FEASIBILITY STUDY ON WATER RESOURCES DEVELOPMENT
 IN RURAL AREA INTHE KINGDOM OF MOROCCO

FINAL REPORT

VOLUME IV

SUPPORTING REPORT (2.A) FEASIBILITY STUDY

AUGUST, 2001

JOINT VENTURE OF

LIST OF FINAL REPORT VOLUMES

Volume I: Executive Summary
Volume II: Main Report
Volume III: Supporting Report (1) Basic Study
Supporting Report I: Geology
Supporting Report II: Hydrology and Flood Mitigation
Supporting Report III: Socio-economy
Supporting Report IV: Environmental Assessment
Supporting Report V: Soils, Agriculture and Irrigation
Supporting Report VI: Existing Water Resources Development
Supporting Report VII: Development Scale of the Projects
Supporting Report VIII: Project Evaluation and Prioritization

Volume IV: Supporting Report (2.A) Feasibility Study
Supporting Report IX: Aero-Photo and Ground Survey
Supporting Report X: Geology and Construction Material
Supporting Report XI: Hydro-meteorology and Hydro-geology
Supporting Report XII: Socio-economy
Supporting Report XIII: Soils, Agriculture and Irrigation

Volume V: Supporting Report (2.B) Feasibility Study
Supporting Report XIV: Water Supply and Electrification
Supporting Report XV: Determination of the Project Scale and Ground Water Recharging
Supporting Report XVI: Natural and Social Environment and Resettlement Plan
Supporting Report XVII: Preliminary Design and Cost Estimates
Supporting Report XVIII: Economic and Financial Evaluation
Supporting Report XIX: Implementation Program

Volume VI: Drawings for Feasibility Study

Volume VII: Data Book

Data Book AR: Aero-Photo and Ground Survey
Data Book GC: Geology and Construction Materials
Data Book HY: Hydrology
Data Book SO: Soil Survey
Data Book NE: Natural Environment
Data Book SE: Social Environment
Data Book EA: Economic Analysis

[^0]
ABBREVIATIONS

Abbreviations ENGLISH	FRENCH	
AEP	Potable Water Supply	Approvisionnement en Eau Potable
APD	Detailed Study	Avant Projet Détaillé
AUEA	Association of Agricultural Water	Association des Usagers de 1' Eau Agricole
BAD	Users	Banque Africaine de
BM	World Bank	Développement Banque Mondiale Coopérative Agricole du Maroc
CAM	Agricultural Cooperative of	Morocco

Abbreviations	ENGLISH	FRENCH
DPA	Provincial Directorate of Agriculture	Direction Provinciale
		Agriculture
DPA	Provincial Directorate of Animal	Direction Provinicials de 1'
		Animale
DPTP	Provincial Directorate of Public Works	Direction Provinciale des Travaux
		Publiques
DPV	Directorate of Vegetable Production	Direction de la Production Végétale
DRD	Decentralized Regional Directorate	Direction Régionale Décentralisée
DT	Division of Works	Division du Travail
EIRR	Economic Internal Rate of Return	
EMP	Environmental Management Plan	Plan de Gestion Environnementale
FERTIMA	Moroccan Company of Fertilizers	Société Marocaine de Fertilisation
FV	Training Visit	Formation Visite
GH	Large Hydraulic	Grande Hydraulique
GPD	Gross Domestic Product	Produit National Brut
HCWC	High Council of Water and Climate	Conseil Superieur de 1 'eau et du Climat
IBRD	International Bank for	Banque Internationale pour la
	Reconstruction and Development	Reconstruction et le Développement
INH	National Institute of Hygiene	Institut Nationale de l' Hygiène
JBIC	Japan Bank for International	Banque Japon de Coopération
	Cooperation	Internationale
JICA	Japan International Cooperation	Agence Japonaise pour la
	Agency	Coopération Internationale
MADRPM	Ministry of Agriculture, Rural	Ministère de l' Agriculture du
	Development and Maritime Fishing	Développement Rural et des Pêches Maritimes
MCEF	Ministry In Charge of Water and	Ministère Chargé des Eaux et
	Forests	Forêts
MI	Ministry of Interior	Ministère de l' Intérieur
MOA	Ministry of Agriculture, Rural Development and Fishery	Ministère de l' Agriculture du
		développement Rural et des Pêches maritimes
MOE	Ministry of Equipment	Ministère de l' Equipement
MOI	Ministry of Interior	Ministère de 1'Intérieur
MPW	Ministry of Public Works	Ministère des travaux Publics
MSL	Mean Sea Level	Niveau Moyen de La mer
MSP	Ministry of Public Health	Ministère de la Santé Publique
NG	Natural Ground	Sol Naturel
NPV	Net Present Value	Valeur Nette Actuelle
OECF	Overseas Economic Cooperation	Fond de Coopération Economique
	Fund (now JBIC)	Etrangère
OMM	Operation, Maintenance and	Opérations de gestion et de
ONE	National Office of Electricity	maintenance Office National de l' Electricité
ONEP	National Office of Potable Water	Office National de l' Eau Potable

Abbreviations	ENGLISH	FRENCH
ONICL	Inter professional National Office of Cereals and Leguminous	Office National Inter professionnel des Céréales et Légumineuses
ORMVA	Regional Office for Agricultural Development	Office Régional de la Mise en Valeur Agricole
PAGER	Program of Grouped Supply of Rural Water	Programme d'Approvisionnement Groupé des Eaux Rurales
PAGI	Program of Large Irrigation Improvement	Programme d'Amélioration de la Grande Irrigation
PMH	Small and Medium-ScaleHydraulic	Petit et Moyenne Hyraulique
PNI	National Program of Irrigation	Programme National de l' Irrigation
PRV	Extension and Research Project	Projet de Recherche et de Vulgarisation
PSDA	Agricultural Development and Support Project	Projet de Support et de Développement Agricole
SE	Water Service at the Provincial Directorate of Public Works	Service Eau à la Direction provinciale de l 'Equipement
SH	Section of Hydology	Service d 'Hydraulogie
SIBE	Site of Biological and Ecological Interest	Site d' Intérêt Biologique et Ecologique
SMN	Service of National Meteorology	Service de la Météorologie Nationale
SONACOS	National Company of Seed Trade	Société Nationale de Commercialisation de Semences
UNCAM	National Union of Cooperatives of Morocco	Union Nationale de Coopératives du Maroc
UNDP	United Nations Development Program	Programme des Nations Unies pour le Développement (PNUD)

Conversion Factors

Length	Metric to Imperial			Imperial to Metric		
	1 cm	$=$	0.394 inch	1 inch		2.54 cm
	1 m	=	3.28 feet	1 feet	=	30.48 cm
	1 km	=	0.621 mile	1 mile	=	1.609 km
Area	$1 \mathrm{~m}^{2}$	=	10.76 sq.ft	1 sq.ft	=	$0.0929 \mathrm{~m}^{2}$
	1 ha	=	2.471 acre	1 acre	=	0.4047 ha
	$1 \mathrm{~km}^{2}$	=	0.386 sq.mile	1 sq.mile	=	$2.59 \mathrm{~km}^{2}$
Volume	1 lit	=	0.22 gal (imp)	$1 \mathrm{gal}(\mathrm{imp})$	=	4.55 lit
	$1 \mathrm{~m}^{3}$	=	$35.3 \mathrm{cu} . \mathrm{ft}$	$1 \mathrm{cu} . \mathrm{ft}$	=	28.33 lit
	1 MCM	$=$	811 acre-ft	1 acre-ft	=	1,233.5 m ${ }^{3}$
Weight	1 kg	=	2.20 lb	1 lb	=	0.4536 kg
	1 ton	=	0.984 long ton	1 long ton	=	1.016 ton
Derived	$1 \mathrm{~m}^{3} / \mathrm{s}$	=	35.3 cusec	1 cusec	$=$	$0.0283 \mathrm{~m}^{3} / \mathrm{s}$
Measures	1 ton/ha	=	891 lb/acre	$1 \mathrm{lb} / \mathrm{acre}$	=	$1.12 \mathrm{~kg} / \mathrm{ha}$
	$1 \mathrm{~m}^{3} / \mathrm{s}$	=	19.0 mgd	1 mgd	=	$0.0529 \mathrm{~m}^{3} / \mathrm{s}$
Temperature	${ }^{\circ} \mathrm{C}$	$=$	$\left({ }^{\circ} \mathrm{F}-32\right) \times 5 / 9$	${ }^{\circ} \mathrm{F}$	$=$	$1.8 \mathrm{x}^{\circ} \mathrm{C}+32$
Local	1 lit	=	0.22 gantang	1 gantang	=	4.55 lit
Measures	1 kg	=	1.65 kati	1 kati	=	0.606 kg
	1 ton	=	16.5 pikul	1 pikul	=	60.6 kg

Supporting Report IX

FEASIBILITY STUDY ON
 WATER RESOURCES DEVELOPMENT
 IN
 RURAL AREA
 IN
 THE KINGDOM OF MOROCCO

FINAL REPORT

VOLUME IV
 SUPPORTING REPORT (2.A)
 FEASIBILITY STUDY

SUPPORTING REPORT IX AERO-PHOTO AND GROUND SURVEY

Table of Contents

Page
IX1 Mapping Area IX-1
IX2 Mapping Specifications and Surveying Method IX-1
IX3 1/5,000 Mapping IX-1
IX3.1 General IX-1
IX3.2 Aerial Photography IX-2
IX3.2.1 Aerial Photography Specification IX-2
IX3.2.2 Work Volume IX-2
IX3.2.3 Quality Control IX-3
IX3.2.4 Results IX-4
IX3.3 Control Point Surveying IX-4
IX3.3.1 Reconnaissance of Existing Points and Selection of New Point's Site IX-5
IX3.3.2 Monumentation IX-5
IX3.3.3 Aerial Signalization IX-5
IX3.3.4 GPS Surveying IX-6
IX3.3.5 Leveling IX-7
IX3.4 Field Classification IX-8
IX3.5 Aerial Triangulation IX-8
IX3.6 Plotting IX-8
IX3.7 Editing IX-8
IX3.8 Fair Drawing IX-9
IX4 1/500 Mapping IX-9
IX4.1 General IX-9
IX4.2 Traversing IX-10
IX4.3 Topographic Surveying IX-10
IX4.4 Plotting IX-10
IX4.5 Editing IX-10
IX4.6 Fair Drawing IX-10
List of Tables
Table IX3.1 Control Points in the N'FIFIKH Site
(A: Triangular Station) IXT-1
Table IX3.1 Control Points in the N'FIFIKH Site
(B: Newly Established Control Point) IXT-2
Table IX3.1 Control Points in the N'FIFIKH Site (C: Existing Bench Mark) IXT-3
Table IX3.1 Control Points in the N'FIFIKH Site
(D: Newly established Bench Mark) IXT-4
Table IX3.2 Control Points in the TASKOURT site (A: Triangular Station) IXT-5
Table IX3.2 Control Points in the TASKOURT Site
(B: Newly established Control Point) IXT-6
Table IX3.2 Control Points in the TASKOURT Site (C: Existing Bench Mark) IXT-6
Table IX3.2 Control Points in the TASKOURT Site (D: Newly Established Bench Mark) IXT-7
Table IX3.3 Control Points in the AZGHAR Site
(A: Triangular Station) IXT-7
Table IX3.3 Control Points in the AZGHAR Site (B: Newly Established Control Point) IXT-7
Table IX3.3 Control Points in the AZGHAR Site
(C: Existing Bench Mark - Third Order Leveling) IXT-8
Table IX3.3 Control Points in the AZGHAR site(D: Newly Established Bench Mark - Third Order Leveling)IXT-8

List of Figures

Figure IX3.1A: Mapping Area of No. 5 N'Fifikh IXF-1
Figure IX3.1B: Mapping Area of No. 9 Taskourt IXF-2
Figure IX3.1C: Mapping Area of No. 17 Azghar. IXF-3
Figure IX3.2A: GPS Observation Network (N’Fifikh) IXF-4
Figure IX3.2B : GPS Observation Network (Taskourt) IXF-5
Figure IX3.2C: GPS Observation Network (Azghar) IXF-6
Figure IX3.3A: Leveling Network (N’Fifikh) IXF-7
Figure IX3.3B : Leveling Network (Taskourt) IXF-8
Figure IX3.3C: Leveling Network (Azghar) IXF-9

SUPPORTING REPORT IX

AERO-PHOTO AND GROUND SURVEY

IX1 Mapping Area

To prepare the topographic map as the basic data for the study work, topographic mapping was carried out at the following four sites.
(1) No. 5 N'Fifikh
(2) No. 9 Taskourt
(3) No. 10 Timkit
(4) No. 17 Azghar

IX2 Mapping Specification and Surveying Method

Topographic maps prepared in this work are divided into two scales. One is the $1 / 5,000$ scale map, the another one is $1 / 500$.

IX3 1/5,000 Mapping

IX3.1 General

1/5,000 mapping was carried out for the three sites, No. 5 (N'Fifikh), No. 9 (Taskourt) and No. 17 (Azghar) by photogrammetric method. Those areas are shown in the Figure IX3.1. The work specifications of $1 / 5,000$ map and mapping area are as follows:

Map Specification

No	Items	Description	
1	Geodetic reference ellipsoid	Clarke 1880	
2	Map projection	Lambert conical conformal	
3	Datum of height	Mean Sea level	
4	Map scale	$1: 5,000$	25.0 m
5	Contour interval	Index contour	5.00 m
		Intermediate contour	2.50 m
		Supplementary contour	1.25 m

Mapping Area

No	Location	Area $\left(\mathbf{k m}^{2}\right)$
1	No.5 (N'Fifikh)	78.5
2	No.9 (Taskourt)	109.2
3	No.17 (Azghar)	33.5
Total		221.2

IX3.2 Aerial Photography

IX3.2.1 Aerial Photography Specification
Aerial photography was carried out in the said three sites. The aerial photography specification is as follows.

Aerial Photography Specification

No	Items	Specifications
1	Photo Scale	$1: 15,000$
2	Flight Height	Approximately 2,250m above the ground elevation
3	Aerial Camera	Wild RC10 (f length=153.25mm)
4	Photographing Date	No.5 N'Fifikh 4-Oct-2000 No.9 Taskourt 4-Oct-2000 No.17 Azghar 17-Oct-2000
5	Overlap	60%
6	Sidelap	30%

IX3.2.2 Work Volume

The total distance is 264.5 km and the total exposure number is 219 . These numbers satisfy the planned quantity. The planned flight distance was 213.9 km and planned exposure number was 169 . Total photographed quantity and work volume are shown in the following table:

Work Volume

Site	Line	Height Datum	Flying Height	Line Distance	Exposure Number
No. 5 N'Fifikh	C1	200 m	2450 m	27.8 Km	22
	C2	300 m	2550 m	33.0 Km	25
	C3	400 m	2650m	14.2 Km	12
	C4	100 m	2350m	12.2 Km	10
	C5	100m	2350m	11.4 Km	9
Total				98.6 Km	78
No. 9 Taskourt	C1	1200m	3450m	14.3 Km	11
	C2	1100 m	3350 m	18.5 Km	17
	C3	800m	3050m	25.1 Km	20
	C4	700 m	2950m	22.7 Km	18
	C5	700 m	2950m	23.0 Km	19
	C6	700 m	2950m	14.5 Km	12
Total				118.1 Km	97
No. 17 Azghar	C1	900m	3150m	24.1 Km	23
	C2	900m	3150m	23.7 Km	21
Total				47.8 Km	44
Grand Total				264.5 Km	219

IX3.2.3 Quality Control
All items of photograph quality were inspected about each photograph. In conclusion all the photographs satisfy the requisite. The details are as follows:
(1) End lap and side lap
(2) All photographs in the project area meet the requisite.
(3) Crab
(4) All photographs in the project area meet the requisite.
(5) Displacement of flight line
(6) There are some displacements of flight line from the planned course. However, whole plotting area is covered.

Cloud
(8) All photographs are without clouds.
(9) Fiducial Mark
(10) The fiducial marks of all photographs are photographed clearly.
(11) Others

One photograph is with scratch. However, the scratched part is outside of stereoscopic area and it doesn't affect the plotting work.

IX3.2.4 Results

The delivered results are as shown in the following table:

Results

Items	Qty	Notes
Negative Films (1/15,000)	1 set	Negatives were used for the plotting work.
Dia-Positive $(1 / 15,000)$	1 set	
Contact Prints $(1 / 15,000)$	3 sets	1 photogrammetric work.
Two times enlargement photos	1 set	
Photo Index Map (1/50,000)	3 sets	
Meteorological Report and Flight Report	1 set	
Quality Control Sheet	1 set	
Camera Calibration Certificate	1 set	

IX3.3 Control Point Surveying

Control point surveying was carried out to establish the reference for the aerial triangulation. The surveying is divided into two types, horizontal control and vertical control.

IX3.3.1 Reconnaissance of existing points and selection of new point's site
Distribution condition of existing triangulation stations and Bench Marks in the project area were investigated in the IGN (National Geographic Institute). All appropriate existing points for this work were investigated in the field. Some of them were disappeared or destroyed.

Based on the reconnaissance results of existing points, new points distribution was planned out. The appropriate sites for the new points were selected in the field.

The list of the available existing points and newly established points are shown in the Tables IX3.1 to IX3.3.

IX3.3.2 Monumentation

Some of new points, which are important for this project in the succeeding stage, are monumented. Those, which were monumented, are shown in the Tables IX3.1 to IX3.3. The monument size is as shown in the figure below:

IX3.3.3 Aerial Signalization

Horizontal control points, which are necessary for the aerial triangulation, were signalized. Those, which were signalized, are shown in the Tables A3.1 to A3.3.

The signalization was made by stone and painted with lime. The signal style is originally planed as three wings type. However, in the cultivated field, this type signal shall be damaged easily. To avoid the damage, the square type signal used in the cultivated field. The form and size is as shown in the figure below:

IX3.3.4 GPS Surveying

The signalized control points were surveyed their coordinates by GPS observation. The observation networks are shown in Figures IX3.1 to IX3.3. The instruments, observation method and other information are as follows:

No	Item	Description
1	Receiver	Trimble 4600 SL Three receivers were used.
2	Observation method	Static Observation Observation time : 1 hour as minimum Data acquisition epoch : 20 seconds Satellite Number More than 5 satellites Vertical angle of satellite More than 15°
3	Required accuracy	Horizontal : $\pm 10 \mathrm{ppm} \times$ Distance $(10 \mathrm{~cm}$ per $10 \mathrm{~km})$ in trigonometrical closure Vertical $: \pm 20 \mathrm{ppm} \times$ Distance $(20 \mathrm{~cm}$ per $10 \mathrm{~km})$ in trigonometrical closure

The results of all items of GPS surveying meet the required accuracy. The calculated coordinates of newly established points are shown in the Tables IX3.1 to IX3.3.

IX3.3.5 Leveling

The signalized control points, existing triangulation stations and newly established bench marks were surveyed their elevation by leveling. Those points in the plane site were surveyed by direct leveling. The points in the mountainous area were surveyed by trigonometric leveling. The GPS observation results were adopted for the elevation of some points in the most difficult area.

The original plan of direct leveling was divided into two classes, third-order and minor order. However, all direct leveling observations was carried out by the third-order leveling, so all direct leveling points are of the third-order.

At first, the existing Bench Marks were surveyed to be confirmed their data. Many BMs in the N'Fifikh didn't coincide each other. So, the BMs to be used for the reference points were selected carefully. Carried out total leveling quantity is as follows:
(1) Third order leveling :562.2km
(2) Trigonometric leveling $: 194.0 \mathrm{~km}$

Pricking on the photograph to be used for the aerial triangulation was planned to carry out on the 2-times enlargement photographs. However, owing to the delay of flight permission acquisition the aerial photography was delayed, too. So the pricking was executed without photograph putting small stakes on the roadside and after aerial photography they are identified on the photographs.

The observation networks are shown in Figures IX3.1 to IX3.3. The observation requisite of third order leveling is as follows:
(1) Duplicate observation shall be done.
(2) Distance between staff and instrument shall not exceed 70m.
(3) Distance between back-sight and foresight shall be equalized.
(4) The observer shall avoid reading of the bottom 10 cm and top 10 cm of the staves.
(5) Temporal Bench Marks shall be marked using paints at approx. 1 km interval in the leveling route on the existing permanent structures.
(6) Accuracy of observation shall be within $10 \mathrm{~mm} \pm \sqrt{ } \mathrm{S}$. ($\mathrm{S}=$ length in km)
(7) The results of all items of third order leveling meet the required accuracy.
(8) The results of leveling are shown Table IX3.1 to IX3.3.

IX3.4 Field Classification

Field classification was planned to carry out on the 2-times enlargement photographs. Only in the N'Fifikh area, plotting draft sheet was used for the classification work.

The field classification was carried out to investigate the river name, village name, width of the roads, classification of the roads, etc.

IX3.5 Aerial triangulation

On the basis of the results of ground control survey and leveling, the photo coordinates of pass points and tie points necessary for the stereo plotting were determined. The requisite of the aerial triangulation is as follows:
(1) Aerial triangulation shall be done by using high precision analytical plotter or digital photogrammetric workstation (DPW)
(2) The adjustment computation shall be carried out by the independent model method or bundle method.
(3) Standard deviation of discrepancies of control points, pass points and tie points between adjacent model after adjustment shall be within 0.08% of the flying altitude for both planimetry and height.

Aerial triangulation was carried out by independent model method using a high precision analytical plotter LICA SD-2000. All the aerial triangulation results meet the required accuracy.

IX3.6 Plotting

Based on the aerial triangulation results, plotting work was carried out by digital method. Three types of plotting instruments, LICA SD-2000, Wild B-8 with encoder System ADAMS and Wild B-8 with encoder TANGER were used.

IX3.7 Editing

After the plotting, the plotting draft sheet was checked. Using the corrected draft and field classification results, topographic features were edited on the display. Editing work was carried out using a CAD system "AUTOCAD". Marginal information was arranged in this process, too.

Originally the map size was planed as $60 \mathrm{~cm} \times 80 \mathrm{~cm}$ at its neatline. However, map trimming with this sheet size is inconvenient for the study work.

Considering the convenience for the study work, the height of neatline was defined as 70 cm .

It was too difficult to define the width because of meandering of the mapping area. To make an optimum trimming the width wasn't defined.

Final sheet number was 16 for N'Fifikh, 12 for Taskourt and 4 for Azghar.
In regard to the map symbol, the conventional map symbols were used to express the topographic features.

IX3.8 Fair Drawing

After the editing, original sheets were printed out on the transparent polyester base.

Digital map data saved in CD was delivered, too. The file was submitted in two types. Their extension name are "*.dwg" and "*.dxf".

IX4 1/500 Mapping

IX4.1 General

$1 / 500$ mapping was carried out for the four sites by direct surveying method. The work specification and volume of $1 / 500$ map is as follows:

Map specification

No	Item	Specifications
1	Geodetic reference ellipsoid	Clarke 1880
2	Map projection	Lambert conical conformal
3	Datum of height	Mean Sea level
4	Map scale	$1: 500$
5	Contour interval	Index contour
		Intermediate contour
		Supplementary contour

IX4.2 Traversing

Traversing was carried out to establish the reference points for topographic surveying.

At first, two principal points were monumented at every site. Their coordinates were surveyed by GPS and the elevations were surveyed by third order leveling.

The Timkit site is too far from existing triangle stations and BMs to carry out GPS surveying and leveling. Fortunately another JICA project was carried out about ten years ago near this site and those maps could be used as the reference. The reference data were read from the existing map, so their coordinates and elevation are approximate naturally. However, to be secure, many points were read to orientation of the map and the results were satisfactory.

After establishing the two principal points, based on them secondary traversing was carried out around the site.

IX4.3 Topographic surveying

Based on the traverse points spot elevations were observed every 10 m square mesh. However, in the dangerous part with strong accident, the density of spot elevation was thinner than 10 m square. Adding to the spot elevation all topographic features as houses, cultivated land, footpath, and so on were observed.

IX4.4 Plotting

All observed points were plotted using the digital system and contour lines were generated automatically.

IX4.5 Editing

Plotted out draft were checked and edited. Automatic contour generation may generate incorrect contour easily. So, the contour line was checked and corrected carefully.

IX4.6 Fair Drawing

After the editing process, original sheets were printed out on the transparent polyester base.

Digital map data saved in CD was delivered, too. The file was submitted in two types. Their extension name are "*.dwg" and "*.dxf".

Table IX3.1: Control Points in the N'FIFIKH site
 (A: Triangular Station)

e	X	Y	Elevation		Note
72	326653.90	348981.38	77.751	$3^{\text {rd }}$	Used as a reference for GPS observation.
78	325041.25	336270.68	178.536	$3^{\text {rd }}$	
80	324816.53	343677.77	123.253	$3^{\text {rd }}$	Signalized.
108	342168.54	317761.68	327.959	$3^{\text {rd }}$	Signalized. Signalized.
109	344655.30	317717.66	290.443	Trig	The results of GPS calculation didn't coincide with the existing IGN coordinates. We considered that this station should be modified and adopted the new coordinates.
138	342420.03	315822.70	344.688	Trig	Signalized.
144	344123.62	316241.88	251.279	$3^{\text {rd }}$	Signalized.
145	345476.04	314107.14	372.13	Trig	Signalized.
150	342891.76	317161.52	198.323	Trig	Signalized.
159	344482.30	319703.10	338.731	Trig	Signalized.
166	341797.10	320132.90	320.833	Trig	Signalized. Signalized.
168	322,503.335,	343363.05	120.283	$3^{\text {rd }}$	The results of GPS calculation didn't coincide with the existing IGN coordinates. We considered that this station should be modified and adopted the new coordinates.
170	319951.77	346486.07	$\begin{aligned} & 45.072 \\ & 48.072 \end{aligned}$	$3^{\text {rd }}$	Signalized. 45.072 is the ground elevation and 48.072 is the elevation of the roof.
195	340486.51	327177.85	308.504	Trig	Signalized.
200	340760.20	324026.20	314259	GPS	Signalized.
220	338474.60	330017.70	213335	GPS	Signalized.
230	329781.10	333014.00	222.508	$3^{\text {rd }}$	Signalized.
239	335080.40	334418.44	259.88	$3^{\text {rd }}$	
779B	337437.57	331508.00	272651	Trig	Signalized.
904	340758.98	321262.36	311.297	Trig	Signalized.
3150			270.911		
4152	336597.15	332494.25	276.17	Trig	Signalized.
4153	334488.47	333174.15	258.302	Trig	

$3^{\text {rd }}$	$:$ Third order leveling
Trig	$:$ Trigonometric leveling
GPS	: GPS Observation

IXT-1

Table IX3.1: Control Points in the N'FIFIKH site (B: Newly established Control Point)

Name	\mathbf{X}	\mathbf{Y}	Elevation		Note
CPN-1	338546.26	325244.82	215.647	Trig	Monumented and Signalized.
CPN-2	332536.66	332768.10	241.595	$3^{\text {rd }}$	Monumented and Signalized.
CPN-3	334435.88	331993.48	256.098	Trig	Monumented and Signalized.
CPN-4	327870.06	336803.44	181166	GPS	Monumented and Signalized.
CPN-5	327539.84	341129.30	150.403	$3^{\text {rd }}$	Monumented and Signalized.
CPN-6	321612.54	347025.09	46.216	$3^{\text {rd }}$	Monumented and Signalized.
CPN-7	325166.32	352096.39	21.692	$3^{\text {rd }}$	Monumented and Signalized.
CPN-8	323984.14	348890.81	43.955	$3^{\text {rd }}$	Monumented and Signalized.
CPN-9	327792.45	348758.05	82.251	$3^{\text {rd }}$	Monumented and Signalized.
CPN-10	324186.74	338751.43	181.119	$3^{\text {rd }}$	Monumented and Signalized.
CPN-11	325012.07	341233.99	157.673	$3^{\text {rd }}$	Monumented and Signalized.
CPN-14	346539.12	308305.07	250491	GPS	Monumented and Signalized.
CPN-15	347790.36	309267.28	253871	GPS	Monumented and Signalized.
$3^{\text {rd }}$	$:$ Third order leveling				

Table IX3.1: Control Points in the N'FIFIKH site (C: Existing Bench Mark - Third Order Leveling)

| Name | Elev. | $\begin{array}{c}\text { Ignored } \\ \text { Existing } \\ \text { Data }\end{array}$ | Note |
| :--- | :--- | :--- | :--- |\(\left.] $$
\begin{array}{lll}\text { RN 41 } & 82.032 & \text { (83.900) }\end{array}
$$ \begin{array}{l}Adopted as the reference BM.

The leveling results of this BM didn't coincide with

the existing Data. Therefore this wasn't adopted as

reference BM.\end{array}\right\}\)

Table IX3.1: Control Points in the N'FIFIKH site (D: Newly established Bench Mark - Third Order Leveling)

Name	X	Y	Elevation	Note
RN 1			131.505	Monumented.
RN 2			137.712	Monumented.
RN 3			152.197	Monumented.
RN 4			157.844	Monumented.
RN 5			173.274	Monumented.
RN 6			182.923	Monumented.
RN 7			188.777	Monumented.
RN 8			199.82	Monumented.
RN 9	345494.93	312159.60	234.948	Monumented and Signalized
RN 10	345697.53	311951.12	219.128	Monumented.

Table IX3.2: Control Points in the TASKOURT site (A: Triangulation Station)

Name	\mathbf{X}	\mathbf{Y}	Elev.	Note	
1	205091,900	90277,300	606.472	$3^{\text {rd }}$	Signalized
56	200	013,800	84524,200	633.13	$3^{\text {rd }}$
Signalized					
57	200781,870	94625,910	543.543	$3^{\text {rd }}$	Signalized
58	201281.000	90546.900	594337	$3^{\text {rd }}$	Signalized
59	201371,160	80661.600	696185	Trig	Signalized
60	201636,863	86342,778	635729	$3^{\text {rd }}$	Signalized
63	204352,740	78650,390	783043	Trig	Signalized
1406	203841,800	83462,500	685419	Trig	Signalized
3489	205107,950	85958,950	647335	$3^{\text {rd }}$	Signalized
(65)				Small	
6700	210023,000	74769,500			
$3^{\text {rd }}$	$:$ Third order leveling				
Trig	$:$ Trigonometric leveling				

Table IX3.2: Control Points in the TASKOURT site
(B: Newly established Control Point)

Name	X	Y	Elev.		Note
CPT-1	203362,795	89 073,906	610052	$3^{\text {rd }}$	Monumented / Signalized
CPT-2	200132,853	89 267,949	598134	$3^{\text {rd }}$	Monumented / Signalized
CPT - 8	207026,808	85121,872	694491	$3^{\text {rd }}$	Monumented / Signalized
CPT-10	212145,904	76 325,507	914748	Trig	Monumented / Signalized
CPT - 11	210 580,639	81028,496	801047	$3^{\text {rd }}$	Monumented / Signalized
CPT-12	208 835,539	72 932,367	874862	Trig	Monumented / Signalized
CPT-13	209 594,228	72 819,669	984967	Trig	Monumented / Signalized
CPT-14	207 902,153	71335,208	938748	Trig	Monumented / Signalized
CPT-15	205 897,692	69 242,047	958128	$3^{\text {rd }}$	Monumented / Signalized
CPT-16	205064,108	69355,143	1036,251	Trig	Monumented / Signalized
CPT-17	205 476,247	67 346,942	1015,844	Trig	Monumented / Signalized
CPT-18	203153,101	62162,431	1134,103	Trig	Monumented / Signalized
CPT-19	204592,136	61874,035	1171,071	Trig	Monumented / Signalized
CPT-20	208 566,449	77 901,010	895194	Trig	Monumented / Signalized
CPT-21	207387,052	69787,415	1003,127	$3^{\text {rd }}$	Monumented / Signalized
CPT-22	206 752,851	69708,808	957106	$3^{\text {rd }}$	Monumented / Signalized
CPT - 23	206 323,699	96420,566	535570	$3^{\text {rd }}$	Monumented / Signalized
CPT-24	207710,503	91508,776	581,40	$3^{\text {rd }}$	Monumented / Signalized
CPT-25	209373,972	85688,008	705490	$3^{\text {rd }}$	Monumented / Signalized
$3^{\text {rd }}$: Third order leveling : Trigonometric leveling				
Trig					

Table IX3.2: Control Points in the TASKOURT site (C: Existing Bench Mark)

Name	Elev	Note
RN 23	577.052	
RN 24	590.895	Adopted as the reference BM

Table IX3.2: Control Points in the TASKOURT site

(D: Newly established Bench Mark)

In the Taskourt area all points were surveyed their coordinates. Some of the control points were measured their elevation with third order leveling. They may serve as the third order Bench Mark, too.

Table IX3.3: Control Points in the AZGHAR site (A: Triangulation Station)

Name	\mathbf{X}	\mathbf{Y}	Elev.	Note	
					GPS survey results didn't coincide with existing
3	599091,648	359563,830	993615	GPS	coordinates. Existing coordinates of this station
					were ignored in this computation.
12	586100,310	353634,950	1214137	Trig.	Signalized 13

Table IX3.3: Control Points in the AZGHAR site
(B: Newly established Control Point)

Name	X	Y	Elev.		Note
S-11			825860	$3^{\text {rd }}$	Signalized
S-14	592 899,795	356 064,666	859456	$3^{\text {rd }}$	Signalized
S-17	593 046,482	353 558,863	772589	$3{ }^{\text {rd }}$	Signalized
S-21			754580	Trig.	Signalized
S-23	585 562,623	350 362,752	871305	Trig.	Signalized
S-24	591700,423	351 916,835	826226	Trig.	Signalized
S-25	598717,771	354 342,798	861728	$3^{\text {rd }}$	Signalized
S - 26	603 252,717	356716,836	902757	Trig.	Signalized
S - 26-1			901.246	Trig.	Signalized
S-27	601363,074	359 541,784	912037	Trig.	Signalized

Table IX3.3: Control Points in the AZGHAR site (C: Existing Bench Mark)

Name	Elev.	Note
RNG 72	495.621	Adopted as the reference BM
RNG 74	541.903	

Table IX3.3: Control Points in the AZGHAR site (D: Newly established Bench Mark)

Name	X	Y	Elev.		Note
TBM 1	585	351	769.429	Trig	Monumented / Signalized
	215,099	508,973			
TBM 2	586	353	847.67	Trig	Monumented / Signalized
	938,251	268,757			
TBM 3	590	353	832.835	$3^{\text {rd }}$	Monumented / Signalized
	$\underbrace{049,069}$	$\underbrace{441,146}$		849.967	$3^{\text {rd }}$

Figures

FEASIBILITY STUDY ON
WATER RESOURCES DEVELOPMENT IN RURAL AREA

JAPAN INTERNATIONAL COOPERATION AGENCY

Figure IX3.1
A : Mapping Area of No. 5 N'Fifikh

[^0]: The cost estimate is based on the price level and exchange rate of April 2000. The exchange rate is:

 US\$ $1.0=$ Moroccan Dirham (DH) 10.68 and
 Japanese Yen $100.0=$ Moroccan Dirham (DH) 9.90

