILIEU RURALE AU **ROYAUME MAROC**

Rapport Final

Volume IV Rapport de Soutien (2.A) Sur Étude de Faisabilité

AOUT, 2001

CO-ENTREPRISE DE NIPPON KOEI CO., LTD. ET NIPPON GIKEN INC.

LISTE DES RAPPORTS FINAL

Volume I: Résumé Exécutif

Volume II: Rapport Principal

Volume III: Rapport de Soutien (1) sur Étude de Base

Rapport de Soutien I:	Géologie
Rapport de Soutien II:	Hydrologie et Écrêtement des Crues
Rapport de Soutien III:	Socio-économie
Rapport de Soutien IV:	Évaluation Environnementale
Rapport de Soutien V:	Sol, Agriculture et Irrigation
Rapport de Soutien VI:	Plans de Développement des Ressources d'Eau Existantes
Rapport de Soutien VII:	Échelle de Développement des Projets
Rapport de Soutien VIII:	Évaluation des Projets et Identification des Priorité

Volume IV Rapport de Soutien (2.A) sur Étude de Faisabilité

Rapport de Soutien IX:	Photographies Aériennes et Levé de Terrain
Rapport de Soutien X:	Géologie et Matériaux de Construction
Rapport de Soutien XI:	Hydrométéorologie et Hydrogéologie
Rapport de Soutien XII:	Socio-économie
Rapport de Soutien XIII:	Sol, Agriculture et Irrigation

Volume V: Rapport de Soutien (2.B) sur Étude de Faisabilité

Rapport de Soutien XIV:	Alimentation en Eau et Électrification
Rapport de Soutien XV:	Détermination de l'Échelle des Projets et Réalimentation des Nappes Souterraines
Rapport de Soutien XVI:	Environnement Naturel et Social et Plan de Réinstallation
Rapport de Soutien XVII:	Conception Préliminaire et Estimation du Coût
Rapport de Soutien XVIII:	Évaluation Économique et Financière
Rapport de Soutien XIX:	Programme de Réalisation

Volume VI: Plans pour L'Étude de Faisabilité

Volume VII: Livre de Donnees

Livre de Donnees AR:	Photographies Aériennes et Levé de Terrain
Livre de Donnees GC:	Géologie et Matériaux de Construction
Livre de Donnees HY:	Hydrologie
Livre de Donnees SO:	Études des Sols
Livre de Donnees NE:	Environnement Naturel
Livre de Donnees SE:	Environnement Scoial
Livre de Donnees EA:	Évaluation Économie

L'estimation du coût est basée sur le niveau de prix et le taux de change du mois d'avril 2000. Le taux de change est : 1,0US\$= 10,68 Dirhams Marocains (DH) et 100,0 Yens Japonais = 9,90 Dirhams Marocains (DH)

ABBREVIATIONS

Abbreviations	ENGLISH	FRENCH
AEP	Potable Water Supply	Approvisionnement en Eau Potable
APD	Detailed Study	Avant Projet Détaillé
AUEA	Association of Agricultural Water	Association des Usagers de l'Eau
	Users	Agricole
BAD	African Bank for Development	Banque Africaine de
	-	Développement
BM	World Bank	Banque Mondiale
CAM	Agricultural Cooperative of Morocco	Coopérative Agricole du Maroc
CDA	Agricultural DevelopmentCenter	Centres de Développment Agricole
CERED	Center for demographic Research	Centre des études et de Recherche
	and Studies	Démographiques
CLCA	Local Fund for Agricultural Credit	Caisse Locale de Crédit Agricole
CMV	Development Center	Centre de Mise en Valeur
CNCA	National Fund for Agricultural	Caisse Nationale de Crédit
	Credit	Agricole
CNE	National Council of Environment	Le Conseil National de l'
		Environnement
CSEC	Superior Council for Water and	Conseil Supérieur de l'Eau et du
	Climate	Climat
DAR	Directorate of Rural Affairs	Direction des Affaires Rurales
DCL	Directorate of Local Collectivities	Direction des Collectivités Locales
DCRF	Directorate of Forest Resources	Direction de la Conservation des
	Conservation	Ressources Forestières
DDF	Directorate of Forest Development	Direction de Développement Forestière
DE	Directorate of Operation	Direction des Economiques
DELM	Directorate of Epidemology and	Direction d'Epidemologie et de
	Abatement of Disease	Lutte Contre les Maladies
DEP	Directorate of Design and Planning	Direction de Planification et des Plans
DEPR	Division of Potable Rural Water	Division d'Alimentation en Eau
	Supply	Potable en Milieu R ural
DERD	Decentralized Regional Directorate	Direction de l'Enseignement, de la
	ç	Recherche et de Développement
		Rural
DF	Directorate of Finance	Direction des Finances
DGCL	General Directorate of Local	Direction Générale des
	Communities	Collectivités Locales
DGH	Directorate General of Hydraulics	Direction Générale de l'
	-	Hydraulique
DH	D irham	Dirham
DIEC	D ivision of Information. Education	Division d'Information Education
	and Communication	et Communication
DP	Provincial Directorate	D irection P rovinciale
-		

Abbreviations	ENGLISH	FRENCH
DPA	Provincial Directorate of Agriculture	Direction Provinciale d'
		Agriculture
DPA	Provincial Directorate of Animal	D irection P rovinicials de l'
		Animale
DPTP	Provincial Directorate of Public	D irection P rovinciale des T ravaux
	Works	Publiques
DPV	Directorate of Vegetable Production	D irection de la P roduction Végétale
DRD	Decentralized Regional Directorate	Direction Régionale Décentralisée
DT	Division of Works	Division du Travail
EIRR	Economic Internal Rate of Return	
EMP	Environmental Management Plan	Plan de Gestion Environnementale
FERTIMA	Moroccan Company of Fertilizers	Société Marocaine de Fertilisation
FV	Training Visit	Formation Visite
GH	Large Hydraulic	Grande Hydraulique
GPD	Gross Domestic Product	Produit National Brut
HCWC	High Council of Water and Climate	Conseil Superieur de l'eau et du
		Climat
IBRD	International Bank for	Banque Internationale pour la
	Reconstruction and Development	Reconstruction et le
		Développement
INH	National Institute of Hygiene	Institut Nationale de l'Hygiène
JBIC	Japan Bank for International	Banque Japon de Coopération
	Cooperation	Internationale
JICA	Japan International Cooperation	Agence Japonaise pour la
	Agency	Coopération Internationale
MADRPM	Ministry of Agriculture, Rural	Ministère de l'Agriculture du
	Development and Maritime Fishing	Développement Rural et des
		Pêches Maritimes
MCEF	Ministry In Charge of Water and	Ministère Chargé des Eaux et
	Forests	Forêts
MI	Ministry of Interior	Ministère de l'Intérieur
MOA	Ministry of Agriculture, Rural	Ministère de l'Agriculture du
	Development and Fishery	développement Rural et des Pêches
		maritimes
MOE	Ministry of Equipment	Ministère de l'Equipement
MOI	Ministry of Interior	Ministère de l'Intérieur
MPW	Ministry of Public Works	Ministère des travaux Publics
MSL	Mean Sea Level	Niveau Moven de La mer
MSP	Ministry of Public Health	Ministère de la Santé Publique
NG	Natural Ground	Sol Naturel
NPV	Net Present Value	Valeur Nette Actuelle
OECF	Overseas Economic Cooperation	Fond de Coopération Economique
	Fund (now JBIC)	Etrangère
OMM	Operation, Maintenance and	Opérations de gestion et de
	Management	maintenance
ONE	National Office of Electricity	Office National de l'Electricité
ONEP	National Office of Potable Water	Office National de l'Eau Potable

Abbreviations	ENGLISH	FRENCH
ONICL	Inter professional National Office of	Office National Inter professionnel
	Cereals and Leguminous	des Céréales et Légumineuses
ORMVA	Regional Office for Agricultural	Office Régional de la Mise en
	Development	Valeur Agricole
PAGER	Program of Grouped Supply of Rural	Programme d'Approvisionnement
	Water	Groupé des Eaux Rurales
PAGI	Program of Large Irrigation	Programme d'Amélioration de la
	Improvement	Grande Irrigation
PMH	Small and Medium-ScaleHydraulic	Petit et Moyenne Hyraulique
PNI	National Program of Irrigation	Programme National de l'
		Irrigation
PRV	Extension and Research Project	Projet de Recherche et de
		Vulgarisation
PSDA	Agricultural Development and	Projet de Support et de
	Support Project	Développement Agricole
SE	Water Service at the Provincial	Service Eau à la Direction
	Directorate of Public Works	provinciale de l'Equipement
SH	Section of Hydology	Service d'Hydraulogie
SIBE	Site of Biological and Ecological	Site d'Intérêt Biologique et
	Interest	Ecologique
SMN	Service of National Meteorology	Service de la Météorologie
		Nationale
SONACOS	National Company of Seed Trade	Société Nationale de
		Commercialisation de Semences
UNCAM	National Union of Cooperatives of	Union Nationale de Coopératives
	Morocco	du M aroc
UNDP	United Nations Development	Programme des Nations Unies pour
	Program	le Développement (PNUD)

Conversion Factors

Metric to Imperial			Imperial to Metric			
Length	1 cm	=	0.394 inch	1 inch	=	2.54 cm
	1 m	=	3.28 feet	1 feet	=	30.48 cm
	1 km	=	0.621 mile	1 mile	=	1.609 km
Area	1 m ²	=	10.76 sq.ft	1 sq.ft	=	0.0929 m ²
	1 ha	=	2.471 acre	1 acre	=	0.4047 ha
	1 km ²	=	0.386 sq.mile	1 sq.mile	=	2.59km ²
Volume	1 lit	=	0.22 gal (imp)	1 gal(imp)	=	4.55 lit
	1 m ³	=	35.3 cu.ft	1 cu.ft	=	28.33 lit
	1 MCM	=	811 acre-ft	1 acre-ft	=	1,233.5 m ³
Weight	1 kg	=	2.20 lb	1 lb	=	0.4536 kg
-	1 ton	=	0.984 long ton	1 long ton	=	1.016 ton
Derived	1 m ³ /s	=	35.3 cusec	1 cusec	=	0.0283 m ³ /s
Measures	1 ton/ha	=	891 lb/acre	1 lb/acre	=	1.12 kg/ha
	1 m ³ /s	=	19.0 mgd	1 mgd	=	0.0529 m ³ /s
Temperature		=	(°F-32)x5/9	°F	=	1.8x +32
Local	1 lit	=	0.22 gantang	1 gantang	=	4.55 lit
Measures	1 kg	=	1.65 kati	1 kati	=	0.606 kg
	1 ton	=	16.5 pikul	1 pikul	=	60.6 kg

L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au Royaume Maroc Rapport Final Volume IV Rapport de Soutien (2.A) Étude de Faisabilité

Rapport de Soutien IX: Photo Aerienne et Enquête de Terrain

L'ETUDE DE FAISABILITE POUR LE DEVELOPPEMENT DES RESSOURCES EN EAU PAR LES BARRAGES MOYENS DANS LE MILIEU RURALE AU ROYAUME MAROC

RAPPORT FINAL

VOLUME IV RAPPORT DE SOUTIEN (2.A) ÉTUDE DE FAISABILITE

RAPPORT IX PHOTO AERIENNE ET ENQUÊTE DE TERRAIN

Table des Matières

Page

IX1	Cartog	raphie de l	aphie de la ZoneI		
IX2	Spécifi	cités de la Cartographie et Méthode d'Analyse			
IX3	Cartes	1/5.000	IX-1		
	IX3.1	Généralit	tés	IX-1	
		IX3.2	Photographie Aérienne	IX-2	
		IX3.2.1	Description de la Photographie Aérienne	IX-2	
		IX3.2.2	Volume de Travail	IX-2	
		IX3.2.3	Contrôle de la Qualité	IX-3	
		IX3.2.4	Résultas	IX-4	
	IX3.3	Enquête	du Point De Contrôle	IX-4	
		IX3.3.1	Reconnaissance des Points Existants et		
			Sélection de Nouveaux Sites de Points	IX-5	
		IX3.3.2	Monumentation	IX-5	
		IX3.3.3	Signalisation Aérienne	IX-5	
		IX3.3.4	Enquête de GPS	IX-6	
		IX3.3.5	Nivellement	IX-7	
	IX3.4	Classific	cation des Zones	IX-8	
	IX3.5	Triangul	ation Aérienne	IX-8	
	IX3.6	Traçage		IX-8	
	IX3.7	Edition.		IX-8	

	IX3.8	Digitalisation des Cartes	IX-9
IX4	Traçage	e au 1/500	IX-9
	IX4.1	Généralités	IX-9
	IX4.2	Traversées	IX-10
	IX4.3	Examen Topographique	IX-10
	IX4.4	Traçage	IX-10
	IX4.5	Edition	IX-10
	IX4.6	Digitalisation des Cartes	IX-10

Liste des Tableaux

Tableau IX3.1	Points de Contrôle dans le site N'FIFIKH
	(A: Station Triangulaire) IXT-1
Tableau IX3.1	Points de Contrôle dans le site N'FIFIKH
	(B: Points de Contrôle Récemment Établis) IXT-2
Tableau IX3.1	Points de Contrôle dans le site N'FIFIKH
	(C: Points de Repère Existants - Nivellement 3ème Ordre) IXT-3
Tableau IX3.1	Points de Contrôle dans le site N'FIFIKH
	(D: Points de Repère Récemment Établis - Nivellement 3ème Ordre)IXT-4
Tableau IX3.2	Points de Contrôle dans le site TASKOURT
	(A: Station Triangulaire) IXT-5
Tableau IX3.2	Points de Contrôle dans le site TASKOURT
	(B: Points de Contrôle Récemment Établis) IXT-6
Tableau IX3.2	Points de Contrôle dans le site TASKOURT
	(C: Points de Repère Existants - Nivellement 3ème Ordre) IXT-6
Tableau IX3.2	Points de Contrôle dans le site TASKOURT
	(D: Points de Repère Récemment Établis - Nivellement 3ème Ordre)IXT-6
Tableau IX3.3	Points de Contrôle dans le site AZGHAR
	(A: Station Triangulaire) IXT-7
Tableau IX3.3	Points de Contrôle dans le site AZGHAR
	(B: Points de Contrôle Récemment Établis) IXT-7
Tableau IX3.3	Points de Contrôle dans le site AZGHAR
	(C: Points de Repère Existants - Nivellement 3ème Ordre) IXT-8
Tableau IX3.3	Points de Contrôle dans le site AZGHAR
	(D: Points de Repère Récemment Établis - Nivellement 3ème Ordre) IXT-8

Liste des Figures

Figure IX3.1A: Zone de Traçage du No. 5 N'Fifikh	IXF-1
Figure IX3.1B: Zone de Traçage du No. 9 Taskourt	IXF-2
Figure IX3.1C: Zone de Traçage du No. 17 Azghar	IXF-3
Figure IX3.2A: Réseau d'Observation GPS (N'Fifikh)	IXF-4
Figure IX3.2B: Réseau d'Observation GPS (Taskourt)	IXF-5
Figure IX3.2C: Réseau d'Observation GPS (Azghar)	IXF-6
Figure IX3.3A: Réseau de Nivellement (N'Fifikh)	IXF-7
Figure IX3.3B: Réseau de Nivellement (Taskourt)	IXF-8
Figure IX3.3C: Réseau de Nivellement (Azghar)	IXF-9

RAPPORT IX

PHOTO AERIENNE ET ENQUÊTE DE TERRAIN

IX1 Cartographie de la zone

Pour préparer la carte topographique comme donnée de base pour l'étude une carte topographique a été effectuée aux quatre sites suivants.

- (1) No.5 N'Fifikh
- (2) No.9 Taskourt
- (3) No.10 Timkit
- (4) No.17 Azghar

IX2 Spécificités de la cartographie et méthode d'Analyse

Les cartes topographiques préparées dans ce travail sont divisées en deux échelles. Une carte à l'échelle 1/5.000, l'autre à 1/500.

IX3 Cartes 1/5.000

IX3.1 Généralités

Les cartes 1/5.000 ont été réalisées pour les trois sites, No.5 (N'Fifikh), No.9 (Taskourt) et No.17 (Azghar) par la méthode photogrammétrique. Ces zones sont indiquées sur la figure IX3.1. Les caractéristiques des cartes 1/5.000 et des zones cartographiées sont comme suit:

No	Elements	Description				
1	Ellipsoïde géodésique de référence	Clarke 1880				
2	Projection de la carte	Isogone conique de Lambert				
3	Niveau de référence	Niveau moyen de la mer				
4	Echelle de la carte	1:5,000				
5	Intervalle des Contours	Contour d'incrémentation	25.0 m			
		Contour Intermédiaire	5.00 m			
		Contour Supplémentaire	2.50 m			
		Contour Secondaire- supplémentaire	1.25 m			

Caractéristiques des cartes

Cartographie de la zone

No	Emplacement	Zone (km ²)	
1	No.5 (N'Fifikh)	78.5	
2	No.9 (Taskourt)	109.2	
3	No.17 (Azghar)	33.5	
Total		221.2	

IX3.2 Photographie Aérienne

IX3.2.1 Description de la Photographie Aérienne.

La photographie aérienne a été effectuée dans les trois sites. La description de la photographie aérienne est comme suit :

No	Eléments	Description	
1	Echelle de la Photo	1:15,000	
2	Altitude de photographieApproximativement 2,250m au-dessus sol		
3	Camera Aérien	Wild RC10 (f length=153.25mm)	
4	Date de prise	No.5 N'Fifikh 4-Oct-2000 No.9 Taskourt 4-Oct-2000 No.17 Azghar 17-Oct-2000	
5	recouvrement Haut	60 %	
6	recouvrement de côté	30 %	

Description de la Photographie Aérienne

IX3.2.2 Volume de Travail

La distance totale est de 264.5km et le nombre total d'expositions est de 219. Ces nombres satisfont la quantité prévue. La distance prévue du vol était de 213.9km et le nombre prévu d'expositions était de 169. La quantité totale photographiée et le volume de travail sont indiqués sur le tableau suivant:

Sito	Ligno	Altitudo	Altitude	Distance	Nombre
Site	Light	Annuae	du vol	de la ligne	d'expositions
No. 5 N'Fifikh	C1	200m	2450m	27.8Km	22
	C2	300m	2550m	33.0Km	25
	C3	400m	2650m	14.2Km	12
	C4	100m	2350m	12.2Km	10
	C5	100m	2350m	11.4Km	9
Total			·	98.6Km	78
No. 9 Taskourt	C1	1200m	3450m	14.3Km	11
	C2	1100m	3350m	18.5Km	17
	C3	800m	3050m	25.1Km	20
	C4	700m	2950m	22.7Km	18
	C5	700m	2950m	23.0Km	19
	C6	700m	2950m	14.5Km	12
Total			•	118.1Km	97
No. 17 Azghar	C1	900m	3150m	24.1Km	23
	C2	900m	3150m	23.7Km	21
Total		47.8Km	44		
Total Absolu		264.5Km	219		

Volume de Travail

IX3.2.3 Contrôle de la qualité

Tous les éléments de la qualité de la photographie ont été examinés pour chaque photographie. En conclusion toutes les photographies satisfont la condition requise. Les détails sont comme suit:

- (1) recouvrement d'extrémité et recouvrement latéral.
- (2) toutes les photographies dans la zone du projet satisfont la condition requise.
- (3) crabe.
- (4) toutes les photographies dans la zone de projet satisfont la condition requise.
- (5) déplacement de la ligne de vol.
- (6) Il y a un certain déplacement de la ligne de vol par rapport au trajet prévu. Cependant, tout le domaine de traçage est balayé.

- (7) nuages.
- (8) toutes les photographies sont sans nuages.
- (9) Marques de référence
- (10) les marques de référence de toutes les photographies sont clairement photographiées
- (11) Autres.

Une photographie est brouillée. Cependant, la partie floue est en dehors de la zone stéréoscopique et elle n'affecte pas le travail de traçage.

IX3.2.4 Résultats

Les résultats fournis sont indiqués sur le tableau suivant:

Flómonts	Otá	Notos
Elements	Qie	TULES
Films Négatifs (1/15,000)	1 set	Des négatifs ont été utilisés pour le
		travail de traçage
Dia-Positive (1/15,000)	1 set	
Contact Imprime (1/15,000)	3 sets	1 set a été utilisé pour le travail
		photogrammétrique.
Agrandissement des photos de	1 set	
200%		
Carte Incrément Photo	3 sets	
(1/50,000)		
État météorologique et état du	1 set	
vol		
Feuille de qualité Contrôle	1 set	
Certificat d'Étalonnage de la	1 set	
camera		

Résultas

IX3.3 Enquête du point de Contrôle

L'enquête du point de contrôle a été effectuée pour établir la référence pour la triangulation aérienne. L'enquête est divisé en deux types, un contrôle horizontal et un contrôle verticale.

IX3.3.1 Reconnaissance des points existants et Sélection de nouveaux sites de points

L'état de distribution des stations existantes de triangulation et les points de repère dans la zone du projet ont été étudiés dans l'IGN (institut géographique national). Tous les points existants appropriés pour ce travail ont été étudiés dans le domaine.

Certains d'entre eux ont été disparus ou détruits. En se basant sur les résultats de reconnaissance des points existants, la nouvelle distribution de points a été projetée en dehors. Les sites appropriés pour les nouveaux points ont été choisis dans le domaine.

La liste des points disponibles existants et des points nouvellement établis est indiquée sur les Tableaux IX3.1 à IX3.3.

IX3.3.2 Monumentation.

Parmi les nouveaux points, qui sont importants pour ce projet à l'étape de réussite, certains sont monumentés. Ceux qui étaient monumentés sont montrés dans les Tableaux IX3.1 à IX3.3. La taille du monument est représentée comme le montre la figure ci-dessous:

IX3.3.3 Signalisation Aérienne

Des points de contrôle horizontaux qui sont nécessaires pour la triangulation aérienne ont été signalisés. Ceux qui ont été signalisés sont indiqués sur les Tableaux A3.1 à A3.3. La signalisation a été faite par une pierre qu'on peint avec la chaux. Le modèle de signal est initialement surfacé selon trois types d'ailes.

Cependant, dans les zones cultivées, ce type de signal sera facilement endommagé. Pour éviter les dommages, le signal de type carré est utilisé dans les zones cultivées. La forme et la taille sont représentées comme le montre la figure ci-dessous:

IX3.3.4 Enquête de GPS

Les coordonnées des points de contrôle signalisés ont été examinées par l'observation de GPS. Les réseaux d'observation sont montrés sur les figures IX3.1 à IX3.3. Les instruments, la méthode d'observation et toute autre information sont comme suit:

No	Element	Description				
1	Récepteur	Trimble 4600 SL				
		Trois récepteurs ont été utilisés				
2	Méthode	Observation statique				
	d'observation	Temps d'observation : 1 heure au				
		minimum				
		acquisition de données epoch : 20 seconds				
		Nombre du Satellite				
		Plus que 5 satellites				
		Angle vertcal du satellite				
		Plus que 15 °				
3	Précision requise	Horizontale : ± 10ppm × Distance (10cm par				
		10km) en fermeture				
		trigonométrique				
		Verticale : ± 20ppm × Distance (20cm par				
		10km) en fermeture				
		trigonométrique				

Les résultats de tous les éléments des enquêtes GPS satisfont la précision requise. Les coordonnées calculées des points nouvellement établis sont indiquées sur les Tableaux IX3.1 à IX3.3.

IX3.3.5 Nivellement

L'élévation des points de contrôle signalisés, des stations de triangulation existantes et des points de repère nouvellement établis ont été examinés par nivellement. Ces points dans les sites plats ont été examinés par nivellement direct. Les points dans les zones montagneuses ont été examinés par nivellement trigonométrique. Les résultats d'observation du GPS ont été adoptés pour l'altitude de quelques points dans la zone la plus difficile.

Le plan initial du nivellement direct a été divisé en deux classes, de troisième ordre et d'ordre mineure. Cependant, toutes les observations du nivellement directe ont été effectués par le nivellement de troisième ordre, ainsi tout les points de nivellement directs sont de troisième ordre.

Au début, les points de repère existants ont été examinés pour confirmer leurs données. Plusieurs BMS dans le site de N'Fifikh ne coïncident pas. Ainsi, les BMS à utiliser pour les points de référence ont été choisis soigneusement. La quantité du nivellement total effectuée est comme suit:

- (1) Troisième niveau de nivellement : 562.2km.
- (2) Nivellement trigonométrique : 194.0km.

Le piquage sur la photographie à utiliser pour la triangulation aérienne a été projetée pour effectuer sur les photographies un agrandissement de 200 %. Cependant, dû au retard de la saisie du permis de vol ,la photographie aérienne a aussi été retardée. Ainsi on a exécuté le piquage sans photographie mettant des petits pieux sur le bord de la route et après la photographie aérienne, ils ont été identifiés sur les photographies. Les réseaux d'observation sont indiqués sur les figures IX3.1 à IX3.3. La condition requise d'observation du troisième nivellement est comme suit:

- (1) Une 'observation double sera faite.
- (2) La distance entre le personnel et l'instrument n'excédera pas 70m.
- (3) La distance entre les deux vues avant et arrière sera égalisée.
- (4) L'observateur évitera la lecture du 10cm inférieur et 10cm supérieur des barres.
- (5) Des points de repère temporels seront marqués en utilisant des peintures à approximativement. 1km d'intervalle dans l'itinéraire du nivellement sur les structures permanentes existantes.
- (6) L'exactitude de l'observation sera dans l'intervalle $10\text{mm}\pm\sqrt{S}$. (S = longueur en kilomètres).
- (7) Les résultats de tous les éléments de nivellement de troisième ordre satisfont la précision exigée.
- (8) Les résultats du nivellement sont indiqués sur les Tableau IX3.1 à IX3.3.

IX3.4 Classification des Zones

La classification des zones a été planifiée pour effectuer sur les photographies des agrandissements de 200 %. Cependant, dans la région de N'Fifikh, le traçage d'une feuille d'ébauche a été utilisé pour la classification.

La classification des zones a été effectuée pour établir le nom du fleuve, le nom du village, la largeur des routes, la classification des routes, etc..

IX3.5 Triangulation aérienne

Sur la base des résultats de l'enquête et du nivellement et de la de maîtrise des terrains, les coordonnées des photos des points de passage et des points de nœud nécessaires pour le traçage stéréo ont été déterminés. La condition requise de la triangulation aérienne est comme suit:

- (1) La triangulation aérienne sera faite en utilisant un traceur analytique d'une précision élevée ou un poste digital de travail photogrammétrique (DPW).
- (2) Le calcul du réglage sera effectué par la méthode du modèle indépendant ou la méthode bundle.
- (3) l'écart type des anomalies des points de commande, des points de passage et des points de nœud entre le modèle adjacent après réglage sera à moins de 0,08 % de l'altitude de vol pour la planimétrie et l'altitude.

La triangulation aérienne a été effectuée par la méthode modèle indépendant en utilisant un traceur analytique LICA SD-2000.. Tous les résultats , de la triangulation aérienne satisfont la précision exigée.

IX3.6 Traçage

En se basant sur les résultats de la triangulation aérienne, le travail de traçage a été effectué par la méthode digitale. Trois types d'instruments de traçage ont été utilisés: LICA SD-2000, B-8 avec le système ADAMS d'enregistrement et le B-8 sauvage avec le système d'enregistrement TANGER.

IX3.7 Édition

Après le traçage, la feuille de traçage esquissée a été contrôlée. En utilisant les résultats corrigés de classification d'ébauche et de zonage, des dispositifs topographiques ont été édités sur l'affichage. L'édition du travail a été effectuée en utilisant un système de DAO"AUTOCAD". L'information marginale a été aussi arrangée dans ce processus.

Initialement la taille de la carte a été dimensionnée en tant que 60cm×80cm son neatline.

Cependant, le réglage de la carte avec cette taille de feuille est incommode pour le travail d'étude.

Vu la convenance pour le travail d'étude, la taille du neatline a été définie en tant que 70cm.

Il était trop difficile de définir la largeur en raison du méandre de la zone de traçage. Pour ce faire , un réglage optimal n'a pas été défini.

Le nombre final de feuilles était de 16 pour N'Fifikh, 12 pour Taskourt et 4 pour Azghar. En ce qui concerne les symboles des cartes, des symboles conventionnels de carte ont été utilisés pour exprimer les caractéristiques topographiques.

IX3.8 Digitalisation des cartes

Après les processus d'édition, les feuilles originales ont été imprimées sur des transparents à base de polyester.

Les données Digitalisées des cartes sauvegardées en CD ont aussi été fournies, aussi. Le fichier a été soumis dans deux types. Leur nom d'extension sont "*.dwg" et"*.dxf".

IX4 Traçage au 1/500

IX4.1 Généralités

Un traçage au 1/500 a été effectué pour les quatre sites par la méthode d'examen direct. La description et le volume du travail relatifs à la carte au 1/500 est comme suit:

No	Element	Description		
1	Ellipsoïde géodésique de référence	Clarke 1880		
2	Projection de la carte	Lambert conical conformal		
3	Niveau de référence	Niveau moyen de la mer		
4	Echelle de la carte	1:500		
5	Intervalle des Contours	Contour d'incrémentation	5.0 m	
		Contour Intermédiaire	1.0 m	
		Contour Supplémentaire	0.5 m	

Description de la carte

IX4.2 Traversées

Les traversées ont été effectuées pour établir les points de référence et examiner la topographie.

Au début, deux principaux points étaient monumentés à chaque site. Leurs coordonnées ont été examinées par GPS et les altitudes ont été examinées par un nivellement de troisième ordre.

Le site de Timkit est trop loin des stations existantes en triangle et du BMs pour effectuer les relevés par GPS et effectuer le nivellement . Heureusement un autre projet de JICA a été mis en exécution il y a environ dix ans , à proximité de ce site et les cartes établies par le passé, ont été utilisées comme références. Les données de référence ont été lues de la carte existante, ainsi que leurs coordonnées et l'altitude ont évidemment été approximatives . Cependant, pour être plus sûr, plusieurs points ont été lus relativement à l'orientation de la carte et les résultats étaient satisfaisants.

Après l'établissement des deux principaux points, en se basant sur eux, des traversées secondaires ont a été effectuées autour du site.

IX4.3 Examen topographique

En se basant sur les élévations des points de traversée, des points ont été relevés à chaque maille carrée de 10 m de côté. Cependant, dans la partie difficile avec une topographie accidentelle, la densité des élévations du maillage était plus fine que les 10m. Ajoutant aux élévations relevées tous les éléments topographiques comme les maisons, les terres cultivées, le sentier des piétons, et ainsi de suite.

IX4.4 Traçage

Tous les points observés ont été tracés en utilisant le système digital et des lignes de découpage ont été produites automatiquement.

IX4.5 Édition

Les traçages autres que les esquisses ont été contrôlés et édités. La génération automatique du maillage peut facilement produire un découpage incorrect. Ainsi, la ligne de découpage a été contrôlée et corrigée soigneusement.

IX4.6 Digitalisation des cartes

Après les processus d'édition, les feuilles originales ont été imprimées sur des transparents à base de polyester. Les données Digitalisées des cartes sauvegardées en CD ont aussi été fournies, aussi. Le fichier a été soumis dans deux types. Leur nom d'extension sont "*.dwg" et"*.dxf".

L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au Royaume Maroc Rapport Final Volume IV Rapport de Soutien (2.A) Étude de Faisabilité Rapport de Soutien IX Photo Aerienne et Enquête de Terrain

Tables

e	X	Y	Eleva	tion	Note
72	326,653.90	348,981.38	77.751	3 rd	Used as a reference for GPS observation.
78	325,041.25	336,270.68	178.536	3^{rd}	
80	324,816.53	343,677.77	123.253	3^{rd}	Signalized.
108	342,168.54	317,761.68	327.959	3^{rd}	Signalized.
	,	,			Signalized.
109	344,655.30	317,717.66	290.443	Trig	The results of GPS calculation didn't coincide with the existing IGN coordinates. We considered that this station should be modified and adopted the new coordinates.
138	342,420.03	315,822.70	344.688	Trig	Signalized.
144	344,123.62	316.241.88	251.279	3 rd	Signalized.
145	345,476.04	314,107.14	372.13	Trig	Signalized.
150	342,891.76	317,161.52	198.323	Trig	Signalized.
159	344,482.30	319,703.10	338.731	Trig	Signalized.
166	341,797.10	320,132.90	320.833	Trig	Signalized.
168	322,503.335,	343,363.05	120.283	3 rd	Signalized. The results of GPS calculation didn't coincide with the existing IGN coordinates. We considered that this station should be modified and adopted the new coordinates.
170	319,951.77	346,486.07	45.072 48.072	3 rd	Signalized. 45.072 is the ground elevation and 48.072 is the elevation of the roof.
195	340,486.51	327,177.85	308.504	Trig	Signalized.
200	340,760.20	324,026.20	314,259	GPS	Signalized.
220	338,474.60	330,017.70	213,335	GPS	Signalized.
230	329,781.10	333,014.00	222.508	3^{rd}	Signalized.
239	335,080.40	334,418.44	259.88	3^{rd}	
779B	337,437.57	331,508.00	272,651	Trig	Signalized.
904	340,758.98	321,262.36	311.297	Trig	Signalized.
3150			270.911		
4152	336,597.15	332,494.25	276.17	Trig	Signalized.
4153	334,488.47	333,174.15	258.302	Trig	

Table IX3.1: Points de Contrôle dans le site N'FIFIKH
(A: Station triangulaire)

3^{rd}	: Third order leveling
Trig	: Trigonometric leveling
GPS	: GPS Observation

Name	X	Y	Eleva	tion	Note
CPN-1	338,546.26	325,244.82	215.647	Trig	Monumented and Signalized.
CPN-2	332,536.66	332,768.10	241.595	3^{rd}	Monumented and Signalized.
CPN-3	334,435.88	331,993.48	256.098	Trig	Monumented and Signalized.
CPN-4	327,870.06	336,803.44	181,166	GPS	Monumented and Signalized.
CPN-5	327,539.84	341,129.30	150.403	3^{rd}	Monumented and Signalized.
CPN-6	321,612.54	347,025.09	46.216	3^{rd}	Monumented and Signalized.
CPN-7	325,166.32	352,096.39	21.692	3^{rd}	Monumented and Signalized.
CPN-8	323,984.14	348,890.81	43.955	3^{rd}	Monumented and Signalized.
CPN-9	327,792.45	348,758.05	82.251	3^{rd}	Monumented and Signalized.
CPN-10	324,186.74	338,751.43	181.119	3^{rd}	Monumented and Signalized.
CPN-11	325,012.07	341,233.99	157.673	3^{rd}	Monumented and Signalized.
CPN-14	346,539.12	308,305.07	250,491	GPS	Monumented and Signalized.
CPN-15	347,790.36	309,267.28	253,871	GPS	Monumented and Signalized.

Table IX3.1: Points de Contrôle dans le site N'FIFIKH(B: Points de Contrôle récemment établis)

3rd : Third order leveling

Trig : Trigonometric leveling

GPS : GPS Observation

Name	Elev.	Ignored Existing Data	Note		
RN 41	82.032		Adopted as the reference BM.		
RN 42	83.885	(83.900)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RN 44	16.959		Adopted as the reference BM.		
RN 44-	46.69		Adopted as the reference BM.		
RN 45	66.095	(65.488)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RN 46		(66.678)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RN 46-I		(73.025)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RNG 3	81.802		Adopted as the reference BM.		
RNG 4	94.254		Adopted as the reference BM.		
RNG 10	197.334	(197.429)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RNG 12	235.908	(236.049])	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RNG 13	241.421	(241.591)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		
RNG 15	249.625	(249.852)	The leveling results of this BM didn't coincide with the existing Data. Therefore this wasn't adopted as reference BM.		

Table IX3.1: Points de Contrôle dans le site N'FIFIKH(C: Points de repère Existants - Nivellement 3ème ordre)

Name	X	Y	Elevation	Note
RN 1			131.505	Monumented.
RN 2			137.712	Monumented.
RN 3			152.197	Monumented.
RN 4			157.844	Monumented.
RN 5			173.274	Monumented.
RN 6			182.923	Monumented.
RN 7			188.777	Monumented.
RN 8			199.82	Monumented.
RN 9	345,494.93	312,159.60	234.948	Monumented and Signalized
RN 10	345,697.53	311,951.12	219.128	Monumented.

Table IX3.1: Points de Contrôle dans le site N'FIFIKH(D: Points de repère récemment établis - Nivellement 3ème ordre)

Name	X	Y	Elev.		Note
1	205 091,900	90 277,300	606.472	3^{rd}	Signalized
56	200 013,800	84 524,200	633.13	3^{rd}	Signalized
57	200 781,870	94 625,910	543.543	3^{rd}	Signalized
58	201 281.000	90 546.900	594,337	3^{rd}	Signalized
59	201 371,160	80 661.600	696,185	Trig	Signalized
60	201 636,863	86 342,778	635,729	3^{rd}	Signalized
63	204 352,740	78 650,390	783,043	Trig	Signalized
1406	203 841,800	83 462,500	685,419	Trig	Signalized
3489	205 107 050	95 059 050	617 225	ord	Cionalizad
(65)	205 107,950	85 958,950	047,335	3.4	Signanzed
6700	210 023,000	74 769,500			Small
2rd	. Third and an	lavalin a			

Table IX3.2: Points de Contrôle dans le site TASKOURT (A: Station Triangulaire)

: Third order leveling

3rd : Third order leveling Trig : Trigonometric leveling

Name	X	Y	Elev.		Note
CPT - 1	203 362,795	89 073,906	610,052	3^{rd}	Monumented / Signalized
CPT - 2	200 132,853	89 267,949	598,134	3^{rd}	Monumented / Signalized
CPT - 8	207 026,808	85 121,872	694,491	3^{rd}	Monumented / Signalized
CPT - 10	212 145,904	76 325,507	914,748	Trig	Monumented / Signalized
CPT - 11	210 580,639	81 028,496	801,047	3^{rd}	Monumented / Signalized
CPT - 12	208 835,539	72 932,367	874,862	Trig	Monumented / Signalized
CPT - 13	209 594,228	72 819,669	984,967	Trig	Monumented / Signalized
CPT - 14	207 902,153	71 335,208	938,748	Trig	Monumented / Signalized
CPT - 15	205 897,692	69 242,047	958,128	3^{rd}	Monumented / Signalized
CPT - 16	205 064,108	69 355,143	1 036,251	Trig	Monumented / Signalized
CPT - 17	205 476,247	67 346,942	1 015,844	Trig	Monumented / Signalized
CPT - 18	203 153,101	62 162,431	1 134,103	Trig	Monumented / Signalized
CPT - 19	204 592,136	61 874,035	1 171,071	Trig	Monumented / Signalized
CPT - 20	208 566,449	77 901,010	895,194	Trig	Monumented / Signalized
CPT - 21	207 387,052	69 787,415	1 003,127	3^{rd}	Monumented / Signalized
CPT - 22	206 752,851	69 708,808	957,106	3^{rd}	Monumented / Signalized
CPT - 23	206 323,699	96 420,566	535,570	3 rd	Monumented / Signalized
CPT - 24	207 710,503	91 508,776	581,40	3 rd	Monumented / Signalized
CPT - 25	209 373,972	85 688,008	705,490	3 rd	Monumented / Signalized

Table IX3.2: Points de Contrôle dans le site TASKOURT(B: Points de Contrôle récemment établis)

3rd : Third order leveling

Trig : Trigonometric leveling

Table IX3.2: Points de Contrôle dans le site TASKOURT(C: Points de repère Existants - Nivellement 3ème ordre)

Name	Elev	Note
RN 23	577.052	
RN 24	590.895	Adopted as the reference BM

Table IX3.2: Points de Contrôle dans le site TASKOURT(D: Points de repère récemment établis - Nivellement 3ème ordre)

In the Taskourt area all points were surveyed their coordinates. Some of the control points were measured their elevation with third order leveling. They may serve as the third order Bench Mark, too.

Name	X	X Y		' •	Note
3	599 091,648	359 563,830	993,615	GPS	GPS survey results didn't coincide with existing coordinates. Existing coordinates of this station were ignored in this computation.
12	586 100,310	353 634,950	1,214,137	Trig.	Signalized
13	596 684,330	354 866,060	917,593	Trig.	Signalized

Table IX3.3: Points de Contrôle dans le site AZGHAR(A: Station triangulaire)

Table IX3.3: Points de Contrôle dans le site AZGHAR(B: Points de Contrôle récemment établis)

Name	X	Y	Elev	V •	Note
S - 11			825,860	3^{rd}	Signalized
S - 14	592 899,795	356 064,666	859,456	3^{rd}	Signalized
S - 17	593 046,482	353 558,863	772,589	3^{rd}	Signalized
S - 21			754,580	Trig.	Signalized
S - 23	585 562,623	350 362,752	871,305	Trig.	Signalized
S - 24	591 700,423	351 916,835	826,226	Trig.	Signalized
S - 25	598 717,771	354 342,798	861,728	3^{rd}	Signalized
S - 26	603 252,717	356 716,836	902,757	Trig.	Signalized
S - 26-1			901.246	Trig.	Signalized
S - 27	601 363,074	359 541,784	912,037	Trig.	Signalized

Name	Elev.	Note
RNG 72	495.621	Adopted as the reference BM
RNG 74	541.903	

Table IX3.3: Points de Contrôle dans le site AZGHAR(C: Points de repère Existants - Nivellement 3ème ordre)

Table IX3.3: Points de Contrôle dans le site AZGHAR(D: Points de repère récemment établis - Nivellement 3ème ordre)

Name	Х	Y	Ele	v.	Note
TBM 1	585	351	769.429	Trig	Monumented / Signalized
	215,099	508,973			
TBM 2	586	353	847.67	Trig	Monumented / Signalized
	938,251	268,757			
TBM 3	590	353	832.835	3^{rd}	Monumented / Signalized
	049,069	441,146			
TBM 4			849.967	3^{rd}	Monumented / Signalized
TBM 5			836.286	3^{rd}	Monumented / Signalized
TBM 6	595	356	829.957	3^{rd}	Monumented / Signalized
	629,291	376,641		-	
TBM 7	598	357	839.915	3^{rd}	Monumented / Signalized
	981,683	406,187		-	
TBM 8	601	357	878.681	3^{rd}	Monumented / Signalized
	284,715	833,163		-	
TBM 9	598	357			Monumente
	680,871	422,647			

L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au Royaume Maroc Rapport Final Volume IV Rapport de Soutien (2.A) Étude de Faisabilité Rapport de Soutien IX Photo Aerienne et Enquête de Terrain

Figures

L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au Royaume Maroc Rapport Final Volume IV Rapport de Soutien (2.A) Étude de Faisabilité

Rapport de Soutien X:

Géologie et

Matériaux de Construction

L'ETUDE DE FAISABILITE POUR LE DEVELOPPEMENT DES RESSOURCES EN EAU PAR LES BARRAGES MOYENS DANS LE MILIEU RURALE AU ROYAUME MAROC

RAPPORT FINAL

VOLUME IV RAPPORT DE SOUTIEN (2.A) ÉTUDE DE FAISABILITE

RAPPORT X GÉOLOGIE ET MATÉRIAUX DE CONSTRUCTION

Table des matières

Page

X1 Introduction	X-1
X2 Résultat de l'Etude sur les Zones de Projets de Barrages Respectifs	X-2
X2.1 Barrage N'Fifikh	X-2
X2.1.1 Morphologie et Géologie	X-2
X2.1.2 Profil de Vitesse Sismique le Long de l'Axe de Barrage	X-7
X2.1.3 Matériaux de Construction	X-7
X2.2 Barrage Taskourt	X-13
X2.2.1 Morphologie et Géologie	X-13
X2.2.2 Profil Sismique de Vitesse le Long de l'Axe de Barrage	X-19
X2.2.3 Matériaux de Construction	X-19
X2.3 Barrage Timkit	X-22
X2.3.1 Morphologie et Géologie	X-22
X2.3.2 Profil Sismique de Vitesse	X-27
X2.3.3 Matériel de Construction	X-28
X2.4 Azghar Barrage	X-30
X2.4.1 Morphologie et Géologie	X-30
X2.4.2 Profil Sismique de Vitesse le Long de l'Axe de Barrage	X-34
X2.4.3 Matériaux de Construction	X-34
X3 Analyse Sismique	X-42
X4 Sous-traitance Locale des Travaux de Géotechnique	X-44
X4.1 Forage	X-44

X4.1.1 Portée du Travail	X-44
X4.1.2 Quantité et Lieu du Travail	X-44
X4.1.3 Spécification	X-45
X4.2 Prospection par Réfraction Sismique	X-46
X4.2.1 Portée du Travail	X-46
X4.2.2 Quantité et Lieu du Travail	X-46
X4.2.3 Spécification	X-46
X4.3 Enquête de Matériaux de Construction de Barrage	X-47
X4.3.1 Portée du Travail	X-47
X4.3.2 Quantité et Lieu du Travail	X-48
X4.3.3 Spécification	X-49

Liste des Tableaux

Tableau X2.1	Critères de Classification de Roches de Fondation de Barrage (par Tanaka)	XT-1
Tableau X2.2	Résumé d'Essai du Sol pour les Matériaux de Construction (Barrage N'FIFIKH)	. XT-2
Tableau X2.3	Résumé d'Essai de Sol pour les Matériaux de Construction (Barrage AZGHAR)	. XT-2
Tableau X2.4	Résumé d'Essai de Matériaux pour Agrégats (Barrage TASKOURT)	. XT-3
Tableau X2.5	Résumé d'Essai de Matériaux pour Agrégats (Barrage AZGHAR)	. XT-3
Tableau X2.6	Le Résumé d'Essai de Sédimentation du Sable et Gravier (TIMKIT le Barrage)	. XT-3
Tableau X3.1	Intensité de Séisme Estimé et Accélération de Terre Ressentie au Site de Barrage N'Fifikh	. XT-4
Tableau X3.2	Intensité de Séisme Estimé et Accélération de Terre Ressentie au Site de Barrage Taskourt	XT-11
Tableau X3.3	Intensité de Séisme Estimé et Accélération de Terre Ressentie au Site de Barrage Timkit	XT-13
Tableau X3.4	Intensité de Séisme Estimé et Accélération de Terre Ressentie au Site de Barrage Azghar	XT-18

Liste de figures

Figure X2.1.1	Carte Géologique du Bassin Versant de Barrage N'Fifikh XF-1
Figure X2.1.2	Carte Géologique Autour de Site de Barrage N'Fifikh & Carte d'Emplacement du Forage et Prospection Sismique XF-2
Figure X2.1.3	Carte Géologique de la Zone de la Retenue du Barrage N'Fifikh XF-3
FigureX2.1.4	Profil Géologique le Long de l'Axe Examiné du Barrage N'Fifikh XF-4
FigureX2.1.5	Profil Sismique de Vitesse le Long de l'Axe Examiné du Barrage N'Fifikh XF-5
FigureX2.1.6	détermination des Zones d'Emprunt et Site de Carrière pour le Barrage N'Fifikh XF-6
Figure X2.2.1	Carte Géologique du Bassin Versant de Barrage Taskourt XF-7
Figure X2.2.2	Carte Géologique Autour du Site de Barrage Taskourt & Carte de Situation du Forage et Prospection Sismique XF-8
Figure X2.2.3	Carte Géologique de la Zone de Retenue du Barrage Taskourt XF-9
FigureX2.2.4	Profil Géologique le Long de l'Axe Examiné du Barrage Taskourt XF-10
FigureX2.2.5	Profil Sismique de Vitesse le Long de l'Axe Examiné du Barrage TaskourtXF-11
Figure X2.3.1	Carte Géologique Autour de Bassin Versant du Barrage Timkit XF-12
Figure X2.3.2	Carte Géologique Autour de Site de Barrage Timkit & Carte de Situation du Forage et Prospection Sismique XF-13
Figure X2.3.3	Carte Géologique Autour de la Zone de Retenue du Barrage Timkit
FigureX2.3.4	Profil Géologique le Long de l'Axe Examiné du Barrage Timkit XF-15
FigureX2.3.5	Profil Sismique de Vitesse le Long de l'Axe Examiné de Barrage Timkit Axe XF-16
Figure X2.3.6	Site de Carrière Conception pour le Barrage Timkit XF-17
Figure X2.4.1	Carte Géologique Autour de Bassin Versant de Barrage Azghar XF-18
Figure X2.4.2	Carte Géologique Autour de Site de Barrage Azghar & Carte de Situation du Forage et Prospection Sismique XF-19
Figure X2.4.3	Carte Géologique Autour de la Zone de Réservoir du Barrage Azghar XF-20
FigureX2.4.4	Profil Géologique le Long de l'Axe Examiné de Barrage Azghar XF-21

FigureX2.4.5	Profil Sismique de Vitesse le Long de l'Axe Examiné de Barrage Azghar	XF-22
FigureX2.4.6	Définition des Zones d'Emprunt et Site de Carrière pour le Barrage Azghar	XF-23
Figure X3.1	Rapport Entre Intensité et Fréquence de Séisme au Site de Barrage N'Fifikh	XF-24
Figure X3.2	Rapport Entre Intensité et Fréquence de Séisme au Site de Barrage Taskourt	XF-25
Figure X3.3	Rapport Entre Intensité et Fréquence de Séisme au Site de Barrage Timkit	XF-26
Figure X3.4	Rapport Entre Intensité et Fréquence de Séisme au Site de Barrage Azghar	XF-27

RAPPORT X

GÉOLOGIE ET MATERIAUX DE CONSTRUCTION

X1 Introduction

Dans phase I, en référence au rapport de l'étude existant pour les 25 sites du projet sur cette étude, visant en premier lieu la compréhension de la condition actuelle, les Ingénieurs les ont vérifiés en situation réelle sur le terrain et ont examiné soigneusement les considérations géologiques et topographiques en l'occurrence la convenance de la construction des barrages ou les problèmes y relevant.

Les sites de projets sont situés sur tout le territoire marocain. Ainsi, l'enquête sur terrain a été menée pendant un à deux jours, respectivement, principalement autour de chaque site de barrage.

Dans la phase II, l'étude a été faite pour les quatre sites (N'Fifikh, Taskourt, Timkit, et Azghar) sélectionnés suite au résultat de la phase I d'étude.

L'Ingénieur géologue concentre son attention sur la région autour des sites des barrages et des réservoirs dans cette phase pour l'examen concernant la conception et la construction du barrage.

Les méthodes de l'étude sont la reconnaissance géologique, les sondages et forages et les essais y relevant, ainsi que la reconnaissance par sismique-réfraction. De Plus, pour les matériaux de construction, des essais d'écrasement, d'échantillonnage et de laboratoire pour la mécanique du sol et le béton a été réalisé.

L'Ingénieur de la JICA a directement conduit les reconnaissances géologiques sur terrain aux sites de barrages respectifs sélectionnés et aux zones des réservoirs, pendant une semaine, et aussitôt les met sous forme de plans géologiques convenables. Les plans sont à l'échelle 1/5000 autour des régions du réservoir et à l'échelle 1/500 autour des sites des barrages.

Les sondages et les essais in situ y relevant, la reconnaissance par sismique réfraction, les essais de dureté et d'échantillonnage ainsi que les essais de laboratoire ont été assignés au sous-traitant local (Laboratoire Public d'Essai et d'Etude = LPEE, siège social à Casablanca) ont été réalisé et rendu y compris les documents d'appel d'offre. L'ingénieur de la JICA a élaboré les termes de référence pour ces tâches et a dirigé leurs travaux.

Les sondages ont été réalisés le long de l'axe du barrage dans le but de définir le contour de corps du barrage. Cinq sondages (50 mètres linéaires respectivement) le long des axes des barrages respectifs ont été réalisés (excepté Azghar, omis car des données réalisées par la DGH existent déjà). L'essai Lugeon a été conduit à chaque sondage pour vérifier la perméabilité du substratum.

La sismique réfraction a été conduite sur trois sites de barrage sauf Timkit où les données existent déjà. Les lignes de prospection sont 6 ou 7 le long de la direction des axes des barrages et perpendiculairement à eux. La distance est de 3 km chacun, et donc 9 kms au total.

L'épreuve qui dénoyaute pour construction étude matérielle a été conduite à trois emplacements du barrage sauf Timkit où les données existent déjà. Cinq noyaux de l'épreuve ont été creusés autour de chaques emplacements du barrage.

Les essais du laboratoire ont été réalisés pour vérifier la convenance des matériaux pour remblais et agrégats du béton en utilisant des échantillons des éprouvettes d'essais. Les essais des roches ont aussi été faits par des sondages.

Après la détermination de l'accélération sismique aux sites de barrages respectifs, l'Ingénieur de la JICA a rassemblé le données des événements sismiques au Maroc, grâce au centre sismique, et les a analysées.

X2 Résultat de l'étude dans les régions des Projets de Barrage

X2.1 Barrage N'Fifikh

- X2.1.1 Morphologie et Géologie
 - (1) Bassin versant

La situation de la région N'Fifikh est comme suit :

Environ 60 kms ESE de Casablanca ;

Environ 45 kms SE de Mohamedia ; et

La ville la plus proche est Ben Slimane à environ 25 Km de distance.

Le niveau du bassin versant varie de 230 m à un peu plus de 800 m. Les terres à la portée du réservoir sont d'une surface de 323 km².

La région appartient au Maroc du Méséta Central où elle est située entre le Méséta Côtier et le Méséta. Le Méséta Côtier consiste en une plaine côtière et trois niveaux de plateau bornés dans les lignes de niveau 200 m et 500 m. Le Méséta comprend les montagnes intérieures et les plateaux (niveau est entre 500-1000 m).

Le site du barrage est sur Oued Dalia et localisé à environ 50 kms de la bouche d'Oued N'Fifikh à Mohamedia en amont.

La longueur amont du cours d'eau principal jusqu'au site du barrage est approximativement 35 kms joignant beaucoup d'affluants sur 10 à 15 kms de longueur. Le bassin versant est caractérisé par les collines et les montagnes avec des sommets sphériques de 500 à 700 m avec une haute densité de vallées. Ils sont le résultat d'une longue érosion datant du Paléozoïque.

La structure géologique dans la région est très compliquée vue l'existence de beaucoup de sur-plissments, poussées et beaucoup de failles.

D'après la carte géologique à une échelle de 1 : 500,000 publiés par le Ministère des Mines, la Géologie autour du bassin versant est comme montrée sur la figure X2.1.1.

Le site du barrage consiste en Calcaire, Quartzite, Grès et schiste Pélitique ou Argilite du dévonien Inférieur à Central, pendant que la région à un certain endroit en amont et sur la rive gauche du bassin consiste en quelque type de roches schisteuses du Carbonifère. Les failles limitent l'extension de ces roches orientées N-S en moyenne vers l'aval pendant et NE-SW dans la zone en amont.

Les substratums en amont consistent en Calcaire, Ardoise ou schiste Pélitiques, Grès, Quartzite et Conglomérat de Devono-carbonifère à Dévonien. Le granite existe largement dans le coté Est en dehors du bassin.

La continuité des formations est très pauvre dans toutes les régions à cause des plissements des failles.

Probablement pour à relativement petit et a répété plier, le Dévonien moyen à supérieur et le Dévono-carbonifère affleurent à maintes reprises, probablement en raison des petits plissements à répétition. Globalement, ils sont soulevés au-dessus à travers le Granite affleurant.

(2) Autour de la retenue

Les collines aux crêtes rondes ont leurs sommets de 330 m jusqu'à 400 m de hauteur sur la rive gauche, progressivement. Pendant que, ceux de la rive droite sont situés à quelques niveaux, à savoir autour de 320 à 330m, autour de 370m, de 400m, et de 450m, et jusqu'environ 410m. celui du site du barrage est environ à 360m. Bien que quelques sommets soient irréguliers, ils forment généralement de longues corniches étroites de façon montante ou descendante.

Le plus grand affluent (Oued al Meish) survient de la rive droite à environ 1.2 kms en amont du site du barrage. Le cours d'eau principal change son cours quelquefois soudainement. Il coule vers le NNW en amont, vers le nord à la moitié de la longueur du cours d'eau et vers l'ouest aux environs du site du barrage. La plaine terrasse se développe le long du cours de la rivière sur les deux rives, dont la largeur est d'environ de 200 m en amont région et autour de 300m en aval. Les versants arrières droits des plaines terrasses présentent une forme triangulaire.

L'inclinaison moyenne du lit de la rivière dans la zone du réservoir le long du cours d'eau principal est de 1/165. De par cette inclinaison douce, la distance du site du barrage à la limite amont de la retenue est de plus de 5 kms.

La condition géologique autour de la zone du réservoir est comme montrée dans la figure X2.1.3.

Le substratum dans la région est formé de formations paléozoïques très plissées et faillées. C'est très difficile de suivre leur continuité. Le faciès du rocher présente une alternance de grès (ou schiste Psammitique) et pélite (Argillite, Ardoise, Phyllite, et schiste Pélitique). Les zones à dominante de Grès et celles à dominante de Pélites affleurent à répétition. Le calcaire, le Quartzite massif ou Grès Quartzitique existent en partie et irrégulièrement.

Le Calcaire gris existe autour du sommet en rive droite du site du barrage, et de grands blocs et massifs de quartzite sont éparpillés sur le versant. La strate verticale de Grès Quartzitique ou de quartzite sableux traverse perpendiculairement le cours de la rivière juste en aval du site du barrage sous forme des selles à cheval. La zone aux environs est couverte par des Colluvions probablement en assise sur une alternance des dominances de Grès et roches Pélitiques.

La zone à dominante de grès s'étend autour du site du barrage, sur la rive droite de Oued al Meish, sur les montagnes en arrière de la rive gauche et les niveaux supérieurs de la rive de la rivière principale. D'autre part, la zone à dominante de roches pélitiques s'étend sur la rive droite entre la confluence de Oued al Meish et le point d'inclinaison vers l'aval, sur la zone entre Oued al Meish et le cours de la rivière principale, et sur les deux rives en amont de Oued al Meish. Leur couleur est généralement sombre verdâtre à noirâtre probablement en raison des traces de galène et de zinc.

L'alternance de schistes Psammitique et de schiste Pélitique à couleur grise bleuâtre existe le long de la rive gauche en amont du cours d'eau principal et du niveau inférieur de la rive droite.

Le noir verdâtre et les formations grises bleuâtres ont la limite presque horizontale (il s'agit probablement d'une faille horizontale et d'une plie renversée).

D'après la carte géologique "Mohammedia " tiré sur une échelle de 1:100000 qui porte sur le nord du site du projet comprenant la région, le substratum dans la

région est formé de Dévonien à Carbonifère. Le Calcaire de la rive droite du site du barrage est Dévonien Inférieur (Formation Dhar-es-Smene), le substratum autour du site du barrage intercalé avec les Quartzites est Dévonien Supérieur (Formation Ain Aliliga), les roches grises bleuâtres sont du Carbonifère Supérieur (Visean) et les autres sont du Devono-carbonifère (Formation Al-Brijate).

La Hauteur relative de la plaine Terrasse à partir du lit actuel de la rivière est inférieure à une dizaine de mètres. Les dépôts de la terrasse consistent en sable à la base et du gravier couvert principalement par un sol fin granulé. leur épaisseur est de 3 à 4 m. Les dépôts colluviaux en versant et au pied de montagne consistent en graviers anguleux qui supportent un sol d'épaisseur quelquefois de plus de 2 m.

(3) Site du barrage

Dans le cas de la rive droite, un petit courant coule derrière la colline en forme de selle à cheval formant le col vers l'amont. L'inclinaison le long de ce cours est relativement escarpée et d'environ 30° avec une surface cahoteuse. Un ravin profond existe juste à l'amont de l'axe du barrage. L'élévation de la crête du col est 246m, et l'élévation du sommet de la selle à cheval est environ 1m de plus que la crête. L'inclinaison du versant est : 15 à 20° jusqu'à 235m, et 10 à 15° à la zone la plus haute. Le sommet est à 288.5m. à 150 m environ en amont de l'axe du barrage, un affluant linéaire joint le cours d'eau principal sous une direction ENE.

Pendant qu'en rive gauche, le versant est relativement raide partant du lit de la rivière jusqu'autour de 280m avec une inclinaison de 25 à 35°. La direction de l'inclinaison est presque la même vers l'aval, cependant elle change d'un angle droit vers l'amont. L'inclinaison amont est légèrement douce aux endroits où la couche de surface glisse. Une protubérance de roches Quartzites existe juste à l'aval suivi par d'un talus (l'inclination moyenne est de 35 à 40°). Des Terrasses à inclinaison douce existent entre 230 et 240m en élévation avec inclinaison inférieure à 10° s'étendant à l'amont de l'axe du barrage. L'inclinaison supérieure des terrasses est en moyenne de 30°, pendant que l'inclinaison inférieure est de 25°. La rive gauche est composée d'une colline indépendante d'une élévation maximum de 334m.

Le cours d'eau principal s'écoule au pied de la rive gauche et l'élévation du lit de la rivière est de 213m. La largeur de l'écoulement actuel du cours d'eau est approximativement de 20m. la Terrasse alluviale de 30 à 40 m en largeur s'étend sur la rive droite. L'élévation de la plaine de terrasse alluviale est de 215m à 216m.

L'inclinaison du lit de la rivière autour du site du barrage est en moyenne de 1/250.

La condition géologique autour du site du barrage est comme montrée dans la figure X2.1.2 et au profil géologique le long de l'axe examiné du barrage comme montré dans la figure X2.1.4.

La couche de 10 m de Quartzite sableux est perpendiculaire au cours d'eau sur les deux rives juste à l'aval de l'axe examiné du barrage. Les petits blocs de Quartzite sont éparpillés entre l'axe du barrage et le col de rive droite. Ces affleurements apparaissent par intermittence en tant que boudin formé par plie renversée.

Le substratum autour de l'axe examiné du barrage consiste probablement en couche à dominante de grès Devono-carbonifère, cependant, ils sont couverts par les Colluvions. En partie les roches pélitiques existent plutôt aux zones de détérioration qu'ailleurs.

Les failles sont inférées le long de la ligne de niveau 240m sur la rive de gauche avec une orientée E-W due à son changement structurel géologique brusque, et sur la ligne qui traverse le col de rive droite orientée NW-SE à partir de la formation des quartzites. Plus loin du bloc des Quartzites, les failles localisées autour de cette zone sont aussi inférées.

Les strates autour du site du barrage sont surplissées, alors leur coupe et inclinaison s'orientent dans plusieurs direction (surtout dans la zone à dominante de roches pélitiques, cette tendance est remarquable). Dans la mesure où la zone voisine du lit de la rivière est concernée, la coupe des strates a tendance à s'orienter autour de la direction N-S.

La Terrasse de hauteur relative 5 à 10 m à partir du lit de rivière actuel s'étend vers l'amont le long de la rive gauche à partir de l'axe du barrage et vers l'aval le long de la rive droite à partir de la colline en forme de selle à cheval qui consiste en sol principalement granuleux fin.

Le cône des dépôts alluviaux se situe aux débouchés de ravins profonds et des branches des cours d'eau. La terrasse alluviale s'étend sur les deux rives avec 50 à 100 m en largeur. Le premier consiste en moellon et sols, et la dernière principalement de limons et sables fins. Les dépôts de Talus s'accumulent au pied du versant raide qui consiste en Galet et sol granuleux fin.

(4) **Remarques**

Nous devrions faire attention autour du site du barrage aux aspects suivants :

- Autour du site du barrage, les failles sont situées sur l'appui gauche autour du niveau de la crête du barrage avec une orientation E-W, et à travers le col de rive droite avec une orientation NW-SE et NE-SW.
- Les strates de roches pélétiques dominantes juste à l'aval de l'axe du barrage en rive gauche sont fragile et sont cisaillées dans une certaine mesure.
- Généralement dans la zone, la profondeur au-dessus du substratum et relativement profonde.

- Les dépôts de colluvions situés à mi-profondeur et au pied du versant sont épais par endroit, et quelques parties causent sont à l'origine de glissements de surface, en particulier le versant derrière la rive droite est la zone à glissement.

X2.1.2 Profil de la Vélocité sismique le long de l'Axe examiné du Barrage

Le profil de la vélocité sismique le long de l'axe examiné du barrage est montré dans la figure X2.1.5. Pour une grande part, la vélocité des couches peut est comme suit.

Niveau No.	Butée gauche	Le nid de la rivière	Butée droite.
Ι	0.6km/s	0.8km/s	0.7 ~ 0.8km/s
	(Colluvial dep.)	(Alluvial dep.)	(Colluvial dep.)
Π	1.7km/s (Weathered rocks	-	2.5 ~ 2.7km/s
	or semisolid Terrace dep.)		(Weathered rocks)
III	3.7km/s	3.2km/s	3.2 ~ 4.0km/s
	(Fresh rocks)	(Fresh rocks)	(Fresh rocks)

La zone de faible vélocité est reconnue à l'appui gauche et sur la corniche droite.

X2.1.3 Matériaux de construction

Vu que la profondeur au substratum est en général relativement profonde dans la région, un barrage en béton peut être difficile à construire sur la fondation. Pour un barrage en terre, le matériau nécessaire pour l'endiguement doit être imperméable, les matériaux pour les recharges et un volume de sables et graviers pour les installations concrètes est également nécessaire.

En considérant les matériaux précités, les zones d'emprunt et carrières seront vérifiées pour faire la prochaine matière avec un objet.

• Zone d'emprunt

<u>Les dépôts de terrasse</u> : consistent essentiellement en limons et argile à structure graveleuse et limoneuse.

Dépôts Colluviaux : rocher fragmenté dans une matrice de sol granuleux fin.

• Carrière de sables et Graviers

Les dépôts de la rivière et de surface : s'étendent à la confluence des deux affluents, par exemple Oued Dalia et Oued al Meish.

Les dépôts de terrasse : la portion de base consiste en graviers et limons avec quelques sables ; l'épaisseur est environ 1m.

• Carrière pour enrochements

<u>Calcaire</u> : affleurements au sommet de la rive droite juste à l'aval du site du barrage.

<u>Quartzites</u> : affleurements sur les deux rives juste à l'aval de l'axe du barrage, ils apparaissent sous forme de blocs ou de boudins en rive droite du site du barrage.

Ces emplacements sont montrés dans la figure X2.1.6 " détermination de la zone d'emprunt et site de Carrière pour le Barrage N'Fifikh"

(1) **Reconnaissance par puits**

Cinq puits nommé P1 à P5 ont été réalisés pour les matériaux de remblai localisée au voisinage du barrage N'Fifikh . Les puits P1, P2, et P3 sont dans la région du réservoir proposée, pendant que les puits P4 et P5 sont en aval du site du barrage sur la rive gauche d'Oued N'Fifikh . Il a été supposé creuser ces puits manuellement, avec l'aide de la pelle et du pic, à 5m de profondeur du niveau du terrain naturel.

Logs des essais par puits :

- Noyau P1 -
 - 0.00 0.20 m : Le sol du sommet.
 - 0.20 0.90 m : argile limoneuse rouge avec quelques graviers.

0.90 - 3.70 m : argile limoneuse à couleurs variées.

3.70- 4.70 m : Les graviers & Galets avec blocs (Φ > 30 centimètres) dans une matrice du limon sableuse.

- Noyau P2 -

0.00 - 0.50 m : sol du sommet.

0.50 - 0.80 m : Graviers avec galets dans une matrice argileuse.

0.80 - 2.70 m : Argile limoneuse jaunâtre avec quelques galets.

2.70 - 3.90 m : Argile avec débris anguleux graveleux.

3.90 - 5.00 m : Les graviers & galets avec blocs dans une matrice du limon sableux.

5.00 m - : Le substratum.

- Noyau P3 -

0.00 - 0.30 m : Le sol du sommet.

0.30 - 1.00 m : Fragments du rocher dans limon & matrice en argile.

- 1.00 m : bloc du rocher.
- Noyau P4 -

0.00 - 1.60 m : sol Argileux rougeâtre avec quelques blocs du rocher.

1.60 - 4.00 m : Argile limoneuse jaunâtre avec quelques blocs du rocher.

- Noyau P5 -

0.00 - 1.60 m : sol argileux caillouteux rouge avec quelques blocs du rocher.

1.60 - 2.60 m : argile limoneuse jaunâtre.

2.60 - 4.40 m : Sol limoneux avec des fragments du rocher anguleux.

4.40 - 5.00 m : substratum hautement fracturé.

Pendant la période de la reconnaissance sur place (du 8 septembre au 26 septembre 2000), l'eau n'a pas été trouvée dans les puits précités.

Le sol pour le remblai imperméable du barrage est une argile limoneuse jaunâtre. L'épaisseur de l'argile limoneuse jaunâtre varie entre 0.8 et 2.8 m. Cette argile limoneuse jaunâtre est généralement couverte par une couche d'argile rougeâtre avec du gravier. Les couches sous-jacentes sont généralement du substratum fracturé ou des dépôts du gravier.

• Essai de Densité In-situ

L'argile limoneuse jaunâtre a été soumise à des essais de densité in-situ et du laboratoire. Il est très solide. Les résultats de densité in-situ varient entre 1.80 et 1.96 t/m^3

(2) Essai du laboratoire sur Matériau du Sol

Les essais du laboratoire ont été réalisés sur 4 échantillons pris de la couche de l'argile limoneuse jaune, à savoir P1 à 3.00 m, P2 à 1.50 m, P4 à 2.00 m, et P5 à 2.00 m.

Les résultats d'essai du laboratoire sont décrits comme suit :

• analyse granulomértique

1) le pourcentage des particules inférieures à 0.08 mm est de 57 à 83%.

2) le pourcentage des particules entre 0.08 et 2 le mm est de 10 à 13%.

3) le pourcentage des particules supérieures 2 mm est 7 à 32%.

• Limites d'Atterberg

Les limites d'Atterberg ne sont pas très grandes (WL = 31 à 36%, IP = 15 à 17%) ce qui permet de choisir la classification CL (argile peu plastique).

• Teneur en eau

Comme montré sur la table suivante, les sols (argile limoneuse jaunâtre) présentent une teneur en eau et un degré de saturation plutôt faibles.

Puit	Profondeur	densité	gravité	Teneur en	Degré de
	<i>(m)</i>	sèche (t/m ³)	Spécifique	eau (%)	Saturation
P1	3.00	1.91	2.720	11	70%
P2	1.50	1.93	2.708	10	64%
P4	2.00	1.82	2.711	9	47%
P5	2.00	1.92	2.716	11	71%

• Essai de compactage de Proctor

Les essais du compactage de Proctor réalisés au laboratoire ont donné les densités maximales et les teneurs en eau optimales suivantes :

Puit	Profondeur	Teneur en eau Optimal	Densité Maximale
	<i>(m)</i>	W_{opt} (%)	$\gamma_{dmax} (t/m^3)$
P1	3.00	15	1.79
P2	1.50	14.5	1.82
P4	2.00	16	1.79
P5	2.00	14	1.86

• Essai de Compression Triaxiale

L'essai de compression triaxiale consolidée drainée pour évaluer la force du glissement a été réalisé sur les échantillons reconstitués à 95% de l'optimum Proctor de densité. Les échantillons ont été saturés avant la procédure de la consolidation. La pression de l'eau interstitielle a été mesurée pendant la compression et jusqu'à l'écrasement.

La force du cisaillement (angle du frottement interne et cohésion) en contrainte efficace et en contrainte totale est résumée dans le tableau suivant :

		Contrainte totale		Contrainte .	Effective
Pit	Profondeur	Angle de	Cohesion	Angle de	Cohesion
	<i>(m)</i>	Frottement ϕ_{cu}	$C_{cu}\left(kPa\right)$	Frottement ϕ '	C'(kPa)
P1	3.00	19°	20	30°	10
P2	1.50	13°	20	22°	10
P4	2.00	16°	30	25°	15
P5	2.00	16°	30	26°	15

• Essai de Consolidation

Les essais de consolidation ont été effectués sur des échantillons reconstitués à 95% de l'optimum Proctor de la densité. Les caractéristiques mesurées (Ic : indice de compressibilité, PC : pression de préconsolidation, Ig : l'indice de gonflement) sont groupés dans le tableau suivant :

Puit	Profondeur (m)	Ic	Pc (kPa)	Ig	Pg (kPa)
P1	3.00	0.17	60	0.02	20
P2	1.50	0.16	100	0.01	20
P4	2.00	0.20	200	0.017	20
P5	2.00	0.14	70	0.015	20

Ces valeurs montrent sur la première partie que ce sol est plutôt compressible que ce qu'a été prévu, et sur la deuxième partie il montre qu'elle a un faible potentiel de gonflement.

• Essai de Perméabilité

Des essais de perméabilité ont été effectués sur des échantillons reconstitués à 90 % et à 100 % de l'optimum Proctor de densité avec la teneur en eau optimum. La perméabilité K mesuré est comme suit :

Puit	Profondeur(m)	$K_{90\%}(cm/s)$	$K_{100\%}(cm/s)$
P1	3.00	2×10^{-6}	6 × 10 ⁻⁷
P2	1.50	3 × 10 ⁻⁶	2×10^{-7}
P4	2.00	10-5	10 ⁻⁷
P5	2.00	10-6	3 × 10 ⁻⁷

On remarque que la perméabilité obtenue à 90 % de la densité optimale est relativement plus grande que celle obtenue à 100 % de la densité optimale qui dote l'argile d'une caractéristique pratiquement imperméable.

(3) Essai Mécanique en laboratoire sur échantillon de Roches

L'essai mécanique en laboratoire a été effectué dans le laboratoire sur des échantillons de roches pris des carottes de forages dans le site de barrage. Les grandeurs évaluées et les résultats sont comme suit :

Densité apparente γ et porosité n.

Résistance de compression sans confinement Rc.

Module de Young E et coefficient de Poisson ν .

Vitesse ultrasonique : onde longitudinale (primaire) *Vl* et onde transversal (secondaire) *Vt*.

échantillon	$\gamma(t/m^3)$	n (%)	Rc (MPa)	E (GPa)	Vl (M/s)	Vt (M/s)	ν
S3(12.00–12.30 m)	2.74	0.80	27.2	40	8751	5454	0.18
S3(26.70-27.00 m)	2.70	0.67	36.1	49	8125	5000	0.20

La résistance mesurée sans confinement de la roche est assez élevée pour la fondation d'un barrage digue.

(4) Considération

- Matériaux Imperméable

En se basant sur la reconnaissance du terrain autour du site de barrage et le résultat d'essai par puits et l'essai en laboratoire, la terrasse et les dépôts de sol seront appropriés pour les matériaux imperméables. Ils sont observés sur les pentes modérées le long de la rivière en aval et en amont du site de barrage. Les puits d'emprunt A1 et A2 sont proposées dans la zone de retenue proposée. Un autre puits d'emprunt à environ 3 km en aval de site de barrage est aussi possible. L'épaisseur de dépôt de sol est de 2-3 m. le volume estimé est (1km long x 100m large x 2m épaisse =) 200,000 m³, (300m x 100m x 2m =) 60,000 m³ et (1km x 100 x 2m =) 200,0010 m³ pour A1, A2 et B1, respectivement.

Les matériaux de toutes les fosses d'emprunt sont presque des mêmes propriétés. L'humidité naturelle est environ 15 %, leur indice de plasticité est d'environ 17 et la densité naturelle est 1.9 t/m^3 .

Ces propriétés indiquent que c'est un matériel lourd et approprié pour du remblai imperméable. En réalité L'essai de perméabilité de laboratoire prouve son imperméabilité sous l'humidité optimum et la densité maximale de compactage. Cependant, le problème c'est que l'humidité naturelle est inférieure de 4-5 % que l'humidité optimale. Un arrosage est donc nécessaire pour augmenter l'humidité lors de l'étape de construction.

La condition de l'essai de cisaillement à la compression triaxiale sous-consolidé et non drainé (C-U) a été exécuté sur le matériau imperméable à la densité de D=95 % avec l'humidité optimum. La contrainte de cisaillement effective de dimensionnement sera de 25 degrés comme angle de friction interne et 10 KPa comme cohésion sur la base des valeurs moyennes des essais de cisaillement C-U.

- Matériaux Semi-perméable et Filtre

Le sable et gravier du lit de rivière (le matériel C) et la couche inférieure de la terrasse et les dépôts de colluvions (le matériel D) sont recommandables pour le filtre et les matériaux semi-perméables. Ils sont situés sur la confluence de la rivière amont et le lit de rivière aval et sur les pentes des bords de la rivière. Comme le matériau de dépôt, particulièrement celui des pentes contient un taux de limons ; il présentera les caractéristiques de semi-perméabilité. Les matériaux de fouilles (le matériel E), qui sont composé surtout de roches fracturées ou de roches dures, dans la fondation de l'évacuateur seront aussi appropriés comme matériaux perméables à semi-perméable pour l'endiguement en plus de leur utilisation pour l'enrochement. Les volumes bruts seront de (de 100m x 100m x 2.5m x 2 secteurs =) 50,000 m³ pour le matériau C et 700,000 m³ pour le matériau D. Le volume de matériau de fouilles E sera estimé comme 430,000 m³, dont la moitié sera utilisée comme enrochement perméable.

Les agrégats de béton proviendront de deux (2) sources. Le premier est le sable et le gravier de C ou le matériau D. L'autre sera l'emprunt ou l'achat de l'extérieur du secteur de projet. Dans ce dernier cas un traitement de lavage et tamisage seront nécessaires comme le sable et le gravier sont considérés non propres et non classifiés proprement pour une utilisation directe. Ce Matériel sera de meilleure qualité, mais plus cher. Le choix final sur les agrégats sera fait après la prochaine reconnaissance détaillée.

- Matériau perméable pour enrochement

La quantité relativement grande du volume de fouilles dans la fondation de l'évacuateur est prévue pour le barrage. Elle doit être utilisée à l'endiguement du barrage pour une construction économique. Sa moitié sera des quartzites dures qui est probablement approprié pour le remblai perméable. Si le rocher est de taille supérieure à 30 cm en diamètre, il sera aussi approprié pour le rip-rap. Le volume Disponible de ces matériaux de roches est autour de 200,000 m³.

- Matériaux pour rip-rap

On recommande le site de carrière de rip-rap de bonne qualité pour les enrochements sur la colline en aval de l'appui droit du barrage. Les enrochements sont du calcaire et quartzite. La Surface de la carrière montre des roches dures, denses et de qualité durable. Elles sont jugées être appropriées pour le rip-rap. Les enrochements de fouilles de la fondation de l'évacuateur seront probablement le quartzite et le grès. Les matériaux frais et gros de Quartzite seront probablement appropriés au rip-rap mais le grès ne semble pas rassurant pour cette utilisation.

X2.2 Barrage Taskourt

X2.2.1 Morphologie et Géologie

(1) Voisinage du bassin versant

Le site du secteur Taskourt est comme suit : Environ 70 km au SW de Marrakech ; et Environ de 45 km au SSE de Chechaoua. Le bassin versant de la retenue est 419 km².

Il est situé dans le versant nord du Haut Atlas Occidental, où de très hautes montagnes de 3,200 à plus de 3,600 m s'érigent en arrière comme J.Tichka, J.Igdet et J.Erdouz, etc.

Le site de barrage Taskourt est sur Assif el-Mal, qui a beaucoup de branches s'écoulant de hautes montagnes. Le sommet le plus haut du bassin est J.Igdet (3,615 m). Le cours d'eau principal remonte J.Tichka (3,350m) et s'écoule sur 30 et quelques kilomètres jusqu'au site de barrage. Le niveau du lit de la rivière au site de barrage est autour 940m. Il s'écoule en montagnes sur environ 10 km avant d'aboutir dans la zone alluviale et la plaine de Hauz. Assif el-Mal est à écoulement pérenne de par son alimentation permanente en eau de fonte de neiges en hautes montagnes. Vu que le bassin versant est formé de montagnes raides, beaucoup de sédiments sont charriés formant des dépôts fluviaux épais et larges.

Selon la carte géologique à l'échelle de 1:500,000 publié par le Ministère des Mines et d'Extraction minière, la Géologie autour du bassin versant est comme indiquée sur la Figure X2.2.1.

Le secteur le plus en amont autour de J.Tichka et J.Igdet est à texture de Granit, Migmatite et Hornfels, etc. Ceux-là sont en contact avec des roches métamorphiques et relevant des roches métamorphiques régionales du Paléozoïque.

Les formations Paléozoïques Métamorphosées autour du secteur consistent en roches Psammitiques et plusieurs types de Schistes et en partie Graywacke schisteux, Arkose, ou Pyroclastiques de Cambrien à Ordovicien.

Quoique beaucoup de failles et plis existent dans le secteur, ces formations sont en grande partie arrangées dans la direction NE-SW limitée principalement par la même direction de failles.Les formations Mésozoïques (Jurassique et Crétacé) composées de Gypse, marne, calcaire, Grès et Conglomérat, qui sont presque des strates horizontales, existent à environ 6 à 8 km en amont du site de barrage et s'étendre à l'ouest et vers l'est. Presque la frontière du Paléozoïque et Mésozoïque du versant de montagne orientée E-W est le lieu d'une faille soulevant relativement le versant.

(2) Zone de la retenue

L'inclinaison moyenne du versant de montagne en amont de la rive gauche est de 35° à 40 ° augmentant directement du lit de la rivière à l'arête avec une portion doucement inclinée. Tandis que dans le côté aval, la plaine s'étend entre 1,300 et 1,500m d'altitude, et soudainement diminue à 1,100m avec un gradient moyen de 40°. Alors, la pente forme une continuation douce au lit de la rivière (l'Altitude 940m).

D'autre part dans le côté de rive droite, le côté amont est plutôt à pente douce et le côté aval est très raide à partir du lit de la rivière avec l'inclinaison de plus de 40 °. Le cours d'eau est obligé à serpenter à environ la moitié de la surface de la retenue en raison de la corniche longue et étroite saillante. La largeur du lit de la rivière est généralement de 150 à 200m, mais elle devient relativement étroite à plusieurs dizaines de mètres vers le site de barrage.

Assif El- Mal avec un rivage fluvial relativement large s'écoule d'abord vers le nord serpentant à travers des montagnes très raides et change son cours vers le NE un peu en amont du site de barrage. Il change son cours de nouveau soudainement vers le NW en aval du site de barrage.

Les tributaires (affluents) s'orientent principalement E-W au cours principal fluvial d'Assif el-Mal et sur le côté de rive droite, tandis que dans le secteur de montagne de la rive gauche NW-SE et NE-SW.

Le réservoir présente 500 à 600m de largeur et 4 à 5km de longueur.

La pente moyenne du lit de la rivière dans la zone de la retenue suivant le courant principal est 1/80.

La condition géologique dans la zone de la retenue est comme indiquée dans la Figure X2.2.3.

Selon la Carte Géologique au 1:100,000 "Imi n'Tanout" et "Amizmiz" publié par le Ministère des mines et de l'extraction minière, le substratum dans le secteur consiste en Schistes du Cambrien à Ordovicien. La carte géologique montrée dans la figure est le résultat du détail de la reconnaissance géologique du terrain en ce moment. En résultat, et à l'exception des formations Mésozoïques, le substratum dans le secteur est en grande partie divisé en six zones arrangées en rangées orientée N-S à NNE-SSW. Celles ci sont des formations Paléozoïques. Nous les citons dans l'ordre à partir du côté ouest : zones **i** à **vi**.

- Quartzite, Quartzitic Schist, Quartz-Chlorite Schist, and Chlorite Schist (Lower Cambrian)
- ii- Pelitic or Biotite Schist intercalated with Psammitic Schist (Cambro- Ordovician)

- iii- Phyllitize Rocks, Graphite Schist, and Meta-Quartzite layer (boudin) with many Quartz vein, Calcite vein, and Igneous material intrusion (Silurian)
- iv- Alteration zone (Brittle Graphite Schist altered by sulphate, gypsum, and other igneous material)
- v- Pelitic Schist, Psammitic Schist, or Biotite or Black Schist (partly phyllitize) (Cambro-Ordovician)
- vi- Psammitic Schist or Quartz-Biotite Schist (black and hard, partly Pelitic or Biotite Schist) (Ordovician)

Zone i consiste en Quartzite vert clair à vert, Schiste Quartzitique, Schiste Quartz-Chlorite et Schiste Chlorite (Schiste Vert), qui est généralement très dur à dur et massif. Ceux-là sont corrélés aux Formations de Cambrien Inférieur montré dans la carte géologique au 1/100,000. Ils forment le plateau de 1,300 à 1,500m en altitude et sont limités du coté oriental par quelques failles formant des pentes très raides.

Zone **iv** est la zone d'altération tectonique qui s'étend entre la zone **iii** et **v**. les schistes dans cette zone sont généralement du Schiste Graphite léger remarquablement altéré par les matériaux de sulfure, le gypse et d'autres matériaux ignés. Cette zone s'étend de la dépression orientée N-S derrière la rive gauche du site de barrage à travers Assif el-Mal jusqu'au village Assaïs et s'étend ensuite vers l'est et à l'ouest. Probablement quelques zones de glissement sont supposées exister le long de cette zone.

ii et iii s'étendent sur le côté occidental (rive gauche) de la zone d'altération (zones iv) avec un peu moins de 1km de largeur.

La zone **iii** est fortement affectée par la zone d'altération (zones **iv**) et s'étend uniformément le long de cette zone sur 500 à 600m de largeur. Probablement quelques zones cisaillées existent du côté de la zone d'altération. Les roches sont généralement phyllitizates et contiennent beaucoup de roches graphitiques et de matériaux d'intrusion ignés. Plus loin beaucoup de quartz et veines calcites y sont intruses, et le Barite et le Zinc existent en partie. Une ou deux strates de méta-Quartzite Caractéristique traversent cette zone plissée avec complexité et en forme de boudin. Cette zone peut être du Silurien en corrélation avec la carte géologique au 1/100,000.

La zone **ii** s'étend le long du côté ouest de la Zone **iii** avec environ 200m de largeur. Il est aussi considéré comme la zone affectée par la zone d'altération dans une certaine mesure. Cette zone consiste principalement en Schiste Pélitique ou Biotite intercalé avec du Schiste Psammétique. La schistosité est très claire et la roche lui-même est plat. Cette zone peut être du Cambro-Ordovicien par corrélation avec la carte géologique au 1/100,000.

La frontière entre la Zone ii et iii peut être des failles.

Les zones v et vi s'étendent (rive droite) au coté de la zone d'altération (zone iv).

La zone v est aussi légèrement affectée par la zone d'altération et consiste en Schiste Pélitique, Schiste Psammétique et Schiste Biotite (Schiste Noir), en partie phyllitizate. La pente raide de montagne dans l'arrière de la rive gauche du site de barrage et le versant amont de la rive droite d'Assif el-Mal forment cette zone. Le type et la structure de roche sont presque les mêmes comme dans la Zone **iii** et sont corrélés comme Cambro-Ordovicien.

La zone **vi** est couchée sur la Zone **v**. Cette zone consiste en Schiste Psammitique noirâtre dur (en partie très dur) ou en Schiste Quartz-Biotite relativement intercalé avec du Schiste Pélitique doux ou Biotite. Cette zone s'étend sur les deux rives du site de barrage et sur les corniches de rive droite en amont d'Assif el-Mal à 1,200 à 1,300m d'altitude. Cependant, elle n'existe pas en amont du côté du village Assaïs et du côté rive gauche. Cette zone est probablement de l'Ordovicien en corrélation à la carte géologique au 1/100,000.

La zones vi transite à travers les incompatibilités de la zone v.

Quelques roches intruses existent dans le secteur. Il y en a 4 types.

Un type en est la digue verdâtre du Métabasite, qui est basique et schisteux, existant comme lenticulaire le long de la frontière entre les zones i et ii.

Le deuxième est légèrement schisteux Quartzitique ou digue Granophyrique existant en rive droite entre Imi-n-Erkha et le village Assaïs avec 1 à 2m de largeur comme point d'appui de la crête. Cette digue n'inclut pas la Zone vi.

Le troisième est le rebord Aplitique existant dans les zones **iii** et **v** d'une manière éparpillée. Cette roche est massive, sans schistosité, grise jaunâtre et laiteuse et abritée dans les schistes relativement conformément à leur schistosité. Quoiqu'il ressemble à la roche arkosique sédimentaire à coup d'œil, il est considéré comme matériel igné pour la raison suivante : le remplissage de fissures à beaucoup d'endroit dans la Zone **iii** sans schistosité et la roche mère un peu altérée.

Le dernier type est la digue Microdiorite existant dans la dépression entre les villages Assaïs et Imi-n-Erkha. Celui-ci est gris verdâtre, sans schistosité, dur et massif. Deux digues s'orientent E-W tout droit avec 5 à 10m et environ 2m en épaisseur. Celles-ci imprègnent aussi les roches de la zone **vi** et la rendent altérée et cisaillée.

Les formations mésozoïques couvrent les formations paléozoïques avec des lits horizontaux ou légèrement pendant sur les deux rives de la zone du cours d'eau de l'extrême amont de la retenue. Elles sont du Jurassique à Crétacé.

Les formations jurassiques consistent principalement en Conglomérats, Grès marneux, calcaire Sableux ou en plusieurs couches de Gypse intercalées avec la Dolomite. les formations crétacées consistent principalement en Marne, calcaire et Dolomite (en partie intercalé avec le Gypse).

Les dépôts de terrasse sont observés sur les deux rives le long du cours d'eau actuel. La hauteur relative à partir du lit actuel de la rivière est : 1 à 2 m à la surface de terrasse alluviale composée principalement de dépôts sableux à limoneux et de 5 à 10m à un niveau supérieur de terrasse composée de sables, gravier et galets. Des niveaux supérieurs de terrasse de surface avec des dépôts minces sont aussi observés. Le lit de rivière, qui est composé généralement de sables, graviers et des galets, ont relativement une même largeur d'environ 300 à 400 m. Cependant autour du site de barrage, il devient plus étroit de 100 à 150m.

Les dépôts alluviaux épais de cône existent en rive gauche de Tilwa au village Kern.

Les dépôts de talus existent au pied des deux rives. Particulièrement, ceux de la rive gauche de la branche gauche juste en amont du site de barrage s'étendent largement et sont épais. Ils sont vastes aussi au pied des failles de falaises entre la Zone **i** et **ii**.

(3) Site de Barrage

L'inclinaison du versant côté rive droite du lit de la rivière à environ 1005m d'altitude est environ de 25°, et environ 35° dans une section plus élevée. Le côté En amont est beaucoup plus raide à environ 40° jusqu'à 1030m en altitude (presque 50° près du lit de la rivière et plus douce à des niveaux plus élevés).

Sur le côté de rive gauche, on trouve une falaise verticale jusqu'à 1000m (le lit de la rivière est à 940m). Cependant en amont et en aval l'inclination devient plus douce.

La largeur du lit de la rivière actuelle est environ 100m sur le côté amont et aval, tandis qu'autour du site de barrage celle devient plus étroite : 50 à 70 m. Le cours d'eau présente des Méandres de manière brusque à 400m en aval vu le rapprochement de la corniche vers la rivière.

Le gradient du lit de la rivière autour du site de barrage est en moyenne de 1/93.

Les surfaces de terrasse ne sont pas claires dans le secteur.

La condition géologique autour du site de barrage est comme indiquée dans la Figure X2.2.2 et le profil géologique le long de l'axe de barrage examiné est montré dans la Figure X2.2.4.

Le substratum autour du site de barrage est Schiste Quartz-Biotite intercalé avec le Schiste Biotite de l'Ordovicien. Le schiste Quartz-Biotite est généralement dur à très dur et massif. Tandis que, le schiste Biotite est relativement doux. La Schistosité du côté de rive gauche est N10 ~ 30 ° E, 25 ~ 30 ° E. Les strates forment des plies de falaise légèrement verticales avec une schistosité généralement N30 ~ 55°W, 25 ~ 40°E, devenant en partie verticale. Ceux de côté rive droite est N10°E ~ 30° W, 30 ~ 50°E. Dans l'ensemble, cette schistosité est presque perpendiculaire au cours fluvial et plongeante vers l'aval. Cependant parce qu'ils sont légèrement plissés, ils pendent en partie vers la rive ou vers le versant montagneux. Quoique le Schiste Quartz-Biotite et le Schiste Biotite alternent autour du site de barrage, leur distribution n'est pas continue entre la rive gauche et la rive droite. Ils ont une structure différant latéralement permettant de déduire les failles dans le cours fluvial.

La partie ou la zone Détériorée est très peu dans le côté de rive gauche, cependant dans le côté rive droite, beaucoup de zones faibles d'orientation amont-aval semblent exister. Ils pendent de la rive au versant montagneux.

L'une d'entre elles a sa coupe et son pendage N40°E, $40 \sim 53^{\circ}$ S. Les joints baissent d'habitude vers la rive. Les zones faibles d'orientation N65°W35°N sont aussi observé. Des failles de 7 à 10m de largeur orientant N30°E, 90° existent juste en aval du site de barrage. Le substratum aval de la faille expose à la surface, cependant il est couvert par des dépôts de talus en amont.

Environ 5m de dépôts épais de talus couvrent le secteur tapissé par les schistes Biotite dans la rive droite autour du site de barrage. De même, des dépôts de talus très épais sont étalés dans le secteur un peu en aval dans la rive gauche. Les dépôts de talus sont aussi accumulés en amont dans le côté de rive gauche dus probablement au pendage vers la rivière.

Les dépôts de terrasse sont sous les dépôts de Talus. La hauteur relative de sa position par rapport au lit actuel de la rivière est environ de 5m. L'épaisseur est 2 à 3m composée de galets avec peu de blocs d'environ Φ 1m.

Les dépôts Alluviaux de Terrasse consistent principalement en sable et limons et les dépôts Fluviaux consistent en sable et gravier avec des galets.

(4) **Remarques**

Voici ci-après un point auquel nous devons prêter attention autour du site de barrage.

- Les dépôts Fluviaux sur le lit de la rivière peuvent être relativement épais.
- Sur l'appui droit, quelques failles ou des zones faibles sont découvertes et les dépôts Colluvions sur ces zones sont relativement épais.

X.2.2.2 Profil de Vitesse Sismique le long de l'axe examiné de Barrage

Le profil sismique de vitesse le long l'axe examiné de barrage est montré dans la Figure X2.2.5.

De l'analyse, la vitesse des couches le long de l'axe examiné de barrage peut être divisé ce qui suit.

Couche No.	Appui gauche	Lit de la rivière	Appui droit
Ι	1.0 à 1.4km/s (dep.	1.8km/s	$0.8 \sim 0.9$ km/s (dep.
	Colluviaux ou roches	(dep.Alluviaux)	Colluviaux en partie dep.
	perdues)		Terrace.)
Π	1.7à 1.9km/s	2.1km/s (sables & gravier	1.3à1.7km/s (roches très
	(roches fragmentées)	Consolidés)	fragmentées)
III	3.0 ~ 3.6km/s	4.8km/s	3.5 ~ 4.1km/s
	(roches fraîches)	(roches Fraîches)	(roches fraîches)

La zone basse de vitesse peut être reconnue à la limite juste autour de 1,030-1,040 mètres d'altitude.

X2.2.3 Matériaux de Construction

Pour ce projet, le barrage est considéré à présent de type béton en raison de la topographie, sa taille et la fondation. Cela étant, l'étude de matériaux de construction dans ce stade est centrée sur les agrégats de béton.

En prenant en considération la question ci dessus, le site de carrière sera dans les dépôts de rivière vu la grande quantité de graviers accumulée sur le lit.

(1) **Reconnaissance par puits**

Cinq puits étiqueté P1 à P5 ont été réalisées pour le sable et gravier de dépôts alluviaux aux alentours du barrage Taskourt. Le puits P1 est placé dans le site aval de barrage, tandis que les autres 4 puits (P2, P3, P4 et P5) sont dans le secteur de retenue proposé.

Il est prévu de creuser ces puits manuellement à l'aide de la pelle et le pic, pour 1.50m de profondeur à partir de la surface.

• Enregistrements de Des essais de puits

- Puit P1-

0.00 - 1.30 m : alluvions sableuses.

1.30 - 1.50 m : sable dur de la rivière.

- Puits P2-

0.00 - 1.30 m : alluvions sableuses.

1.30 - 1.50 m : sable dur de la rivière.

- Puits P3-

0.00 - 1.20 m : alluvions sableuses. 1.20 - 1.50 m : sable dur de la rivière

- Puits P4-

0.00 - 0.80 m : alluvions sableuses.

0.80 - 1.50 m : sable dur de la rivière.

- Puits P5-

0.00 - 1.20 m : alluvions sableuses.

1.20 - 1.50 m : sable dur de la rivière.

Il doit être remarqué que pendant la période de la reconnaissance (du 14 septembre 2000 au 19 septembre 2000), nous avons rencontré l'eau souterraine dans les puits à partir de 0.80 à 1.30m de profondeur.

(2) Essai de laboratoire sur les agrégats

Les essais en laboratoire sur les agrégats ont seulement concerné les dépôts alluviaux trouvés dans les puits.

• Analyse granulométrique

1) Le pourcentage de particules moins de 0.080 mm est de : 1 à 3 %.

2) Le pourcentage de particules entre 0.08 et 2 mm est de : 12 à 20 %.

3) Le pourcentage de particules plus de 2 mm est de : 78 à 87 %.

4) Le pourcentage du gravier plus de 50 mm est de : 24 à 40 %.

Il doit être noté que nous avons rencontré quelque gros gravier avec un diamètre qui atteignant les 200 mm dans les échantillons considérés.

Essai Los Angeles

La résistance d'abrasion pour les alluvions a été mesurée par l'essai Los Angeles sur le gravier de 10-25 mm. Le taux d'abrasion par Los Angeles mesuré varie entre 24 et 30. Il est généralement reconnu que le taux d'abrasion doit être moins de 40 % pour des agrégats dur. Alors le gravier du barrage est de bonne qualité.

• Densité, Porosité et Absorption

La densité varie entre 2.64 et 2.72 t/ m^3 . La porosité et le coefficient d'absorption sont relativement identiques d'un secteur à un autre. La porosité est de 0.59 à 1.20 % et le coefficient d'absorption est de 0.22 à 0.46 %.

Il est généralement reconnu que le gravier avec une densité de moins de 2.5 t/m^3 et l'absorption de moins de 3 % sont appropriés pour les agrégats. Alors le matériau de gravier du barrage une bonne qualité.

• Essai de Résistance à la dissolution

Puits	Taille du Grain	Perte P				
P1	0.08 - 5 mm	3.37%				
P1	5 – 80 mm	0.60%				
P2	0.08 - 5 mm	2.59%				
P2	5 -80 mm	1%				
P3	0.08 - 5mm	3.3%				
P3	5-80 mm	0.93%				
P4	0.08 -5 mm	3.19%				
P4	5-80 mm	1.04%				
P5	0.08 - 5 mm	3.42%				
P5	5 - 80 mm	0.55%				

Les résultats des essais de résistance à la dissolution avec la solution chimique de sulfate du sodium sont les suivants :

Les résultats Ci-dessus montrent une assez bonne qualité étant moins de 15 %, ce qui est la limite générale de perte permise par l'essai.

En jugeant les résultats de la densité, l'absorption, la résistance d'abrasion et la résistance à la dissolution, le gravier aux alentours du site de barrage est approprié pour les agrégats de béton aussi bien que le matériau pour remblai du barrage.

• Propreté Superficielle

La propreté superficielle des alluvions varie entre 0.1 et 0.3 %. C'est assez faible et le matériau peut ne pas exiger le lavage pour l'utilisation des agrégats de béton.

• L'Alcali Réactivité

L'essai de l'alcali réactivité sur les graviers a été effectué et tous les résultats montrent qu'ils appartiennent à la zone de non-réaction.

(3) Essai de laboratoire sur Echantillon de Roches

Cinq reconnaissances par forage (S1, S2, S3, S4 et S5) pour la fondation de barrage ont été effectuées et les carottes ont été prises. On en a fourni quelques échantillons au laboratoire. Les éléments des essais sont la densité (γ), l'absorption (n), la résistance de compression sans confinement (Rc) et le module élastique (E), la vitesse ultrasonique de l'onde primaire (VI) et l'onde secondaire (Vt) et le coefficient de Poisson (ν).

Echantillon	$\gamma(t/m^3)$	n (%)	Rc (MPa)	E (GPa)	Vl (M/s)	Vt (M/s)	v
S2 (36.90 – 37.40 m)	2.64	2.71	30.9	45.5	5679	3750	0.13
S4 (19.50 – 19.90 m)	2.70	1.74	37.4	48.5	5909	3250	0.28
S4 (26.00 – 26.50 m)	2.73	1.54	34.7	52.5	6273	3286	0.31
S5 (21.30 – 21.60 m)	2.55	4.66	40	42	5000	3095	0.19
S5 (34.00 – 34.50 m)	2.54	5.19	38.2	37	5286	3524	0.1

Les résultats sont comme suit :

La force mesurée sans borne est modérée sur cette roche.

(4) Considération

On a observé une grande quantité de sable fluvial et des dépôts de gravier dans le secteur de la retenue proposée. Un dépôt de sable et du gravier sont également observés sur le lit de rivière en aval proche du site de barrage. Les volumes attendus de dépôts sont estimés à (3km x 150m x 5m =) 2,250,000 m³ pour le secteur du réservoir et (1km x 50m x 3m =) 150,000 m³ pour l'aval du site de barrage. La taille de blocs y contenus n'est pas grande. Le contenu en limons est de moins de 3 %. Le gravier a une qualité excellente de 0.7 % d'absorption d'eau, 2.68 de gravité spécifique, 27 % de perte par essai d'abrasion et non-réactif à l'alcali réaction. Alors les matériaux ci-dessus sont jugés être appropriés pour les agrégats du béton. Cependant, il doit être noté que les graviers contiennent une teneur en forme plate qui causera moins de consistance du béton et exigera parfois un supplément de dosage en ciment. Il est nécessaire de pouvoir obtenir une condition appropriée pour la confection de plusieurs sortes de béton.

X2.3 Barrage Timkit

X2.3.1 Morphologie et Géologie

X2.3.1.1 Domaine du Bassin versant

La situation de secteur Timkit est comme suit : 90 km au WSW d'Er-Rachidi; et 25km au WNW de Tinjidad. Le bassin versant de la retenue est de 572 km².

Le bassin versant de la retende est de 572 km.

Le site de barrage est situé du coté de la périphérie sud du Haut Atlas Central en extension droite dans la direction ENE-SWS. En raison des systèmes fluviaux s'orientant dans la même direction, son bassin forme un presque-rectangle allongé dans la direction ENE-SWS avec environ 45km de longueur par 12 à 13km de largeur. Les montagnes sont limitées au sud par ce qu'on appelle la faille sud Atlassique.

La hauteur du bassin commence de 1210m au lit de rivière au site de barrage à 2921m au sommet d'Ylalla Rejdet dans le nord-est. À l'arrière du bassin, beaucoup de chaîne de montagne dont les sommets sont au-delà de 3000m s'érigent dans les directions ENE-SWS. Dans la moitié Ouest du bassin de l'Oued n'Fer, trois chaînes de montagnes s'érigent côte à côte. La hauteur des sommets est environ 1800m sur la chaîne de montagne la plus au sud, 2000 à 2400m dans celle du milieu et 2300 à 2600m dans la chaîne la plus au Nord. Deux rangées de dépression s'étalent entre elles. Tandis que dans la moitié Est du bassin, quatre chaînes de montagne s'alignent entre la ligne de partage des eaux du nord et celle du sud.

Ces chaînes de montagne forment généralement le côté sud de la falaise abrupte et le côté nord est à pente modérée, de même que le Questa(couverture).Le côté aval du site de barrage est un champ vaste de gravier fournissant un éventail de sédiments alluviaux en grandes à partir de l'Oued n'Fer. Le diamètre de ce domaine est de plus de 10 km. Il y a tant de cours d'eau dans cet éventail alluvial provenant du site de barrage. Le plus grand est Oued Arhbalou n'Kerdous s'écoulant dans le centre de cet éventail directement à partir de l'Oued n'Fer dont le lit devient graduellement plus étroit de la même manière en aval. Cette rivière se joint à Oued Tannguerfa en plus de Oued Todrha à la ville Tinjidad. Entre le site de barrage et Tinjidad, trois rangées des longues collines allongées E-W existent formant une géographie semblable au Questa.

Selon la carte géologique à une échelle de 1:500,000 publié par le Ministère des Mines et des extractions minières, la géologie autour du bassin est comme indiquée dans la Figure X2.3.1.

Les chaînes de montagne dans le bassin versant consistent principalement en calcaire et Dolomite du Jurassique Inférieur (Lias), se dirigeant généralement ENE-WSW et plongeant NNE. Dans beaucoup de cas, les plans de pendage de ce banc calcaire-Dolomite forme le versant de côté du nord des montagnes. Tandis que, leur falaise de côté du sud est due aux plans de failles s'orientant ENE-WSW. Le Basalte Triasique s'éparpille en partie dans le secteur.

La zone de dépression entre les montagnes consiste en calcaire en partie intercalé avec les Marnes et le Gypse de Lias Supérieur, Grès rouge (en partie Conglomérat) du Jurassique Supérieur à Crétacé inférieur et Grès Limoneux, Gypse, feuillet mince de calcaire, Marne et marne sableuse du Crétacé. Ceux-ci sont largement couverts par des dépôts non consolidés du quaternaire. Des dépôts Alluviaux épais s'accumulent sur le lit de rivière.

Des formations Jura-crétacées s'étendent largement dans le côté sud des montagnes en collines dans la direction E-W. Des formations Paléocènes existent aussi de manière éparpillée.

Les dépôts dans le secteur aval consistent généralement en galets, en Sables et Graviers avec peu de sol fin granuleux. La partie inférieure des dépôts est travertinisée dans le secteur de côté oriental de l'éventail Alluvial, couvert par des dépôts de vent minces de limons et de sables excellents.

X2.3.1.2 Zone de la retenue

La montagne s'étendant tout droit dans la direction ENE-WSW monte aux deux rives du site de barrage avec une largeur de 1-1.5 km, qui forme le torrent et développe la gorge profonde de hauteur maximale de 350m et une longueur de 2km. L'Oued N'Fer entre à cette gorge d'abord du côté du Nord-Est (s'écoule vers le sud-ouest) et change soudainement son cours au sud-est. Après le passage de la

gorge, il serpente en grande partie en aval à travers le village Timkit. À 350 m en amont du point de gorge mentionné ci-dessus, l'affluent Oued Oursad se joint de la rive droite traversant le pied de montagne.

La montagne de rive droite se penche vers le nord comme une planche inclinée et ondulée et tombe soudainement en falaise vers le sud. Tandis que, la rive gauche est cette première corniche orientée au nord-est et se pendant graduellement vers le sud-est en devenant plus épais. Le bord de rivière de cette montagne est une falaise abrupte, tandis que la rive opposée est un versant incliné de 30 °.

La zone entre Oued N'Fer et Oued Oursad est la large plaine de dépression à pente doucement entre les montagnes, quoique quelques ravines se développent dans la zone. Des terrasses s'étendent le long de la rive du cours d'eau actuel, bien que ce ne soit pas si clair.

Le niveau des hautes eaux de réservoir croise le versant à pente douce du nord et forme la ligne du sud par les montagnes.

Le gradient moyen du lit de rivière dans le secteur de réservoir le long du courant principal est de 1/75 à 80.

La condition géologique autour du secteur de réservoir est comme indiquée dans la Figure X2.3.3.

Le substratum dans la zone est principalement du calcaire-Dolomite pendant vers l'amont. La formation autour du site de barrage est en grande partie du Lias Inférieur. Le calcaire intercalé avec les marnes rouges et le Gypse du Lias Supérieur et le calcaire Dolomitique avec des couches basiques (Grès rouge, Conglomérat) de Lias Moyen se trouve dans la zone du réservoir. Le crétacé forme en partie la zone en amont. La description Stratigraphique suivante est basée sur la Carte Géologique à l'échelle 1:100,000 "Tinjidad" publié par le Ministère des Mines et de l'Extraction minière.

Les type de calcaire-Dolomite sont divers, par exemple des strates épaisses, des strates minces etc. et des karsts se développent généralement bien. La tendance montre que les couches supérieures développent plus de karsts.

La literie de l'avion baisse généralement à en amont avec quelque pliage et la surface d'en amont côté d'express de pente de montagne mettant au point la surface lui-même onduleuse doucement.

Le Conglomérat Travertin est largement distribué le long de pied amont de côté des montagnes.

Les dépôts d'inondation de sables et le conglomérat, des sables excellents et des vases s'étendent largement sur la plaine entre Oued N'Fer et Oued Oursad et sur toutes les deux banques d'Oued IFer.

Les graviers de terrasse (le sol fin et granuleux en partie) s'étendent principalement le long de la rive droite de l'Oued IFer.

Les dépôts fluviaux consistent en galets, du sable et graviers sur le cours d'eau et en partie de sables fins et des limons sur la périphérie.

les dépôts de talus existent au pied de la terrasse escarpée, et des versants raides de montagne, etc.

(3) Site de Barrage

Le site de barrage est placé dans la gorge.

L'inclinaison du versant droit de la gorge est en moyen 35 ° avec quelque falaise verticale par des joints de roches. Une corniche avance à la rive un peu en aval et le cours de la rivière change le long de cette corniche.

Tandis que la gorge de rive gauche est en moyenne de 40 ° et en forme de triangle, La montagne de côté de rive gauche est une arête mince se courbant doucement du nord-est vers l'est. L'inclinaison moyenne du versant nord (côté amont) est de 30 à 35 °, tandis que celle du versant sud (côté aval) est de 30 à 35 ° à partir du lit de la rivière à 1230m d'altitude, 15 à 20 ° jusqu'à 1270m, et 25 à 30 ° aux parties plus hautes en forme d'escalier.

La largeur de lit de la rivière actuel est entre 20 et 30m en amont comme en aval.

Le gradient du lit de la rivière autour du site de barrage est de 1/100 en moyenne.

La condition géologique autour du site de barrage est comme indiquée dans la Figure X2.3.2 et le profil géologique le long de l'axe examiné du barrage est montré dans la Figure X2.3.4.

Le substratum de base est principalement de la Dolomite ou du calcaire dolomitique. Le substratum supérieur est abondamment feuilleté, massif, plat, tandis que la partie inférieure est mince à excellent feuilleté par la stratification stromatolitique du mélange de matériau calcaire et silex. Une strate noire dolomitique contenant beaucoup de minéral de manganèse de fer s'intercale entre les deux.

Selon la Carte Géologique d'échelle 1:100,000 "Tinjidad" publié par le Ministère des mines et des extractions minières, toutes ces formations sont de Lias Inférieur.

Les strates supérieures sont d'habitude grises, blanches, roses, ou verdâtres grises, poreuses et fragiles avec beaucoup de karsts. Au côté le plus en amont, elles sont plus fragiles. La coupe et la stratification des plans sont presque plats en amont en direction N°20 ~ 40° E, 25° ~ 35° W dans l'aval au niveau du lit de la rivière.

La strate Dolomitique noire contenant le manganèse de fer est très fragile à cause de beaucoup de fractures et du développement remarquable de karsts. La zone en escalier dans la rive gauche est composée de Travertins cimentant les blocs de roches de calcaire et dolomite. Des dépôts de Talus couvrent ces roches jonchant la rive droite. La couche inférieure consiste en alternance de roches de calcaire et de roches marneuses, et en grande partie divisée en **a**) la partie intercalée avec le manganèse de fer brun comportant des couches et **b**) la partie non-intercalée avec celui-là. Les deux strates ont deux horizons. L'épaisseur des couches est de 1.0 à 1.5m respectivement dans la partie **a**, et en allant vers le bas elles deviennent minces à feuilletés. Dans la strate **a**, en partie cataclastique (ou nodulaire) les couches sont intercalées (particulièrement dans les couches de Marne). C'est dû au glissement le long des couches relativement légères (glissement intercalaire). Les Karsts se développent en partie le long de ces couches cataclastiques. Dans les strates **b**, les Karsts ne peuvent pas être observés.

La coupe et l'inclinaison dans ces horizons sont N42 ~ 50 ° E, 34 ~ 38 ° W dans le côté de rive gauche et N32 ~ 45 ° E, 23 ~ 29 ° W dans le côté de rive droite au niveau du lit de la rivière.

En allant vers les couches inférieures des strates **b**, les roches deviennent du silex et relativement durs, en forme de couches stromatolitiques, laminées, blanchâtre grise, minces à fines. Deux plissements partiels sont observés dans en rive gauche dans ces strates. Le versant supérieur du plissement se courbe sur une grande partie, c'est-à-dire que ce plissement couvre la zone entière. La coupe et l'inclinaison au côté amont du plissement au niveau du lit de la rivière sont N50 ° E36 ° W et du côté aval : N80 ° W14 à 22 ° N. La coupe de côté aval est presque dans la même direction que le versant de montagne. Celle du côté rive droite est N5 à 28 ° E, 30 à 38 ° W. les Karsts ne sont pas observés dans ces strates. L'axe anticlinal est orienté NNE-SSW plongeant vers le N.

Comme mentionné ci-dessus, le Travertin cimentant beaucoup de blocs de roches existe au milieu de la pente de rive gauche.

Les dépôts de Talus se distribuent du milieu au pied du versant raide. Ceux existant autour de la zone du plissement partiel sont relativement consolidés ce qui montre qu'il ne sont pas récents.

Les dépôts fluviaux consistent en galets, sables et graviers.

(4) Remarques (sur les infiltrations dans le Site de Barrage)

La fondation au site de barrage consiste en roches comme ce qui suit de l'amont à l'aval.

- i) calcaire et Dolomite,
- ii) dolomite minéralisée, à minerai Noir à brun (manganèse de fer),
- iii) alternance de strates ii intercalées avec les marnes et les strates vi
- iv) strates de silex stromatolitiques légèrement feuilletées (laminées)
 blanches à bleuâtres grises.

Les strates i sont grises, blanches, roses, ou verdâtres grises, poreuses et fragiles dues à beaucoup de karsts. Vers les couches supérieures, le développement de Karsts devient de plus en plus poreux et fragile.

La strate **ii** est aussi très fracturée et fragile en raison du développement remarquable des Karsts. Le versant de côté de rive gauche de cette strate forme une terrasse doucement inclinée où le travertin s'étend et cimente les moellons. Le versant de la rive droite ne peut pas être bien observé en raison de la couverture de débris, cependant on suppose qu'il est aussi fracturé.

La strate **iv** existe sur deux niveaux intercalés avec une Strate **iii** au milieu. La strate **iii** incluent les couches cataclastiques (ou nodulaire) causé probablement par les glissements le long des plans de stratification des couches relativement légères. La strate **iii** développe des karsts le long des couches cataclastiques, tandis que la strate **iv** n'a aucun karst et peu de fractures, donc il est probablement imperméable.

L'altitude de la strate iv augmente graduellement vers l'aval dans le côté de la rive droite, tandis que dans le côté rive gauche est presque horizontal le long du versant de montagne où l'altitude maximale est autour de 1,250 m.

La hauteur de la Crête de Barrage est aussi autour de cette altitude, pour que les fuites par la fondation soient bien vérifiées à condition que la strate fracturée **ii** soit injectée. Les fuites dans les rives et les ailes seront aussi vérifiées, si la ligne d'injection est rejointe par la strate imperméable **iv**. Les roches crétacées couvrent la chaîne de montagne, qui peut être imperméable due à l'alternance avec des couches de marne.

La strate **iii** au milieu des strates **iv** a aussi un problème de fuite. Cependant vu que la strate supérieure **iv** consiste en couches s'alternant avec des marnes imperméables peu fracturé, les fuites dans la direction verticale à la stratification des plans semblent faibles. Mais pour éviter toute éventualité de fuite, la fermeture de la strate **iii** peut être nécessaire par injection de la couche **iv** supérieure à celle inférieure.

X2.3.2 Profil Sismique de Vitesse

Une autre équipe d'étude de la JICA a déjà conduit la prospection de réfraction sismique au site de barrage Timkit en 1990 sur l'étude pour le projet de construction de barrage dans le Bassin Rheris. Au lieu d'omettre ces reconnaissances, cette fois des données existantes ont été utilisées. Parce que l'axe de barrage a été examiné dans une portée inférieure à celle d'aujourd'hui, une section juste sur l'axe de barrage examiné n'existe pas, mais une section juste en amont est très utile pour l'évaluation de la condition de fondation le long l'axe examiné de barrage. On montre le profil sismique de vitesse, existant, le plus proche de l'axe examiné de barrage dans la Figure X2.3.5.

couche No.	Appui droit	Lit de rivière	Appui droit
Ι	0.3km/s	0.3km/s	0.3km/s
	(dep. Colluviaux)	(dep Alluviaux.)	(dep. Colluviaux)
II	1.0km/s	1.0km/s (dep. Alluvial au	1.0km/s
	(roches fracturées)	delà du niveau d'eau)	(roches fracturées)
III	2.0km/s	2.0km/s (dep. Alluvial	2.0km/s
	(roches érodées)	sous le niveau d'eau)	(roches érodées)
IV	3.0km/s	3.0km/s	3.0km/s
	(roches fraîches)	(roches fraîches)	(roches fraîches)

En grande partie, les couches de vitesse peuvent être divisées en quatre comme ce qui suit.

X2.3.3 Matériel de Construction

Pour ce projet, le barrage est à présent considéré de type béton en raison de la topographie, de la taille et de la fondation. En tenant compte de cela, l'étude de matériaux de construction dans ce stade est concentrée sur les agrégats de béton.

L'essai sur les matériaux a été aussi déjà réalisé en 1992 sur l'étude d'APD pour le barrage Timkit par l'ingénieur conseil C.I.D. L'Essai a été effectué pour le dépôt fluvial dans le secteur de la retenue.

En ce moment, l'Ingénieur de la JICA a vérifié la condition des matériaux de dépôt fluvial par la visite sur terrain. Par conséquent, on montre des sites de carrière Recommandables pour les agrégats de béton dans la Figure X2.3.6.

(1) **Reconnaissance par puits**

Trois puits nommées PS1 à PS3 ont été réalisées aux alentours des terrains couverts perméables sur le site.

Ces puits ont été creusés de 0.60 à 1.50 m de profondeur à partir de la surface.

• Granulomètrie :

1) Le pourcentage des particules moins de 0.08 mm est de : 2 à 3 %.

2) Le pourcentage des particules entre 0.08 et 2 mm est de : 12 à 68 %.

3) Le pourcentage des particules de plus de 2 mm est de : 29 à 86 %

4) Le pourcentage du gravier plus de 50 mm est de : 0 à 15 %.

Il doit être remarqué que nous avons trouvé quelques graviers durs avec un diamètre allant jusqu'à 150 mm dans les échantillons pris.

• Essai de Perméabilité

Les essais de perméabilité ont été réalisés sur des échantillons mis dans le moule de Terzaghi avec versement simple et compactions légères. Les échantillons ont été nivelés à 20 mm.

La perméabilité obtenue par la méthode Terzaghi à charge d'eau constante est comme suit :
puit	K (cm/s)
PS1	2.9 10 ⁻²
PS2	7.3 10 ⁻²
PS3	3.2 10 ⁻²

Ces valeurs de perméabilité sont élevées et perméables.

(2) Essai en laboratoire sur Echantillon de Roche

Cinq reconnaissances par forage pour la fondation de barrage ont été effectuées et les carottes ont été prises. On en a fourni quelques échantillons au laboratoire. Les éléments des essais sont la densité (γ), l'absorption (n), la résistance de compression sans confinement (Rc) et le module élastique (E), la vitesse ultrasonique de l'onde primaire (Vl) et l'onde secondaire (Vt) et le coefficient de Poisson (ν).

Echantillon	$\gamma(t/m^3)$	n (%)	Rc (MPa)	E (GPa)	Vl (M/s)	Vt (M/s)
SG3 (12.20 – 12.60 m)	2.63	5.55	18.9	22.5	5097	3098
SG3 (15.10 – 15.60 m)	2.62	3.23	13.2	12	4788	2257
SD1 (19.30 – 19.70 m)	2.64	7.43	49.9	52.5	6320	2981
SD1 (23.00 – 23.50 m)	2.58	5.48	46.4	47	4788	2633
SG1 (4.80 – 5.20 m)	2.75	3.12	30.8	44	6304	2457
SG1 (17.40 – 17.70 m)	2.74	4.00	27.5	34	533	3077
SG2 (14.75 – 15.00 m)	2.61	6.98	33.3	45.5	8125	5000
SG2 (22.70 – 23.10 m)	2.71	3.41	35.7	49	8357	5318
SO1 (10.80 – 11.10 m)	2.69	4.07	41.6	47.5	6300	3500
SO1 (23.30 – 23.60 m)	2.73	2.06	34	43	7650	4500

Les résultats sont comme suit :

La résistance mesurée sans confinement varie de 13.2 à 49.9 MPa.

(3) Considération

On a observé une grande quantité de sable fluvial et des dépôts de gravier dans le lit en amont et en aval du site du barrage. Les volumes attendus de dépôts sont estimés à 450,000 m³. Dans la plaine alluviale en aval du village Ifegh un énorme volume de sable et de gravier est aussi observé. Bien qu'aucun essai en laboratoire sur le sable et le gravier comme matériau de construction n'ait été réalisé, ces matériaux sont considérés dur et de haute durabilité et donc approprié en apparence.

Le sable et le gravier naturels ont un grand fuseau granulométrique, selon la condition de dépôt et la profondeur. L'utilisation du sable et du gravier avec la granulométrie naturelle comme agrégats peut affecter les qualités du béton, par exemple, l'hétérogénéité de la résistance du béton. Il est important de clarifier la tendance ou la relation entre la granulométrie des matériaux du béton comme la résistance, l'ouvrabilité, etc. par contrôles et essais sur les gâchée du béton dans l'étape prochaine.

X2.4 Azghar Barrage

X2.4.1 Morphologie et Géologie

(1) Bassin versant avoisinant

Le secteur Azghar est situé environ à 70 km WSW de Fès.

Le site de barrage est à 7 km WSW de La plus proche ville qui est Ribat Al-Kheir.

Le bassin versant de la retenue est de 263 km².

De très hauts sommets (plus de 3,000 m en altitude) (J. Bou Iblane et Adar Bou Nasseur, etc.) du Moyen Atlas s'érigent en murs de roches en arrière du bassin. Le bassin Oued Zloul est relativement riche en écoulement d'eau dans la saison d'hiver en raison de la fonte de neige. Cependant, dans la saison d'été il est souvent.

L'altitude du captage est à partir de 820m au site de barrage jusqu'à 2,100m. l'Oued Zloul coule vers l'ouest joignant les deux affluents du nord et le nord-est et passant par la vallée de site de barrage. Après, il coule dans la vallée large en aval.

Les deux rives du site de barrage et la ligne de partage des eaux du bassin forment de longues collines, tandis que le secteur central et son arrière sont à inclinaison douce.

La zone de vallée large, en aval, s'établit, longuement et étroitement, le long d'Oued Zloul entre les plateaux et les collines où la hauteur relative, à partir du fond de la vallée, est autour de 100m dans la rive gauche et de 100 à 300m dans la rive droite.

Selon la carte géologique à l'échelle 1:500,000 publié par le Ministère des mines et des extractions minières, la Géologie autour du Bassin est comme indiquée dans la Figure X2.4.1.

Le côté central et de rive gauche du bassin consistent sont du Jurassique moyen à inférieur dans la direction NE-SW, tandis que le côté de rive droite et son arrière sont dans la série de J. Tazzekka du Paléozoïque. Des formations rouges et du Basalte du Trias se distribuent longuement et étroitement, de façon continue, entre ces zones dans la rive droite, et sont éparpillés le long des failles dans la rive gauche. Les dépôts alluviaux sur le lit de la rivière sont relativement peu.

Les formations jurassiques, qui sont la composition principale du bassin, se répètent comme synclinal et anticlinal avec ondulation douce sans déformation forte. Localement, elles sont presque des monoclinales plongeant de 10 à 20 °.

Bien que de grande faille et des zones cisaillées pourraient ne pas exister dans la zone, quelques dislocations de formations sont observées. Il en est déduit des blocs graduels qui se basculent accompagnée avec le basculement du Moyen Atlas.

Principalement deux systèmes de failles conjuguées sont observés s'orientant NE-SW et NW-SE, formant des blocs faibles basculés et des plissements. Plus proche du Moyen Atlas, ce type de mouvement tectonique peut être plus fort.

(2) Zone de la retenue

Une colline de direction E-W en rive gauche et une colline de direction N-S en rive droite sont face à face dans la vallée du site de barrage. Oued Zloul s'écoule vers l'Ouest le long du pied de la colline de rive gauche et serpente légèrement. Oued Chara le rejoint de N-E à 2 km en amont du site de barrage. Une vallée petite mais profonde coupe les collines de la rive droite.

Au site du barrage, le lit de la rivière est à une altitude d'environ 820m, les arêtes de colline rive gauche sont de 950 à 1000m et celles de la colline rive droite sont de 910 à 920m. les deux collines ont des versants raides de 35 à 40 ° sur le côté de réservoir et des versants à pente douce d'environ 15 ° ailleurs. Quelques arêtes longues et étroites avancent au sud à partir de la colline indépendante du coté Nord.

La zone entre les collines est un versant doucement onduleux avec quelques ravines peu profondes aboutissant aux rivières. La terrasse se développe le long de la rive.

La retenue présente une forme presque-rectangulaire d'environ 600 m par 2 km. Le niveau des hautes eaux croise le versant doux au Nord et des collines au sud et l'Ouest.

Le gradient du lit de la rivière dans le secteur de la retenue le long du cours principal fluvial est de 1/100~105 en moyenne.

La condition géologique autour du secteur de la retenue est comme indiquée dans la Figure X2.4.3.

Le substratum dans la zone est divisé en deux Formations.

L'une d'entre elle est du calcaire noir et des marnes noires feuilletées régulièrement alternés. Ceux ci forment des collines autour du site de barrage ainsi qu'une ligne continue de partage des eaux. Le calcaire est souvent plat avec 10 à 50 cm d'épaisseur. Les marnes sont très fissiles comme des schistes. La proportion de calcaire et les marnes est autour de 1:5 autour du site du barrage. Dans la zone amont et dans la partie médiane de la retenue le long de l'Oued Zloul, la proportion du calcaire devient un peu plus grande.

L'autre est presque totalement des Marnes (sans ou très peu de calcaire) formant un versant doucement incliné entre les collines.

Les deux Formations sont en conformité là où la première est en dessus de la dernière.

Selon la carte géologique "Sefrou" à une échelle de 1:100000 couvrant la zone sud du site du projet, les deux formations dans le secteur sont du Toarcien, Lias (Jurassique inférieur).

Structurellement elles sont plissées en grande partie et doucement, là où l'axe de l'anticlinal est N-S ou NNE-SSW à travers le point de confluence de l'Oued Chara et Oued Zloul, plongeant au sud ; l'axe du synclinal est dirigé presque dans la même direction à l'extérieur de la retenue (le côté aval). La pente du lit est généralement de 10 à 15 ° ou moins, en partie 30 à 45 °. Le versant doux de collines est formé surtout de plans de calcaire comme un pavé naturel de pierre.

La terrasse, de largeurs presque uniformes de 100 à 150 m, s'étend le long des deux rives de l'Oued Zloul et Oued Chara. La hauteur relative sur le lit actuel de la rivière est de 5 à 10 m. Une terrasse d'environ 50 m de largeurs existe aussi le long de l'affluent de l'Oued Zloul juste en amont du site de barrage. Les dépôts de terrasse consistent en plusieurs mètres à 10 m de sables épais et graviers. Son épaisseur varie beaucoup de zone en zone. Des niveaux supérieurs de dépôts de terrasse sont aussi observés sur quelques cols dans la rive gauche de l'Oued Zloul composé de dépôts de graviers minces et arrondis. Sa hauteur relative au dessus du lit actuel de la rivière est 25 à 30m.

Dans la zone amont de l'Oued Chara, les dépôts de gravier arrondis sont aussi observés même loin du cours d'eau. Ceux-ci sont probablement des dépôts d'Inondation provenant des montagnes en amont.

La surface, en forme de terrasse, s'étend aussi le long des deux rives de ravines coulant directement vers les rivières, probablement par érosion de feuille composée des dépôts minces de limons et de sables fins.

Les dépôts Colluviaux se développent au pied et au milieu des versants de collines composées de gravier angulaire supportant des sols.

Des sols granuleux fins Rouges à jaunes ou gris excellents couvrent le versant. Ceux-ci sont des sols résiduels dérivés de Marne fortement effritée. Transporté principalement par le vent, ils sont épais en partie. Dans le cas où le transport est faible, les sols peuvent être rouges dus aux matériaux oxydés de fer pendant une longue période de temps à la même place. La zone où le sol est légèrement transporté peut être jaune et le secteur des sols souvent transportés peut être gris.

(3) Site de Barrage

L'inclinaison du versant dans le côté de rive droite est plutôt douce avec la moyenne de 22 ° dans le milieu de la pente et 7 à 8 ° au pied, tandis que celle de côté de la rive gauche est très raide à environ 50 °, quoique la partie de l'arête pende doucement vers le côté aval avec 10 à 20 °. L'arête de la rive droite avance un peu vers le côté aval.

Le fond de la vallée s'incline doucement du pied de la colline de la rive droite au cours fluvial avec 5 à 6°. Le gradient du lit de la rivière autour du site de barrage est en moyenne : 1/175. Autour de la confluence du cours provenant de la rive droite et Oued Zloul juste en amont du site de barrage, la terrasse d'une hauteur relative de plusieurs mètres au-dessus du lit actuel de la rivière apparaît clairement.

Les largeurs du cours fluvial sont uniformément autour de 10m et le fond de vallée est autour 160m le long de l'axe de barrage envisagé et deviennent plus étroites vers l'aval où le minimum est 75 m à une distance de 300m en aval.

La condition géologique autour du site de barrage est comme indiquée dans la Figure X2.4.2 et le profil géologique le long de l'axe envisagé du barrage est montré dans la Figure X2.4.4.

Le substratum est une alternance rythmique de calcaire noir et de Marne stratifiée et fissile. La marne est formée de film d'agrégat de moins de 1 mm l'épaisseur. Ces formations peuvent être corrélées au Lias.

Généralement, le Calcaire est dur et plat avec une épaisseur de strates de 10 à 30 cm et la couche de Marne entre deux couches de Calcaire plat est souvent de 30 à 100cm. La proportion des strates est : Calcaire 1 et Marne 3-4. Le côté de la rive gauche est d'une proportion supérieure en Calcaire que la rive droite. Cependant concernant la formation de rive gauche, les strates plates situées plus haut que 860m peuvent être désignées comme : Calcaire ; mais celles inférieures à cette élévation est une roche de calcaire légèrement limoneuse. Celle de la rive droite peut aussi être désignée comme calcaire. La coupe du lit est environ N30 ° W (N20 °-50 ° W) presque perpendiculaire à la vallée et plongeant vers l'aval à environ 10 ° SW (5 °-15 °). Les joints dans ce secteur sont presque verticaux et sont orientés N-S et E-W. La pente raide de la rive gauche peut développer des joints en long orientés E-W. Des joints s'orientant NW-SE sont aussi observés fréquemment, l'un d'entre eux autour de la sortie avale de la vallée génère des failles disloquant les strates (direction N55 ° W, pendage 90 °, intercalé avec une gouge de 40cm). Juste en aval de l'axe du barrage dans la rive gauche, quelque dislocation de strates peut être observée (direction N30 ° W, pendage 65 ° E).

Concernant le secteur autour du site de barrage, la stratification des strates est monoclinique sans grandes failles et zone cisaillée. Les rochers sont en contact les uns avec les autres sans développement de karsts.

Dans la pente raide de la rive gauche, le substratum affleure presque totalement et les dépôts de talus s'accumulent en partie au pied. Cependant dans la rive droite, des dépôts Colluviaux épais s'étendent largement du milieu de pente jusqu'au pied. La partie inférieure de ces dépôts Colluviaux est bétonnée par un matériau calcaire formant les travertins. Le fond de vallée, doucement incliné de la rive droite au cours fluvial presque horizontal, est couvert par des dépôts Colluviaux très fins avec l'épaisseur de 1 à 2m couverts par les graviers de terrasse d'épaisseur autour 2m. Cette Terrasse de graviers pourrait être distribuée de la rive actuelle au pied de la pente de rive droite avec des largeurs de 100 à 150m dans l'ensemble. Les dépôts de terrasse se distribuent aussi le long du cours provenant directement de la droite juste en amont du site du barrage avec des largeurs d'environ 40m. Les épaisseurs changent par endroit.

(4) **Remarques**

Autour du site de barrage, aucune grande faille ou zone cisaillée ne sont pas trouvées et les problèmes comme le glissement de terrain ne sont non plus observés pour le moment. La fondation est relativement imperméable et probablement assez forte pour la base de barrage.

Une petite dislocation de strates (faille secondaire) peut être déduite entre l'emplacement du forage SG2 et SG3 dans l'appui gauche.

Dans le secteur du réservoir, une faille est découverte à travers la colline de côté de la rive gauche environ 500 m en amont du site du barrage jusqu'à la partie courbe de la colline de la rive droite à environ 600 m en amont du site du barrage. Sa coupe est N50 ? 60 ° W. La pente du versant en rive gauche est cahoteuse par des dépôts de talus épais sans affleurements de roche. Quoique aucune zone cisaillée ne puisse pas être observée à la colline de rive droite, dans cet endroit les strates sont déformées dans une certaine mesure.

X2.4.2 Profil Sismique de Vitesse le long de l'Axe envisagé du Barrage

Le profil sismique de vitesse le long de l'axe envisagé du barrage est montré dans la Figure X2.4.5.

Couche No.	Appui gauche	Lit de la rivière	Appui droit
Ι		0.9 ~ 1.0km/s (dep.Colluviaux	1.0 ~ 1.2km/s (dep.
		& Dep. De terrasse)	Colluviaux & Travertin)
II	1.0 à 1.3km/s (roches très		1.5 à 1.7km/s (roches très
	fragmentées)		fragmentées)
III	2.3 km/s	2.2 km/s à 2.5 km/s (roches	2 à 2.5 km/s (roches
	(roches fragmentées)	fragmentées)	fragmentées)
IV	3.1 à 3.7 km/s	3.7 à 3.8km/s	3.8 à 3.9 km/s
	(roches fraiches)	(roches Fraîches)	(roches fraîches)

Globalement, les couches de vitesse peuvent être divisées en quatre.

X2.4.3 Matériel de Construction

De la condition topographique et la condition de la fondation, les deux types de barrage, en béton et à remplissage, peuvent être envisagés dans ce site. Par la suite, pour avoir le matériau imperméable et shell pour le remblai, sables et graviers pour agrégats du béton, les sites d'emprunt et de carrière seront à chercher pour satisfaire les besoins en matériaux.

• Zone d'emprunts :

<u>dépôts Colluviaux</u> : existent au site du barrage sur la pente et au pied de la colline de côté de rive droite et sur le fond de vallée; ils consistent en limons et argile avec des fragments de roche; il en existe assez de volume autour du site de barrage.

Sols résiduels : ils existent dans le secteur de la retenue ou dans la plaine en amont et en aval; ils consistent en limons et argile, la partie rougeâtre est particulièrement cohésive; ils existent en tant que couche mince superficielle, mais s'étendant largement dans la zone des Marnes du substratum.

• Site de Carrière pour Sables et Graviers

<u>Dépôts de terrasse</u> : ils sont distribués le long des deux rives de l'Oued Zloul et au fond de la vallée du site du barrage avec 2 à 3 m d'épaisseur et 100 à 150 m de large, surmontés par 1 à 2 m de dépôts Colluviaux épais; ils consistent en sables et graviers avec quelques limons, la partie de la base est principalement des galets et des rochers.

<u>Dépôts alluviaux sur Oued Qarya</u> : Un volume énorme de graviers existe dans l'exutoire de la zone montagneuse à la zone du bassin.

Les Sables ne sont pas actuellement distribués en quantités adéquates. Par la suite nous avons été incapables de les obtenir autour du site de barrage.

Comme rip-rap, les blocs de Calcaire plat peuvent être obtenus dans la zone d'arête de la colline en rive droite. Cependant, le volume n'est pas suffisant.

• Site de Carrière pour enrochement

Calcaire: comme matériau de rocher, le calcaire du substratum en alternance avec les marnes peut être considéré ; La petite colline dans la zone de la retenue 700-800m en amont du site de barrage consiste en proportion relativement plus grande en calcaire contre la marne, qui est alors recommandable comme site bon pour le matériau de carrière d'enrochements.

On montre ces emplacements dans la Figure X2.4.6.

(1) **Reconnaissance par puits**

Cinq puits nommés P1 à P4 ont été réalisées dans le matériau du remblai en terre placé aux alentours du barrage Azghar. L'arrangement de P1 et P2 est dans la zone proposée de la retenue, celui de P3 sur le site de barrage et celui de P4 sur la rive gauche en aval du site du barrage. Il a été prévu de creuser jusqu'à 5 m de profondeur à partir du terrain naturel.

En outre, trois puits complémentaires manuels ont été réalisés principalement pour la recherche de formations alluviales. Ces puits sont nommés P5bis, P51 et P52. P5bis a été exécuté sur la rive droite de l'Oued Bouflou, tandis que les puits P51 et P52 ont été réalisées à gauche et la rive droite de l'Oued Qarya du bassin adjacent, respectivement.

• Enregistrement des puits D'essai

Le profil géologique détaillé des puits manuels est comme suit :

- Puits P1-

0.00 - 0.20 m : sol supérieur.

0.20 - 3.00 m : sols argileux jaunâtres avec graviers et fragments de roche.

- Puits P2-

0.00 - 0.70 m : sol supérieur.

0.70 - 4.00 m : sable limoneux et graviers.

La fermeté et en particulier la taille substantielle des éléments alluviaux ont empêché le creusement de ce puits à plus que 5m de profondeur du terrain naturel.

- Puits P3-

0.00 - 0.90 m : sol Cultivé.

0.90 - 1.60 m : sol argileux rouge.

1.60 - 2.50 m : Sable et gravier avec sol rouge.

2.50 - 4.00 m : Sable et gravier, galets et rochers.

La fermeté et en particulier la taille substantielle des éléments alluviaux ont empêché le creusement de ce puits à plus que 5m de profondeur du terrain naturel.

- Puits P4-

0.00 - 0.60 m : sol argileux rouge avec pierres nodulaires.

0.60 - 2.10 m : fragments de roche verdâtre ou bleuâtre grise, très légère et fragile et Sols résiduels.

2.10 - 5.00 m: poudre de roche verdâtre ou bleuâtre grise, friable et fragments de roche

Et quelques blocs de roche.

- Puits P5bis

0.00 - 0.30 m : sol supérieur.

0.30 - 3.90 m : Sables et graviers.

La fermeté et en particulier la taille substantielle des éléments alluviaux ont empêché le creusement de ce puits à plus que 5m de profondeur du terrain naturel.

- Puits P5.1

0.00 - 1.00 m : Gravier dans une matrice limoneuse.

- Puits P5.2

0.00 - 1.00 m : gravier sableux.

Les puits P5.1 et P5.2 ont été arrêtées à 1.00m de profondeur pour identifier les formations alluviales du lit de la rivière de l'Oued Qarya.

Pendant la période des reconnaissances in situ (du 9 octobre 2000 au 3 novembre 2000), aucune eau souterraine n'a été trouvée dans les puits.

Nous avons considéré que trois sortes de matériaux du sol sont représentatives. Ils sont l'argile jaunâtre observée dans le puits P1, l'argile rouge observée dans P2 et le sol fortement effrité ou résiduel de marne comme observé dans P4.

Le sable de prospection et le matériau pour gravier pour le remblai du barrage et les agrégats sont des dépôts d'alluvions sur Oued Qarya. L'échantillon a été pris de P5.1 et P5.2 comme matériau représentatif.

• Essai In-situ de Densité

Les résultats des essais in situ de densité, aussi bien que la formation reconnue sont groupés dans le tableau suivant :

puit	profondeur	Nature de la formation reconnue	densité sèche (t/m ³)
P1	2.40 m	Argile jaune	1.72
P1	3.00 m	Argile jaune	1.83
P2	1.50 m	Argile rouge	1.73
P4	2.00 m	Marne hautement fracturée	1.58
P4	4.30 m	Marne fracturée	1.86

L'argile rouge et jaune est très solide sur le site. La marne fracturée est moyennement à très solide.

(2) Essai en laboratoire sur Matériau du Sol

Les essais en laboratoire ont été réalisés sur 5 échantillons pris de la formation d'argile jaune dans les profondeurs suivantes : P1 à m 2.40 et 3.00 m, l'argile rouge dans les profondeurs suivantes : P3 à 1.50 m et dans la formation de marne (P4 à 2.00 m et 4.30 m).

• Analyse granulométrique - Limite d'Atterberg

- Argile jaune-

1) Le pourcentage des particules inférieures à 0.08 mm est de : 45 à 65 %.

2) Le pourcentage des particules entre 0.08 et 2 mm est de : 8 à 15 %.

3) Le pourcentage des particules de plus de 2 mm est de : 20 à 47 %.

Il doit être remarqué quelque grand gravier avec un diamètre qui peut atteindre 63 mm dans les échantillons pris.

Les limites d'Atterberg sont relativement basses (WL = 26 å 28 %, IP = 7 å 9 %), ce qui permet la classification GC-GM (peu plastique) selon la classification internationale.

- Argile rouge-

1) Le pourcentage des éléments inférieurs à 0.08 mm est de : 81 %.

2) Le pourcentage des éléments contenus entre 0.08 et 2 mm est de : 4 %.

3) Le pourcentage des éléments supérieurs à 2 mm est de : 15 %.

Il doit être remarqué que nous avons rencontré quelque grand gravier avec un diamètre qui peut s'étendre 63 mm dans les échantillons pris.

Les limites d'Atterberg sont relativement élevées (WL = 37 %, IP = 17 %), qui permet la classification de cette formation dans CL (argile peu plastique).

Marne Fortement fracturée :

1) Le pourcentage des éléments inférieurs à 0.08 mm est de : 72 %.

2) Le pourcentage des éléments contenus entre 0.08 et 2 mm a de : 12 %.

3) Le pourcentage des éléments supérieurs à 2 mm est de : 16 %.

Il doit être remarqué que nous avons rencontré quelques éléments grossiers avec un diamètre qui peut atteindre 63 mm dans les échantillons pris.

Les limites d'Atterberg sont relativement basses (WL = 29 %, IP = 8 %), ce qui permet la classification CL (argile peu plastique).

Marne effritée :

1) Le pourcentage des éléments inférieurs à 0.08 mm a de : 44 %.

2) Le pourcentage des éléments contenus entre 0.08 et 2 mm est de : 14 %

3) Le pourcentage des éléments supérieurs à 2 mm est de : 42 %.

Les limites d'Atterberg sont relativement basses (WL = 31 %, IP = 10 %), ce qui permet la classification de cette formation dans GA (agrégats peu plastique).

• Densité

La mesure de la masse dans le laboratoire par la méthode hydrostatique effectuée sur les échantillons intacts en forme de bloc de terre a montré les densités sèches suivantes :

	Profondeur	densité sèche	gravité Spécifique	Teneur	Degré de
Puits	<i>(m)</i>	(t/m^3)	(t/m^3)	en eau	Saturation
P1	2.40	1.77	2.721	15%	76%
P1	3.00	1.73	2.711	19%	91%
P3	1.50	1.76	2.693	16%	81%
P4	2.00	1.71	2.719	16%	74%
P4	4.30	1.55	2.718	15%	54%

• Essai Proctor de Compactage

Le Proctor des essais de tassement effectués dans le laboratoire a évalué la densité suivante maximale et le contenu optimal d'eau :

Puits	Profondeur	Teneur en eau Optimal	densité Maximale
	<i>(m)</i>	W_{opt} (%)	$\gamma_{dmax} (t/m^3)$
P1	2.40	16	1.76
P1	3.00	16	1.75
P3	1.50	17	1.69
P4	2.00	16	1.76
P4	4.30	16	1.84

• Essai de Compression Triaxial

Des essais de compression triaxiale Consolidés et non drainés pour évaluer la résistance au cisaillement ont été effectué sur des échantillons reconstitués à 95 % de l'optimum Proctor de densité. Les échantillons ont été saturés avant la procédure de consolidation. La pression interstitielle a été mesurée pendant la compression et jusqu'à la rupture.

La résistance au cisaillement (l'angle de friction interne et la cohésion) en contrainte totale et effective est récapitulée dans le tableau ci après :

		Short term		Long	g term
Puits	Profondeur	Friction	Cohésion Ccu	Friction	Cohésion
	<i>(m)</i>	angle øcu	(kPa)	angle øcu	Ccu (kPa)
P1	2.00	23°	10	33°	0
P1	3.00	24°	25	30°	10
P3	1.50	19°	15	27°	5
P4	2.00	27°	20	34°	10
P4	4.30	23°	20	31°	10

• Essai de Consolidation

Les essais de consolidation ont été effectués sur des échantillons reconstitués à 95 % de l'optimum Proctor.

Les caractéristiques mesurées (Ic : index de compressibilité, Pc : pression de pré consolidation, Ig : indice de gonflement et Pg : pression de gonflement) est groupée dans le tableau suivant :

Puits	Profondeur	Ic	Pc	Ig	Pg
	<i>(m)</i>		(kPa)		(kPa)
P1	2.00	0.130	200	0.01	0
P1	3.00	0.125	100	0.01	0
P3	1.50	0.185	100	0.014	0
P4	2.00	0.150	140	0.010	0
P4	4.30	0.120	110	0.010	0

Sur la première partie Ces valeurs montrent que ce sol est modérément compressible et sur la deuxième partie il montre qu'il a un potentiel faible de gonflement.

• Essai de Perméabilité

Les essais de perméabilité ont été effectués sur des échantillons reconstitués à 90 % et 100 % de l'optimum Proctor de densité avec la teneur en eau optimale

La perméabilité K mesuré est comme suit :

puit	Profondeur (m)	$K_{90\%}(cm/s)$	$K_{100\%}(cm/s)$
P1	2.00	$2.2 \ 10^{-6}$	5.8 10-7
P1	3.00	$6.5 \ 10^{-5}$	2.1 10-7
P3	1.50	6.7 10 ⁻⁵	$1.8 \ 10^{-6}$
P4	2.00	1.3 10-5	8.3 10-7
P4	4.30	$2.5 \ 10^{-5}$	$2.6 \ 10^{-7}$

Il est remarqué que la perméabilité obtenue à 90 % de la densité optimale est relativement plus haute que celle obtenue à 100 % de la densité optimale qui dote l'argile d'une caractéristique pratiquement imperméable.

(3) Essais au laboratoire sur Gravier

Les essais au laboratoire sur le gravier pour les agrégats et pour le remblai de barrage ont seulement concerné le matériau alluvial pris des puits P51 et P52 dans le lit de la rivière d'Oued Qarya.

• Analyse de la granulométrie

1) Le pourcentage des particules de moins de 0.0880 mm est de : 4 à 6 %.

2) Le pourcentage des particules entre 0.08 et 2 mm est de : 10 %.

3) Le pourcentage des particules de plus de 2 mm est de : 84 à 86 %

4) Le pourcentage du gravier de plus de 50 mm a de : 36 à 37 %.

Il doit être remarqué que nous avons rencontré quelque grand gravier avec un diamètre qui peut atteindre 200 mm dans les échantillons pris.

Gravité Spécifique

La gravité spécifique des particules de moins de 2 mm est 2.7.

I'Essai Los Angeles

La résistance d'abrasion pour le matériau de gravier a été mesurée par l'essai Los Angeles sur la taille de 10-25 mm. Le taux d'abrasion mesuré par Los Angeles varie entre 19 et 26 %. Il est généralement reconnu que le taux d'abrasion doit être de moins de 40 % pour le matériau des agrégats dur. Par conséquent, le matériau de gravier du barrage montre une bonne qualité.

• Densité, Porosité et Absorption

La densité varie entre 2.64 à 2.67 t/ m^3 . La porosité et le coefficient d'absorption sont très variables d'un secteur à un autre : dans le puits P51, la porosité est de 1.20 % et le coefficient d'absorption est de 0.46. Dans le puits P52, la porosité est 0.59 % et le coefficient d'absorption est de 0.22. Il est généralement reconnu que le gravier avec une densité de moins de 2.5 t/ m^3 et une absorption de moins de 3 % est approprié pour les agrégats. Par la suite, le matériau de gravier du barrage montre une bonne qualité.

• Essai de Résistance à l'altération

Les résultats des essais de résistance à l'altération à la solution chimique de sulfate de sodium sont comme suit :

puit	Taille des Grain	Perte P
P51	0.08 - 5 mm	3.25%
P51	5 - 80 mm	0.86%
P52	0.08 - 5 mm	2.7%
P52	5 - 80 mm	0.87%

Les résultats Ci-dessus montre une assez bonne qualité étant moins de 15 %, qui est la limite générale permise de perte par l'essai.

En jugeant à partir des résultats de la densité, l'absorption, la résistance d'abrasion et la résistance à l'altération, le matériau de gravier de l'Oued Qarya est approprié pour les agrégats du béton aussi bien que le matériau du remblai de barrage.

• Propreté Superficielle

La propreté superficielle du gravier alluvial et du sable varie entre 6.3 et 9.5 %. C'est considérablement élevé, étant plus de 5 %, pour que les matériaux évalués exigent probablement un lavage avant leur utilisation comme agrégats.

• L'Alcali Réactivité

L'essai de l'alcali réactivité sur les matériaux de gravier a été effectué et chaque résultat montre qu'ils appartiennent à la zone de non-réaction.

(3) Considération

• Matériau du Sol Imperméable

Le sol résiduel et le dépôt de sol colluvial, qui sont distribué sur les pentes modérées autour du site de barrage, sont jugés appropriés pour le matériau imperméable. Le puits A1 d'Emprunt du sol résiduel est dans le secteur de la retenue proposée. Le puits d'emprunt A2 du sol résiduel est environ 1 km en aval du site du barrage. Un autre puits B d'emprunt du sol colluvial est dans le site de barrage. L'épaisseur de dépôt de sol est 2-4 m. les volumes estimés sont (800m x 400m x 2m =) 640,000 m³, (500m x 200m x 3m =) 300,000 m³ et (400m x 100m x 2m =) 80,000 m³ pour A1, A2 et B, respectivement. Les sols résiduels des fosses d'emprunt A1 et A2 seront des matériaux principaux pour la zone imperméable bien qu'ils contiennent plus ou moins une quantité de gravier.

Le contenu naturel d'humidité des sols est 15 à 19 %, l'indice de plasticité est 7 à 17, pour la plupart 9, et la densité naturelle est 1.6 à 1.9 t/ m^3 . Ces propriétés indiquent qu'ils ne sont pas de même qualité et que les matériaux sont peu plastiques.

L'essai de perméabilité du laboratoire montre une perméabilité de l'ordre de 10-7 cm/s dans la condition d'humidité optimale et la densité maximale de tassement. Cependant, la densité basse de tassement à 90 % de densité maximale avec le l'humidité optimum ne donne pas assez d'imperméabilité comme l'ordre de 10-5 à

10-6 cm/s. Le tassement suffisant pour atteindre la haute densité et le degré de saturation sera exigé pour le remblai réel.

La contrainte effective de cisaillement de conception, basée sur de l'essai de cisaillement, sera prise comme correspondant à 30 degrés en angle de frottement interne et 10 kPa comme cohésion sur la base de la valeur moyenne l'essai de cisaillement C-U.

• Filtre, Sable perméable et Matériau pour Gravier

Le sable et le gravier du lit de la rivière de l'Oued Qarya sont recommandables pour le filtre et les matériaux perméables. Le site est situé à une distance d'environ 8 km le long de la route publique. Le volume de prospection sera estimé comme (4km x 100m x 3m =) 1,200,000 m³.

Les matériaux à côté du cours fluvial pérenne semblent propres sans vase ni argile. Cependant, certains des dépôts sont couverts ou formés de dépôt fin. Des matériaux propres doivent être choisis comme matériau du filtre.

Le gravier a une qualité excellente : 0.4 % d'absorption d'eau, 2.65 de gravité spécifique, perte de 23 % à l'essai d'abrasion et pas d'alcali réaction. Par la suite, ce matériau est jugé être approprié pour les agrégats.

• Matériel de Rochers perméables

Le volume des fouilles de la fondation de déversoir est estimé à 200,000 m³. La plupart de matériaux de fouilles seront de la roche de marne légèrement fragmentée ou fraîche. Ils doivent être utilisés pour le remblai perméable du barrage pour une construction économique du barrage. La roche de marne elle-même est de qualité dure et durable, mais de caractéristiques stratifiées et fissiles. Cela impliquera que la forme de rocher devient plutôt plate et les grands rochers appropriés pour le rip-rap ne seront pas en quantité suffisante.

• Le rip-rap

On recommande le site de carrière de rip-rap sur la colline dans le secteur de la retenue où on peut s'attendre à une haute proportion de formation calcaire avec moins de fissure. Comme aucune reconnaissance géologique, sauf la reconnaissance de surface, n'est pas encore exécutée, une reconnaissance détaillée avec forage, prélèvement d'échantillons, examen de laboratoire etc., est exigé dans l'étape suivante de l'étude.

X3 Analyse sismique

L'analyse de tremblement de terre pour la conception de barrage a été évaluée sur la base des enregistrements de tremblement de terre obtenus du Centre Sismique du Maroc à l'Université Mohammad V à Rabat. Ce sont les données de tous les événements de tremblements de terre ayant l'épicentre dans la zone de couverture de 300 km de distance des sites de barrage envisagés.

Tous les événements ont été enregistrés dans la période de presque 100 ans : de 1900 à 1999. Cependant pendant plusieurs premières dizaines d'années, en raison

des équipements d'observation sismiques non systématiques, des données n'ont pas été enregistrées entièrement.

L'enregistrement complet peut être pour environ soixante ans de 1930 dans la région du nord et environ trente ans de 1960 dans la région du sud.

Ces données de séismes ont été employées pour l'évaluation de la séismicité (montré dans la Table X3.1 à X3.4).

Pour chaques séisme, l'intensité qui pourrait être sentie aux sites de barrage envisagés était estimé par l'utilisation les formules d'atténuation de Cornell.

Formule selon Cornell

I = 8.0 + 1.5 M - 2.5 Ln r

- Où, I : Intensité du séisme dans l'échelle Modifiée Mercalli est sentie au site de barrage.
 - M: magnitude dans l'échelle de Richter
 - r: distance focale en km $r = (d^2 + h^2 + 400)^{0.5}$
 - d: distance de l'épicentre (km)
 - h: profondeur focale (km)

LogA = 0.014 + 0.30 I

Où A: accélération maximale horizontale (cm/sec2 ou gal)

Le nombre d'événements de séismes sera compté pour chaque pas d'intensité, c'est-à-dire, l'Intensité 1 (0.5 à 1.4), l'Intensité 2 (1.5 à 2.4), l'Intensité 3 (2.5 à 3.4), etc. et accumulé ensuite pour obtenir le nombre d'événements de toute l'année excédant l'intensité donnée pour chaque événement de même intensité par an excédant l'intensité donnée (Nc).

Selon Gutenberg, l'intensité de séisme (Imm) suit une relation linéaire avec le logarithme du nombre de séisme excédant cette intensité, c'est-à-dire

 $\log Nc = p + q. I$

Où p et q sont constants. Les valeurs de I et Nc ont été tracé sur un graphique et le point où la courbe I – log Nc croise la ligne horizontale pour 0.01 de Nc donne l'intensité de séisme maximale probable pour la période de retour de 100 ans (et 0.005 de Nc pendant 200 ans). On montre ces résultats dans la Figure X3.1 à X3.4.

L'accélération de séisme Maximal Probable pour la Période de Retour de 100 et 200 ans ressentie aux sites de barrage respectifs est la suivant :

Site de barrage	100 ans(gal)	200 ans (gal)
N'Fifikh	42	70
Taskourt	102	209
Timkit	88	149
Azghar	66	103

X4 Sous-traitance Locale des Travaux de Géotechnique

X4.1 Forage

X4.1.1 Portée du Travail

Le forage, en parallèle avec des essais de pénétration standard et des essais de pression d'eau, a été exécuté pour le but d'obtenir des données géotechniques sur les conditions du sous superficiel des sites proposés pour des barrages, les sources des matériaux et d'autres structures importantes.

Le forage a été fait pour le substratum, le sol, les dépôts de gravier, les dépôts colluviaux et les dépôts de talus qui peuvent contenir des galets.

Des essais de pénétration standard ont été exécutés pour la vérification de la résistance mécanique de la fondation dans les sections des trous de forage qui sont repérés dans les sols, les dépôts non cimentés ou les roches intensivement effritées. Cependant parce que l'épaisseur de cette fondation était d'habitude très mince à chaque point de forage, cet essai n'était pas nécessaire en réalité.

Des essais de pression d'eau ont été effectués, selon la procédure de " l'essai Lugeon " de la méthode d'étape descendante, pour chaque section de cinq mètres, dans les parties des trous de forage à travers le substratum pour évaluer les conditions d'infiltration des roches du substratum

X4.1.2 Quantité et Emplacement du Travail

La quantité du travail est la suivante.

• Forage

Total	750 m	
N'Fifikh		nos 5×50 m = 250 m
Taskourt		$nos \ 2 \times 50 \ m + 70 \ m + 80 \ m = 250 \ m$
Timkit		nos 5×50 m = 250 m

• Essai de Pression D'eau (Essai Lugeon)

Total157 numéros.N'Fifikh48 numérosTaskourt43 numérosTimkit66 numéros

X4.1.3 Spécification

(1) Forage

Le forage est exécuté par la machine hydraulique rotatoire, aux emplacements, dans les directions et jusqu'à la profondeur spécifiée ou dictées par l'Ingénieur.

Le travail vise à 100 % de récupération des carottes dans les roches et les dépôts non cimentés.

Les carottes récupérées sont placées dans l'ordre dans des boîtes et sont soumises à l'Ingénieur. Chaque boîte a cinq cases; chaque case avec des dimensions adéquates pour contenir un mètre de section de carottes. En conséquence, chaque boîte contient des carottes de 5 m.

Les carottes sont placées dans l'ordre, dans la même longueur des cases de la boîte que celle qui a été foré pour obtenir ces carottes. Les parties sans récupération de carottes sont laissées vides dans les cases. Des marques sont régulièrement mises aux cases pour indiquer les profondeurs de prélèvement d'échantillons. Chaque boîte est marquée avec le numéro de trou de forage et la profondeur de la section d'où proviennent les carottes.

Le niveau d'eau des trous de forage est mesuré et enregistré chaque matin avant le commencement du travail du forage pour la journée. Cette mesure est appliquée pendant la période du forage du trou.

A l'achèvement du forage à chaque emplacement, le point du forage est marqué en mettant un poste immobile ou un bloc de béton avec la description du numéro du trou et l'élévation au sommet du trou.

(2) Essai de Pression D'eau

L'essai de pression d'eau est exécuté dans les sections du trou de forage passant par le substratum par étape de 5 m dans l'ordre décroissant, par l'utilisation d'emballeur.

Quand un trou de forage a été foré à la profondeur de fond d'une section à être reconnue dans le substratum, il est lavé à l'intérieur en injectant de l'eau par la tige insérée jusqu'au fond du trou. Quand l'eau retournante devient propre, un emballeur est installé au sommet des 5 m de la section à tester et l'eau est pompée dans la section par la conduite d'injection. Sous une certaine pression d'eau, réglée constante, le taux d'injection d'eau est observé pendant 10 minutes.

A travers l'observation durant cette période de 10 minutes, la quantité injectée d'eau est observée et enregistrée chaque minute. Cette procédure est répétée sous des pressions diverses indiquées par l'Ingénieur.

Une fois que la susdite observation a été achevée, Le forage est repris pour 5 autres m. les Nouveaux 5 m de section doivent être de nouveau testés selon la même procédure ci-dessus.

Dans le cas où la pression ne pourrait pas monter jusqu'au maximum désigné à un taux d'injection de 100 litres par minute, à cause du haut potentiel de fuite dans la section d'essai, l'essai est fait seulement pour les pressions accessibles. Si la hausse insuffisante de la pression d'eau est due au manque de l'équipement, par exemple, la basse capacité de la pompe ou la fuite dans le tuyau ou la conduite, le manque est immédiatement rectifié.

X4.2 Prospection par Réfraction Sismique

X4.2.1 Portée du Travail

La prospection par réfraction sismique a été effectuée aux sites de barrage pour obtenir la nature de la géologie et la fondation en classifiant les couches souterraines sur la base de la différence de la vitesse de propagation des vagues sismiques. Elle donne l'image complète de la condition de la fondation souterraine et détecte la profondeur du rocher dur, les emplacements de zones faibles, des failles, etc.

X4.2.2 Quantité et Emplacement du Travail

La prospection de réfraction sismique est exécutée avec vingt (20) lignes de traverse avec 9,000 mètres de longueur totale, dans les sites de barrage N'Fifikh, Taskourt et Azghar.

X4.2.3 Spécification

(1) Etablissement des Traverses de Prospection

Un schéma des points d'explosion et des points de détecteur (géophone) est préparé pour chaque ligne de traverse de prospection et est soumis à l'Ingénieur.

Le profil de la surface du sol de chaque ligne de traverse est contrôlé et tous les points d'explosion et les points de détecteurs sont marqués avec des jalons en bois et crochets numérotés en distance de la fin de chaque traverse.

Chaque ligne de traverse de prospection est divisée en diffusions d'observation, chacune est une unité d'observation couverte par un groupe de géophones en même nombre que les canaux de l'oscillographe. Le travail de prospection du terrain est réalisé partie par partie jusqu'à ce que toute la longueur de chaque traverse soit couverte.

(2) Reconnaissance de Profil

La hauteur du terrain de chaque point de détecteur est examinée exactement par nivellement pour dessiner un profil topographique de chaque ligne de traverse de prospection à l'échelle de 1/1000.

(3) Explosion

Les explosions sont faites efficacement et en sécurité en souterrain dans des puits creusés de main ou des trous de foret, par utilisation de dynamite et des détonateurs électriques instantanés. Avant l'explosion, on donne l'avertissement adéquat à toutes les personnes, que ce soit du projet ou du public, restant dans une distance de 50 mètres du point de la distruction.

(4) Détection

Les détecteurs ou géophones sont répartis à un intervalle régulier de 5-10 mètres sur la partie de chaque zone de propagation sur la ligne de traverse de prospection.

(5) Enregistrement

L'enregistrement de chaques explosion est passé en revue au site. Quand un enregistrement n'est pas clair ou douteux, l'explosion et l'enregistrement sont fait de nouveau. Les fins de chaque propagation se chevaucheront avec les fins des diffusions adjacentes pour la continuité des enregistrements sur une ligne de traverse de prospection.

(6) Interprétation

L'enregistrement est tracé dans un graphique temps-distance, et ensuite interprété dans des professes de couches de vitesses sismiques.

La procédure d'interprétation est décrite dans le rapport et toutes les lignes auxiliaires utilisées pour interpréter la courbe temps-distance sur le même graphique. Les enregistrements incorrects ou particuliers, par exemple, la discontinuité dans les courbes de distance-temps et les couches à vitesse inversée, s'il y en a, sont mentionnées.

On montre les couches de vitesse sismiques déduites dans les profils, employant le profil de surface préparé par reconnaissance du profil.

Les couches de vitesse sismique distinguée sont géologiquement et géotechniquement interprété en corrélation avec la configuration géologique superficielle, Le forage, essai par puits, etc.

X4.3 Reconnaissance du Matériau de Construction de Barrage

X4.3.1 Portée du Travail

Les essais par puits, le prélèvement d'échantillons et les essais en laboratoire sont inclus dans ces articles. Le but de puits d'essai consiste à effectuer une investigation sur le matériau de remblai en terre et des agrégats pour le béton et les échantillons pour les essais en laboratoire.

Les puits d'essai ont été creusés dans les secteurs des sources potentielles en matériau du noyau de terre pour un barrage et-ou sable/graviers pour les agrégats de béton. Le travail comprend le creusement en 5 mètres de profondeur des puits verticaux dans les zones d'emprunt de terre et 1.5 mètres de profondeur de puits vertical dans le dépôt de sable / gravier.

Les sols et sable/gravier ont été échantillonnés à partir des puits d'essai et les pièces de rocher provenaient des forages, ces échantillons sont ensuite envoyés au laboratoire.

X4.3.2 Quantité et Emplacement du Travail

Essai e	n Trancher
15 nos.	
h	5 nos.
rt	5 nos.
	5 nos.
	Essai e 15 nos. h rt

- (2) Essais de laboratoire
 - sols

Analyse granulomètrique par tamisage et hydro	omètre 8	échantillons
Limite Liquidité, plasticité, indice de plasticité	8	échantillons
Gravité Spécifique du sol	8 échantil	llons
Teneur en eau du sol	8	échantillons
Essai de compactage Proctor	8	échantillons
compression Triaxiale CU	8	échantillons
Essai de Perméabilité	8	échantillons
Consolidation	8	échantillons
Agrégats		
Analyse par tamisage des agrégats	7	échantillons
Gravité Spécifique et absorption d'eau	7	échantillons
Essai de lavage	7	échantillons
Essais de dureté par sulfate de sodium	7	échantillons
L'essai d'Abrasion par Los Angeles	7	échantillons
L'alcali-réactivité Chimique	7	échantillons
Test d'Equivalent de Sable	7	échantillons
Rochers		
Absorption d'eau et densité de masse	15	échantillons

Compression Sans confinement et coefficient de Poisson	15	échantillons
Vitesse Ultrasonique	15	échantillons

X4.3.3 Spécification

(1) Essai par Puits

Les puits d'essai sont creusés par la main d'œuvre avec les outils conventionnels de pelles manuelles, des pioches et le sceau à la corde, etc.

La profondeur des puits dans le sol argileux ou la roche intensivement effritée est 5 mètres, mais des puits peu profonds peut être acceptables seulement quand une nappe d'eau souterraine ou un substratum, difficile à creuser même s'il est fragmenté, est rencontré à une profondeur de moins de 5 mètres.

La profondeur des puits dans le dépôt de sable / gravier est moins de 1.5 mètres.

Les puits sont géologiquement esquissés pour être achevé comme des colonnes géologiques. Les échantillons remaniés, chaque 50 kilogrammes en poids ou en quantité comme prescrit dans la norme de la méthode d'essai, sont pris de la couche la plus épaisse dans chaque puits ou de la couche apparemment de qualité la plus prometteuse du matériau.

(2) Prélèvement d'échantillons

Les échantillons remaniés sont pris aux puits d'essai. Le poids minimum des échantillons est 50 kg en cas du matériau de sol et le poids maximum est 500 kg s'il est entièrement transporté au laboratoire ou uniquement le volume nécessaire après tamisage sur terrain en cas du matériau de sable / gravier ou comme prescrit dans la norme de la méthode d'essai.

Les échantillons remaniés sont empaquetés dans un sac imperméable et ensuite dans un coffre fort, comme un coffre de jute, pour le transport.

Chaque sac est marqué du numéro de l'échantillon, la date de prélèvement, l'emplacement, le numéro du puits et la profondeur du prélèvement, etc.

(3) Examen au laboratoire des Echantillons d'essais par puits

Les articles et les quantités prévues de l'essai en laboratoire par les échantillons de d'essai par puits sont comme inscrits ci dessus. Les articles et quantités d'essai sont également décrits comme ci-dessus.

(4) Essai de laboratoire pour rochers

Les articles et les quantités prévues pour l'essai en laboratoire sont comme inscrits ci dessus. Les échantillons pour les essais sont choisis par l'Ingénieur principalement à partir des échantillons de carottes du forage. L'étude de Faisabilité Pour Le Développement des Ressources En Eau Par Les Barrages Moyens Dans Le Milieu Rurale Au Royaume Maroc Rapport Final Volume IV Rapport de Soutien (2.A) Étude de Faisabilité Rapport de Soutien X Géologie et Matériaux de Construction

Tables

 Table X2.1: Criteres de Classification de roches de fondation de barrage

 (by TANAKA)

Category	Characteristics
А	Very fresh rock, no weathering nor alteration observation in rock-forming minerals and particles. Fissures and joints are well closed and no weathering is observed on the planes thereof. Sound of hammering is metallic.
В	Very hard rock, well closed with no opened (even 1 mm) fissures or joints, and well closed. However, partial and slight weathering and alteration are observed. Sound of hammering is metallic.
СН	Relatively hard rock, though rock-forming minerals and particles except quarts are weathered. Generally chemically compounded with limonite, etc. Cohesive strength at joints and fissures is slightly reduced. Rock fragments are flaked at joints by strong hit with hammer, and clayey material may be observed on the stripped face. Sound of hammering is slightly dull.
СМ	Rock, rock-forming minerals and particles except quartz are slightly softened by weathering. Cohesive strength at joints and fissures is slightly reduced. Rock fragments are flaked at joints by normal hit with hammer, and clayey material may be observed at the stripped face. Sound of hammering is slightly dull.
CL	Rock, rock-forming minerals and particles are softened. Cohesive strength at joints and fissures are reduced. Rock fragments are flaked at joints by light hit with hammer, and clayey material is observed at stripped face. Sound of hammering is dull.
D	Rock, rock-forming minerals and particles are remarkably softened by weathering. Cohesive strength at joints and fissures is almost completely lost. Rock is easily destroyed by slight hit with hammer, and clayey material is observed at stripped face. Sound of hammering is very dull.

Table X2.2Resume d'Essai du Sol pour les Materiaux de Construction (Barrage N'FIFIKH)

No.	depth	in-situ	dens	sity	Gs	grad	ation	Atte	rberg	Proc	tor	pea	meability	shearing	strength	consoli	dation	note
	(m)	d(t/m3)	lab	0.		(mm)	(%)	consis	stency			D(%)	(cm/s)	'(°)	C'(Kpa)			
			Wn(%)	11		+2	7	WL	36	Wopt	15	100	6x10 ⁻⁷	30	10	lc	0.17	
P1	3	1.86	d(t/m3)	1.91	2.72	~	10	PL	18	d(t/m3)	1.79	90	2x10⁻ ⁶	(D=9	95%)	Pc(KPs)	60	
						-0.08	83	ΡI	17									
			Wn(%)	10		+2	32	WL	32	Wopt	14.5	100	2x10 ⁻⁷	22	10	lc	0.16	
P2	1.5	1.96	d(t/m3)	1.93	2.708	~	10	PL	15	d(t/m3)	1.82	90	3x10⁻ ⁶	(D=9	95%)	Pc(KPs)	100	
						-0.08	58	ΡI	17									
			Wn(%)			+2		WL		Wopt						lc		
P3			d(t/m3)			~		PL		d(t/m3)						Pc(KPs)		
						-0.08		ΡI										
			Wn(%)	9		+2	15	WL	32	Wopt	16	100	1x10 ⁻⁷	25	15	lc	0.2	
P4	2	1.8	d(t/m3)	1.82	2.711	~	11	PL	17	d(t/m3)	1.79	90	1x10 ⁻⁶	(D=9	95%)	Pc(KPs)	200	
						-0.08	74	ΡI	15									
			Wn(%)	11		+2	30	WL	31	Wopt	14	100	3x10 ⁻⁷	25	15	lc	0.14	
P5	2	1.92	d(t/m3)	1.92	2.716	~	13	PL	16	d(t/m3)	1.86	90	1x10 ⁻⁶	(D=9	95%)	Pc(KPs)	70	
						-0.08	57	ΡI	15									

Table X2.3

Resume d'Essai de Sol pour les Materiaux de Construction (Barrage AZGHAR)

No.	depth	in-situ	dens	sity	Gs	grad	ation	Atte	rberg	Proc	tor	pear	meability	shearing	strength	consoli	dation	note
	(m)	d(t/m3)	lab	0.		(mm)	(%)	consi	stency			D(%)	(cm/s)	'(°)	c'(Kpa)			
			Wn(%)	15		+2	47	WL	26	Wopt	16	100	5.8x10 ⁻⁷	33	0	lc	0.13	
P1	2.4	1.72	d(t/m3)	1.77	2.721	~	8	PL	19	d(t/m3)	1.76	90	2.2x10 ⁻⁶	(D=9	95%)	Pc(KPs)	200	
						-0.08	45	ΡI	7									
			Wn(%)	19		+2	20	WL	28	Wopt	16	100	2.1x10 ⁻⁷	30	10	lc	0.125	
P1	3	1.83	d(t/m3)	1.73	2.711	~	15	PL	19	d(t/m3)	1.75	90	6.5x10⁻⁵	(D=9	95%)	Pc(KPs)	100	
						-0.08	65	ΡI	9									
			Wn(%)	16		+2	15	WL	37	Wopt	17	100	1.8x10⁻ ⁶	27	5	lc	0.185	
P2	1.5	1.73	d(t/m3)	1.76	2.693	~	4	PL	20	d(t/m3)	1.69	90	6.7x10⁻⁵	(D=9	95%)	Pc(KPs)	100	
		ĺ				-0.08	81	ΡI	17									
			Wn(%)	16		+2	16	WL	29	Wopt	16	100	8.3x10 ⁻⁷	34	10	lc	0.15	
P4	2	1.58	d(t/m3)	1.71	2.719	~	12	PL	21	d(t/m3)	1.76	90	1.3x10⁻⁵	(D=9	95%)	Pc(KPs)	140	
						-0.08	72	PI	8									
			Wn(%)	15		+2	42	WL	31	Wopt	16	100	2.6x10 ⁻⁷	31	10	lc	0.12	
P4	4.3	1.86	d(t/m3)	1.55	2.718	~	14	PL	21	d(t/m3)	1.84	90	2.5x10⁻⁵	(D=9	95%)	Pc(KPs)	110	
						-0.08	44	ΡI	10									

	Ta	bleX2.4		Resu	me d'es	ssai de	e materia	ux pour a	gregats (Barrage	TASKO	URT)		
No.	depth	sie	ve analysis		washing	specifi	c gravity &	soundness	abrasion	alkali	sand	note		
	(m)	Dmax(mm)	(mm)	(%)	(%)	water	absorption		loss(%)	reactivity	equivalent			
			+5	35		Gs	2.65	(0.08-5mm)						
D1		150	5~2	52	1	W	0.68	3.4	28	non				
11		150	2~0.08	12	1			(5-80mm)	20	reaction				
			-0.08	1				0.6						
			+5	24		Gs	2.72	(0.08-5mm)						
P2		200	5~2	56	2	W	0.87	2.6	29	non				
12		200	2~0.08	18	2		2.64	(5-80mm)	2)	reaction				
			-0.08	2				1						
			+5	24		Gs	2.64	(0.08-5mm)						
P3		200	5~2	$\frac{55}{20}$ 1	1	1	W	0.67	3.3	30	non			
15		200	2~0.08				(5-80mm)	50	reaction					
			-0.08	1				1						
			+5	30		Gs	2.68	(0.08-5mm)						
P4		150	5~2	48	2	2	2	W	0/61	3.2	24 non	non		
1 4		150	2~0.08	20	2			(5-80mm)	24	reaction				
			-0.08	2				1						
			+5	40		Gs	2.7	(0.08-5mm)						
P5		150	5~2	44	3	W	0.99	3.4	24	non				
15		150	2~0.08	13	3		<u> </u>	(5-80mm)	24	reaction				
		-		-0.08	3				0.6					

Table X2.6

Summary of sand & gravel deposit test (TIMKIT Dam)

No.	depth	peameability	S	ieve analy	sis	note
	(m)	in-situ(cm/s)	Dmax(mm)	(mm)	(%)	
		2.9×10^{-2}		+5	0	
DC 1			40	5~2	29	
F31			40	2~0.08	68	
				-0.08	3	
		7.3x10 ⁻²		+5	15	
DCO			150	5~2	71	
F32			150	2~0.08	12	
				-0.08	2	
		3.2x10 ⁻²		+5	9	
DC2			<u>80</u>	5~2	56	
PS3			- 60	2~0.08	32	
				-0.08	3	

Table X2.5

Resume d'essai de materiaux pour agregats (Barrage AZGHAR)

-								1 0	<u> </u>	0	/	
No.	depth	sie	ve analys	is	washing	specifi	c gravity &	soundness	abrasion	alkali	sand	note
	(m)	Dmax(mm)	(mm)	(%)	(%)	water absorption			loss(%)	reactivity	equivalent	
			+5	37		Gs	2.64	(0.08-5mm)				
D5		200	5~2	47	0	W	0.46	3.3	10	non		
PS		200	$2 \sim 0.08$	10	0			(5-80mm)	19	reaction		
			-0.08	6				0.9				
			+5	36		Gs	2.67	(0.08-5mm)				
D5		200	5~2	50	4	W	0.22	2.7	26	non		
Р5		200	$200 2 \sim 0.08 10$		4			(5-80mm)	20	reaction		
		-0.08	4				0.9					

Ne. Ver Norm Norm Linitude Longitude Space Norm						Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
i i i i j< j j j	No.	Year	Month	Day	Hour	Min	Sac	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
1 1 1930 8 9 18 9 20 45.0 3.390 0.0 4.70 1834 2.005 4.13 3 1937 8 11 23 25 16.0 3.100 -8.799 0.0 4.80 248.6 1.405 3.272 4 1938 3 0 5 6 0.0 3.00 -5.20 0.00 5.100 25.00 0.00 4.80 24.86 1.406 6 1952 5 190 36.8 35.090 -6.621 5.0 4.90 25.70 1.470 2.85 8 1963 11 12 12 4.84 3.803 5.0 4.10 22.77 0.31 11 15 20 3.51 3.55.8 3.01 3.00 22.57 1.578 3.98 12 1965 11 15 20 3.513 5.55 3.50 3.00 22.00 2.772 0.33					Hour	WIIII	Sec	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
2 1930 8 13 3 20 5.309 0.00 4.40 1234 1.555 1.02 3 1937 8 21 23 55 1.60 3.500 -6.200 0.00 5.10 27.6 4.700 2.749 5 1952 12 19 55 1.60 3.500 -6.21 6.00 3.500 4.501 2.50 1.470 2.22 3.88 1 1960 12 2 1.21 1.471 3.560 -6.611 5.01 4.10 227.9 0.508 1.53 10 1963 8 2 10 48 1.458.1 5.503 4.615 1.60 223.3 1.938 3.943 10 1964 11 15 2.45 5.518 3.10 2.25.3 1.938 3.943 10 1965 12 1 14 1.453 3.451 5.414 1.00 2.25.3 1.938 <tr< td=""><td>1</td><td>1930</td><td>8</td><td>9</td><td>18</td><td>9</td><td>38.0</td><td>34.300</td><td>-5.399</td><td>0.0</td><td>4.70</td><td>183.4</td><td>2.005</td><td>4.13</td></tr<>	1	1930	8	9	18	9	38.0	34.300	-5.399	0.0	4.70	183.4	2.005	4.13
3 1937 8 21 23 55 16.0 35.100 -8.709 0.0 4.80 248.6 1.403 27.2 5 1952 5 12 19 34 35.00 -6.23 0.00 5.10 27.95 1.981 4.66 6 1954 4 23 19 53 190 35.04 -6.23 5.0 4.90 257.0 1.970 2.058 8 1963 3 11 14 58 4.631 5.00 4.00 227.9 0.568 1.53 10 1963 11 15 20 36.13 3.04 -6.160 5.0 3.60 23.84 -0.249 0.542 11 148 18 5.183 3.5416 -5.160 5.0 3.60 23.98 -3.77 0.31 12 1965 12 1 18 14 0.433 3.30 3.10 23.0 27.71 0.31 </td <td>2</td> <td>1930</td> <td>8</td> <td>13</td> <td>3</td> <td>20</td> <td>45.0</td> <td>34.300</td> <td>-5.399</td> <td>0.0</td> <td>4.40</td> <td>183.4</td> <td>1.555</td> <td>3.02</td>	2	1930	8	13	3	20	45.0	34.300	-5.399	0.0	4.40	183.4	1.555	3.02
4 938 3 30 15 6 60 35.00 -6.20 0.0 5.10 75.6 4.70 20.7 954 4 23 19 55 19.0 36.600 -6.621 5.0 4.90 2.00 1.01 2.02 1.71 2.02 2.71 1.20 2.85 1.93 3.1 1.4 38 4.9 35.00 4.10 2.279 0.568 1.53 9 1963 8 2 10 49 17.1 38.81 -5.00 2.25.0 0.002 2.10.2 11 15 20 3 5.33 3.50 4.10 2.20.9 0.53 3.33 12 165 1965 12 1 18 11 40 3.508 5.0 4.10 3.00 294.4 0.034 0.034 14 1965 12 5 3 3.73 3.10 5.0 3.00 294.4 1.71 0.03 </td <td>3</td> <td>1937</td> <td>8</td> <td>21</td> <td>23</td> <td>55</td> <td>16.0</td> <td>35.100</td> <td>-8.799</td> <td>0.0</td> <td>4.80</td> <td>248.6</td> <td>1.403</td> <td>2.72</td>	3	1937	8	21	23	55	16.0	35.100	-8.799	0.0	4.80	248.6	1.403	2.72
5 992 5 12 19 34 36.8 35.90 -6.201 50.0 4.50 24.6 0.971 2.02 7 1960 12 5 2 1 21 4.11 35.00 -6.621 5.0 4.90 225.0 1.470 2.38 8 1963 8 2 1 4.1 4.84 4.803 5.0 4.10 228.9 0.02 1.53 10 1963 11 12 12 4.5 3.53.0 3.4651 5.0 4.10 228.9 0.02 23.8 1.938 3.94 11 1965 6 2 1.8 1.8 35.71 5.588 3.00 0.03 0.037 1.031 14 1965 12 13 1.0 2.3 3.30 3.00 2.944 .0.79 0.037 15 1966 6 8 5 3.2 3.20 5.700 0.0 4.00	4	1938	3	30	15	6	6.0	33.500	-6.250	0.0	5.10	75.6	4.750	27.49
6 954 4 2 190 34.69 -4.900 0.0 4.500 24.67 0.071 2.02 8 1903 3 31 14 58 4.9 35.660 -6.61 50 4.500 25.90 1.53 3.98 9 1963 8 2 10 13.3 5.400 13.00 5.400 227.9 0.568 1.53 10 1963 11 15 20 3 5.43 34.98 5.470 19.00 5.000 223.31 10.38 3.93 11 15 20 13 5.43 3.54.6 6.100 3.00 23.00 23.01 0.51 14 1965 12 1 18 11 0.03 35.41 -5.688 3.00 0.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00 23.00	5	1952	5	12	19	34	36.8	35.690	-6.471	60.0	5.30	259.5	1.981	4.06
7 9960 12 5 21 21 47.1 35.266 -9.179 13.0 5.00 27.0 1.3.0 23.8 8 1963 8 2 10 49 17.1 34.841 -8.803 5.0 4.10 227.9 0.568 1.5.3 10 1963 11 12 12 45 15.0 4.10 288.0 0.02 23.3 1.3.3 12 1965 4 14 18 5 18.3 35.416 -6.160 5.0 3.00 23.54 -0.034 13 1965 12 13 13.0 35.73 -5.598 3.0 3.00 23.00 23.72 23.51 14 1965 12 13 10 42.3 35.31 7.759 40.0 40.0 27.0 40.3 40.0 27.0 40.3 40.0 27.0 40.3 40.0 27.0 40.3 40.3 40.3 40.3 40.3<	6	1954	4	23	19	55	19.0	34.699	-4.900	0.0	4.50	246.7	0.971	2.02
8 9963 3 31 14 58 4.9 52.66 -9.179 130 5.40 28.59 19.29 15.33 10 1963 11 2 12 12 14.51 34.84 -4.651 5.0 4.10 28.90 -0.022 1.02 11 1964 11 15 20 3 54.3 34.938 -5.470 19.0 5.00 225.3 1.928 -3.944 13 1905 6 29 15 26 36.1 35.731 -5.598 3.0 3.00 29.48 -0.940 0.534 15 1965 12 15 3 50 13.0 3.843 -6.68 3.0 3.00 29.44 -1.719 0.32 16 1966 22 3 35 32 35.13 5.431 5.0 3.00 2.944 -1.719 0.3130 -5.440 4.00 2.017 -6.648 3.0 2.017 <	7	1960	12	5	21	21	47.1	35.690	-6.621	5.0	4.90	257.0	1.470	2.85
9 9 8 2 10 49 17.1 34.84 -8.803 5.0 4.10 227.9 5.585 1.53 11 1965 11 15 16.5 5.505 3.505 -6.50 5.500 2.23 1.932 3.944 12 1965 4 14 18 5 18.8 35.416 -6.160 5.0 3.00 223.6 -1.727 0.331 13 1965 6 29 1 18 10.4 23.551 5.51 3.0 3.00 220.8 -0.371 0.331 14 1965 12 18 10.4 43.8 3.543 -6.586 3.0 3.00 22.0 -0.070 0.331 19 1967 3 11 4 13 23.1 5.51 3.0 3.00 22.0 -0.070 0.3310 1967 8 20 13 27.1 35.50 -0.00 0.0 4.100	8	1963	3	31	14	58	4.9	35.266	-9.179	13.0	5.40	285.9	1.952	3.98
10 1963 11 12 12 12 145 15.0 4.10 28.90 0.022 1.02 11 1964 11 15 20 3 54.3 34.938 5.470 19.0 5.00 22.53 1.038 3.94 13 1965 6 29 15 26 36.1 35.751 -5.598 3.0 3.00 23.60 -1.727 0.31 14 1965 12 1 18 11 0.2 36.00 -5.598 3.0 3.00 2.918 -0.940 0.53 15 1966 12 1 1 1 3.23 3.50 5.10 5.0 3.00 2.90 0.937 1.296 0.53 18 1966 12 18 10 4.33 3.51 5.513 5.0 3.00 2.907 0.532 1.50 19 1967 3 17 6 13 49.73 49.395<	9	1963	8	2	10	49	17.1	34.841	-8.803	5.0	4.10	227.9	0.568	1.53
11 1964 11 15 20 3 54.3 34.938 -5.470 19.0 5.00 225.3 19.38 3.944 12 1965 4 14 18 5 18.8 35.41 -6.160 5.0 3.00 228.4 -1.727 0.81 14 1905 12 1 18 11 40.2 30.00 23.60 -1.727 0.310 15 1906 12 18 101 40.3 34.843 -5.688 3.0 2.01.0 -0.737 1.70 0.232 17 1966 6 8 5 32 37.2 35.510 -5.130 5.0 3.00 2.91.7 -0.648 0.66 1967 3 11 4 13 2.1 35.31 5.70 0.0 4.00 2.21.0 1.61.0 3.300 2.32 1.66.6 1.734 3.42 1967 8 20 18 21 0.31.30	10	1963	11	2	12	45	16.5	35.053	-4.651	5.0	4.10	289.0	-0.022	1.02
12 1965 4 14 18 5 18.8 35.416 -6.610 5.0 3.0.0 238.4 -0.294 0.84 13 1965 6 29 15 26 36.1 35.758 15.598 33.0 30.0 293.6 -1.777 0.31 15 1965 12 3 3 16 16.3 35.433 -5.688 30.0 20.01 -0.730 0.531 16 1966 6 8 5 32 37.2 35.510 -5.130 5.0 3.00 294.4 -1.719 0.32 18 1966 12 18 4 13 21.3 35.341 -5.130 5.0 4.00 27.05 4.00 27.05 4.00 27.05 4.00 4.00 27.05 4.00 4.00 27.05 4.00 4.00 22.10 1.53 4.03 4.00 4.00 4.00 4.00 4.00 4.00 4.00 4.00	11	1964	11	15	20	3	54.3	34.938	-5.470	19.0	5.00	225.3	1.938	3.94
13 1965 16 29 15 26 36.1 35.751 -5.598 33.0 3.00 293.6 -1.727 0.31 14 1965 12 5 18 100 3.50 291.8 -0.949 0.544 15 1966 2 23 3 16 10.3 35.433 -6.683 3.00 20.94 -0.970 0.53 17 1966 6 8 5 32 37.2 35.510 -5.130 5.0 3.00 290.4 -0.070 0.53 18 1966 13 41 4 15 2.1 5.531 5.01 0.00 4.00 297.8 -0.037 1.01 19 14 4 12 1.00 31.30 -5.431 5.0 4.10 23.27 0.572 1.53 21 1967 8 28 21 0.3 3.536 -5.70 0.0 4.100.4 1.33 4.32	12	1965	4	14	18	5	18.8	35.416	-6.160	5.0	3.60	238.4	-0.294	0.84
	13	1965	6	29	15	26	36.1	35,751	-5.598	33.0	3.00	293.6	-1.727	0.31
	14	1965	12	1	18	11	40.2	36.004	-6.586	14.0	3.50	291.8	-0.949	0.54
10.3 10.3 <th< td=""><td>15</td><td>1965</td><td>12</td><td>5</td><td>3</td><td>50</td><td>13.0</td><td>34 843</td><td>-5 698</td><td>5.0</td><td>4 40</td><td>203.7</td><td>1 296</td><td>2 53</td></th<>	15	1965	12	5	3	50	13.0	34 843	-5 698	5.0	4 40	203.7	1 296	2 53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	16	1966	2	23	3	16	16.3	35 443	-6 683	33.0	3.10	229.0	-0.970	0.53
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	1966	- 6	23	5	32	37.2	35 510	-5 130	5.0	3.00	222.0	-1 719	0.32
	18	1966	12	18	10	46	28.1	35 801	-7 596	40.0	4.00	270.8	-0.037	1.01
	10	1067	12	11	10	12	20.1	25 241	0.174	14.0	3.70	270.0	0.648	0.66
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1907	3	17	4	13	40.7	24 026	-9.174	5.0	3.70 4.10	291.7	-0.048	1.53
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	20	1907	<i></i>	17	21	15	49.7	21 200	-5.451	5.0	4.10	227.5	1.160	2.20
121 1970 19 100 11 100 11 100 11 100 11	21	1967	ð 0	28	21	15	0.0	21,400	-0.299	0.0	4.60	242.9	1.100	2.30
15 1967 59 24 11 88 0.0 3.2.30 5.7.00 0.0 4.30 100.6 1.7.34 5.3.42 24 1968 1 22 7 19 81 3.5.15 4.7.88 16.0 4.00 299.1 -0.261 0.86 26 1968 6 15 22 14 1 58.9 34.83 4.408 26.0 4.00 299.1 -0.261 0.86 28 1969 2 10 19 30.7 7.9 3.220 -6.651 6.00 3.10 98.4 0.746 1.73 29 1969 4 12 0 2 6.0 32.000 -6.200 0.0 4.400 174.2 1.683 3.30 30 1969 6 11 3 18 8.6 35.940 +8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 11 2 7.7 35.188 -6.095 33.0 3.70 244.3 0.212 0.88 </td <td>22</td> <td>1967</td> <td>0</td> <td>30</td> <td>18</td> <td>21</td> <td>0.0</td> <td>31.499</td> <td>-0.000</td> <td>0.0</td> <td>4.10</td> <td>252.2</td> <td>0.522</td> <td>1.48</td>	22	1967	0	30	18	21	0.0	31.499	-0.000	0.0	4.10	252.2	0.522	1.48
24 1998 1 22 1 19 8.1 35.160 -5.833 40.0 4.10 223.4 0.578 1.54 25 1968 4 3 5 27 13.7 35.15 4.788 16.00 299.1 -0.261 0.867 27 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 274.1 -0.791 0.60 28 1969 2 10 19 30 7.9 34.220 -6.651 60.0 3.10 98.4 0.766 1.73 30 1969 6 11 3 18 8.6 35.940 -8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 11 2 7 6.0 35.026 -4.948 3.30 3.80 266.2 -0.286 0.85 3.6 0.290 28.00 -1.814 0.30 31 1970 2 19 12 53.546 -5.555 10.0 2.61.0	23	1967	9	24	1/	8	0.0	32.500	-5.700	0.0	4.30	160.6	1./34	3.42
25 1908 4 3 5 27 133, 1 35, 31 44, 788 16, 0 400 299, 1 -0,201 0.86 26 1968 5 22 14 1 58, 9 34.883 -4.408 26, 0 4.00 295, 9 -0,201 0.86 27 1968 6 15 21 37 41, 9 35, 19 -5, 501 50.0 3, 50 274, 1 -0, 791 0, 60 28 1969 4 12 0 2 6.0 32,000 -6,201 0.0 4,404 174,2 1.683 3,33 30 1969 6 11 3 18 8.6 35,040 -8,051 50.0 3,70 266,2 -0,286 0,85 31 1970 1 1 4 71 12.6 35,896 -7,363 50 290 244,3 0,212 2,88 35 1970 11 4 19 <td>24</td> <td>1968</td> <td>1</td> <td>22</td> <td>/</td> <td>19</td> <td>8.1</td> <td>35.136</td> <td>-5.833</td> <td>40.0</td> <td>4.10</td> <td>223.4</td> <td>0.578</td> <td>1.54</td>	24	1968	1	22	/	19	8.1	35.136	-5.833	40.0	4.10	223.4	0.578	1.54
10 1968 6 12 14 1 18.9 34.883 -4.408 20.0 4.00 295.9 -0.240 0.87 27 1968 6 15 21 37 41.9 35.191 -5.021 5.0 35.50 274.1 -0.791 0.60 28 1969 2 10 19 30 7.9 34.220 -6.651 60.0 3.10 98.4 0.746 1.73 30 1969 6 11 3 18 8.6 35.940 -8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 1 2.7 6.0 35.026 -4.948 3.0 3.30 217.3 -0.542 0.71 33 1970 4 19 12.6 35.986 -7.363 5.0 2.90 288.0 -1.814 0.30 34 1970 1 4 19 35.36 8.311 20.0	25	1968	4	3	5	27	33.7	35.315	-4.788	16.0	4.00	299.1	-0.261	0.86
27 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 274.1 -0.791 0.60 28 1969 2 10 19 30 7.9 34.220 -6.651 60.0 3.10 98.4 0.746 1.73 30 1969 6 11 3 18 8.6 35.940 -8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 11 2 7 6.0 35.926 -4.948 33.0 3.80 266.2 -0.286 0.85 32 1970 4 25 4 7 12.6 55.986 -7.363 5.0 2.90 288.0 -1.814 0.30 34 1970 7 9 0 41 49.1 35.36 -8.311 20.0 3.70 244.3 -0.212 0.89 35 1970 11 4 19 12 38.4310 0.5.200 0.0 4.60 231.0 1.822 2.50 <	26	1968	5	22	14	1	58.9	34.883	-4.408	26.0	4.00	295.9	-0.240	0.87
28 1969 2 10 19 30 7.9 34.220 -6.651 60.0 3.10 98.4 0.746 1.73 29 1969 4 12 0 2 6.0 32.000 -6.620 0.0 4.40 174.2 1.683 3.30 30 1969 6 11 1 2 7 6.0 35.026 -4.948 33.0 3.80 266.2 -0.855 0.64 31 1970 1 11 2 7 6.0 35.026 -4.948 33.0 3.30 217.3 -0.542 0.71 33 1970 4 25 4 7 12.6 35.986 -7.363 5.0 2.90 288.0 -1.814 0.30 34 1970 7 9 0 41 49.1 35.36 -3.311 20.0 3.40 2.210 0.353 35 1970 11 4 20 47	27	1968	6	15	21	37	41.9	35.191	-5.021	5.0	3.50	274.1	-0.791	0.60
29 1969 4 12 0 2 6.0 32.00 -6.200 0.0 4.40 174.2 1.683 3.30 30 1969 6 11 3 18 8.6 35.940 -8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 11 2 5 27.4 35.188 -6.095 33.0 3.30 217.3 -0.542 0.71 33 1970 4 25 4 7 12.6 35.926 -7.363 5.0 2.90 288.0 -1.814 0.30 34 1970 7 9 0 41 49.1 35.36 -8.311 20.0 2.50 291.2 -2.443 0.19 35 1970 11 4 19 2 8.5 35.100 -5.200 10.0 4.60 189.1 1.780 3.53 38 1971 8 12 11 8.5	28	1969	2	10	19	30	7.9	34.220	-6.651	60.0	3.10	98.4	0.746	1.73
30 1969 6 11 3 18 8.6 35.940 -8.051 5.0 3.70 296.3 -0.685 0.64 31 1970 1 11 2 7 6.0 35.026 -4.948 33.0 3.80 266.2 -0.286 0.85 32 1970 2 19 12 5 27.4 35.188 -6.095 33.0 3.30 217.3 -0.542 0.71 34 1970 7 9 0 41 49.1 35.36 -8.311 20.0 3.70 244.3 -0.212 0.89 35 1970 11 4 19 12 38.6 35.929 -6.203 10.0 2.50 231.0 1.282 2.50 37 1971 7 2 21 11 8.5 34.100 -5.205 5.0 3.20 233.8 -0.845 0.58 39 1971 9 24 5 <td< td=""><td>29</td><td>1969</td><td>4</td><td>12</td><td>0</td><td>2</td><td>6.0</td><td>32.000</td><td>-6.200</td><td>0.0</td><td>4.40</td><td>174.2</td><td>1.683</td><td>3.30</td></td<>	29	1969	4	12	0	2	6.0	32.000	-6.200	0.0	4.40	174.2	1.683	3.30
311970111276.0 35.026 -4.948 33.0 3.80 266.2 -0.286 0.85 321970219125 27.4 35.188 -6.095 33.0 3.00 217.3 -0.542 0.711 3319704254712.6 35.986 -7.363 5.0 2.900 288.00 -1.814 0.301 3419707904149.1 35.336 -8.311 20.0 3.70 244.3 -0.212 0.89 3519701141912 38.6 35.929 -6.203 10.0 2.50 291.2 -2.443 0.19 3619713142047 37.6 35.269 -5.955 10.0 4.60 189.1 1.780 3.53 3819718121152 2.7 35.074 -5.255 5.0 3.20 233.8 -0.845 0.58 391971924533 13.9 34.913 -4.570 14.0 4.00 285.4 -0.144 0.93 4019722271214 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 4119725734 32.0 35.256 -6.211 13.0 3.40 220.1 -0.400 0.78 421972	30	1969	6	11	3	18	8.6	35.940	-8.051	5.0	3.70	296.3	-0.685	0.64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1970	1	11	2	7	6.0	35.026	-4.948	33.0	3.80	266.2	-0.286	0.85
3319704254712.635.986 -7.363 5.02.90288.0 -1.814 0.303419707904149.135.336 -8.311 20.03.70244.3 -0.212 0.89351970114191238.635.929 -6.203 10.02.50291.2 -2.443 0.19361971314204737.635.269 -5.955 10.04.60189.11.7803.5338197181211522.735.074 -5.525 5.03.20233.8 -0.845 0.5839197192453313.934.913 -4.570 14.04.00285.4 -0.144 0.9340197222712146.234.821 -8.818 5.04.70227.31.4742.86411972573432.035.256 -6.211 13.03.40220.1 -0.400 0.78421972625154538.032.430 -5.580 0.03.00174.1 -0.416 0.7743197210421012.731.960 -5.960 1.03.60189.10.2801.2544197322211814.234.240 -5.370 5.03.00182.2 <td>32</td> <td>1970</td> <td>2</td> <td>19</td> <td>12</td> <td>5</td> <td>27.4</td> <td>35.188</td> <td>-6.095</td> <td>33.0</td> <td>3.30</td> <td>217.3</td> <td>-0.542</td> <td>0.71</td>	32	1970	2	19	12	5	27.4	35.188	-6.095	33.0	3.30	217.3	-0.542	0.71
34 1970 7 9 0 41 49.1 35.336 -8.311 20.0 3.70 244.3 -0.212 0.89 35 1970 11 4 19 12 38.6 33.929 -6.203 10.0 2.50 291.2 -2.443 0.19 36 1971 3 14 20 47 37.6 35.269 -5.955 10.0 4.60 231.0 1.282 2.50 37 1971 7 2 21 11 85 34.100 -5.200 0.0 4.60 189.1 1.780 3.53 38 1971 9 24 5 33 13.9 34.913 -4.570 14.0 4.00 285.4 -0.144 0.93 40 1972 2 27 12 14 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 41 1972 16 25 15	33	1970	4	25	4	7	12.6	35.986	-7.363	5.0	2.90	288.0	-1.814	0.30
35 1970 11 4 19 12 38.6 35.929 -6.203 10.0 2.50 291.2 -2.443 0.19 36 1971 3 14 20 47 37.6 35.269 -5.955 10.0 4.60 231.0 1.282 2.50 37 1971 7 2 21 11 8.5 34.100 -5.200 0.0 4.60 189.1 1.780 3.53 38 1971 8 12 11 8.5 2.7 35.074 -5.525 50 3.20 233.8 -0.845 0.58 39 1971 9 24 5 33 13.9 34.913 -4.570 14.0 285.4 -0.144 0.93 40 1972 2 27 12 14 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 41 1972 6 25 15 45 38.0 32.430 -5.580 0.0 3.00 174.1 -0.416 0.77 43 1972 10 4 21 0 12.7 31.960 -5.960 1.0 3.60 189.1 0.280 1.25 44 1972 11 15 4 18 9.9 32.750 -5.580 2.0 3.50 154.8 0.623 1.59 45 1972 12 23 8 10 6.000 1.0 2.90 17	34	1970	7	9	0	41	49.1	35.336	-8.311	20.0	3.70	244.3	-0.212	0.89
36 1971 3 14 20 47 37.6 35.269 -5.955 10.0 4.60 231.0 1.282 2.50 37 1971 7 2 21 11 8.5 34.100 -5.200 0.0 4.60 189.1 1.780 3.53 38 1971 9 24 5 33 13.9 34.913 -4.570 14.0 4.00 285.4 -0.144 0.93 40 1972 2 27 12 14 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 41 1972 5 7 3 4 32.0 35.256 -6.211 13.0 3.40 220.1 -0.400 0.78 42 1972 6 25 15 45 38.0 32.430 -5.580 0.0 3.00 174.1 -0.416 0.77 43 1972 10 4 21 0 12.7 31.960 -5.960 1.0 3.60 189.1 0.280 1.25 44 1972 11 15 4 8 9 32.750 -5.580 2.0 3.50 154.8 0.623 1.59 44 1972 12 23 8 10 6.7 32.038 -6.000 1.0 2.90 179.9 -0.646 0.66 46 1973 2 2 21 18 14.2 34.240 -5.370	35	1970	11	4	19	12	38.6	35.929	-6.203	10.0	2.50	291.2	-2.443	0.19
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	36	1971	3	14	20	47	37.6	35.269	-5.955	10.0	4.60	231.0	1.282	2.50
38197181211522.7 35.074 -5.525 5.0 3.20 233.8 -0.845 0.58 39197192453313.9 34.913 -4.570 14.0 4.00 285.4 -0.144 0.93 4019722271214 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 4119725734 32.0 35.256 -6.211 13.0 3.40 220.1 -0.400 0.78 4219726251545 38.0 32.430 -5.580 0.0 3.00 174.1 -0.416 0.77 431972104210 12.7 31.960 -5.960 1.0 3.60 189.1 0.280 1.25 44197211154 18 9.9 32.750 -5.580 2.0 3.50 154.8 0.623 1.59 4519721223810 6.7 32.038 -6.000 1.0 2.90 179.9 -0.646 0.66 4619732221 18 14.2 34.240 -5.370 5.0 3.00 182.2 -0.529 0.72 4719732161 36 38.6 32.150 -5.820 0.0 3.10 179.8 -0.345 0.81 491973 <td< td=""><td>37</td><td>1971</td><td>7</td><td>2</td><td>21</td><td>11</td><td>8.5</td><td>34.100</td><td>-5.200</td><td>0.0</td><td>4.60</td><td>189.1</td><td>1.780</td><td>3.53</td></td<>	37	1971	7	2	21	11	8.5	34.100	-5.200	0.0	4.60	189.1	1.780	3.53
39 1971 9 24 5 33 13.9 34.913 -4.570 14.0 4.00 285.4 -0.144 0.93 40 1972 2 27 12 14 6.2 34.821 -8.818 5.0 4.70 227.3 1.474 2.86 41 1972 6 25 15 45 38.0 32.430 -5.580 0.0 3.00 174.1 -0.416 0.77 43 1972 10 4 21 0 12.7 31.960 -5.960 1.0 3.60 189.1 0.280 1.25 44 1972 11 15 4 18 9.9 32.750 -5.580 2.0 3.50 154.8 0.623 1.59 45 1972 12 23 8 10 6.7 32.038 -6.000 1.0 2.90 179.9 -0.646 0.66 46 1973 2 16 1 <t< td=""><td>38</td><td>1971</td><td>8</td><td>12</td><td>11</td><td>52</td><td>2.7</td><td>35.074</td><td>-5.525</td><td>5.0</td><td>3.20</td><td>233.8</td><td>-0.845</td><td>0.58</td></t<>	38	1971	8	12	11	52	2.7	35.074	-5.525	5.0	3.20	233.8	-0.845	0.58
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1971	9	24	5	33	13.9	34.913	-4.570	14.0	4.00	285.4	-0.144	0.93
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	1972	2	27	12	14	6.2	34.821	-8.818	5.0	4.70	227.3	1.474	2.86
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	41	1972	5	7	3	4	32.0	35.256	-6.211	13.0	3.40	220.1	-0.400	0.78
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	42	1972	6	25	15	45	38.0	32.430	-5.580	0.0	3.00	174.1	-0.416	0.77
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	43	1972	10	4	21	0	12.7	31.960	-5.960	1.0	3.60	189.1	0.280	1.25
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	44	1972	11	15	4	18	9.9	32.750	-5.580	2.0	3.50	154.8	0.623	1.59
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	45	1972	12	23	8	10	6.7	32.038	-6.000	1.0	2.90	179.9	-0.646	0.66
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	46	1973	2	2	21	18	14.2	34.240	-5.370	5.0	3.00	182.2	-0.529	0.72
48 1973 2 16 1 36 38.6 32.150 -5.820 0.0 3.10 179.8 -0.345 0.81 49 1973 2 19 11 13 47.9 34.761 -4.615 5.0 3.10 272.4 -1.375 0.40 50 1973 2 19 11 8 49.3 34.758 -4.488 10.0 3.60 282.1 -0.714 0.63 51 1973 2 24 20 14 53.6 32.090 -5.960 2.0 3.30 177.2 -0.009 1.03 52 1973 3 1 23 20 34.3 32.170 -5.990 1.0 2.20 168.3 -1.533 0.36 53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 <td>47</td> <td>1973</td> <td>2</td> <td>5</td> <td>6</td> <td>52</td> <td>0.7</td> <td>35.170</td> <td>-4.879</td> <td>26.0</td> <td>3.00</td> <td>281.8</td> <td>-1.620</td> <td>0.34</td>	47	1973	2	5	6	52	0.7	35.170	-4.879	26.0	3.00	281.8	-1.620	0.34
49 1973 2 19 11 13 47.9 34.761 -4.615 5.0 3.10 272.4 -1.375 0.40 50 1973 2 19 11 8 49.3 34.758 -4.488 10.0 3.60 282.1 -0.714 0.63 51 1973 2 24 20 14 53.6 32.090 -5.960 2.0 3.30 177.2 -0.009 1.03 52 1973 3 1 23 20 34.3 32.170 -5.990 1.0 2.20 168.3 -1.533 0.36 53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47	48	1973	2	16	1	36	38.6	32.150	-5.820	0.0	3.10	179.8	-0.345	0.81
50 1973 2 19 11 8 49.3 34.758 -4.488 10.0 3.60 282.1 -0.714 0.63 51 1973 2 24 20 14 53.6 32.090 -5.960 2.0 3.30 177.2 -0.009 1.03 52 1973 3 1 23 20 34.3 32.170 -5.990 1.0 2.20 168.3 -1.533 0.36 53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12	49	1973	2	19	11	13	47.9	34.761	-4.615	5.0	3.10	272.4	-1.375	0.40
51 1973 2 24 20 14 53.6 32.090 -5.960 2.0 3.30 177.2 -0.009 1.03 52 1973 3 1 23 20 34.3 32.170 -5.990 1.0 2.20 168.3 -1.533 0.36 53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59.9 33.820 -5.130 17.0 3.40 184.9 0.025 1.05	50	1973	2	19	11	8	49.3	34.758	-4.488	10.0	3.60	282.1	-0.714	0.63
52 1973 3 1 23 20 34.3 32.170 -5.990 1.0 2.20 168.3 -1.533 0.36 53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59.9 33.800 -51.30 17.0 3.40 184.9 0.025 1.05	51	1973	2	24	20	14	53.6	32.090	-5.960	2.0	3.30	177.2	-0.009	1.03
53 1973 3 1 3 37 35.9 32.820 -4.289 1.0 3.00 265.0 -1.457 0.38 54 1973 3 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59.9 33.820 -5.130 17.0 3.40 184.9 0.025 1.05	52	1973	3	1	23	20	34.3	32.170	-5.990	1.0	2.20	168.3	-1.533	0.36
54 1973 3 3 15 9 59.8 32.090 -6.280 110.0 3.50 161.9 0.045 1.07 55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59 33.820 -5.130 17.0 3.40 184.9 0.025 1.05	53	1973	3	1	3	37	35.9	32.820	-4.289	1.0	3.00	265.0	-1.457	0.38
55 1973 3 5 6 52 37.0 32.150 -4.430 4.0 3.30 280.5 -1.148 0.47 56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59.9 33.820 -5.130 17.0 3.40 184.9 0.025 1.05	54	1973	3	3	15	9	59.8	32.090	-6.280	110.0	3.50	161.9	0.045	1.07
56 1973 3 7 14 59 10.6 32.080 -6.160 1.0 3.30 168.2 0.120 1.12 57 1973 3 8 17 52 59.9 33.820 -5.130 17.0 3.40 184.9 0.025 1.05	55	1973	3	5	6	52	37.0	32 150	-4 430	4.0	3 30	280.5	-1 148	0.47
57 1973 3 8 17 52 59 9 33 820 -5 130 17.0 3.40 184.9 0.025 1.05	56	1973	3	7	14	59	10.6	32.130	-6 160	1.0	3 30	168.2	0.120	1 12
	57	1973	3	8	17	52	59.9	33.820	-5,130	17.0	3.40	184.9	0.025	1.05

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (1/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

				(T		10 01	11, 110	Eagel	Magnituda	Enicontrol	~ "	
No	Voor	Month	Dav		Time		Нурс	ocenter	Dopth	in	Distance	Cornell	's Analysis
140.	1 cai	wonun	Day	Hour	Min	Sec	Latitude	Longitude	(km)	III Richter Scale	(km)	(Imm)	(gal)
58	1073	2	10	22	20	20.1	N 25.405	E 5 402	(KIII) 20.0		(KIII) 265.4	1.026	(gai)
50	1973	2	10	23	25	12 4	24 600	-5.495	1.0	3.30	205.4	-1.020	0.31
59	1973	2	15	20	25	45.4	21 720	-4.390	22.0	3.00	200.5	-1.031	0.55
00	1973	2	27	14	4	49.8	31.720	-4.859	33.0	3.40	270.2	-0.977	0.55
61	1973	3	29	12	4	47.8	32.290	-5.600	100.0	3.20	182.7	-0.559	0.70
62	1973	3	30	11	/	49.7	32.550	-4.240	2.0	3.50	278.1	-0.826	0.58
63	1973	4	8	15	55	7.5	33.220	-5.779	2.0	3.40	120.3	1.092	2.20
64	1973	5	19	20	49	3.5	32.470	-5.570	2.0	3.80	172.2	0.812	1.81
65	1973	6	1	18	13	30.1	33.929	-6.840	29.0	3.40	62.0	2.433	5.54
66	1973	6	3	0	45	57.7	35.550	-6.979	26.0	3.10	238.4	-1.058	0.50
67	1973	6	25	21	25	21.8	35.559	-7.399	2.0	2.80	241.4	-1.525	0.36
68	1973	7	24	8	57	15.5	33.039	-5.050	5.0	3.70	190.6	0.410	1.37
69	1973	7	31	1	25	27.8	32.100	-6.289	149.0	2.70	160.6	-1.434	0.38
70	1973	8	24	8	4	32.8	34.420	-4.840	2.0	3.20	234.9	-0.857	0.57
71	1973	9	16	12	37	39.7	34.199	-7.649	52.0	3.00	104.4	0.566	1.53
72	1973	9	23	0	6	19.8	34.120	-5.940	102.0	3.30	130.8	0.154	1.15
73	1973	10	1	16	20	31.7	35.090	-5.770	4.0	3.50	222.1	-0.269	0.86
74	1973	10	8	5	33	4.6	35.440	-6.620	5.0	2.70	229.7	-1.552	0.35
75	1973	10	9	14	47	12.8	32.408	-5.350	1.0	3.60	192.8	0.232	1.21
76	1973	10	16	11	38	56.2	34.070	-5.390	133.0	4.50	171.7	1.288	2.51
77	1973	12	11	20	58	12.8	31.939	-6.450	165.0	2.60	171.3	-1.787	0.30
78	1974	1	17	10	31	38.1	30.890	-8.048	1.0	4.00	292.9	-0.205	0.90
79	1974	2	3	23	21	54.3	34.649	-5.419	5.0	3.40	205.7	-0.228	0.88
80	1974	2	9	13	49	31.2	35,120	-4.740	14.0	2.90	287.5	-1.812	0.30
81	1974	3	9	11	33	58.0	31.230	-8.268	2.0	3.50	265.5	-0.711	0.63
82	1974	3	19	17	50	57.5	35 649	-7 470	1.0	2.90	252.2	-1 483	0.37
83	1974	3	25	13	44	43.2	34 859	-4 480	1.0	3 30	288.9	-1 221	0.44
84	1974	3	28	3	23	23.2	34 850	-4 470	0.0	3.10	289.1	-1 523	0.36
85	1074	4	20	12	16	3.4	31.880	-6.220	1.0	3.70	185.3	0.480	1.44
86	1074	4	25	12	53	1.0	22 570	-0.220	60.0	3.70	105.3	0.400	1.44
80 97	1974	-+	21	10	55	21.4	24.950	-0.170	48.0	3.30	272.1	0.029	0.52
0/	1974	כ ד	51	10	51	21.4	24.630	-9.430	46.0	3.40	275.1	-0.909	0.35
80	1974	7	4	21	1	0.1	34.579	-8.039	120.0	2.80	190.9	-1.445	0.58
89	1974	11	4	4	10	55.0	33.900	-5.529	2.0	3.50	152.5	0.004	1.05
90	1974	11	3	17	18	59.6	33.110	-5.020	2.0	3.20	191.9	-0.356	0.81
91	1974	12	8	17	12	38.3	32.570	-7.470	65.0	2.70	99.6	0.068	1.08
92	1975	1	9	12	33	22.3	35.059	-5.756	51.0	3.30	220.0	-0.609	0.68
93	1975	1	23	20	27	14.0	33.100	-5.210	1.0	3.20	174.7	-0.124	0.95
94	1975	1	29	7	48	5.9	33.910	-5.010	2.0	3.50	198.3	0.012	1.04
95	1975	2	10	15	53	2.6	35.820	-7.350	4.0	2.90	269.6	-1.649	0.33
96	1975	3	27	5	21	22.8	31.640	-6.759	2.0	3.60	196.8	0.181	1.17
97	1975	5	6	15	10	52.2	35.610	-8.509	0.0	3.40	279.7	-0.991	0.52
98	1975	5	7	6	37	4.3	35.870	-7.600	1.0	3.10	278.4	-1.429	0.38
99	1975	6	20	6	45	49.6	30.720	-7.089	0.0	3.50	296.8	-0.988	0.52
100	1975	6	24	4	28	14.5	31.720	-6.440	117.0	2.60	194.6	-1.673	0.33
101	1975	6	29	8	0	40.5	33.520	-5.600	38.0	2.70	135.9	-0.349	0.81
102	1975	7	5	22	20	53.8	35.160	-5.069	91.0	3.00	268.6	-1.625	0.34
103	1975	8	3	19	11	51.4	33.070	-5.319	5.0	3.50	165.4	0.459	1.42
104	1975	8	3	0	20	58.9	33.199	-5.250	12.0	3.40	169.2	0.248	1.23
105	1975	8	15	13	26	16.0	31.359	-7.480	2.0	3.70	229.4	-0.049	1.00
106	1975	10	25	18	9	59.1	32.408	-5.270	112.0	2.70	199.0	-1.536	0.36
107	1975	10	29	22	22	14.7	31.359	-7.970	17.0	3.30	241.5	-0.782	0.60
108	1975	11	1	19	20	17.9	32.240	-5.790	153.0	2.60	174.1	-1.724	0.31
109	1975	11	3	9	35	35.4	31.640	-6.299	135.0	2.60	207.2	-1.884	0.28
110	1975	11	9	17	31	2.7	34.350	-4.280	2.0	3.50	278.6	-0.831	0.58
111	1975	11	13	6	37	42.6	32.628	-4.230	1.0	3.00	276.2	-1.559	0.35
112	1975	11	14	10	41	19.3	32 360	-4 820	103.0	3.00	237 5	-1.398	0.39
113	1975	11	17	14	46	22.9	33 540	-4 640	9.0	3.50	225.0	-0.302	0.84
114	1975	12	7	10	17	34.0	34.606	-4.668	60.0	2.60	259.0	-2.065	0.25

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (2/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

				(240	m.			1, 10	Essal	Manuituda	Enicontrol		
No	Vaar	Month	Dav		Time		Нуро	ocenter	Focal	Magnitude	Distance	Cornell	's Analysis
INO.	rear	Month	Day	Hour	Min	Sec	Latitude	Longitude	Deptn	in D'alta Carl	Distance	Intensity	Acceleration
					10		N	E	(KM)	Richter Scale	(KIII)	(Imm)	(gal)
115	1975	12	8	19	40	16.8	34.129	-4.440	30.0	3.30	256.2	-0.939	0.54
116	1975	12	10	6	35	9.7	32.620	-5.350	126.0	2.60	180.5	-1.596	0.34
117	1975	12	10	3	37	46.5	33.520	-4.800	26.0	2.90	210.0	-1.048	0.50
118	1976	1	8	13	37	38.3	35.129	-5.730	89.0	3.40	227.8	-0.657	0.66
119	1976	1	20	3	55	19.0	31.340	-5.470	128.0	3.20	271.6	-1.467	0.37
120	1976	2	5	4	55	0.4	33.990	-5.779	13.0	3.00	135.5	0.190	1.18
121	1976	2	6	1	27	39.0	32,360	-5 170	1.0	4 00	209.7	0.625	1 59
122	1976	2	6	10	41	16.2	33 129	-4 680	55.0	3.10	222.8	-0.949	0.54
122	1076	2	12	10	41	0.2	21 420	-4.000	1.0	2.50	222.0	0.629	0.54
123	1970	2	10	12	20	10.1	24.940	-5.000	1.0	3.50	200.8	-0.028	0.07
124	1976	2	18	6	39	10.1	34.840	-4.340	87.0	3.40	298.6	-1.255	0.43
125	1976	3	5	20	4	5.5	32.320	-4./59	94.0	3.50	244.6	-0.6/9	0.65
126	1976	3	16	18	37	57.6	33.300	-4.890	23.0	4.30	201.6	1.157	2.30
127	1976	4	13	19	23	19.3	34.280	-4.920	14.0	4.20	221.1	0.788	1.78
128	1976	4	15	16	6	15.1	33.920	-6.280	5.0	3.90	92.3	2.477	5.72
129	1976	4	20	11	2	31.3	31.790	-6.130	111.0	3.50	197.9	-0.321	0.83
130	1976	8	28	4	16	28.5	35.800	-8.200	5.0	3.40	286.5	-1.051	0.50
131	1976	10	5	8	28	29.3	34.830	-7.700	5.0	3.10	169.5	-0.200	0.90
132	1976	11	8	21	14	54.7	32.129	-5.910	1.0	3.00	176.4	-0.448	0.76
133	1977	1	7	15	20	42.9	32 600	-5 770	2.0	3.60	148 7	0.873	1.89
134	1077	2	10	10	54	9.4	35 200	-6.740	1.0	3.10	211.5	-0.747	0.62
125	1077	2	2	1/	42	15.0	24.050	-0.740	20.0	2.20	211.5	-0.747	0.62
135	1977	5	10	14	43	15.9	34.950	-8.410	20.0	3.20	213.0	-0.020	0.67
136	1977	3	12	6	59	16.9	34.230	-4.820	59.0	3.30	227.2	-0.705	0.63
137	1977	6	3	11	55	2.4	32.250	-6.100	1.0	3.20	155.2	0.168	1.16
138	1977	6	26	17	2	44.5	35.310	-5.170	31.0	2.60	274.8	-2.162	0.23
139	1977	8	23	22	34	56.0	32.380	-5.040	128.0	2.80	218.7	-1.645	0.33
140	1977	8	30	6	3	38.1	31.230	-6.870	21.0	3.00	240.9	-1.229	0.44
141	1977	9	1	18	35	14.1	32.800	-5.510	125.0	3.40	158.2	-0.178	0.91
142	1977	9	9	12	20	20.0	33.170	-4.170	2.0	4.10	269.4	0.153	1.15
143	1977	10	25	13	1	41.5	31.440	-5.610	2.0	2.90	255.2	-1.513	0.36
144	1977	10	27	13	15	34.7	32 789	-5 299	107.0	3 30	176.7	-0.388	0.79
145	1077	11	_,	4	37	53	33 020	-5.240	17.0	3 70	178.6	0.560	1.52
145	1077	11	6	17	25	2.5	22.020	4 750	78.0	3.70	217.1	1 1 1 2	0.48
140	1977	11	0	17	55	5.0	35.039	-4.739	16.0	3.00	217.1	-1.112	0.48
147	1977	11	11	15	54	3.5	35.090	-/.990	16.0	3.80	206.5	0.355	1.32
148	1978	1	16	9	56	48.9	32.210	-6.020	1.0	2.40	163.1	-1.155	0.47
149	1978	2	8	21	42	50.5	31.970	-5.950	2.0	4.30	188.7	1.335	2.60
150	1978	3	2	14	25	19.0	35.900	-7.500	0.0	2.90	280.1	-1.744	0.31
151	1978	3	5	16	47	55.6	31.820	-5.970	45.0	3.40	201.9	-0.242	0.87
152	1978	3	24	12	14	26.0	35.800	-7.000	0.0	2.80	266.0	-1.766	0.30
153	1978	4	10	19	3	47.4	34.180	-6.000	52.0	3.20	130.8	0.408	1.37
154	1978	4	22	2	56	3.8	31.980	-6.850	5.0	3.50	158.4	0.567	1.53
155	1978	4	24	21	7	33.4	33.810	-5.940	15.0	3.80	113.2	1.818	3.63
156	1978	4	27	22	7	53.4	34.900	-9.130	5.0	3.50	254.7	-0.608	0.68
157	1978	5	12		24	40.4	33 670	-8 969	1.0	4 10	180.5	1 146	2.28
158	1078	6	12	20	11	23.8	30.869	-6.820	1.0	3.10	281.1	-1.453	0.38
150	1079	0	20	20	22	23.0 55.0	25.000	4 000	1.0	2.00	267.5	1 620	0.38
1.0	1970	2	20	2	25	27.7	26,000	-4.900	20.0	2.90	207.5	-1.050	0.33
100	1978	9	23	1	50	51.1	30.000	-0.800	20.0	4.20	289.1	0.121	1.12
161	1978	11	6	3	20	53.6	31.099	-5.749	133.0	3.70	282.3	-0.813	0.59
162	1978	11	6	3	23	46.6	31.120	-5.629	102.0	3.70	285.2	-0.739	0.62
163	1978	11	23	7	11	40.0	35.000	-6.200	0.0	3.60	194.3	0.213	1.20
164	1978	11	23	7	12	36.0	35.000	-6.200	0.0	3.10	194.3	-0.537	0.71
165	1978	12	5	18	20	42.0	35.000	-4.800	0.0	2.70	274.6	-1.995	0.26
166	1978	12	23	5	29	6.0	34.900	-4.600	0.0	3.00	282.3	-1.614	0.34
167	1979	1	2	15	39	58.8	31.778	-4.911	96.0	3.20	268.3	-1.337	0.41
168	1979	1	4	13	9	29.2	34.091	-5.723	8.0	2.80	145.6	-0.279	0.85
169	1979	1	4	9	27	35.7	34 260	-5 636	4.0	2.90	162.8	-0.400	0.78
170	1979	1	17	17	43	27.0	33 400	-5 399	0.0	4 50	153.9	2 138	4 52
171	1070	1	10	1	-5	21.0	33 /61	5.062	16.0	2.00	185.2	_0.720	0.62
1/1	17/9	1	17	1	7	21.2	55.401	-5.005	10.0	2.70	103.3	-0.729	0.04

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (3/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

				(T			1, 10	Eagol	Magnituda	Enicontrol	~ "	
No	Voor	Month	Dov		Time		Нурс	ocenter	Dopth	in	Distance	Cornell	's Analysis
10.	i cai	wonun	Day	Hour	Min	Sec	Latitude	Longitude	(lem)	III Diahtar Saala	(km)	(Imm)	Acceleration
170	1070	-	~	10	24	26.5	N	E 5 020	(KIII)	Richler Scale	(KIII)	(111111)	(gal)
172	1979	2	2	13	34	36.5	33.479	-5.028	19.0	2.90	188.6	-0.776	0.60
173	1979	2	9	3	27	48.6	35.631	-8.631	10.0	2.80	287.4	-1.960	0.27
174	1979	2	14	3	6	4.3	33.500	-6.629	68.0	2.50	41.1	0.735	1.72
175	1979	2	21	3	10	12.9	34.601	-7.015	2.0	2.90	133.2	0.093	1.10
176	1979	2	24	6	28	56.5	33.441	-4.633	6.0	2.90	225.2	-1.203	0.45
177	1979	2	24	21	19	22.6	34.906	-4.418	5.0	4.30	296.6	0.213	1.20
178	1979	2	28	4	18	0.5	35.719	-8.441	10.0	2.70	287.5	-2.110	0.24
179	1979	3	5	1	22	20.0	34.400	-6.000	0.0	2.00	148.0	-1.516	0.36
180	1979	3	7	19	21	34.0	31.099	-6.399	0.0	3.50	262.0	-0.678	0.65
181	1979	3	11	6	42	5.0	35.000	-4.500	0.0	3.10	296.4	-1.585	0.35
182	1979	3	15	14	42	2.9	32.691	-5.391	52.0	2.40	173.4	-1.412	0.39
183	1979	3	16	23	38	15.0	35,000	-4 500	0.0	3 50	296.4	-0.985	0.52
184	1979	3	17	1	25	19.0	34 800	-4 399	0.0	3 30	291.6	-1 244	0.52
185	1070	3	10	16	11	22.5	33 300	5 500	0.0	2.70	145.0	0.415	0.78
105	1979	2	19	10	56	21	22 411	-5.500	5.0	2.70	143.0	-0.415	0.78
100	1979	2	19	15	20	2.1	22.200	-5.411	5.0	2.70	152.0	-0.340	0.71
18/	1979	2	19	15	39	10.4	33.290	-5.254	4.0	3.40	10/.8	0.275	1.25
188	1979	3	25	11	13	25.0	34.000	-5.200	0.0	3.30	184.8	-0.113	0.96
189	1979	3	27	23	4	7.7	32.963	-5.380	18.0	2.40	163.0	-1.168	0.46
190	1979	4	16	4	57	0.0	34.820	-4.371	0.0	2.90	295.0	-1.873	0.28
191	1979	4	17	8	20	53.0	34.400	-4.299	0.0	3.00	279.2	-1.586	0.35
192	1979	4	18	14	53	7.5	32.800	-5.700	0.0	2.20	142.4	-1.121	0.48
193	1979	4	18	0	18	45.3	36.016	-7.443	0.0	2.80	292.1	-1.999	0.26
194	1979	4	20	14	40	26.5	32.900	-4.900	0.0	2.20	207.8	-2.053	0.25
195	1979	4	24	5	50	38.5	32.300	-4.800	0.0	2.60	242.4	-1.835	0.29
196	1979	4	25	23	8	2.0	32.800	-5.700	5.0	2.00	142.4	-1.422	0.39
197	1979	4	25	23	11	55.0	32.800	-5.700	0.0	2.20	142.4	-1.121	0.48
198	1979	4	25	23	17	36.0	35.800	-8.300	0.0	3.10	290.1	-1.531	0.36
199	1979	5	11	2	27	22.0	32.100	-6.100	0.0	2.20	169.1	-1.544	0.36
200	1979	5	13	13	53	15.0	32,400	-6 100	0.0	2.80	141.9	-0.212	0.89
201	1979	5	25	7	51	6.5	32,800	-4 800	0.0	2 30	219.9	-2.043	0.25
201	1070	5	25	6	13	16.0	35,000	-4.500	0.0	3.00	217.7	-1.735	0.25
202	1070	5	20	22	10	21.0	22 800	-4.500	0.0	2.00	202.2	1.096	0.31
203	1979	5	29	10	20	21.0	32.800	-5.000	0.0	2.20	119.5	-1.960	0.20
204	1979	2	30	16	8	37.5	32.400	-6.600	0.0	2.20	118.5	-0.672	0.65
205	1979	6	9	13	45	40.0	32.900	-5.399	0.0	4.10	163.6	1.388	2.69
206	1979	6	9	10	3	11.0	32.800	-5.150	0.0	2.80	189.1	-0.920	0.55
207	1979	6	9	0	36	32.0	32.800	-5.100	0.0	4.40	193.5	1.424	2.76
208	1979	6	9	1	56	22.0	32.800	-5.100	0.0	2.70	193.5	-1.126	0.47
209	1979	6	9	1	11	18.0	32.900	-5.000	0.0	3.30	198.9	-0.294	0.84
210	1979	6	9	17	12	19.0	32.900	-4.900	0.0	2.80	207.8	-1.153	0.47
211	1979	6	9	21	18	34.0	32.900	-4.900	0.0	2.30	207.8	-1.903	0.28
212	1979	6	10	18	10	19.0	32.800	-5.100	0.0	3.20	193.5	-0.376	0.80
213	1979	6	10	19	25	16.0	32.800	-5.100	0.0	2.70	193.5	-1.126	0.47
214	1979	6	10	20	3	35.0	32.800	-5.100	0.0	3.30	193.5	-0.226	0.88
215	1979	6	10	0	5	21.0	32,900	-4.800	0.0	2.70	216.8	-1.408	0.39
216	1979	6	11	13	41	47 5	32,900	-4 800	0.0	2.90	216.8	-1 108	0.48
217	1979	6	13	19	26	52.5	32 800	-5 399	0.0	3.10	167.6	-0.172	0.92
218	1070	6	16	13	51	44.0	32,800	-5 200	0.0	4.00	176.2	1.055	2.14
210	1070	0 2	16	13	21	27.0	32.000	-5.279	0.0	3 20	176.2	0.005	1.04
219	1979	0	10	14	2	27.0	32.000	-3.299	0.0	3.50	176.2	0.005	1.04
220	1979	6	10	14	20	22.0	32.800	-3.299	0.0	3.90	1/0.2	1.104	1.95
221	1979	6	10	1/	3	19.5	32.900	-5.000	0.0	2.70	198.9	-1.194	0.45
222	1979	6	16	18	48	48.0	32.900	-5.000	0.0	3.10	198.9	-0.594	0.69
223	1979	6	17	7	38	11.0	32.800	-5.299	0.0	3.10	176.2	-0.295	0.84
224	1979	6	17	23	38	36.5	32.800	-5.299	0.0	4.20	176.2	1.355	2.63
225	1979	6	18	1	18	40.0	33.000	-5.200	0.0	2.60	178.0	-1.070	0.49
226	1979	6	18	8	25	20.0	32.000	-4.900	0.0	2.50	253.3	-2.094	0.24
227	1979	6	19	14	22	44.0	33.000	-5.200	0.0	3.90	178.0	0.880	1.90
228	1979	6	19	3	39	16.0	32.900	-5.100	0.0	3.20	190.0	-0.331	0.82

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (4/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
							N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
229	1979	6	20	17	50	52.0	33.000	-5.000	0.0	4.20	196.1	1.091	2.19
230	1979	6	23	18	17	3.0	34.699	-5.600	0.0	3.00	197.5	-0.728	0.62
231	1979	6	24	13	32	55.5	32.500	-6.000	0.0	2.40	139.8	-0.775	0.60
232	1979	6	24	17	41	57.0	33.000	-5.000	0.0	3.00	196.1	-0.709	0.63
233	1979	6	24	18	4	22.8	34.846	-4.425	19.0	2.80	292.3	-2.006	0.26
234	1979	6	25	5	1	5.5	32.900	-5.100	0.0	3.00	190.0	-0.631	0.67
235	1979	7	4	14	24	52.1	33.996	-6.916	0.0	4.00	67.4	3.369	10.59
236	1979	7	4	4	58	1.0	32.500	-6.700	0.0	2.10	104.9	-0.528	0.72
237	1979	7	4	5	57	3.5	33.000	-5.500	0.0	2.50	151.2	-0.817	0.59
238	1979	7	5	11	46	7.0	32.698	-5.299	0.0	3.80	180.8	0.692	1.67
239	1979	7	5	5	48	6.0	32.698	-5.100	0.0	3.70	197.6	0.321	1.29
240	1979	7	5	23	32	58.5	35.086	-5.556	0.0	3.90	233.1	0.212	1.20
241	1979	7	11	2	53	37.0	32.800	-5.200	0.0	3.10	184.8	-0.412	0.78
242	1979	7	18	20	24	46.0	32.800	-5.200	0.0	2.80	184.8	-0.862	0.57
243	1979	7	22	21	31	10.0	33.000	-5.100	0.0	3.10	187.0	-0.442	0.76
244	1979	7	23	3	24	5.0	33.000	-5.000	0.0	2.40	196.1	-1.609	0.34
245	1979	7	28	2	44	43.0	31.600	-4.700	0.0	3.00	296.1	-1.732	0.31
246	1979	7	29	10	57	50.0	35.100	-5.399	0.0	2.80	243.3	-1.544	0.36
247	1979	8	2	0	40	33.4	33.000	-4.800	0.0	2.70	214.2	-1.378	0.40
248	1979	8	5	19	38	23.0	32.800	-5.100	0.0	3.30	193.5	-0.226	0.88
249	1979	8	6	22	15	18.7	33.900	-4.299	0.0	3.40	262.1	-0.829	0.58
250	1979	8	7	23	17	28.6	31.800	-6.600	0.0	3.30	182.1	-0.077	0.98
251	1979	8	9	13	57	7.6	34.900	-4.500	0.0	2.90	289.9	-1.830	0.29
252	1979	8	18	6	8	46.2	36.035	-7.576	0.0	2.60	296.0	-2.331	0.21
253	1979	9	2	4	29	18.5	35.900	-8.000	0.0	2.50	290.6	-2.436	0.19
254	1979	9	10	2	8	58.3	31.800	-5.900	0.0	3.10	207.1	-0.695	0.64
255	1979	9	10	4	24	27.0	31.700	-6.000	0.0	3.50	212.2	-0.155	0.93
256	1979	9	13	17	45	8.5	31.470	-5.785	0.0	4.60	244.1	1.147	2.28
257	1979	9	14	15	34	36.3	31.600	-5.800	0.0	3.90	230.9	0.235	1.22
258	1979	9	20	1	18	47.0	32.300	-5.299	0.0	3.50	203.6	-0.053	1.00
259	1979	9	20	22	9	45.1	31.470	-5.785	0.0	3.70	244.1	-0.203	0.90
260	1979	10	1	22	52	5.5	32.000	-6.200	0.0	2.50	174.2	-1.167	0.46
261	1979	10	6	23	48	13.5	33.100	-5.100	0.0	3.00	184.7	-0.562	0.70
262	1979	10	11	21	53	24.5	35.100	-7.100	0.0	2.90	188.5	-0.761	0.61
263	1979	10	16	17	30	40.0	35.100	-5.100	0.0	2.70	261.8	-1.876	0.28
264	1979	10	24	13	9	50.9	32.500	-7.321	0.0	3.60	102.6	1.775	3.52
265	1979	11	5	15	37	18.0	33.900	-5.299	0.0	2.40	172.4	-1.291	0.42
266	1979	11	8	4	15	9.0	35.000	-5.000	0.0	3.10	260.6	-1.265	0.43
267	1979	11	21	20	23	16.0	35.800	-7.500	0.0	2.60	269.2	-2.095	0.24
268	1979	11	22	1	42	11.0	32.000	-6.399	0.0	2.60	166.6	-0.906	0.55
269	1979	11	24	13	42	40.5	33.600	-5.500	0.0	2.80	146.2	-0.286	0.85
270	1979	11	26	17	26	54.2	31.499	-6.399	0.0	3.00	219.2	-0.985	0.52
271	1979	11	29	15	58	3.5	35.400	-9.100	0.0	3.10	292.0	-1.548	0.35
272	1979	12	26	17	46	54.6	32.500	-5.000	0.0	2.70	215.4	-1.392	0.39
273	1979	12	27	0	37	28.3	32.800	-5.299	0.0	3.50	176.2	0.305	1.27
274	1979	12	29	23	9	52.0	33.199	-6.700	0.0	2.60	39.7	2.412	5.46
275	1980	1	20	1/	20	19.7	30.836	-/.688	60.0	2.30	290.0	-2.783	0.15
276	1980	1	21	12	15	35.4	34.830	-/.8/0	114.0	3.10	1/5./	-0.722	0.63
277	1980	2	10	4	10	34.3 42.5	33.053	-4.708	30.0	2.70	221.5	-1.484	0.37
270	1980	2	10	3 14	39 10	42.3	33.290	-4.901	20.0	3.20	203.9	-1.352	0.41
279	1980	4	20	14	18	48./	34.960	-5.008	5.0	3.50	257.1	-0.632	0.67
20U	1980	8	0	23	38 47	11.1 E 1	33.1/3	-3.998	5.0	3.20	219.7	-0.091	0.04
201	1980	10	20	/	4/	5.1 12.1	30.006	-0./01	10.0	5.40	290.0	-1.088	0.49
282	1983	9 11	20	8 20	59	13.1	34.804	-5.15/	33.0 70 0	4.50	241.1	0.742	2.07
203	1983	11	24	20	33 12	41.0	34./33	-4.341	/ 8.0	4.00	210.3	0.745	1./3
204 285	1900	1	20 28	20	13	22.2 28 1	31.990	-5.309	22.0	4.20	219.4	1 800	3.58
205	1,700	1	20	20	1	20.4	51.777	-5.510	22.0	7.70		1.000	5.50

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (5/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				mour	10 min	500	N	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
286	1986	1	29	7	50	13.3	32.079	-5.394	10.0	4.20	212.7	0.887	1.91
287	1986	4	3	22	33	13.5	35.071	-4.691	33.0	3.30	287.4	-1.224	0.44
288	1987	7	23	11	57	31.4	35.636	-5.763	86.0	3.50	275.4	-0.917	0.55
289	1987	7	31	15	45	19.3	33.488	-4.101	10.0	3.70	274.8	-0.498	0.73
290	1988	2	26	17	32	2.0	35.205	-6.242	10.0	3.20	213.8	-0.627	0.67
291	1988	4	30	3	39	33.7	34.637	-5.536	10.0	3.90	196.8	0.628	1.59
292	1988	9	22	23	44	30.3	31.442	-7.672	10.0	3.70	224.3	0.005	1.04
293	1988	10	28	22	5	39.5	34.933	-5.820	10.0	3.50	205.1	-0.073	0.98
294	1989	1	7	14	43	9.9	35.423	-5.012	33.0	3.30	293.8	-1.279	0.43
295	1989	5	7	17	45	47.9	32.911	-5.094	10.0	3.70	190.1	0.413	1.37
296	1989	8	5	10	26	3.1	34.850	-5.525	10.0	3.40	214.6	-0.335	0.82
297	1989	8	17	13	18	57.2	35.178	-9.185	10.0	3.20	279.4	-1.289	0.42
298	1989	8	23	8	9	39.3	34.510	-5.506	10.0	3.50	189.4	0.123	1.12
299	1989	8	23	6	45	50.8	34.509	-5.435	10.0	3.00	194.4	-0.691	0.64
300	1989	8	23	6	28	53.0	34.500	-5.347	10.0	3.80	200.2	0.436	1.40
301	1989	8	23	5	30	57.2	34.521	-5.199	10.0	3.00	212.6	-0.913	0.55
302	1989	9	16	16	8	44.6	34.825	-4.758	10.0	2.70	265.6	-1.914	0.28
303	1989	9	27	2	10	21.5	35.577	-5.594	89.5	3.70	276.8	-0.639	0.66
304	1989	10	17	2	26	11.2	35.501	-5.756	76.8	2.70	262.3	-1.983	0.26
305	1989	12	8	1	8	3.1	31.941	-6.292	5.0	3.80	176.4	0.751	1.73
306	1990	8	13	1	45	49.7	34.876	-5.318	81.0	3.50	229.9	-0.498	0.73
307	1991	3	4	11	44	15.8	35.072	-5.551	32.0	3.60	232.1	-0.251	0.87
308	1991	3	12	15	58	55.1	34.536	-4.590	30.0	3.50	261.5	-0.689	0.64
309	1992	12	10	23	23	54.6	32.168	-5.839	0.0	3.60	177.1	0.442	1.40
310	1993	5	1	0	22	22.6	35.288	-6.306	28.0	3.70	220.5	0.030	1.05
311	1993	5	1	4	39	25.9	31.590	-4.930		3.10	281.4	-1.456	0.38
312	1993	5	27	19	10	48.0	32.060	-6.330		2.50	162.9	-1.002	0.52
313	1993	5	31	2	24	38.1	34.680	-4.780		2.80	254.7	-1.658	0.33
314	1993	6	23	20	51	45.5	35.300	-8.870		2.70	269.8	-1.951	0.27
315	1993	6	27	13	46	11.9	33.680	-4.650		3.80	225.7	0.142	1.14
316	1993	7	16	17	12	4.9	33.500	-4.450		2.70	242.4	-1.685	0.32
317	1993	7	23	22	13	27.0	32.420	-6.150		2.90	137.3	0.019	1.05
318	1993	8	19	12	53	33.5	34.860	-4.700		3.10	272.2	-1.373	0.40
319	1993	8	29	6	6	47.3	32.960	-5.330		3.30	167.6	0.129	1.13
320	1993	10	9	21	52	55.3	31.190	-7.410		3.60	246.9	-0.381	0.79
321	1993	10	24	5	46	10.4	35.160	-4.900		2.80	279.6	-1.890	0.28
322	1993	11	9	16	51	46.4	33.640	-6.150		2.70	88.2	0.787	1.78
323	1993	11	30	13	17	31.0	32,560	-5 620		3.80	162.6	0.953	2.00
324	1993	12	9	19	28	13.8	33 970	-4 780		4 00	220.7	0.497	1.46
325	1993	12	15	10	24	11.2	35.480	-5.030	0.0	3.00	297.6	-1 745	0.31
326	1003	12	21	22	24	14.7	3/ 990	-4.780	0.0	2 70	2775.3	-2.001	0.26
320	1993	12	21	11	29	25.1	34.550	-4.780	0.0	2.70	275.5	-2.001	0.20
328	1994	12	27	23	18	67	31 710	-9.457	22.0	3.70	291.4	-0.649	0.26
329	1994	11	25	5	33	17.5	34 655	-4 519	16.0	4 10	273.7	0.109	1 11
330	1995	11	29	17	43	13.3	33 205	-4.517	10.0	3.70	180.8	0.109	1.11
331	1995	3	2) 5	23	46	20.8	35 872	-7 722	30.0	3.60	280.9	-0.715	0.63
332	1995	4	11	13	20	30.3	35.607	-8 439	18.0	3.90	200.7	-0.216	0.89
333	1995	6	21	0	36	58.6	30.776	-7.075	30.0	3,70	290.6	-0.649	0.66
334	1995	9	25	15	13	16.7	34.180	-4.871	6.0	3.60	220.7	-0.103	0.96
335	1995	9	29	5	54	31.3	34.069	-5.884	3.0	3.50	131.7	1.019	2.09
336	1996	4	3	1	24	8.3	34.189	-4.845	0.0	3.60	223.3	-0.131	0.94
337	1996	6	18	13	58	53.3	35.285	-5.819	32.0	3.70	238.4	-0.166	0.92
338	1996	7	13	9	8	4.9	34.690	-5.787	19.0	4.20	185.3	1.218	2.39
339	1997	7	14	11	25	1.3	33.561	-4.178	14.0	3.90	268.0	-0.138	0.94
340	1997	7	26	12	56	55.7	33.155	-4.990	9.0	3.50	193.9	0.066	1.08
341	1997	8	4	14	23	37.7	32.233	-5.724	13.0	4.10	178.9	1.161	2.30

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (6/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	TT	M	C	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	Min	Sec	Ν	Ē	(km)	Richter Scale	(km)	(Imm)	(gal)
342	1997	8	4	15	44	32.3	32.214	-5.704	7.0	3.50	181.7	0.227	1.21
343	1997	12	19	15	32	30.9	34.478	-9.770	3.0	4.00	279.3	-0.087	0.97
344	1998	4	14	7	26	50.4	32.804	-5.297	5.0	3.90	176.2	0.904	1.93
345	1998	6	16	5	30	10.3	32.655	-5.315	3.0	3.90	181.5	0.831	1.83
346	1998	6	18	19	45	34.8	32.704	-5.368	0.0	4.40	174.7	1.676	3.29
347	1998	8	3	15	25	42.7	34.720	-4.918	22.0	4.00	246.7	0.211	1.20
348	1998	9	16	7	58	2.1	32.713	-5.394	0.0	3.60	172.1	0.513	1.47
349	1999	3	16	21	41	42.2	34.414	-4.138	0.0	3.80	293.5	-0.511	0.73
350	1999	4	13	6	43	10.8	35.491	-8.771	11.0	3.80	281.3	-0.407	0.78

Table X3.1: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage N'Fifikh (7/7) (Latitude: 33°23'57''N, Longitude: 7°03'17''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				noui			N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
1	1960	2	29	23	40	14.0	30.450	-9.616	0.0	6.00	136.1	4.690	26.36
2	1967	8	28	21	15	0.0	31.300	-6.299	0.0	4.60	207.1	1.555	3.02
3	1967	8	30	18	21	0.0	31.499	-6.000	0.0	4.10	237.7	0.464	1.42
4	1969	4	12	0	2	6.0	32.000	-6.200	0.0	4.40	234.2	0.951	1.99
5	1972	10	4	21	0	12.7	31.960	-5.960	1.0	3.60	253.9	-0.450	0.76
6	1972	12	23	8	10	6.7	32.038	-6.000	1.0	2.90	253.4	-1.495	0.37
7	1973	2	16	1	36	38.6	32.150	-5.820	0.0	3.10	273.9	-1.389	0.40
8	1973	2	24	20	14	53.6	32.090	-5.960	2.0	3.30	259.1	-0.950	0.54
9	1973	3	1	23	20	34.3	32.170	-5.990	1.0	2.20	260.0	-2.610	0.17
10	1973	3	3	15	9	59.8	32.090	-6.280	110.0	3.50	231.3	-0.622	0.67
11	1973	3	7	14	59	10.6	32.080	-6.160	1.0	3.30	241.2	-0.773	0.61
12	1973	3	29	12	4	47.8	32.290	-5.600	100.0	3.20	299.3	-1.591	0.34
13	1973	7	31	1	25	27.8	32.100	-6.289	149.0	2.70	231.0	-1.998	0.26
14	1973	12	11	20	58	12.8	31.939	-6.450	165.0	2.60	209.6	-2.073	0.25
15	1974	1	17	10	31	38.1	30.890	-8.048	1.0	4.00	52.1	3.944	15.75
16	1974	3	9	11	33	58.0	31.230	-8.268	2.0	3.50	20.0	4.888	30.23
17	1974	3	11	12	31	42.0	30.230	-10.040	82.0	3.90	183.1	0.585	1.55
18	1974	4	6	12	16	3.4	31.880	-6.220	1.0	3.70	227.6	-0.028	1.01
19	1974	4	25	8	53	1.9	33.570	-8.170	69.0	3.30	265.8	-1.095	0.48
20	1974	12	8	17	12	38.3	32.570	-7.470	65.0	2.70	180.6	-1.106	0.48
21	1975	3	27	5	21	22.8	31.640	-6.759	2.0	3.60	170.5	0.536	1.50
22	1975	6	20	6	45	49.6	30.720	-7.089	0.0	3.50	141.4	0.846	1.85
23	1975	6	24	4	28	14.5	31.720	-6.440	117.0	2.60	202.1	-1.743	0.31
24	1975	8	15	13	26	16.0	31.359	-7.480	2.0	3.70	96.3	2.078	4.34
25	1975	10	29	22	22	14.7	31.359	-7.970	17.0	3.30	51.4	2.810	7.19
26	1975	11	1	19	20	17.9	32.240	-5.790	153.0	2.60	280.6	-2.522	0.18
27	1975	11	3	9	35	35.4	31.640	-6.299	135.0	2.60	212.7	-1.931	0.27
28	1976	1	20	3	55	19.0	31.340	-5.470	128.0	3.20	286.1	-1.574	0.35
29	1976	2	13	12	0	8.5	31.429	-5.600	1.0	3.50	274.5	-0.794	0.60
30	1976	4	20	11	2	31.3	31.790	-6.130	111.0	3.50	232.6	-0.637	0.66
31	1976	11	8	21	14	54.7	32.129	-5.910	1.0	3.00	265.2	-1.458	0.38
32	1977	6	3	11	55	2.4	32.250	-6.100	1.0	3.20	254.6	-1.057	0.50
33	1977	8	30	6	3	38.1	31.230	-6.870	21.0	3.00	152.5	-0.112	0.96
34	1977	10	25	13	1	41.5	31.440	-5.610	2.0	2.90	273.7	-1.687	0.32
35	19/8	1	16	9	56	48.9	32.210	-6.020	1.0	2.40	259.4	-2.303	0.21
36	19/8	2	7	1	39	25.2	30.279	-7.759	3.0	4.70	121.5	3.017	8.30
37	1978	2	8	21	42	50.5	31.970	-5.950	2.0	4.30	255.1	0.588	1.55
38	1978	3	5	16	47	55.6	31.820	-5.970	45.0	3.40	248.1	-0.733	0.62
39	1978	4	22	2	56	3.8	31.980	-6.850	5.0	3.50	177.6	0.284	1.26
40	1978	2	12	0	24	40.4	33.670	-8.969	1.0	4.10	279.4	0.062	1.08
41	1978	0	12	20	11	23.8	30.869	-6.820	1.0	3.10	101.1	-0.074	0.98
42	1978	0	13	11	39	52.6	29.310	-9.360	4.0	3.80	224.7	0.153	1.15
43	1978	11	6	3	20	55.0	31.099	-5.749	155.0	3.70	259.2	-0.642	0.66
44	1978	11	0	3 10	25	40.0	21.000	-5.029	102.0	3.70	270.5	-0.025	0.67
45	1979	3 5	1	19	21	54.0 10.5	31.099	-0.399	0.0	3.50	197.4	0.024	1.05
40	1979) 5	11	21	9	19.5	30.200	-8.000	0.0	3.40	247.2	2.495	2.20
47	1979) 5	11	12	27 52	15.0	32.100	-0.100	0.0	2.20	247.5	-2.485	0.19
40	1979	5	13	13	33	15.0	32.400	-0.100	0.0	2.80	202.7	-1./33	0.31
49 50	19/9	5	- 50 24	10	0 22	57.5	32.400	-0.000	0.0	2.20	223.2 276.6	-2.230	0.22
51	1979	0	24 1	13	52 50	10	32.500	-0.000	0.0	2.40	270.0 222 7	-2.403	0.19
51	1979	/	4	4 22	38 17	1.0 28 6	31.800	-0.700	0.0	2.10	100.6	-2.373	0.20
52	17/9	0	10	23 1	1/ 24	20.0	31.000	-0.000	0.0	3.50	2/1 0	-0.109	0.74
55	1979	9	10	4	24 0	21.0 50 2	31.700	-0.000	0.0	2.10	241.9	-0.460	0.74
55	1979	9	10	17	0 //5	20.3 85	31.000	-3.900	0.0	5.10 4.60	255.9 257 5	1.015	2.08
55	1070	9	13	1/	45	36.2	31.470	-5.765	0.0	3 00	257.5	-0.042	2.00
57	1979	9	20	22	9	45.1	31.470	-5.785	0.0	3.70	257.5	-0.335	0.82
L	-/./	/	-5		/		2	200	0.0	2.70			0.02

Table X3.2: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Taskourt (1/2) (Latitude: 31°11'14''N, Longitude: 8°28'20''W)

					Time		Нур	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hann	Min	S	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
-				Hour	Min	Sec	N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
58	1979	10	1	22	52	5.5	32.000	-6.200	0.0	2.50	234.2	-1.899	0.28
59	1979	10	24	13	9	50.9	32.500	-7.321	0.0	3.60	182.2	0.373	1.34
60	1979	11	22	1	42	11.0	32.000	-6.399	0.0	2.60	216.8	-1.558	0.35
61	1979	11	26	17	26	54.2	31.499	-6.399	0.0	3.00	200.2	-0.761	0.61
62	1979	12	29	23	9	52.0	33.199	-6.700	0.0	2.60	279.6	-2.190	0.23
63	1980	1	20	17	20	19.7	30.836	-7.688	60.0	2.30	84.2	-0.191	0.90
64	1988	4	9	20	27	24.8	31.449	-9.936	10.0	4.70	142.2	2.626	6.34
65	1988	9	22	23	44	30.3	31.442	-7.672	10.0	3.70	81.2	2.467	5.67
66	1988	11	21	10	19	5.4	31.466	-9.541	10.0	4.40	106.2	2.881	7.56
67	1989	12	8	1	8	3.1	31.941	-6.292	5.0	3.80	223.6	0.165	1.16
68	1991	7	29	7	22	18.8	30.715	-6.586	30.0	4.30	186.9	1.328	2.58
69	1992	4	5	21	16	35.4	30.471	-10.003	0.0	4.20	165.9	1.504	2.92
70	1992	12	10	23	23	54.6	32.168	-5.839	0.0	3.60	273.1	-0.631	0.67
71	1993	1	8	1	43	8.7	30.634	-6.718	30.0	3.50	177.8	0.248	1.23
72	1993	5	16	1	40	29.7	30.180	-5.740		3.30	282.9	-1.169	0.46
73	1993	5	27	19	10	48.0	32.060	-6.330		2.50	225.6	-1.807	0.30
74	1993	7	23	22	13	27.0	32.420	-6.150		2.90	259.8	-1.557	0.35
75	1993	10	9	21	52	55.3	31.190	-7.410		3.60	101.0	1.813	3.61
76	1993	10	24	1	41	43.0	31.000	-9.280		3.70	79.6	2.531	5.93
77	1994	1	27	23	18	6.7	31.710	-9.457	22.0	3.70	110.2	1.707	3.36
78	1995	4	2	14	47	56.7	29.940	-9.500	30.0	3.50	169.4	0.364	1.33
79	1995	6	21	0	36	58.6	30.776	-7.075	30.0	3.70	140.5	1.107	2.22
80	1995	9	5	6	21	52.0	30.884	-10.051	31.0	3.80	153.9	1.040	2.12
81	1995	9	27	22	18	2.2	30.826	-8.133	31.0	3.60	51.4	3.030	8.37
82	1997	8	4	14	23	37.7	32.233	-5.724	13.0	4.10	286.0	0.002	1.03
83	1997	8	4	15	44	32.3	32.214	-5.704	7.0	3.50	286.9	-0.904	0.55

Table X3.2: Intensite de seisme Estime et Accelerationde terre Ressentie au Site de Barrage Taskourt(2/2)(Latitude: 31°11'14''N, Longitude: 8°28'20''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	5.00	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				пош	WIIII	Sec	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
1	1930	8	9	18	9	38.0	34.300	-5.399	0.0	4.70	294.9	0.828	1.83
2	1930	8	13	3	20	45.0	34.300	-5.399	0.0	4.40	294.9	0.378	1.34
3	1938	3	30	15	6	6.0	33.500	-6.250	0.0	5.10	224.0	2.111	4.44
4	1967	8	28	21	15	0.0	31.300	-6.299	0.0	4.60	99.9	3.341	10.39
5	1967	8	30	18	21	0.0	31.499	-6.000	0.0	4.10	66.1	3.564	12.11
6	1967	9	24	17	8	0.0	32.500	-5.700	0.0	4.30	101.7	2.848	7.39
7	1969	4	12	0	2	6.0	32.000	-6.200	0.0	4.40	92.0	3.237	9.66
8	1971	7	2	21	11	8.5	34.100	-5.200	0.0	4.60	272.8	0.871	1.89
9	1972	6	25	15	45	38.0	32.430	-5.580	0.0	3.00	90.7	1.171	2.32
10	1972	10	4	21	0	12.7	31.960	-5.960	1.0	3.60	69.9	2.684	6.59
11	1972	11	15	4	18	9.9	32.750	-5.580	2.0	3.50	125.3	1.142	2.27
12	1972	12	23	8	10	6.7	32.038	-6.000	1.0	2.90	77.7	1.387	2.69
13	1973	2	2	21	18	14.2	34.240	-5.370	5.0	3.00	288.2	-1.665	0.33
14	1973	2	16	1	36	38.6	32.150	-5.820	0.0	3.10	73.5	1.819	3.63
15	1973	2	24	20	14	53.6	32.090	-5.960	2.0	3.30	78.2	1.973	4.03
16	1973	3	1	23	20	34.3	32.170	-5.990	1.0	2.20	86.1	0.094	1.10
17	1973	3	1	3	37	35.9	32.820	-4.289	1.0	3.00	163.0	-0.253	0.87
18	1973	3	3	15	9	59.8	32.090	-6.280	110.0	3.50	103.3	0.687	1.66
19	1973	3	5	6	52	37.0	32.150	-4.430	4.0	3.30	101.3	1.356	2.63
20	1973	3	7	14	59	10.6	32,080	-6 160	1.0	3 30	93.0	1 563	3.04
21	1973	3	. 8	17	52	59.9	33 820	-5 130	17.0	3 40	242.2	-0.639	0.66
22	1973	3	27	14	4	49.8	31 720	-4 859	33.0	3.40	44.5	2 911	7 71
22	1973	3	29	17	4	47.8	32 290	-5.600	100.0	3.40	76.5	0.680	1.65
24	1973	3	30	11	. 7	49.7	32.550	-4 240	2.0	3.50	143.4	0.811	1.81
25	1973	4	8	15	55	75	33 220	-5 779	2.0	3.40	180.3	0.098	1.01
25	1073	5	10	20	10	3.5	32 470	-5.570	2.0	3.80	04.8	2.266	1.11
20	1073	5	1	18	13	30.1	32.470	-6.840	2.0	3.40	201 /	-1.105	0.48
27	1073	7	24	10	57	15.5	33.020	5.050	29.0	3.40	157.0	-1.105	1.01
20	1973	7	24	0	25	27.8	33.039	-5.050	140.0	2.70	104.6	0.000	0.53
20	1073	, 0	22	0	25	10.8	34 120	5.040	102.0	2.70	281.0	1 206	0.33
21	1973	10	23	14	47	12.0	34.120	-5.940	102.0	3.50	261.0	-1.500	0.42
31	1973	10	7 16	14	47	56.2	34.070	-5.350	122.0	3.00 4.50	260.3	0.482	4.81
32	1973	10	11	20	58	12.8	34.070	-5.590	165.0	4.50	209.5	1 248	0.41
24	1973	12	11	10	21	20.1	20.800	-0.450 0.49	105.0	2.00	270.8	-1.546	1.02
25	1974	2	1/	10	22	58.0	31.220	-0.040 8.268	2.0	4.00	270.8	-0.010	0.57
26	1974	3	, ,	11	16	2.4	21 990	-0.200	2.0	3.50	202.1	-0.802	4.05
27	1974	4	10	12	22	- 20 2	22 640	-0.220	2.0	3.70	262.0	0.812	4.95
20	1974	07	10	4	25	20.3 52.6	22 000	-5.640	2.0	4.50	202.9	0.615	1.61
20	1974	11	4	4	19	50.6	22 110	-5.529	2.0	3.30	165.2	-0.373	0.09
40	1974	11	26 26	17	10	26.0	32.070	-3.020	47.0	3.20	140.6	0.013	1.04
40	1974	11	20	17	10	20.9	32.070	-3.920	47.0	3.20	227.6	1.626	0.24
41	1974	12	0 22	20	12	30.3 14.0	32.370	-7.470	1.0	2.70	162.0	-1.020	1.08
42	1975	1	25	20	40	14.0	22 010	-5.210	1.0	3.20	252.0	0.002	1.08
45	1975	1	29	1	48	5.9 22.9	21 640	-5.010	2.0	3.50	125.2	-0.594	0.69
44	1975	5	27	5	21	40.6	20.720	-0.739	2.0	3.00	105.0	0.044	2.20
45	1975	0	20	0	45	49.0	30.720	-7.089	117.0	3.50	195.8	0.044	1.06
40	1975	0	24	4	20	14.5	22 520	-0.440	28.0	2.00	200.0	-0.775	0.00
47	1975	0	29	ð 10	11	40.5	22.070	-5.000	58.0	2.70	209.9	-1.308	0.40
40	1975	0	2	19	20	59.0	22 100	-5.519	12.0	3.30	130.4	0.307	1.55
49 50	19/3	8	3 15	12	20	28.9 14 0	33.199	-3.230	12.0	3.40	1/2.8	0.197	1.18
50	1975	8	15	13	20	10.0	31.339	-7.480	2.0	3.70	200.3	0.214	1.20
51	1975	10	25	18	9	59.1	52.408	-5.270	112.0	2.70	85.1	-0.341	0.82
52	1975	10	29	22	22	14./	31.359	-7.970	17.0	5.50	252.2	-0.889	0.56
55	1975	11	1	19	20	17.9	52.240	-5./90	153.0	2.60	/9.8	-0.993	0.52
54	1975	11	3	9	35	35.4	51.640	-6.299	135.0	2.60	92.4	-0.862	0.57
55	1975	11	13	6	37	42.6	32.628	-4.230	1.0	3.00	150.3	-0.053	1.00
56	1975	11	14	10	41	19.3	32.360	-4.820	103.0	3.00	92.6	0.147	1.14
57	1975	11	17	14	46	22.9	33.540	-4.640	9.0	3.50	220.1	-0.248	0.87

Table X3.3: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Timkit (1/5) (Latitude: 31°38'31''N, Longitude: 5°19'15''W)

			-		Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
50	1075	10	0	10	10	160	N	E	(km)	Richter Scale	(KM)	(Imm)	(gal)
58	1975	12	8	19	40	16.8	34.129	-4.440	30.0	3.30	288.1	-1.228	0.44
59	1975	12	10	0	35	9.7	32.620	-5.350	126.0	2.60	108.5	-0.902	0.55
60	1975	12	10	3	51	46.5	33.520	-4.800	128.0	2.90	214.0	-1.094	0.49
62	1970	1	20	3	55	19.0	31.340	-5.470	128.0	3.20	30.3 264.0	0.545	0.28
62	1970	2	5	4	27	20.0	22 260	-5.779	13.0	3.00	204.0	-1.450	0.38
05 64	1970	2	6	10	41	39.0 16.2	32.300	-3.170	55.0	4.00	00.9 175 7	2.945	7.89
65	1970	2	12	10	41	8 5	31.420	-4.080	1.0	3.10	25.4	-0.403	16.22
66	1976	23	15	20	4	5.5	32 320	-4 759	94.0	3.50	92.0	1.023	2.09
67	1976	3	16	18	37	57.6	33 300	-4.890	23.0	4 30	188.3	1.322	2.69
68	1976	4	13	19	23	19.3	34 280	-4 920	14.0	4.30	295.0	0.074	1.09
69	1976	4	15	16		15.1	33 920	-6 280	5.0	3 90	268.4	-0.138	0.94
70	1976	4	20	11	2	31.3	31.790	-6.130	111.0	3.50	78.2	0.946	1.99
71	1976	11	8	21	14	54.7	32,129	-5.910	1.0	3.00	77.5	1.542	3.00
72	1977	1	7	15	20	42.9	32.600	-5.770	2.0	3.60	114.4	1.513	2.94
73	1977	1	8	10	36	16.4	32.090	-4.170	44.0	2.70	119.5	-0.098	0.96
74	1977	1	15	23	58	47.0	33.750	-3.620	2.0	4.40	283.7	0.474	1.43
75	1977	5	12	6	59	16.9	34.230	-4.820	59.0	3.30	290.9	-1.288	0.42
76	1977	6	3	11	55	2.4	32.250	-6.100	1.0	3.20	99.8	1.243	2.44
77	1977	8	23	22	34	56.0	32.380	-5.040	128.0	2.80	86.0	-0.417	0.77
78	1977	8	30	6	3	38.1	31.230	-6.870	21.0	3.00	153.3	-0.125	0.95
79	1977	9	1	18	35	14.1	32.800	-5.510	125.0	3.40	129.7	0.101	1.11
80	1977	9	9	12	20	20.0	33.170	-4.170	2.0	4.10	201.3	0.875	1.89
81	1977	10	25	13	1	41.5	31.440	-5.610	2.0	2.90	35.3	3.089	8.72
82	1977	10	27	13	15	34.7	32.789	-5.299	107.0	3.30	127.2	0.149	1.14
83	1977	11	6	17	35	3.8	33.039	-4.759	78.0	3.00	163.8	-0.517	0.72
84	1977	11	6	4	37	5.3	33.929	-5.240	17.0	3.70	253.7	-0.304	0.84
85	1978	1	16	9	56	48.9	32.210	-6.020	1.0	2.40	91.3	0.257	1.23
86	1978	2	7	1	39	25.2	30.279	-7.759	3.0	4.70	275.5	0.997	2.06
87	1978	2	8	21	42	50.5	31.970	-5.950	2.0	4.30	69.7	3.741	13.69
88	1978	3	5	16	47	55.6	31.820	-5.970	45.0	3.40	64.4	2.112	4.44
89	1978	4	10	19	3	47.4	34.180	-6.000	52.0	3.20	288.7	-1.409	0.39
90	1978	4	22	2	56	3.8	31.980	-6.850	5.0	3.50	149.2	0.713	1.69
91	1978	4	24 12	21	11	33.4	33.810	-5.940	15.0	3.80	247.4	-0.091	0.97
92	1978	0	12	20	22	23.8	30.869	-0.820	102.0	3.10	165.5	-0.141	0.94
95	1978	11	6	3	25	40.0 53.6	31.120	-5.029	102.0	3.70	04.8 72.5	0.077	2.97
94	1970	11	2	15	20	58.0	31.099	-5.749	06.0	3.70	11.5	1 1 20	2.03
96	1979	1	4	13	9	29.2	34 091	-4.711	8.0	2.80	274.2	-1 843	0.29
97	1979	1	4	9	27	35.7	34 260	-5.636	4.0	2.00	291.9	-1 847	0.29
98	1979	1	17	17	43	27.0	33 400	-5 399	0.0	4 50	195.1	1.517	3.02
99	1979	1	19	1		21.2	33.461	-5.063	16.0	2.90	203.2	-0.955	0.53
100	1979	2	5	13	34	36.5	33.479	-5.028	19.0	2.90	205.6	-0.987	0.52
101	1979	2	14	3	6	4.3	33.500	-6.629	68.0	2.50	240.3	-2.059	0.25
102	1979	2	24	6	28	56.5	33.441	-4.633	6.0	2.90	209.8	-1.028	0.51
103	1979	3	7	19	21	34.0	31.099	-6.399	0.0	3.50	118.3	1.282	2.50
104	1979	3	15	14	42	2.9	32.691	-5.391	52.0	2.40	116.5	-0.553	0.71
105	1979	3	19	15	39	10.4	33.296	-5.254	4.0	3.40	183.5	0.054	1.07
106	1979	3	19	16	11	33.5	33.300	-5.500	0.0	2.70	184.6	-1.011	0.51
107	1979	3	19	15	56	2.1	33.411	-5.411	5.0	2.70	196.4	-1.164	0.46
108	1979	3	25	11	13	25.0	34.000	-5.200	0.0	3.30	261.7	-0.976	0.53
109	1979	3	27	23	4	7.7	32.963	-5.380	18.0	2.40	146.6	-0.911	0.55
110	1979	4	18	14	53	7.5	32.800	-5.700	0.0	2.20	133.3	-0.960	0.53
111	1979	4	20	14	40	26.5	32.900	-4.900	0.0	2.20	145.1	-1.167	0.46
112	1979	4	24	5	50	38.5	32.300	-4.800	0.0	2.60	88.0	0.643	1.61
113	1979	4	25	23	8	2.0	32.800	-5.700	5.0	2.00	133.3	-1.261	0.43
114	1979	4	25	23	11	55.0	32.800	-5.700	0.0	2.20	133.3	-0.960	0.53

Table X3.3: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Timkit (2/5) (Latitude: 31°38'31''N, Longitude: 5°19'15''W)
			-		Time		Нуре	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
115	1070	~	~			10.5	N	E	(km)	Richter Scale	(Km)	(Imm)	(gal)
115	1979	5	5	21	9	19.5	30.200	-8.000	0.0	3.40	299.4	-1.160	0.46
110	1979	2	11	12	27	22.0	32.100	-6.100	0.0	2.20	89.4	0.006	1.04
11/	1979	2	13	13	55	15.0	32.400	-6.100	0.0	2.80	111./	0.3/1	1.33
118	1979) 5	25	22	20	0.5	32.800	-4.800	0.0	2.30	137.5	-0.886	0.56
119	1979	2	29	22	28	21.0	32.800	-5.000	0.0	2.20	132.0	-0.934	0.54
120	1979	5	30	10	0	37.3	32.400	-0.000	0.0	2.20	147.2	-1.202	0.45
121	1979	0	9	10	26	22.0	22,800	-5.150	0.0	2.80	129.4	2.400	5.42
122	1979	0	9	1	56	22.0	32.800	-5.100	0.0	4.40	130.1	2.400	0.03
123	1979	6	9	12	45	40.0	32.800	-5.100	0.0	2.70	130.1	-0.130	3.52
124	1979	6	9	15	43	18.0	32.900	-5.000	0.0	3 30	1/2.8	0.523	1.48
125	1979	6	9	17	12	19.0	32.900	-4 900	0.0	2.80	145.1	-0.267	0.86
120	1979	6	9	21	12	34.0	32,900	-4.900	0.0	2.30	145.1	-1.017	0.50
127	1979	6	10	18	10	19.0	32,900	-5 100	0.0	3 20	130.1	0.600	1.56
129	1979	6	10	19	25	16.0	32.800	-5.100	0.0	2.70	130.1	-0.150	0.93
130	1979	6	10	20	3	35.0	32.800	-5.100	0.0	3.30	130.1	0.750	1.73
131	1979	6	10	0	5	21.0	32,900	-4.800	0.0	2.70	147.9	-0.465	0.75
132	1979	6	11	13	41	47.5	32,900	-4.800	0.0	2.90	147.9	-0.165	0.92
133	1979	6	13	19	26	52.5	32.800	-5.399	0.0	3.10	128.6	0.478	1.44
134	1979	6	16	13	51	44.0	32.800	-5.299	0.0	4.00	128.4	1.831	3.66
135	1979	6	16	14	2	27.0	32.800	-5.299	0.0	3.30	128.4	0.781	1.77
136	1979	6	16	14	26	22.0	32.800	-5.299	0.0	3.90	128.4	1.681	3.30
137	1979	6	16	17	3	19.5	32.900	-5.000	0.0	2.70	142.8	-0.377	0.80
138	1979	6	16	18	48	48.0	32.900	-5.000	0.0	3.10	142.8	0.223	1.20
139	1979	6	17	7	38	11.0	32.800	-5.299	0.0	3.10	128.4	0.481	1.44
140	1979	6	17	23	38	36.5	32.800	-5.299	0.0	4.20	128.4	2.131	4.50
141	1979	6	18	8	25	20.0	32.000	-4.900	0.0	2.50	56.2	1.529	2.97
142	1979	6	18	1	18	40.0	33.000	-5.200	0.0	2.60	151.0	-0.665	0.65
143	1979	6	19	3	39	16.0	32.900	-5.100	0.0	3.20	141.1	0.402	1.36
144	1979	6	19	14	22	44.0	33.000	-5.200	0.0	3.90	151.0	1.285	2.51
145	1979	6	20	17	50	52.0	33.000	-5.000	0.0	4.20	153.6	1.693	3.33
146	1979	6	24	13	32	55.5	32.500	-6.000	0.0	2.40	114.7	-0.294	0.84
147	1979	6	24	17	41	57.0	33.000	-5.000	0.0	3.00	153.6	-0.107	0.96
148	1979	6	25	5	1	5.5	32.900	-5.100	0.0	3.00	141.1	0.102	1.11
149	1979	7	4	5	57	3.5	33.000	-5.500	0.0	2.50	151.5	-0.824	0.58
150	1979	7	4	4	58	1.0	32.500	-6.700	0.0	2.10	161.3	-1.577	0.35
151	1979	7	5	11	46	7.0	32.698	-5.299	0.0	3.80	117.1	1.756	3.47
152	1979	7	5	5	48	6.0	32.698	-5.100	0.0	3.70	119.0	1.568	3.05
153	1979	7	11	2	53	37.0	32.800	-5.200	0.0	3.10	128.9	0.472	1.43
154	1979	7	18	20	24	46.0	32.800	-5.200	0.0	2.80	128.9	0.022	1.05
155	1979	7	22	21	31	10.0	33.000	-5.100	0.0	3.10	152.0	0.068	1.08
156	1979	/	23	3	24	5.0	33.000	-5.000	0.0	2.40	153.6	-1.007	0.52
157	1979	/	26	9	21	51.0	31.600	-4.600	0.0	4.60	68.3	4.238	19.30
158	1979	/	28	2	44	43.0	31.600	-4.700	0.0	3.00	28.8 159.4	2.176	4.64
159	1979	0	2	10	20	22.0	22,800	-4.800	0.0	2.70	158.4	-0.033	0.67
160	1979	8 8	5 6	19	38 15	23.0	32.800	-5.100	0.0	3.30	150.1 268.4	0.750	1.75
162	1979	0 8	7	22	17	28.6	31.800	-4.299	0.0	3.40	122.1	-0.888	1.93
162	1979	0	17	18	17	25.0	31.000	-0.000	0.0	3.50	64.5	2 718	6.75
164	1979	9	10	2	40 8	58.3	31 800	-5 900	0.0	3.10	57.4	2.381	5 35
165	1979	9	10	4	24	27.0	31 700	-6 000	0.0	3.50	64.5	2.720	6.76
166	1979	9	13	17	24 45	85	31 470	-5 785	0.0	4 60	47.8	5 031	33 36
167	1979	9	14	15	34	36.3	31.470	-5 800	0.0	3.90	45.5	4.086	17.37
168	1979	9	20	22	9	45.1	31.470	-5.785	0.0	3.70	47.8	3.681	13.13
169	1979	9	20	1	18	47.0	32.300	-5.299	0.0	3.50	73.0	2,433	5.55
170	1979	9	25	19	6	55.3	33.496	-3.774	0.0	3.00	252.2	-1.334	0.41
171	1979	10	1	22	52	5.5	32.000	-6.200	0.0	2.50	92.0	0.387	1.35

Table X3.3: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Timkit (3/5) (Latitude: 31°38'31''N, Longitude: 5°19'15''W)

					Time		Нуре	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
		1.0		nour	101111		N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
172	1979	10	6	23	48	13.5	33.100	-5.100	0.0	3.00	163.0	-0.254	0.87
173	1979	10	24	13	9	50.9	32.500	-7.321	0.0	3.60	211.5	0.003	1.03
174	1979	11	2	15	37	18.0	33.900	-5.299	0.0	2.40	250.4	-2.216	0.22
175	1979	11	22	12	42	11.0	32.000	-6.399	0.0	2.60	109.3	0.124	1.12
170	1979	11	24	13	42	40.5	33.600	-5.500	0.0	2.80	217.8	-1.269	0.43
1//	1979	11	26	17	26	54.2	31.499	-6.399	0.0	3.00	103.1	0.800	1.88
178	1979	12	26	1/	46	54.6	32.500	-5.000	0.0	2.70	99.9	0.491	1.45
1/9	1979	12	27	22	37	28.3	32.800	-5.299	0.0	3.50	128.4	1.081	2.18
180	1979	12	29	23	20	52.0	20.926	-0.700	0.0	2.60	210.5	-1.552	0.35
101	1980	1	20	1/	20 16	24.2	30.850	-7.000	30.0	2.30	240.8	-2.545	0.20
182	1986	2	28	20	10	28.5	31.000	-4.700	22.0	2.70	20.6	-0.800	40.24
184	1986	1	20	11	13	20.4	31.999	-5.310	10.0	4.90	39.0	1 748	49.24
185	1986	1	20	7	50	13.3	32.079	-5 394	10.0	4.20	48.9	4 336	27.45
186	1987	7	31	15	45	19.3	33 488	-4 101	10.0	3.70	234.9	-0.109	0.96
187	1988	, 9	22	23	44	30.3	31 442	-7 672	10.0	3.70	223.2	0.018	1.05
188	1989	5	7	17	45	47.9	32.911	-5.094	10.0	3.70	142.4	1.124	2.24
189	1989	12	. 8	1		31	31 941	-6 292	5.0	3.80	97.5	2.195	4 70
190	1991	7	29	7	22	18.8	30.715	-6.586	30.0	4.30	157.6	1.736	3.43
191	1992	9	29	5	45	30.4	31.471	-3.441	0.0	3.60	178.6	0.422	1.38
192	1992	10	23	9	11	12.5	31.513	-4.233	22.0	5.20	103.8	4.096	17.49
193	1992	10	30	10	44	1.6	31.506	-4.617	0.0	5.00	68.2	4.841	29.26
194	1992	10	30	22	59	21.3	31.061	-4.480	30.0	3.50	102.3	1.534	2.98
195	1992	10	31	0	58	46.4	31.119	-4.269	30.0	4.10	115.1	2.169	4.62
196	1992	12	10	23	23	54.6	32.168	-5.839	0.0	3.60	76.1	2.485	5.75
197	1993	1	8	1	43	8.7	30.634	-6.718	30.0	3.50	172.9	0.314	1.28
198	1993	5	1	4	39	25.9	31.590	-4.930		3.10	37.4	3.282	9.97
199	1993	5	16	1	40	29.7	30.180	-5.740		3.30	166.9	0.139	1.14
200	1993	5	27	19	10	48.0	32.060	-6.330		2.50	106.0	0.048	1.07
201	1993	6	5	6	47	25.2	32.310	-3.750		3.00	165.9	-0.296	0.84
202	1993	6	27	13	46	11.9	33.680	-4.650		3.80	234.7	0.045	1.07
203	1993	7	16	17	12	4.9	33.500	-4.450		2.70	221.9	-1.465	0.38
204	1993	7	23	22	13	27.0	32.420	-6.150		2.90	116.5	0.419	1.38
205	1993	8	29	6	6	47.3	32.960	-5.330		3.30	146.2	0.465	1.42
206	1993	9	29	5	45	34.0	31.860	-3.720		3.90	153.2	1.250	2.45
207	1993	9	29	5	45	30.6	31.485	-3.468	30.0	3.60	175.9	0.424	1.38
208	1993	10	9	21	52	55.3	31.190	-7.410		3.60	203.6	0.098	1.10
209	1993	11	9	16	51	46.4	33.640	-6.150		2.70	235.0	-1.608	0.34
210	1993	11	30	13	17	31.0	32.560	-5.620		3.80	105.6	2.006	4.13
211	1993	12	9	19	28	13.8	33.970	-4.780		4.00	263.2	0.061	1.08
212	1994	5	7	8	49	54.1	31.544	-3.433	26.0	4.00	178.7	0.995	2.05
213	1994	5	12	23	58	11.1	31.503	-3.379	23.0	3.80	184.1	0.628	1.59
214	1995	1	29	17	43	13.3	33.205	-5.124	0.0	3.70	174.3	0.631	1.60
215	1995	6	21	0	36	58.6	30.776	-7.075	30.0	3.70	191.5	0.369	1.33
216	1995	9	3	22	34	55.5	33.153	-2.928	30.0	4.30	281.4	0.330	1.30
217	1995	9	25	15	13	16.7	34.180	-4.8/1	6.0	3.60	284.7	-0.735	0.62
218	1995	9	27	22	18	2.2	30.826	-8.133	31.0	3.60	280.6	-0./14	0.63
219	1995	9	29) 10	21	31.3	34.069	-5.884	3.0	3.50	274.4	-0.793	0.60
220	1993	11	23	18	51 24	41.9	33.210	-3.232 1 01E	0.0	3.00	202.0	-0.329	0.72
221	1990	4	3 14	1	24 25	0.3 1 2	33 561	-4.843	14.0	3.00	200.0 238.6	-0.740	1.15
222	1997	י ד	14 76	11	23 56	1.3 55 7	33.301	-4.178	14.0	3.50	230.0 170.7	0.150	1.15
223	1997	/ Q	20 1	12	50 77	33.1	32 214	-4.990	9.0 7 0	3.50	73.0	2 422	5 50
224	1007	0	-+ /	13	++ 22	32.3 7 7	32.214	-5.704	13.0	4 10	75.0	3 212	9.50
225	1997	0 10	12	21	23 20	22 1	32.235	-3.724	13.0	3 70	2363	-0 123	0.95
227	1997	10	12	7	15	51.0	32.449	-2 848	5.0	3.80	0.0	6 135	71 53
228	1997	11	14	19	14	17.0	32.405	-2.040	9.0	3.90	0.0	6 1 3 0	71.29
0	-///	11	1 1	17	1 1	11.0	52.155	2.071	2.0	2.70	0.0	5.150	,

Table X3.3: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Timkit (4/5) (Latitude: 31°38'31''N, Longitude: 5°19'15''W)

J.3: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrag de terre Ressentie au Site de Barrage Timkit (5/5) (Latitude: 31°38'31''N, Longitude: 5°19'15''W)

					Time		Нур	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day		20	G	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	Min	Sec	Ν	Ē	(km)	Richter Scale	(km)	(Imm)	(gal)
229	1997	11	15	3	29	26.5	32.534	-2.849	4.0	3.50	0.0	5.712	53.39
230	1997	11	15	6	15	32.6	32.584	-2.805	4.0	3.50	0.0	5.712	53.39
231	1998	1	7	13	22	57.7	32.906	-2.777	30.0	3.60	0.0	4.437	22.14
232	1998	4	14	7	26	50.4	32.804	-5.297	5.0	3.90	0.0	6.285	79.34
233	1998	6	16	5	30	10.3	32.655	-5.315	3.0	3.90	0.0	6.333	82.01
234	1998	6	18	19	45	34.8	32.704	-5.368	0.0	4.40	0.0	7.111	140.35
235	1998	9	16	7	58	2.1	32.713	-5.394	0.0	3.60	0.0	5.911	61.26

					Time		Нуре	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				noui	wiin	bee	Ν	E	(km)	Richter Scale	(km)	(Imm)	(gal)
1	1926	10	11	6	39	18.0	35.699	-2.783	0.0	4.50	256.6	0.873	1.89
2	1926	10	15	6	48	20.0	35.699	-2.783	0.0	4.40	256.6	0.723	1.70
3	1926	10	15	7	53	56.0	35.699	-2.783	0.0	3.50	256.6	-0.627	0.67
4	1926	10	19	4	35	8.0	35.699	-2.783	0.0	4.10	256.6	0.273	1.25
5	1926	11	6	21	0	32.0	35.266	-3.583	0.0	3.90	178.5	0.873	1.89
6	1926	11	13	8	46	58.0	35.450	-3.366	0.0	3.80	205.5	0.375	1.34
7	1926	11	17	21	21	31.0	35.683	-3.366	0.0	4.50	229.0	1.157	2.30
8	1927	4	7	19	52	25.0	36.333	-3.533	0.0	3.40	292.2	-1.099	0.48
9	1927	9	8	8	52	50.0	35.333	-3.666	0.0	4.60	182.6	1.867	3.75
10	1927	9	12	16	48	27.0	35.333	-3.666	0.0	4.10	182.6	1.117	2.23
11	1927	9	30	6	42	21.0	35.333	-3.666	0.0	3.80	182.6	0.667	1.64
12	1927	12	3	10	9	8.0	35.733	-3.583	0.0	4.20	227.0	0.728	1.71
13	1929	8	14	6	38	36.0	35.750	-3.666	0.0	4.40	226.6	1.033	2.11
14	1930	8	9	18	9	38.0	34.300	-5.399	0.0	4.70	112.4	3.205	9.45
15	1930	8	13	3	20	45.0	34.300	-5.399	0.0	4.40	112.4	2.755	6.93
16	1930	12	24	14	27	43.0	34.500	-4.000	0.0	4.30	85.2	3.269	9.88
17	1931	9	10	21	19	44.0	35.616	-2.883	0.0	4.20	243.8	0.551	1.51
18	1932	2	13	0	3	1.0	36.000	-4.000	0.0	3.80	247.5	-0.086	0.97
19	1933	7	18	6	4	58.0	36.033	-4.766	0.0	4.60	252.0	1.069	2.16
20	1935	10	18	7	54	20.0	34.833	-4.000	0.0	4.20	120.3	2.292	5.03
21	1935	11	15	6	58	2.0	35.416	-4.000	0.0	4.20	183.4	1.256	2.46
22	1936	3	16	10	5	1.0	36.116	-5.183	0.0	4.40	269.5	0.602	1.57
23	1936	9	17	1	12	6.0	36.000	-4.250	0.0	3.90	245.5	0.083	1.09
24	1938	3	30	15	6	6.0	33.500	-6.250	0.0	5.10	178.6	2.672	6.54
25	1940	8	17	3	33	27.0	35.433	-4.000	0.0	4.10	185.3	1.081	2.18
26	1941	6	12	13	55	30.0	36.300	-3.183	0.0	4.80	298.7	0.946	1.98
27	1941	6	26	10	8	59.0	36.416	-4.416	0.0	3.50	291.6	-0.944	0.54
28	1941	12	6	0	33	56.0	35.583	-3.250	0.0	4.50	223.5	1.217	2.39
29	1942	5	13	13	30	2.0	36.000	-4.083	0.0	3.00	246.6	-1.277	0.43
30	1942	7	20	9	43	47.0	35.300	-4.100	0.0	4.20	169.2	1.454	2.82
31	1943	12	3	20	44	54.0	35.583	-4.166	0.0	3.80	199.8	0.444	1.40
32	1944	3	23	11	17	8.0	35.000	-3.300	0.0	3.90	165.7	1.057	2.14
33	1944	4	16	22	11	11.0	34.900	-3.500	0.0	4.00	146.1	1.516	2.94
34	1945	5	6	18	24	38.0	35.400	-2.899	0.0	4.00	223.4	0.468	1.43
35	1945	6	3	0	44	25.0	35.750	-2.700	0.0	4.30	265.6	0.488	1.45
36	1947	5	30	22	25	31.0	35.800	-2.300	0.0	4.20	292.6	0.097	1.10
37	1947	9	20	8	18	22.0	35.283	-2.916	0.0	3.90	212.2	0.446	1.40
38	1948	1	6	12	0	45.0	36.116	-3.199	0.0	3.80	279.2	-0.386	0.79
39	1948	2	16	2	46	28.0	36.300	-4.350	0.0	3.90	278.6	-0.231	0.88
40	1950	4	24	3	19	24.0	35.600	-2.700	0.0	4.30	252.2	0.617	1.58
41	1950	5	18	20	37	49.0	35.866	-2.400	0.0	3.90	292.5	-0.352	0.81
42	1951	1	17	15	56	0.0	36.000	-4.000	0.0	3.50	247.5	-0.536	0.71
43	1951	12	6	14	12	52.0	35.500	-2.000	0.0	4.00	288.4	-0.167	0.92
44	1952	5	12	19	34	36.8	35.690	-6.471	60.0	5.30	288.0	1.733	3.42
45	1952	8	31	15	45	22.0	35.500	-2.199	0.0	4.00	274.8	-0.047	1.00
46	1954	2	24	22	47	51.0	36.416	-4.416	0.0	3.70	291.6	-0.644	0.66
47	1954	2	25	9	26	15.0	36.416	-4.416	0.0	3.90	291.6	-0.344	0.81
48	1954	4	23	19	55	19.0	34.699	-4.900	0.0	4.50	113.1	2.890	7.61
49	1955	4	11	13	7	18.0	36.000	-3.500	0.0	3.50	257.6	-0.636	0.67
50	1955	5	12	0	10	11.0	35.699	-3.000	0.0	4.00	245.9	0.230	1.21
51	1956	1	21	14	8	18.2	36.281	-4.241	5.0	4.30	276.7	0.386	1.35
52	1956	1	26	5	2	22.0	36.086	-4.768	5.0	3.50	257.8	-0.639	0.66
53	1956	8	23	21	23	54.0	36.158	-3.245	5.0	3.80	282.0	-0.411	0.78
54	1957	4	1	13	58	8.3	35.248	-3.613	60.0	4.10	175.6	1.077	2.17
55	1957	8	25	6	59	15.8	36.138	-2.956	5.0	3.90	290.7	-0.337	0.82
56	1957	12	20	18	29	51.8	36.343	-4.178	10.0	4.00	283.8	-0.129	0.94
57	1959	8	4	7	12	7.0	35.500	-3.000	0.0	3.70	227.1	-0.023	1.02

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (1/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	WIIII	Sec	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
58	1959	8	23	13	46	6.0	35.516	-3.233	0.0	4.40	217.6	1.133	2.26
59	1959	8	23	22	21	30.8	35.513	-3.226	20.0	4.80	217.6	1.722	3.39
60	1959	8	24	0	33	56.0	35.516	-3.233	0.0	4.30	217.6	0.983	2.04
61	1959	8	29	13	31	36.0	35.800	-3.133	0.0	4.40	249.8	0.790	1.78
62	1959	8	29	13	51	51.0	35.800	-3.133	0.0	4.50	249.8	0.940	1.98
63	1959	8	29	15	33	0.0	35.800	-3.133	0.0	4.30	249.8	0.640	1.61
64	1959	8	29	20	45	59.0	35.800	-3.133	0.0	4.50	249.8	0.940	1.98
65	1959	8	30	4	30	19.0	35.688	-3.205	140.0	4.00	235.7	-0.041	1.00
66	1959	8	30	3	24	56.2	35.670	-3.080	5.0	4.80	239.4	1.495	2.90
67	1959	9	17	21	49	2.0	36.216	-3.216	0.0	4.60	288.9	0.729	1.71
68	1959	9	17	21	55	53.0	36.216	-3.216	0.0	4.60	288.9	0.729	1.71
69	1959	9	18	2	5	6.8	36.216	-3.225	5.0	4.60	288.6	0.731	1.71
70	1959	9	30	16	57	45.7	36.341	-3.283	5.0	4.80	299.8	0.936	1.97
71	1960	12	5	21	21	47.1	35.690	-6.621	5.0	4.90	297.6	1.104	2.21
72	1960	12	20	3	47	35.2	36.310	-3.298	5.0	4.00	296.1	-0.233	0.88
73	1960	12	24	20	24	11.7	35.353	-3.581	5.0	4.10	187.5	1.051	2.13
74	1962	1	13	9	36	18.8	35.660	-3.571	5.0	4.00	219.7	0.508	1.47
75	1962	2	14	13	48	15.1	35.290	-3.429	5.0	4.10	187.0	1.057	2.14
76	1962	2	21	9	2	41.0	35.500	-3.400	0.0	3.80	209.1	0.331	1.30
77	1962	3	1	22	19	57.9	35 911	-3 611	5.0	4 50	245.1	0.987	2.04
78	1962	6	1	19	59	15.9	36 246	-3 153	5.0	4.00	294.2	-0.217	0.89
79	1963	1	26	13	47	6.0	35 900	-3.800	0.0	3.00	239.7	-1.207	0.45
80	1963	3	28	4	29	25.0	35,800	-4 900	0.0	3.60	229.1	-0.193	0.90
81	1963	4	20	5	31	58.0	35,800	-4.200	0.0	3.50	223.5	-0.195	0.90
82	1963	- 6	20	10	17	20.0	34 750	-3.871	60.0	4.50	115 4	2 550	6.01
83	1963	6	20	10	27	29.0	36.008	-3.430	5.0	4.50	260.2	0.080	2.04
0.5	1903	0	20	10	16	1.0	26 270	-3.439	5.0	4.00	200.2	0.969	2.04
04 95	1903	6	27	10	40	4.0	25 725	-5.450	5.0	2.00	298.0	-2.333	0.20
05	1903	7	25	12	42	10.1	25 622	-5.555	5.0	2.00	220.1	-0.935	0.54
80 97	1903	/	25	1	42	11.4	25.033	-5.050	5.0	3.00	214.0	-0.955	0.54
0/	1905	0	24	1	24	17.0	26.441	-5.590	20.0	2.70	205.1	-1.271	0.43
80 80	1903	9	0 20	10	44 21	17.0	25.022	-4.001	20.0	5.00 2.40	296.0	-0.857	0.58
89 00	1903	9	29	12	51	45.0	25.923	-4.130	5.0	5.40	257.5	-0.585	0.69
90	1903	11	10	12	45	10.5	25.000	-4.031	5.0	4.10	145.0	1./1/	5.58
91	1964	2	19	2	44	48.0	25.099	-5.500	0.0	3.40	255.1	-0.557	0.71
92	1964	4	9	10	29	55.2	25.810	-4.308	5.0	5.70	224.5	0.007	1.04
95	1964	4	20	10	15	55.0	35.800	-4.900	0.0	3.40	228.9	-0.495	0.73
94	1964	4	26	20	28	51.4	36.205	-4.273	5.0	3.60	268.2	-0.587	0.69
95	1964) 11	15	1/	32	25.5	35.706	-4.963	120.0	3.90	220.2	0.031	1.06
96	1964	11	15	20	3	54.5	34.938	-5.470	19.0	5.00	164.3	2./11	6.72
97	1965	4	14	18	2	18.8	35.416	-0.100	5.0	3.60	246.2	-0.374	0.80
98	1965	4	19	3	8	5.0	35.5/9	-5./55	5.0	4.20	200.1	0.96/	2.01
99	1965	5	30	11	59	58.0	36.100	-3.199	0.0	3.00	277.6	-1.572	0.35
100	1965	0	29	15	26	30.1	35.751	-5.598	33.0	3.00	246.4	-1.298	0.42
101	1965	11	3	15	12	6.0	35.500	-3.500	0.0	3.00	205.4	-0.825	0.58
102	1965	11	9	14	22	5.0	35.100	-3.500	0.0	2.70	165.3	-0.737	0.62
103	1965	12	5	3	50	13.0	34.843	-5.698	5.0	4.40	1/1.0	1.728	3.41
104	1966	1	19	10	20	2.0	36.199	-4.200	0.0	3.60	267.8	-0.582	0.69
105	1966	1	26	21	5	1.7	35.611	-4.885	5.0	3.70	208.2	0.192	1.18
106	1966	1	29	11	36	54.5	55.400	-5.400	0.0	2.60	199.1	-1.54/	0.41
107	1966	1	29	12	33	25.6	35.614	-3.686	5.0	2.60	211.6	-1.498	0.37
108	1966	2	23	3	16	16.3	35.443	-6.683	33.0	3.10	283.2	-1.489	0.37
109	1966	3	19	20	30	59.0	35.400	-3.700	0.0	3.20	188.6	-0.312	0.83
110	1966	5	17	21	1	53.8	36.148	-4.410	5.0	3.70	261.8	-0.377	0.80
111	1966	5	24	10	47	2.2	35.475	-3.939	5.0	3.20	190.9	-0.344	0.81
112	1966	5	29	14	30	28.8	36.413	-3.603	5.0	4.10	299.2	-0.109	0.96
113	1966	5	30	20	53	52.5	35.371	-3.728	5.0	3.10	184.7	-0.412	0.78
114	1966	6	1	0	1	33.5	35.400	-4.200	0.0	2.90	179.3	-0.638	0.66

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (2/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

No Yet No No Sec Cantola No				-		Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
Image Image <th< td=""><td>No.</td><td>Year</td><td>Month</td><td>Day</td><td>Hour</td><td>Min</td><td>Sec</td><td>Latitude</td><td>Longitude</td><td>Depth</td><td>in</td><td>Distance</td><td>Intensity</td><td>Acceleration</td></th<>	No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
115 1966 6 8 5 32 37.2 35.10 -5.130 5.00 200 27.90 2.1185 0.233 117 1966 8 27 21 4 200 35.199 -4.399 0.00 3.40 15.65 0.446 1.41 119 1966 9 19 20 0.5 35.780 -3.255 5.00 3.200 22.24 -1.132 0.47 119 1966 9 24 11 52 7.6 6.080 -3.411 50 3.50 2.616 -0.201 0.00 121 1966 10 22 9 4 17.9 35.660 -3.235 5.00 2.80 231.3 -1.419 0.20 121 1966 11 26 21 2 0.55 3.524 -3.570 5.00 2.60 185.7 -1.303 0.42 2.74 1.72 126 1967 7 1 10 35 5.02 3.524 -3.200 0.20 2.70 1.30 <					Hour	101111	Bee	Ν	E	(km)	Richter Scale	(km)	(Imm)	(gal)
116 1966 7 3 9 35 41/2 36.160 -3.343 5.0 2.60 279.0 -2.185 0.23 118 1966 9 19 20 20 20 55.79 -3.528 10.0 3.00 23.36 -1.145 0.47 120 1966 9 24 14 50 15.55 50 3.20 26.24 0.47 0.023 120 1966 9 24 11 50 15.57 -4.400 50 3.50 2.60 12.14 0.201 0.023 123 1966 10 22 1 10 12.25 2.50 3.525 50 2.50 15.50 1.40 1.33 2.74 1.403 2.74 125 1967 1 10 1.5 3.528 3.525 50 2.90 1.813 2.74 1.433 2.74 1.433 126 1967 1 10	115	1966	6	8	5	32	37.2	35.510	-5.130	5.0	3.00	204.2	-0.810	0.59
117 1966 8 27 21 4 200 35.199 -4.399 0.00 3.40 156.5 0.446 1.141 119 1966 9 12 14 50 15.50 3.50 23.53 0.73.255 5.00 23.00 22.44 -1.132 0.47 120 1966 9 28 11 0 12.2 35.780 -5.525 5.00 2.80 23.13 -1.419 0.90 121 1966 10 22 9 4 17.9 35.660 -2.325 5.00 2.80 21.21 0.007 0.84 124 1966 11 26 12 2.5 35.28 -5.525 5.00 2.00 182.97 -1.305 0.42 124 1966 13 36 85.87 3.528 -5.525 5.00 2.00 185.7 -1.305 0.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42	116	1966	7	3	9	35	41.2	36.160	-3.343	5.0	2.60	279.0	-2.185	0.23
118 1966 9 19 20 20 0.5 35.780 -3.528 100 3.00 233.6 -1.132 0.47 120 1966 9 24 11 50 35.971 -3.255 5.0 3.500 268.6 -0.701 0.021 121 1966 10 22 9 4 179 35.735 -4.440 5.0 3.500 226.1 -0.201 0.030 123 1966 11 26 21 2 0.5 35.524 -3.797 5.0 2.60 195.7 -1.305 0.42 125 1967 1 30 13 58 35.524 -3.797 5.0 2.90 182.9 0.68 0.30 128 1967 7 1 10 34.93 5.341 5.0 4.10 16.16 0.83 0.33 3.20 28.4 -1.452 0.33 130 1967 1 1.0 2.1 </td <td>117</td> <td>1966</td> <td>8</td> <td>27</td> <td>21</td> <td>4</td> <td>29.0</td> <td>35.199</td> <td>-4.399</td> <td>0.0</td> <td>3.40</td> <td>156.5</td> <td>0.446</td> <td>1.41</td>	117	1966	8	27	21	4	29.0	35.199	-4.399	0.0	3.40	156.5	0.446	1.41
19 1966 9 24 14 50 18.5 35.97 -3.255 5.0 3.200 262.4 -1.132 0.46 121 1966 9 24 11 52 75.6 0.300 3.411 5.0 3.500 216.1 -0.00 0.00 123 1966 11 26 21 22 0.5 35.690 -3.435 5.0 2.800 231.3 -1.419 0.39 123 1966 11 26 21 22 0.5 35.690 -3.200 0.0 2.900 18.2 -0.069 0.641 126 1967 3 17 6 13 49.7 34.26 -4.200 0.0 2.70 27.44 -1.452 0.38 128 1967 7 1 10 35 36.93 3.730 12.0 3.30 18.94 0.332 1.84 0.33 1.84 1.84 129 1967 11 </td <td>118</td> <td>1966</td> <td>9</td> <td>19</td> <td>20</td> <td>20</td> <td>0.5</td> <td>35.780</td> <td>-3.528</td> <td>10.0</td> <td>3.00</td> <td>233.6</td> <td>-1.145</td> <td>0.47</td>	118	1966	9	19	20	20	0.5	35.780	-3.528	10.0	3.00	233.6	-1.145	0.47
120 1906 9 24 11 52 7.6 30.800 -3.411 5.0 3.500 26.86 -0.701 0.902 121 1966 10 22 9 4 17.9 35.669 -4.200 0.0 3.400 21.4 -0.307 0.84 123 1966 12 15 18 5.5 35.52 -4.900 0.0 3.400 21.60 14.33 2.74 125 1967 1 30 13 58 87.3 32.88 -3.525 5.0 2.00 18.29 0.664 0.74 1.130 2.74 127 1967 5 30 12 55.0 2.00 4.100 2.640 3.00 18.29 0.633 3.733 1.00 4.101 2.64 4.025 130 1967 7 1 1.6 3.13 3.13 4.111 5.0 3.50 5.13 4.111 5.0 3.50 5.313 <	119	1966	9	21	14	50	18.5	35.971	-3.255	5.0	3.20	262.4	-1.132	0.47
121 1966 9 28 11 0 12.2 357.35 -4.400 5.00 35.00 21.61 -0.00 0.39 123 1966 11 26 21 22 0.5 35.69 -4.200 0.00 3.400 212.4 -0.307 0.84 124 1966 11 26 13 55.5 35.28 -3.525 5.00 2.00 18.29 -0.668 0.642 126 1907 3 17 6 13 49.7 34.286 -5.00 0.0 2.70 27.34 -1.948 0.26 128 1907 7 7 1 10 35 36.9 36.30 1.20 0.30 118.9 -0.035 0.71 131 1967 11 1 14 7 14.72 35.63 3.70 12.0 3.00 154.5 0.44.80 0.33 133 1967 11 14 7 12	120	1966	9	24	11	52	7.6	36.080	-3.411	5.0	3.50	268.6	-0.740	0.62
122 1966 10 22 9 4 17.9 35.660 -3.245 5.0 2.80 231.3 1.419 0.39 124 1966 12 15 16 8 55.6 35.528 -3.970 5.0 2.00 1957 -1.305 0.42 125 1967 1 30 13 58 87 35.288 -5.50 2.00 182.9 -0.680 0.64 127 1967 5 30 12 56 21.0 36.381 -5.41 5.0 2.00 4.101 161.9 1.413 0.271 130 1967 7 1 10 35 56 35.70 0.0 4.30 18.8 1.221.7 13.1 131 1967 11 71 34.71 35.70 0.0 3.00 151.0 0.834 1.84 132 1967 11 14 2.0 3.57.0 3.00 3.10 144	121	1966	9	28	11	0	12.2	35.735	-4.440	5.0	3.50	216.1	-0.201	0.90
123 1966 11 26 21 22 10.5 35.59 -4.200 0.0 3.40 21.24 -1.305 0.42 125 1967 1 30 13 58 8.7 35.288 -3.525 50 2.00 182.9 -0.689 0.642 126 1967 7 1 10 35 36.9 36.381 -3.488 50 3.20 2.77 4 -1.842 0.38 128 1967 7 1 10 35 36.9 3.535 -4.111 50 3.60 151.0 0.834 1.842 130 1967 11 6 2 1 47.23 35.535 -5.700 0.0 4.30 1.84 1.85 133 1967 11 1 1 2 2.5 3.50 1.50 3.30 1.80 0.356 0.71 133 1967 11 4 2 2 3.53	122	1966	10	22	9	4	17.9	35.660	-3.245	5.0	2.80	231.3	-1.419	0.39
124 1966 12 15 16 8 55.6 35.28 3.970 5.0 2.60 195.7 1.305 0.642 126 1967 3 17 6 13 49.7 34.936 5.528 5.0 2.00 2.70 2.734 -1.948 0.664 127 1967 8 30 18 21 0.0 3.499 -6.000 0.0 4.101 2.964 -1.452 0.381 129 1967 8 30 18 21 0.0 3.499 -6.000 0.0 4.101 2.964 -1.452 0.381 130 1967 11 11 19 47 2.3 3.5363 -3.730 12.0 3.30 13.14 1.831 1.331 1.371 1.34 3.030 1.51.9 0.433 1.831 1.331 1.331 1.331 1.331 1.331 1.331 1.331 1.331 1.331 1.331 1.331 1.331	123	1966	11	26	21	22	0.5	35.699	-4.200	0.0	3.40	212.4	-0.307	0.84
125 1967 1 30 13 58 8.7 3.528 -3.525 5.0 2.90 182.9 1.089 0.64 127 1967 5 30 12 56 21.0 36.250 4.200 0.0 2.70 273.4 1.984 0.26 128 1967 7 1 10 35 36.9 36.381 -5.488 5.0 3.20 257.44 -1.984 0.26 130 1967 9 24 17 8 0.0 32.500 -5.700 0.0 4.30 188.8 1.321 2.57 131 1967 11 0 2.2 1 47.2 35.53 3.411 3.50 3.50 3.00 189.8 0.53 0.71 133 1967 11 16 21 25 3.53 3.501 13.0 3.80 100 1.601 3.151 13.0 3.80 100 1.601 1.81	124	1966	12	15	16	8	55.6	35.524	-3.970	5.0	2.60	195.7	-1.305	0.42
126 1967 3 17 6 13 49.7 34.93 -5.431 5.0 4.10 161.9 1.143 2.74 127 1967 5 30 12 15 52.00 30.00 4.100 2026 4.005 0.270 2.734 -1.984 0.26 128 1967 7 1 10 35 36.9 36.381 -3.488 5.0 3.20 27.70 4.30 18.88 1.321 2.577 131 1967 11 6 2.2 1 47.2 35.503 -3.701 12.0 3.30 12.41 9.433 1.631 1.614 1.83 1.631 133 1967 11 14 27 20 25.51 3.5450 5.0 3.0 1.942 -0.536 0.71 134 1967 11 14 27 13 3.69 3.550 5.00 3.00 1.601 3.00 1.601 1.631 </td <td>125</td> <td>1967</td> <td>1</td> <td>30</td> <td>13</td> <td>58</td> <td>8.7</td> <td>35.288</td> <td>-3.525</td> <td>5.0</td> <td>2.90</td> <td>182.9</td> <td>-0.689</td> <td>0.64</td>	125	1967	1	30	13	58	8.7	35.288	-3.525	5.0	2.90	182.9	-0.689	0.64
127 1967 5 10 12 56 1.0 5.250 -4.200 0.0 2.70 27.4 -1.984 0.26 128 1967 7 1 10 35 36.9 3.388 50.320 32.0 3.20 3.20 3.20 1.20 3.30 189.8 1.321 2.57 130 1967 10 6 2.2 1 47.2 2.51.35 4.111 50.30 2.18.8 1.321 2.57 131 1967 11 1 19 44 42.3 35.693 -3.730 12.0 3.30 21.8 0.535 1.80 133 1967 11 14 2 2.5 3.540 -3.501 13.0 4.03 1.40 2.5 1.83 135 1967 11 14 2.2 7 19 8.1 3.51.3 3.30 3.30 2.70 0.705 0.60 138 1968 2	126	1967	3	17	6	13	49.7	34.936	-5.431	5.0	4.10	161.9	1.413	2.74
128 1967 7 1 10 35 36.9 36.81 -3.488 5.0 32.00 29.84 -1.452 0.03 129 1967 8 30 18 21 0.0 31.49 -6.000 0.0 4.101 29.64 -0.085 0.977 131 1967 10 6 22 1 47.2 25.135 -4.111 5.0 3.600 151.0 0.834 1.84 132 1967 11 17 14 34 0.7 3.730 12.0 3.300 154.5 0.148 0.935 0.71 133 1967 11 14 7 20 22.5 35.425 -3.801 10.0 3.80 190.1 0.483 0.875 0.71 134 1968 1 19 20 23 42.5 35.90 -3.660 0.0 2.02 0.082 1.691 137 1968 2 13 13	127	1967	5	30	12	56	21.0	36.250	-4.200	0.0	2.70	273.4	-1.984	0.26
129 1967 8 30 18 21 0.0 31.499 -6.00 0.0 4.10 2964 0.085 0.071 130 1967 10 6 22 1 7.2 35.135 -4.111 5.0 3.60 15.10 0.834 1.84 131 1967 11 1 19 47.2 35.693 -3.730 120 3.300 218.5 -0.184 0.933 134 1967 11 14 7 20 22.5 35.305 -3.08 2.00 4.00 188.5 0.875 1.89 135 1967 11 14 2 33 40.2 3.300 2.00 4.00 3.300 1.01 0.901 1.51 137 1968 1 19 20 23 42.5 3.500 -3.60 0.0 2.70 2.79 0.795 0.60 144 1968 2 15 40 3.29	128	1967	7	1	10	35	36.9	36.381	-3.488	5.0	3.20	298.4	-1.452	0.38
130 1967 9 24 17 8 0.0 32.500 -5.700 0.0 4.30 189.8 1.321 2.57 131 1967 11 1 19 47 23.55.35 -4.111 5.00 3.600 151.00 0.834 1.84 133 1967 11 14 2 53 3.730 12.0 3.300 154.5 0.148 0.935 134 1967 11 14 2 53 40.2 35.51 -3.501 3.00 194.2 0.561 0.321 135 1967 11 14 2 53 3.00 3.60 0.01 2.02 0.353 0.0 2.00 2.40 0.561 0.02 2.03 0.561 0.0 2.00 2.030 1.61 1.02 1.63 1.64 1.00 2.056 1.161 2.02 3.60 1.61 2.00 3.60 1.61 2.00 3.60 1.61 2.00	129	1967	8	30	18	21	0.0	31.499	-6.000	0.0	4.10	296.4	-0.085	0.97
131 1967 10 6 22 1 47.2 35.135 -4.111 5.0 3.60 151.0 0.834 1.84 132 1967 11 1 19 47 42.3 35.693 -3.730 12.0 3.300 128.9 -0.535 0.711 14 14 7 20 2.5 35.425 -3.801 2.00 4.00 188.5 0.875 1.89 135 1967 11 14 2 53 4.50 -5.501 13.0 3.80 190.1 0.561 1.52 136 1968 1 22 7 19 8.1 35.136 -5.833 40.0 4.10 202.9 0.089 1.81 139 1968 2 15 42.50 35.93 -3.36 9.0 3.10 23.9 0.022 0.022 1.09 144 1968 2 16 17 5.01 35.03 -3.716 0.0	130	1967	9	24	17	8	0.0	32.500	-5.700	0.0	4.30	189.8	1.321	2.57
122 1967 11 1 19 47 423 35.693 -3.730 12.0 3.300 128.9 -0.535 0.71 133 1967 11 14 7 10 22.5 35.425 -3.801 20.0 4.00 188.5 0.71 135 1967 11 14 2 53 4.25 35.500 -3.650 5.0 3.10 194.2 -0.536 0.71 136 1967 1 16 22.1 5 35.00 -3.650 0.0 2.70 243.0 -1.691 0.32 138 1968 1 12 7 19 8.1 35.136 -5.403 0.00 2.70 243.0 -1.691 0.32 140 1968 2 13 18 57 33.4 36.479 -4.565 91.0 4.30 259.2 0.080 1.81 141 1968 2 16 7 56.0 36.066<	131	1967	10	6	22	1	47.2	35.135	-4.111	5.0	3.60	151.0	0.834	1.84
133 1967 11 7 14 34 0.7 34.713 -3.098 23.0 3.00 15.45 -0.148 0.93 134 1967 11 14 2 53 54.25 53.801 20.0 4.00 188.5 0.875 1.89 136 1967 11 16 21 5 32.5 35.30 1.301 3.80 190.1 0.561 1.52 137 1968 1 22 7 19 81.3 55.83 40.0 4.10 20.29 0.809 1.81 139 1968 2 25 5 40 32.9 36.041 -5.040 18.0 3.40 257.9 0.795 0.60 140 1968 2 17 6 17 48.0 35.95 -3.396 9.0 3.10 253.9 -1.02 0.45 143 1968 2 26 6 7 56.0 3.51.3	132	1967	11	1	19	47	42.3	35.693	-3.730	12.0	3.30	218.9	-0.535	0.71
134 1967 11 14 2 20 2.5 35.425 -3.801 20.0 4.00 18.85 0.875 1.89 135 1967 11 14 2 53 35.30 -3.501 1.30 3.80 190.1 0.561 1.52 137 1968 1 19 20 23 42.5 35.900 -3.650 0.0 2.70 243.0 -1.691 0.32 138 1968 2 13 18 57 3.4 36.479 -4.565 91.0 4.30 257.9 -0.795 0.600 141 1968 2 16 2 50 45.7 35.110 -4.161 2.00 3.60 1.476 0.868 1.88 144 1968 2 26 6 7 50.0 3.606 -3.133 0.0 3.30 27.3 -0.969 0.53 144 1968 2 28 1 41	133	1967	11	7	14	34	0.7	34.713	-3.098	23.0	3.00	154.5	-0.148	0.93
135 1967 11 14 2 53 40.2 35.411 -3.560 5.0 3.10 194.2 0.336 0.71 136 1967 11 16 21 5 32.5 35.30 -3.501 13.0 3.80 191.1 0.561 1.52 138 1968 1 22 7 19 8.1 35.136 -5.833 40.0 4.10 202.9 0.809 1.81 139 1968 2 15 5 40 32.9 36.041 -5.040 18.0 3.40 22.92 0.082 1.09 141 1968 2 16 2 50 45.7 35.110 -4.161 20.0 3.60 147.6 0.868 1.88 142 1968 2 27 14 42 30.0 3.50 0.3.0 276.5 -1.12 0.43 144 1968 2 28 17 30 35.33	134	1967	11	14	7	20	22.5	35.425	-3.801	20.0	4.00	188.5	0.875	1.89
136 1967 11 16 21 5 32.5 35.30 -3.50 13.0 3.80 190.1 0.561 1.52 137 1968 1 12 7 19 81 35.16 -5.853 40.0 4.10 202.9 0.802 1.81 139 1968 2 5 5 40 32.9 36.041 -5.040 18.0 3.400 4.10 202.9 0.062 1.09 141 1968 2 17 6 17 48.0 35.935 -3.396 9.0 3.10 253.9 -1.020 0.455 143 1968 2 26 6 7 56.0 36.066 -3.133 0.0 3.30 277.3 -9.0969 0.44.8 1.411 0.39 144 1968 2 28 1 141 52.0 35.933 -3.716 0.0 2.90 244.8 1.411 0.39 144 1968	135	1967	11	14	2	53	40.2	35.411	-3.560	5.0	3.10	194.2	-0.536	0.71
137 1968 1 19 20 23 42.5 35.900 -3.650 0.0 2.70 243.0 -1.691 0.32 138 1968 1 12 7 19 8.1 35.136 -5.833 40.0 4.10 202.9 0.809 1.81 139 1968 2 15 5 40 32.9 36.041 -5.040 18.0 3.40 25.9 -0.795 0.60 141 1968 2 16 2 50 45.7 35.110 -4.161 20.0 3.600 147.6 0.868 1.88 142 1968 2 17 6 6 7 50.0 36.066 -3.133 0.0 3.30 276.5 -1.112 0.48 144 1968 2 28 1 17 30 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 144 1968 4 3 5 27 33.7 35.315 -4.788 16.0 4.00 174.1 1.0	136	1967	11	16	21	5	32.5	35.350	-3.501	13.0	3.80	190.1	0.561	1.52
138 1968 1 22 7 19 8.1 35.136 -5.833 40.0 4.10 202.9 0.809 1.81 139 1968 2 15 5 40 32.9 36.041 -5.040 18.0 3.40 257.9 -0.795 0.606 141 1968 2 16 2 50 45.7 35.110 -4.161 200 3.60 147.6 0.868 1.88 142 1968 2 17 6 17 48.0 35.935 -3.396 9.0 3.10 253.9 -1.112 0.445 143 1968 2 26 6 7 50.0 5.333 0.0 3.40 277.3 -0.969 0.53 144 1968 2 28 1 41 52.0 35.737 -3.296 10.0 3.40 275.0 -1.111 0.39 144 1968 4 17 10 18	137	1968	1	19	20	23	42.5	35.900	-3.650	0.0	2.70	243.0	-1.691	0.32
139 1968 2 5 5 40 32.9 36.041 -5.040 18.0 3.40 257.9 -0.795 0.60 140 1968 2 13 18 57 33.4 36.479 -4.565 91.0 4.300 29.2 0.082 1.09 141 1968 2 16 2 50 45.7 35.110 -4.161 20.0 3.600 147.6 0.868 1.88 143 1968 2 26 6 7 56.0 36.066 -3.133 0.0 3.30 276.5 -1.112 0.48 144 1968 2 28 1 41 52.0 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 144 1968 4 3 3 12 2.5 1.2.6 35.374 -2.296 1.00 3.40 175.1 2.551 6.02 148 1968 4 17	138	1968	1	22	7	19	8.1	35.136	-5.833	40.0	4.10	202.9	0.809	1.81
140 1968 2 13 18 57 33.4 36.479 -4.565 91.0 4.30 299.2 0.082 1.09 141 1968 2 16 2 50 45.7 35.110 -4.161 20.0 3.60 147.6 0.868 1.88 142 1968 2 27 14 420 32.05 -3.396 90 3.10 275.5 -1.112 0.48 144 1968 2 27 14 42 32.0 36.076 -3.140 5.0 3.40 277.3 -0.969 0.53 145 1968 2 28 1 14 52.01 35.933 -3.716 0.0 2.40 -1.411 0.39 144 1968 4 37 35.15 -4.788 16.0 4.00 174.1 1.074 2.17 144 1968 4 17 10 18 24.0 55.285 -3.733 0.0	139	1968	2	5	5	40	32.9	36.041	-5.040	18.0	3.40	257.9	-0.795	0.60
141 1968 2 16 2 50 45.7 35.10 -4.161 200 3.60 147.6 0.868 1.88 142 1968 2 17 6 17 48.0 35.935 -5.396 9.0 3.100 253.9 -1.202 0.45 143 1968 2 26 6 7 56.0 36.066 -3.133 0.0 3.30 276.5 -1.112 0.48 144 1968 2 28 1 41 52.0 35.933 -3.723 9.0 2.90 244.8 -1.411 0.39 147 1968 3 31 21 25 12.6 35.74 -2.266 10.0 4.00 175.1 2.511 6.02 148 1968 4 17 9 12 6.9 35.283 -3.733 0.0 3.00 175.3 0.108 1.16 151 1968 4 17 9	140	1968	2	13	18	57	33.4	36.479	-4.565	91.0	4.30	299.2	0.082	1.09
142 1968 2 17 6 17 48.0 35.935 -3.396 9.0 3.10 25.9 -1.202 0.43 143 1968 2 26 6 7 56.0 36.066 -3.133 0.0 3.30 276.5 -1.112 0.48 144 1968 2 27 14 42 32.0 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 146 1968 2 28 2 17 3.0 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 147 1968 4 17 9 12.6 35.285 -3.733 0.0 3.40 175.1 2.551 6.02 150 1968 4 17 10 24 53.1 35.283 -3.733 0.0 3.40 175.3 -1.032 0.51 152 1968 4 17 10 24	141	1968	2	16	2	50	45.7	35.110	-4.161	20.0	3.60	147.6	0.868	1.88
143 1968 2 26 6 7 56.0 36.066 -3.133 0.0 3.30 276.5 -1.112 0.48 144 1968 2 27 14 42 32.0 36.076 -3.140 5.0 3.40 277.3 -0.969 0.53 145 1968 2 28 2 1 41 52.0 35.933 -3.723 9.0 2.900 244.8 -1.411 0.39 147 1968 3 31 21 25 12.6 35.374 -2.296 10.0 3.40 258.7 -0.798 0.60 148 1968 4 17 9 12 6.9 35.285 -3.746 22.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 2.60 175.3 -1.032 0.51 151 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 <t< td=""><td>142</td><td>1968</td><td>2</td><td>17</td><td>6</td><td>17</td><td>48.0</td><td>35.935</td><td>-3.396</td><td>9.0</td><td>3.10</td><td>253.9</td><td>-1.202</td><td>0.45</td></t<>	142	1968	2	17	6	17	48.0	35.935	-3.396	9.0	3.10	253.9	-1.202	0.45
144 1968 2 27 14 42 32.0 36.076 -3.140 5.0 3.40 277.3 -0.969 0.53 145 1968 2 28 1 41 52.0 35.933 -3.723 9.0 2.90 244.8 -1.411 0.39 146 1968 3 31 21 25 12.6 35.374 -2.296 10.0 3.40 25.87 -0.798 0.60 148 1968 4 17 9 12 6.9 35.285 -3.746 22.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 -1.032 0.21 151 1968 4 17 9 34.5 55.435.283 -3.733 0.0 3.10 175.3 -0.282 0.85 152 1968 4 19 4 29<	143	1968	2	26	6	7	56.0	36.066	-3.133	0.0	3.30	276.5	-1.112	0.48
145 1968 2 28 1 41 52.0 35.933 -3.723 9.0 2.90 244.8 -1.411 0.39 146 1968 2 28 2 17 3.0 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 147 1968 3 31 21 25 12.6 35.737 -2.296 10.0 3.40 25.87 -0.798 0.60 148 1968 4 17 9 12 6.9 35.285 -3.746 12.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 24 52.83 -3.733 0.0 3.40 175.3 0.168 1.16 151 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.10 175.3 0.018 1.05 153 1968 4 30 3 23	144	1968	2	27	14	42	32.0	36.076	-3.140	5.0	3.40	277.3	-0.969	0.53
146 1968 2 28 2 17 3.0 35.933 -3.716 0.0 2.90 245.0 -1.411 0.39 147 1968 3 31 21 25 12.6 35.374 -2.296 10.0 3.40 258.7 -0.798 0.60 148 1968 4 17 9 12 6.9 35.283 -3.736 0.0 3.40 175.3 0.168 1.16 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 0.108 1.16 151 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.10 175.3 0.183 1.05 154 1968 5 1 3	145	1968	2	28	1	41	52.0	35.933	-3.723	9.0	2.90	244.8	-1.411	0.39
147 1968 3 31 21 25 12.6 35.374 -2.296 10.0 3.40 258.7 -0.798 0.60 148 1968 4 17 9 12 6.9 35.285 -3.746 22.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 0.168 1.16 151 1968 4 17 10 24 53.1 35.283 -3.733 0.0 2.60 175.3 -1.032 0.51 152 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 4 30 3 23 38.0 35.283 -3.733 0.0 2.50 175.3 -1.182	146	1968	2	28	2	17	3.0	35.933	-3.716	0.0	2.90	245.0	-1.411	0.39
148 1968 4 3 5 27 33.7 35.315 -4.788 16.0 4.00 174.1 1.074 2.17 149 1968 4 17 9 12 6.9 35.285 -3.746 22.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 0.168 1.16 151 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 154 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 5 1 3 10 48.0 35.283 -3.733 0.0 2.50 175.3 -1.182 0	147	1968	3	31	21	25	12.6	35.374	-2.296	10.0	3.40	258.7	-0.798	0.60
149 1968 4 17 9 12 6.9 35.285 -3.746 22.0 5.00 175.1 2.551 6.02 150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 0.168 1.16 151 1968 4 17 9 43 41.5 35.283 -3.733 0.0 2.60 175.3 -1.032 0.51 153 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.30 175.3 0.018 1.05 154 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 155 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.400 289.3 -1.075 <td< td=""><td>148</td><td>1968</td><td>4</td><td>3</td><td>5</td><td>27</td><td>33.7</td><td>35.315</td><td>-4.788</td><td>16.0</td><td>4.00</td><td>174.1</td><td>1.074</td><td>2.17</td></td<>	148	1968	4	3	5	27	33.7	35.315	-4.788	16.0	4.00	174.1	1.074	2.17
150 1968 4 17 10 18 24.0 35.283 -3.733 0.0 3.40 175.3 0.168 1.16 151 1968 4 17 10 24 53.1 35.283 -3.733 0.0 2.60 175.3 -1.032 0.51 152 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.00 175.3 0.018 1.05 154 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 156 1968 5 1 3 10 48.0 35.283 -3.733 0.0 2.50 175.3 -1.182 0.468 157 1968 5 1 3 10 48.0 35.191 -5.021 5.0 3.50 167.5 0.428	149	1968	4	17	9	12	6.9	35.285	-3.746	22.0	5.00	175.1	2.551	6.02
151 1968 4 17 10 24 53.1 35.283 -3.733 0.0 2.60 175.3 -1.032 0.51 152 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 0.018 1.05 155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.900 204.7 0.533 1.49 156 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 5 10 2 59 29.4 35.728 -3.836 10.0 3.90 220.3 0.349 1.31 159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 <	150	1968	4	17	10	18	24.0	35.283	-3.733	0.0	3.40	175.3	0.168	1.16
152 1968 4 17 9 43 41.5 35.401 -3.980 5.0 4.00 182.1 0.973 2.02 153 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.30 175.3 0.018 1.05 154 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 156 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.716 -3.833 0.0 3.50 219.1 -0.234	151	1968	4	17	10	24	53.1	35.283	-3.733	0.0	2.60	175.3	-1.032	0.51
153 1968 4 18 0 58 5.5 35.283 -3.733 0.0 3.30 175.3 0.018 1.05 154 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 156 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.728 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 29 18	152	1968	4	17	9	43	41.5	35.401	-3.980	5.0	4.00	182.1	0.973	2.02
154 1968 4 19 4 29 44.6 35.283 -3.733 0.0 3.10 175.3 -0.282 0.85 155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 156 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 5 22 14 1 58.9 34.83 -4.408 26.0 4.00 121.5 1.912 3.87 159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.78 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 244.8 0.089 <td< td=""><td>153</td><td>1968</td><td>4</td><td>18</td><td>0</td><td>58</td><td>5.5</td><td>35.283</td><td>-3.733</td><td>0.0</td><td>3.30</td><td>175.3</td><td>0.018</td><td>1.05</td></td<>	153	1968	4	18	0	58	5.5	35.283	-3.733	0.0	3.30	175.3	0.018	1.05
155 1968 4 30 3 23 38.0 35.629 -4.508 5.0 3.90 204.7 0.533 1.49 156 1968 5 1 3 10 48.0 35.283 -3.733 0.0 2.50 175.3 -1.182 0.46 157 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 5 22 14 1 58.9 34.83 -4.408 26.0 4.00 121.5 1.912 3.87 159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.78 -3.836 10.0 3.90 24.48 0.089 1.10 161 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 24.48 0.089 <td< td=""><td>154</td><td>1968</td><td>4</td><td>19</td><td>4</td><td>29</td><td>44.6</td><td>35.283</td><td>-3.733</td><td>0.0</td><td>3.10</td><td>175.3</td><td>-0.282</td><td>0.85</td></td<>	154	1968	4	19	4	29	44.6	35.283	-3.733	0.0	3.10	175.3	-0.282	0.85
156 1968 5 1 3 10 48.0 35.283 -3.733 0.0 2.50 175.3 -1.182 0.46 157 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.78 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.50 219.1 -0.234 0.88 162 1968 7 29 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34	155	1968	4	30	3	23	38.0	35.629	-4.508	5.0	3.90	204.7	0.533	1.49
157 1968 5 10 2 50 22.5 36.346 -3.736 5.0 3.40 289.3 -1.075 0.49 158 1968 5 22 14 1 58.9 34.883 -4.408 26.0 4.00 121.5 1.912 3.87 159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.78 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.2	156	1968	5	1	3	10	48.0	35.283	-3.733	0.0	2.50	175.3	-1.182	0.46
158 1968 5 22 14 1 58.9 34.883 -4.408 26.0 4.00 121.5 1.912 3.87 159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.728 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.6	157	1968	5	10	2	50	22.5	36.346	-3.736	5.0	3.40	289.3	-1.075	0.49
159 1968 6 15 21 37 41.9 35.191 -5.021 5.0 3.50 167.5 0.428 1.39 160 1968 7 4 21 59 29.4 35.728 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.50 219.1 -0.234 0.88 162 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 165 1968 8 30 18	158	1968	5	22	14	1	58.9	34.883	-4.408	26.0	4.00	121.5	1.912	3.87
160 1968 7 4 21 59 29.4 35.728 -3.836 10.0 3.90 220.3 0.349 1.31 161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.50 219.1 -0.234 0.88 162 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18	159	1968	6	15	21	37	41.9	35.191	-5.021	5.0	3.50	167.5	0.428	1.39
161 1968 7 5 2 27 56.5 35.716 -3.833 0.0 3.50 219.1 -0.234 0.88 162 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 0.600 0.68 167 1968 9 2 12	160	1968	7	4	21	59	29.4	35.728	-3.836	10.0	3.90	220.3	0.349	1.31
162 1968 7 29 18 10 41.5 35.185 -2.298 10.0 3.90 244.8 0.089 1.10 163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 -0.600 0.68 167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12	161	1968	7	5	2	27	56.5	35.716	-3.833	0.0	3.50	219.1	-0.234	0.88
163 1968 8 5 2 18 3.4 35.016 -4.043 20.0 3.30 139.1 0.562 1.52 164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 -0.600 0.68 167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12 38 24.7 35.076 -2.788 5.0 4.00 203.0 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.	162	1968	7	29	18	10	41.5	35.185	-2.298	10.0	3.90	244.8	0.089	1.10
164 1968 8 5 2 34 32.0 35.016 -4.033 0.0 3.10 139.3 0.284 1.26 165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 -0.600 0.68 167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12 38 24.7 35.076 -2.788 5.0 4.00 203.0 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3	163	1968	8	5	2	18	3.4	35.016	-4.043	20.0	3.30	139.1	0.562	1.52
165 1968 8 10 1 0 27.4 34.621 -3.540 20.0 3.90 118.8 1.838 3.68 166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 -0.600 0.68 167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12 38 24.7 35.076 -2.783 5.0 4.00 203.0 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3 5 35.0 35.066 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8	164	1968	8	5	2	34	32.0	35.016	-4.033	0.0	3.10	139.3	0.284	1.26
166 1968 8 30 18 56 41.1 35.196 -4.408 5.0 2.70 156.2 -0.600 0.68 167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12 38 24.7 35.076 -2.788 5.0 4.00 203.0 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3 5 35.0 35.066 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	165	1968	8	10	1	0	27.4	34.621	-3.540	20.0	3.90	118.8	1.838	3.68
167 1968 9 2 14 37 56.0 35.066 -2.783 0.0 4.00 202.5 0.711 1.69 168 1968 9 2 12 38 24.7 35.076 -2.788 5.0 4.00 202.5 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3 5 35.066 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	166	1968	8	30	18	56	41.1	35.196	-4.408	5.0	2.70	156.2	-0.600	0.68
168 1968 9 2 12 38 24.7 35.076 -2.788 5.0 4.00 203.0 0.705 1.68 169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3 5 35.06 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	167	1968	9	2	14	37	56.0	35.066	-2.783	0.0	4.00	202.5	0.711	1.69
169 1968 9 5 13 22 39.5 34.893 -2.586 5.0 3.50 203.8 -0.056 0.99 170 1968 9 13 3 5 35.0 35.066 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	168	1968	9	2	12	38	24.7	35.076	-2.788	5.0	4.00	203.0	0.705	1.68
170 1968 9 13 3 5 35.06 -2.783 0.0 3.10 202.5 -0.639 0.66 171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	169	1968	9	5	13	22	39.5	34.893	-2.586	5.0	3.50	203.8	-0.056	0.99
171 1968 10 5 8 2 53.0 36.350 -3.850 0.0 3.10 287.9 -1.512 0.36	170	1968	9	13	3	5	35.0	35.066	-2.783	0.0	3.10	202.5	-0.639	0.66
	171	1968	10	5	8	2	53.0	36.350	-3.850	0.0	3.10	287.9	-1.512	0.36

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (3/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	wiin	500	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
172	1968	10	12	18	21	40.1	36.176	-4.278	10.0	3.60	265.0	-0.558	0.70
173	1968	10	18	23	5	35.6	35.898	-2.688	5.0	2.90	279.9	-1.742	0.31
174	1968	10	30	11	41	55.7	35.281	-3.756	5.0	4.60	174.4	1.979	4.05
175	1968	11	1	8	50	11.8	35.111	-2.946	5.0	3.70	195.8	0.344	1.31
176	1968	11	7	2	8	47.5	35.896	-4.875	80.0	3.90	238.8	0.020	1.05
177	1969	1	22	17	55	37.9	35.626	-3.958	14.0	3.00	207.0	-0.849	0.57
178	1969	1	27	23	15	16.6	36.460	-4.458	60.0	2.70	296.6	-2.236	0.22
179	1969	2	10	19	30	7.9	34.220	-6.651	60.0	3.10	218.1	-0.913	0.55
180	1969	2	20	4	54	32.5	35.088	-3.808	20.0	3.10	152.6	0.039	1.06
181	1969	2	22	8	14	11.6	35.183	-4.000	20.0	3.20	158.0	0.104	1.11
182	1969	2	22	8	9	36.9	35.198	-4.001	10.0	2.90	159.6	-0.356	0.81
183	1969	3	3	8	7	27.4	34.948	-4.303	40.0	3.50	128.7	0.964	2.01
184	1969	4	8	7	31	20.2	34.725	-3.604	10.0	3.30	124.6	0.848	1.85
185	1969	4	12	0	2	6.0	32.000	-6.200	0.0	4.40	262.0	0.672	1.64
186	1969	4	17	2	31	5.1	35.136	-3.948	5.0	3.40	154.0	0.485	1.44
187	1969	5	2	4	44	0.0	35.800	-5.200	0.0	2.00	236.6	-2.675	0.16
188	1969	6	18	0	5	14.9	35.699	-3.080	10.0	3.50	242.2	-0.485	0.74
189	1969	8	8	7	22	33.0	35.000	-3.400	0.0	4.10	160.5	1.436	2.78
190	1969	12	16	17	38	18.5	36.268	-3.248	40.0	3.50	293.3	-0.982	0.52
191	1970	1	11	2	7	6.0	35.026	-4.948	33.0	3.80	148.0	1.124	2.25
192	1970	1	11	15	42	8.1	36.246	-4.171	10.0	3.40	273.1	-0.933	0.54
193	1970	1	16	13	16	33.8	36.218	-4.765	10.0	4.20	272.3	0.275	1.25
194	1970	1	28	22	54	32.8	35.135	-4.410	40.0	3.90	149.5	1.225	2.41
195	1970	2	4	17	45	57.8	35.590	-4.708	20.0	3.60	202.6	0.098	1.10
196	1970	2	19	12	5	27.4	35.188	-6.095	33.0	3.30	223.9	-0.615	0.68
197	1970	3	3	5	53	29.9	36.328	-5.066	10.0	3.30	289.4	-1.227	0.44
198	1970	3	3	6	7	24.4	36.335	-5.238	5.0	3.70	294.2	-0.667	0.65
199	1970	3	12	1	10	55.7	36.378	-3.543	10.0	4.10	296.8	-0.090	0.97
200	1970	4	7	5	29	26.0	35.000	-3,700	15.0	3.30	147.2	0.436	1.40
201	1970	4	16	7	6	27.5	34.820	-3.705	10.0	3.60	129.0	1.214	2.39
202	1970	8	10	1	12	39.1	34,928	-3.813	20.0	3.20	135.8	0.470	1.43
203	1970	8	28	10	35	15.7	36.015	-6.088	40.0	3.50	294.7	-0.993	0.52
204	1970	8	31	12	55	56.0	36.238	-4.410	5.0	3.60	271.8	-0.620	0.67
205	1970	10	5	10	26	27.9	34.585	-4.111	5.0	4.00	91.0	2.659	6.48
206	1970	10	12	19	44	16.8	34.651	-2.960	20.0	3.20	160.1	0.073	1.09
207	1970	11	4	19	12	38.6	35.929	-6.203	10.0	2.50	292.8	-2.456	0.19
208	1970	11	6	16	52	19.5	35.531	-4.995	20.0	3.90	202.3	0.551	1.51
209	1970	12	14	16	48	52.1	35 366	-3 416	0.0	4 10	195.1	0.953	2.00
210	1971	2	4	21	38	51.2	36.248	-3.851	20.0	3.20	276.7	-1.270	0.43
211	1971	3	10	21	47	11.8	35,730	-3.360	5.0	3.40	234.0	-0.548	0.71
212	1971	3	14	20	47	37.6	35.269	-5.955	10.0	4.60	221.4	1.388	2.69
213	1971	3	26	6	25	38.0	35 699	-2.400	0.0	3 30	278.1	-1 127	0.47
214	1971	4	-5	13	51	40.0	36.468	-4.516	60.0	4.10	297.7	-0.145	0.93
215	1971	7	2	21	11	8 5	34 100	-5 200	0.0	4 60	85.9	3 701	13 31
216	1971	7	22	0	23	43.9	36 336	-4 721	10.0	3 90	284 7	-0.286	0.85
217	1971	8	12	11	52	2.7	35 074	-5 525	5.0	3 20	179.3	-0.189	0.91
218	1971	9	24	5	33	13.9	34 913	-4 570	14.0	4 00	126.4	1 855	3.72
219	1971	10	4	8	30	13.8	36 175	-5 786	60.0	3 50	296.2	-1.033	0.51
220	1971	11	1	3	44	41.4	35 070	-3 445	28.0	3.00	164.9	-0.316	0.83
221	1972	2	1	11	42	22.3	35 444	-4 713	5.0	4.10	186 7	1.061	2.15
222	1972	2	7	0	59	59 7	35.188	-3,563	24.0	3.40	171.4	0.199	1.19
223	1972	2	25	20	34	27.9	35 735	-4 700	5.0	2.60	218.4	-1 577	0.35
224	1972	4	25	1	15	58 3	36 225	-5 136	5.0	3.60	279.9	-0.693	0.55
225	1972	4	26	1	52	10.0	36 183	_5 353	20.0	3.80	281.4	-0.412	0.78
225	1972	4	20	20	92	58.6	36 378	-3.811	19.0	3 70	286.1	-0.412	0.78
227	1972	+ 5	2) 7	20	4	32.0	35 256	-6 211	13.0	3 40	236.9	-0 582	0.69
228	1972	5	8	4	12	8.2	35 190	_3 351	5.0	2.70	180.8	-0.959	0.53
0	1/12	5	0	-	14	0.2	55.170	5.551	5.0	2.70	100.0	0.757	0.55

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (4/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуре	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	wiin	300	Ν	E	(km)	Richter Scale	(km)	(Imm)	(gal)
229	1972	6	9	17	14	5.9	36.426	-3.726	5.0	3.60	298.2	-0.851	0.57
230	1972	6	10	17	40	48.5	35.585	-3.305	5.0	3.20	221.4	-0.711	0.63
231	1972	6	25	15	45	38.0	32.430	-5.580	0.0	3.00	188.9	-0.617	0.67
232	1972	7	2	3	11	24.5	36.061	-4.625	80.0	3.60	253.4	-0.563	0.70
233	1972	7	20	2	49	57.6	34.754	-3.015	5.0	3.90	163.3	1.092	2.20
234	1972	8	14	14	6	31.6	34.990	-2.815	5.0	4.20	194.5	1.109	2.22
235	1972	10	3	23	34	39.8	36.195	-4.924	5.0	3.70	272.2	-0.474	0.74
236	1972	10	4	21	0	12.7	31.960	-5.960	1.0	3.60	251.7	-0.428	0.77
237	1972	11	2	7	45	21.9	35.053	-3.548	5.0	3.30	158.6	0.263	1.24
238	1972	11	15	4	18	9.9	32.750	-5.580	2.0	3.50	162.0	0.513	1.47
239	1972	11	22	20	45	31.7	36.078	-4.100	5.0	4.20	255.0	0.438	1.40
240	1972	11	26	12	56	38.7	36.140	-4.578	5.0	3.40	261.7	-0.826	0.58
241	1972	12	6	23	41	22.8	36.138	-4.721	5.0	3.20	262.9	-1.137	0.47
242	1972	12	17	19	6	56.4	34.911	-2.956	5.0	3.70	179.1	0.564	1.52
243	1972	12	17	17	14	25.5	34.830	-2.710	34.0	3.50	190.5	0.074	1.09
244	1972	12	23	8	10	6.7	32.038	-6.000	1.0	2.90	247.0	-1.432	0.38
245	1973	2	2	21	18	14.2	34.240	-5.370	5.0	3.00	106.8	0.776	1.77
246	1973	2	5	6	52	0.7	35.170	-4.879	26.0	3.00	160.9	-0.253	0.87
247	1973	2	8	21	12	23.4	34.905	-4.178	5.0	3.30	124.9	0.849	1.86
248	1973	2	16	1	36	38.6	32.150	-5.820	0.0	3.10	227.0	-0.922	0.55
249	1973	2	19	11	8	49.3	34,758	-4.488	10.0	3.60	108.3	1.635	3.20
250	1973	2	19	11	13	47.9	34.761	-4.615	5.0	3.10	110.6	0.841	1.85
251	1973	2	24	14	20	49.4	35.050	-4.140	104.0	2.70	141.3	-0.884	0.56
252	1973	2	24	20	14	53.6	32.090	-5.960	2.0	3.30	240.2	-0.762	0.61
253	1973	3	1	3	37	35.9	32,820	-4 289	1.0	3.00	107.6	0.761	1.75
254	1973	3	1	2	26	57.0	34.831	-4.301	20.0	3.60	115.7	1.449	2.81
255	1973	3	1	23	20	34.3	32,170	-5 990	1.0	2.20	235.1	-2.359	0.20
256	1973	3	3	15	-0	59.8	32,090	-6 280	110.0	3 50	259.6	-0.860	0.57
257	1973	3	5	6	25	50.0	34 850	-4 210	16.0	3.20	118.4	0.807	1.80
258	1973	3	5	6	52	37.0	32 150	-4 430	4.0	3.30	182.0	-0.075	0.98
259	1973	3	7	14	59	10.6	32.080	-6 160	1.0	3 30	252.9	-0.890	0.56
260	1973	3	8	17	52	59.9	33,820	-5.130	17.0	3.40	72.3	2 244	4.87
261	1973	3	10	23	30	39.1	35.405	-5 493	30.0	3 30	208.2	-0.433	0.77
262	1973	3	13	20	25	43.4	34 699	-4 390	1.0	3.00	101.1	0.912	1.94
263	1973	3	26	17	21	44.6	35 199	-3 889	2.0	3.50	162.1	0.510	1.74
263	1973	3	20	14	4	49.8	31 720	-4 859	33.0	3.40	234.3	-0.575	0.69
265	1973	3	29	12	4	47.8	32 290	-5 600	100.0	3.10	202.5	-0.760	0.61
265	1073	3	30	11	7	47.0	32.290	-4.240	2.0	3.50	137.8	0.000	1.94
267	1973	4	8	15	55	75	33 220	-5 779	2.0	3.40	146.5	0.610	1.57
268	1073	- 4	10	12	13	17.5	3/ 901	-2.726	20.0	4.00	194.2	0.802	1.80
269	1973	4	15	2	43	12.2	34.926	-2.720	20.0	3.90	194.2	0.699	1.67
20)	1073	4	20	2 14	37	55.2	34.563	2.791	10.0	5.50 4.60	02.1	3 520	11.07
270	1973	4	29	14	40	17.7	34.505	-4.020	2.0	3.80	92.1 88.7	2 424	5.51
271	1073		10	20	40	2.5	32 470	-4.020	2.0	3.80	184.8	0.627	1.60
272	1973	5	19	18	49	20.1	32.470	-5.570	2.0	3.80	220.7	0.037	0.72
273	1073	6	24	20	15	25.0	35.929	-0.0+0	29.0	3.40	230.7	-0.552	0.52
274	1973	7	24	20	57	15.5	33.030	-4.000	5.0	3.20	105.5	-0.980	3.73
275	1973	7	24	0	12	58.3	34 600	-5.050	27.0	3.70	102.5	1.057	2.44
270	1973	י ד	20	1	13	20.3 27 0	39 100	-4.100	1/0 0	2.30	250.2	-2 207	2.44
279	17/3	0	21	1	23 1	21.0	34 420	-0.209	149.0	2.70	237.3 82.5	-2.207	3.22
270	1973	٥ 0	24	0	4	10.9	34.420	-4.040	2.0	3.20	151.6	-0.094	0.07
219	19/3	9	23	16	20	17.0	34.120	-5.940	102.0	3.50	105.2	-0.084	1.07
20U 201	1973	10	1	10 5	20	51./ 1.6	35.090	-3.110	4.0	5.50 2.70	193.2	2 021	0.25
201	1973	10	ð	3	33	4.0	22 409	-0.020	5.0	2.70	278.0	-2.031	0.23
282	1973	10	9	14	4/	12.8	32.408	-3.330	122.0	3.00	1/9.0	0.410	1.38
283	19/3	10	10	11	38 50	12.0	34.070	-3.390	155.0	4.50	101.2	1.930	5.95
284	1973	12	11	20	58	12.8	31.939	-6.450	165.0	2.60	282.5	-2.581	0.17
285	1973	12	17	10	43	22.0	36.100	-4.700	0.0	3.10	258.5	-1.245	0.44

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (5/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				noui	wiin	500	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
286	1974	1	11	3	11	38.6	35.406	-4.835	6.0	3.40	185.0	0.034	1.06
287	1974	2	3	23	21	54.3	34.649	-5.419	5.0	3.40	137.5	0.764	1.75
288	1974	2	6	10	51	55.8	36.360	-4.540	75.0	2.90	285.8	-1.878	0.28
289	1974	2	8	17	18	0.0	35.633	-4.748	5.0	3.70	207.9	0.195	1.18
290	1974	2	9	13	49	31.2	35.120	-4.740	14.0	2.90	152.1	-0.243	0.87
291	1974	2	21	23	51	30.3	35.295	-3.645	5.0	3.20	179.3	-0.189	0.91
292	1974	3	6	22	44	51.6	35.210	-2.700	61.0	3.90	219.3	0.272	1.25
293	1974	3	25	13	44	43.2	34.859	-4.480	1.0	3.30	119.4	0.960	2.00
294	1974	3	28	3	23	23.2	34.850	-4.470	0.0	3.10	118.3	0.682	1.65
295	1974	4	6	12	16	3.4	31.880	-6.220	1.0	3.70	273.4	-0.484	0.74
296	1974	4	7	4	22	24.3	35.400	-3.590	83.0	3.10	192.0	-0.720	0.63
297	1974	4	21	1	24	51.6	36.331	-3.783	5.0	3.50	286.9	-0.904	0.55
298	1974	6	10	4	23	28.3	33.649	-3.840	2.0	4.50	49.5	4.805	28.53
299	1974	7	4	4	2	53.6	33.900	-5.529	2.0	3.50	109.8	1.463	2.84
300	1974	7	14	2	55	26.0	35.558	-3.683	5.0	4.40	205.7	1.271	2.49
301	1974	7	18	8	32	15.3	35.598	-3.588	5.0	4.00	212.7	0.589	1.55
302	1974	9	27	9	39	26.2	35.710	-4.666	13.0	3.60	215.2	-0.044	1.00
303	1974	10	30	14	37	44.8	35.110	-3.149	44.0	4.00	183.8	0.882	1.90
304	1974	10	31	12	36	18.9	35.136	-3.266	5.0	3.20	179.9	-0.197	0.90
305	1974	10	31	8	18	57.3	35.118	-3.191	18.0	3.70	182.2	0.510	1.47
306	1974	10	31	10	8	52.0	35.116	-3.183	0.0	3.10	182.5	-0.381	0.79
307	1974	11	2	6	6	32.3	35.110	-3.439	79.0	3.10	169.0	-0.436	0.76
308	1974	11	3	17	18	59.6	33.110	-5.020	2.0	3.20	97.6	1.297	2.53
309	1974	11	12	1	24	22.8	35.958	-4.900	5.0	3.10	246.0	-1.122	0.48
310	1974	11	16	0	59	23.3	35.080	-2.720	51.0	3.50	207.8	-0.175	0.91
311	1974	11	26	0	10	26.9	32.070	-3.920	47.0	3.20	194.8	-0.463	0.75
312	1974	12	8	13	9	38.6	36.409	-4.843	22.0	3.10	294.3	-1.574	0.35
313	1975	1	9	13	20	36.1	35.436	-3.788	5.0	3.50	190.0	0.118	1.12
314	1975	1	9	12	33	22.3	35.059	-5.756	51.0	3.30	191.8	-0.289	0.85
315	1975	1	11	16	35	16.0	35.320	-3.725	9.0	3.00	179.4	-0.493	0.73
316	1975	1	11	20	51	19.5	35 444	-3 598	5.0	2.80	196.3	-1 013	0.51
317	1975	1	17		52	43.0	35 400	-3 600	27.0	3.10	191 7	-0.528	0.72
318	1975	1	23	20	27	14.0	33 100	-5 210	1.0	3.20	110.3	1.001	2.06
210	1075	1	20	20	10	5.0	22 010	5.010	2.0	2.50	62.6	2 786	2.00
220	1975	1	16	2	40	5.9	26.200	-5.010	2.0	3.50	208.2	2.760	0.28
320	1975	3	10	2	24	35.0	30.300	-5.199	0.0	5.20	298.2	-1.450	0.38
321	1975	3	29	1	55	50.8	35.961	-3.266	5.0	4.50	261.0	0.831	1.83
322	1975	4	5	11	25	50.1	36.188	-3.324	5.0	3.50	282.5	-0.866	0.57
323	1975	5	4	19	58	49.9	34.840	-2.010	0.0	3.70	245.6	-0.217	0.89
324	1975	6	29	8	0	40.5	33.520	-5.600	38.0	2.70	119.4	-0.058	0.99
325	1975	7	5	22	20	53.8	35.160	-5.069	91.0	3.00	166.1	-0.623	0.67
326	1975	8	3	0	20	58.9	33.199	-5.250	12.0	3.40	105.9	1.384	2.69
327	1975	8	3	19	11	51.4	33.070	-5.319	5.0	3.50	120.0	1.245	2.44
328	1975	8	7	15	30	24.3	36.415	-4.591	28.0	5.20	292.3	1.589	3.09
329	1975	10	7	11	53	49.0	34.980	-4.399	131.0	3.40	132.3	0.019	1.05
330	1975	10	25	18	9	59.1	32.408	-5.270	112.0	2.70	175.3	-1.305	0.42
331	1975	11	1	19	20	17.9	32.240	-5.790	153.0	2.60	217.4	-2.064	0.25
332	1975	11	3	9	35	35.4	31.640	-6.299	135.0	2.60	298.9	-2.587	0.17
333	1975	11	5	2	1	47.7	35.730	-2.230	5.0	3.40	291.1	-1.090	0.49
334	1975	11	9	17	31	2.7	34.350	-4.280	2.0	3.50	62.6	2.786	7.07
335	1975	11	13	6	37	42.6	32.628	-4.230	1.0	3.00	129.3	0.316	1.28
336	1975	11	14	10	41	19.3	32.360	-4.820	103.0	3.00	164.4	-0.683	0.64
337	1975	11	17	14	46	22.9	33.540	-4.640	9.0	3.50	38.6	3.769	13.96
338	1975	11	18	11	19	13.2	35.150	-3.640	2.0	3.30	164.6	0.172	1.16
339	1975	11	27	11	0	42.5	35.699	-2.280	1.0	3.70	285.4	-0.591	0.69
340	1975	12	2	15	24	3.4	35.180	-3.540	16.0	3.50	171.5	0.361	1.33
341	1975	12	2	5	19	0.0	36.000	-2.700	0.0	2.80	288.8	-1.970	0.26

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (6/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sac	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	WIIII	Sec	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
342	1975	12	2	19	32	37.0	36.400	-4.200	0.0	2.90	290.1	-1.831	0.29
343	1975	12	3	12	25	0.6	35.150	-3.600	27.0	3.40	166.1	0.268	1.24
344	1975	12	3	7	10	27.4	35.170	-3.590	5.0	3.20	168.5	-0.036	1.01
345	1975	12	3	19	24	2.0	35.140	-3.500	79.0	3.50	169.2	0.162	1.15
346	1975	12	3	7	2	29.9	35.240	-3.570	51.0	3.20	176.4	-0.247	0.87
347	1975	12	7	10	17	34.0	34.606	-4.668	60.0	2.60	95.4	0.050	1.07
348	1975	12	8	19	40	16.8	34.129	-4.440	30.0	3.30	38.7	3.030	8.37
349	1975	12	10	3	37	46.5	33.520	-4.800	26.0	2.90	51.3	2.078	4.34
350	1975	12	10	6	35	9.7	32.620	-5.350	126.0	2.60	159.3	-1.396	0.39
351	1976	1	5	1	27	12.1	34.780	-3.480	78.0	4.10	136.2	1.491	2.89
352	1976	1	8	13	37	38.3	35.129	-5.730	89.0	3.40	196.0	-0.340	0.82
353	1976	1	20	3	55	19.0	31.340	-5.470	128.0	3.20	290.8	-1.608	0.34
354	1976	2	5	4	55	0.4	33.990	-5.779	13.0	3.00	134.0	0.216	1.20
355	1976	2	6	10	41	16.2	33.129	-4.680	55.0	3.10	79.3	1.172	2.32
356	1976	2	6	1	27	39.0	32.360	-5.170	1.0	4.00	175.8	1.061	2.15
357	1976	2	8	19	51	13.1	35.039	-3.939	3.0	3.80	143.8	1.255	2.46
358	1976	2	13	12	0	8.5	31.429	-5.600	1.0	3.50	286.2	-0.898	0.56
359	1976	2	18	6	39	10.1	34.840	-4.340	87.0	3.40	116.6	0.626	1.59
360	1976	3	2	8	42	28.0	35.018	-3.836	5.0	3.20	144.4	0.344	1.31
361	1976	3	5	20	4	5.5	32.320	-4.759	94.0	3.50	167.3	0.094	1.10
362	1976	3	16	18	37	57.6	33.300	-4.890	23.0	4.30	73.8	3.500	11.59
363	1976	3	16	18	34	44.2	35.448	-4.570	5.0	2.70	185.2	-1.019	0.51
364	1976	3	30	22	57	3.2	35.269	-3.630	126.0	3.70	177.2	0.085	1.10
365	1976	4	13	19	23	19.3	34.280	-4.920	14.0	4.20	75.9	3.354	10.48
366	1976	4	15	16	6	15.1	33.920	-6.280	5.0	3.90	179.1	0.864	1.88
367	1976	4	20	11	2	31.3	31.790	-6.130	111.0	3.50	276.2	-0.995	0.52
368	1976	6	3	0	36	59.4	36.020	-4.740	75.0	3.20	250.2	-1.120	0.48
369	1976	6	14	8	35	11.2	34.620	-3.439	5.0	3.50	124.8	1.150	2.29
370	1976	11	8	21	14	54.7	32.129	-5.910	1.0	3.00	233.9	-1.147	0.47
371	1977	1	7	15	20	42.9	32.600	-5.770	2.0	3.60	186.1	0.319	1.29
372	1977	1	8	10	36	16.4	32.090	-4.170	44.0	2.70	189.2	-1.136	0.47
373	1977	1	15	23	58	47.0	33.750	-3.620	2.0	4.40	67.5	3.965	15.97
374	1977	1	16	21	5	53.6	36.381	-4.820	76.0	3.40	290.9	-1.171	0.46
375	1977	2	19	19	54	9.4	35.290	-6.740	1.0	3.10	276.7	-1.414	0.39
376	1977	3	23	11	19	30.2	36.020	-5.410	54.0	3.60	266.3	-0.619	0.67
377	1977	5	12	6	59	16.9	34.230	-4.820	59.0	3.30	65.5	1.689	3.32
378	1977	5	28	7	59	40.9	34.570	-3.489	11.0	3.80	117.6	1.736	3.43
379	1977	5	29	23	3	55.9	36.000	-2.800	0.0	3.40	284.0	-1.029	0.51
380	1977	6	3	11	55	2.4	32.250	-6.100	1.0	3.20	235.2	-0.861	0.57
381	1977	6	14	4	49	52.6	34.880	-4.220	79.0	3.00	121.7	0.034	1.06
382	1977	6	26	17	2	44.5	35.310	-5.170	31.0	2.60	185.1	-1.201	0.45
383	1977	6	30	14	19	44.9	34.950	-3.960	1.0	2.50	133.8	-0.518	0.72
384	1977	7	15	5	41	51.3	35.193	-3.760	13.0	3.80	165.0	0.909	1.93
385	1977	8	23	22	34	56.0	32.380	-5.040	128.0	2.80	168.9	-1.201	0.45
386	1977	9	1	18	35	14.1	32.800	-5.510	125.0	3.40	153.5	-0.132	0.94
387	1977	9	9	12	20	20.0	33.170	-4.170	2.0	4.10	70.6	3.410	10.89
388	1977	10	25	13	1	41.5	31.440	-5.610	2.0	2.90	285.5	-1.792	0.30
389	1977	10	27	13	15	34.7	32.789	-5.299	107.0	3.30	141.5	-0.012	1.02
390	1977	11	6	4	37	5.3	33.929	-5.240	17.0	3.70	83.8	2.361	5.28
391	1977	11	6	17	35	3.8	33.039	-4.759	78.0	3.00	91.4	0.493	1.45
392	1978	1	16	9	56	48.9	32.210	-6.020	1.0	2.40	233.5	-2.042	0.25
393	1978	1	28	22	55	4.8	35.381	-1.858	0.0	3.90	290.1	-0.332	0.82
394	1978	2	8	21	42	50.5	31.970	-5.950	2.0	4.30	250.2	0.636	1.60
395	1978	2	9	14	52	56.0	35.600	-3.100	0.0	3.20	231.7	-0.823	0.58
396	1978	2	10	7	20	29.0	35.400	-3.149	0.0	2.70	210.4	-1.333	0.41
397	1978	2	12	13	12	21.4	34.964	-3.130	5.0	3.20	172.3	-0.091	0.97
398	1978	2	12	9	33	42.0	34.815	-2.946	5.0	3.00	172.5	-0.394	0.79

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (7/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуре	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
							N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
399	1978	3	5	16	47	55.6	31.820	-5.970	45.0	3.40	264.9	-0.891	0.56
400	1978	3	6	18	51	13.5	35.083	-4.033	2.0	3.40	146.5	0.609	1.57
401	1978	3	13	5	28	44.0	35.500	-3.199	0.0	3.10	217.6	-0.817	0.59
402	1978	3	28	1	37	8.5	35.666	-3.665	5.0	3.90	217.7	0.382	1.34
403	1978	4	10	19	3	47.4	34.180	-6.000	52.0	3.20	158.6	-0.012	1.02
404	1978	4	24	21	10	33.4	33.810	-5.940	15.0	3.80	147.1	1.187	2.35
405	1978	5	11	16	18	50.0	35.068	-2.473	5.0	3.70	224.0	0.010	1.04
406	1978	5	23	18	27	36.0	35.411	-4.326	5.0	3.20	180.0	-0.199	0.90
407	1978	6	29	15	23	28.0	35.300	-4.100	0.0	3.00	169.2	-0.346	0.81
408	1978	9	20	2	23	55.0	35.000	-4.900	0.0	2.90	143.7	-0.094	0.97
409	1978	10	14	16	21	58.0	35.300	-3.400	0.0	4.10	189.2	1.029	2.10
410	1978	10	28	21	12	35.9	36.008	-2.501	13.0	3.00	299.6	-1.764	0.31
411	1978	11	23	7	11	40.0	35.000	-6.200	0.0	3.60	217.5	-0.067	0.99
412	1978	11	23	7	12	36.0	35.000	-6.200	0.0	3.10	217.5	-0.817	0.59
413	1978	12	2	14	49	1.0	34.830	-4.299	1.0	3.10	115.6	0.737	1.72
414	1978	12	5	18	20	42.0	35.000	-4.800	0.0	2.70	140.7	-0.342	0.82
415	1978	12	9	14	15	18.0	35.000	-4.000	0.0	3.30	138.2	0.602	1.57
416	1978	12	23	5	29	6.0	34.900	-4.600	0.0	3.00	125.5	0.389	1.35
417	1979	1	2	15	39	58.8	31.778	-4.911	96.0	3.20	229.1	-0.995	0.52
418	1979	1	4	9	27	35.7	34.260	-5.636	4.0	2.90	129.9	0.152	1.15
419	1979	1	4	13	9	29.2	34.091	-5.723	8.0	2.80	131.3	-0.028	1.01
420	1979	1	5	22	16	0.0	35.300	-4.500	0.0	2.70	168.3	-0.781	0.60
421	1979	1	6	16	1	17.2	35.346	-2.379	8.0	2.70	251.0	-1.772	0.30
422	1979	1	14	21	9	12.8	34.866	-4.286	7.0	3.70	119.7	1.550	3.01
423	1979	1	17	17	43	27.0	33.400	-5.399	0.0	4.50	106.2	3.043	8.45
424	1979	1	19	1	9	21.2	33.461	-5.063	16.0	2.90	75.4	1.408	2.73
425	1979	1	26	6	10	46.5	34.981	-4.370	14.0	3.10	132.3	0.395	1.36
426	1979	2	5	13	34	36.5	33.479	-5.028	19.0	2.90	71.6	1.500	2.91
427	1979	2	5	16	35	48.0	35.318	-2.606	73.0	2.80	233.9	-1.562	0.35
428	1979	2	14	3	6	4.3	33.500	-6.629	68.0	2.50	213.1	-1.786	0.30
429	1979	2	20	12	14	25.7	35.226	-3.703	8.0	2.80	170.3	-0.663	0.65
430	1979	2	21	19	2	34.1	35.656	-3.700	10.0	2.90	215.7	-1.098	0.48
431	1979	2	21	3	10	12.9	34.601	-7.015	2.0	2.90	262.3	-1.582	0.35
432	1979	2	24	6	28	56.5	33.441	-4.633	6.0	2.90	46.7	2.514	5.86
433	1979	2	24	16	46	29.4	34.903	-4.275	5.0	3.20	123.8	0.719	1.70
434	1979	2	24	21	19	22.6	34.906	-4.418	5.0	4.30	124.1	2.363	5.28
435	1979	2	24	19	31	22.6	34.911	-4.331	5.0	3.00	124.5	0.405	1.37
436	1979	2	25	17	46	32.4	35.118	-4.375	30.0	3.50	147.5	0.693	1.67
437	1979	2	26	22	10	34.8	34.673	-4.133	1.0	3.10	100.1	1.085	2.19
438	1979	2	27	1	4	42.0	34.649	-4.154	4.0	3.30	97.1	1.456	2.82
439	1979	2	27	12	57	10.0	36.286	-3.700	8.0	3.20	283.5	-1.325	0.41
440	1979	2	28	8	10	45.3	34.796	-3.643	5.0	2.90	129.4	0.162	1.15
441	1979	3	5	1	22	20.0	34.400	-6.000	0.0	2.00	167.0	-1.813	0.30
442	1979	3	9	22	40	35.1	34.911	-4.251	5.0	3.40	124.8	0.999	2.06
443	1979	3	10	4	1	2.0	34.900	-4.100	0.0	2.80	125.4	0.089	1.10
444	1979	3	10	3	32	7.0	35.400	-4.000	0.0	2.60	181.7	-1.120	0.48
445	1979	3	11	6	42	5.0	35.000	-4.500	0.0	3.10	135.1	0.358	1.32
446	1979	3	12	8	29	0.0	34.500	-3.000	0.0	3.20	147.5	0.293	1.26
447	1979	3	12	3	18	49.7	35.513	-3.635	9.0	3.10	202.4	-0.640	0.66
448	1979	3	15	14	42	2.9	32.691	-5.391	52.0	2.40	155.3	-1.164	0.46
449	1979	3	15	4	45	14.4	35.510	-3.835	55.0	3.40	196.8	-0.211	0.89
450	1979	3	16	23	31	53.1	34.928	-4.266	10.0	3.30	126.6	0.808	1.81
451	1979	3	16	23	38	15.0	35.000	-4.500	0.0	3.50	135.1	0.958	2.00
452	1979	3	17	1	25	19.0	34.800	-4.399	0.0	3.30	112.3	1.108	2.22
453	1979	3	18	6	46	55.0	35.400	-3.800	0.0	2.50	185.8	-1.326	0.41
454	1979	3	19	15	39	10.4	33.296	-5.254	4.0	3.40	99.9	1.538	2.99
455	1979	3	19	15	56	2.1	33.411	-5.411	5.0	2.70	106.7	0.328	1.30

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (8/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

No. Year Monh Day Hour Min Sec Latitude N Longitude E Depth (km) in Richter Scale Distance (km) Intensity Acceler (gal 456 1979 3 19 16 11 33.5 33.300 5.500 0.0 2.70 119.4 0.059 1.064 458 1979 3 25 11 13 25.0 34.000 -5.200 0.0 3.40 248.5 -0.667 0.66 460 1979 3 20 6 25 44.9 36.078 -4.811 60.0 3.50 257.6 -0.701 0.64 461 1979 4 2 1 10 39.1 35.533 -3.613 0.0 2.90 193.7 -0.828 0.55 462 1979 4 7 6 41 19.0 34.996 -3.691 0.0 3.20 69.7 2.091 4.33 464 1	
India India India India India India India India Richter Scale (Im) (Imm)	ration
456 1979 3 19 16 11 33.5 33.300 -5.500 0.0 2.70 119.4 0.059 1.00 457 1979 3 25 11 13 54 30.0 32.698 -2.000 0.0 3.40 248.5 -0.697 0.66 458 1979 3 27 23 4 7.7 32.963 -5.200 0.0 3.30 82.1 1.859 3.73 459 1979 3 27 23 4 7.7 32.963 -5.380 18.0 2.40 132.2 -0.662 0.662 460 1979 3 30 6 25 44.9 36.078 -4.811 60.0 3.50 257.6 -0.701 0.624 461 1979 4 2 11 10 35.423 -3.613 0.0 2.90 193.7 -0.828 0.53 462 1979 4 7 6 41 19.0 34.096 -3.691 0.0 3.20 69.7 2.091 4.33 464 1979 4 16 4 57 0.0 34.820 -4.371 0.0 2.90 114.4 0.462 1.42 45 1979 4 17 8 20 53.0 3.4400 -4.299 0.0 3.00 68.0 1.848 3.70 466 1979 4 21 20 53.76 32.900 -4.306 <td>ıl)</td>	ıl)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	18
4581979325111325.0 34.000 -5.200 0.0 3.30 82.1 1.859 3.73 4591979327234 7.7 32.963 -5.380 18.0 2.40 132.2 -0.662 0.662 4601979330625 44.9 36.078 -4.811 60.0 3.50 257.6 -0.701 0.664 461197942110 39.1 35.423 -3.613 0.0 2.90 193.7 -0.828 0.58 4621979451514 49.0 35.533 -3.675 5.0 3.20 203.3 -0.499 0.73 463197947641 19.0 34.096 -3.691 0.0 3.20 69.7 2.091 4.38 46419794164 57 0.0 34.820 -4.371 0.0 2.90 114.4 0.462 1.422 46519794178 20 53.0 34.400 -4.299 0.0 3.00 68.0 1.848 3.70 466197942014 40 26.5 32.900 -4.300 0.0 2.20 111.0 -0.514 0.77 468 1979421205 37.6 35.028 -2.841 0.0 3.20 195.7 -0.405 0.78 469<	i4
459 1979 3 27 23 4 7.7 32.963 -5.380 18.0 2.40 132.2 -0.662 0.662 460 1979 3 30 6 25 44.9 36.078 -4.811 60.0 3.50 257.6 -0.701 0.664 461 1979 4 2 1 10 39.1 35.423 -3.613 0.0 2.90 193.7 -0.828 0.53 462 1979 4 5 15 14 49.0 35.533 -3.675 5.0 3.20 203.3 -0.499 0.73 463 1979 4 7 6 41 19.0 34.926 -3.691 0.0 3.20 69.7 2.091 4.33 464 1979 4 16 4 57 0.0 34.820 -4.371 0.0 2.90 114.4 0.462 1.42 465 1979 4 17 8 20 53.0 34.400 -4.299 0.0 3.00 68.0 1.848 3.70 466 1979 4 20 14 40 26.5 32.900 -4.900 0.0 2.20 111.0 -0.514 0.72 468 1979 4 21 20 5 37.6 35.090 -4.376 5.0 3.30 114.4 0.493 1.43 470 1979 4 221 29 26 03.500 -5.700 </td <td>'3</td>	'3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	i4
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	í8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	'3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0'
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	37
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	15
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	'8
472 1979 4 25 23 8 2.0 32.800 -5.700 5.0 2.00 166.2 -1.802 0.30 473 1979 4 25 23 11 55.0 32.800 -5.700 0.0 2.20 166.2 -1.802 0.30 474 1979 4 26 21 12 42.5 35.300 -3.400 0.0 2.40 189.2 -1.521 0.36 475 1979 4 26 20 46 42.5 35.300 -3.199 0.0 2.80 198.5 -1.040 0.50 476 1979 5 1 12 56 41.8 36.370 -5.089 5.0 3.20 294.5 -1.419 0.39 477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.80 223.5 -1.333 0.41 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333	53
473 1979 4 25 23 11 55.0 32.800 -5.700 0.0 2.20 166.2 -1.501 0.37 474 1979 4 26 21 12 42.5 35.300 -3.400 0.0 2.40 189.2 -1.521 0.36 475 1979 4 26 20 46 42.5 35.300 -3.199 0.0 2.80 198.5 -1.040 0.56 476 1979 5 1 12 56 41.8 36.370 -5.089 5.0 3.20 294.5 -1.419 0.39 477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.80 294.5 -1.419 0.39 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 220.5 -1.333	30
474 1979 4 26 21 12 42.5 35.300 -3.400 0.0 2.40 189.2 -1.521 0.36 475 1979 4 26 20 46 42.5 35.300 -3.199 0.0 2.80 198.5 -1.040 0.56 476 1979 5 1 12 56 41.8 36.370 -5.089 5.0 3.20 294.5 -1.419 0.39 477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.20 247.6 -2.488 0.19 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 479 1979 5 14 21 35 42.0 36.400 4100 0.0 2.80 220.5 -1.333 0.41	37
475 1979 4 26 20 46 42.5 35.300 -3.199 0.0 2.80 198.5 -1.040 0.50 476 1979 5 1 12 56 41.8 36.370 -5.089 5.0 3.20 294.5 -1.419 0.39 477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.20 247.6 -2.488 0.19 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 479 1979 5 14 21 35 42.0 36.400 400 0.0 2.80 220.5 -1.333 0.41	6
476 1979 5 1 12 56 41.8 36.370 -5.089 5.0 3.20 294.5 -1.419 0.33 477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.20 247.6 -2.488 0.19 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 479 1979 5 14 21 35 42.0 36.400 -4.100 0.0 2.80 220.6 -1.986 0.41	50
477 1979 5 11 2 27 22.0 32.100 -6.100 0.0 2.20 247.6 -2.488 0.19 478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 479 1979 5 14 21 35 42.0 36.400 -4.100 0.0 2.80 220.6 -1.986 0.92	9
478 1979 5 13 13 53 15.0 32.400 -6.100 0.0 2.80 223.5 -1.333 0.41 479 1979 5 14 21 35 42.0 36.400 -4.100 0.0 2.80 220.6 -1.986 0.22	9
	1
[47] $[77]$	26
480 1979 5 25 7 51 6.5 32.800 -4.800 0.0 2.30 117.4 -0.499 0.73	'3
481 1979 5 26 6 13 16.0 35.000 -4.500 0.0 3.00 135.1 0.208 1.19	9
482 1979 5 29 22 28 21.0 32.800 -5.000 0.0 2.20 125.1 -0.805 0.55	;9
483 1979 5 30 1 25 28.0 35.199 -4.399 0.0 3.20 156.5 0.146 1.14	4
484 1979 5 30 16 8 37.5 32.400 -6.600 0.0 2.20 258.9 -2.598 0.17	7
485 1979 6 4 22 29 28.8 36.441 -4.156 9.0 3.00 294.8 -1.723 0.31	31
486 1979 6 7 15 43 10.0 34.900 -4.200 0.0 3.70 124.1 1.466 2.84	34
487 1979 6 9 17 12 19.0 32.900 -4.900 0.0 2.80 111.0 0.386 1.35	5
488 1979 6 9 21 18 34.0 32.900 -4.900 0.0 2.30 111.0 -0.364 0.80	30
489 1979 6 9 1 11 18.0 32.900 -5.000 0.0 3.30 115.5 1.039 2.12	2
490 1979 6 9 0 36 32.0 32.800 -5.100 0.0 4.40 129.8 2.405 5.44	4
491 1979 6 9 1 56 22.0 32.800 -5.100 0.0 2.70 129.8 -0.145 0.93	93
492 1979 6 9 10 3 11.0 32.800 -5.150 0.0 2.80 132.4 -0.042 1.00	00
493 1979 6 9 13 45 40.0 32.900 -5.399 0.0 4.10 138.4 1.799 3.58	58
494 1979 6 10 0 5 21.0 32.900 -4.800 0.0 2.70 107.1 0.323 1.29	29
495 1979 6 10 18 10 19.0 32.800 -5.100 0.0 3.20 129.8 0.605 1.55	57
496 1979 6 10 19 25 16.0 32.800 -5.100 0.0 2.70 129.8 -0.145 0.93	93
497 1979 6 10 20 3 35.0 32.800 -5.100 0.0 3.30 129.8 0.755 1.74	14
498 1979 6 11 13 41 47.5 32.900 -4.800 0.0 2.90 107.1 0.623 1.55	;9
499 1979 6 13 19 26 52 5 32,800 -5,399 0.0 3,10 146.5 0,160 1.15	5
500 1979 6 16 17 3 195 32,900 -5,000 0.0 2,70 115,5 0,139 1,14	4
501 1979 6 16 18 48 48 0 32,900 -5,000 0.0 3,10 115.5 0,739 1.77	2
502 1979 6 16 13 51 440 32.800 -5.299 0.0 4.00 140.5 1.611 3.14	4
503 1979 6 16 14 2 27.0 32.800 -5.299 0.0 3.30 140.5 0.561 1.55	52
504 1979 6 16 14 26 22.0 32.800 -5.299 0.0 3.90 140.5 1461 2.83	33
505 1979 6 17 7 38 11.0 32.800 -5.299 0.0 3.10 140.5 0.261 1.24	24
506 1979 6 17 23 38 36.5 32.800 -5.299 0.0 4.20 140.5 1.911 3.80	37
507 1979 6 18 1 18 40.0 33.000 -5.200 0.0 2.60 1177 -0.055 0.90	9
508 1979 6 18 8 25 20.0 32.000 -4.900 0.0 2.50 204.9 -1.568 0.34	35
509 1979 6 19 14 22 44.0 33.000 -5 200 0.0 3.90 117.7 1.895 3.83	32
510 1979 6 19 3 39 16.0 32.900 -5.100 0.0 3.20 120.6 0.785 1.75	18
511 1979 6 20 17 50 52.0 33.000 -5.000 0.0 4.20 106.2 2.593 6.10	9
512 1979 6 23 18 17 3.0 34.699 -5.600 0.0 3.00 153.5 -0.106 0.96	96

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (9/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

				Time			Hypocenter		Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
510	1050			11041		500	N	E	(km)	Richter Scale	(km)	(Imm)	(gal)
513	1979	6	24	17	41	57.0	33.000	-5.000	0.0	3.00	106.2	0.793	1.79
514	1979	6	24	18	4	22.8	34.846	-4.425	19.0	2.80	117.5	0.216	1.20
515	1979	6	24	13	32	55.5	32.500	-6.000	0.0	2.40	209.1	-1.769	0.30
516	1979	6	25	5	1	5.5	32.900	-5.100	0.0	3.00	120.6	0.485	1.44
517	1979	7	4	5	57	3.5	33.000	-5.500	0.0	2.50	137.8	-0.590	0.69
518	1979	7	4	14	24	52.1	33.996	-6.916	0.0	4.00	238.3	0.307	1.28
519	1979	7	4	4	58	1.0	32.500	-6.700	0.0	2.10	260.1	-2.760	0.15
520	1979	7	5	5	48	6.0	32.698	-5.100	0.0	3.70	139.5	1.179	2.33
521	1979	7	5	11	46	7.0	32.698	-5.299	0.0	3.80	149.5	1.159	2.30
522	1979	7	5	23	32	58.5	35.086	-5.556	0.0	3.90	182.1	0.823	1.82
523	1979	7	11	2	53	37.0	32.800	-5.200	0.0	3.10	135.0	0.360	1.32
524	1979	7	18	20	24	46.0	32.800	-5.200	0.0	2.80	135.0	-0.090	0.97
525	1979	7	22	21	31	10.0	33.000	-5.100	0.0	3.10	111.7	0.821	1.82
526	1979	7	23	3	24	5.0	33.000	-5.000	0.0	2.40	106.2	-0.107	0.96
527	1979	7	26	9	21	51.0	31.600	-4.600	0.0	4.60	244.0	1.149	2.28
528	1979	7	28	2	44	43.0	31.600	-4.700	0.0	3.00	245.0	-1.262	0.43
529	1979	7	29	10	57	50.0	35.100	-5.399	0.0	2.80	174.9	-0.727	0.63
530	1979	8	2	0	40	33.4	33.000	-4.800	0.0	2.70	96.9	0.563	1.52
531	1979	8	5	19	38	23.0	32.800	-5.100	0.0	3.30	129.8	0.755	1.74
532	1979	8	6	22	15	18.7	33.900	-4.299	0.0	3.40	13.2	5.160	36.49
533	1979	8	9	13	57	7.6	34.900	-4.500	0.0	2.90	124.1	0.265	1.24
534	1979	8	17	18	48	25.8	31.400	-4.700	0.0	3.50	267.0	-0.725	0.63
535	1979	9	10	2	8	58.3	31.800	-5.900	0.0	3.10	263.1	-1.289	0.42
536	1979	9	10	4	24	27.0	31.700	-6.000	0.0	3.50	277.5	-0.821	0.59
537	1979	9	13	17	45	8.5	31.470	-5.785	0.0	4.60	289.5	0.724	1.70
538	1979	9	14	15	34	36.3	31.600	-5.800	0.0	3.90	277.4	-0.220	0.89
539	1979	9	20	1	18	47.0	32.300	-5.299	0.0	3.50	187.1	0.157	1.15
540	1979	9	20	23	14	56.2	32.335	-1.908	0.0	3.70	277.3	-0.519	0.72
541	1979	9	20	22	9	45.1	31.470	-5.785	0.0	3.70	289.5	-0.626	0.67
542	1979	9	25	19	6	55.3	33.496	-3.774	0.0	3.00	62.2	2.049	4.25
543	1979	10	1	22	52	5.5	32.000	-6.200	0.0	2.50	262.0	-2.178	0.23
544	1979	10	6	23	48	13.5	33.100	-5.100	0.0	3.00	103.2	0.861	1.87
545	1979	10	11	21	53	24.5	35.100	-7.100	0.0	2.90	292.9	-1.856	0.29
546	1979	10	16	1/	30	40.0	35.100	-5.100	0.0	2.70	161.2	-0.676	0.65
547	1979	11	5	15	37	18.0	33.900	-5.299	0.0	2.40	88.7	0.325	1.29
548	1979	11	8	3	1	0.0	35.000	-4.299	0.0	2.90	134.5	0.069	1.08
549	1979	11	8	4	15	9.0	35.000	-5.000	0.0	3.10	147.3	0.147	1.14
550	1979	11	22	1	42	11.0	32.000	-6.399	0.0	2.60	274.4	-2.143	0.24
551	1979	11	24	13	42	40.5	33.600	-5.500	0.0	2.80	108.4	0.443	1.40
552	1979	12	2	11	4	4.3	36.240	-4.410	40.0	3.00	272.0	-1.548	0.35
553	1979	12	9	9	57	40.0	34.500	-3.700	0.0	3.00	99.1	0.960	2.00
554	1979	12	9	8	11	56.5	35.000	-4.399	0.0	3.00	134.5	0.219	1.20
555	1979	12	23	12	9	45.5	35.000	-4.399	0.0	2.60	134.5	-0.381	0.79
556	1979	12	26	17	46	54.6	32.500	-5.000	0.0	2.70	155.1	-0.581	0.69
557	1979	12	27	0	37	28.3	32.800	-5.299	0.0	3.50	140.5	0.861	1.87
558	1979	12	29	23	9 15	52.0	33.199	-6.700	0.0	2.60	226.9	-1.671	0.33
559	1980	1	18	19	15	2.6	35.588	-4.406	100.0	3.30	199.7	-0.582	0.69
560	1980	2	6	4	16	34.3	33.053	-4.708	30.0	2.70	88.1	0.660	1.63
561	1980	2	10	3	39	42.5	35.290	-4.961	20.0	3.20	1/5.9	-0.157	0.93
562	1980	3	21	2	11	10.1	35.866	-4.251	5.0	2.60	230.7	-1.712	0.32
563	1980	4	20	14	18	48.7	34.960	-5.008	5.0	3.50	143.5	0.808	1.80
564	1980	6	1	20	18	28.4	35.368	-3.784	5.0	3.20	182.8	-0.237	0.88
565	1980	6	14	10	54	44.0	35.383	-3.826	5.0	3.00	183.4	-0.544	0.71
566	1980	6	16	6	7	8.7	36.325	-3.341	5.0	3.40	296.4	-1.135	0.47
567	1980	6	22	7	22	59.4	35.425	-4.034	5.0	3.20	183.9	-0.251	0.87
568	1980	6	22	23	18	33.9	35.986	-5.321	80.0	4.70	259.8	1.030	2.10
569	1980	8	6	23	58	11.1	35.173	-5.998	5.0	3.20	216.4	-0.654	0.66

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (10/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

					Time		Нуро	ocenter	Focal	Magnitude	Epicentral	Cornell	's Analysis
No.	Year	Month	Day	Lour	Min	Sac	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	wiin	Sec	Ν	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
570	1980	10	13	20	13	44.3	35.803	-4.561	100.0	4.20	224.3	0.532	1.49
571	1983	9	20	8	39	13.1	34.864	-5.137	33.0	4.50	139.8	2.308	5.09
572	1983	11	24	20	55	41.0	34.733	-4.541	78.0	4.60	106.3	2.668	6.52
573	1986	1	24	18	37	48.4	35.127	-4.292	10.0	3.20	148.6	0.269	1.24
574	1986	1	28	20	1	28.4	31.999	-5.318	22.0	4.90	217.8	1.867	3.75
575	1986	1	28	11	13	22.2	31.996	-5.389	10.0	4.20	220.9	0.793	1.79
576	1986	1	29	7	50	13.3	32.079	-5.394	10.0	4.20	212.9	0.884	1.90
577	1986	4	3	22	33	13.5	35.071	-4.691	33.0	3.30	145.7	0.411	1.37
578	1986	12	24	16	11	35.4	35.651	-3.932	10.0	3.30	210.2	-0.434	0.77
579	1986	12	28	21	23	25.9	35.384	-3.543	10.0	3.40	192.0	-0.061	0.99
580	1986	12	28	14	13	44.6	35.757	-5.122	10.0	3.20	229.8	-0.805	0.59
581	1987	1	2	8	14	48.6	35.373	-3.691	10.0	3.70	186.0	0.468	1.43
582	1987	1	4	6	41	56.2	35.408	-3.520	10.0	3.80	195.3	0.497	1.46
583	1987	1	8	23	10	12.7	35.403	-3.618	15.0	4.30	191.4	1.293	2.52
584	1987	3	1	14	10	29.8	35.384	-3.622	10.0	3.10	189.3	-0.476	0.74
585	1987	7	23	11	57	31.4	35.636	-5.763	86.0	3.50	243.1	-0.638	0.66
586	1987	7	31	15	45	19.3	33.488	-4.101	10.0	3.70	40.5	3.966	15.99
587	1987	8	15	3	57	11.8	36.184	-4.312	10.0	3.00	265.8	-1.466	0.38
588	1987	12	9	15	40	34.2	35.484	-3.785	30.0	4.60	195.2	1.673	3.28
589	1987	12	10	0	20	26.7	35.440	-3.820	33.0	3.80	189.6	0.537	1.50
590	1987	12	10	0	2	16.2	35.426	-3.760	33.0	3.20	189.6	-0.363	0.80
591	1987	12	24	0	45	40.8	35.430	-3.789	33.0	3.50	189.3	0.091	1.10
592	1987	12	25	18	45	51.6	35.932	-4.568	100.0	3.30	238.7	-0.947	0.54
593	1988	2	26	17	32	2.0	35.205	-6.242	10.0	3.20	235.2	-0.862	0.57
594	1988	3	4	1	49	34.0	36.245	-5.573	10.0	2.60	295.1	-2.325	0.21
595	1988	3	17	0	1	17.7	36.035	-5.792	10.0	2.70	282.7	-2.069	0.25
596	1988	4	9	9	50	45.7	34.999	-3.413	27.0	4.30	159.7	1.712	3.37
597	1988	4	30	3	39	33.7	34.637	-5.536	10.0	3.90	144.6	1.386	2.69
598	1988	5	8	19	59	33.2	35.458	-4.902	10.0	2.70	192.1	-1.112	0.48
599	1988	5	30	10	44	4.5	36.347	-4.584	121.0	3.20	284.7	-1.541	0.36
600	1988	6	26	21	21	31.9	35.979	-4.279	18.0	3.40	243.1	-0.649	0.66
601	1988	/	8	23	31	11.1	36.213	-5.419	15.0	3.80	286.6	-0.455	0.75
602	1988	7	24	2	19	30.3	36.222	-5.455	9.0	2.80	288.0	-1.970	0.26
603	1988	7	24	17	47	22.3 52.5	25 261	-3.0/8	116.0	3.30	195.7	-0.235	0.88
604	1988	/	28	1/	37	23.5	35.301	-4.824	02.0	3.60	1/9.9	-0.026	1.01
605	1900	9	10	10	42	12.9	25 505	-4.304	95.0 22.0	3.00	205.9	-1.734	1.42
607	1900	10	12	6	42	11.0	25 759	-5.656	122.0	3.80	220.1	1 292	0.40
608	1900	10	13	14	52 58	40.4 28.2	35.730	-4.039	10.0	3.00	220.1	-1.562	0.40
600	1900	10	20	14	51	58.0	35.443	-4.303	10.0	2.80	104.4	-2.025	1.22
610	1088	10	20	22	5	30.5	3/ 033	-5.820	10.0	3.50	194.4	0.558	1.52
611	1988	10	31	6	51	95	36 180	-5.020	73.0	4 20	294.1	0.010	1.10
612	1988	10	28	19	54	28.2	36 268	-4 547	100.0	3 30	275.7	-1 259	0.43
613	1988	12	12	6	40	41.7	36 300	-4 512	92.0	4 90	279.0	1 137	2.26
614	1989	12	7	14	43	99	35 423	-5.012	33.0	3 30	191.4	-0.236	0.88
615	1989	1	27	23	48	57.4	36 327	-4 768	10.0	2.70	284.3	-2.083	0.25
616	1989	3	- 27	20	26	81	35 353	-4 200	10.0	3.00	174.1	-0.420	0.77
617	1989	5	7	17	45	47.9	32,911	-5 094	10.0	3 70	119.3	1 553	3.02
618	1989	6	30	10	7	57.8	35.294	-3.711	10.0	3.00	177.1	-0.462	0.75
619	1989	8	5	10	26	3.1	34.850	-5.525	10.0	3.40	160.3	0.384	1.35
620	1989	8	6	4	32	57.9	35.064	-3.528	10.0	3.70	160.5	0.830	1.83
621	1989	8	12	4	12	52.4	35.260	-3.789	10.0	3.30	171.2	0.071	1.08
622	1989	8	18	11	6	22.9	35.597	-3.889	10.0	3.10	205.1	-0.673	0.65
623	1989	8	22	7	6	36.6	35.186	-3.829	10.0	3.40	162.3	0.353	1.32
624	1989	8	23	5	30	57.2	34.521	-5.199	10.0	3.00	113.0	0.633	1.60
625	1989	8	23	6	28	53.0	34.500	-5.347	10.0	3.80	121.4	1.661	3.25
626	1989	8	23	6	45	50.8	34.509	-5.435	10.0	3.00	128.3	0.326	1.29

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (11/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)

				Time			Hypocenter		Focal Magnitude		Epicentral	Cornell's Analysis	
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
				Hour	wiin	See	N	Е	(km)	Richter Scale	(km)	(Imm)	(gal)
627	1989	8	23	8	9	39.3	34.510	-5.506	10.0	3.50	133.6	0.979	2.03
628	1989	8	30	8	52	11.6	35.192	-3.791	14.9	3.40	164.0	0.322	1.29
629	1989	9	9	4	17	58.7	35.206	-3.907	10.0	3.40	162.5	0.350	1.32
630	1989	9	16	16	8	44.6	34.825	-4.758	10.0	2.70	121.0	0.018	1.05
631	1989	9	16	4	17	58.2	35.199	-3.894	10.0	3.40	162.0	0.357	1.32
632	1989	9	27	2	10	21.5	35.577	-5.594	89.5	3.70	229.4	-0.224	0.88
633	1989	10	11	17	14	19.3	34.976	-3.808	10.0	3.00	140.9	0.099	1.11
634	1989	10	17	2	26	11.2	35.501	-5.756	76.8	2.70	230.2	-1.688	0.32
635	1989	11	8	19	22	5.5	36.159	-4.372	10.0	3.20	263.0	-1.139	0.47
636	1989	12	8	1	8	3.1	31.941	-6.292	5.0	3.80	272.5	-0.327	0.82
637	1990	2	6	7	41	32.2	36.183	-4.064	20.0	3.50	267.0	-0.732	0.62
638	1990	4	13	22	17	13.9	35.576	-4.756	93.0	3.90	201.8	0.331	1.30
639	1990	4	18	9	44	29.0	35.349	-4.017	0.0	3.70	175.8	0.610	1.57
640	1990	5	2	16	40	27.2	36.461	-4.490	87.0	4.20	296.8	-0.041	1.00
641	1990	5	15	23	32	17.6	35.071	-4.476	0.0	3.50	142.8	0.823	1.82
642	1990	8	13	1	45	49.7	34.876	-5.318	81.0	3.50	150.3	0.383	1.35
643	1990	8	15	1	6	52.6	35.830	-3.166	20.0	3.90	251.5	0.016	1.04
644	1990	9	28	2	7	58.3	35.872	-4.485	109.0	3.50	231.5	-0.619	0.67
645	1991	3	4	11	44	15.8	35.072	-5.551	32.0	3.60	180.6	0.356	1.32
646	1991	3	12	15	58	55.1	34.536	-4.590	30.0	3.50	85.9	1.915	3.88
647	1992	5	12	23	18	7.0	35.113	-2.505	16.0	3.80	225.0	0.144	1.14
648	1992	5	14	15	0	56.7	35.052	-2.501	12.0	3.90	220.9	0.342	1.31
649	1992	5	14	15	48	10.5	35.218	-2.392	0.0	3.70	240.5	-0.165	0.92
650	1992	9	29	5	45	30.4	31.471	-3.441	0.0	3.60	270.5	-0.607	0.68
651	1992	10	23	9	11	12.5	31 513	-4 233	22.0	5 20	252.7	1 952	3.98
652	1992	10	30	10	44	16	31 506	-4 617	0.0	5.00	254.5	1 644	3.22
653	1992	10	31	10	33	2.5	35 624	-3 481	30.0	3.60	218.8	-0.104	0.96
654	1992	10	31	0	58	46.4	31 119	-4 269	30.0	4 10	296.3	-0.097	0.97
655	1992	10	10	23	23	54.6	32 168	-5.839	0.0	3.60	226.5	-0.167	0.92
656	1992	12	21	9	23	58.6	35 246	-2.275	12.0	4 10	250.7	0.328	1.30
657	1993	5	1	0	22	22.6	35 288	-6.306	28.0	3 70	245.7	-0.235	0.88
658	1003	5	1	4	30	22.0	31 500	-0.300	20.0	3.10	245.7	-0.235	0.46
659	1003	5	23	7	40	56.0	35 223	-4.750	7.0	4.00	249.0	0.200	1.26
660	1003	5	23	7	40	55.3	35 330	-2.400	7.0	4.00 5.10	237.7	1 895	3.82
661	1003	5	23	10	10	48.0	32.060	-6.330		2.50	244.5	2 208	0.22
662	1003	5	31	2	24	38.1	34 680	-4.780		2.50	106.6	-2.200	1.44
662	1003	5	51		47	25.1	37.310	-4.760		2.80	172.1	0.402	0.78
664	1003	6	0	22	47	25.2	35 200	2 420		3.00	2/2.0	0.240	1.23
665	1993	6	27	12	45	11.0	33.290	-2.420		4.00	243.5	4 717	1.23
666	1993	7	12	15	40 53	11.9	35.080	-4.050	3.0	3.60	240.3	4.717	20.87
667	1993	7	12	17	12	13.9	33.228	-2.277	5.0	3.00	249.5	-0.403	0.78
669	1993	7	22	22	12	4.9	33.300	-4.450		2.70	225.4	1.204	0.45
660	1993	, 0	10	12	52	27.0	34.860	-0.130		2.90	122.5	-1.204	1.54
670	1993	0	20	21	10	25.1	24.540	-4.700		3.10	00.4	1 220	2.50
671	1993	0	20	21	10	47.3	32.060	-3.970		3.10	120.1	0.768	2.39
672	1995	0	12	0	20	47.5	25 770	-3.330		3.30	129.1	0.708	1.70
672	1995	9	20	5	20	24.0	21.960	-4.690		3.20	223.4	-0.755	1.20
673	1995	9	29	נ ב	45	20.6	21.495	-5.720	20.0	3.90	221.7	0.550	1.50
074	1995	9	29) 5	45	30.0	25 160	-3.408	30.0	3.00	208.5	-0.002	0.08
676	1995	10	24	5	40	10.4	33.100	-4.900		2.80	100.4	-0.514	0.72
0/6	1993	11	/	13	1	5/.4	54.250 24.270	-5.160		5.70 2.00	121.2	1.523	2.96
0//	1993	11	9	10	24	58.8	54.270	-3.190		3.60	119.6	1.404	2.72
6/8	1993	11	9	16	51	46.4	33.640	-6.150		2.70	167.3	-0./6/	0.61
0/9	1993	11	9	0	22	51.4	30.400	-4.500		5.40	290.1	-1.081	0.49
680	1993	11	25	18	28	23.4	34.410	-1.760		3.30	248.9	-0.851	0.57
081	1993	11	30	13	17	51.0	52.560	-5.620		3.80	180.0	0.703	1.68
682	1993	12	9	19	28	13.8	33.970	-4.780		4.00	44.6	4.275	19.79
683	1993	12	11	0	18	32.1	35.640	-4.760		3.00	208.9	-0.866	0.57

Table X3.4: Intensite de seisme Estime et AccelerationAcceleration Felt at Azghar Dam Site (12/13)(Latitude: 33°47'19''N, Longitude: 4°20'55''W)

	••		D	Time			Hypocenter		Focal	Magnitude	Epicentral	Cornell's Analysis	
No.	Year	Month	Day	Hour	Min	Sec	Latitude	Longitude	Depth	in	Distance	Intensity	Acceleration
60.1	1000	10		10			N	E	(km)	Richter Scale	(KM)	(Imm)	(gal)
684	1993	12	15	10	24	11.2	35.480	-5.030		3.00	197.9	-0.733	0.62
685	1993	12	21	22	29	14.7	34.990	-4.780		2.70	139.1	-0.314	0.83
686	1993	12	21	16	58	3.9	35.030	-3.840		2.80	145.5	-0.274	0.85
687	1993	12	30	11	34	35.1	34.550	-4.140		2.90	86.6	1.131	2.26
688	1994	3	25	21	24	31.2	35.347	-2.673	4.0	3.50	232.1	-0.377	0.80
689	1994	5	7	8	49	54.1	31.544	-3.433	26.0	4.00	263.0	0.050	1.07
690	1994	5	12	23	58	11.1	31.503	-3.379	23.0	3.80	269.0	-0.303	0.84
691	1994	5	26	8	26	55.5	35.139	-3.908	21.0	5.50	155.3	3.595	12.37
692	1994	5	26	12	27	55.2	35.184	-3.979	7.0	3.50	158.5	0.563	1.52
693	1994	6	3	8	57	40.3	35.213	-3.998	5.0	4.00	161.3	1.271	2.49
694	1994	8	15	6	28	34.9	35.325	-3.931	0.0	3.90	174.8	0.925	1.96
695	1994	8	20	4	55	27.2	35.230	-3.985	0.0	3.70	163.4	0.791	1.78
696	1994	11	25	5	33	17.5	34.655	-4.519	16.0	4.10	97.4	2.619	6.31
697	1995	1	29	17	43	13.3	33.205	-5.124	0.0	3.70	96.6	2.072	4.32
698	1995	3	31	8	57	55.3	35.884	-3.195	19.0	3.50	255.8	-0.625	0.67
699	1995	9	3	22	34	55.3	33.153	-2.928	30.0	4.30	149.0	1.869	3.75
700	1995	9	25	15	13	16.7	34.180	-4.8/1	6.0	3.60	64.9	2.844	7.37
701	1995	9	29	5	54	31.3	34.069	-5.884	3.0	3.50	145.2	0.780	1.77
702	1995	10	15	1	43	11.6	35.187	-4.076	0.0	3.80	157.2	1.037	2.11
703	1995	11	10	17	49	55.9	36.131	-2.916	0.0	3.50	291.7	-0.945	0.54
704	1995	11	25	18	31	41.9	33.216	-3.252	0.0	3.60	119.6	1.405	2.73
705	1995	12	23	21	24	1.4	35.192	-3.989	7.0	3.80	159.2	1.003	2.06
706	1996	4	3	1	24	8.3	34.189	-4.845	0.0	3.60	63.8	2.892	7.61
707	1996	4	24	19	36	12.5	35.150	-4.068	0.0	4.00	153.2	1.399	2.71
708	1996	6	8	21	16	17.3	35.320	-4.059	3.0	3.70	172.0	0.664	1.63
709	1996	6	18	13	58	53.3	35.285	-5.819	32.0	3.70	214.5	0.091	1.10
710	1996	/	13	9	8	4.9	34.690	-5./8/	19.0	4.20	166.3	1.481	2.87
/11	1996	9	16	1	38	15.5	34.995	-4.250	10.0	4.10	134.1	1.868	3.75
712	1996	11	16	1	38	15.5	34.995	-4.250	10.0	4.10	134.1	1.868	3.75
713	1997	/	2	9	38	59.3	35./3/	-4.182	12.0	4.00	216.7	0.539	1.50
714	1997	/	2	12	23	20.6	35.803	-4.381	9.0	4.00	223.5	0.464	1.42
715	1997	7	2	1/	33	21.7	35.808	-4.205	7.0	3.70	224.4	0.005	1.04
/16	1997	/	4	5	29	28.5	35.276	-4.540	9.0	3.50	166.0	0.449	1.41
710	1997	7	14	11	25	1.3	33.561	-4.1/8	14.0	3.90	29.8	4.722	26.96
718	1997	/	26	12	20	22.1	33.155	-4.990	9.0	3.50	92.0	1.8//	3.78
719	1997	0	4	14	23	20.2	52.255 22.214	-5.724	13.0	4.10	214.4	0.710	1.69
720	1997	0	4	15	44	32.3 22.1	32.214	-5.704	7.0	3.50	215.0	-0.188	0.91
721	1997	0	20	19	17	32.1	26 207	-3.033	5.0	3.50	208.1	-0.730	0.62
722	1997	0 10	10	21	44	5.4 22.4	22 115	-4.079	9.0	3.70	273.0	0.264	1.22
724	1997	10	12	21	29 50	197	36 211	-3.004	8.0 5.0	3.70	194.1 289.4	0.304	1.33
724	1997	10	13	21 7	15	51.0	32 460	-3.218	5.0	3.00	200.4	0.707	1 29
725	1997	10	1/	10	13	17.0	32.409	-2.048	0.0	3.00	201.7	0.420	1.30
720	1007	11	14	19	14	37 6	32.433	-2.091	9.0	3.50	105.5	0.048	1.55
728	1997	11	15	3	20	26.5	32.584	-2.803	4.0	3.50	195.5	0.046	1.07
720	1008	11	7	13	2)	57.7	32.004	-2.0+)	30.0	3.60	175.2	0.030	1.00
730	1998	1	25	10	22	87	35 578	-4 920	21.0	3.50	205.4	-0.087	0.97
731	1998	1	23 14	7	20	50.7	32 804	-5 207	5.0	3.90	140.1	1 468	2.85
732	1998	4	14	5	20	10.4	32.604	-5.207	3.0	3.90	154.3	1 232	2.05
732	1998	6	18	10	45	34.8	32.033	-5.313	0.0	4 40	152.8	2 005	4.13
734	1998	0 8	10	19	43 25	24.0 42.7	34 720	-3.508	22.0	4.00	115.0	2.005	4.15
735	1008	0	16	13	2J 58	2.7	32 712	_5 30/	0.0	3.60	153.5	0 794	1 70
736	1998	10	20	23	47	18 3	34 908	_3 790	0.0	3.60	134.5	1 1 1 9	2.74
737	1000	10	16	23		42.2	34 /1/	_/ 139	0.0	3.80	72.1	2 01/	7 73
738	1999	3	26	20	13	33.2	35 569	-3 650	3.0	3.60	207.8	0.047	1.07
739	1999	5	20	11	30	53.2	35 852	_2 932	10.0	3.00	263.7	-0.096	0.97
157	1)))	5	2)	11	50	55.1	55.052	2.752	10.0	5.70	200.1	0.070	0.71

Table X3.4: Intensite de seisme Estime et Acceleration de terre Ressentie au Site de Barrage Azghar (13/13) (Latitude: 33°47'19''N, Longitude: 4°20'55''W)