Feasibility Study on Water Resources Development in Rural Area in the Kingdom of Morocco Final Report Volume III Supporting Report (1) Basic Study Supporting Report I Geology

Tables

<u>Iable 12.1</u> <u>Su</u>	<u>Table 12.1</u> Summary of Geology around and at Respective Dam (1/26)				
1, <u>Neckor</u>	River Neckor		Zone I		
Province: Al Hoceima	Cercle: Al Hoceima	l	Commune:	Neckor / Yach Ijarmaouas	
Topo-Map (1/50000): AL HOCEIMA	X : 644,900	X : 644,900 Y : 49		Z : 161	
Physiological Condition: Located at the	southern end of Rhis-I	Neckor Plain.			
Geological Province: Rif Oriental, Intrari	faine Zone	Location: 25 km SI	E from Al Hoc	eima	
General Geology: Generally composed	of Flysch Facies of	General Stratigrap	<u>ohy</u> : wdstone		
Geological Structure: Rhis-Neckor area	is tectonically large	Lias: limestone	luusione		
graben strongly folded and schistos	e. This area was	Dogger: schist• schi	stose limestone	e	
epi-metamorphosed at the time of Miocer	ne.	Tithonien: marly lin	sandy mudstor nestone	ne	
		Lower Cretaceous:	schistose limes	stone• sandstone• Flysch	
		Cenomano-Turonie	n: calcareous li	imestone•	
		Unconformity at the	e time Upper O	Digocene	
Geology of Reservoir Area: Bedrock is t	he alternation of Schis	st, Sandstone and Qua	artzite.		
Slope is covered commonly by Talus and	Colluvial deposits. Ri	ver deposits are very	thick. Terrace	deposits are also developing	
Geology amund Dam Site: Bedrock is	the alternation of re	markably folded Ou	artzite and Psa	mmitic Schist Quartzite is	
generally very hard and massive with man	ny quartz veins and irc	on ore mineral, and mi	icrofolded.	ummue semst. Quanzae is	
Geomorphology along Dam Axis: RG:	approx. 35, RD: 20 ~	25, FD: 320m			
note: RG; Slope Angle of Left Bank (°), RD; Slope An	igle of Right Abutment (°), F	D; Width of Valley Bottom,	PD; Inclination of F	River Bed	
Geology along Dam Axis					
Left Abutment	Kive	r Bed	K Thialmass (E	Aight Abutment	
Zone of weathered lock. $Ep = 8 \text{ In}.$	The interval of sci	histosity joint is in	Surface orga	nic soil = $0.2m$	
	order of milli-metre	s, and weathering is	Talus deposit	ts = max. about 10m	
	observed along those	e planes.	Zone of weat	thered rock = $16m$.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in Remarks of Dam Foundation: Gener	(km/sec),	ly in case of Schiet	is weathered	much (partly changed into	
Residual soil)	iny betrock, especial	ly in case of Sellist,	15 weathered	much (partry changed mo	
	Waterti	<u>ghtness</u>			
Dam Site			Reservo	bir	
Left Bank: probably better watertightness	than Right Bank.	Basically it seems to	be no probler	n.	
Note than 50. $C = 0 - 9$;	Shallower portion is				
Right Bank: Deeper than 20m in the mide	lle of slope, and than				
16m at the foot, Lu= $1 \sim 9$; Shallow	ver portion is high				
note: Lu: Lugeon Unit					
Stability					
 Dam Site			Reservo	bir	
Need to be checked of the stability of Rig Talus deposits.	the Bank due to thick	Basically stable.			
Construction Material					
Earth Material: in the upstream and down Sand & Gravel Material: in the main Nec.	stream riverbed of Sul kor riverbed.	p-Dam.			
Study Level APD					

00 (1 10 0

Existing Geotechnical Investigation:

Drilling: Nos.5=162.7m (Dam Site), Nos.3=109m (Sub-Dam)

Test Pit (P) & Trench (T): T: Nos.2 (Both Banks of Sub-Dam), P1: Nos.5 (In the Trench Sub-Dam), P2: Nos.17 (Borrow Area = Earth), P3: Nos.17 (Quarry = Sd & Gr)

Laboratory Tests:

3 samples from P3 (Gradation, Permeability)

P2 samples (Gradation, Atterberg, Compaction, Chemical Analysis, Triaxial, Consolidation, Organic Content, Pinhole, Direct Shear)

Table I2.1 Summary of Geology around and at Respective Dam (2/26)					
2, <u>Tizimellal</u>	River Mengou (O	uerrha)	Zone I		
Province: Al Hoceima	Cercle: Targuist		Commune:	Bni Bcher / Sidi Boutmime	
Topo-Map (1/50000): TARGUIST	X : 592,650	Y : 47	1,950	Z : 1,022	
Physiological Condition: Located in the	very steep Rif mounta	in range.			
Geological Province: Rif Oriental, Intrari	faine Zone	Location: Approx. 13 km SW from Targuist			
<u>General Geology</u> : Generally characterized by Schist-Quartzitic facies. Schist shows a little different facies locally, that is, the western side is weakly schistose while the eastern side where dam site is located is usually strongly schistose of epi-metamorphosed. <u>Geological Structure</u> : Generally the area is strongly folded and faults with shear zone are observed at many place.		General Stratigrap Cretaceous: quartzit	b hy : ic schist• silice	ous slate	
Geology of Reservoir Area: Approxim	ately $2/3$ of the area i	s argillaceous and pe	elitic, remains	1/3 is Schist and Quartzite.	
 <u>Geology around Dam Site</u>: Narrow gorge is open in between Quartzite bars and blackish hard siliceous Slate. Strike is E-W and dip is 45 N (towards upstream). At least 2 system of fault lines may be inferred. <u>Geomorphology along Dam Axis</u>: RG: 42, RD: 35, FD: approx.20m 					
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	D; Width of Valley Bottom,	PD; Inclination of F	River Bed	
<u>Geology along Dam Axis</u>					
Left Abutment	Rive	$\frac{1}{2} \operatorname{Bed}_{2}$	K Loosanad w	Right Abutment	
weathered and loosened lock ($vp=0.5 \sim 1.1$) Ep = 2 ~ 3m, max. 6m, a little cracky rock ($Vp=2.0 \sim 2.2$), Fresh rock ($Vp=5.0 \sim 5.2$). Partly max.3m thickness of brittle sandy layers exist. At some part, depth to Fresh rock is very deep to the extent of depth 30m.	Alluvial deposits (Vp= $0.5 \sim 0.8$): Ep=1 ~ 2m. Upper zone of relatively sound rock (Vp = 1.9): Ep = 2 ~ 3m Fresh rock (Vp= 4.4)		about 4 m. Mid hard relatively sound rock (Vp = 2.6): gradually deeper reaching up to 20 m as proceeding to mountain side. Sound rock (Vp = 4.6).		
note: Ep; Thickness, Vp; Seismic Transversal Velocity ir	(km/sec),				
Remarks of Dam Foundation: The bed	ock of the upper portion	on of Left Bank side i	is more cracky	than that of Right Bank.	
	<u>Waterti</u>	<u>ghtness</u>			
Dam Site			Reservo	bir	
Left Bank: Deeper than 30m, permeabil Shallower portion, Lu= $10 \sim 40$, partly mo River Bed: Deeper than few meters, portion, Lu= 29. Right Bank: Deeper than 30m, Lu is a portion is around 10.	ity is relatively low; ore than 50. Lu<10; Shallower round 5; Shallower	Generally it shows w	vellwatertigh	ntness.	
	Stah	oility			
Dam Site		<u></u>	Reservo	bir	
Need to be checked of the slope stabili and downstream of Left Bank where some sign of ancient slope failures are obs	ity of just upstream geomorphologically served.	The area with steep slope and thick talus deposits has so problem to stability.			
Construction Material					
BCR Material: (near dam site) River deposits or Quartzite bares; River deposits is not sufficient in both of quantities and qualities. Quartzite shall be used after crush; Quarry = 1, Upstream of dam site 2, near dam site. Fine aggregate shall be selected from River deposits or from crusher of Quartzite. (Purchase Material) = approx. 6km from dam site; Upstream of Mrirt river (branch of Mengue river).					
Study Level APD					
Existing Geotechnical Investigation:					
Drilling: Nos.8=476m					
Seismic Exploration: 1335m					
Adit: (Both Banks)					
Test Pit (P) & Trench (T): P: Nos.10					

Laboratory Tests:

Gradation, Franklin, Los Angels & Deval

3, Ait Badou	River Ta'init		Zone III		
Province: Azilal	Cercle: Azilal		Commune:	Tannant	
Topo-Map (1/50000): TANANT	X : 353,400	Y : 14	0,000	Z : 750	
Physiological Condition: Located near th	ne border of Moyen A	tlas and Haut Atlas. D	am site is in th	ne side of Haut Atlas.	
Geological Province: Moyen Atlas and H	Haute Atlas	Location: 2 km Sou	th of Tanant		
General Geology: Generally compose marl relatively hard and welllayered. F be observed. Downstream side is Quaternaries, of which upstream side Vilafransien. Geological Structure: The strata in the monoclinic towards the coast side. Re- structure. Geology of Reservoir A ma: Composed	Generally composed of limestone and nd welllayered. Partly doleritic basalt istream side is ancient to middle ch upstream side is conglomerate of 2: The strata in this area is generally the coast side. Regionally it is basin General Stratigraphy: Lias (Jurassic): limestone Permo-Triassic ~ Jurassic: continental limestone ~ marl Triassic: basalt ~ dolerite Vilafransian: conglomerate Ancient terrace deposits				
upstream (N40°E,20°E) with 20 to 70 cm of unit layers' thickness. Travertine and Colluvial deposits exist mainly in the right bank slope.					
Geology around Dam Site: Bedrock is the upstream (N40°E,20°E) with respective 1	he alternation of Platy ayers' thickness 20 to	Limestone and Marly 70 cm.	Limestone ge	enerally monoclinic towards	
Geomorphology along Dam Axis: RG:	average 20, RD: aver	age 25 , FD: approx.7	5m		
note: RG; Slope Angle of Left Bank (°), RD; Slope An	igle of Right Abutment (°), F	D; Width of Valley Bottom, 1	PD; Inclination of F	River Bed	
Geology along Dam Axis					
Left Abutment	Kivel	r Bed	K At the feet	Light Abutment	
surface soil.	Few meters of silty soil covers the bedrock.		At the loot of adultient, bedrock is covered by travertine and terrace/talus deposits, which are reddish brown silty soil.		
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	n (km/sec),				
<u>Remarks of Dam Foundation</u> : On the t Bedrock may be pervious.	op of Right Bank, ver	y porous Limestone a	and Conglome	rate form table-like ground.	
	Waterti	<u>ghtness</u>			
Dam Site			Reservo	ir	
Along bedding planes, some small karsts are observed commonly, and springs in the upstream and downstream exist. As a result, basement rocks in this area seem to be relatively pervious.				karsts in the Limestone are he other.	
note: Lu; Lugeon Unit					
<u>Stability</u>					
Dam Site	Reservoir				
Basically it seems to be no problem.		Basically stable.			
Construction Material					
Earth Material: river bed in the reservoir a Rock Material: Massive Limestone locate Sand & Gravel Material: no suitable mate	rea; light brown claye ed at the right bank in t rial.	y soil can be used imp he downstream.	permeable mat	erial.	
Study Level Preliminaire- en cours					

Table 12.1 Summary of Geology around and at Respective Dam (3/26)

Table 12.1	Summary of Geology around and at Respective Dam (4/2	26)

4. Ain Kwachiya	River Khellata (Yo	nuem)	Zone II		
Province: Ben Slimane	Cercle: S VZaer			S V 7aer	
Tana Man (1/50000), TEMAD A	V : 260 200	V: 25	2 500	7 : 162	
10po-Map (1/50000): TEMARA	A : 500,200		1. 11		
Physiological Condition: Located at 15 I Massif.	the coast line	of Atlantic Ocean an	id in the wester	rn end of Moroccan Central	
Geological Province: Western end o	f Massif Marocain	Location: Approx.	6 km South of	S. Y. Zaer	
Central		Location: reprise.	o him bouur or		
<u>General Geology</u> : River basin is general while in the bottom of valley and gorge, Quartzite, Limestone, Conglomerate, Volcanics) are commonly exposed. <u>Geological Structure</u> : The str Devonian-Tournaisien is steeply incl direction or vertical; folding axis is orier formations outcrop along the axis of sym	<u>General Stratigrap</u> (Generally Paleozo Quaternary) Paleozoic: Upper I tenth kilometers fr southern area. Zone of Silurian-De	<u>bhy</u> : oic, partly co Devonian - To om Yquem F wonian: along (overed by Miocene and ournaisien: extending some River to Khataouat of the Cherrat River in the eastern		
axis exist around El Koudia.	enne. The underna				
Geology of Reservoir Area: Bedrock is Upper Devonian to Tournaisian. This are schistosity is vertical crossing at a right an	Psammitic Schist, Mi a is situated geologic gle to river course (N1	caceous Sandstone, (ally in the eastern pa $140^{\circ} \sim N180^{\circ}$).	Quartzite, Lime rt of "El Kouc	stone and Conglomerate of lia Anticline". Bedding and	
<u>Geology around Dam Site</u> : Bedrock is Quartzite bar runs obliquely crossing with	composed of Quartzit river course. Schistos	e and Schist. Schist i ity is N80°W, 40°S.	s generally do	minant, and some layers of	
Geomorphology along Dam Axis: RG: 2 note: RG; Slope Angle of Left Bank (°), RD; Slope Angle	20 ~ 30 , RD: 20 ~ 30 gle of Right Abutment (°), F	, FD: approx.50m D; Width of Valley Bottom,	PD; Inclination of R	liver Bed	
<u>Geology along Dam Axis</u>					
Left Abutment	River	rBed	R	light Abutment	
Top layer (Colluvial): Ep=approx. 1 ~ 3 m. Very loosened rubble Schist: Ep=2 ~ 3 m. Bedrock is basically Schist, however Quartzite bar is found at the upper portion.	Generally covered by gravel tracing silty cohesive soil, thickness of which $3 \sim 4$ m (max. 5 m). The percentage of gravel is 10 to 30%.		Quartzite ba form bedroc 80° ~ 85°E).	rrs and Psammitic Schist k (strikeN0° ~ 30°W, dip . Top soil is very thin.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	ı (km/sec),				
Remarks of Dam Foundation : Green to	olive Schist is usually	soft and weak.			
	Waterti	<u>ghtness</u>			
Dam Site			Reservo	ir	
Basically Schist consisting of dam site is low permeability except highly weathered portion along ground surface, cracky dark Schist which is oxidized and manganised, and brittle yellowish brown Schist. Quartzite may be considerably pervious however probably wellgroutable.				ness.	
note: Lu; Lugeon Unit					
<u>Stability</u>					
Dam Site			Reservo	ir	
Basically it seems to be no problem.		Basically stable.			
Construction Material					
Earth Material: Deposits in the bottom of clayey with rock fragments. Rock Material: Quartzite outcropping in the (Purchase Material): Existing Quarry in Te	f valley and weathered he downstream; outcro èmara.	l residual soil; the for op height 10 ~ 20m, v	rmer is silty to volume may be	fine sandy soil, the latter is 250,000 ~ 500,000m3.	
Study Level APD					

Existing Geotechnical Investigation:

Drilling: Nos.4=127.4m (Dam Axis), Nos.1=40.2m (Spillway)

Test Pit (P) & Trench (T): T: Nos.2 (Both Banks along Axis), P: Nos.3

Laboratory Tests:

Drilling Cores (Specific Gravity and Absorption, Porosity, Super Sonic, Unconfined Compression, Direct Shear)

5-1, <u>N'Fifikh (Downstream)</u>	River N'Fifkh		Zone II		
Province: Ben Slimane	Cercle: Ben Slimane	2	Commune: Oulad Yahia Louta		
Topo-Map (1/50000): BENSLIMANE	X : 333,657	Y : 33	31,090	Z : 110	
Physiological Condition: Located at the	most upstream side o	of the gorge having	300 meters len	gth where is situated in the	
western end of Moroccan Central plateau.					
Geological Province: Western end of	f Massif Marocain	Location: Approx.	8 km SW from	Ben Slimane	
Central					
General Geology: Two Groups are extense serie de Fedan Taba" and "la serie des Oul Fedan Taba: sandy to fine conglome quartzitic and ironic sandstone. Oulad Bahloul: sandy to quartzitic rocl Schistose Mica-Quartz rock, and Quartziti Geological Structure: "la serie du Fedda symmetric syncline structure, and someti NE-SW, N-S, and NW-SE change their st	ent in the area = "la ad Bahloul" eratic rocks; partly ks (Ortho-Quartzite, <u>c Sandstone)</u> in Taba" has a large mes faults orienting ructure.	General Stratigraphy: Upstream side of "la serie de Feddan Taba": Silurian; pelitic schist (serie d'Ain Merseta) Permo-Triassic; saline red mudstone interbedded with thick doleritic basalt			
<u>Geology of Reservoir Area</u> : Bedrock of reservoir area is mainly composed of "Oulad Bahloul Group" which is mainly of Marl, Quartzite and Schist, though dam site is of "Fedan Taba". Marl in this area includes usually salt. Slope is covered by Talus and Colluvial deposits, and River deposits are on river bed.					
Geology around Dam Site : Bedrock is Quartzite of "Feddan Taba Group" of Ordovician. Tectonic zone may run to the direction NNE-SSW crossing the valley of 300m downstream of dam axis. Others have a system about N60°W direction running along the foot of Right Bank. Geomorphology along Dam Axis : RG & RD: approx.20 ~ 25, FD: approx.20m, PD: approx.0.2%, Left Bank goes up to the maximum elevation 160m, then forms Saddle with distance approx. 240m from main river bed. note: RG; Slope Angle of Left Bank(°), RD; Slope Angle of Right Abutment(°), FD; Widthof Valley Bottom, PD; Inclination of River Bed					
<u>Geology along Dam Axis</u>					
Left Abutment	River	Bed	R	Right Abutment	
Talus: fine grained soil with rock blocks; Ep=2 ~ 3m. Bedding of bedrock is not clear. Some Slickensides are commonly observed directing N37 ° W,80 ° W scribing 20°S.	Few meter of clayey to silty colluviums and alluvium cover the bedrock; Ep= 2 ~ 4 m.		Quartzite is S). No soil c be sheared w	layered (bedding E-W,25° over. Along the Faults may ith some meters.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	(km/sec),				
<u>Remarks of Dam Foundation</u> : Fault vellowish sheared zone (partly laminated)	(N60°W,75° ~ 80°SV	V) along the foot o	of Right Bank	has $7.5m \sim 15m$ width of	
yenowish sheared zone (party annihaed)	Watertis	ghtness			
Dam Site		<u></u>	Reservo	ir	
Quartzite around dam site is relatively (Lu<10) except weathered portion along However, joints in the shallower portion probably be open slightly so that permea high. Along the Fault and Sheared Zone Bank, careful study on the leakage is nece	y low permeability the ground surface. of Left Bank may bility may relatively at the foot of Right ssary (Lu= $12 \sim 17$).	Basically it seems to be no problem.			
note: Lu; Lugeon Unit					
	<u>Stabi</u>	<u>ility</u>			
Dam Site	the Foults of Dist.	Decide 11-14-	Reservo	ir	
Need to be checked of the stability along the Faults of Right Bank.		Basically the area of Quartzite is no problem. In case the slope of Marl inclined more than 15%, the careful study shall be necessary, especially silty clay-marl of Right Bank side.			
Construction Material					
Earth Material: sufficient in the reservoir area (weathered material of Mudstone and Marl, Silty deposits in the riverbed) Rock Material: Quartzite at dam site. Sand & Gravel Material: no suitable material. (In between the site of Ben Rouane and Ain Ksob, three areas are set as borrow area).					
Study Level APD Existing Geotechnical Investigation					
Drilling: Nos.4=120.2m (Dam Site= RG 2, RD 2) Test Pit (P) & Trench (T): T: Nos.1 (Left Bank), P: Nos.2 (Right Bank), P: Nos.21 (Borrow Area = Earth)					

 Table 12.1
 Summary of Geology around and at Respective Dam (5/26)

Table I2.1 Summary of Geology around and at Respective Dam (6/26)					
5-2, <u>N'Fifikh (Upstream)</u>	River N'Fifkh			Zone II	
Province: Settat	Cercle: Ben Sliman	e		Commune:	Sk et Tleta des Ziaida /
	<u> </u>			Mellila	
Торо-Мар (1/50000): AL GARA	X : 345,820		Y : 31	1,930	Z : 230
Physiological Condition: Located in the	e hilly area of the m	nassif ce	entral marocai	in. Downstrea	m area is relatively flat or
undulated, while upstream area is rather re	lieved.	-			
Geological Province: Western end of	ð Massif Marocain	Locat	ion: Approx. 2	20 km South fi	rom Ben Slimane
Central	the the area line	Camer	104	1	
General Geology : Two Groups are extent in the area = "la serie de Fedan Taba" and "la serie des Oulad Bahloul" Fedan Taba: sandy to fine conglomeratic rocks; partly quartzitic and ironic sandstone. Oulad Bahloul: sandy to quartzitic rocks (Orth-Quartzite, schistose mica-quartz rock, and quartzitic Sandstone) Coological Structure : "la serie du Feddan Taba" has a large			am side of "I (serie d'Ain M -Triassic; sali ic basalt	<u>my</u> . a serie de Fec Ierseta) ne red mudsta	ldan Taba": Silurian; pelitic one interbedded with thick
symmetric syncline structure, and someti NF-SW N-S and NW-SE change their st	mes faults orienting				
Geology of Reservoir Area: Bedrock is mainly the alternation of Sandstone and Schist interbedded with Quartzite of "Federata Group". Terrace deposits are extending relatively widely and River deposits are on river bed.				d with Quartzite of "Feddan	
Geology around Dam Site: Bedrock co Schistose Slate. Those are belonging to "F	nsists of very folded eddan Taba" Group.	Quartzi	te bar, and th	e alternation o	of Quartzitic Sandstone and
Geomorphology along Lan Axe. No. a note: RG; Slope Angle of Left Bank (°), RD; Slope Angle	gle of Right Abutment (°), F	23, г.р. ⁷ D; Width	of Valley Bottom, 1	PD; Inclination of F	River Bed
	<u>Geology alor</u>	ng Dam	Axis		
Left Abutment	Rive	rBed		R	Right Abutment
Dam axis is composed of around 10m thickness of right-standing Quartzite which is interbedded by the alternation layers of sandy to quartzitic Sandstone and Schistose Slate. At around 10m upstream of dam axis, fault is inferred.	n Alluvial Terrace deposit: along right bank side; composed of fine sand to sandy silt with thickness 2 to 3m. Recent River deposit: sand and gravel			Quartzite b gently as pr and forms th	ar is gradually inclining oceeding to mountain side e hill ridge.
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	(km/sec),	Lon of		-1dad and dat	
may be existing around there.	upstream of Quartzne	bal, su	ata are very i		enorateu, and sheared zone
	Waterti	ightness	5		
Dam Site				Reservo	ir
Quartzite itself along dam axis may be related the shallower portion due to joints probable may be not so serious due it to be interbed which is seems to be relatively impervio and Sheared Zone observed at just upst careful study on the leakage is necessary.	atively permeable in ly open. However, it ided between Schist us. Along the Fault tream of Left bank,	ble in Basically it seems to be no problem. ever, it Schist Fault bank,		n.	
note: Lu; Lugeon Unit					
	<u>Stab</u>	<u>pility</u>			
Dam Site	- 200 - 409) and the	Sama	-rea ia show	Reservo	ir
Left Bank side is relatively steep (average $30^{\circ} \sim 40^{\circ}$) and the Some area is showing relatively steep slope composition rocks just upstream of dam axis is very folded and deteriorated. Need to be checked the stability around there.		e carried out at those area.			
Construction Material					
Earth Material: Terrace deposits in both banks at dam site and in the reservoir area; Silt ~ Fine Sand; as impermeable material, property shall be checked. Sand & Gravel Material: River deposits; volume is insufficient. Rock Material: Quartzite in right bank. (In between the site of Ben Rouane and Ain Ksob, three areas are set as borrow area)					

6, <u>Tazarane</u>	River Malha (Oue	rgha)		Zone I	
Province: Chaouen	Cercle: Bab Bered			Commune:	Mansoura (Tazarane)
Торо-Мар (1/50000): ТАМОКОТ	X : 540,100		Y : 48	4,000	Z : 528
Physiological Condition: Located in th	e western Rif mounta	ains wh	ere is rather	gentle hilly n	nountains comparing to the
central and eastern.					
Geological Province: Rif Central, Intrarif	zone	Locati	on: Approx. 3	37 km NW fro	om Ghafsai
<u>General Geology</u> : Facies of Schist are of at the location in the western and eas western area arre weakly schistose, whil remarkable schistose and epi-metamorphe Coological Structure: Conservative the area	lifferent respectively tern area. Those of le of the eastern are osed.	Gener Cretace	<u>al Stratigrap</u> eous: quartziti	<u>bhy</u> : ic schist and p	elitic schist
and faults with shear zone are observed at	many place.				
<u>Geology of Reservoir Area</u> : Bedrock is mainly rock blocs of quartzitic sandstone composed of silty soil and rock fragments	Schist of Cretaceous. 1 , sand and gravel partl of schist, are relatively	1/3 of th ly in cla y thick.	ne area is cove ayey soil matr	ered by Alluvi ix. Colluvial c	al deposits which consist of leposits on slope, which are
Geology around Dam Site: Bedrock is t dips towards upstream (N55°W35°NE).	he alternation of Black	k Schist	(phyllitic) an	id dark gray P	sammitic Schist. Schistosity
Geomorphology along Dam Axis: RG: 1 note: RG: Slope Angle of Left Bank (°). RD: Slope Angle of Left Bank (°).	$30 \sim 40$, RD: $25 \sim 30$, gle of Right Abutment (°). Fl	, FD: ap D: Width c	prox.22m	PD: Inclination of I	River Bed
	Geology alon	g Dam	Axis		
Left Abutment	River	Bed		F	Right Abutment
No top soil. A little loose bedrock (Vp=2.9): Ep = around 20 m. Deeper than that depth. Fresh rock	Alluvial deposits: $Ep = 1 \sim 3 \text{ m}$. Weathered zone ($Vp = 1.4 \sim 3.0$): $Ep = 5 \sim 8 \text{m}$.		Relatively thick argillaceous colluvium covers the slope where thickness i averagely 3 ~ 4m.		
exists.	Fresh zone (Vp=4.2): normally homogeneous Schist, but sometimes interbedded with thin Quartzite.		about 1m. A little cracky zone (Vp= 2.5) and Fres zone (Vp= 4.5) are undelying. Depth t Fresh zone is around 40 m. Schistosity is N75°W 25°N. Some sandy rocks may exist in th		
				upper portion	n
note: Ep; Inickness, vp; Seismic Transversal velocity in Remarks of Dam Foundation : Generall	v bedrock is loose at ar	ny outer	ons and dept	n to Fresh rock	may be commonly deep
Sentenani of Duni otheration.	Watertig	ghtness	ops und dopu	1011001	thing be contained y deep.
Dam Site				Reservo	bir
High permeability zones (Lu>10) exist Bank, up to 12 m at River Bed, and up to Bank. Deeper than those depth, Lu < 10.	up to 20 m in Left 27 m depth in Right	Genera of Schi	ally bedrock i ist.	is well-waterti	ghtness due that it consists
note: Lu; Lugeon Unit					
	<u>Stabi</u>	<u>ility</u>			
Dam Site				Reservo	bir
Weathered zone of both banks seems to be relatively deep. Furthermore upper abutment of Right Bank may be composed of Sandstone weathered and sometimes changed into Residual soils underlain by Schist. Their stability shall be carefully checked.			Need to be checked of the slope stability of just upstream of both banks where geomorphologically some sign of ancient slope failures are observed.		
Construction Material					
(Near dam site) Earth Material: at upper portion and the just upstream slope of right bank. Sand & Gravel Material: Deposits in the valley bottom in the reservoir area. (Purchase Material): Jbel Tizirene, Nakhla dam Quarry, Chraft Limestone Quarry, Jorf Al Malha, Qued Martil					
Study Level APD					
Existing Geotechnical Investigation:					
Drilling: Nos.11=565m					
Seismic Exploration: 2220m					
Adit: (Both Banks)					
Test Pit (P) & Trench (T): T: Nos.1 (Right Bank), P: Nos.10 (Right Bank)					

Table I2.1 Summary of Geology around and at Respective Dam (7/26)

<u>Table I2.1</u>	Summary of Geology around and at Respective Dam (8/26)

7, <u>Amezmiz</u>	River Anougal=A	mezmiz (N	N'Fis)	Zone III	
Province : El Haouz	Cercle: Amezmiz			Commune:	Anougal
Topo-Map (1/50000): AZEGOUR	X : 226,500		Y : 65	5,400	Z : 1,302
Physiological Condition: Located in the r	orthern side of Haut At	las Occiden	ntal where is	s formed usuall	y by steep mountain ranges.
Geological Province: Haute Atlas occide	ental	Location:	: Approx. 1	12 km South of	f Amezmiz
General Geology: Basement rocks of Ha are of Precambrian, folded Paleozoic, and While, Haut Atlas Central is composed of Limestone of Lower to Middle Jurassic, and anticlinal area. Paleozoic distributes only exceptionally. Geological Structure: Atlas Fault or extends around the area. This fault is overthrusting towards the north accompanie zone. Haute Atlas mountains ride on this	aute Atlas Occidental d Hercynian Granite. F mainly thick marine d partly Triassic in the in the anticlinal zone rienting WSW-ENE is the reverse fault ed by many fractured is plane and rifted up	General S Paleozoic volcanics. Cretaceou Azegour I	Stratigrap : a series (is in the w Laguna dep	<u>hy</u> : of Schist, schis estern: red ma posits.	stose calcareous sandstone, arly rocks and sandstone of
suddenly. Paleozoic is generally folded wit orienting axis, and Granite dyke accomp	h approximately N-S panied by many ore				
minerals intruded into these formations. Geology of Reservoir Area: Slope of left bank side is Cretaceous area where red color fine Conglomerate, Sandstone, and Shale exist with gentle bedding dip. While, slope of right bank side is of Schist of Paleozoic intruded by Micro-Granite where schistosity is N-S,35° ~ 40°E Piver deposits is relatively thick					
Geology around Dam Site: Bedrock i	s folded Schist of C	ambrian ar	nd Ordovia	cian, and red	Mudstone, Sandstone and
Conglomerate of Cretaceous to Tertiary. Micro-Granite intruded at Hercynian orogenic era is also existing.					
Geomorphology along Dam Axis: RG: 35 (upper part 16), RD: 40~ 45 (upper part 20), FD: approx.35m, Left Bank forms the saddle.					
	<u>Geology alor</u>	ng Dam Ax	<u>kis</u>		
Left Abutment	River	rBed		R	ight Abutment
Composed of Schist intruded by Micro-Granite dyke. In the upper portion and saddle area, Mudstone, calcareous Sandstone, and fine Conglomerate lie unconformably on Schist strata.	Covered by River mainly of sand and Schist, and Granite 10m at maximum.	deposits co gravel of (e. Ep may	omposed Quartzite, y around	Composed o dyke. Mudst and fine unconformat	f Schist and Micro-Granite one, calcareous Sandstone, Conglomerate lie bly on Schist.
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	n (km/sec),			-	
<u>Remarks of Dam Foundation</u> : Around t	he contact between Sch	ist and Mici	ro-Granite,	some fractures	and cracks are developed.
Dom Sto	Waterti	<u>ghtness</u>		Decovered	•
Schist is considerable basically to be imp it may be some permeable along Micro-Granite where some fractures ma contact.	ermeable. However, the contact with y develop along the	Generally well-wate	bedroc ertightness.	k of Sc	n hist may have the
note: Lu; Lugeon Unit	Stab	ility.			
Dam Site	<u>Stan</u>	<u>omu y</u>		Reservo	ir
Schistosity in the area is usually dipped towards bank sides so that slope along dam axis may be stable. However the stability of loose rocks lying on Schist at Right Bank shall be checked.					
Construction Material					
Three Areas are planed as the followings Zone I: in the reservoir area. Zone II: the downstream of dam axis Zone III: at the foot of bridge 12km away	from dam site				
Study Level APD					

Existing Geotechnical Investigation:

Drilling: Nos.8=440.8m (RD 3, OD 2, RG 2, Sub-Dam 1)

Test Pit (P) & Trench (T): T: Nos.1, P1: Nos.5 (Dam Axis: RDup 2, RDdown 2, Sub-Dam 1), P2: Nos.31 (Borrow Area: Zone I Nos.12, Zone II Nos.8, Zone III Nos.11)

Laboratory Tests:

Drilling Cores (Specific Gravity, Super Sonic, Deformation Coef., Unconfined Compression) P2 samples (Atterberg, Gradation, Hydrometer, Sand Equivalent, Los Angels & Deval)

8, <u>Boulaouane</u>	River Seksawa		Zone III	
Province: Chichaoua	Cercle: Imi-N-Tanout	(Sidi Bou Othmane)	Commune:	Sidi Ghanem / Dourane
Topo-Map (1/50000): IMI-N-TANOUT	X : 176,000	Y : 7	0,000	Z : 754
Physiological Condition: Located in the no	rthern periphery of Haut A	Atlas Occidental. Dam site	e is at the most na	rrow point in the valley.
Geological Province: Haut Atlas occider	ntal	Location: 2 km up	stream from Bo	oulaouane village
General Geology: Almost 90% of river bas	sin is made of Paleozoic.	<u>General Stratigra</u>	<u>phy</u> :	
The remaining 10% is of Jura-Cretaceous cons	sisting of reddish Muddy	Jura - Cretaceous: r	ed argillaceous	sandstone
Sandstone, and Cretaceous of Marly Lir	nestone. The area of	Cretaceous: marly	imestone	1 1 6
Jura-Cretaceous is eroded, depressed and deposit	ted. The oldest formation	Alluvium: mainly	limestone gi	avel and fine grain soils
is the basement complex of Caledonian-Herc	ntan in the Haut Atlas	Dest Herevrien der	n the valley of J	ura -Cretaceous area.
Fissouria Hour Synchinal area	anei neicyman in ule	area		Essaouma-maouz Syncimai
Geological Structure : Paleozoic Sch	ist are folded with	alca.		
orienting NNW-SSE axis Iurassic to Cret	aceous in the reservoir			
area din towards the downstream (toward	s NW) and get under			
Tertiary area. Dip of strata is gradually	going to be steep as			
proceeding towards the downstream; T	heir dip around the			
southern area of reservoir is $25^{\circ} \sim 30^{\circ}$ tov	vards the downstream.			
Faults of the northern Atlas boundary is	dominantly orienting			
NE-SW, and dipping $45^{\circ} \sim 60^{\circ}$ towards the	e mountain side.			
Geology of Reservoir Area: Schist and	schistose Sandstone o	f Middle Cambrian t	o Ordovician c	outcrop from 2 km upstream
of dam site partly including Sandstone an	d Conglomerate of De	evonian in the Thrust		
Jurassic, which is continental, unconform	ably lies obliquely on	Paleozoic.	1 75	
Cretaceous: from lower to upper; Conglo	merate and Sandstone	with some purple co	$\operatorname{lor}(\operatorname{Ep}=2 \sim 6)$	m), Dolomite and Dolomitic
Limestone (Ep= $5 \sim 8m$), continental re	d Conglomerate, San	istone and Mari (Ep	$= 10 \sim 20$ m) a	nd lagoonal Limestone and
Mari interbedded Gypsum and Annydrite	e or other Evaporite (E	$p=50 \sim 80m$).	1	
Geology around Dam Site: Bedrock is	of Mesozoic and Ceno	zoic extending in the	northern front	of Atlas: Marly Limestone of
Cenomanien, the alteration of green to red	Marl and Anhydrite, L	imestone bar of Turo	nien, and the al	ternation of Marly Limestone
and green to red Mari. As proceeding to the	aownward of slope, un	consolidated deposits	are gradually be	ecoming thick.
<u>Geomorphology along Dam Axis</u> : RG & RD: $22 \approx 27$, FD: approx. /Um				
note: RG; Slope Angle of Left Bank (°), RD; Slope Angle of Right Abutment (°), FD; Width of Valley Bottom, PD; Inclination of River Bed				
L oft Abutmont	<u>Geology alo</u>	r Rod	T	Dight Abutmont
In the lower portion anticline makes	River deposits are re	latively thick which	At the foot o	of slope few meters of Talus
strata be reverse where its axis is	are mainly compose	d of sand and oravel	deposit exist	s and loosely cemented by
dipping downstream Bedding is N40°	The nercentage of g	ravel along the river	lime partly	Bedrock is right-standing
~ N55° crossing at a right angle to	course is $70 \sim 8$	0%, and gradually	Limestone a	nd sandy/muddy Limestone
river course. 2 fault systems can be	reducing as proceed	ding to the foot of	of which be	dding is crossing at a right
observed as: $N70^{\circ} \sim N80^{\circ}, 60^{\circ} \sim 75^{\circ}$;	slope. Maximum siz	e of gravel is around	angle to rive	r course.
$N150^{\circ} \sim N160^{\circ}, 45^{\circ} \sim 65^{\circ} SW.$	30cm, the average is	s pebble size (3 to 4	U	
Sheared zones repeat in the interval of	cm).	-		
about 5 ~ 8m respectively.	Terrace deposits are a	also extending widely.		
note: Ep; Thickness, Vp; Seismic Transversal Velocity i	n (km/sec),		-	
Remarks of Dam Foundation: Joints of	bedrock is commonly	open, and some kar	sts are observed	d.
	Watert	ightness		
Dam Site			Reservo	oir <u> </u>
Some karsts are commonly observed	along the bedding	Schistose rocks in	n the reservo	ir area may generally be
planes of Limestone and sandy/muddy I	Imestone. Moreover	impermeable. Lin	lestone and E	vaporite may have some
joint planes, direction of which is us	ually same as river	problem with regain	d to leakage so	o that their distribution shall
towing course, are usually somewhat of at dam site is concerning. Leakage is con	en as far as outcrops	be checked.		
at dam site is concerning. Leakage is con	siderable at this site.			
note: Lu, Lugeon Onit	Stal	vility		
Dam Site	Duit	<u>Jinty</u>	Reservo	bir
Basically it seems to be no problem		In the area of I	trassic and (retaceous land is eroded
		relatively well-and	l steen slone	is commonly developing
		Those slope shall b	e checked.	
Construction Material				
Sand & Gravel Material: River deposits	of Seksawa river: 2.2	5km upstream from	dam site: Terra	ace deposits in the upstream
and downstream of dam site, surface area	is approx. 200000m2	•	,	· · · · · · · · · · · · · · · · · · ·
Earth Material: Irik reddish silt; 14km NE	E from dam site			
Rock Material: Limestone bare at dam si	te.			
Study Level Preliminaire				
Existing Geotechnical Investigation				
Drilling: On Going				
Driming. On Ooling				

 Table 12.1
 Summary of Geology around and at Respective Dam (9/26)

Table 12.1 Summary of Geology around and at Respective Dam (10/26)					
9, <u>Taskourt</u>	River Assif el Ma	a Zone III			
Province: Chichaoua	Cercle: Imi-N-Tano	ut	Commune:	Adassil	
Topo-Map (1/50000): AZEGOUR	X : 207,000	Y : 69	9,000	Z : 942	
Physiological Condition: Located in the	northern side of Haut	Atlas occidental rangi	ng steep mour	ntains.	
Geological Province: Haut Atlas occiden	tal	Location: Approx.	15 km South o	f Akimakh	
General Geology: Mainly composed o and Quartzite of Paleozoic; Limestone o and sedimentary rocks of Eocene Geological Structure: In the river bas faults mainly orienting NE SW and s NW-SE exist a lot.	f Schist, Sandstone, f Jura - Cretaceous; in, main system of ub-system orienting	General Stratigraphy: Paleozoic: schist, sandstone, and quartzite Jura-Cretaceous: limestone system of orienting			
Geology of Reservoir Area: Bedrock is composed mainly of Quartz - Micaceous Schist and Pelitic Schist with many sheared and fractured zone. In the upstream and higher portion of slope, Limestone of Mesozoic forms cliffs and gorges. River deposits exist very thick.					
Geology around Dam Site : Bedrock is composed of Sandstone of Psammitic Schist and Pelific Schist of Ordovician. Sandy rock is usually siliceous or quartzitic and Pelific rock is sometimes phyllitic. Many Faults and Sheared zones are observed in this area. Geomorphology along Dam Axis : RG: 85 ~ 90 overhung, RD: approx.30 ~ 35, FD: 70 ~ 90m					
note: RG; Slope Angle of Left Bank (°), RD; Slope Angle	$53 \sim 90^\circ$ Overnung, r gle of Right Abutment (°), F	T; Width of Valley Bottom, I	PD: 70 - 9011 PD; Inclin <u>ation of R</u>	River Bed	
	Geology alor	ng Dam Axis			
Left Abutment	Rive	rBed	R	light Abutment	
Mainly hard slightly folded Sandy rock forms right-standing cliff. Portions around joints are usually cracky but closed.	Large volume of sand & gravel deposit is on the river bed as river deposits. They seems to be very thick. Some big faults may be inferred on the bottom of valley		Few meters slope. Bec alternation of black Pelitic	of Talus deposits cover the trock consists of the of Psammitic Schist and Schist.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	(km/sec),				
Remarks of Dam Foundation: River de	posits seems to be ver	y thick and joints in th	e Left Bank di	ips towards river side.	
	Waterti	<u>ghtness</u>			
Dam Site			Reservo	ir	
Faults and Sheared zone inferred along r to be permeable. Along joints of the Le muddy material which may be the sign of inside. Furthermore, Schist in this weathered and altered. Then as a resu leakage is necessary at this site.	ver bed are seemed off Bank is attached f water effluent from area is somewhat lt, careful study on	bed are seemed Generally the basement composed of Schist may have the well-watertightness. er effluent from is somewhat areful study on			
note: Lu; Lugeon Unit					
<u>Stability</u>					
Dam Site Some joint planes of Left Bank dip towards river side. Their stability shall be checked.		Reservoir heir Some area has very steep slope and Schist is sometimes weathered and deteriorated deeply. Slope stability in those area shall be checked.			
Construction Material					
Sand & Gravel Material: River deposits; enough volume Rock Material: Bed rock of left bank at dam axis. Earth Material: no suitable material; Talus deposits on the right bank slope; volume is not sufficient.					

Study Level Preliminaire- en cours

10, <u>Timkit</u>	River Assif N'Ifer	(Todrha)	Zone V		
Province: Er Rachidia	Cercle: Tinjdad		Commune:	Aghbalou-N'Kerdous (Timkit)	
Topo-Map (1/50000): TAGHLA	X : 507,250	Y : 51	5,450	Z : 1,214	
Physiological Condition: Located in th	e gorge torrential flo	wing Jbel Tadount S	erdoun and B	ouchenndi constituting the	
Southern Haute Atlas limit flowing into T	injidad plain.				
Geological Province: Southern limit of H	laut-Atlas Central	Location: 35 km along the road to Aghbalou N'Kerdous from			
		the junction of the route N32			
General Geology: Carboniferous Formation	ons extend in Tisdafine	General Stratigraphy:			
Mountains in the south. In the northern Mounta	ains including the gorge	Carboniferous: schis	st and sandstor	le nd dolomite	
$40^{\circ} \sim 50^{\circ}$ towards upstream extend, and Middle	Jurassic and Cretaceous	Upper Lias: marl, re	d mudstone, li	mestone and gypsum.	
and some blocs of Eocene Formations is in be	etween them. These are	Middle Jurassic: ma	rl 🛄		
forming Synclinal structures covered sometimes of Conglomerate etc. and new deposits	by Ancient Quaternary	Cretaceous: marl, a	argillaceous ro Prate	ocks, red sandstone, marly	
Geological Structure: Haut-Atlas foldin	g mountains orienting	Eocene: sandy to mu	uddy limestone	e, red sandstone.	
dominantly WSW-ENE ~ SW-NE is compose	mposed mainly of Jurassic.				
Synclinal area forming usually the depression is Middle Jurassic to Cretaceous, and anticlinal area	of Mudstone or Marl of a is of L imestone and/or				
Dolomite of Lower Jurassic (Lias) unsymmetric	ally limited the one side				
by fault extending long.					
I ne foundation of JICA axis studied in 1988 is manganese, and porous	mineralized by iron and				
Geology of Reservoir Area: Composed	mainly of the thin alt	ernation of Dolomitic	Limestone pa	rtly interbedded with many	
thin layers of Marl of Lower Lias. Beddin	ig is very regularly dip	ping towards the upst	ream and left l	bank side with $30^{\circ} \sim 35^{\circ}$.	
interbedded with Marl. In the downstrea	im side, black to darl	K Limestone layers w	vith iron-mang	anese ore mineral underlie	
changing gradually into Siltstone and fina	ally greenish Siltstone	. In the upstream side	e, Marl is very	few. Bedding is dipping to	
upstream and a little to Left Bank side with $30^{\circ} \sim 50^{\circ}$.					
note: RG; Slope Angle of Left Bank (°), RD; Slope Angle	gle of Right Abutment (°), F	FD; Width of Valley Bottom, I	270 PD; Inclination of F	liver Bed	
	<u>Geology alor</u>	ng Dam Axis			
Left Abutment	Rive	rBed	R	light Abutment	
Composed of Limestone. Middle part of	River bed is covere	d by relatively thick	On the top,	very thick Limestone layer	
changed into brown color. Partly karsts	composed of sand and	gravel (maximum grain	Limestone	or Dolomite dips towards	
are developed.	size 20cm, medium size	$5 \sim 10$ cm) with $1 \sim 2$ m	river side. A	lot of karsts are observed	
nota: En Thialmas, Vn: Saismia Tanganwal Valasita: in	size large rock block.		along the bec	lding plane.	
Remarks of Dam Foundation: Karsts ar	re observed in this area	a, especially in some s	pecial strata.		
	Waterti	ghtness			
Dam Site	1		Reservo	ir	
Limestone and Dolomite at dam site d	evelop many karsts	Both Banks of re	servoir area	are composed of mainly	
observed well-in some special form	ations. Leakage is	Leakage is consid	lerable so th	at careful study will be	
considerable so that careful study will be	necessary.	necessary.		•	
note: Lu; Lugeon Unit	Stah	oility			
Dam Site	2.000		Reservo	ir	
Basically it seems to be no problem.	Basically stable.				
Construction Material					
Sand & Gravel Material: River deposits					
Rock Material: Limestone bare Farth Material: in the reservoir area					
Study Level APD					
Existing Geotechnical Investigation:					
Drilling: Nos.3=115.7m JICA(B1	,2,3), Nos.8=465.5m	(JICA Axis 3,Upstrea	m Axis 5 in 19	992)	
Seismic Exploration: (6 lines) at	JICA Site				
Test Pit (P) & Trench (T): P: Nos	s.22				

Table 12.1 Summary of Geology around and at Respective Dam (11/26)

Laboratory Tests:

Gradation, Atterberg, Water Content, Density, Form Coef., Los Angels & Deval, Chemical Analysis, Alkali Reaction)

Table 12.1 Summary of Geology around and at Respective Dam (12/26)					
11, <u>Tadighoust</u>	River Rheris		Zone V		
Province: Er Rachidia	Cercle: Tadighost		Commune:	Tadighost	
Topo-Map (1/50000): TADIGHOUST	X : 541,709	Y : 13	9,720	Z : 1,108	
Physiological Condition: Located at just	upstream of the Rheri	s basin. The gradient	of river around	1 the site is average 0.3%.	
Geological Province: Southern peripl	nery of Haut-Atlas	Location: Approx. 2	20 km North o	f Goulmima	
Central					
<u>General Geology</u> : Composed of mainly Mesozoic. Likewise, Tertiary and Quaternary are also extending. Precambrian and Paleozoic can be also observed as the butonic (Fenster). Middle Jurassic is called <couches rouges="">, and Cretaceous lye on it concordantly. <u>Geological Structure</u>: Strata in this area dip towards the north striking E W. Faults existing in Haut Atlas mountains orient generally E W. The big Fault of South Atlas deforms the Mesozoic and forms the depression covered by new deposits. These faults is considered generally overthrusting towards the south from the evidence of the Jurassic lies on the</couches>		General Stratigraphy: Mid Cambrian: conglomerate, sandstone, limestone, and quartzitic sandstone. Ordovician: sandy mudstone. Silurian: shale, and limestone. Triassic: red colored detritic rocks and evaporite. Lias - Mid Jurassic: Carbonaceous rock; ammonite bearing limestone and marl. Mid Jurassic 《Couches rouges》 formation: mostly red colored evaporite. Cretaceous: beige color marl, gypsum, and limestone;			
		calcareous dolomite Paleocene: fine sand Eocene: limestone a	; phonolite. Istone, red muc	dstone, and gypsum	
Geology of Reservoir Area : Composed mainly of the following Mesozoic formations: Silt-Sandstone formation; interbedded with Conglomerate lenses and Marl, Limestone-Dolomite formation; interbedded with Marl, Limestone formation; and Limestone and Phonolite. Eocene to Miocene composed of Marl, Limestone and Mudstone is also existing. Partly Paleozoic and Precambrian outcrops as Fenster.					
Geology around Dam Site: Bedrock is Marl of Lower Cretaceous and Limestone of Turonien.					
note: RG; Slope Angle of Left Bank (°), RD; Slope Angle of Right Abutment (°), FD; Width of Valley Bottom, PD; Inclination of River Bed					
	<u>Geology alor</u>	ng Dam Axis			
Left Abutment	Rive	rBed	R	Right Abutment	
At the foot of abutment, Talus deposits exist relatively thick consisting of large rock blocs. In the middle portion, wide terrace forms flatland (width about 50m) but no sediments are on it. Bedrock is mainly fossilferous Limestone alternating with Marl.	Few meters of A thickness are on the composed of sand a homogeneous show size $5 \sim 8$ cm. In t alluvial terrace con approximately 2 distributes.	Illuvial deposits in river bed. Those are and gravel relatively ving medium grain he right bank side, nposed of silty soil m in thickness	Bedrock for Talus deposi the top, very 10m) lies on layered Lime	ms right-standing cliff and ts accumulat at the foot. On thick Limestone (Ep= $5 \sim$ the alternation of Marl and estone.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	ı (km/sec),				
Remarks of Dam Foundation: Karsts ar are usually open.	e rarely observed, how	wever vertical joints a	re existing a lo	t in Limestone layers which	
	Waterti	ightness			
Dam Site	tono at dama site and	Due to Mailer	Reservo	ir	
Karst is not developed so much in Limestone at dam site and Marl is basically impermeable. Though open joints are observed in the layer of Limestone, leakage may not be so significant. Since river deposits are thick, its treatment may be important.			ervoir area, leakage from		
note: Lu; Lugeon Unit					
	<u>Stab</u>	<u>oility</u>			
Dam Site		Degracii	Reservo	ir	
Basically it seems to be no problem.		Basically stable.			
<u>Construction Material</u> Sand & Gravel Material: River deposits; Rock Material: Limestone around dam sit	Ferrace deposits aroun e and 5km NW from	d dam site dam site			
Earth Material: no suitable material					

12, <u>Tiouzzaguine</u>	River Guir		Zone V	
Province: Er Rachidia	Cercle: Gourrama		Commune:	Gourrama (Tiouzaguine)
Topo-Map (1/50000): GOURRAMA	X : 618,071	Y: 20	6,923	Z : 1,525
Physiological Condition: Located in the	Haut Atlas Calcaire	torrentially flowed b	y the river flo	wing into the depression of
Mougueur. Three tributaries confluent just	t before the dam site.			
Geological Province: Eastern side of Hau	te Atlas calcaire	Location: Approx.	2 km NE from	n Tiouzzaguine village
<u>General Geology</u> : Generally compose marly Limestone Basalt is also existing w	d of Limestone or	General Stratigrap	<u>ohy</u> : reddish mudst	one
Geological Structure: Reservoir area is	around the axis of	Sinemurien: massiv	e limestone	
syncline, and anticline exists at the upper	portion of left bank	Lotharingien - Plie	ensbachien: b	lack limestone interbedded
flowing around the foot of limestone l	hills locating at the	Toarcien: ammonite	bearing limes	stone, marly limestone
eastern end of syncline structure. This s	syncline structure is	Ancient Quaternary Quaternary: terrace	: travertine deposits alluv	iums and colluviums
Geology of Reservoir Area: Composed of Basalt and red Mudstone of Triassic, massive Limestone of Sinemurien,				estone of Sinemurien, black
Limestone interbedded with Marl of Loth	aringien - Pliensbach	ien, and ammonite b	earing Limesto	one and marly Limestone of
Geology around Dam Site: Limestone si	trata form verv narrow	v gorges, while, the a	rea of Basalt a	nd red Mudstone of Triassic
is relatively gently sloping. Travertine	extends from the up	pstream to the dow	nstream partl	y underlain by Eboulis or
Geomorphology along Dam Axis: RG:	ie. approx.75 . RD: appro	ox.50, FD: approx.30	m	
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	D; Width of Valley Bottom,	PD; Inclination of 1	River Bed
<u>Geology along Dam Axis</u>				
Left Abutment	Rive	rBed	ŀ	Right Abutment
Limestone exists as a shape of "langue" towards river side dipping $75^{\circ} \sim 80^{\circ}$.	and gravel underla	approx. 15m; sand ain by Limestone.	forming terr	exists relatively thick race which is usually loose
Basalts are outcropped at the foot of	Right bank side	is composed of	and porous	The height of Travertine
Limestone cliff covered by falus deposits.	Travertine.		cliff reach 2	/ m.
note: Ep; Thickness, Vp; Seismic Transversal Velocity in (km/sec),				
<u>Remarks of Dam Foundation</u> : Some far fractured. Travertine is very porous.	ults are inferred on the	right abutment and a	t the foot of le	ft abutment where is usually
	<u>Waterti</u>	ghtness		
Dam Site			Reservo	oir
Limestone itself at dam site is massive.	However, the things	In the Limestone	layers continu	uing from dam site, many
that some karsts may develop somewhe	re. Marl lain under	reservoir may also	be considered	to some extent. To prohibit
Limestone is basically impermeable.		from leakage, it sh	all be checked	d about the existence some
		checked about the p	ermeability of	Basalt.
note: Lu; Lugeon Unit				
	Stab	<u>ility</u>		
Dam Site			Reservo	Dir
The stability of the slope near faults shall	be checked.	The stability of the s	slope near faul	ts shall be checked.
Construction Material				
Earth Material: Terrace deposits around da	am site; muddy soil			
Rock Material: Limestone around dam sit	e			
Study Level APS				
Existing Geotechnical Investigation:				
Drilling: Nos.9=576m (Dam Site-	= RD 5, OD 3, RG 1)			
Adit: (Both Banks)	3, OD 2 lines, KO 5 lin	les)		
Test Pit (P) & Trench (T): T: No	s.1 (Terrace Silt), P1: I	Nos.2 (Terrace Silt), F	2: Nos.10 (Ri	ver deposits)
Laboratory Tests:		× 77	Ň	i '
P1 samples (Gradation = Sieve &	Hydrometer, Atterber	g)	a	
P2 samples (Sieve in situ, Hydron	neter, Atterberg, Sand	Equivalent, Specific (Gravity, Form	Coef., Los Angels & Deval,
Chemical Analysis, Alkan Reaction)				

Table I2.1 Summary of Geology around and at Respective Dam (13/26)

Table I2.1 Summary of Geology around and at Respective Dam (14/26)

Province: Fig.ing Cerele: Beni Tajjit Commune: Bni Tajjit (Ksar Morhel) Topo-Map (JS0000; QSAR MOUCHAL X. 716,000 Y: 194,000 Z: 980 Physiological Condition: Located in the gorge sinated in the eastern side is Silon Sud Athasique. Ceclogical Province: Eastern end of Haute Atlas calcaire Location: Approx. 42 km East of Beni Tajjit (General Stratigraphy: General Geology Maily composed of Linessone. Location: Approx. 42 km East of Beni Tajjit (General Stratigraphy: In the western area, an atol of Lias surrounds Schist and quartite (Sebblah Kehiy of Paleozoic: These area has lead to the aracinal and mark linessone Location: Approx. 42 km East of Beni Tajjit (General Stratigraphy: Geological Structure: The formations observed in the gorge is Linessone of Mossone Domenterin - Canxien: linessone Domenterin - Canxien: linessone Domenterin - Canxien: linessone Allenobajocien: linessone Mainessone Allenobajocien: linessone Mainessone Allenobajocien: linessone Mainessone Allenobajocien: linessone Constructure: Anotan Markit Stratigraphy: Geology of Reservoir Area: Bedrock is the southern side is nearly brize to the approx 15% to wards Sto south until the effect oci Si Tamestone of Mossone where bedding is almost horizontal. Some faults orienting generally E. W linkit the extension of rock. Mainly following three systems of Faults are recognized where are normally unestone eatomas in a rigit angle to river course N00° - N10° and and massit.	13, <u>Kheng Grou</u>	River Kheng Grou	u	Zone V	
Inpo-Map (J5000): QSAR MOUGHAL X: 716,000 Y: 194,000 Z: 980 Physiological Condition: Located in the gorge situated in the eastern end of Jbel Bou Dahar. Eastern side is Tamilet plain, North-Eastern side is Haust Plateaux, North-Western side is Plis Marginaux, and Southern side is Sillon Sud Atlasique. Geological Province: Eastern end of Haute Atlas calcaire data in blend mines. Location: Approx. 42 km East of Beni Taijit General Geology: Mainly composed of Linestone. Location: Approx. 42 km East of Beni Taijit General Stratig: approx. Read Zine Lend mines. False arakina atla of the gorge. Deartification: Approx. 42 km East of Beni Taijit General Stratig: approx. Velocities The orthern side is nearby and zine blend mines. The orthern side is steply and the general and marky limestone increases of the orthern side is nearby orthoread of pring 10° ~ 15° towards South until the effluent of gorge. Dearters of Accessoric where bedding is almost horizontal. Some faults orienting generally E. W limit the extension of rock. Mainly following three systems of Faults are recognized where are normally well-developing nearbern side for Bon Dalar Massif. FI : N10°, 70° ~ 85°S F2 : N90°, vertical F3 : crossing at right angle to river course N90° ~ N100° Fault is inferent in the mindle or slope: Angle Offraid Ammar(*) FD: Withof Vilky Boron FD: Intensione Reservoir Composed of I Linestone and print angle to river course N90° ~ N100° Fault is inferent interstone Endock. Those are mainly aright angle to river course N90° ~ N100° Fault is inferent interstone Endock. Those are mainly aright angle to river course N90° ~ N100°	Province: Figuig	Cercle: Beni Tajjit		Commune:	Bni Tajjit (Ksar Morhel)
Physiological Condition: Located in the gorge situated in the eastern end of Jbel Bou Dahar. Eastern side is Tamlelt plain, North-Eastern side is Hauts Plateaux, North-Western side is Plis Marginaux, and Southern side is Sillon Sud Atlasique. Geological Province: Eastern end of Haute Atlas calcaire General Geology: Mainly composed of Linestone. In the western area, an atoll of Lias surrounds Schist and Quartzite (Schubs Keitr) of Paleozoic. These area has lead and zinc blend mines. Location: Approx. 42 km East of Beni Taijit Geological Structure: The formations observed in the gorge six as the large anticlinal structure. Around the anticlinal sais, fractured zones develop, and formations are dislocated by faults. the northem side of anticline dips steeply and islocated by faults ets, while the southern side is nearly borizontal dipping 10° ~ 15° towards South unit the effluent of gorge. Dometrien - Canxien: Timestone Dometrien - Canxien: Timestone and structure. Upstream is the large valley composed alos of maint/Linestone covered by sill and marky soil. Geological Structure: The Bedrock in the gorge is Linestone of Mesozoic where bedding is almost horizontal. Structure are course Moy or > N100° Subtructure: The Subtructure are normally well-developing in eastern side of Bon Dahar Massif, F1 : N100°, 70° ~ 85° F2 : N90°, vertical F3 : crossing at a right angle to niver course Moy or > N100° Geomorphology along Dam Axis: RG: approx.55, RD: approx.70 r. HD: approx.75m met. RG: Step Augle of East Bank (* 1 RD: Step Augle of Might Abutment ' Eastone deflock Those are anamily in order of 10 cm. Right Abutment Composed of hard and massive is in order of 10 cm. Right Abutment Composed Step Augle of Might Abutment (Insestone Edrock: Those are mainly and and gravel of	Topo-Map (1/50000): QSAR MOUGHAL	X : 716,000	Y : 19	4,000	Z : 980
North-Eastern side is Hauts Plateaux, North-Western side is Plis Marginaux, and Southern side is Sillon Sud Atlasique. Geological Province: Eastern end of Haute Atlas calcular: In the western area, an atoll of Lias surrounds Schist and Quartzite (Schubs Kehi) of Paleozoic. These area has lead at zine blend mines. Location: Approx. 42 km East of Beni Taijit Geone Structure in the source of the so	Physiological Condition: Located in the	e gorge situated in the	e eastern end of Jbel	Bou Dahar. Ea	astern side is Tamlelt plain,
Geological Province: Eastern end of Haute Atlas calcaire General Geology: Manly composed of Limestone. In the western area, an atoli of Lias surrounds Schist and Quartite (Sebbab Kebir) of Palcozoic. These area has lead and zine blend mines. Location: Approx. 42 km East of Beni Tajjit Geology: All and Composed of Limestone. And zine blend mines. General Strat(graphy: Palcozic: Schist and quartite Simenurien: Imestone Lotharingien: Imestone Interstence: Imestone Lotharingien:	North-Eastern side is Hauts Plateaux, Nor	th-Western side is Plis	Marginaux, and Sou	thern side is Si	llon Sud Atlasique.
General Geology: Mainly composed of Limestone. Enderal Stratigraphy: In the western area, an atoll of Lins surmonds Schist and Quartzite (Sebbab Kebir) of Palecozic. These area has lead at incline mimes. General Stratigraphy: Geological Structure: The formations observed in the gorge exist as the large articlinal structure. Around the antichina disa steeply and structure area that of the down and marks in the articlina structure. Around the antichina disacted by faults etc. while the southern side is nearly with the southern of rock. Mainly following three systems of Faults are recognized where are normally with effective of protective and the southern and sine matrix. Geology along Dam Axis: RC: approx.55, RD: approx.70, FD: approx.75m FD: approx.75m met. RC: Step Angle of Left Bark (*), RD: Step Angle of Right Abutment (*), FD: approx.70m, FD: approx.75m Friedmation of Riser Bed Composed of hard and massive transitive is nother and garayed of which maximum grain size is 10 cm, and garayed of which maximum grain size is 10 cm, and medium size is 3 ~ 5 cm. Free Bed Nig Abutment Though Limesto	Geological Province: Eastern end of Hau	te Atlas calcaire	Location: Approx.	42 km East of	Beni Tajjit
Geology of Reservoir Area: Bedrock in the gorge is Limestone of Lotharingien and Sinemurien. Upstream is the large valley composed also of mainly Limestone covered by silt and mary soil. Geology around Dam Site: Bedrock is Limestone of Messzoic where bedding is almost horizontal. Some faults orienting generally E W limit the extension of rock. Mainly following three systems of Faults are recognized where are normally well-developing in eastem side of Bou Dahar Massif. F1 : N100°, 70° × 85°S F2 : N90°, vertical F3 : crossing at a right naglet or fiver course N90° × N100° Geomorphology along Dam Axis: RG: approx.75 , RD: approx.70, FD: approx.75m row: RG; Stepe Angle of Lim Bank (°) RD; Stepe Angle of Right Abutment (°), HD; Withor Valley Bottom PD; Inclination of River Bed Comorphology along Dam Axis: RG: approx.75 , RD: approx.70, FD: approx.75m row: RG; Stepe Angle of Right Abutment (°), RD; Stepe Angle of Right Robutment (°), RD;	<u>General Geology</u> : Mainly composed of I In the western area, an atoll of Lias su Quartzite (Sebbab Kebir) of Paleozoic. and zinc blend mines. <u>Geological Structure</u> : The formations of exist as the large anticlinal structure. A axis, fractured zones develop, and format by faults. The northern side of anticlin dislocated by faults etc, while the sou horizontal dipping $10^{\circ} \sim 15^{\circ}$ towar effluent of gorge.	Ince: Lasternerid of Flatte Anas carear Location: Approx. 42 km Last of Bell Flaght \mathbf{y} : Mainly composed of Limestone. area, an atoll of Lias surrounds Schist and ab Kebir) of Paleozoic. These area has lead ines. General Stratigraphy : Paleozoic: schist and quartzite Sinemurien: limestone Lotharingien: limestone cture : The formations observed in the gorge e anticlinal structure. Around the anticlinal ones develop, and formations are dislocated northerm side of anticline dips steeply and ults etc, while the southern side is nearly ng $10^{\circ} \sim 15^{\circ}$ towards South until the General Stratigraphy : Paleozoic: schist and quartzite Sinemurien: limestone Domerien - Carixien: limestone Domerien - Carixien: limestone Aalenobajocien: limestone Quaternary			
composed also of mainly Limestone covered by silt and marty soil. Geology around Dam Site: Bedrock is Limestone of Mesozoic where bedding is almost horizontal. Some faults orienting generally E generally E Wilmit the extension of rock. Mainly following three systems of Faults are recognized where are normally well-developing in eastern side of Bou Dahar Massif. F1 : N100°, 70° ~ 85°S F2 : N90°, vertical F3 : crossing at a right angle to river course N90° - N100° Genoryhology along Dam Axis: RG: approx.55, RD: approx.70, FD: approx.75m Geology along Dam Axis: RG: approx.55, RD: approx.70, FD: paprox.75m Geology along Dam Axis: RG: approx.55, RD: approx.70, FD: more: RG:Skpe Angle of Left Bauk (*), RD.Skpe Angle of Right Abutment (*), FD. Widthof Valley Botom PD: Inclination of Riser Bed Composed of hard and massive Red Cology along Dam Axis Infert colspan="2">Composed of Left Bauk (*), RD.Skpe Angle of Right Abutment (*), FD. Widthof Valley Botom PD: Inclination of Riser Bed Composed of hard and massive Red Cology along Dam Kais (Ep = about 15m) cover (Composed of Limestone e almost is an and gravel of which maximum prize as its is and and gravel of which maximum for a size is 10 cm, and medium size is 10 cm, and medium size is 10 cm, and medium size is 10 cm. Composed of Right Abutment (*), FD. Watthof Maley Botom PD: More Composed of Right Abutment (*), FD. Watthof Maley Botom PD: More Composed of Limestone e almost is 3 ~ 5 cm. Note: Fp: Thickness, Vp: Seisnic Transversal Velocity in (knivec). <td colspan="5">Geology of Reservoir Area: Bedrock in the gorge is Limestone of Lotharingien and Sinemurien. Upstream is the large valley</td>	Geology of Reservoir Area: Bedrock in the gorge is Limestone of Lotharingien and Sinemurien. Upstream is the large valley				
Store Angle of Left Bank (*), RD, Skipe Angle of Right Aburnent (*), FD, Widthof Valley Bottom, PD: Inclination of River Bed Geology along Dam Axis Left Abutment River Bed Right Aburnent Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. River deposits (Ep= about 15m) cover borizontal (dipping 5 ° ~ 10 ° downstream side). They are relatively fresh and massive. O note: Ep: Thickness, Vp, Seismic Transversal Velocity in (km/sec). Remarks of Dam Foundation: Partly very big karsts are developed sometimes reaching their size 20m x 6m. Watertightness Reservoir Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river developes sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Ltr Lageon Unit Stability Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Earth Material: High Level Terrace deposits; in the left bank; the Deposits along Ksar Moghel (right bank) Store is along Ksar Moghel (right bank)	Composed also of mainly Limestone covered by silt and marly soil. Geology around Dam Site: Bedrock is Limestone of Mesozoic where bedding is almost horizontal. Some faults orienting generally E W limit the extension of rock. Mainly following three systems of Faults are recognized where are normally well-developing in eastern side of Bou Dahar Massif. F1 : N100°, 70° ~ 85°S F2 : N90°, vertical F3 : crossing at a right angle to river course N90° ~ N100° Coomour Phology along Dam Avis: PC: approx 55 PD: approx 70 ED: approx 75m				
Image: Conception of the part	note: RG; Slope Angle of Left Bank (°), RD; Slope Angle of Right Abutment (°), FD; Width of Valley Bottom, PD; Inclination of River Bed				
Left Abutment River Bed Right Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. River deposits (Ep= about 15m) cover Limestone bedrock. Those are mainly sand and gravel of which maximum grain size is 10 cm, and medium size is 3 ~ 5 cm. Composed of Limestone almost horizontal (dipping 5 ° ~ 10 ° downstream side). They are relatively fresh and massive. rote: Ep: Thickness, Vp; Seismic Transversal Velocity in (tm/sec). Image and medium size is 3 ~ 5 cm. Image and medium size is 3 ~ 5 cm. rote: Ep: Thickness, Vp; Seismic Transversal Velocity in (tm/sec). Image and medium size is 3 ~ 5 cm. Image and medium size is 10 cm. Remarks of Dam Foundation: Partify in (tm/sec). Image and medium size is 3 ~ 5 cm. Image and medium size is 10 cm. Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Lut Lageon Unit Stability Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall important to the stability. Their distribution and structure shall important to the stability. Their distribution and structure shall important to the stability. Their distribution the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material		<u>Geology alor</u>	ng Dam Axis		
Composed of hard and massive Limestone. Fault is inferred in the indelle of slope. Thickness of unit layer is in order of 10 cm. River deposits (Ep= about 15m) cover Limestone bedrock. Those are mainly sand and gravel of which maximum grain size is 10 cm, and medium size is 3 ~ 5 cm. Composed of Limestone almost horizontal (dipping 5 ° ~ 10 ° diversteam side). They are relatively fresh and massive. mote: Ep: Thickness, Vp; Seismic Transversal Velocity in (km/sc). Remarks of Dam Foundation: Partly very big karsts are developed sometimes reaching their size 20m x 6m. Watertightness Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. Stability The Lingeon Unit Stability	Left Abutment River Bed Right Abutment				
note: Ep; Thickness, Vp; Seismic Tiansversal Velocity in (km/sec), Remarks of Dam Foundation: Partly very big karsts are develoed sometimes reaching their size 20m x 6m. Watertightness Dam Site Reservoir Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Lar Lugeon Unit Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Basically stable. Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Level	Left Abutment	River	rBed	R	light Abutment
Remarks of Dam Foundation: Partly very big karsts are developed sometimes reaching their size 20m x 6m. Watertightness Reservoir Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Lu; Lugeon Unit Stability Dam Site Reservoir Stability Dam Site Reservoir Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Onstruction Material Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank)	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm.	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm.	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is	R Composed horizontal downstream fresh and ma	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively ssive.
Watertightness Dam Site Reservoir Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Lu; Lugeon Unit Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Store with river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Level Preliminging	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm.	River River deposits (Ep- Limestone bedrock sand and gravel o grain size is 10 cm, $3 \sim 5$ cm.	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is	R Composed horizontal downstream fresh and ma	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively ssive.
Dam Site Reservoir Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Ltr, Lugeon Unit Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Sand & Sar Moghel (right bank) Study L aval Preliminging Study L aval Preliminging	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation : Partly ve	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac	R Composed horizontal downstream fresh and ma	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively ssive. 20m x 6m.
Though Limestone at dam site is hard and massive, partly large karsts are observed. Then careful study on leakage is necessary. The Limestone forming gorge of Kheng Grou river develops sometimes karst erosion. Since many springs exist in the downstream area, leakage from reservoir may be considerable. note: Lut Lugeon Unit Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank)	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly ve	River River River deposits (Ep- Limestone bedrock. sand and gravel o grain size is 10 cm, $3 \sim 5$ cm. (km/sec), ry big karsts are devel Waterti	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac <u>ightness</u>	R Composed horizontal downstream fresh and ma	Sight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). side). They are relatively ssive. 20m x 6m.
note: Lır, Lugeon Unit Stability Dam Site Reservoir Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Leval Pmliminain	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly velocity Dam Site	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u>	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ightness	R Composed horizontal downstream fresh and ma hing their size	Sight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). side). They are relatively ssive. 20m x 6m.
Stability Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Basically stable. Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Leval Proliminain	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity in Remarks of Dam Foundation: Partly velocity Dam Site Though Limestone at dam site is hard large karsts are observed. Then careful necessary.	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u> and massive, partly study on leakage is	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ightness The Limestone forr sometimes karst er downstream area, considerable.	R Composed horizontal downstream fresh and ma hing their size Reservo ning gorge of osion. Since leakage fr	Sight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). side). They are relatively ssive.
Dam Site Reservoir Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Basically stable. Basically stable. Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Leval Proliminain	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly ve Dam Site Though Limestone at dam site is hard large karsts are observed. note: Lu; Lugeon Unit	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u> and massive, partly study on leakage is	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ightness The Limestone forr sometimes karst er downstream area, considerable.	R Composed horizontal downstream fresh and ma hing their size Reservo ning gorge of osion. Since leakage fr	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively ssive. 20m x 6m. ir Kheng Grou river develops many springs exist in the room reservoir may be
Since both banks are steep, the discontinuity in the rock is important to the stability. Their distribution and structure shall be carefully checked. Basically stable. Construction Material Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Level Preliminaire	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly ve Dam Site Though Limestone at dam site is hard large karsts are observed. Then careful note: Lu; Lugeon Unit	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u> and massive, partly study on leakage is <u>Stab</u>	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ightness The Limestone forr sometimes karst er downstream area, considerable.	R Composed horizontal downstream fresh and ma hing their size Reservo ning gorge of osion. Since leakage fr	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively sive. 20m x 6m. ir Kheng Grou river develops many springs exist in the rom reservoir may be
Construction Material Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Level Proliminain	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly velocity Dam Site Though Limestone at dam site is hard large karsts are observed. note: Lu; Lugeon Unit Dam Site	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u> and massive, partly study on leakage is <u>Stab</u>	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ightness The Limestone forr sometimes karst er downstream area, considerable. ility	R Composed horizontal downstream fresh and ma hing their size Reservo ning gorge of osion. Since leakage fr Reservo	tight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). side). They are relatively ssive. 20m x 6m. ir Kheng Grou river develops many springs exist in the rom reservoir may be ir ir ir
Sand & Gravel Material: River deposits; in the downstream of which river width is 200 ~ 250m; also in the upstream. Rock Material: Limestone around dam site Earth Material: High Level Terrace deposits in the left bank; the Deposits along Ksar Moghel (right bank) Study Level Preliminaire	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly ve Dam Site Though Limestone at dam site is hard large karsts are observed. Then careful note: Lu; Lugeon Unit Dam Site Since both banks are steep, the discontri important to the stability. Their distributio be carefully checked.	RiverRiver deposits (Ep-Limestone bedrock.sand and gravel ograin size is 10 cm, $3 \sim 5$ cm.(km/sec),ry big karsts are develWatertiand massive, partlystudy on leakage isStabnuity in the rock ison and structure shall	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ghtness The Limestone forr sometimes karst er downstream area, considerable. Basically stable.	R Composed horizontal downstream fresh and ma hing their size Reservo ning gorge of osion. Since leakage fr Reservo	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively ssive. 20m x 6m. ir Kheng Grou river develops many springs exist in the room reservoir may be ir ir
	Left Abutment Composed of hard and massive Limestone. Fault is inferred in the middle of slope. Thickness of unit layer is in order of 10 cm. note: Ep; Thickness, Vp; Seismic Transversal Velocity ir Remarks of Dam Foundation: Partly ve Dam Site Though Limestone at dam site is hard large karsts are observed. Then careful note: Lu; Lugeon Unit Dam Site Since both banks are steep, the disconti important to the stability. Their distribution be carefully checked. Construction Material	River River deposits (Ep- Limestone bedrock, sand and gravel o grain size is 10 cm, 3 ~ 5 cm. (km/sec), ry big karsts are devel <u>Waterti</u> and massive, partly study on leakage is <u>Stab</u> muity in the rock is on and structure shall	r Bed = about 15m) cover . Those are mainly f which maximum and medium size is oped sometimes reac ghtness The Limestone forr sometimes karst er downstream area, considerable. bility Basically stable.	R Composed horizontal downstream fresh and ma hing their size : Reservo ning gorge of osion. Since leakage fr Reservo	Eight Abutment of Limestone almost (dipping 5 ° ~ 10 ° side). They are relatively sive. 20m x 6m. ir Kheng Grou river develops many springs exist in the rom reservoir may be ir

Study Level

Existing Geotechnical Investigation:

Drilling: Nos.4=230m (Dam Site=RD 1, OD 2, RG 1)

Test Pit (P) & Trench (T): P: Nos.20 (River deposits), P: Nos.4 (RG Terrace, Gr.), P: Nos.3 (RD Terrace to River, Silt)

14, Adarouch	River Tigrigra		Zone I	
Province: Ifrane	Cercle: Azrou		Commune: Sidi el Makhfi (Tigriga)	
Topo-Map (1/50000): BOU CHBER	X : 489,800	Y : 31	6,350 Z : 830,50	
Physiological Condition: Located at the	eastern end of Moroco	can Central Massif ne	ar the border of Moyen Atlas Casse.	
Geological Province: North-Eastern Mass	sif Central Hercynian	Location: Approx.	35 km West of Azrou	
Frigstorgical Conductor : Elocated at the eastern end of Noroccan Central Massin hear the border of Noryen Atlas Casse. Geological Province : North-Eastern Massif Central Hercynian Geology: Namurienne formations are in Benghanem-M'taoutoult. Dam site is located just on the bedrock of Namuriennes of Fourhal Synchinorium Benghanem-M'taoutoult extending in the limestone mountain range of Chougrane and Agourai. They are Turbiditic but their re-sedimentaries (Olistostrome) can not be found out. They are generally continuing to Flysh deposits of Viseo-Namuriens. South-ward of this area, the southern side of Grou river is composed of Stephano-Autumien Formations. General Stratigraphy: Namuriennes: at least 800m thick alternation of sandstone an mudstone interbedded with around 1m thick coarse sandstorn or fine conglomerate lenses; fossilferous, green to black sometime slumping. Sometime some tenth centimeter thick of insetone breccia is interbedded. Geological Structure : Central Morocco Massif is a Hercynian orogenic area extending from the Atlantic to Moyen Atlas and GharbSaiss plains to Phosphates plateau forming 5 folding zones bounded by faults orienting NE-SW. The bedding and schistosity around dam site is striking NE-SW crossing at a right angle to Tigriga river course. Dam site is founded on Namuriennes formations forming Touthal synchinorium Benghanem-M'taoutoutt". They are folded orienting their axis NE inclining steeply towards NW to SE or vertical. These formations intruded sometimes by Granite. The biggest one is Ment Granite. Geology of Reservoir Area : Bedrock is Turbiditic formation of Namurian of which bedding and schistosity (NE-SW) is crossing a right angle to river course. Geological structure in this area is called "Benghanem-Mtaoutout of Fourhal Synclinorium". They are basically Flysh deposits				
main strata around dam site and right-standing Conglomerate Bar forms the gorge of dam axis. Dam site is situating on the big folding called "Fourhal Synclinorium" composed of Flysh of Viseo-Namuriens, which are sometimes intruded by Granite. Geomorphology along Dam Axis : RG: 23 ~ 25, RD: 13 ~ 15, FD: approx.40m				
iole. R0, Siope Alige of Leit Balik (), RD, Siope Al	Geology alor	ng Dam Axis	rD, inclutation of River Deci	
Left Abutment	River	r Bed	Right Abutment	
Bedrock condition is relatively good. Partly covered by thin top soil. Highly weathered zone: Ep= about 5 m; gradually going to be sound rock as deeper. Faults cross obliquely, of which displacement is about 130m towards the right along bedding strike.	River BedRight AbutmentAlluvial deposits: very thin (Ep= 0.5 m) Bedrock of weathered zone : Ep= 1 ~ 2 m. Discontinuous sandy Terrace deposits eBedding is dipping towards mountain side (more than 75°). Weathered zone reaches up to arou m: Highly weathered zone Ep= 5 + m: Highly weathered zone Ep= 5 +			
note: Ep; Thickness, Vp; Seismic Transversal Velocity i	n (km/sec),			
Remarks of Dam Foundation : Joints Weathering is remarkable in the sandy pa	parallel to dam axis rt.	are very frequent. F	aults is clearly displacing the formation.	
	Waterti	ightness		
Dam Site Up to 20-25m in the strata of Sandston permeability is high. In the Pelitic Schist	e and Conglomerate, it is basically low.	Need to be checked Fault lines.	Reservoir permeability of Conglomerate layers and	
note: Lu; Lugeon Unit				
	<u>Stab</u>	<u>oility</u>		
Dam Site	r the size of -1-1114 1	The slave is 4	Reservoir	
Some faults are observed in the left ban to be checked.	k, their stability have	their stability shall b	stream is very steep (max. 5V/1H). Then e checked.	
Construction Material Sand & Gravel Material: River deposits a Earth Material: Terrace deposits; clay - sil	round dam site; enoug t	h volume		
Existing Geotechnical Investigation: Drilling: Nos.6=339m				
Laboratory Tests: Drilling Cores (Specific Gravity, U	Unconfined Compress	ion, Direct Shear)		

Table 12.1 Summary of Geology around and at Respective Dam (15/26)

Table 12.1	Summary of Geology around and at Respective Dam (16/26)

15, <u>Sidi Omar</u>	River Tanoubart	rt Zone II			
Province: Khemisset	Cercle: Maaziz		Commune:	Ait Ikkou / Tedders	
Topo-Map (1/50000): SEBT AIT IKKOU	X : 425,100	Y : 3	36,100	Z : 263	
Physiological Condition: Located in the	e center of Moroccan	Central Massif. Cat	chment area is	long hilly mountain ranges	
and plateaus covered relatively with rich	vegetation.				
Geological Province: North-Wester	n Maroc Central	Location: Approx.	36 km South o	f Khemisset	
Septentrional					
<u>General Geology</u> : Paleozoic, Trias Mio-Pliocene ~ Quaternary extend in th These are composed of both Sedimentaria <u>Geological Structure</u> : Folding axes ori and schistosity is fitting to that dipping parallel to or at a right angle to so formations are compacted by reverse faul The system of normal faults: N70 °	ssic, Jurassic and e surrounding area. es and Igneous. ent mainly NE-SW, SE Joint system is chistosity. Generally ts. -125°,40°-75° N,	General Stratigra Ordovician, Siluria Carboniferous: tur conglomerate/mud Permian: volcanic conglomerate, fin mudstone. Triassic: silty evaj basalt and merange	phy: n and Devoniar biditic; greywa stone or orthqua rocks; andesite conglomerat porite, reddish of reddish mu	n acke or the alternation of artzite/mudstone. c, rhyolite, liparite, trachyte; e, reddish sandstone and mudstone (lower unit) detone (upper unit)	
The system of strike-slip faults: $N30^{\circ}-5$	5°, 85°-90°E, N10°	cusul and merange	of readin max	asione (apper anno)	
Geology of Reservoir Area: Bedrock i	s Schist interbedded v	with Sandstone of P	aleozoic. They	are sometimes overlain by	
Conglomerate, fine Conglomerate, Sands	tone and red Mudston	e. Colluvial deposits	develop rarely.		
Geology around Dam Site: Bedrock 19 Visean. The thickness of each layers is: Sa	s the alternation of Sc andstone = approx. $5m$	histose Sandstone a Slate = approx, 10	ind Slate (partl n.	y Schist) of Namurian and	
Geomorphology along Dam Axis: RG:	35, RD: 50~60, FD:	approx.70m			
note: RG; Slope Angle of Left Bank (°), RD; Slope Ar	igle of Right Abutment (°), F	D; Width of Valley Bottom	PD; Inclination of F	River Bed	
L oft Abutmont	<u>Geology alor</u>	rBod	מ	Pight Abutmont	
Composed of red-color, relatively homogeneous, partly sheared alternation of Sandstone and Slate. Top soil cover is thin. Geological structure is relatively simple, namely monoclinic (bedding N30E,60W).	Alluvial deposits cover the bedrock. Those are composed of sand to silt with some cobble and gravel of schist, sandstone, and limestone. Fault may be inferred on river bed.		Top soil: Ep- Bedrock is t and Slate (I just downsti phyllitic Sch exists at dan zone exist a	= around 1 m. he alternation of Sandstone bedding N30°E,50°W) at ream of dam axis, while iist (schistosity N30°E,90°) m axis. Fault and sheared at just upstream following	
note: Ep: Thickness, Vp: Seismic Transversal Velocity i	(km/sec).		very folded s	semistose rocks.	
<u>Remarks of Dam Foundation</u> : Left Bar	ik side is composed of	yellowish deteriorat	ed Schist contin	nuing to sheared zone at just	
upstream. Sheared zone may be crossing	at river bed.	-1-4			
Dom Site	wateri	gniness	Decemen	•	
Some parts are very fractured and	faults are observed	Reservoir Basically it seems to be no problem			
especially in Right Bank side so the considerable around these portions.	at leakage may be				
note: Lu; Lugeon Unit					
	<u>Stab</u>	<u>oility</u>			
Dam Site		TT 1 1	Reservo		
Right bank is composed of folded Schist relatively weathered & deteriorated and partly sheared. Their stability shall be carefully checked. Upstream slope of dam axis on Right Bank is of relatively thick talus deposits which are very eroda talus deposits are derived from weathered Con- which exists on the upper slope of Right Bank. The shall be checked.			Right Bank is covered by ch are very erodable. These a weathered Conglomerate f Right Bank. Their stability		
Construction Material					
Earth Material: reddish clay in the reserved Sand & Gravel Material: Tanoubart River Rock Material: Sandstone-Ouartzite bares	oir area; Colluvial depo deposits; volume is n ; Cretaceous formatio	osits on the right banl ot sufficient n at 2km downstrear	c slope just upst n from dam axi	tream side is	
Study Level Preliminaire					

Existing Geotechnical Investigation:

Drilling: On Going

16, <u>Tiouine</u>	River Iriri	-	Zone IV	
Province: Ouarzazate	Cercle: Ouarzazate		Ait Zinab (Tiouine)	
Topo-Map (1/50000): TIKIRT	X : 323,543	Y : 43	8,513	Z : 1,273
Physiological Condition: Located at the	western end of Ouarza	azate Basin forming "	Sillon Sud Atl	asique" between Haut Atlas
and Anti Atlas.				
Geological Province: Anti-Atlas occident	tal	Location: Approx.	20 km South o	f Ait Ben Hadou
<u>General Geology</u> : The depression of Tiouine was formed by tectonic mover where is filled by detritus derived from V rocks are of Precambrian. Dip of these for	the basin around ment orienting N-E Volcanics. Basement mations is 10°NE.	General Stratigrap Precambrian: igneou Tertiary: conglomera Quaternary: coarse of	b <u>hy</u> : 1s rocks (pyroc ate, sandstone deposits.	elastics, lava, and tuff)
<u>Geological Structure</u> : The big faults forr the group orienting NNE ~ NE being para ENE ~ ESE traversing each unit. The for de Tiouine (Tiouine horst)".	ning the boundary is allel to each unit, and mer forms "le horst			
<u>Geology of Reservoir Area</u> : Bedrock is Rhyolitic to Andesitic rock of Precambrian and Conglomerate and Sandstone of Cenozoic. Precambrian rock is very massive (no bedding) and very hard. Cenozoic rock is relatively loose and porous and so many piping hole can be observed.				
<u>Geology around Dam Site</u> : Bedrock is Ryolite of Precambrian. The area is usually composed of "Series of Volcanics or Volcano-Detritus of Ouarzazate" which is massive (no bedding), homogeneous, and hard. Conglomerate fills the valley of the Precambrian which is usually dipping to 15° ~ 20°E. Volcanic Breccia is observed in the downstream. <u>Geomorphology along Dam Axis</u> : RG: 70 ~ 80, RD: 40 ~ 70, FD: approx.65m note: RG; Slope Angle of Left Bank (°), RD; Slope Angle of Right Abutment (°), FD; Widthof Valley Bottom, PD; Inclination of River Bed				
Geology along Dam Axis				
Left Abutment	Rive	rBed	R	ight Abutment
Composed of very hard Rhyolite forming very high right-standing cliff which is usually mineralized by mangano-iron ore.	Very thin River of bedrock. Their gra distributing from sar salt-gypsum powder along the water court	deposits cover the ain size is widely nd to boulder. Some r can be observed se.	Composed of Bank. Howe dam axis, andesitic wit zones.	of Rhyolite same as Left ver as being apart from the it becomes somewhat h some faults and sheared
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	(km/sec),			
<u>Remarks of Dam Foundation</u> : Around The biggest one is called as "caissees de 15m Mylonite in width.	dam site, some groups failles (the Fault box)	s of Fault having the c with some variety o	lirection E-W, of scale having	NW-SE, and NE-SW exist. sometimes 5 ~ 6m to 10 ~
	Waterti	ghtness		
Dam Site		Reservoir		
Along Faults and fractured zone, per relatively high but it may be groutable.	rmeability may be	In the Left Bank side of reservoir area very porous and cavitiferous Conglomerate and loose Sandstone are observed. These are very permeable. Their distribution shall be checked.		
note: Lu; Lugeon Unit				
	<u>Stab</u>	<u>oility</u>		
Dam Site			Reservo	ir
The stability along Faults shall be checked	1.	In the reservoir area, loose and porous Sandstone and Conglomerate are existing. Their stability shall be checked.		
Construction Material				
Sand & Gravel Material: Iriri River depos Rock Material: Rhyolite around dam site; Earth Material: no suitable material	its; Terrace deposits, h Conglomerate in the 1	eterogeneous (sands [,] reservoir area	~ boulder)	
Study Level Preliminaire				

Table 12.1 Summary of Geology around and at Respective Dam (17/26)

Table I2.1 Summary of Geology around and at Respective Dam (18/26)

17 Azahan	Divor Zloul (Saba	<u>10unu a</u>	<u>anu at Kesper</u>	Zono I	<u>(20)</u>	
n. Azgriar	River Zioui (Sebo	u)				
Province: Setrou	Cercle: Ribat Al Kh	leir		Commune:	Ribat Al Kheir (Betha)	
Topo-Map (1/50000): RIBAT AL	X : 598,800		Y : 35	7,000	Z : 824	
KHAYR						
Physiological Condition: Zloul river is	the most upstream tril	outary o	of Sebou river	. Catchment a	rea is long and narrow hills	
and plateau covered by rather rich vegetat	ion.					
Geological Province: Moyen Atlassique	Plisse	Locat	tion: Approx.	10 km East of	Ribat Al Khayr	
General Geology: Bedrock is mainly	composed of Schist	<u>Gene</u>	ral Stratigrap	<u>ohy</u> :		
Interbedded with Calcareous Sandstone (of Jurassic. Colluvial	Jurass	1C: Schist inter	bedded with c	alcareous sandstone	
Geological Structure: Though the strata around dam site						
form monoclinic dipping gently towards left bank and						
downstream side, their regional structure is folded by repeated						
Geology of Reservoir Area: Bedrock	is mainly composed (of Schi	st interbedded	1 with Calcare	ous Sandstone of Jurassic.	
Colluvial deposits is relatively few.						
<u>Geology around Dam Site</u> : Bedrock is the alternation of Black Limestone and Marly or Muddy Limestone or Calcareous						
axis SW-NE						
Geomorphology along Dam Axis: RG: approx.45, RD: approx.20, FD: approx.150m						
note: RG; Slope Angle of Left Bank (°), RD; Slope Angle of Right Abutment (°), FD; Width of Valley Bottom, PD; Inclination of River Bed						
	<u>Geology alor</u>	ng Dan	<u>1 Axis</u>			
Left Abutment	Rive	rBed		R	Right Abutment	
Bedrock is monoclinic dipping gently	River bed is mainly	forme	d by bedrock	Bed rock is	same as Left Bank with	
(bedding N50°W 10°S) They are very	In the right bank sid	nın san le. Allır	vial terrace is	plane of Lim	slope formed by bedding	
sound usually, though having weathered	widely extending of	onsistin	g of sand &	plane of Lin		
zone up to the depth approximately	gravel and cobble w	rith thic	kness around			
2.5m. Joint planes are regularly developed in 2 systems one is parallel	from river bed it be	a, and	as separating sand and silt			
to river course, and another is parallel to	dominants with sor	ne sub	angular rock			
dam axis in the interval of $30 \sim 50$ cm.	fragment.		-			
30cm						
note: Ep: Thickness, Vp: Seismic Transversal Velocity in	n (km/sec).					
Remarks of Dam Foundation : General	ly the foundation is v	ery sou	nd rocks of th	e alternation o	f Limestone and calcareous	
Slate. Bedrock in the valley has rather d	ominance of slate por	tion. Ka	irsts can not be	e observed.		
	Waterti	ightnes	<u>s</u>			
Dam Site				Reservo	ir	
Basement rocks along dam axis is consid problem may be little.	ered that the leakage	Basically it seems to be no problem.				
note: Lu; Lugeon Unit						
<u>Stability</u>						
Dam Site				Reservo	ir	
Left Bank side is very steep. Their stability is necessary to be Basically stable.						
Construction Material						
Earth Material: reddish clay in the reserve	oir area or downstream	side	,			
Sand & Gravel Material: River deposits of Rock Material: Limestone	f Zloul river and Quar	ya rive	(approx. 1km	n far from dam	site)= sand is dominant	
Study Level Preliminaire						

Study Level

Existing Geotechnical Investigation:

Drilling: On Going

18, <u>Boukarkour</u>	River Zamrine		Zone II		
Province: Settat	Cercle: Ben Ahmed	med Commune: Mgarto (El Gara)			
Topo-Map (1/50000): MGARTO	X : 341,350	Y : 29	91,000	Z : 288	
Physiological Condition: Located at the	ravine of approx. 260r	n length in the south-	western side o	f Moroccan Central Massif.	
Geological Province: South-Western	Massif Marocain	Location: Approx.	1 km downst	ream of the bridge passing	
Central		the Zamrine river			
General Geology: Central Morocco	Massif is mainly	General Stratigra	ohy:		
composed of Devonian and Hercyn Carboniferous As proceeding to West	ian Formations of they are covered by	Viseen (Carbonifer	rous): Upper	portion = mainly muddy ite: Middle Upper - schist	
Chaouia and "Plateau des Phosphates".	Carboniferous in this	interbedded limest	tone reef or	lens; Middle Lower =	
area is Visean.		sandstone, and quar	tzite.		
<u>Geological Structure</u> : Central Morocco cut by the fault system orienting mainly N-S.	Massif is commonly NE-SW, E-W and	Quaternary: red mu	and quartzite d, pebble		
Around dam site, NE-SW orienting	faults exist in the				
upstream and the downstream and disloc	ating the formation.				
The fault system orienting WNW-ESE is	also observed.				
<u>Geology of Reservoir Area</u> : Bedrock is mainly Schist sometimes interbedded with Quartzite of Visean. Bedding is N85° \sim 100°, 30° \sim 40°N. Two group of fault orienting NE-SW and N-S limit the bedrock. Terrace deposits composed mainly of sand					
and gravel are extending in the upstream.	Colluvial deposits are	relatively few.		al of Viscon Their this Image	
of unit layer is usually in the order of me N100,30 ~ 40 N (dipping to the downstree	of unit layer is usually in the order of meters. They are slightly folded and their strike and dip changes delicately from N85 \sim N100,30 \sim 40 N (dipping to the downstream side).				
Geomorphology along Dam Axis: RG:	57, RD: 47, FD: app	ox.50m			
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	D; Width of Valley Bottom,	PD; Inclination of I	River Bed	
T aft Abarton and	Geology alor		T		
Left Adutment	River deposits com	rbea prosed of sand and	No top soil	light Adutment	
Composed of very hard, layered	gravel covers bedro	ock. At the foot of	Bedrock is	same as Left Bank. Some	
Quartzite interbedded with thin	both banks Talus an	d Colluvial deposits	formation di	slocated by Fault orienting	
and laminated by sand-size iron ore	exist.		saddle behin	d the Right Bank.	
minerals. Bedding is monoclinic along					
dam axis dipping towards the downstream (N80°E,35°N).					
note: Ep; Thickness, Vp; Seismic Transversal Velocity ir	(km/sec),				
Remarks of Dam Foundation: Joints of	bserved in Quartzite	are grouped into: N2	0°, vertical	N55°,58°S and N154°,	
71°SW. Fault may exist from upstream	side of Left Bank to th	ne downstream side o	f Right Bank.		
	Waterti	<u>ghtness</u>			
Dam Site	11 ··· Y	Reservoir			
Left Bank: Deeper than 18 m, Lu<2; Sha $3 \sim 4$	allower portion, Lu=	Since the reservor	ir area is ma in quartzitic sa	anly composed of Schist	
River Bed: Generally Lu<1.		seems to be good.	in qualities of	andstone, the waterughtness	
Right Bank: Deeper than 9 m, Lu= $2 \sim 3$; Shallower portion,				
Lu= 9 ~ 10.					
	Stah	sility			
Dom Sito	Stat	<u>unit y</u>	Docom		
Basically it seems to be no problem	The area where the	slope gradien	t is more than 30% shall be		
checked about the slope stability.					
Construction Material					
Earth Material: soil in the reservoir area	aita anat 1	Don Cline 1	:+-)		
Kock Material: Quartzite bar around dam Sand & Gravel Material: no suitable mate	site or at access road (rial	Benslimane dam s	ne).		
Study Level APD					

<u>Table I2.1</u> Summary of Geology around and at Respective Dam (19/26)

Existing Geotechnical Investigation:

Drilling: Nos 5=176m (Dam Site= RD• OD• RG each 1, Up- and Downstream each1)

Table I2.1 Summary of Geology around and at Respective Dam (20/26)

19, <u>Aoulai</u>	River Aoulai (Oue	ergha)		Zone I		
Province: Taounate	Cercle: Ghafsai			Commune: R?tba		
Topo-Map (1/50000): TAMOROT	X : 542,150		Y : 46	7,850	Z : 290	
Physiological Condition: Topography i	n the upstream side	is com	posed of hills	having relativ	vely gentle slope, however	
changed suddenly into ravine at dam site,	and again into wide va	alley.				
Geological Province: Rif Occidental, Intr	arifaine zone	Loca	tion: Approx. 2	20 km North o	f Ghafsai	
General Geology: Generally homogene of Cretaceous Flysh extend in this area Ultrarifaines Nappe. Upper Cretaceous is in the age of Cenoma Senonien, and partly Numidienne mass of Geological Structure: Generally the area and faults with shear zone are observed at	General Geology : Generally homogeneous and same scale of Cretaceous Flysh extend in this area and lye under soft Ultrarifaines Nappe. Upper Cretaceous is in the age of Cenomanien - Turonien and Senonien, and partly Numidienne mass of Nappe is scattering. Geological Structure : Generally the area is strongly folded and faults with shear zone are observed at many place			General Stratigraphy: Upper Cretaceous: Cenomanien - Turonien and Senonien Flysh; schist, marl, marly limestone Ultrarif Nappe partly Numidienne: sandstone, mudstone		
Geology of Reservoir Area: Bedrock is Schist interbedded with black Limestone of around 10cm in thickness.						
Geology around Dam Site: Bedrock is Schist interbedded with Black Limestone layers of Cretaceous. They are normally						
homogeneous.	homogeneous. Geomorphology along Dam Axis: RG: 17 (11 ~ 30) RD: 30 ED: 100m Right Bank forms the saddle of relative height					
40m (El. 330m) from main river bed.	$17(11^{-5}0), \text{KD}.5$	0, FD	. 100111, Kigitt	Dalik IOIIIS t	he sauce of relative height	
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	D; Width	of Valley Bottom, I	PD; Inclination of R	iver Bed	
	<u>Geology alor</u>	<u>ng Dan</u>	<u>1 Axis</u>			
Left Abutment	Rive	rBed	.'	R In the constant	ight Abutment	
Schist with some rock fragments. Schist is completely weathered and lost its rock structure. Black Limestone outcrops in the middle of slope having many lime veins (bedding averagely N120°, 25°).	Alluvial and Terrace deposits cover the bedrock. Alluvial deposits: River deposits (Sand and Gravel) and Alluvial Terrace deposits (Silty soil) Terrace deposits: composed generally of rounded gravel and cobbles diameter in the order of centimetric to decimetric in		by river wate 30° towards N10°,30°~~ site, fresh overburden o downstream, deposits are o	an side, fresh fock washed r outcrops showing the dip s N averagely (schistosity 40°N). In the center of dam bedrock is covered by of 3m in thickness. In the 400m length of Terrace extending.		
note: Ep; Thickness, Vp; Seismic Transversal Velocity ir	(km/sec),					
Remarks of Dam Foundation : From	Left Bank to River	Bed, t	edrock is ver	y highly wea	thered forming very weak	
roundation.	Watart	ahtnoo	9			
DomSito	wateri	gnines	<u>s</u>	Docomio	in	
Permeability seems to be low due to However, the existing of unconsolidate carefully treated. Leakage from the found shall be carefully checked.	argillaceous rocks. Ind material may be lation of saddle dam	Basically it seems to be no problem.				
note: Lu; Lugeon Unit						
	<u>Stab</u>	<u>oility</u>				
Dam Site			Reservoir			
Foundation is generally weathered very much and loose. Their stability shall be checked.		Schist in this area is generally weathered and loosened deeply and sometimes forms steep slope. Their stability shall be checked.				
Construction Material						
Earth Material: Colluvial deposits on the s Rock Material: Black Limestone outcropp Sand & Gravel Material: River deposits a	slope= volume is not s ping at middle slope nd Terrace deposits	ufficier	nt; Terrace depo	osits (silty port	ion)	
Study Level Preliminaire						
Existing Geotechnical Investigation:	12 Cuk D 2)					
Drilling: Nos 16=690m (Dam Site 13 Sub-Dam 3)						

Seismic Exploration: (10 lines), Resistivity (5 lines)

Adit: (Both Banks 50m)

Test Pit (P) & Trench (T): T: Nos.1 (Right Bank), P: Nos.19

Laboratory Tests:

(Gradation, Atterberg, Metilen Blue, Sand Equivalent, Los Angels & Deval, Franklin, Alkali Reaction)

20, <u>Sidi Abbou</u>	River Lebene		Zone I			
Province: Taounate	Cercle: Ain Aicha		Commune:	Beni Frassene		
Topo-Map (1/50000): TISSA	X : 585,000	Y : 42	4,700	Z : 250		
Physiological Condition: Located in the	ne southern Rif regio	on where is usually	composed of	gentle hills and plateaus,		
sometimes of very rocky hills of limeston	2 .					
Geological Province: The border of Preri	f and Mesorif	Location: Approx. 3	30 km WSW f	rom Ain Aicha		
General Geology: Southward is Prerif di Nappe and Upper Cretaceous. Northw	stributing Ouazzane ard is Mesorif and	General Stratigrap Ouazzane Nappe	<u>bhy</u> :			
partly Triassic is distributing.	Sic is distributing. Triassic					
curving towards South, however the origination of the south Intrarif	e: Basement rocks form Island arc Upper Cretaceous: marl h, however the orientation around dam Lower to Middle Cretaceous: limestone bars					
hills.	rappe forms many	Whotele. Indi				
Geology of Reservoir Area: Bedrock is composed mainly of Marl interbedded with Limestone. River deposits and Alluvial terrace deposits are widely extending in the reservoir area.						
Geology around Dam Site: Bedrock is slightly crystallized Limestone sometimes forming Limy Conglomerate and Limy						
Geomorphology along Dam Axis: RG: 60 ~ 80, RD: 45 ~ 90, FD: 5 ~ 10m						
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	D; Width of Valley Bottom, I	PD; Inclination of R	River Bed		
<u>Geology along Dam Axis</u>						
Left Abutment	River	Bed	R	light Abutment		
Left Bank is overhung. In the upper portion, rocks are weathered then joints are open and filled with muddy materials. While, lower portion is very fresh, hard, and closed joints relatively.	Gravel or sometim depression of bedroo Maximum grain size 20 cm, while the ro size. Bedrock is fre their joints are closed	hes sands fill the ck in a small scale. e of river deposits is pock block has 2 m esh, very hard and twell	Joints are d with gradie downstream developing orienting N1	Subscripting towards river side $150^{\circ} \sim 70^{\circ}$. In the side, very big karsts exists along the Joint or Fault $0^{\circ}W40^{\circ}W.$		
note: Ep: Thickness, Vp: Seismic Transversal Velocity in	(km/sec).					
Remarks of Dam Foundation : The port	ion along some discon	tinuity in the Limesto	one develops v	ery large karsts.		
	Waterti	ghtness				
Dam Site			Reservo	ir		
Though Limestone at dam site is hard large karsts are observed. Then careful necessary.	hough Limestone at dam site is hard and massive, partly arge karsts are observed. Then careful study on leakage is ecessary.			Both Banks of reservoir area continuing from dam site are composed of Limestone where some large karsts develop specially in some area. For leakage control, their distribution must be carefully studied.		
note: Lu; Lugeon Unit						
	Stab	<u>ility</u>				
Dam Site Reservoir				ir		
Basically it seems to be no problem. Basically stable.						
Construction Material						
Rock Material: Limestone around dam sit Sand & Gravel Material: River deposit in Earth Material: Top soil distributing on the	e the reservoir area e bedrock of Marl in th	ne reservoir area and i	n the downstre	eam side		
Study Level Preliminaire- en co	ours					

Table I2.1 Summary of Geology around and at Respective Dam (21/26)

Table I2.1 Summary of Geology around and at Respective Dam (22/26)

21, <u>Sidi el Mokhi</u>	River Amzez (Ou	errha)		Zone I		
Province: Taounate	Cercle: Sidi Mokhi			Commune:	Sidi Mokhi / Timezgana	
				(Galaz)		
Topo-Map (1/50000): RHAFSAI	X : 558,450		Y : 44	8,300	Z : 257	
Physiological Condition: Located in the	southern side of Rif re	gion.				
Geological Province: Northern side of ri	ver basin is Mesorif,	Loca	tion: Very near	Galaz village		
and the southern side is Prerif.						
<u>General Geology</u> : Homogeneous rock fa which are folded and overthrusted by the Pliocene to the mountain peak ward.	acies of Intrarif zone, e mass of Triassic to	<u>General Stratigraphy</u> : Lias to Middle Cretaceous: marly limestone interbedded with Flysh				
Geological Structure: Generally the are	ea is strongly folded	Uppe	r Cretaceous: r	narl	0. 1.1 1	
and faults with shear zone are observed at	many place.	Lowe	r Eocene: mas r Eocene: mer	sive limestone	or flint-like rocks	
		Oligo and c	cene and Low	ver to Middle	Miocene: schist, sandstone	
Geology of Reservoir Area: Bedrock is	of Marl, calcareous S	late and	d Limestone. 7	Terrace deposit	s and Colluvial deposits are	
extending.	s composed of laver	ad bla	ok Limestona	and calcarao	us Slate of Line to middle	
Cretaceous. Bedding is N60°E,35°S dip coarse across just unstream of dam axis.	ping to the downstrea	m. Sor	ne faults may	exist crossing	at a right angle to the river	
Geomorphology along Dam Axis: RG:	30, RD: 15, FD: 35m	l				
note: RG; Slope Angle of Left Bank (°), RD; Slope Ar	gle of Right Abutment (°), F	D; Width	of Valley Bottom, 1	PD; Inclination of F	River Bed	
	<u>Geology alor</u>	ıg Dan	<u>1 Axis</u>			
Left Abutment	Rive	Bed		R	Right Abutment	
$2 \sim 5$ meters of Colluvial deposits covers bedrock. Bedrock is massive, medium hard, and closely jointed black Limestone and calcareous Slate. Bedding is delicately changing due to small folding. The thickness of weathered zone is $1 \sim 2m$.	River deposits cover the thickness is 2 ~ 5m.		edrock. Their	Bedrock 1s sa	ame as Left Bank.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	n (km/sec),					
Remarks of Dam Foundation: Some fa	ults are inferred at just	upstrea	am of dam axis	s crossing at a	right angle to river course.	
	Waterti	ghtnes	S			
Dam Site		Reservoir				
Partly natural hole along bedding plane c careful study on leakage is necessary.	an be observed, then	Since the reservoir area is mainly composed of Marl, the watertightness is considered good.		ly composed of Marl, the		
note: Lu; Lugeon Unit						
	<u>Stab</u>	<u>ility</u>				
Dam Site		Reservoir				
At just upstream side of Left Bank, large slope failure is observed. Stability along inferred fault located at just upstream of dam axis shall be checked.		It is necessary to be checked about the slakability of Marl.				
Construction Material	Construction Material					
Earth Material: located at 3km from dam Rock Material: Limestone around dam sit Sand & Gravel Material: River deposits,	site e volume is not sufficien	t				
Study Level Preliminaire						

Study Level

Existing Geotechnical Investigation:

Test Pit (P) & Trench (T): P: Nos.3

22, <u>N'Ouantz</u>	River N'Ouantz			Zone III	
Province: Beni Mellal	Cercle: El Ksiba			Commune:	Tizi N'zly (Aghbala)
Topo-Map (1/50000): AGHBALA	X : 471,530 Y : 200		6,600	Z : 219	
Physiological Condition: Located at the border of Moyen Atla			s and Haut Atlas. Dam site is just in the side of Haut Atlas.		
Geological Province: The border of Mo	yen Atlas and Haut	Location: Approx. 4 km NW from Rhafsai			n Rhafsai
Atlas Central					
General Geology: It is characterized by	large subsidence in	<u>General Stratigraphy</u> :			
the time of Jurassic and Eo-Cretaceou deposits of through continental or sub-cor	us followed by the	Jurassic and Eo-Cretaceous: reddish detrific deposits.			
Geological Structure: Around dam	site. the strata is				
monoclinic dipping gently towards the o	downstream and left				
bank side. However regionally observir	ng, it is in the large				
tolded zone orienting its axis E-W, and ov	erfolding and nearly				
intruded somewhere. The large fault or	ienting ENE-WSW				
exists, and some discontinuous lines orig	enting N-S develops				
well.	v ·				
Geology of Reservoir Area: Bedrock is	Silty Sandstone which	is cove	red by Alluvia	l deposits and	Colluvial deposits.
Geology around Dam Site: Bedrock 18	the alternation of red	Mudsto	one and Sands	tone of Jurassi	c of which the thickness of
Geomorphology along Dam Axis: RG:	average 20 RD aver	age 21	FD: 50 m		
note: RG; Slope Angle of Left Bank (°), RD; Slope An	gle of Right Abutment (°), F	FD; Width	of Valley Bottom, I	PD; Inclination of R	liver Bed
Geology along Dam Axis					
Left Abutment	Rive	rBed		R	light Abutment
Colluvial deposits are very thin	Alluvial deposits co	over be	edrock. They	Few meters	of Alluvium composed of
distributing locally. Bedrock is	consist mainly of s	silt of 1	$1.5 \sim 2.0 \text{m}$ in	sand and gr	avel with some rock bloc
monoclinic Mudstone is dominant	at both bank sides	comp	also develop	Rank	ck. Bedrock is same as Leit
monocimic. Micistone is commun.	and gravel with silt.				
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	n (km/sec),				
Remarks of Dam Foundation : The over	rburden of Right Banl	k is thic	k, and bedrocl	k is composed	of mainly Mudstone which
is not so hard enough.	Watart	ahtmoo	a		
	watert	gnunes	<u>s</u>		•
Dam Site	·····	Desia	-11 :4	Reservo	If
argillaceous to pelitic rocks. However it	namy composed of n case Limestone is	L ime	ally it seems	mewhere leakage may happen. Then their	
existing, careful consideration shall be need	cessary.	distril	oution shall be	checked carefu	ally.
note: Lu; Lugeon Unit					-
	<u>Stab</u>	<u>oility</u>			
 Dam Site			Reservoir		
Basically it seems to be no problem.			Basically stable.		
Construction Material					
Earth Material: cohesive soils being sedin	nent on the valley bott	om; en	ough volume		
Rock Material: Limestone around the site					
Sand & Gravel Material: no suitable mate	mai				
Study Level APD					
Existing Geotechnical Investigation:					

Table 12.1 Summary of Geology around and at Respective Dam (23/26)

Test Pit (P) & Trench (T): P: Nos.5

Table I2.1 Summary of Geology around and at Respective Dam (24/26)

23, <u>Igui N'Ouaqqa</u>	River	Aguerd (Nokheil)	Zone IV				
Province: Taroudant	Cercle	Old Berhil	Commune: Ida c	ou Gailal / Talg	jount (Agoumadane)		
Topo-Map (1/50000): IGLI		X : 187,000	Y : 41	8,000	Z : 717		
Physiological Condition: Locate	ed in the s	southern slope of Hau	t Atlas Occidental.				
Geological Province: Southern st	Geological Province: Southern slope of Haut Atlas Occidental				Location: 50 km NE of Taroudant		
General Geology : The area of Haut Atlas Occidental is composed of Precambrian basement and Paleozoic folded in the time of Hercynian Orogeny and intruded by Granite. In the Atlantic Ocean side, Haut Atlas Occidental calcaire exist and is separated into two by Argana Triassic gorge which are generally composed of Upper Jurassic to Lower Cretaceous followed by Upper Cretaceous to Eocene. Geological Structure : Dam site is located at the northern end of anticlinal fault. The central area of the fault has a basement of Paleozoic composed of transgressional limestone, sandstone and mudstone interbedded gypsum. Atlas Fault (WSW - ENE) is generally reverse type overthrusting dominantly to North. The contact of South Atlasic border and Cretaceous can be described as South Atlas Line orienting NE-SW and EW.			General Stratigraphy: Paleozoic basement: Tichka Granite dome surrounded by calcareous area. Lower Cretaceous: mudstone, marly limestone. Turonien: dolomitic limestone bar, thin limestone and flint. Upper Cretaceous: mainly marl, marly limestone Maestrichian: sandstone Pliocene to Quaternary: reddish mud and gravel, lagoonal limestone and conglomerate				
yellowish to reddish color. Fine of dipping towards the upstream arc Geology around Dam Site: D	conglome ound 25° am site	rate, Sandstone, and Terrace deposits are is situated in the gor	Mudstone is also exis existing widely. ge of Limestone Ba	ting. Bedding	of Cretaceous formations is with Marl of Cretaceous.		
Bedding is N75 ^o ~ 90 ^o ,20 ^o ~ 25 Geomorphology along Dam Ax	^O N dippi <u>xis</u> : RG: 7	ng towards the upstread $70 \sim 90$, RD: $70 \sim 90$	am. , FD: approx. 20m				
note: RG; Slope Angle of Left Bank (°), RI	D; Slope An	gle of Right Abutment (°), F	FD; Width of Valley Bottom, I	PD; Inclination of R	iver Bed		
Left Abutment		<u>Geology alor</u> Rive	r Bed	R	ight Abutment		
No top soil. Composed of many type of Lin Marl and mudstone. Mudst usually layered very thin, wh layer of Limestone and Marl i 100cm thickness, sometimes rea ~ 2m. Many karsts develop bedding plane and in some layer blocs are accumulated at the foot note: Ep; Thickness, Vp; Seismic Transversa	nestone, one is ile unit is 40 ~ ching 1 along s. Rock of cliff. 1 Velocity in	Some meters of R bedrock probably s to 10 m thickness. rock blocs, sand and type of rocks such a granitic.	iver deposits cover sometimes reaching It is composed of d gravel of so many s quartzite, schist, or	No top soil. Bedrock is Limestone ba are also obser	same as Left Bank. ars are dominant and karsts rved at many place.		
Remarks of Dam Foundation:	Karsts ar	e observed at many p	lace. Moreover, 2 gro	ups of fault (or	he is vertical orienting $N160^{\circ}$		
$\sim 180^{\circ}$ and parallel to water con are open, some are sheared.	urse, and	another is dipping ste	\approx p orienting N100° ~	$\sim 130^{\circ}$) are exi	sting and joints along them		
	d e /	Watert	ightness				
Dam S So many caves, cavities, and hol Leakage is the most considerable note: Lu; Lugeon Unit	es are ob in this a	served due to karsts. ea.	Limestone existing may have many kars	in Both Banks sts so that leaka	r s continuing from dam site age may probably happen.		
		<u>Stab</u>	<u>pility</u>				
DamS	Dam Site Reservoir			ir			
Basically it seems to be no proble	em.		Basically stable.				
Construction Material	lenosite c	of Forach river (the d	wastraam zone of A	mard river 15	Izm downstream from dam		
site) Rock Material: Limestone around dam site Earth Material: no suitable material							
Study Level APD							
Existing Geotechnical Investiga Drilling: Nos. 7=442.5m	a tion : (Dam Si	te=RD3, OD2, RG	2)				

Adit: (Right Bank 60m)

Laboratory Tests:

Drilling Cores (Specific Gravity & Absorption, Super Sonic, Form Coef., Unconfined Compression) River deposits (Gradation, Sieve in situ, Sand Equivalent, Los Angels)

24, Amont Abdelmoumen	River Issene		Zone IV		
Province : Taroudant	Cercle: Argana		Commune:	Argana (Aoia Tazouent)	
Topo-Map (1/50000): ARGHANA	X : 145,400	Y : 42	7,000	Z : 780	
Physiological Condition: Located at the	upstream of Large A	bdelmoumen Dam o	n the river for	ming Argana Triassic gorge	
orienting NE-SW in the Haut Atlas Occidental.					
Geological Province: Western side of Haut Atlas Occidental Location: 4 to 5 km upstream from Argana					
<u>General Geology</u> : Triassic detritic continental along ancient depression area, gorge. In the right bank side, Basalt sheets <u>Geological Structure</u> : Dam site is loca Triassic Gorge. The strata is monoclinic downstream. Some faults orienting E-V	General Stratigrap Permo-Triassic: con Basalt dyke.	<u>bhy</u> : tinental depos	its		
Geology of Reservoir Area: Bedrock is a	almost same as dam si	te.			
Geology around Dam Site: Bedrock is the alternation of Sandstone, Mudstone, and Conglomerate of Triassic. Sandstone and Conglomerate are medium hard, while Mudstone is relatively soft. Some joints in Conglomerate are open. Some Mudstone layers have slumping structure. Geomorphology along Dam Axis: RG: 35 ~ 40, RD: 30 ~ 35, FD: approx.100m					
note: RG; Slope Angle of Left Bank (°), RD; Slope An	igle of Right Abutment (°), F Geology alou	⁻ D; Width of Valley Bottom, I ng Dam A vis	PD; Inclination of I	River Bed	
Left Abutment	<u>Geology alor</u>	r Red	F	Right Abutment	
No top soil. The thickness of Conglomerate is more than 5m, while unit layer of Sandstone and mudstone is 0.5 ~ 1.5m. Bedding is monoclinic (N20°E,20°W) dipping towards the downstream. Any folding cannot be observed. One very clear big fault is observed where formations are displaced more than 5m. note: Ep; Thickness, Vp; Seismic Thansversal Velocity in	River deposit is relatively few and bedrock outcrops to and fro. Deposits are almost of rock blocs and cobbles. Sands and silts are very few.		No top soil. Bedrock is s is observed 3m. Sheared lower portio slope failure	ame as Left Bank. One fault displacing formation 2 ~ l zone is very small. In the on of abutment, the ancient exists.	
Remarks of Dam Foundation : In Cong	omerate layer, some c	open joints are observe	ed.		
D (1)	Watert	ightness			
Dam Site In Conglomerate layers, bedding planes are sometimes open, and layer itself is a little porous resulting highly permeable. To avoid leakage, the distribution of Conglomerate shall be carefully studied.		Reservoir Though the Conglomerate layers in the area may be permeable, its distribution is limited in the reservoir. Then leakage from reservoir may not be so significant.			
note: Lu; Lugeon Unit					
	<u>Stab</u>	<u>pility</u>			
Dam Site		Reservoir		bir an	
One relatively large slope failure is obser- is not so old. Its stability shall be carefully	Some clear fault lineaments are observed in the area. The slope stability along these lineaments shall be carefully checked.				
Construction Material					
Sand & Gravel Material: River deposits; e Rock Material: Sandstone and Conglome Earth Material: the soils distributing around	Sand & Gravel Material: River deposits; enough volume Rock Material: Sandstone and Conglomerate around dam site; not enough strength Earth Material: the soils distributing around the river from right to reservoir area				
Study I aval Dmliminaira an a	011100				

 Table I2.1
 Summary of Geology around and at Respective Dam (25/26)

Study Level Preliminaire- en cours

Table I2.1 Summary of Geology around and at Respective Dam (26/26)

25, <u>Sidi Abdella</u>	River Ouaar (Sou	ss)	Zone IV		
Province: Taroudant	Cercle: Tamaloukt		Commune:	Ait Iga (Ouarhenchoucht)	
Topo-Map (1/50000): TAMALOUKT	X : 171,700	Y : 40	8,600	Z : 478	
Physiological Condition: Located in the southern slope of Haut Atlas Occidental.					
Geological Province: Southern slop	e of Haut Atlas	Location: Approx.	22 km from A	had Imoulass Souk located	
Occidental		on the Taroundant -	Tamaloukt roa	ıd	
General Geology: In the central	part, Schist of	General Stratigraphy:			
Cambro-ordovicien forms the basement Cretaceous distribute. The strike and dip arc -90° (parallel to dam axis), $25^{\circ} \sim 35^{\circ}$ to the	anticline, and dam site is N75° downstream.	Lower Cretaceous to Turonien (Upper Cretaceous): limestone, fine conglomerate, sandstone and mudstone. Cambro-ordovicien: shale interbedded with sandstone			
Geological Structure: South Atlas Fault (WSW-ENE) is reverse				
type overthrusting dominantly to North partly w The contact of South Atlasic border and Cretace	ith secondal shear zone.				
South Atlas Line orienting NE-SW and EW.	Cretaceous is uniformly				
folded and dislocated vertically by the faults	orienting E-W which				
Geology of Reservoir Area: Right hanks	lone is generally gentle	e while left bank slope	is steen Creta	ceous rock is extending in the	
reservoir area characterized red color comp	osed of generally brittle	e and high erodibility c	of Shale, Sands	tone and Fine Conglomerate,	
partly interbedded with Limestone Bar sor and schistosity is N80°, 30° ~ 35°. Terrace d	netimes suffered karst leposits extend mainly a	erosion. Bedding is di along right bank side. F	pping towards River deposits a	the downstream around 30° re relatively few.	
Geology around Dam Site: Bedrock is	mainly Shale interb	edded with few Sand	lstone layer o	f Paleozoic. Doleritic dyke	
intrudes obliquely crossing river course. karst erosion. Bedding of Paleozoic is N3	Limestone and Marl DW,20E	of Mesozoic lye on t	he Paleozoic,	which are very suffered by	
Geomorphology along Dam Axis: RG: 4	40 ~ 60 , RD: 30 ~ 90 gle of Right Abutment (°) E	, FD: 15m, PD: avera	ge 2.7% PD: Inclination of R	Piper Bed	
	<u>Geology alor</u>	ng Dam Axis			
Left Abutment	Rive	rBed	R	Sight Abutment	
Bedrock is Shale intruded by Doleritic dyke overlain by Dolomitic Limestone	of few meters th	by Alluvial deposit	10 ~ 20m th accumulate	at the foot underlain by	
interbedded with red detritics (fine	composed of rock	blocs and cobbles,	Terrace depo	osits where thickness is 10	
Conglomerate, Sandstone, and	and sandy layers. N	Aaximum grain size	~ 15m. B	edrock is Shale partly	
Mudstone) where thickness of unit layer is in the order of centimetric to	1s around 1m, me	dium size is 20~	Sandstone S	hale is generally very brittle	
decimetric. Limestone is sometimes	Soem.		and weak.	Very karsit-erosioned	
suffered karst erosion.			Limestone fo	orms right-standing cliff.	
note: Ep; Thickness, Vp; Seismic Transversal Velocity in	(km/sec),	ly very brittle and w	ook Furtherm	ore Mesozoic Limestone is	
very suffered by karst erosion.	ie bedrock is general	Ty very billute and we		ore mesozoic Linestone is	
	Waterti	<u>ghtness</u>	D	•	
Left Bank: Generally permeability is low: av	veragely I u= 1 ~ 2	In the case karst er	Reservo	III stone exists in the reservoir	
River Bed: Deeper than 20 m, $Lu= 3 \sim 9$; Shallow	ver portion, Lu= $10 \sim 28$	area, leakage may b	e happen so th	hat their distribution may be	
Right Bank: Upper abutment is compo	sed of highly karst	carefully checked.	11	2	
erosioned Limestone so that leakage may be	highly considerable.				
noie: Lu; Lugeon Unit	Stab	oility			
Dam Site			Reservo	ir	
Both Banks are right-standing and Talus of those feet. Their stability shall be checked	leposits is existing at	Left Bank in the res	ervoir area is s	teep. Their stability shall be	
Construction Material	•	CHECKEU.			
Sand & Gravel Material: River deposits around dam site; Terrace deposits in the right bank side of dam site					
Kock Material: Limestone around dam site Earth Material: Talus deposits exists at the foot of right bank lain by Terrace deposits: many rock fragments are included and clay percentage is low					
(Purchase Material): Earth Material; approx. 12 km downstream from dam site. 4 location					
Sand & Gravel Material: 2 location; 1, 6km downstream from dam axis, River deposits of Ouaar river; 2, 30km from dam site, river deposits of					
Study Level APD					
Existing Geotechnical Investigation:					
Drilling : Nos.8 (Downstream Site=RD3,OD2,RG3) Nos.9 (Upstream Site=RD• OD• RG each3)=492.2m					
IEST FIT (P) & TRENCH (1) : 1: NOS.1 (Right Bank), P1: NOS.6 (Upstream Site; RD Nos.4, RG Nos.2), P2: Nos.15 (Borrow Area = Earth)					
Laboratory Tests:					
Drilling Cores (Density, Super Son P2 samples (Gradation, Attenhang	ic, Form Coef., Unco	Direct Shear Odor	ter Dormachi	ity)	
r 2 samples (Oradation, Atterberg, Density, Compaction, Direct Snear, Odometer, Permeability)					

Table I5.1 Existing Material Data for Respective Dam Construction (1/9)

1 Neckor

	-Co	barse Aggregate) -		
Dam Axis Zone					
Alluvium					
<granularity></granularity>	<0.0 v/				
>2mm 0.08-2mm	19.3 %				
<0.08mm	12.7 %				
<permeability></permeability>					
W _{opt} :	6.7 %				
D _{max} :	2.2 t/m ³				
k:	1.10*10 ⁻³ -1.89*10 ⁻⁷ cm/s				
Emprunt Zone					
Limon					
Locality	Upstream	m Side		Downst	tream Side
<density></density>	3				
: Natural Water Content>	1.61-1.78 t/m ³			1.56-1.57 t/m ³	
W:	16-21 %			22-23 %	
<granularity></granularity>					
>2mm	7-41 %			1 %	
0.08-2mm	15-22 %			2-5 %	
<atterberg's limit=""></atterberg's>	41-74 70			94-97 70	
W _L :	37-47 %			48-52 %	
Ip:	18-22			24-26	
<procter test=""></procter>	-			-	
d _{max} :	1.85 t/m^3			1.76 t/m^3	
W _{opt} : <confined compressive<="" td=""><td>15 %</td><td></td><td></td><td>20 %</td><td></td></confined>	15 %			20 %	
Strength>					
After Procter's Test					
TUU					
C:	0.3 MPa			- MPa	
: TCD	6			-	
C':	0.0 MPa			- MPa	
1:	11 '			- *	
TCU+U					
CCU:	0.0 MPa			0.0 MPa 0.1 MPa	
Cur	12			0.1 MPa 17	
':	15			29	
:	-			0.4	
<compressibility< th=""><th>TT</th><th></th><th></th><th>D</th><th></th></compressibility<>	TT			D	
and Permeability>	w	$W \perp 2\%$		W	W $\perp 2\%$
W	12-16 %	12.5-16	%	16 %	18 %
(Wet):	2.12-2.26 t/m ³	2.16-2.26	t/m ³	2.17 t/m ³	2.21 t/m^3
(Drv)	$1.86-1.98 \text{ t/m}^3$	1.86-1.98	t/m ³	1.87 t/m^3	1.87 t/m^3
c:	64-196 MPa	79-108	MPa	294 MPa	157 MPa
I _c :	0.053-0.078	0.078-0.1		0.065	0.08
g:	15-118 MPa	15-118	MPa	167 MPa	34 MPa
I _g :	0.015-0.042	0.015-0.031		0.051	0.035
K:	7*10 ⁻⁸ -2.10*10 ⁻⁹ cm/s	2.4*10 ⁻⁷ -7*10 ⁻⁹	cm/s	1.2-4.8*10 ⁻⁸ cm/s	3.3*10 ⁻⁸ -6*10 ⁻⁹ cm/s
Cv:	1*10 ⁻³ -2.65*10 ⁻⁴ cm ² /s	1.1*10 ⁻³ -7*10 ⁻⁵	cm ² /s	$5-5.7*10^{-4}$ cm ² /s	$2.6-4.45*10^{-4} \text{ cm}^{2}/\text{s}$
 Caco- 	10tal	Upstream Site		Downstream Site	
MgCO ₂	<u> </u>				
Silica-Alumina	79.6 %				
CaSO ₄ , H ₂ O	0.2 %				
H ₂ O	3.6 %				
Organic Material	0.7 %	0.6	%	0.34 %	
Reliquat Oxidized Ferite	0.1 %				
Alluvium	7.0 /0				
<granularity></granularity>	Upstream Site	Downstream Site			
>0.08mm	4-7 %	3-6	%		
0.08-2mm	16-23 %	15-25	%		
2mm< <sand equivalnet=""></sand>	/1-/9 %	/2-81	%		
Es	28-44	37-43			
<procter test=""></procter>	-				
d max:	2.091-2.258 t/m3				
W _{opt} :	5.0-6.5 %				
<direct shearing="" test=""></direct>					
W ·	Q n/				
" opt	0 %0				
CU:	0.03 MPa				
:	44				

2 Tizi Mellal

-Rock Material-				
<density></density>	Sandstone/Quartzite			
:	2.6 t/m^3			
<porosity></porosity>				
n:	1.8 %			
<unconfined compressive="" strength=""></unconfined>				
$q_{U(Dry)}$:	58.0 MPa			
$q_{U(Wet)}$:	54.0 MPa			
<franklin's test=""></franklin's>				
Is:	7.2 MPa			
<longitudinal and="" transverse="" velocity="" wave=""></longitudinal>				
V ₁ :	3750-6230 m/s			
(V ₁ : Quartzite)	6000 m/s			
Vt:	2420-3900 m/s			
<dynamic modulus="" young's=""></dynamic>				
E _{dyn} :	64 GPa			
-Fine/Coarse Aggregate-				
Alluvium				
<granularity></granularity>				
>2mm	75< %			
<2mm	<20 %			
<atterberg's limit=""></atterberg's>				
W _L :	29-39 %			
Ip:	<12			
<franklin's test=""></franklin's>				
Is:	4-8 MPa			
<deval test=""></deval>				
(25/50mm)	12.0 01			
K _(Dry) :	13.0 %			
R _(Wet) :	9.0 %			
<los angeles="" test=""></los>				
R:	24 %			

4 Ain Kwachiya

-Rock Material-					
	Fresh Schist	Altered Schist			
<density></density>					
Dry:	2.65 t/m^3	2.36 t/m^3			
Wet:	2.74 t/m^3	2.72 t/m^3			
<water content=""></water>					
w:	1.2 %	5.6 %			
<porosity></porosity>					
n:	3 %	13 %			
<unconfined compressive="" strength=""></unconfined>					
$q_{u(Dry)}$:	6.4 Mpa	6.0 Mpa			
q _{u(Wet)} :	0.7 Mpa	2.4 Mpa			
<direct shearing="" test=""></direct>					
C':	0.2 MPa	0.0 MPa			
':	23 °	41 °			
<longitudinal and="" transverse="" velocity="" wave=""></longitudinal>					
V _l :	3679 m/s	2751 m/s			
Vt:	2127 m/s	1599 m/s			
<dynamic modulus="" young's=""></dynamic>					
E _{dyn} :	2593 GPa	2885 GPa			
<poisson's ratio=""></poisson's>					
:	0.35	0.16			

Table I5.1 Existing Material Data for Respective Dam Construction (3/9)

6 Tazarane

-Rock Material-	
<density></density>	
:	2.6 t/m^3
<porosity></porosity>	
n:	4.0 %
<franklin test=""></franklin>	
Is: Schist	2.1 Mpa
<unconfined compressive="" strength=""></unconfined>	
q _U : Schist	45 MPa
-Fine/Coarse Aggregate-	
<granularity></granularity>	
>125mm	37 %
63-125mm	10 %
>63mm	47 %
>20mm	54 %
>2mm	75 %
0.08-2mm	18 %
<0.08mm	7 %
<atterberg's limit=""></atterberg's>	
W _L :	30-39 %
Ip:	16
<deval test=""></deval>	
(25/50mm)	
R _(Dry) :	8 %
R _(Wet) :	3 %
<los angeles="" test=""></los>	
R:	26 %

7 Amezmiz

-Rock Material-					
Density> Schist/Micro Granite					
(Drv):	2.7 t/m^3				
<porosity></porosity>	Schist/Micro Granite				
n:	2.5 %				
<unconfined compressive="" strength=""></unconfined>	Schist	Micro Granite			
q _{U(Dry)} :	22.5±7.1 MPa	101.5±15.0 MPa			
q _{U(Wet)} ;	19.9±6.6 MPa				
<longitudinal and="" transverse="" velocity="" wave=""></longitudinal>	Schist/Mi	cro Granite			
V ₁ :	3854 m/s				
Vt:	2256 m/s				
-Coa	arse Aggregate-				
Alluvium	Zone 1	Zone 2	Zone 3		
<granularity></granularity>					
<.08mm	1-9 %	3-10 %	1-9 %		
<2mm	14-29 %	17-28 %	9-31 %		
<5mm	24-40 %	25-38 %	15-38 %		
>2mm	71-86 %	72-83 %	69-91 %		
>63mm	18-45 %	18-40 %	30-58 %		
>80mm	12-41 %	14-36 %	26-55 %		
<sand equivalnet=""></sand>					
Es:	68±13.8	67±17.7	50±17.5		
<atterberg's limit=""></atterberg's>					
Ip	<12	<11	<14		
<rock type=""></rock>					
Schist: 5/25mm	85 %	80 %	85 %		
Schist: 25/63mm	54 %	66 %	52 %		
Basalt: 5/25mm	6 %	10 %	7 %		
Basalt: 25/63mm	20 %	25 %	32 %		
Quartzite: 5/25mm	7 %	3 %	5 %		
Quartzite: 25/63mm	18 %	- %	16 %		
Granodiorite: 5/25mm	2 %	7 %	3 %		
Granodiorite: 25/63mm	8 %	9 %	- %		
<deval test=""></deval>					
R:Dry	6.8 %	10.0 %	16.5 %		
R:Wet	3.9 %	5.2 %	5.8 %		
<los angeles="" test=""></los>	70.00	70.04	10.00		
R: 25/50mm	53 %	50 %	42 %		
K: 16/31.5mm	34 %	32 %	27%		
K: 6.3/10mm	28 %	27 %	22 %		
<deval lest=""></deval>	7.0/	10.0/	16.04		
$\kappa_{(Dry)}$:	/ %	10 %	16 %		
R _(Wet) :	4 %	5 %	6 %		

Table I5.1 Existing Material Data for Respective Dam Construction (5/9)

10 Timkit

-Fine Aggregate-				
<bulk density=""></bulk>	Sandstone/Quartzite			
(Dry):	18.8 t/m^3			
(Wet):	19.9 t/m ³			
<water content=""></water>	Sandstone/Quartzite			
w:	6 %			
<granularity></granularity>	Sandstone/Quartzite			
>2mm	3 %			
0.08-2mm	13 %			
<0.08mm	84 %			
<0.002mm	13 %			
<attergerg's limit=""></attergerg's>	Sandstone/Quartzite			
W _L :	41 %			
W _P :	20 %			
Ip:	22			

-Coarse Aggregate-					
<bulk density=""></bulk>	Zone A	Zone B			
(Dry):	2.67 t/m^3	2.67 t/m^3			
<granularity></granularity>	Zone A	Zone B			
>2mm	81 %	87 %			
0.08-2mm	17 %	9 %			
<0.08mm	2 %	5 %			
<0.002mm	0 %	1 %			
<sand equivalnet=""></sand>	Zone A	Zone B			
Es:	71	20			
<attergerg's limit=""></attergerg's>					
W _L :	25 %				
W _P :	18 %				
Ip:	8				
<deval test=""></deval>					
R _(Dry) :	14.9 %				
R _(Wet) :	7.5 %				
<los angeles="" test=""></los>					
R	24.1 %				
<chemical composition=""></chemical>					
CaCO ₃	59.0 %				
MgCO ₃	13.7 %				
Silica-Alumina	25.0 %				
SO ₃ ⁻	0.03-0.13 %				
NaCl	<0.02 %				
$CaSO_4, H_2O$	0.3 %				
<alcali-reaction></alcali-reaction>					
Dissolved Silica	68.3 mmol/				
Reduction of Alcaline	4.9 mmol/l				

12 Tiouzzaguine

-Fine/Coarse Aggregate-					
Alluvium					
<density></density>					
:	2.6 t/m^3				
<granularity></granularity>					
>20mm	52.1 %				
>2mm	82.4 %				
0.08-2mm	14.0 %				
<0.08mm	3.6 %				
0.08-0.002mm	2.6 %				
<0.002mm	1.0 %				
<sand equivalnet=""></sand>					
Es	62.4				
<deval test=""></deval>					
(25/50mm)					
R _(Drv) :	22.8 %				
R _(Wet) :	5.4 %				
<los angeles="" test=""></los>					
R:	24.1 %				
<alcali-reaction></alcali-reaction>					
	No-Reaction				
Terrace Deposits					
<granularity></granularity>					
>20mm	0-51 %				
>2mm	5-65 %				
0.08-2mm	35-30 %				
<0.08mm	5-60 %				
0.08-0.002mm	4-48 %				
<0.002mm	1-12 %				
<atterberg's limit=""></atterberg's>					
Ip	NP, 7.9				
<sand equivalnet=""></sand>					
Es	7.7, 58.7				

14 Adarouch

-Rock Material-					
<density></density>	Fine Sandstone	Pelite and Schist	Conglomerate		
:	$2.6 t/m^3$	$2.6 t/m^3$	2.6 t/m^3		
<longitudinal and="" transverse="" velocity="" wave=""></longitudinal>	Fine Sandstone	Pelite and Schist	Conglomerate		
V ₁ :	4026 m/s	3559 m/s	2857 m/s		
Vt:	2776 m/s	2254 m/s	2254 m/s		
<unconfined compressive="" strength=""></unconfined>	Fine Sandstone	Pelite and Schist	Conglomerate		
$\mathbf{q}_{\mathrm{U:}}$	47.0 MPa	22.9 MPa	9.9 MPa		
<residual cohesion=""></residual>					
Cr	0.03 MPa	0.00 MPa	-		
<residual angle="" friction=""></residual>					
r	25.5 °	22.8 '	-		
<cohesion></cohesion>					
C	0.08 MPa	0.04 MPa	-		
<residual angle="" friction=""></residual>					
	23.8	23.8	-		

Table I5.1 Existing Material Data for Respective Dam Construction (7/9)

19 Aoulai

		-Roo	ck Material-					
<franklin test=""></franklin>	Sandstone	Pelite	Schist	Limestone	Limestone Granite			
Is:	3.5 Mpa	3.0 Mpa	3.0 Mpa	2.2 Mpa	7.5 Mpa			
-Fine/Coarse Aggregate-								
Alluvium								
<granularity></granularity>								
>20mm	#### %							
<5mm	#### %							
>2mm	#### %							
0.08-2mm	#### %							
<0.08mm	8.0 %							
<atterberg's limit=""></atterberg's>								
W _L :	#### %							
W _P :	#### %							
Ip:	####							
<sand equivalnet=""></sand>								
Es:	####							
<deval test=""></deval>								
R _(Dry) :	7.8 %							
R _(Wet) :	2.9 %							
<los angeles="" test=""></los>								
R:	#### %							
<alcali-reaction></alcali-reaction>								
	No-Reaction							

23 Igui N'Ouaqqa

-Ro	ock Ma	terial-						
	Unit	A'	Unit	A	Unit	t B	Gyp	sum
	Calca	ireous	Lime	estone	Sanc	lstone		
	Sand	stone	В	Bar	with A	Argilite		
	with	Marl			and	Marl		
<density></density>								
:	2.3	t/m ³	2.4	t/m ³	2.3	t/m ³	2	t/m ³
<porosity></porosity>								
n:	20.0	%	11.3	%	18.5	%	13	%
<unconfined compressive="" strength=""></unconfined>								
$q_{U(Dry)}$:	10.7	MPa	22.5	MPa	30.0	MPa	18.8	MPa
E _(Dry) :	10.0	GPa	26.5	GPa	15.0	GPa	19.0	GPa
$q_{U(Wet)}$:	-		17.6	MPa	-	-	10.3	MPa
E _(Drv) :	-		29.0	GPa	-	-	13.5	Gpa
<longitudinal and="" transverse="" velocity="" wave=""></longitudinal>								Â
V _{l(Dry)} :	3581	m/s	4383	m/s	4714	m/s	4,560	m/s
Vt _{(Drv}):	2483	m/s	2398	m/s	2750	m/s	2,933	m/s
V _{1(Wat}):	-		3976	m/s	-	-	4.161	m/s
Vt _{ave} :	-		2308	m/s	_		2.525	m/s
<pre></pre> <pre><</pre>			2000				2,020	
Edun(Dra):	28	GPa	47	GPa	42	GPa	39	GPa
E_{1}			46	GPa			33	GPa
Zdyn(wet).	rso A a	aroat		oru	1		55	01 u
Oued Farent	ISC Ag	gregan	-					
 Coranularity> Coranularity> 	10	0/						
>00mm	19	70 0⁄2						
>2011111 >2mm	40	70 0/2						
<80 µ m	5	/0 %						
<sand equivalnet=""></sand>	5	/0						
Es:	66							
<micoro-deval test=""></micoro-deval>	00							
R _{(Wat}):	13	%						
<los angeles="" test=""></los>		,.						
R	17	%						
Oued Souss								
<granularity></granularity>								
Sand: 5/16mm	40±11	%						
Gravel: 5/16mm	12±3.7	%						
Gravel: 16/25mm	10±2.8	%						
Gravel: 25/63mm	25±5.3	%						
Gravel: >80mm	9±4.2	%						
<micoro-deval test=""></micoro-deval>								
R _(Wet) :	7	%						
<los angeles="" test=""></los>								
R	15	%						

25 Sidi Abdellah

$\begin{array}{ c c c c c } \hline 2.59 \pm 0.07 \ tm^3 \\ \hline \begin{tabular}{ c c c } \hline \hline \begin{tabular}{ c c } \hline \hline \hline \begin{tabular}{ c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$e^{\text{Porosity>}}$ 3.8±2.65 % $e^{\text{Orosity>}}$ 3.8±2.65 % $e^{\text{Orosity>}}$ 3181-5355 m/s V_i : 2122-3385 m/s $e^{\text{Orosity>}}$ 30±13 MPa 32±17 MPa q_{UDyy} : 30±13 MPa 32±17 MPa q_{UDyy} : 30±13 MPa 32±17 MPa q_{Utwoi} : 31±5 MPa 26±2 MPa $e^{\text{Construct}}$ Terrace, Right Bank Talus, Right Ban (Finer) (Coaser) (Finer) (Co w_i : 3 % 3.3 % 15.1 % 1.7 $e^{\text{Natural Water Content>}}$ 3 % 3.3 % 15.1 % 1.7 w_i : 3 % 3.3 % 15.1 % 1.7 $e^{\text{Natural Water Content>}}$ 1.57 $t'm^3$ $-t'm^3$ 2.02 $t'm^3$ - w_{i} : 1.57 $t'm^3$ $-t'm^3$ 2.02 $t'm^3$ - $e^{\text{Newillity>}}$ 1.96 68 % 1 % 4 $e^{\text{Nemillity>}}$ 1.96 68 % 1 % 4 $e^{\text{Nemillity>}}$ 1.98 68 % 1 % 4 e^{Nety} 2.02 mm <t< td=""><td></td></t<>	
n: 3.8 \pm 2.65 % 2. Origitudin/Transverse Wave Velocity> Vt: 3181-5355 m/s 2. Unconfined Compressive Strength> Limestone Sandstone $q_{0:D,p}$; 3181-5355 m/s Jimestone Sandstone $q_{0:D,p}$; 31 \pm 5 MPa 26 \pm 2 MPa 26 \pm 2 MPa	n: $3.8\pm 2.65 \ \%$ <longitudinal transverse="" velocity="" wave=""> 3181-5355 m/s Vi: 2122-3385 m/s <linestone< td=""> Sandstone $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 13 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 3 \ MPa$ $32\pm 17 \ MPa$ $q_{U(0way)}$: $30\pm 3 \ MPa$ $32\pm 17 \ MPa$ $q_{U(way)}$: $-Aggregate$ <math>(Finer) \ (Coaser) \ (Finer) \ (Co v: $3\% \ 3.3 \ \% \ 1.51 \ \% \ 1.7$ $(Finer) \ (Coaser) \ (Finer) \ 200 \ mm:$ $1.57 \ tm^3 \ - tm^3 \ 2.02 \ tm^3 \ - 5 \ (Finer) \ 200 \ mm:$ v: $3\% \ 3.3 \ \% \ 1.57 \ tm^3 \ - tm^3 \ 2.02 \ tm^3 \ - 5 \ (Gaaser) \ (Finer) \ (Coaser) \ (Finer)$</math></linestone<></longitudinal>	
Vi: 101-333 m/s VI: 2122-335 m/s Standstone q_{UDyp} : 30±13 MPa 32±17 MPa q_{Uwq} : 31±5 MPa 22±2 MPa -Aggregate- Terrace, Righ Bank Talus, Righ Bank (Finer) (Coaser) (Finer) (Coaser) w : 3 % 3.3 % 15.1 % 1.7 % (w_q) : 1.57 vm^3 $-vm^3$ $-vm^3$ (w_q) : 1.52 vm^3 $-vm^3$ $20 tm^3$ $-vm^3$ (w_q) : 1.52 vm^3 $-vm^3$ $20 tm^3$ $-vm^3$ (w_q) : 1.52 vm^3 $-vm^3$ $20 tm^3$ $-vm^3$ (w_q) : 1.9% 68 % 1 % 4 % $\sim 200mn$: 10 % 90 % 4 % 87 % 21 % $< 200mn$: 10 % 68 % 1 % 4 % $\sim 200mn$: 10 % 87 % 21 % $< 008mm$: 49 % 4 % 87 % 21 % $< 0.008mm$: 20 % </td <td>V1: $3101-3333$ m/s 2122-3385 m/s Limestone Sandstone q_{UD7y}; 30 ± 13 MPa 32 ± 17 MPa q_{UD7y}; 30 ± 13 MPa 32 ± 17 MPa q_{UD7y}; 31 ± 5 MPa 26 ± 2 MPa q_{UD7y}; 31 ± 5 MPa 26 ± 2 MPa q_{UD7y}; 31 ± 5 MPa 26 ± 2 MPa (Finer) (Coaser) (Finer) (Co W: 3% 3.3% 15.1% 1.7 3% 3.3% 15.1% 1.7 $(Finer)$ (Coaser) (Finer) (Co w: 3% 3.3% 15.1% 1.7 $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ (Vir) 1.57 tm^3 $-tm^3$ 1.76 tm^3 -1.7 (Org) 1.57 tm^3 -6% 1.9% 4% 2.02 t/m³ $(Vert)$ 1.9% 68% 1% 4%<!--</td--><td></td></td>	V1: $3101-3333$ m/s 2122-3385 m/s Limestone Sandstone q_{UD7y} ; 30 ± 13 MPa 32 ± 17 MPa q_{UD7y} ; 30 ± 13 MPa 32 ± 17 MPa q_{UD7y} ; 31 ± 5 MPa 26 ± 2 MPa q_{UD7y} ; 31 ± 5 MPa 26 ± 2 MPa q_{UD7y} ; 31 ± 5 MPa 26 ± 2 MPa (Finer) (Coaser) (Finer) (Co W: 3% 3.3% 15.1% 1.7 3% 3.3% 15.1% 1.7 $(Finer)$ (Coaser) (Finer) (Co w : 3% 3.3% 15.1% 1.7 $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ $(Finer)$ $(Coaser)$ (Vir) 1.57 tm^3 $-tm^3$ 1.76 tm^3 -1.7 (Org) 1.57 tm^3 -6% 1.9% 4% 2.02 t/m³ $(Vert)$ 1.9% 68% 1% 4% </td <td></td>	
Vit: $2122-305$ Jus Sandstone Queopined Compressive Strength> Limestone Sandstone q_{00poyi} ; 31 ± 5 MPa 32 ± 17 MPa q_{00poyi} ; 31 ± 5 MPa 26 ± 2 MPa -Aggregate- - (Coaser) (Finer) (Coaser) w: 3% 3.3% 15.1% 1.7% $w:$ 3% 3.3% 15.1% 1.7% w_{0} ; 1.57 tm^3 tm^3 1.7% tm^3 (moo) ; 1.52 tm^3 tm^3 2.02 tm^3 tm^3 w_{0} ; 1.52 tm^3 tm^3 2.02 tm^3 tm^3 $20mm$; 10% 90% 5% 64% $220mm$; 10% 90% 5% 64% w_i : $-\%$ $(23)\%$ 33% 23% w_i : 0.006 1.5% 21% w_{i} : 0.006 1.5% 1.70% w_i : 0.006 1.5% <	VI: $2122-3302 \text{ HUS}$ Sandstone $4\text{Unconfined Compressive Strength>} 1 imestone 30±13 MPa 32±17 MPa 9\text{U(wep)}: 30\pm13 MPa 32\pm17 MPa 26\pm2 MPa -Aggregate- (Finer) (Coaser) (Finer) (Coaser) W: 3\% 3.3\% 15.1\% 1.7 Bulk Density> 1.57 \text{ Um}^3 -\text{Um}^3 1.76 \text{ Um}^3 - (bry)' 1.57 \text{ Um}^3 -\text{Um}^3 1.76 \text{ Um}^3 - (bry)' 1.57 \text{ Um}^3 -\text{Um}^3 2.02 \text{ Um}^3 - (bry)' 1.57 \text{ Um}^3 -\text{Um}^3 2.02 \text{ Um}^3 - (bry)' 1.57 \text{ Um}^3 -\text{Um}^3 2.02 \text{ Um}^3 20\text{Dmm}: 1\% 68\% 1\% 4 \sim 20\text{Dmm}: 1\% 68\% 33\% 23 _20\text{Dmm}: -\% (23)\% 33\% 23 _20\text{Dmm}: -\% 2.02 \% 33\% 23 _2\text{Immic -\% 2.33 \text{ Um}^3 $	
$\begin{tabular}{ c $	Childhing Complexity Strength Data Strength Data Strength Data Strength Data Strength Data Strength Data Strength Strength <tre< th=""> Strength Str</tre<>	
31:5 MPa 26:2 MPa -Aggregate- -Aggregate- Counter of the second se	Yutury 31±5 MPa 26±2 MPa -Aggregate- V: 3 % 3.3 % 15.1 % 1.7 $\langle Natural Water Content \rangle$ 3 % 3.3 % 15.1 % 1.7 $\langle W:$ 3 % 3.3 % 15.1 % 1.7 $\langle Ooy)^{i}$ 1.57 tm^3 $-tm^3$ 1.76 tm^3 - $\langle Wei \rangle$ 1.52 tm^3 $-tm^3$ 2.02 tm^3 - $\langle Wei \rangle$ 1.52 tm^3 $-tm^3$ 2.02 tm^3 - $\langle Ooy \rangle^i$ 1.52 tm^3 $-tm^3$ 2.02 tm^3 - $\langle Oog mni:$ 1 % 68 % 1 % 4 $\langle Ool0mni:$ 1 % 68 % 1 % 4 $\langle Ool0mni:$ 49 % 4 % 87 % 21 $\langle Attriberg's Limit \rangle$ $-\%$ (23) % 33 % 23 $ p:$ N.P. N.P. 8 17 10 Other Shearing Test> $C':$ 20.1 kPa	
-Aggregate- Terrace, Right Bank Talus, Right Bank \langle Autural Water Content> 3 % 3.3 % 15.1 % 1.7 % \langle Bulk Density> 3 % 3.3 % 15.1 % 1.7 % \langle Bulk Density> 1.57 \langle m ³ - ℓ m ³ 1.76 ℓ m ³ - ℓ m ³ \langle Oxypi 1.57 ℓ m ³ - ℓ m ³ 2.02 ℓ m ³ - ℓ m ³ \langle Weipi 1.52 ℓ m ³ - ℓ m ³ 2.02 ℓ m ³ - ℓ m ³ \langle OxoBmm: 1.9% 68 % 1 % 4 % \langle OxoBmm: 49 % 4 % 87 % 21 % \langle Attreberg's Limit> - % (23) % 33 % 23 % $ p:$ N.P. N.P. 8 17 10 Object Shearing Test> C: 20.1 kPa - \langle Ngci 12.0 % - - \langle Marxi 1.93 ℓ m ³ - - \langle Marxi 1.20 % - - \langle Ovedometric Test> - - - $g:$ 1.70 Pa - <td>-Aggregate- -Aggregate- V: 3 % 3.3 % 15.1 % 1.7 (Buk Density> 1.57 tm^3 -tm^3 1.76 tm^3 - (w_{et})' 1.57 tm^3 -tm^3 1.76 tm^3 - (w_{et})' 1.52 tm^3 -tm^3 1.76 tm^3 - (w_{et})' 1.52 tm^3 -tm^3 2.02 tm^3 - 1.96 68 % 1 % 4 4 87 % 21 w_{et}' - % (23) % 33 % 23 17 10 W_{L}: - % 0.23 % 33 % 23 17 10 w_{12} N.P. N.P. N.P., 8 17 10 w_{12} 0.1 kPa 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 '</td> <td></td>	-Aggregate- -Aggregate- V: 3 % 3.3 % 15.1 % 1.7 (Buk Density> 1.57 tm^3 - tm^3 1.76 tm^3 - (w_{et})' 1.57 tm^3 - tm^3 1.76 tm^3 - (w_{et})' 1.52 tm^3 - tm^3 1.76 tm^3 - (w_{et})' 1.52 tm^3 - tm^3 2.02 tm^3 - (w_{et})' 1.52 tm^3 - tm^3 2.02 tm^3 - (w_{et})' 1.52 tm^3 - tm^3 2.02 tm^3 - (w_{et})' 1.52 tm^3 - tm^3 2.02 tm^3 - 1.96 68 % 1 % 4 4 87 % 21 w_{et} ' - % (23) % 33 % 23 17 10 W_{L} : - % 0.23 % 33 % 23 17 10 w_{12} N.P. N.P. N.P., 8 17 10 w_{12} 0.1 kPa 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 '	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$ \frac{(Finer) (Coaser)}{(Finer) (Coaser)} $ $ \frac{(Finer) (Coaser) (Finer) (Coaser) (Finer) (Coaser)}{(Finer) (Coaser) (Finer) (Coaser)} $ $ (Finer) (Coaser) (Finer) (Fi$	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$		7
	$ \frac{\langle \text{Natural Water Content }\rangle}{\text{W}:} \qquad (2 \text{ mary}) \qquad (2 m$	ser)
3 % 3.3 % 15.1 % 1.7 % W: 3 % 3.3 % 15.1 % 1.7 % (by): 1.57 t/m^3 - t/m^3 2.02 t/m^3 - t/m^3 (by): 1.52 t/m^3 - t/m^3 2.02 t/m^3 - t/m^3 Sellation 1 % 68 % 1 % 4 % >20mm: 1 % 68 % 1 % 4 % >20mm: 1 % 68 % 1 % 4 % <0 % 90 % 5 % 64 % 90 % 3 % 21 % Charaniarity> 20mm: 49 % 4 % 87 % 21 % Charaniarity> <td>W: 3% 3.3% 15.1% 1.7 $\langle Dray \rangle$: $1.57 \ tm^3$ $-tm^3$ $1.76 \ tm^3$ $-tm^3$ $-tm^3$<!--</td--><td>SC1 /</td></td>	W: 3% 3.3% 15.1% 1.7 $\langle Dray \rangle$: $1.57 \ tm^3$ $-tm^3$ $1.76 \ tm^3$ $-tm^3$ </td <td>SC1 /</td>	SC1 /
	Sult Density> (Dry): 1.57 t/m^3 $-t/m^3$ 1.76 t/m^3 $-$ (Weq): 1.52 t/m^3 $-t/m^3$ 2.02 t/m^3 $-$ 1 % 68 % 1 % 4 >20mm: 1 % 68 % 1 % 4 >20mm: 1 % 68 % 1 % 4 >20mm: 10 % 90 % 5 % 64 <0.08mm:	%
(Dyy): 1.57 t/m^3 $-\text{t/m}^3$ 1.76 t/m^3 $-\text{t/m}^3$ (Web): 1.52 t/m^3 $-\text{t/m}^3$ 2.02 t/m^3 $-\text{t/m}^3$ 20mm: 1% 68% 1% 4% >20mm: 1% 68% 1% 4% >20mm: 1% 68% 1% 4% >20mm: 49% 4% 87% 21% $-\%$ $(23)\%$ 33% 23% Ip: -% $(23)\%$ 33% 23% Ip: N.P. N.P., 8 17 10 Fine Aggregate- C: 20.1 kPa ': 24.8 ' dmax: 1.93 t/m^3 4% dmax: 1.93 t/m^3 4% dmax: 1.20% $6.1*10^7.8.2*10^9$ m/s ig: 0.006 1.5 5.1% 5.9% ePermeability Test> 5.2% 6.0% 5.1% 5.9% *<	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(Wei) : 1.52 t/m^3 $-\text{t/m}^3$ 2.02 t/m^3 $ 1\%$ 68% 1% 4 >20mm: 10% 90% 5% 64 <0.08mm:	t/m ³
(Wep 1.02 cm 1.02 cm 1.04 cm $\leq \operatorname{Cranularity} >$ 1 % 68 % 1 % 4 % 4 % $\geq \operatorname{20nm}$: 10 % 90 % 5 % 64 % $<\operatorname{0.08mm}$: 49 % 4 % 87 % 21 % $<\operatorname{Atterberg's Limit>}$ - % (23) % 33 % 23 % W_L : - % (23) % 33 % 23 % $p:$ - % (23) % 33 % 23 % W_L : - % (23) % 33 % 23 % W_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % W_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % W_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % Q_L : - % (23) % 33 % 23 % Q_L : - % (23) % Q_L : - % (20) % Q_L :	(Wei)* 1.02 cm 2 mm $\geq 20mm$: 1 % 68 % 1 % 4 $\geq 20mm$: 10 % 90 % 5 % 64 $<0.08mm$: 49 % 4 % 87 % 21 $< 40.08mm$: 49 % 4 % 87 % 21 $< 0.08mm$: 49 % 4 % 87 % 21 $< 0.08mm$: 49 % 4 % 87 % 21 $< 0.08mm$: -% (23) % 33 % 23 W_L : -% (23) % 33 % 23 V_L : 20.1 kPa 17 10 - 20.1 kPa 24.8 ' 24.8 ' 24.8 ' $< 200 cmotric Test>$ 1.93 t/m ³ 20 % 20 % 20 % d_{max} : 1.93 t/m ³ 12.0 % 20 % 20 % 20 % < 0.006 1.5 1.5 2	t/m ³
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Solution 1.9.2 1 % 68 % 1 % 4 $\geq 20mm$: 10 % 90 % 5 % 64 $\leq 0.08mm$: 49 % 4 % 87 % 21 $\leq Atterberg's Limit>$ - % (23) % 33 % 23 Ip: - % (23) % 33 % 23 Ip: N.P. N.P. 8 17 Oriect Shearing Test> - C: 20.1 kPa ': 24.8 ' - $\leq max$: 1.93 t/m ³ W_{opt} : 12.0 % 0.006 lc: 0.006 lc: 0.006 ic: 1.70 Pa - k: $6.1*10^7 - 8.2*10^9$ cm/s	U 111
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	%
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$< 49\%$ 4% 87% 21 $< Mterberg's Limit>$ $-\%$ $(23)\%$ 33% 23 W_L : $N.P.$ $N.P.$ $N.P.$ 817 10 - Fine Aggregate- C' : 20.1 kPa $24.8'$	%
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< Atterberg's Limit> W_L : $Ip:$ $-\%$ (23) % 33 % 23 $Ip:$ N.P. N.P., 8 17 10 $-Fine Aggregate -Fine Aggregate -Fine Aggregate -Fine Aggregate C':$ 20.1 kPa -24.8 ' -24.8 ' -24.8 ' e^{1} 24.8 ' -24.8 ' -24.8 ' -24.8 ' e^{1} 24.8 ' -24.8 ' -24.8 ' -24.8 ' e^{1} 1.93 t/m ³ -24.8 ' -24.8 ' -24.8 ' e^{1} 0.006 -20.8 ' -24.8 ' -24.8 ' e^{1} 1.93 t/m ³ -20.8 ' -26.8 ' -26.8 ' e^{1} 0.006 -20.8 ' -26.8 ' -26.8 ' e^{1} 1.5 -26.8 ' -26.8 ' -26.8 ' e^{1} -26.8 ' -26.8 ' -26.8 ' -26.8 ' e^{1} e^{1} e^{1} e^{1} -26.8 ' -26.8 ' -26.8 ' -26.8 '	%
W_L : -% (23) % 33 % 23 % Ip: N.P. N.P., N.P., 8 17 10 -Fine Aggregate- 20.1 kPa 24.8 ' ?' 20.1 kPa 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 24.8 ' 20.4 (maximum contraction for the contrest for the contres	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
Ip: N.P. N.P., 8 17 10 -Fine Aggregate- C: 20.1 kPa ': 24.8 ' 24.8 ' 24.8 ' $d \max^2$ 1.93 t/m ³ $d \max^2$ 12.0 % Codometric Test> 0.006 lg: 0.0069 c: 0.170 Pa Zone 4 Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2 % 6.0 % 5.1 % 5.9 % W: 1.64 t/m ³ 1.60 t/m ³ 1.72 t/m ³ 1.81 t/m ³ <t< td=""><td>Ip: N.P. N.P., 8 17 10 -Fine Aggregate- C: 20.1 kPa ': 24.8 ' <proctor test=""> $\frac{d \max}{24.8}$' $\frac{d \max}{24.8}$' 1.93 t/m³ $\frac{d \max}{20.1 kPa}$ 1.93 t/m³ $\frac{d \max}{20.1 kPa}$ 1.93 t/m³ $\frac{d \max}{20.0 \%}$ 12.0 % <oedometric test=""> 0.006 lg: 0.006 1.5 g: 1.70 Pa</oedometric></proctor></td><td>%</td></t<>	Ip: N.P. N.P., 8 17 10 -Fine Aggregate- C: 20.1 kPa ': 24.8 ' <proctor test=""> $\frac{d \max}{24.8}$' $\frac{d \max}{24.8}$' 1.93 t/m³ $\frac{d \max}{20.1 kPa}$ 1.93 t/m³ $\frac{d \max}{20.1 kPa}$ 1.93 t/m³ $\frac{d \max}{20.0 \%}$ 12.0 % <oedometric test=""> 0.006 lg: 0.006 1.5 g: 1.70 Pa</oedometric></proctor>	%
$\begin{tabular}{ c c c c c } \hline -Fine Aggregate- & & & & & & & & & & & & & & & & & & &$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
	$< Direct Shearing Test>$ 20.1 kPa C': 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 24.8 ' < 1.93 t/m ³ W_{opt} : 1.93 t/m ³ W_{opt} : < 12.0 % < 00006 lg: 0.006 lc: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s k: $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s</permeability>	
C: 20.1 kPa 24.8 ' $d \max$: $d \max$: $d \max$: W_{opt} : 12.0 % Oedometric Test> lg: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa 6.1*10 ⁷ -8.2*10 ⁻⁹ cm/s k: $6.1*10^7$ -8.2*10 ⁻⁹ cm/s Zone 1 Zone 2 Xone 3 Zone 4 Natural Water Content> Zone 1 Zone 2 W: 5.2 % 6.0% 5.1% $20mm$: 1.64 ν m ³ 1.60ν m ³ 1.72ν m ³ 1.81ν m ³ $20mm$: 26 % 16 % 0 % 0 % $< 200mm$: 43 % 57 % 54 % 55 %	C: 20.1 kPa $: 24.8^{-1}$ $< 24.8^{-1}$ $< 24.8^{-1}$ $< 24.8^{-1}$ $< 1.93 t/m^3$ W_{opt} : $1.93 t/m^3$ W_{opt} : 12.0% $< 0000 \text{ max}$: $ g:$ 0.006 $ c:$ 0.069 $c:$ 1.5 $g:$ 1.70 Pa $< 2 \text{Permeability Test>}$ $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s	
: 24.8 <proctor test=""> 1.93 tm^3 $dmax$: 1.93 tm^3 Wopt: 12.0 % <0edometric Test> 0.006 </proctor>	': 24.8 ' <proctor test=""> 1.93 t/m³ d max: 1.93 t/m³ Wopp: 12.0 % <oedometric test=""> 0.006 lg: 0.0069 c: 1.5 g: 1.70 Pa <permeability test=""> 6.1*10⁷-8.2*10⁻⁹ cm/s k: 7000 1</permeability></oedometric></proctor>	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	<proctor test=""> 1.93 t/m^3 d max: 1.93 t/m^3 W_{opt}: 12.0 % <oedometric test=""> 0.006 lg: 0.0069 c: 1.5 g: 1.70 Pa <permeability test=""> 6.1*10⁻⁷-8.2*10⁻⁹ cm/s k: $6.1*10^{-7}-8.2*10^{-9}$ cm/s</permeability></oedometric></proctor>	
Interformation 1.93 t/m ³ $d \max$: 1.93 t/m ³ W_{opt} : 12.0 % 0.006 lg: 0.0069 lc: 0.069 c: 1.5 g: 1.70 Pa 6.1*10 ⁷ -8.2*10 ⁻⁹ cm/s k: $6.1*10^7$ -8.2*10 ⁻⁹ cm/s Zone 1 Zone 2 Zone 3 Zone 4 5.2 % 6.0 % 5.1 % 5.9 % 1.64 t/m ³ 1.60 t/m ³ 1.72 t/m ³ 1.81 t/m ³ 17 % 5 % 0 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % 55 % 43 % 57 % 54 % 55 %	$d \max^{\circ}$ 1.93 t/m ³ W_{opi} : 12.0 % 2000000000000000000000000000000000000	
d max: 12.0 % Wopt: 12.0 % <0edometric Test> 0.006 lg: 0.0069 c: 1.5 g: 1.70 Pa <permeability test=""> 6.1*10⁷-8.2*10⁻⁹ cm/s k: $6.1*10^7$-8.2*10⁻⁹ cm/s <natural content="" water=""> Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk></natural></permeability>	d_{max} 1.05 tm W_{opt} : 12.0 % 0.006 lg: 0.0069 c: 1.5 g: 1.70 Pa 6.1*10 ⁻⁷ -8.2*10 ⁻⁹ cm/s Zono 2 Zono 2	
w_{opt} 12.0 70 <oedometric test=""> 0.006 lg: 0.0069 c: 1.5 g: 1.70 Pa <permeability test=""> k: $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s <natural content="" water=""> W: 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> : 1.64 t/m³ >20mm: 26 % 16 % 10 % 7 % <atterberg's limit=""></atterberg's></bulk></natural></permeability></oedometric>	Wopt: 12.0 70 <oedometric test=""> 0.006 lg: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> 6.1*10⁻⁷-8.2*10⁻⁹ cm/s</permeability></oedometric>	
$ g:$ 0.006 $ c:$ 0.069 $c:$ 1.5 $g:$ 1.70 Pa <permeability test=""> k: $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s Zone 1 Zone 2 Vermeability Test> k: $6.1*10^{-7} \cdot 8.2*10^{-9}$ cm/s Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2% 6.0% 5.1% Sulk Density> $1.64 t/m^3$ $1.60 t/m^3$ $1.72 t/m^3$ $1.81 t/m^3$ <granularity> $20mm:$ 17% 5% 0% 0% >20mm: 26% 16% 10% 7% <0.08mm:</granularity></permeability>	<oedometric test=""> 0.006 lg: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> 6.1*10⁻⁷-8.2*10⁻⁹ cm/s</permeability></oedometric>	
lg: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> k: $6.1*10^7 - 8.2*10^9$ cm/s <natural content="" water=""> W: 5.2 % 6.0 % Second Secon</natural></permeability>	lg: 0.006 lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> $6.1*10^{-7}-8.2*10^{-9}$ cm/s k: $6.1*10^{-7}-8.2*10^{-9}$ cm/s</permeability>	
lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> $6.1*10^7 - 8.2*10^9$ cm/s k: $6.1*10^7 - 8.2*10^9$ cm/s <natural content="" water=""> Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk></natural></permeability>	lc: 0.069 c: 1.5 g: 1.70 Pa <permeability test=""> k: 6.1*10⁻⁷-8.2*10⁻⁹ cm/s</permeability>	
c: 1.5 g: 1.70 Pa <permeability test=""> $6.1*10^7 - 8.2*10^9$ cm/s k: $6.1*10^7 - 8.2*10^9$ cm/s <natural content="" water=""> Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2% 6.0% 5.1% 5.9% <bulk density=""> 1.64 t/m^3 1.60 t/m^3 1.72 t/m^3 1.81 t/m^3 <granularity> 17% 5% 0% 0% >20mm: 26% 16% 10% 7% <0.08mm:</granularity></bulk></natural></permeability>	c: 1.5 g: 1.70 Pa <permeability test=""> k: 6.1*10⁻⁷-8.2*10⁻⁹ cm/s</permeability>	
g: 1.70 Pa <permeability test=""> $6.1*10^{-7}-8.2*10^{-9}$ cm/s k: $6.1*10^{-7}-8.2*10^{-9}$ cm/s <natural content="" water=""> Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk></natural></permeability>	g: 1.70 Pa <permeability test=""> k: 6.1*10⁻⁷-8.2*10⁻⁹ cm/s 7000 1 7000 2 70000 2</permeability>	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<permeability test=""> k: 6.1*10⁻⁷-8.2*10⁻⁹ cm/s 7000 1 7000 2 70000 2 7000 2 7000</permeability>	
k: $6.1*10^{-7}-8.2*10^{-9}$ cm/s <natural content="" water=""> Zone 1 Zone 2 Zone 3 Zone 4 W: 5.2% 6.0% 5.1% 5.9% <bulk density=""> 1.64 t/m^3 1.60 t/m^3 1.72 t/m^3 1.81 t/m^3 <granularity> 20mm: 26% 16% 10% 7% >20mm: 26% 16% 10% 7% <0.08mm:</granularity></bulk></natural>	k: 6.1*10 ⁻⁷ -8.2*10 ⁻⁹ cm/s	<u> </u>
Zone 1 Zone 2 Zone 3 Zone 4 <natural content="" water=""> 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk></natural>		
5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</bulk>	Zone i Zone 2 Zone 5 Zone	
W: 5.2 % 6.0 % 5.1 % 5.9 % <bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk>	<natural content="" water=""></natural>	4
<bulk density=""> 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> 20mm: 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity></bulk>	W: 5.2 % 6.0 % 5.1 % 5.9	4
: 1.64 t/m³ 1.60 t/m³ 1.72 t/m³ 1.81 t/m³ <granularity> >20mm: 17 % 5 % 0 % 0 % >2mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity>	<bulk density=""></bulk>	4 %
<granularity> 17 % 5 % 0 % 0 % >20mm: 26 % 16 % 10 % 7 % <0.08mm:</granularity>	: 1.64 t/m ² 1.60 t/m ² 1.72 t/m ² 1.81	4 %
>20mm: 17 % 5 % 0 % 0 % >2mm: 26 % 16 % 10 % 7 % <0.08mm:	<granularity></granularity>	4 % t/m ³
>2mm: 20 % 10 % 7 % <0.08mm:	>20mm: 1/% 5% 0% 0	4 % <u>t/m³</u>
<atterberg's limit=""></atterberg's>	>2mm: 20 % 10 % 10 % 7 % 54 % 55	4 % t/m ³ %
	<a>Atterhero's Limit>	4 <u>%</u> t/m ³ % %
W_1 : (24.0) % 34.5 % 22.5 % 22.0 %	W_{1} : (24.0) % 34.5 % 22.5 % 22.0	4 % t/m ³ % % %
Ip: (9.4) 9.3 8.5 8.3	In: (9,4) 9,3 8,5 8,3	4 % t/m ³ % % %