Appendix-L PROJECT EVALUATION

THE STUDY ON CRITICAL LAND AND PROTECTION FOREST REHABILITATION AT TONDANO WATERSHED IN THE REPUBLIC OF INDONESIA

Volume-III

APPENDIX-L

PROJECT EVALUATION

Table of Contents

			Page
Chapter	1 I	NTRODUCTION	L-1
Chapter	2	APPROACH AND METHODOLOGY OF PROJECT EVALUAT	IONL-3
2.1	Scop	e of Project Evaluation	L-3
2.2	Anal	ytical Approaches and Methods	L-3
Chapter	3 I	ECONOMIC EVALUATION	L-5
3.1	Conc	eptual Framework of Cost-Benefit Analysis	L-5
3.2	Point	s of Economic Evaluation	L-5
	3.2.1	Use of Social Cost and Benefit	L-6
	3.2.2	Application of EIRR	L-6
	3.2.3	Determination of Proper Discount Rate	L-6
	3.2.4	Appropriate Time Horizon for Analysis	L-6
	3.2.5	With-Project/Without-Project Framework	L-7
3.3	Mon	etary Evaluation Methods for Environmental Benefits	L-7
3.4	Appl	icable Evaluation Framework for WCP's Benefits	L-9
	3.4.1	Increased Water Resources	L-9
	3.4.2	Conserved or Improved Water Quality	L-10
	3.4.3	Strengthened Erosion and Flood Control Capacity	L-10
	3.4.4	Improved or Conserved Air Quality	L-11
	3.4.5	Conserved or Improved Aesthetic and Recreational Amenity .	L-12
	3.4.6	Improved Forestry Resources	L-13

<u>Page</u>

	3.4.7	Conserved or Improved Fishery Resources	L-13
	3.4.8	Improved or Conserved Agricultural Resources	L-14
3.5	Result	s of Benefit Calculation and Cost-Benefit Analysis	L-14
3.6	Sensiti	vity Analysis	L-16
Chapter	4 FI	NANCIAL PLAN	L-17
4.1	Consic	leration of Cost Recovery of WCP	L-17
	4.1.1	Basic Principles of Cost Recovery for WCP	L-17
	4.1.2	Potential Financial Sources for Cost Recovery for WCP	L-17
4.2	Establi	shment of Financial Plan to Implement WCP	L-19
Chapter	5 FI	NANCIAL EVALUATION	L-22
5.1	FIRR (Calculation	L-22
5.2	Cost R	ecovery Schedule for WCP	L-22
5.3	Financ	ial Analysis on Farm Household and Capacity to Pay	L-23
Chapter	6 RI	ECOMMENDATIONS ON FINANCIAL ASPECTS	L-25
6.1	Establi	shment of Funds for Community Development	L-25
6.2	Appro	priate Financial System for Funding WCP	L-26
Chapter	7 IN	STITUTIONAL EVALUATION	L-27
7.1	Key In	stitutional Outcomes	L-27
7.2	Conclu	ision	L-30

List of Tables

Page

Table L.3.1	Benefit from Increased Water Resources	LT-1
Table L.3.2	Benefit from Conserved Water Quality	LT-2
Table L.3.3	Benefit from Strengthened Erosion and Flood Control Capacity	LT-3
Table L.3.4	Benefit from Conserved Air Quality	LT-4
Table L.3.5	Benefit from Conserved Aesthetic and Recreational Amenity	LT-5
Table L.3.6	Benefit from Improved Forestry Resources	LT-6
Table L.3.7	Benefit from Conserved or Improved Fishery Resources	LT-7
Table L.3.8	Benefit from Conserved or Improved Agricultural Resources	LT-8
Table L.3.9	Economic Cost Spread Sheet of Forestry Measures and Actions	LT-9
Table L.3.10	Economic Cost Spread Sheet of Agroforestry Measures and Actions	LT-10

<u>Page</u>

Page

Table L.3.11	Economic Cost Spread Sheet of Physical Construction Works LT-11
Table L.3.12	Economic Cost Spread Sheet of Community Empowerment Measures and ActionsLT-12
Table L.3.13	Economic Cost Spread Sheet of Institutional Capacity Development MeasuresLT-13
Table L.3.14	Economic Cost Spread Sheet of Monitoring System DevelopmentLT-14
Table L.3.15	Standard Conversion Factor for Economic EvaluationLT-15
Table L.3.16	Economic Cost and Benefit Spread Sheet of Watershed Conservation PlanLT-16
Table L.4.1	Financial Cost Spread Sheet of Forestry Measures and Actions LT-17
Table L.4.2	Financial Cost Spread Sheet of Agroforestry Measures and Actions LT-18
Table L.4.3	Financial Cost Spread Sheet of Physical Construction WorksLT-19
Table L.4.4	Financial Cost Spread Sheet of Community Empowerment Measures and ActionsLT-20
Table L.4.5	Financial Cost Spread Sheet of Institutional Capacity Development MeasuresLT-21
Table L.4.6	Financial Cost Spread Sheet of Monitoring System DevelopmentLT-22
Table L.5.1	Financial Cost and Revenue Spread Sheet of Watershed Conservation PlanLT-23
Table L.5.2	Cost Recovery Schedule for WCP ImplementationLT-24

List of Figures

Figure L.3.1	Valuation Flowchart to Select Applicable Methods	LF-1
-		

THE STUDY ON CRITICAL LAND AND PROTECTION FOREST REHABILITATION AT TONDANO WATERSHED IN THE REPUBLIC OF INDONESIA

Volume-III APPENDIX-L

PROJECT EVALUATION

CHAPTER 1 INTRODUCTION

Appendix-L describes, in detail, methodological procedure and results of the project evaluation on the Watershed Conservation Plan (WCP) for the proposed intensive area in the Tondano watershed. The 6 main components of WCP under the evaluation are as follows :

- · Forestry measures and actions,
- · Agroforestry measures and actions,
- · Physical construction works,
- · Community empowerment measures and actions,
- · Institutional capacity development measures, and
- Monitoring system development

Chapter 2 presents the scope and methodological outline of the project evaluation, discussing general approaches for economic and financial analyses. A framework of the cost-benefit analysis applied for the economic evaluation is conceptually described at the first part of Chapter 3, with important points specially considered to proceed the evaluation. Then, the chapter presents how to evaluate in monetary terms the following economic benefits, estimation of which is essential to complete the economic evaluation with the cost-benefit analysis :

- Increased water resources,
- Conserved or improved water quality,
- · Strengthened erosion and flood control capacity,
- Improved or conserved air quality,

- · Conserved or improved aesthetic and recreational amenity,
- · Improved forestry resources,
- · Conserved or improved fishery resources, and
- Improved or conserved agricultural resources

At last in Chapter 3, results of the benefit calculation and the cost-benefit analysis are presented, in addition to some findings from the sensitivity analysis on the estimated economic benefits and costs.

Chapter 4 is for establishment of a financial plan for the WCP implementation, which is a subject of the financial evaluation. Basic principles and potential financial sources for cost recovery are examined first, and then financial plans for each WCP measures are proposed depending on possible sources as well as kinds of costs.

A financial evaluation described in Chapter 5 consists of calculation of the Financial Internal Rate of Return (FIRR), cost recovery schedule for WCP, and a financial analysis on the farm household concerned. Finally in Chapter 6, some recommendations are mentioned towards the actual implementation of WCP from financial standpoints. Major topics are fund establishment and appropriate financial system. Chapter 7 discusses project feasibility and soundness from institutional points of view.

CHAPTER 2 APPROACH AND METHODOLOGY OF PROJECT EVALUATION

2.1 Scope of Project Evaluation

Technical evaluations of the proposed WCP were carried out through formulating necessary actions and countermeasures in the previous Appendixes concerned, while an environmental evaluation on WCP was implemented by means of the environmental impact assessment as described in Appendix K. Therefore, WCP is evaluated in Appendix-L, only from economic, financial and institutional points of view. For the results of technical and environmental evaluations, refer to their respective sections in the Appendixes concerned.

2.2 Analytical Approaches and Methods

The main goal of WCP is watershed conservation of the Intensive Area through sustainable land use, so that key components for the economic evaluation are environmental goods or services which have been conventionally ignored in the usual economic evaluation in monetary terms. At the same time, such watershed conservation measures as agroforestry and afforestation generate direct marketable products which are important factors to evaluate the financial validity of projects. Under these innate characteristics of WCP, the following analytical approaches and methods are applied in the project evaluation while the conventional cost-benefit analysis with the economic internal rate of return (EIRR) and the financial internal rate of return (FIRR) are utilized:

- 1) To evaluate environmental benefits in monetary terms as much as possible, by reviewing the evaluation methods already developed or proposed by environmental economists,
- To collect and make use of any related data from the existing case studies in economic analysis on the other environmental projects/programs, in order to set out scientific and reasonable assumptions for evaluation in any inevitable cases,
- 3) To utilize the results of the RRA survey and the environmental impact assessment implemented in the study, to collect reliable baseline information and data useful in applying evaluation methods especially for intangible environmental functions, and
- 4) To focus on how to recover the implementation cost of the proposed watershed conservation measures with limited marketable products, examining any possibility of financial instruments such as natural resource taxation and environmental funding system in association with foreign financial assistance.

Objective of the financial evaluation is to analyze viability of a proposed financial plan for WCP, examining whether the central and local executing agencies can procure money to recover the estimated costs for the WCP implementation. Money necessary for the WCP implementation can be largely classified into:

- Money to be input for initial investment (buildings, physical measures, facilities and equipment), and
- Money for running costs (O & M of the measures and staff salary).

Main components of the financial evaluation, under this objective, are consisting of:

- Calculation of FIRR, comparing the incremental costs with potential revenues from WCP,
- Formulation of a cost recovery schedule for loan including interests and repayment in accordance with the financial plan, and
- Examination on financial viability and feasibility of the proposed financial plan, by calculating balance based on the cash flow.

CHAPTER 3 ECONOMIC EVALUATION

3.1 Conceptual Framework of Cost-Benefit Analysis

The economic analysis is integrated into the evaluation of WCP by including not only direct costs of physical works, equipment, operation and maintenance (O & M), but also benefits and "damage costs" avoided in use of forestry resources and environmental functions of the Tondano watershed. This analysis builds on the environmental/resource economic expertise developed so far, aiming at evaluating feasibility of the WCP's implementation from the socioeconomic point of view.

For evaluation of socioeconomic feasibility, "Cost-Benefit Analysis" approach which is internationally common and accepted is applied with its general conceptual framework of evaluation equation as below:

NB = Bd + Be - Cd - Cp - Ce

- where NB: Net benefit generated by implementation of a plan/measures
 - Bd : Tangible productive benefit directly generated
 - Be: Intangible benefit including environmental value
 - Cd: Direct cost necessary for the implementation
 - Cp: Cost for preventive measures for environmental conservation
 - Ce: Cost as environmental damage due to the implementation

In many cases of productive development or infrastructual sector projects, "Be" and "Ce" have been conventionally ignored as "external economic item" and "external diseconomic item" respectively. The both are usually regarded as unmeasurable in monetary terms.

A major part of the WCP's "Bd" is equivalent to "Be", while "Cd" equals "Cp". This is because its main target is to conserve a good quality of environmental functions of the watershed or to further improve them through sustainable land use. On the other hand, "Ce" hardly accrues from WCP for the same reason. Therefore, the most proper cost-benefit equation for WCP is as below:

NB = Be - Cp

If "Be" of WCP is still left unmeasured as conventional, any cost-benefit analysis calculating "NB" could be hardly carried out. In this context and nature of the WCP's benefits, the JICA Study Team considered the "Be"-calculation as essential.

3.2 Points of Economic Evaluation

Understanding both the economic and environmental values of the Tondano watershed's ecosystem, the cost-benefit analysis can serve as a useful tool in analyzing

conservation alternatives for the existing natural resources. The evaluation was carried out on various important functions of the watershed, including forestry and agricultural resources, soil erosion control, and purification of the surrounding environment. The followings are key points duly considered for accurate evaluation of these functions in the cost-benefit analysis.

3.2.1 Use of Social Cost and Benefit

Economic data, namely "social cost/benefit", reflecting real scarcity and consumption of local resources was utilized, not nominal market prices used in the financial evaluation. Shadow prices based on opportunity costs, standard conversion factors (SCF) and labor conversion factor (LCF) were calculated, when the related market prices were severely distorted.

3.2.2 Application of EIRR

Among the three typical evaluation criteria, i.e. EIRR, net present value (NPV), and benefit-cost ratio (B/C), EIRR was applied to finally examine the economic viability. It is because EIRR could reduce difficulty in selecting a specific discount rate from the very beginning of the analysis, which should be solved at first in cases of NPV and B/C.

3.2.3 Determination of Proper Discount Rate

Opportunity cost of capital, government borrowing rate, and social rate of time preference were examined in finally defining a discount rate and determining the trade offs between present and future values of the evaluated goods or services. But in case it is difficult to calculate the rate due to lack of necessary data, the discount rates applied by donor countries or international development banks are to be referred to.

3.2.4 Appropriate Time Horizon for Analysis

The economic analysis has to cover all the period when any cost or benefit accrues from the WCP's implementation consisting of both construction and operation stages. The WCP's benefits would last long beyond the period requiring direct costs of the conservation measures. However, 60-year is used as the time horizon subject to the economic analysis, since any costs and benefits accruing beyond such a period are discounted into present value of extremely small amount. One possibility to assess the economic soundness of WCP covering the further future is to discount the long-term benefits by setting basis years for discounting at the beginning of every generation (every $30 \sim 40$ years). This approach would be tried if the calculated EIRR becomes considerably low with the usual discounting due to major benefits in a longer term.

3.2.5 With-Project/Without-Project Framework

The analysis was carried out based on the net costs and benefits, identifying incremental costs/benefits generated purely due to the WCP's implementation. Natural degradation of environment, measured in the without-project situation, was distinguished from that under the with-project one. In the same way, any costs and benefits attributed to the other local plans and projects for rural improvement, infrastructural works, industrial development, tourism promotion and so on were discriminated from those of WCP. This is because the economic evaluation within the current study framework is defined for the watershed conservation, not for such existing or expected development projects which are the given conditions in formulating WCP.

3.3 Monetary Evaluation Methods for Environmental Benefits

Environmental functions of the Tondano watershed are major targets for conservation under the current study. The main purpose to apply the monetary evaluation methods is to qualitatively measure the benefits from the WCP's implementation, not to measure these environmental values of the watershed as a whole. Envisaged benefits from the WCP implementation could be largely classified into 8 categories as follows:

- 1) Increased water resources,
- 2) Conserved water quality,
- 3) Strengthened erosion and flood control capacity,
- 4) Conserved air quality,
- 5) Conserved aesthetic and recreational amenity,
- 6) Improved forestry resources,
- 7) Conserved fishery resources, and
- 8) Improved agricultural resources

Potential methods for estimating the monetary value of natural resources and environmental benefits, which might result from the WCP's implementation, were examined. The next table presents a menu of valuation techniques which have been developed so far in environmental/resource economics, as well as typical examples of the evaluated effects. These are largely divided into two categories (OVA and SVA), based on their extent of objectivity or subjectivity.

Valuation Method	Typical Effects Valued
(1). Objective Valuation Approaches (OVA)	
1) Change in Productivity	Productivity
2) Cost of Illness	Health (morbidity)
3) Human Capital	Health (mortality)
4) Replacement (Restoration) Cost	Capital assets, and natural resource assets
(2) Subjective Valuation Approaches (SVA)	
1) Preventive (mitigative) Expenditure	Health, productivity, capital assets, and natural
	resource assets
2) Hedonic Approaches	
- Property (Land) Value	Environmental quality, and productivity
- Wage Differential	Health
3) Travel Cost (TCM)	Natural resource assets, and touristic assets
4) Contingent Valuation (CVM)	Any effects including biological and aesthetic values
Source: Economic Analysis of Environmental In	npacts ADB/WB 1994

Menu of Valuation Methods for Environmental Effects

of Environmental Impacts, ADB/W

Objective Valuation Approaches

The first set of methods in the table are the Objective Valuation Approaches (OVA) that are based on physical relationships that formally describe cause and effect relationships and provide objective measures of effects resulting from various causes. OVA use "damage functions" which relate the level of offending activity to the degree of physical damage to a natural or man-made asset, or to the degree of health impact. OVA in general provide measures of the gross benefits, in the sense of losses avoided, of preventive or remedial actions. The important assumptions for OVA are:

- The net value of averting damage is at least equal to the cost which would be _ incurred if the damage actually occurred; and
- Rational individuals, in order to prevent some damage from occurring, would be willing to pay an amount less than or equal to the costs arising from the predicted level of environmental effects.

Subjective Valuation Approaches

In contrast to OVA, the second set of approaches in the table, the Subjective Valuation Approaches (SVA), are based on more subjective assessments of possible damage expressed in real or hypothetical market behavior. Using revealed behavior involves examination of real markets for goods or services which are affected by environmental impacts, such as air or water pollution, in which people actually make trade offs between the environmental impact and other goods or income. In other cases environmental impacts cannot be valued, even indirectly, through market behavior. The alternative is to construct hypothetical markets for various options to reduce environmental damages, and

to ask directly a sample of people to express how much they would be willing to pay for various reductions in environmental impacts. These are the so-called "Contingent Valuation Methods" (CVM).

3.4 Applicable Evaluation Framework for WCP's Benefits

The choice of a particular method of measurement obviously depended on what was being measured. Figure L.3.1 presents a valuation flowchart that suggests where an analysis might begin. The figure starts with any environmental impact and determines whether or not there is a measurable change in production, or if the primary effect of the impact is change in environmental quality. According to this flowchart and availability of necessary data for monetary calculation, the more applicable evaluation methods for the above-mentioned 8 kinds of benefits brought from watershed conservation could be selected as below.

3.4.1 Increased Water Resources

It was assumed that development water discharge (incremental water discharge usable during the dry season) was equal to an average outflow of groundwater fostered by incremental vegetation attributed to the WCP measures. Therefore, benefit of the water fostering function of the incremental vegetation was evaluated with costs necessary to obtain the same development discharge from irrigation dams (construction and O & M costs of irrigation dams).

Natural vegetation in the watershed fosters groundwater for use in the watershed area and the downstream. And the fostered water flows into rivers and lakes, contributing to stabilization of discharged water amount there. So, loss of the vegetation affects the groundwater utilization and river discharge, decreasing products of agricultural and fishery sectors using water as key input. These industrial production losses can be taken as value of the water fostering function of the vegetation.

Increased water resources \rightarrow Change in environmental quality \rightarrow Human habitat		
\rightarrow Replacement Cost Method		
[Benefit] = [Incremental vegetation area] × [Average unit groundwater outflow of vegetation] x		
[(Annual construction cost of irrigation dam per unit development discharge) +		
(Annual O&M cost of irrigation dam per unit development discharge)]		

Increased water resources → Measurable change in production → Non-distorted market prices → Change in Productivity Method [Benefit] = [Incremental vegetation area] × [Fostered groundwater per unit vegetation] × [Contribution rate of unit groundwater to each sectoral production]

3.4.2 Conserved or Improved Water Quality

The value of water quality was assumed to be equivalent to the incremental cost of treating the water so that it is suitable for downstream uses. The level of treatment depends on the downstream use. For example, irrigation water does not require the same level of purity as drinking water, so the cost of treating water for use in agriculture would be less than drinking water supply.

Removal of suspended solids is the largest incremental cost for restoring water quality in Lake Tondano to suitable quality for downstream users. The incremental cost could be calculated as the extra alum or lime, filter capacity, treatment plant operation costs, etc. needed to treat the excess suspended solids, as compared with the quantities needed to treat the suspended solids that are naturally present in the water.

Conserved or improved water quality → Change in environmental quality → Water quality → **Replacement Cost Method** or **Preventive Expenditure Method** [Benefit by preventive expenditure method] = [Reduced water pollutants]

 \times [Unit cost for construction & operation of water filter plant to remove the pollutants]

3.4.3 Strengthened Erosion and Flood Control Capacity

In case there is stripped area without vegetation in the watershed, severe erosion would occur under heavy rainfall and its downstream water quality is degraded. So value of the vegetation's erosion control function was evaluated using construction cost of check dams to control and mitigate the washed-away soil.

Strengthened erosion control capacity \rightarrow Change in environmental quality \rightarrow Water quality		
→ Replacement Cost Method or Preventive Expenditure Method		
[Benefit by preventive expenditure method]		
= [Amount of soil erosion without vegetation]		
\times [Unit cost for check dam construction to control or mitigate the washed-away soil]		

Watershed degradation contributes to increased flooding in two ways. First, tree cutting and other land disturbance reduce the water holding capacity of the soil, causing larger peak flows of drainage after rain storms. Second, the sediment that erodes from the stripped or disturbed land fills the beds of rivers and lakes, allowing

flood water to rise above the river and lake banks. The value of flood damage resulting from watershed degradation could be estimated as the value of the incremental amount of increased flooding or decreased flood control capacity.

When land and buildings are damaged, the measure of damage should be calculated as the cost to restore them to their original condition. The restoration activities might include removal of mud and dust, repairing of buildings and paddy dikes, and finding temporary accommodation while the buildings are being repaired. Roads, bridges, pipelines, electrical power lines and other public infrastructure could be damaged by mud slides and flooding associated with land disturbance activities in the watershed. The value of the damage in these cases could be calculated as cost to rebuild or relocate the damaged infrastructure.

Strengthened flood control capacity \rightarrow Change in environmental quality
→ Human habitat → Replacement Cost Method
[Benefit] = [Reduced cost to rehabilitate damages due to mud-slide and flooding]
= [Cost to restore damaged land & building] + [Cost to remove mud & water]
+ [Repair cost of paddy dikes]+ [Cost to rebuild or relocate damaged infrastructure]
+ [Other expenditure in rehabilitation]

The next equation reflects that the loss of revenue from lost farm production is a value of the strengthened erosion- and flood-control capacity when agricultural land is covered by mud slides.

Strengthened erosion and flood control capacity \rightarrow Measurable change in agricultural production		
\rightarrow Non-distorted market prices \rightarrow Change-in-Productivity Method		
[Benefit] = [Agricultural area protected from erosion] × [Incremental products]		
× [Unit market price of product]		

3.4.4 Improved or Conserved Air Quality

Oxygen supply function of the incremental vegetation under WCP was evaluated by calculating the oxygen weight discharged from the vegetation based on the existing research data, which is multiplied by unit market price of the industrial oxygen. And amount of CO_2 absorbed by the incremental vegetation was estimated for calculation of a total cost to remove them alternatively. This total cost is regarded as an economic value of the air purification function of the incremental vegetation.

Improved air quality \rightarrow Change in environmental quality \rightarrow Air quality \rightarrow Replacement Cost Method [Benefit] = [Amount of incremental vegetation] x {[(Annual net O₂ discharge per vegitation) x (Unit market price of O₂)] + [(Annual net CO₂ absorption per vegitation) x (Unit removal cost of CO₂)]}

3.4.5 Conserved or Improved Aesthetic and Recreational Amenity

The value of the aesthetic quality of the natural environment is difficult to calculate in monetary terms, because it depends on the subjective preference of each individual person. One approach to assigning a monetary value to aesthetic qualities is to estimate how much the people living in an area would pay to preserve them (willingness to pay, WTP). The cumulative regional WTP could be interpreted to be equal to the overall value of restoring the aesthetic quality of the environment.

In addition, it is likely that Indonesian and international tourists who visit the Tondano watershed area would also be willing to pay some small amount of money such as a surcharge on hotel room rates for preserving the aesthetic quantities of the watershed.

Conserved or improved aesthetic quality \rightarrow Change in environmental quality \rightarrow Aesthetics \rightarrow Contingent Valuation Method [Non-use benefit including existence value]

= [Average WTP of non-use value of local households] × [Number of local households]

+ [Average WTP of non-use value of tourists] × [Number of tourists]

Conserved or improved aesthetic quality → Change in environmental quality → Recreation → **Travel-Cost Method** or **Contingent-Valuation Method** [Use-benefit by travel cost method] = [Average travel cost of tourists] × [Incremental number of tourists] + [Average travel cost of local visitors] × [Incremental number of local visitors] [Average travel cost] = [Transportation fee] + [Time cost] + [Opportunity cost] [Use-benefit by contingent- valuation method] = [Average WTP of use value of local households] × [Number of local households] + [Average WTP of use-value of tourists] × [Number of tourists]

Tourism accounts for a part of the trade of goods and services in the Tondano watershed. A majority of tourists visiting the watershed could be classified as 'Adventure and Ecotourists', enjoying the natural landscape of the area.

Conserved or improved aesthetic quality → Measurable change in tourism production → Non-distorted market prices → Change in Productivity Method [Benefit] = [Incremental tourists due to environmental improvement or conservation] × [Incremental net profit of tourism sector per tourist]

3.4.6 Improved Forestry Resources

Forests provide several valuable goods and services, including wood products, flood control by stabilizing soil, aesthetic quality and habitat for wildlife. Potential methods for calculating the value of the loss of flood control and aesthetic quality are mentioned in the above Sections 3.4.3 and 3.4.5 respectively. The value of wildlife habitat could be considered to be included in the aesthetic evaluation, similar to the value of a scenic view or a clear lake.

The value of loss of timber and other wood products could be estimated as the overall income that would be derived from harvesting, processing, and selling the products on a sustainable basis. This income could be estimated by comparing the income from sustainable logging on land of similar area, tree types, proximity to roads and factories, etc. where watershed management has been well done.

Improved forestry resources \rightarrow Measurable change in forestry production
\rightarrow Non-distorted market prices \rightarrow Change in Productivity Method
[Benefit] = [Incremental forest land] × [Amount of incremental forest goods]
× [Unit market price of forest goods]

3.4.7 Conserved or Improved Fishery Resources

Siltation of river/lake beds and other fish habitat is the main source of environmental damage that poor waterhsed management causes to fishery resources. Top soil is eroded during heavy rain, and the sediment drains into these sensitive aquatic areas decreasing their ability to support fish life. The value of the damage to fishery resources might be estimated as the loss of fishing income caused by the siltation of fish habitat.

The loss of fishing income might be estimated directly or indirectly. If historical records were available, it might be possible to directly estimate the reduction in fishing income. But these results might be unreliable because such factors as improved fishing techniques and boats, increase in the sale price of fish, and increases in the number of people who work in the fishing industry must all be considered. In addition, this direct estimate might unfairly bias against the watershed management, because the other factors such as over-harvesting and pollution from the inland fishery itself might have contributed to the decline in fishing. Consequently, an indirect method of

comparison would probably give better results.

Conserved or improved fishery resources \rightarrow Measurable change in fishery production	
\rightarrow Non-distorted market prices \rightarrow Change in Productivity Method	
[Benefit] = [Improved or conserved water area]	
× [Amount of incrementally caught fish and other fishery products]	
× [Unit market price of such fishery products]	

3.4.8 Improved or Conserved Agricultural Resources

Under the proposed land use of WCP, there would be hardly incremental agricultural land. However, the extension program of agroforestry technology would increase productivity of the existing agricultural land. This could be a major benefit of WCP, so that the incremental agricultural products between with-project and without-project were evaluated with non-distorted market prices.

Improved agricultural resources \rightarrow Measurable change in agricultural production						
\rightarrow Non-distorted market prices \rightarrow Change in Productivity Method						
[Benefit] = [Amount of incremental agricultural products]						
x [Unit market price of the agricultural products]						

3.5 Results of Benefit Calculation and Cost-Benefit Analysis

In accordance with these theoretical and measurement frameworks, values of the benefits (mostly Be) from the WCP's implementation were calculated in monetary terms. At last, qualitative description, calculation assumption, calculation procedure, and estimated value for each benefit were detailed in Tables L.3.1 \sim L.3.8 and summarized in the next table.

Benefit Items	Evaluation Method	Benefit in 14th Year	Ratio
		(Rp. million in 2000 price)	(%)
(1) Increased water resources	Replacement cost	1.0	0.0
(2) Conserved water quality	Preventive expenditure	negligible	
(3) Strengthened erosion and	A. Replacement cost	1.3	
flood control capacity	B. Change in productivity	1.9	
	C. Preventive expenditure	* 426.2	9.5
(4) Conserved air quality	Replacement cost	10.4	0.2
(5) Conserved aesthetic and	Contingent valuation,	negligible	
recreational amanity	Travel cost, or		
	Change in productivity		
(6) Improved forestry resources	Change in productivity	23.5	0.5
(7) Improved fishery resources	Change in productivity	unmeasurable	
(8) Improved agricultural	Change in productivity	4,025.2	89.7
resources			
	Total	4,486.3	100.0

Annual Economic Benefit of WCP Implementation

Note : * *For Item (3), the benefit estimated with the Method C is only counted ignoring double counting with the Methods A and B.*

Inputting these economic benefits in addition to economic costs for the proposed measures under WCP (Tables L.3.9 ~ L.3.14), the cost-benefit analysis was carried out. The following conditions or assumptions were applied to the analysis.

- Project life under analysis is 60 years after commencement of WCP. The economic benefits are supposed to occur even after the target year (the 14th year) in a long term, while effects of discounting are almost nothing without any present values beyond two generations.
- 2) Most of the O & M costs occurring in the target year should be also expended every additional year through the project life, in order to keep the same conservation level as in the target year.
- 3) Intangible environmental benefits commence to occur in the second year of the WCP's implementation, in a proportional way toward the target year, and then is constant from the target year to the end of the project life.
- 4) All prices are expressed in 2000 constant prices with an average exchange rate of 2000 (Rp. 9,100 / US\$).
- 5) The estimated financial costs are re-calculated as economic costs by multiplying them with the standard conversion factor (SCF) of 0.995 (Table L.3.15).
- 6) The financial unskilled-labor costs are re-calculated as economic cost by multiplying them with the labor conversion factor (LCF).

LCF = SCF x (1 - Unemployment rate) = 0.995 x (1 - 0.2) = 0.796

Annual break-down of the costs by measure is presented in Table L.3.16, showing an overall spread sheet to compare costs and benefits. EIRR and B/C (with 12% discount rate) were calculated as 4.5 % and 0.39, respectively, based on this spread sheet. To assess socioeconomic feasibility of WCP, this EIRR figure has to be compared with "social rate of time preference" which is usually difficult to calculate. Therefore, many donor agencies are using "opportunity cost of capital" as its approximation to evaluate economic feasibility of their aid projects, such as 12% of World Bank, 10% of ADB, 8% of USAID, and 7% of JBIC.

Referring to these rates, it can be justified that the WCP implementation is economically acceptable from social viewpoint of the Study Area, taking account of the following factors.

- 1) The social rate of time preference is theoretically lower than the opportunity cost of capital.
- 2) Intangible benefits of WCP such as fishery, scientific, ecological and educational values as well as non-use value were not fully counted in the cost-benefit analysis.

3.6 Sensitivity Analysis

A sensitivity analysis was carried out to evaluate socioeconomic soundness of the WCP implementation against unexpected adverse changes of the economic costs and benefits in the future, by examining potential effects on EIRR of the following three situations:

- a) In case that the WCP costs run over the estimated prices and physical contingencies by 10%,
- b) In case that the expected benefits decrease by 10%, and
- c) In case of combination of the above two situations

The effects of these changes on EIRR are summarized as in the next table. Elasticity on the project feasibility in all these three cases is large, since EIRR ranging from 3 to 4% is below even the JBIC's evaluation standard rate.

Results of Sensitivity Analysis

Cases	Estimated	a) Cost + 10%	b) Benefit – 10%	c) = a) + b)
EIRR (%)	4.5	3.9	3.9	3.3

CHAPTER 4 FINANCIAL PLAN

4.1 Consideration of Cost Recovery of WCP

4.1.1 Basic Principles of Cost Recovery for WCP

Under the national and local socioeconomic and financial background, the following three principles were basically set out for considering on how to recover the costs necessary for the WCP implementation.

(1) Extra Financial Source for WCP

An obligation of GOI is to contribute financially to watershed conservation, using possible financing sources for watershed management activities, such as the state budget allocated for it. However, because the existing financial sources of the central and provincial governments are quite limited, some other financial sources have to be found ignoring too much rely on the existing national and local municipalities' budgets.

(2) Polluter Pays Principle (PPP)

Private or public degraders of the Tondano watershed area should pay to recover their damages to the important watershed functions. There are the obligations of those who exploit natural/environmental resources to contribute financially to their protection. In general, a degrader should not receive public subsidies to control the damage he generates (e.g. grants or tax allowances for damage control equipment, below-cost charges for public services, etc.).

(3) User Pays Principle (UPP)

Another guiding principle of sustainable development, UPP, concerns the allocation of and charges for resource use. Users of or beneficiaries from the natural resources in the Tondano watershed should contribute based on their payable capacity. Its premise is that all resource users should pay the full long-run marginal social cost of using a resource and related services.

4.1.2 Potential Financial Sources for Cost Recovery for WCP

Applying these three basic principles, the following four types of sources were considered as major and more possible ones to jointly finance the WCP implementation.

(1) Special Forestry Program in Indonesia

There would domestically be some possibility for additional financial support to WCP, especially for training and technical co-operation related to monitoring and institutional activities in the local communities. For example, the following rehabilitation programs for the forestry sector have been established with financial support under the new forestry law (Law No. 41/999) (For more detail, refer to Appendix-F) :

- Reforestation program (Reboisasi),
- Regreening program (Penghijauan) with Regreening Assistance Fund,
- Tending program (Pemeliharaan),
- Enrichment planting program (Pengayaan tanaman), and
- Soil conservation program through vegetative and mechanical means on critical and non-productive lands.
- (2) Grant or Loan from Bilateral or Multilateral Donors

A certain portion of the costs for WCP could be financed from foreign grant or borrowing, taking account of the OECD/DAC policy putting emphasis on assistance for environmental sector as well as the past donors' technical and financial cooperation to Indonesia. For example, the Partnership Program of Japan would be a potential technical assistance tool on a grant basis.

(3) Private or Public Industrial Enterprises as Degraders

In accordance with the PPP principle, these enterprises should control and manage damages to the watershed functions from their economic activities. Although potential industries as degraders include forestry, agriculture, inland fishery and tourism around Lake Tondano, there would be no clearly identified sector or people considerably degrading the watershed at present.

(4) Users and Beneficiaries of WCP

Under the UPP principle, the three kinds of users or consumers of natural resources in the Study Area could be considered, such as local farmers, tourists and fishermen. There would be potential space for local people to contribute some labor force or money for WCP. A part of beneficiaries might be local fishermen using aquatic resources in Lake Tondano, though their benefits from the WCP implementation are unclear. On the other hand, local farmers involved in the proposed agroforestry program are a large number and could obtain incremental benefits definitely (Refer to Section 5.3). Some portion of their extra profits could reasonably be sources to fund the Agroforestry program as well as their community development.

4.2 Establishment of Financial Plan to Implement WCP

Considering the potential financial sources and procurement methods to collect and manage money necessary for the measures included in WCP, their combination could be proposed. A financial plan is also based on the three basic principles for cost recovery above-mentioned.

A large size of the initial investment is to rely on the international donors' soft loan, while the O & M costs are covered by domestic financial programs and by charging to local farmers as users of natural resources in the Tondano watershed. And costs for the proposed institutional measures and software works, such as planning, surveys, training and equipment, are suitable to local governmental budgets or grant assistance from possible donors. Financial planning for each WCP measure was considered in detail as below. The next table shows a summary of the financial plan by WCP measure and type of financial arrangement.

(1) Forestry Measures and Actions (Table L.4.1)

The proposed forestry activities consist of 1) forestry boundary setting, 2) reforestation, 3) forest patrol, 4) research on non-wood forest products, 5) community forestry, 6) timber plantation, and 7) delivery stations for firewood plantation. For the first 14 years, these activities necessitate about Rp.10 billion in 2000 market price. Out of them, costs for skilled labor (experts, extension workers, etc.) and new equipment are to be procured through foreign donors' grant services including technical assistance projects and partnership programs. And the remaining costs necessary for the unskilled labor as well as materials should be financed domestically. Besides, all the expenditures from 15th year on are also suitable to domestic arrangement because they can be regarded as O & M or replacement costs.

Measures	Proj for Firs	ect Cost by F st 14 Years (R	inancial Arrangen p.million in 2000	nent price)	Major Financial Sources of Cost Recovery
under WCP	Grant	Soft-loan	Domestic-	Total	for Soft-loan and Domestic
	(%)	(%)	financing (%)	(%)	Financing
(1)Forestry measures and actions	7,123 (73)	0 (0)	2,652 (27)	9,775 (100)	 Reforestation program Regreening program Tending program Enrichment planting program
(2)Agroforestry	5.639	0	1.268	6.907	- Local farmers
measures and actions	(82)	(0)	(18)	(100)	- Soil conservation program
(3)Physical	0	6 379	2 780	9 1 5 9	- Reforestation program
construction works	(0)	(70)	(30)	(100)	- Regreening program
(4)Community					
empowerment	9,754	0	14,256	24,010	
measures and	(41)	(0)	(59)	(100)	
(5)Institutional					
capacity	10,124	0	3,657	13,781	- Governmental routine budget
development measures	(73)	(0)	(27)	(100)	(APBN/APBD)
(()Manitanina					- River clean-up program
(0)Monitoring System	1,189	0	3,578	4,767	(PROKASIH)
Development	(25)	(0)	(75)	(100)	- Governmental routine budget (APBN/APBD)
Total	33,829	6,379	28,191	68,399	
Total	(49)	(9)	(42)	(100)	

Summary of Financial Plan for First 14 Years

Note: Total cost differs from that in Table J.4.30. It is that the above total includes domestic costs spent routinely which is excluded in Table J.4.30, while the price contingency is not taken into account.

(2) Agroforestry Measures and Actions (Table L.4.2)

Major activities are extension training for agroforestry, costing approximately Rp. 7 billion in the first 14 years. Remuneration for trainers and salary for other skilled labor in addition to extension equipment costs should be donated with the donors' grant program, while the other expenses (remuneration for trainees, training materials, equipment maintenance, etc.) are to be financially procured by the Indonesian side. Then, all the costs accruing after the 15th year to sustain the introduced agroforestry activities could be funded within Indonesia, as well.

(3) Physical Construction Works (Table L.4.3)

The physical construction includes 1) check dam, 2) groundsill, 3) river revetment works, 4) hillside works, and 5) road cut slop protection. Major initial costs for labor, equipment, material and engineering services could be funded through foreign grant program. On the other hand, indirect construction cost such as O & M, land acquisition, physical contingency as well as equipment replacement is to be procured domestically. The total cost necessary within the first 14 years was estimated as Rp. 9

billion.

(4) Community Empowerment Measures and Actions (Table L.4.4)

This is for local community development activities, which would play a key role for the future watershed management in Tondano. All costs for the pilot projects of Rp. 10 billion will accrue during the first four years. The pilot project activity for community empowerment could be financed with the international grant system such as the partnership program of Japan.

(5) Institutional Capacity Development Measures (Table L.4.5)

The measures are totally for institutional building and training without any physical works, costing about Rp. 14 billion for the first 14 years. Expenditures for equipment and international personnel should be financed through foreign donors' grant assistance, while training material, Indonesian personnel and equipment maintenance cost would be arranged domestically in Indonesia.

(6) Monitoring System Development (Table L.4.6)

This is to establish and enforce the monitoring system for the future management of the Tondano watershed, providing monitoring facilities and equipment. The total cost for the initial 14 years amounts to about Rp. 5 billion, direct costs for facility construction and equipment purchase of which are proposed to be arranged through donors' grant program. The remaining part such as indirect cost, equipment O & M and engineering services is to be arranged domestically by the Indonesian side.

CHAPTER 5 FINANCIAL EVALUATION

5.1 FIRR Calculation

The breakdown of financial costs and revenues accrued from EMP are tabulated year by year as shown in Table L.5.1. FIRR and B/C were calculated as 5.4 % and 0.27 respectively, simply comparing the incremental costs with potential revenues, based on the evaluation conditions that the project life for financial evaluation is 60 years and that the future annual inflation rate will be 1.66 % (an average rate between 2 % in 1999 and 1.32 % in 2000). This is because of the long repayment period and necessity of continuous O & M and equipment replacement cost even after the target year to maintain the WCP goals. The sensitivity analysis under the same conditions for EIRR (Section 3.6) implies that FIRR decreases to $4.2 \sim 4.8$ %. And another sensitivity analysis for inflation (price escalation) was carried out, since the inflation in Indonesia had drastically increased up to 10 % in 2001. Assumption of 10 % inflation rate up to the 10th or 20th years resulted in FIRR of 7.4 % or 10.8 %, respectively.

These FIRR figures are lower than the market interest rates in Indonesia, as tabulated below. Such low FIRR figures are not feasible for usual commercial or productive projects carried out by profit-oriented enterprises so that money should be invested to more profitable projects. However, most of the measures proposed under WCP are for watershed conservation hardly generating internal monetary profits, and implemented mostly by non-profit public agencies. Therefore, from viewpoint of the public implementing agencies, WCP might be regarded as financially acceptable, when its FIRR is over 0% at least.

Bank	State banks	Regional government	Private national	Foreign	Commercial	Average
Rp. Time Deposit Interest Rate (%/year)	15.4	14.9	20.3	13.1	15.6	15.9

Market Interest Rates in Indonesia for 1999/2000

5.2 Cost Recovery Schedule for WCP

In accordance with the financial plan proposed in Chapter 4 and the following financial arrangement, the cost recovery schedules for the measures of WCP were formulated as in Table L.5 2:

- Interest rate of donor's soft loan : flat rate of 1%
- Maximum repayment period of the donor's soft loan :

40 years (including 10-year grace period)

· Payment during the grace period : only interest payment

- Tax duty : all the costs for WCP free from any taxation obligation
- Duration for cost recovery : 60 years

The schedules include interest, repayment, and domestic expenditure such as O & M costs, all of which amount to the total cash outflow to be recovered. Grant portion is excluded from the cash outflow.

Annual average is about Rp. 0.9 billion ranging from Rp. 4.2 billion in the fifth year to about Rp. 280 million for the final period. These cash outflows in the cost recovery schedules are compared with the potential revenues. As the total annual budget for forestry services of the North Sulawesi province in 1998/1999 was more than Rp. 7 billion of which over 80% was for project implementation (refer to Appendix-I), the expected provincial budget for 60 years would be able to adequately cover the cash outflow as a whole. The proposed financial plan is appropriate to realize a sound financial management for WCP.

5.3 Financial Analysis on Farm Household and Capacity to Pay

The farmers, who would participate in agroforestry activities under the WCP measures, are a major beneficiary group of the Tondano watershed conservation because their agricultural incomes are expected to increase. With such income improvement, there would be a strong incentive for them to participate in agroforestry. While the technical extension costs for agroforestry would be expended by the local executing agencies, these farmers are required to pay for some basic inputs such as saplings and fertilizers and to provide labor force for cultivation.

Aiming at assessment on the future financial situation of the farmer's households as well as on extent of the financial incentive to them, a farm budget analysis was carried out based on the incremental net revenue from the agroforestry activities under WCP. According to the results of the farmers' interview survey for 5 villages as mentioned in Section 3.1.1 of Appendix-G, the average farm size is about 1.4 ha per farm household ranging 1.2 to 1.6 ha. Since the agricultural area owned by the local farmers is too similar to examine the financial impact on the farmers' communities of the agroforestry promotion under WCP, the analysis was done by intensive area, not by farm size. The next table summarizes its result. (For more detail, refer to Section 4.2.7 in Appendix-G.)

					J)	Jnit : Rp. (000/Househ	old/year)
Intensive Area	East Area		South Area		West Area		Total Average	
Financial Item	Without	With	Without	With	Without	With	Without	With
Income	11,404	12,221	9,382	10,205	9,779	10,534	10,188	10,986
Expenditure	10,957	11,254	8,958	9,245	9,409	9,617	9,775	10,039
Balance	447	967	424	960	370	917	413	947
Incremental Balance	520)	53	6	54	7	53	4
Increase Rate (%)	116	5	12	26	14	8	12	9

Average Incremental Financial Balance by Intensive area

They could generate a considerable increase of balance by nearly 130% on average, so that they would have a strong incentive enough to be involved in the agroforestry program and be even a financial source for some costs needed for the WCP measures.

CHAPTER 6 RECOMMENDATIONS ON FINANCIAL ASPECTS

6.1 Establishment of Funds for Community Development

For instance of dam construction projects in Japan, establishment of "funds", financed by downstream administrations for the sake of upstream regions, has been practiced in several major river basins since the early 1970s. It stemmed from the recognition prevailing in upstream areas during the 1950s and 1960s that only those in downstream regions enjoyed the benefits created by dams. Laws and regulations for establishing funds were enacted in the early 1970s.

Funds might be usually regarded as a mechanism to share benefits of a project, which are enjoyed only by a certain people in limited areas, among people in the whole project on- and off-sites. The aims of such funds are firstly to meet the operation and maintenance cost of the project as well as in promoting rural development of the project site, and secondly to pay interest on the money provided to the local people who have to purchase additional inputs for the project.

The latter is in cases, where the project requires the local people to expend a lot of money in participating into the project. It might not be appropriate for WCP in Tondano. However, the former seems quite relevant for the current project, for enhancing local community of the area where the existing farmers start improved agroforestry to conserve the watershed, which is indispensable to empower the community functions for the purpose of economic stabilization on the newly directed cultivation activities. Funds might also be used to meet unexpected expenditures incurred after introduction of the agroforestry techniques, which are generally not covered by the initial budget for the project, such as taking additional and corrective measures for the local farmers who failed to re-establish their livelihood with agroforestry practices.

In addition, funds could be utilized to give project executing agencies monetary incentives to employ local people who are not skilled enough to be employed for physical construction works without such support. The creation of funds might be instrumental in the Tondano watershed for the sake of safeguarding job security of the local farmers, particularly when they are obliged to change cultivation patterns under agroforestry measures.

The most potential financial source of the fund could be the incremental profits of the farmers expected through agroforestry activities under WCP. Since their profits with the project will increase by about 30% on average compared with the without-project case, $5 \sim 10\%$ out of the 30% could be contributed by each farmer to establish the fund.

The fund would be utilized mainly for enhancement and development of their own communities and for financially safeguarding their agroforestry practices on the sustainable basis in the future. Besides, this financial back-up would meet a system "Social Safety Network" proposed in Appendix-E.

6.2 Appropriate Financial System for Funding WCP

In the Indonesian budget system, a large part of money collected on a local level has generally gone to the central governmental reserves. And then each provincial budget is usually controlled and re-allocated based on the central governmental financial policies. It means that all the collected money as provincial revenue does not necessarily come back for the local expenditures including watershed conservation. Under such the central government's budget control, many public service offices have a lack of budget even for their routine works.

Therefore, unless the central government could arrange special additional budget for the WCP implementation from the central reserves, some special financial system for funding WCP should be proposed in cooperation with foreign financial assistance.

CHAPTER 7 INSTITUTIONAL EAVALUATION

7.1 Key Institutional Outcomes

How far will the implementation of the development plan address the institutional problems as identified?

The current conditions which are driven mainly by the present disarray surrounding the recent constant atmosphere of instability within central government structures, and the decentralization process requires a broad based approach to institutional development. A strategy is required, not only to build capacities, but also to create linkages between several key regional institutions and between these institutions and the community. The coordination of, and cooperation between these institutions is an imperative ingredient in the recipe for sustainable development in the Tondano Watershed. Successful project implementation will produce the following key outcomes that will contribute to the achievement of this condition by ensuring that each stakeholder institution has a distinct role, and each role is undertaken in a reliable, professional and positive manner:

- A consolidated Legal and Regulatory Framework for coordination of all forestry stakeholders in the Tondano watershed including regulations and decrees about forestry management in the North Sulawesi/Minahasa regions specifically.
- A consolidated organizational structure for all Province and District Forestry Offices and units with written terms of reference including authorities, duties and responsibilities of all key positions.
- A consolidated capacity for local agroforestry research and development and a system for routine dissemination of findings, and an action plan to ensure application in the environment.
- 4) A consolidated village cadre training center and a band of village cadres who will always be available as village forestry development facilitators.
- 5) A consolidated accurate village boundary mapping and update process, complete with an up to date set of geographically referenced village boundary maps (digital and hardcopy), for planning, to support facilitation of micro village level project implementation, geographical coordination and monitoring and evaluation.
- 6) A consolidated watershed management capacity at local universities which will serve to maintain momentum and interest in conservation committee meetings, and strengthen the idea of holistic watershed management. This capacity will be developed from the perspective of both social and pure sciences.
- 7) A consolidated watershed conservation committee, which, although being initially

focussed on conservation will create a strong foundation for gradual sustained development, toward a broader based watershed management capacity.

- 8) A more integrated and coordinated approach to government activity and project planning.
- 9) Strengthened capacity of local NGOs to act as community representatives and village facilitators, as well as project implementors, and an alternative source of monitoring and evaluation.
- 10) A consolidated and sustainable recruiting and management process for maintaining the band of village cadres.
- 11) A consolidated village proposal submission process open to the broadest range of community institutions and groups. This process will provide the framework to guarantee maximum involvement of the community in identification, planning, implementation and management of village development (forestry).
- 12) A coordinated information system that will channel data through the district to the provincial office and run on a sustained regular update of watershed data, and ad hoc updates as required. A regular reporting and dissemination strategy will also be in place to ensure that the community are kept up to date with forest conditions in the watershed.
- 13) A reallocation of duties and responsibilities which will see the province office take a leading role in regional coordination, planning, monitoring and evaluation, while the district office will concentrate on supervision and implementation of watershed rehabilitation projects (forestry).
- 14) Consolidated and improved leadership and management structures within forestry offices that will be combined with improved human and material resources, and work practices to support efficiency and effectiveness of government forestry offices, particularly the Minahasa forestry services office.

Problems as stated	Effect of Outcomes/ Comments							
in Field Report								
(1) Salary	Out of project scope: Recommendation only to central and regional							
	Government							
(2) Routine	Out of project scope: Recommendation only to central and regional							
operational budget	Government, however, establishing a village proposal process, and re-							
	aligning the role of Government extension services workers to village project							
	supervision will re-direct energy and ensure that workers are focussed on							
	conservation activities. The provision of project funds in this area will							
	encourage the forestry department to at least institutionalize funding in this							
	area in the post project stages. The installation of computers and provision of							
	hardware such as office facilities and vehicles will increase efficiency so that							
	more can be done on the existing budget. On the job training will also							
	increase efficiency through managerial, leadership and work practices							
	improvements.							

Analysis of Problems and Outcomes

Problems as stated	Effect of Outcomes/ Comments				
in Field Report					
(3) Routine/project	Out of project scope: Recommendation only to central and regional				
budget balance	Government				
(4) Staff mobility	New vehicles supplied to increase staff mobility				
(5) Government-	Cadre group will increase government-community communications				
community	significantly. The cadres and government supervisors will attend the same				
communications	training program together which will increase coherence. Monitoring and				
	evaluation activities undertaken by cadres will provide a direct data and				
	information linkage to district office.				
	The village proposal process will also bring the government and community				
	much closer together. The government will become a partner with the				
	Community in sustainable development.				
	Community communications				
(6) Underdeveloped	The underdeveloped information systems problem will be addressed directly				
(0) Underdeveloped	through the development of an integrated Watershed Conservation				
information systems	Information System (WCIS) The development plan includes installation of				
	hardware software standardization of formats training and general				
	information systems development activities that will return a well developed				
	system to gather enter process analyze report and disseminate watershed				
	information.				
(7) Separating	The current forestry services has no capacity for the technical role. Its focus				
technical	will be re-aligned with administration and supervision of implementation.				
government services	The technical role will be taken over for the most part by the cadres and the				
from general	community.				
administration					
(8) The form and	The form and quality of extension services will be improved significantly				
quality of extension	above and beyond the former capacity (as above)				
services					
(9) Sustainable	The further research and development of water regulations and methods				
Funding for	(through the institutional development plan) to raise funds through taxes or				
Conservation	levies would increase the adoption of new conservative farming techniques				
Programs	and decrease encroachment through the provision of incentives to upstream				
	resource users.				
The General Non Go	vernment Institutional Problems				
(1) NO	The information systems development which will include the dissemination				
institutionalized	of information to the community.				
acommunity	distribute them broadly among the community				
awareness	Involving the community in conservation projects will increase awareness				
awareness	along with ownership				
	Involve schools in activities such as seedling propagation as a community				
	institution that may take part in the proposal submission process				
	Watershed management committee				
(2) No	Providing the opportunity for community members to participate in				
institutionalized	development will have a significant effect on apathy.				
method to decrease	1 6 1 5				
apathy					
(3) Watershed	Watershed conservation committee will integrate all stakeholders. The				
management	general project design is such that maximum integration is encouraged.				
coordination	Research projects at the university of Manado will emphasize the need for				
	holistic and strategic management by researching and clarifying major				
	management issues, proposing solutions, and encouraging an action plan				
	through discussion, development of regulations, and elimination of obstacles.				
	The integration forum will also increase coordination for watershed				
	management.				

7.2 Conclusion

The institutional development plan will bring significant change to the present method of operation of forestry services offices. Under the former structure the capacity for administration and management of forestry was severely restricted by the number and quality of human resources, inadequate budget allocations, lack of staff mobility and poor information systems. It is therefore important to take the pressure off the government offices (Dinas and UPT) by re-allocating a major part of the technical and implementation role to the community, and have the government offices (Dinas Province and District) assume a primarily adminstrative and supervisory role. The plan will narrow the scope of duties in these offices and thereby boost efficiency while strengthening supporting organizations in watershed conservation. The resulting institutional development will increase inter-institutional coordination, promote community involvement in partnership with forestry offices, improve the quality and quantity of extension services, encourage development of the watershed *management* perspective, increase awareness, and decrease apathy in the community.

Tables

Fable L.3.1 Benefit fron	Increased Water	Resources
---------------------------------	-----------------	-----------

Beneficial Function	Increased water resources							
Oualitative	* It may be assumed that development water discharge (incremental water discharge usable during the dry season) is equal to an							
Description	average outflow of groundwater fostered by incremental vegetation attributed to the WCP measures. Therefore benefit of the water							
Desemption	fostering function of the incremental vegetation is evaluated with costs necessary to obtain the same development discharge from							
	irritation dams (construction and $\Omega \& M$ costs of irritation dams)							
	* Natural vegetation in the watershed fosters or numbwater for use in the watershed area and the downstream. And the fostered							
	water flows into rivers and lakes, contributing to stabilization of discharged water amount there. So, loss of the vegetation affects							
	the groundwater utilization and river discharge decreasing products of agricultural and fishery sectors using water as key input							
	These industrial production losses can be taken as value of the water fostering function of the vegetation.							
Selected Evaluation	Increased water resources => Change in environmental quality => Human habitat => Replacement-Cost Method							
Method and	[Benefit attributed to increased water resources]							
Typical Equation	= [Incremental vegetation area] x [Average unit groundwater outflow of vegetation] x							
	x [(Annual construction cost of irrigation dam per unit development discharge)							
	+ (Annual O&M cost of irrigation dam per unit development discharge)]							
	Increased water resources => Measurable change in production => Non-distorted market prices => Change-in-Productivity Method							
	[Benefit attributed to increased water resources]							
	= [Incremental vegetation area] x [Fostered groundwater per unit vegetation]							
	x [Contribution rate of unit groundwater to each sectoral production]							
D (14 (
Data and Assumption	Settered Groundwater and Development Water Discnarge> (a) A unrear part or protocol in a protocol uncontraction between the with WCD offerented condition							
	(a) Average net penetration rate of the incrementar vegetation between the with-wet Partotested condution and the without WCP netrations in the target war $(22) = 1.0.9$							
	and the without we related to the in the target year $(21) - 1.0 - 70$ 0.01 (Source - Soil test implemented by the IICA Study Team November 2000)							
	* It was identified that there was no difference of infiltration rate among the the East. West and South Areas							
	* It is assumed that all the incremental vegetation land has a similar penetration rate							
	(b) Estimated incremental vegetation area = 200 ba = 200000 m ²							
	(b) Estimated interemental vegetation area 200 na 2,000,000 m Site Purpose (tree species) Area (ha)							
	Upper part of the encroached area Protection forest (nine & multi-purpose trees) 10							
	Inside of the protection forest * Enrichment planting (multi-purpose trees & cempaka) 40							
	Private lands Fuel wood plantation (gamal & kaliandra) 150							
	Total incremental vegetation area (ha) 200							
	* The area is estimated assuming that trees are planted with 3-m interval, since they are planted intermittently at the							
	logged-over spots in the protection forest.							
	(c) Average annual precipitation in the Tondano watershed = 1,869 mm/year = 1.9 m/year							
	(Sources : Meteorogical & Geophysical Agency, and National Electric Power Corporation							
	(d) Average annual fostered groundwater = $a x b x c =$ 37,380 m ³ /year							
	(e) Discharging rate from the groundwater to the rivers = 27% 0.27							
	(Source : Phase-I Study of the JICA Study Team)							
	(f) Water discharge contributing to stable water flow in rivers and lakes = $d x e = 10,093 \text{ m}^3/\text{year}$							
	(g) Development water discharge of the incremental vegetation							
	= f / (365 days x 24 hours x 60 minutes x 60 seconds) 0.00032 m ³ /s							
	<construction &="" and="" costs="" dams="" development="" discharge="" irrigation="" m="" o="" of="" per="" unit="" water=""></construction>							
	(h) Construction costs of irrigation dams per unit development water discharge = $18,460,000,000$ Rp/m ² /s (in 2000 price)							
	(Sources : SSIMP-III Project in the South Sulawesi Province)							
	(1) Depreciation period for the irrigation dam = 20 years							
	(Source : Pelaparado Dam, Small Scale Irrigation Management Project, Indonesia)							
	(1) Market inteless rate – 13.9 % 0.10							
	Datik State banks Regional government Frivate latto. Foreign Commercial Average							
	rate (%/vear) in 1999/2000							
	(Source : Indonesian Financial Statistics Vol.II No.8. Bank Indonesia, August 2000)							
	(k) Annual depreciation costs of irrigation dams per unit development water discharge							
	$= h x i x (1 + J)^{i} / [(1 + i)^{i} - 1] = 3089 120 333 \text{ Rn /m}^{3} / (\text{vear})$							
	(1) Annual O & M costs of irritation dams per unit development water discharge $= 1 \times 0.01$ 20.201 202 Dr $/m^3/c/var$							
	* The annual O & M costs of a irrigation dam is assumed to be 1 % of its annual depreciation cost							
	(m) As for the benefit evaluation by the change-in-productivity method a supplimentary survey would be needed to collect							
	necessary data and information.							
Applied Equation and	[Benefit attributed to increased water resources in the target year by the replacement-cost method]							
Estimated Benefit	= [Development water discharge of the incremental vegetation]							
	x [(Annual depreciation costs of irrigation dams per unit development water discharge)							
	+ (Annual O & M costs of irrigation dams per unit development water discharge)]							
	= g x (k + l) = 998,511 Rp./year (in 2000 price)							

Table L.3.2 Benefit from Conserved Water Quality

Beneficial Function			Conserved water of	quality				
Qualitative	* The value of water quality c	* The value of water quality can be assessed to be the incremental cost of treating the water so that it is suitable for downstream uses. The level of						
Description	treatment depends on the do	ownstream use. For ex	ample, irrigation water does not re	equire the same level of pu	rity as drinking water, so the co	st of		
	treating water for use in agr	iculture would be less	than drinking water supply.					
	* Removal of suspended solid	is the largest increm	nental cost for restoring water qual	lity in the Tondano lake to	suitable quality for downstream	users.		
	The incremental cost can be	e calculated as the extr	a alum or lime, filter capacity, trea	atment plant operation cos	ts, etc. needed to treat the excess	S		
	suspended solids, as compar	red with the quantities	needed to treat the suspended sol	ids that are naturally prese	nt in the water.			
Selected Evaluation	Conserved water quality $=> C$	hange in environment	tal quality $=>$ Water quality $=> \mathbf{R}$	eplacement-Cost Method	or Preventive-Expenditure M	ethod		
Turical Equation	[Benefit from poli	[D advaad water pollut	tental y [Unit cost for construction	and anaration of water fil	tor plant to remove the pollutor	tal		
Typical Equation	_	[Reduced water point	tants] x [Onit cost for construction	i and operation of water in	ter plant to remove the pollutan	lsj		
Data and	(a) Run-off water-pollution lo	ads into the Tondano	Lake due to soil erosion in the tar	get year without WCP				
Assumption		Pollutant	Suspended Solids (SS)	Total Nitrogen (T-N)	Total Phosphorus (T-P)			
ribbuiliption		Loads (kg/day)	27	not available	not available			
	(b) Run-off water-pollution lo	bads into the Tondano	Lake due to soil erosion in the tar	get year with WCP				
		Pollutant	Suspended Solids (SS)	Total Nitrogen (T-N)	Total Phosphorus (T-P)			
		Loads (kg/day)	24	not available	not available			
	(S	Source of a and b : Pha	se-I Study of the JICA Study Tear	m, 2000)				
	(c) Net WCP's contribution to	the pollutant abateme	ent in the Tondano Lake with soil	erosion control in the targe	et year = a - b			
		Pollutant	Suspended Solids (SS)	Total Nitrogen (T-N)	Total Phosphorus (T-P)			
		Loads (kg/day)	3	not available	not available			
	(d) Average unit cost to abate	water pollution load t	hrough simple treatment facilities	(in 2000 price)				
		Pollutant	Suspended Solids (SS)	Total Nitrogen (T-N)	Total Phosphorus (T-P)			
		Cost (US\$/kg)	0.004	6	49			
	(Sources : A	ajusted for the Indone	sian economic situation taking acc	count of different foreign e	xchange rates, commodity price	2		
	10 th	a Divis Lake (1002) in	duct levels, based on data from the	e studies on treatment cost (1007) og well og "Coost	s for rural area (1995),			
		le DIWa Lake (1992) II	ng Pay : Final Papart" ADP Aug	(1997) as well as Coast				
	(e) The other notential evalua	tion techniques such a	ing Day. Final Report, ADD, Aug	gust 1990)	human-canital method are no	tannlied		
	due to lack of data for thes	e methods and assumi	ing that there will be little increme	ental damage to the future l	uman health associated with w	ater		
	pollution in the lake even	without WCP	ing that there will be little increme	intal damage to the future i	fullian hearth associated with wa	ater		
	pollution in the lake even	indicat in Cr.						
Applied Equation	[Benefit attributed to water po	ollutant abatement in t	he target year by the preventive -	expenditure method]				
and Estimated	= [Pollutant abate	ement in the Tondano	Lake with soil erosion control]					
Benefit	x [Average unit	cost to abate water po	ollution load through simple treatn	nent facilities]				
	= c x d x 365 days	s =		-	4 US\$/year (in	2000 price)		

Table L.3.3 Benefit from Strengthened Erosion and Flood Control Capacity

Beneficial Function	Strengthened erosion and flood control capacity						
Qualitative	* In case there is stripped area without vegetation	on in the waters	ned, severe erosion will occur under he	avy rainfall and its	s downstream water		
Description	quality is degraded. So value of the vegetation	n's erosion cont	ol function is evaluated using constrict	ion cost of check	dams to control and		
	mitigate the washed-away soil.						
	* Watershed degradation contributes to increase	ed flooding in ty	vo ways. First, tree cutting and other lan	nd disturbance red	luce the water		
	holding capacity of the soil, causing larger pe	ak flows of drai	hage after rain storms. Second, the sedi	ment that erodes 1	of flood domogo		
	resulting from watershed degradation can be	estimated as the	value of the incremental amount of inc	reased flooding or	r decreased flood		
	control capacity. The incremental amount ma	y be determined	by comparison with conditions in undi	sturbed catchmen	t areas that have		
	similar topography, soil types, and rainfall patterns						
	* When land and buildings are damaged, the me	easure of damag	e should be calculated as the cost to res	store them to their	original condition.		
	The restoration activities may include remova	al of mud and du	st, repairing of buildings and paddy dik	tes, and finding te	mporary		
	accommodation while the buildings are being	repaired. Roads	s, bridges, pipelines, electrical power lin	tes and other publ	lic infrastructure can		
	cases can be calculated as cost to rebuild or re	elocate the dama	ged infrastructure	The value of the t	lamage in these		
	* The loss of revenue from lost farm production	n is a value of th	e strengthened erosion- and flood-conti	ol capacity when	agricultural land is		
	covered by mud slides.						
Salacted Evolution	Strangthanad flood control canagity \Rightarrow Change	in anvironment	al quality -> Human habitat ->Panlag	mont Cost Moth	ad		
Method and	[Benefit due to reduced damage]	in environment	ai quanty -> Human naonat -> Kepiaco	ement-Cost Meth	lou		
Typical Equation	= [Reduced cost to rehab	ilitate damages	due to mud-slide and flooding]				
	= [Cost to restore damage	ed land and buil	ding] + [Cost to remove mud and water] + [Repair cost o	f paddy dikes		
	+ [Cost to n	ebuild or relocation	e damaged infrastructure] + [Other exp	enditure in rehabi	litation		
	Strengthened erosion and flood control capacity	y => Measurable	-> Non distorted market prices -> Ch	ango in Product	ivity Mothod		
	[Benefit related to agriculture] = [Agric	ultural area prot	ected from erosion and flood]	lange-in-r rouuci	livity Method		
		x [Incremental	products] x [Unit market price of produ	uct			
	Strengthened erosion control capacity => Chan	ge in environme	ntal quality => Water quality =>Preven	tive-Expenditur	e Method		
	[Benefit attributed to reduced erosion] =	= [Amount of so	il erosion without vegetation under WC	[P]			
		x [Unit cost fo	check dam construction to control or r	nitigate the washe	ed-away soil		
Data and Assumption	<benefit <b="" by="" damage="" due="" reduced="" the="" to="">Repla</benefit>	cement-Cost M	ethod and the Change-in-Productivity	v Method>			
Duta and Hostimption	(a) It is assumed that, during the heavy rain stor	rm, erosion of so	bil from deforested areas resulted in hea	vy siltation of the	river, clogging o		
	water-supply intakes, and damages on local	houses and road	s. Deforested catchment area has raised	the small stream,	, river and lake beds		
	resulting in greater quantities of runoff durir	ng heavy rain sto	orms. Then, it contributes to flooding or	n some agricultura	l land as well		
	(b) Average annual occurrence rate of the heav (Source : Meteorogical &	y rain storms lik	e (a) in the past 20 years =	0.21	events/year		
	(c) Average number of water-supply intakes da	maged by flood	associated with storms like (a) in the S	tudy Area in the p	ast 20 years		
		0 9	()	0.028	intakes/event		
	* 15 as average operation years for wat	er-supply intake	s and 2 as damaged intakes in the past a	are assumed.	D (. 1 (. 2000		
	(d) Estimated average repair-work cost for the i	intakes =	tod with storms like (a) in the Study A	80,000,000	Rp./intake (in 2000 price)		
	(e) Average number of nouses totarry damaged	by noou associa	tied with storms like (a) in the Study Al	20	houses/event		
	* It is assumed that the damage only in	Remboken will	be mitigated with the WCP implementa	ation.	104000 0 1 1 1 1		
	(f) Assumed average area of the damaged house	es =		250	m ² /house		
	(g) Average unit price for housing construction	(in 2000 price)	=	1,000,000	$Rp./m^2$ (in 2000 price)		
	(Source : BRLKT in Man	ado, February 2	000)		/		
	(h) Average length of roads totally damaged by	flood associate	d with storms like (a) in the Study Area	in the past 20 yea	ars =		
	(i) Average total cost of road relocation =			540.000.000	km/event Rn /km (in 2000 price)		
	(1) Average total cost of foad felocation – (Source · Feasibility Stud	v Report of Hig	nland Agriculture Development Project	in West Java	Kp./kiii (iii 2000 price)		
	(j) Predicted suspended solids into the Tondand	Lake in the tar	get year without WCP =	27	kg/day		
	(k) Predicted suspended solids into the Tondand	o Lake in the tar	get year with WCP =	24	kg/day		
	(1) The present suspended solids into the Tonda	no Lake =	ha IICA Study Taam	27	kg/day		
	(Sources of J, K and I : Phi (m) Suspended solids reduction in the target ve	ase-1 survey of t	$P \text{ implementation} = i \cdot k =$	3	kg/day		
	(n) Incremental extent of erosion and flood in the	he target year w	thout the WCP implementation = $j/l =$	- 1	times		
	(o) Assumed reduction rate of soil erosion and	flood like (a) in	the target year attributed to WCP = m /	j 0.11			
	(p) Average agricultural area totally damaged b	y storms like (a	during the past 20 years =	7.5	ha/event		
	* It is assumed that the damage on pade	ly only in the no	rthern side of Lake Tondano will be mi	tigated with the V	VCP implementation		
	(q) Average local agricultural productivity (low (Source : Laporan Tahuna	an Dinas Pertan	an Tanaman Pangan Kab Minahasa 1	8,900 998)	kg/na/year		
	(r) Average price of the agricultural product (lo	wland paddy) a	ound the Study Area =	1,210	Rp./kg (in 2000 price)		
	(Source : Farm household	l survey of the J	CA Study Team, 2000				
	<benefit attributed="" by="" erosion="" reduced="" td="" the<="" to=""><td>Preventive-Exp</td><td>enditure Method></td><td></td><td>2</td></benefit>	Preventive-Exp	enditure Method>		2		
	(s) Incremental area of vegetation and agrofore	stry with erosion	control measures =	9,380	m ²		
	Incremental vegetation	ha	Agroforestry development	ha 1.000			
	Inside of the protection forest	40	AGF-I (Type I-2)	1,900			
	Private lands	150	AGF-I (Type I-5)	100			
	Total	200	AGF-I (Type I-6)	10			
	(Same - Field Barant of the UCA Stud	h. T	AGF-II (Type II-2)	2,020			
	(Source : Field Report of the JICA Stud	ly Team, p.4-18	AGF-III (Type III-2) Upland farming	2,270			
			Total	9,180			
	(t) Reduced erosion depth on average of (s) in t	he target year, a	ttributed to the WCP implementation =	0.001	m/year		
	(u) Annual reduction of the eroded soil in the ta	arget year = s x t	=	9	m ³ /year		
	(v) Amount of earth and sand stopped per unit of	concrete volume	of the check dam =	40	m ³		
	(Source : Forestry Agency	y of Japan, 1972)				
	(w) Construction cost of the check dam per unit	t concrete volun	ie =	1,136,000	Rp./m ³		
	* The cost is estimated for wet-masonry	y check dam inc	uding its appurtenant work.		3		
	(y) Construction cost of the check dam per unit	amount of the e	roded earth and sand = $v x w =$	45,440,000	Rp./m [°]		
Applied Equation	A Benefit due to reduced damage in the target	t year by the ren	acement_cost method				
and Estimated	= [Reduced cost to rehabilitate damage	s due to mud-sl	de, flooding, etc.]				
Benefit	= [Cost to restore damaged land & buil	lding] + [Cost to	remove mud & water] + [Repair cost of	of paddy dikes			
	+ [Cost to rebuild or relo	cate damaged in	frastructure] + [Other expenditure in re	habilitation	P ((2000 ·)		
	= [b x (c x d + e x I x g + h x 1)] x h x (c x d + e x I x g + h x 1)]) = ear by the chang	e-in-productivity method	1,260,000	Rp./year (in 2000 price)		
	= [Agricultural area protected from ero	sion and flood]	x [Incremental products] x [Unit marke	t price of product			
	= (b x p x q x r) x n x o $=$			1,897,280	Rp./year (in 2000 price)		
	C. [Benefit attributed to reduced erosion in the	target year by th	epreventive-expenditure method]				
	= [Annual reduction of the eroded soil	in the target yea	r] unit amount of the eroded earth and sa	nd] = 11 x x -			
		e eneek dann pei	unit amount of the crouce cartin and sa	426,227,200	Rp./year (in 2000 price)		
	* Benefit A should be added to Benefit	B for the total b	enefit, although Benefit C cannot be ad	ded to ignore dou	ble counting		
	* Either Benefit A plus Benefit B or on	ly Benefit C car	be the total benefit exclusively				
	1						

Table L.3.4 Benefit from Conserved Air Quality

Beneficial Function				Conserved	air quality										
Qualitative	* Oxygen supply function	n of the incremental v	egetation und	ler WCP is evalua	ted by calculating the oxyge	n weight discharg	ged from the								
Description	vegetation based on the	e existing research dat	a, which is m	ultiplied by unit m	narket price of the industrial	oxygen.									
	* Amount of CO2 absorb	bed by the incrementation	l vegetation w	vill be estimated for	or calculation of a total cost	to remove them a	Iternatively. This								
	total cost is regarded as	s an economic value o	f the air purif	ication function of	f the incremental vegetation.										
Salaatad Evaluation	Improved air quality $\rightarrow 0$	Change in anyiranma	atal quality =	sir quality -> D	onlagoment Cost Method										
Method and	Benefit from air	change in environment	nai quanty –	> air quainy -> R	eplacement-Cost Method										
Typical Equation	[Denent nom an	Amount of increments	al vegetation]												
Typical Equation	Ľ	x {[(Annual I	net O ₂ dischar	ge per vegetation	x (Unit market price of O	1									
		+ [(Annual n	et CO ₂ absor	ption per vegetation	n) x (Unit removal cost of C	20.9]}									
		[(,		~ 2/1)									
Data and Assumption	<o2 discharge="" of="" td="" vegeta<=""><td>ation></td><td></td><td></td><td></td><td></td><td></td></o2>	ation>													
*	(a) Market unit price of (D ₂ per kg in Japanese	Yen =			55	Yen/kg								
	(Source : Forest	ry Agency of Japan, S	eptember 200)0)			2								
	(b) Exchange rate of Rp.	=	-			79	Rp./yen (in 2000)								
	(c) Market unit price of (O_2 per ton in Rp. = a x	b x 1,000 kg	=		4,345,000	Rp./t (in 2000 price)								
	(d) Photo-synthesis form	ula : $6CO_2 + 6H_2O \Rightarrow$	$> C_6 H_{12} O_6 + 6$	6O ₂											
	(e) Molecular weight of a	cellulose ($C_6H_{12}O_6$) =	$12 \ge 6 + 1 \ge 12$	$12 + 16 \ge 6 =$		180									
	(f) Molecular weight of o	oxygen $(6O_2) = 6 \times 16$	x 2 =			192									
	(g) Annual amount of pro	oduced dry cellulose (net plant proc	lucts) per unit inci	emental vegetation under W	CP (Unit : t/ha/y	ear)								
	Species 1	Species Net Plant Products (m ³ /ha/year) Average Weight Factor Net Plant Products (t/ha/year) Pine $12 \sim 27$ 20 0.7 0.0137 Mahogany $7 \sim 11$ 9 0.7 0.0063													
	Pine	rine $12 \sim 2/$ 20 0.7 0.0137 Mahogany $7 \sim 11$ 9 0.7 0.0063 Kaljandra $5 \sim 20$ 13 0.7 0.0088													
	Manogany	Manogany $1 \sim 11$ 9 0.7 0.0063 Kaliandra $5 \sim 20$ 13 0.7 0.0088													
	(h) Area of the increment	Kaliandra 5 ~ 20 13 0.7 0.0088 Area of the incremental vegetation attributed to the WCP implementation (Unit : ha)													
	Typical P	Area of the incremental vegetation attributed to the WCP implementation (Unit : ha) Typical Planted Species Incremental Area (ha) Site													
	Pine	lanted opeoles	merenna	10	Upper part of the encroach	ed area									
	Cempaka *			40	Inside of the protection for	est									
	Gamal and Kalia	andra		150	Private lands										
	* It is assumed t	hat Cempaka has alm	ost the same a	annual production	amount as Mahogany.		-								
	(i) Annual O₂ discharge f	from the incremental	egetation = (f/e) x g x h =		1.8	t /year								
	<co<sub>2 Absorption and Fix</co<sub>	xation of Vegetation>				10 50 4									
	(j) Unit cost of CO_2 remo	oval per ton in Japane	se Yen =			12,704	yen/t								
	(Source : Forest	ry Agency of Japan, S	eptember 200)0)		1 002 (1(B= (t (in 2000 anias)								
	(k) Unit cost of CO_2 rem	ovar per ton in Kp. = j	x D -	1()		1,005,010	Rp./t (in 2000 price)								
	(1) Molecular weight of c	carbon dioxide $(6CO_2)$	$= 6 \times (12 + 1)$	$16 \times 2) =$		264									
	(m) Annual CO ₂ absorpti	ion and fixation by the	incremental	vegetation = (1 / e) x g x n =	2.5	t/year								
	(n) It is assumed that hot	h the ovvgen sold in r	narket and the	at discharged from	vegetation provide people v	with the similar s	arvices								
	But the benefit calcul	lated in this way may	he over-evalu	ated since the sol	d oxygen in the container ha	is some extra vali	ie added with								
	a high-pressure spray	ving function the natur	al oxygen do	es not have, or bec	cause the incremental oxyger	n will be little nee	eded due to too								
	much oxygen on the	earth.													
	(o) The amount of oxyge	n discharge and carbo	n-dioxide abs	sorption of the inc	remental vegetation is assun	ned not to fluctua	te in accordance								
	with its plant success	sion.													
	(p) The other potential ev	valuation techniques s	uch as loss-o	f-earnings metho	d, and human-capital meth	od are not applie	d due to lack of data								
	afforestation and arra	assuming that there v	viii not be any	y incremental cont	ribution to the future human	nealth associated	1 with the								
	anorestation and agro	nocsuy under wCP.													
Applied Equation and	[Benefit from air purifica	ation in the target year	by the repla	cement-cost metl	nod										
Estimated Benefit	= [Market unit]	price of O ₂ per ton] x	[Annual O ₂ d	ischarge from the	incremental vegetation]										
	+	Unit cost of CO2 remo	val per ton] x	[Annual CO2 ab	sorption and fixation by the	incremental vege	tation]								
	= c x i + k x m	=	. ,	-	- /	10,387,389	Rp./year (in 2000 price)								

Beneficial Function	Conserved aesthetic and recreational amenity
Qualitative Description	 * The value of the aesthetic quality of the natural environment is difficult to calculate in monetary terms, because it depends on the subjective preference of each individual person. One approach to assigning a monetary value to aesthetic qualities is to estimate how much the people living in an area would pay to preserve them (willingness to pay, WTP). The cumulative regional WTP can be interpreted to be equal to the overall value of restoring the aesthetic quality of the environment. * In addition, it is likely that Indonesian and international tourists who visit the Tondano watershed area would also be willing to pay some small amount of money such as a surcharge on hotel room rates for preserving the aesthetic quantities of the watershed. * Tourism accounts for a part of the trade of goods and services in the Tondano watershed. A majority of tourists visiting the watershed can be classified as 'Adventure and Ecotourists', enjoying the natural landscape of the area.
Selected Evaluation	Conserved or improved aesthetic quality => Change in environmental quality => Aesthetics => Contingent-Valuation Method
Method and	[Non-use benefit including existence value]
Typical Equation	= [Average W IP of non-use value of local households] x [Number of local households]
	+ [Average with of non-use value of tourists] x [Number of tourists] Conserved or improved aesthetic quality => Change in environmental quality => Recreation
	=> Contingent-Valuation Method or Travel-Cost Method
	[Use-benefit by contingent-valuation method]
	= [Average WTP of use-value of local households] x [Number of local households]
	+ [Average WTP of use-value of tourists] x [Number of tourists]
	[Use-benefit by travel-cost method]
	= [Average travel cost of tourists] \times [Incremental number of tourists]
	+ [Average travel cost of local visitors] × [Incremental number of local visitors]
	Conserved or improved aesthetic quality $=$ Measurable change in tourism production $=>$ Non-distorted market prices
	=> Change-in-Productivity Method
	[Benefit related to the tourism sector by change-in-productivity method]
	= [Incremental tourists due to environmental improvement or conservation]
	x [Incremental net profit of tourism sector per tourist]
Data and Assumption	 (a) There is no tourist prediction analysis around the Tondano Lake in the future, and most of the other reliable data and information related to tourism around the lake are not statistically available for the travel-cost method and the change-in-productivity method. (b) A time- and money-consuming questionnaire survey has to be carried out to collect and analyze statistically reliable WTPs of the local residents and tourists, which are essential to apply the contingent-valuation method. (c) In the with- and without-project framework, it is strongly assumed that the net effect of WCP on the aesthetic and recreational amenity in the Intensive Area would be quite limited, taking into account the present scenery situation as well as the relatively small-sized tourism activities in and around the Tondano Lake.
Applied Equation and Estimated Benefit	[Benefit attributed to conserved or improved aesthetic and recreational amenity in the target year] = 0 Rp./year (in 2000 price) * It is due to the methodological reasons and realistic assumption as mentioned above.

Table L.3.6 Benefit from Improved Forestry Resources

Beneficial Function				Improved forestr	7/ 7920117092		
Qualitative Description	* Forests provide several valuable	goods and servi	ces including wo	ad products floo	y resources	netic quality and hab	itat for wildlif
Quantative Description	Potential methods for calculatin	g the value of the	e loss of flood cor	trol and aesthetic	a control by stabilizing son, described in the table	s for the strengthen	ed erosion &
	flood control capacity as well as	the conserved a	esthetic & recreat	ional amenity res	prectively. The value of wildlife h	abitat could be cone	idered to be
	included in the aesthetic evaluat	ion similar to th	e value of a sceni	c view or a clear	lake	aonat could be cons	
	* The value of loss of timber and	other wood prod	ucts can be estimated	ted as the overal	l income that would be derived fr	om harvesting proc	essing and
	selling the products on a sustain	able basis. This	income can be estille	imated by compa	ring the income from sustainable	logging on land of s	vimilar area tree
	types provimity to roads and fa	ctories etc when	re watershed man	agement has been	well done	logging on land of 3	siinnai area, iree
	types, proximity to roads and ra	ciones, etc. whe	ie watersneu mana	igement has been	i wen done		
Selected Evaluation Method	Improved forestry resources => N	feasurable chang	e in forestry produ	uction => Non-di	istorted market prices =>Change	in Productivity Me	thod
and Typical Equation	Benefit of forest resou	irces] = [Increme	ental forest land] x	[Amount of inc	remental forest goods] x [Unit ma	rket price of forest	zoods
Data and Assumption	(a) Incremental reforested area un	der the land reha	bilitation within t	he Intensive Area	a of WCP		
	as of the target year of these m	easures =				200 ha	
	Related Measures	under WCP	Purp	oose	Tree Species	Area (ha)	
	- Upper part of the	encroached area	Protection forest		Pine and multi-purpose trees	10	
	 Inside of the prote 	ction forest	Enrichment plant	ing	Multi-purpose trees & Cempaka	40	
	 Private lands 		Fuel wood planta	tion	Gamal and Kaliandra	150	
	1	otal incremental	reforested area (=	with WCP - wit	thout WCP)	200	
	(b) Assumed growth duration of t	he planted trees t	to have commercia	al value			
	Planted Tree Species	Products	Range of Growth	Duration (years)	Average Duration (years)		
	Pine	Timber	20~	- 30	25		
	Cempaka	Timber	20~	- 50	35		
	Drian	Fruits	5~	10	7.5		
	Comor	Timber Fuel wood	30~	2 30	40		
	Kaliandra	Fuel wood	2~	- 3	2.5		
	(c) Assumed rate of commercial s	elling of the incr	emental forests =	1/1	2.5		
	Planted Tree Species	Products		1/L %/vear	т		
	Pine	Timber	0.040	/0/yeai	ł		
	Cempaka	Timber	0.040	2.0			
	Drian	Fruits	0.023	13.3			
	Dilan	Timber	0.025	2.5			
	Gamar	Fuel wood	0.025	40.0			
	Kaljandra	Fuel wood	0.400	40.0			
	(d) Assumed commercial value of	the forest goods	around the Tonda	ano watershed	1		
	Planted Tree Species	Products	Average R	etail Price in 200	$00 (\text{Rp}/\text{m}^3)$		
	Pine *	Timber		1 736 000	((tp:/m)		
	Cempaka	Timber		900 000			
	Drian	Fruits		600,000			
		Timber		not available			
	Gamar	Fuel wood		1.000			
	Kaliandra	Fuel wood		1,000			
	* As pine	timber is not sole	d in the local mark	et, log price in th	ne international Malaysian market	t is applied as calcula	ated below
1	*	US\$ 190.8 /m3	in 2000 x Rp.9 10	00 / \$ = Rp. 1.736	280 /m ³	-	
		(Source : Wor	ld Bank Developn	nent Prospects, C	ommodity Price Data Pinksheet,	December 2000)	
	(e) Average volume of the forest	goods in the incr	emental reforested	l area as of the ta	rget yea	<i>,</i>	
	Planted Tree Species	Products	Range of	Annual Amount	of Production (m ³ /ha/vear)	Average Amount (n	n ³ /ha/year)
	Pine	Timber	runge or i	10	27	200 200 200 200 200 200 200 200 200 200	in , nue y our j
	Come 1 (211)	Timber		12~	-27	20	
1	Cempaka (Mahogany)	Timber		7~	11	9	
	Drian	Fruits		not ava	allable		
1		Timber		not ava	ailable		
	Gamar	Fuel wood		not ava	ailable		
	Kaliandra	Fuel wood		5~	20	13	
1	1						
Applied Equation and	[Benefit of forest resources in the	target year by th	echange-in-prod	uctivity method			
Estimated Benefit	= [Incremental refores	st area] x [Amou	nt of incremental f	forest products] x	[Unit market price of forest proc	lucts	
	= [Incremental refores	st area] x [(Rate o	of commercial sell	ing) x (Average	tree volume)		
	1			x [Avera	ge unit value of wood production]	
	= a x c x d x e =					23,547,943 Rp	./year (in 2000 price)

Table L.3.7Benefit from Conserved or Improved Fishery Resources

Beneficial Function		Conserved or	improved fish	nery resources											
Qualitative	* Siltation of river/lake beds and other fish hat	bitat is the main sou	rce of enviro	nmental dama	ge that poor waters	hed management causes	5								
Description	to fishery resources. Top soil is eroded durin	g heavy rain, and the	he sediment d	rains into thes	e sensitive aquatic	areas decreasing their									
*	ability to support fish life. The value of the d	amage to fishery re	esources may	be estimated a	s the loss of fishing	g income caused by the									
	siltation of fish habitat				2	,,									
	* The loss of fishing income may be estimated	directly or indirect	tly If historic	al records are	available it may be	nossible to directly									
	estimate the reduction in fishing income But	these results may	he unreliable	hecause such	factors as improved	fishing techniques									
	and heats increase in the sele price of fish a	nd increases in the	number of no	orla who wor	the fishing indu	ustry must all ba									
	and boats, increase in the sale price of fish, a	nu mereases mue	number of pe	opie wilo woi	amont hooping the	asthar factors such									
	considered. In addition, this direct estimate in	nay unitality bias ag		ersned manage	anent, because the										
	as over-narvesting and pollution from the ini	and fishery itself m	ay have conti	ributed to the	decline in fishing. C	onsequently, an									
	indirect method of comparison would probat	bly give better resul	Its.												
		(11 1	· ~ 1	1	1	•									
Selected Evaluation	Conserved or improved fishery resources $=> N$	leasurable change	in fishery pro	duction $=> Nc$	on-distorted market	prices									
Method and			. 1		=> Change-in-Pro	bauctivity Method									
Typical Equation	[Benefit of fishery resources] = [Conserved or improved water area] x [Amount of incrementally caught fish and other fishery products]														
		x [Amount of incrementally caught fish and other fishery products] x [Unit market price of the fish and other fishery products]													
		x [Unit market price of the fish and other fishery products]													
Data and Assumption	Average market price of fish and other fishery products caught in the Tondano Lake (Rp./kg in 2000 price) Main Fishery Product / Market Site Langowan Tondano Average Title Output Description Description Average														
	Main Fishery Product / Market Site Langowan Tondano Average a1. Tilapia (Nila) 10,000 10,000 10,000														
	Main FisheryProduct / Market SiteLangowanTondanoAveragea1. Tilapia (Nila)10,00010,00010,0002. Grass (Hars Mark)10,00011,250														
	a1. Tilapia (Nila) 10,000 10,000 10,000 a2. Carp (Ikan Mas) 10,000 12,500 11,250														
	(Source : Interview data by the Study	Team in Langowar	n and Tondand	o Sub-districts	5, 2000)										
	(b) Average annual productivity of fishery pro-	ducts from the Ton	dano Lake (kg	g/year)											
	Fish Production/year	1995	1996	1999	2000	Average									
	b1. Tilapia (Nila)	2,534,000	2,146,200	1,895,600	1,493,100	2,017,225									
	b2. Carp (Ikan Mas)	1,086,000	919,800	812,400	639,900	864,525									
	Total	3,620,000	3,066,000	2,708,000	2,133,000	2,881,750									
	(Source : Dinas Perikanan Tondano)				•										
	* It is assumed that a production ratio	for the net cage cu	lture (30 % fc	or carp and 70	% for Tilapia) is an	plicable to the above.									
	(c) Estimated ratio of negatively affected fish l	nabitat in the Tonda	ano Lake in th	ne target vear v	without WCP =	not available (??	%)								
	(Source : Estimation base	d on a simple mod	el in "Ecologi	cal Study for	Chubu Internationa	l Airport", Japan, 1998	,								
	(d) Predicted suspended-solids load into the To	ondano Lake in the	target year w	ith the WCP i	mplementation =	24 kg/	dav								
	(e) Predicted suspended solids load into the To	ondano Lake in the	target year			21 118	uuj								
	(c) i realected suspended sonds foud into the re	June Lane in the	without the V	VCP impleme	ntation =	27 kg/	dav								
	(Source of d and e : Phase	e-I Study of the IIC	Δ Study Tea	m 2000	illution	27 Kg/	uuy								
	(a) Assumed decrease rate of fishery catch from	n the Tondano I ak	a in the target	t year without	the WCD implement	ntation									
	(g) Assumed decrease rate of fishery catch fion		te in the targe	i year without	-dx(f a)/f =	#VALUEL (22	9/2)								
					- u x (1 - c) / 1 - c	#VALUE! (!!	/0)								
Applied Equation and	[Benefit of fishery resources in the target year	by the change_in_r	roductivity	method]											
Estimated Renefit	= [Tota] of (Average market price of	fish and other fishe	ry products)	x (Average an	nual productivity of	f fishery products)]									
Estimated Denem	- [10tal of (Average market price of	akal y [Assumed d	acrease rate o	f fishery catal	from the Tondano	I akal									
	x [Aica of the Tolidatio L] = (a1 x b1 + a2 x b2) x c =	ancj n [Assumed u	cerease rate 0	in instituty calci		Dan Jugar (in 2000 miga)									
	$-(a_1 \times b_1 + a_2 \times b_2) \times g -$				#VALUE!	rp./year (in 2000 price)	,								

Table L.3.8 Benefit from Conserved or Improved Agricultural Resources

Beneficial Function					Ir	nproved or co	nserved agricu	Iltural resources			
Qualitative Description	* Under th	e proposed l	and use of WC	CP, there will b ity of the exist	e no incremen	tal agricultura	l land in the Ir	ntensive Area. However, the	e extension program	m of agroforestry	
	between	with-project	and without-p	project are eval	luated with nor	n-distorted ma	rket prices.	senement of wer, so that the	inerementar agrieu	inturui products	
Salacted Evoluation Method	Improved	agricultural	racouroac => N	laggurabla aba	ngo in ogriguli	tural productic	n => Non dis	torted market prices => Ch	ango in Productiv	uity Mathad	
and Typical Equation	impioved	[Benefit of a	agricultural re:	sources] = [Ag	roforestry area	i] x [Amount c	of incremental	agricultural goods] x [Unit	market price of ag	gricultural goods]	
Dete and Assumption	(-) 4			. d		- d-1.1 d		1	h . Tu (
Data and Assumption	(a) Area, y	leid, interna	Area	a (ha)	Yield (kg	adable product z/ha/year)	Internation	al Market Price in 2000	Production C	Cost (Rp./ha/year)	1
		Products	al.Without	a2.With	a3.Without	a4. With	(US\$ /kg)	a5. (Rp./kg, Rp.9,100/\$)	a6.Without	a7.With	
		Paddy	1,021	1,021	4,800	5,040	0.17	1,547	3,304,000	3,372,000	
		Coffee	141	4,933	2,900	1,000	0.09	819	3,060,000	3,398,000	
		(Source : W	orld Bank Dev	velopment Pros	spects, Commo	odity Price Da	ta Pinksheet, I	December 2000)			•
	(b) Increm	ental net ber	nefits of the ma	in tradable ag	ricultural prod	ucts between v	vithout-agrofe	prestry and with-agroforestr	v in the target year	·	
	(*)				F		$= \Sigma [a2 x (a)]$	14 x a5 -a7) - a1 x (a3 x a5 -	a6)]=	456,887,780	Rp./year
			Tradable Agr	icultural Produ	ict	Paddy 200.648.880	Maize	Coffee 274 575 050	Total		
			merementari	iet beliefits (Kj	J./year)	309,048,880	521,815,950	-574,575,050	450,887,780		
	(c) Incren	nental net be	nefits of the ot	her products b	etween withou	t- and with-ag	roforestry in t	he target year =	000/	3,568,309,000	Rp./year
		Pro	ducts	c1 Without	(ha) c2 With	c3 Without	000/ha/year) c4 With	c4 Without (c1 x c3)	$\frac{000}{\text{year}}$	(Rp 000/year) c5 - c4	
		Ground nut	ducts	323	600	1,180	1,248	381,140	748,800	367,660	
		Cowpea		129	360	1,230	1,355	158,670	487,800	329,130	
		Vegetables		341	485	3,916	4,305	1,335,356	2,087,925	752,569	
		Clove		1,466	2,571	1,685	1,775	2,470,210	4,563,525	2,093,315	
		Coconut Other estate	crops	185	82	70	120	12,950	9,840 269 445	-3,110	1
		Fruits	0.010p3	228	250	500	500	114,000	125,000	11,000	1
		Trees		1,749	922	100	100	174,900	92,200	-82,700	1
		Hedgerow c	erop	198 4 761	358 5 793	100	100	19,800 4 852 026	35,800 8 420 335	16,000	
		- 0		7,701	5,175	10,711	11,400	4,052,020	0,120,000	5,566,509	J
	(d) Occurr	ence rates of	f the increment	al net benefits	for each year	Cround nut	Common	Cosserve	Vagatablas	Clava	1
		1	0.0	0.0	0.0	0.0	0.0	Cassava 0.0	0.0	0.0	-
		2	0.3	0.3	0.0	0.3	0.3	0.3	0.3	0.0	
		3	0.6	0.6	0.0	0.6	0.6	0.6	0.6	0.0	
		5	1.0	1.0	0.0	1.0	1.0	1.0	1.0	0.0	
		6	1.0	1.0	0.1	1.0	1.0	1.0	1.0	0.1	
		8	1.0	1.0	0.3	1.0	1.0	1.0	1.0	0.3	
		9	1.0	1.0	0.9	1.0	1.0	1.0	1.0	0.9	
		10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	-
		Year	Coconut	Other est	tate crops	Fruits	Trees	Hedgerow crop	1.0	1.0	J
		1	0.0		0.0	0.0	0.0	0.0			
		2	0.0		0.0	0.0	0.0	0.0			
		4	0.0		0.0	0.0	0.0	0.0			
		5	0.0		0.0	0.0	0.0	0.0			
		7	0.1		0.1	0.1	0.1	0.1			
		8	0.7		0.7	0.7	0.7	0.7			
		9	0.9		0.9	0.9	0.9	0.9			
		11~	1.0		1.0	1.0	1.0	1.0			
	D Ci	c : 1/ 1			4						
Applied Equation and Estimated Benefit	[Benefit of	f agricultural = [Increme	resources in t	he target year l ry areal y [Tot	by the change	-in-productiv	ity method]	products) x (Unit market pr	ice of agricultural	products)]	
Estimated Benefit		= [Increme	ntal agroforest	ry area] x [(Ra	te of commerce	cial selling) x (Average net a	gricultural productivity und	ler agroforestry)]	producto)j	
		- b + a =				x [A	verage unit va	lue of agricultural production	on]	Be /waar (in 2000 pric	(2)
		-0+c-							4,023,190,780	Kp./year (iii 2000 pric	(10)
	[Benefit of	f agricultural	resources in e	ach year by th	e change-in-p	roductivity n	nethod]		(T)	2000	
		= b x d + c Year	x d = Paddy	Maize	Coffee	Ground nut	Cowpea	Cassava	(Unit : Rp./year in Vegetables	Clove	1
		1	0	0	0	0	0	0	0	0	
		2	92,894,664	156,544,185	0	110,298,000	98,739,000	-3,360,000	225,770,700	0	-
		4	247,719,104	417,451,160	0	220,390,000	263,304,000	-8,960,000	602,055,200	0	
		5	309,648,880	521,813,950	0	367,660,000	329,130,000	-11,200,000	752,569,000	0	
		6	309,648,880	521,813,950	-37,457,505	367,660,000	329,130,000	-11,200,000	752,569,000	209,331,500	
		8	309,648,880	521,813,950	-262,202,535	367,660,000	329,130,000	-11,200,000	752,569,000	1,465,320,500	
		9	309,648,880	521,813,950	-337,117,545	367,660,000	329,130,000	-11,200,000	752,569,000	1,883,983,500	
		10	309,648,880	521,813,950	-374,575,050	367,660,000	329,130,000	-11,200,000	752,569,000	2,093,315,000	-
		Year	Coconut	Other est	tate crops	Fruits	Trees	Hedgerow crop	Total	2,075,515,000	1
		1	0		0	0	0	0	0		
		3	0		0	0	0	0	1.361.773.098		
		4	0		0	0	0	0	1,815,697,464		
		5	_311.000		0 564 500	0	8 270 000	0	2,269,621,830		
		7	-933,000		28,693,500	3,300,000	-24,810,000	4,800,000	2,796,294,315		
		8	-2,177,000		66,951,500	7,700,000	-57,890,000	11,200,000	3,498,524,295		
		9	-2,799,000		86,080,500	9,900,000	-/4,430,000	14,400,000	3,849,639,285 4,025,196,780		
		11~	-3,110,000		95,645,000	11,000,000	-82,700,000	16,000,000	4,025,196,780		
	1										

															(Unit : R	p. milli	ion)									
								Co	st-Items fo	or Meas	ures a	nd Actior	ns (in 200	00 constan	t market	t price)								Labor	Standard	Economic
	F	Forestry B	Boundary		Re	eforestati	on		Forest Pa	atrol		Rese.*	C	ommunity	Forestr	у	Timb	er Planta	tion	Delivery	St.**	Annual T	fotal	Conversion	Conversion	Cost
Serial	Skilled	Unskill-	Equip-	Mat-	Skilled	Unskill-	Mat-	Skilled	Unskill-	Equip-	Mat-	Skilled	Skilled	Unskill-	Equip-	Mat-	Skilled	Unskill-	Mat-	Unskill-	Mat-	Unskilled	Others	Factor ***	Factor	(UL x LCF
Year	labor	ed labor	ment	erials	labor	ed labor	erials	labor	ed labor	ment	erials	labor	labor	ed labor	ment	erials	labor	ed labor	erials	ed labor	erials	labor (UL)	(0)	(LCF)	(SCF)	$+ O \times SCF)$
1	42	14	14	30									107									14	86	0.796	0.995	96
2	1	6		30									107	2	1	7						8	138	0.796	0.995	144
3													98	1	1	2						1	100	0.796	0.993	106
5					116	4		108	60	120	66	74	98		1	2	376	6	16	2	2	72	979	0.796	0.995	1 031
6					98	115	36	108	00	120	6	74	98		1	2	376	168	34	1	1	284	834	0.796	0.995	1,051
7					98	120	11	108			6		98		1	2	376	168	34	1	1	289	735	0.796	0.995	961
8					98	120	11	108			6		98		1	2	376	162	19			282	719	0.796	0.995	940
9					98	120	11	108			6		98		1	2	376	162	19			282	719	0.796	0.995	940
10					98	10		108			6		98		1	2	368	162	18			172	699	0.796	0.995	832
11	1	6		30	98	10		108			6		98		1	2	368	162	18			178	730	0.796	0.995	868
12	1	6		30	98	10		108			6						368	162	18			178	629	0.796	0.995	768
13					98	10		108			6						368	162	18			172	598	0.796	0.995	732
14					98	10		108			6						368	162	18			172	598	0.796	0.995	732
15						10		54	2	120	5						135	54				66	314	0.796	0.995	365
16						10		54	2		5						135	54				66	194	0.796	0.995	246
17						10		54	2		5						135	54				66	194	0.790	0.995	240
19						10		54	2		5						135	54				66	194	0.796	0.995	240
20			1			10		54	2		5	t i	1				135	54		1		66	194	0.796	0.995	246
21	1	6		30		10		54	2		5						135	54				72	225	0.796	0.995	281
22	1	6		30		10		54	2		5						135	54				72	225	0.796	0.995	281
23						10		54	2		5						135	54				66	194	0.796	0.995	246
24						10		54	2		5						135	54				66	194	0.796	0.995	246
25						10		54	2	120	5						135	54				66	314	0.796	0.995	365
26						10		54	2		5						135	54				66	194	0.796	0.995	246
27						10		54	2		5						135	54				66	194	0.796	0.995	246
28						10		54	2		5						135	54				66	194	0.796	0.995	246
30						10		54	2		5						135	54				66	194	0.796	0.995	240
31	1	6		30		10		54	2		5						135	54				72	225	0.796	0.995	240
32	1	6		30		10		54	2		5						135	54				72	225	0.796	0.995	281
33		0		50		10		54	2		5						135	54				66	194	0.796	0.995	246
34						10		54	2		5						135	54				66	194	0.796	0.995	246
35								54	2	120	5						135	54				56	314	0.796	0.995	357
36								54	2		5						135	54				56	194	0.796	0.995	238
37								54	2		5						135	54				56	194	0.796	0.995	238
38								54	2		5						135	54				56	194	0.796	0.995	238
39								54	2		5						135	54				56	194	0.796	0.995	238
40	1	6		20				54	2		5						135	54				50	194	0.790	0.995	238
42	1	6		30				54	2		5						135	54				62	225	0.796	0.995	273
43				20				54	2		5						135	54				56	194	0.796	0.995	238
44								54	2		5						135	54				56	194	0.796	0.995	238
45								54	2	120	5	I	1	İ			135	54		1		56	314	0.796	0.995	357
46								54	2		5						135	54				56	194	0.796	0.995	238
47								54	2		5						135	54	_		_	56	194	0.796	0.995	238
48								54	2		5						135	54				56	194	0.796	0.995	238
49							<u> </u>	54	2		5						135	54				56	194	0.796	0.995	238
50	1			20				54	2		5						135	54				56	194	0.796	0.995	238
51	1	6		20				54	2		5						135	54				62	225	0.796	0.995	2/3
53	1	0		30				54	2		5		I				135	54				56	194	0.796	0.995	273
54								54	2		5						135	54				56	194	0.796	0.995	238
55								54	2	120	5						135	54				56	314	0.796	0.995	357
56								54	2		5	1					135	54				56	194	0.796	0.995	238
57								54	2		5						135	54				56	194	0.796	0.995	238
58								54	2		5						135	54				56	194	0.796	0.995	238
59								54	2		5						135	54				56	194	0.796	0.995	238
60	_		-					54	2		5	L	L				135	54				56	194	0.796	0.995	238
Total	53	80	14	360	998	729	69	3,564	152	720	350	148	989	3	9	23	9,930	3,960	212	4	4	4,928	17,443			21,278

Table L.3.9 Economic Cost Spread Sheet of Forestry Measures and Actions

Notes : * This research is for the non-wood forest products.

** This delivery stations are for the firewood plantation .

*** Labor Conversion Factor (LCF) for unskilled labor cost = Standard Conversion Factor (SCF) x [1 - (unemployment rate : 0.2)]

							(Unit : Rp. :	million)
		Cost-Items for Measure	es and Actions (in 2000 co	nstant marke	t price)		Standard	Economic
	Administration	Lecture Fee	Meeting Cost	Extensio	on Services	Annual	Conversion	Cost
Serial	Skilled	Skilled	Materials	Extension	Equipment	Total	Factor	(AT x SCF)
Year	labor	labor		equipment	maintenance	(AT)	(SCF)	1.664
1				1,592	80	1,672	0.995	1,664
2					80	80	0.995	80
3					80	80	0.993	80
5	/83	10	30		80	603	0.995	600
6	483	5	29		80	597	0.995	594
7	483	10	30		80	603	0.995	600
8	483	5	29		80	597	0.995	594
9	483	10	30		80	603	0.995	600
10					80	80	0.995	80
11				1,592	80	1,672	0.995	1,664
12					80	80	0.995	80
13					80	80	0.995	80
14					80	80	0.995	80
15					80	80	0.995	80
16					80	80	0.995	80
17					80	80	0.995	80
18					80	80	0.995	80
19					80	80	0.995	80
20				1.500	80	80	0.995	80
21				1,592	80	1,672	0.995	1,664
22					80	80	0.995	80
23					80	80	0.993	80
24					80	80	0.993	80
25					80	80	0.995	80
20					80	80	0.995	80
28					80	80	0.995	80
29					80	80	0.995	80
30					80	80	0.995	80
31				1,592	80	1,672	0.995	1,664
32					80	80	0.995	80
33					80	80	0.995	80
34					80	80	0.995	80
35					80	80	0.995	80
36					80	80	0.995	80
37					80	80	0.995	80
38					80	80	0.995	80
39					80	80	0.995	80
40				1 502	80	1 672	0.993	1 664
41				1,392	80	1,072	0.993	1,004
42					80	80	0.995	80
44					80	80	0.995	80
45					80	80	0.995	80
46					80	80	0.995	80
47					80	80	0.995	80
48					80	80	0.995	80
49					80	80	0.995	80
50					80	80	0.995	80
51				1,592	80	1,672	0.995	1,664
52					80	80	0.995	80
53					80	80	0.995	80
54					80	80	0.995	80
55					80	80	0.995	80
50					80	80	0.995	80
5/ 50					80	80	0.995	80
- 38 - 50					80	80	0.995	80
60					80 80	80	0.993	80
Total	2.415	40	148	9 552	4 800	16.955		16 870
	-,		110		1,000		-	

Table L.3.10 Economic Cost Spread Sheet of Agroforestry Measures and Actions

Table L.3.11 Economic Cost Spread Sheet of Physical Construction Works

																																					(Unit : Rp. :	million)
															Cost-l	tems f	or Mea	asures	and Act	ions (in	2000 c	onstant	market	orice)												Labor	Standard	Economic
		Chec	k Dam			River Bed I	Protection		Rive	er Bank Pro	tection		Hi	llside '	Works		5	Slope I	rotectio	n *	Indi	rect Con	structio	n Cost	t	0&	: M Cost	Admini	En. Se	r. Ph	ysical Co	ontingency	Replacemen	t Annual	Total	Conversion	Conversion	Cost
Serial	Skille	d Unski	ll- Equi	p- Mat	t- Ski	lled Unskill-	Equip- Ma	at- Sk	killedU	Unskill- Eq	iip- Mat	t- Sk	illedUn	skill-	Equip-	Mat-	Skilled	dUnsk	ill-Equi	p- Mat-	Skille	d Unskil	l- Equip	- Ma	t- Uns	iskill-	Equip- M	lat- Land	Skille	d Skilled	1 Unskill-	Equip- Mat-	Equip-	Unskilled	Others	Factor **	Factor	(UL x LCF
Year	labor	ed lab	or mer	it eria	ls lat	bor ed labor	ment era	als la	labor e	ed labor m	ent eria	ls la	ibor ed	labor	ment	erials	labor	ed lat	oor men	t erials	labor	ed labo	or men	t eria	ls ed l	labor	ment er	als Acquisiti	on labor	labor	ed labor	ment erials	ment	labor (UL) (0)	(LCF)	(SCF)	+ O x SCF)
1																													_					0	0 0	0.796	0.995	0
2												_											_	_	_					_				0	0 0	0.796	0.995	0
3	14	20	1	2 (2		0 126	70 4	00				_	1	0	2	21			-	7 10			0 4	0 0			2(0		0 00		45	20 117		0	0 0	0.796	0.995	0
4	19	30		2 62	4	9 136	/9 4	96	27	420	102 1.25		1	9	2	31	1	L	/	/ 19	10	9 9	4	0 23	54		360		9 28	5 3	45	20 117		58/	2,4/4	0.796	0.995	2,929
5	35	00	0 22	25 124	18				27	438	283 1,25	94									13	5 20	10	2 50	00	7	4	19	12	8 /	104	51 250		1350	4,127	0.796	0.995	5,181
7				_	_			_				_								-				_	_	7	4	18	_	-	-			7	22	0.790	0.995	27
8												-								-					-	7	4	18						7	22	0.796	0.995	27
9												-														7	4	18	-					7	22	0.796	0.995	27
10												-														7	4	18	-					7	22	0.796	0.995	27
11																									-	7	4	18						7	22	0 796	0.995	27
12																										7	4	18						. 7	22	0.796	0.995	27
13																										7	4	18						7	22	0.796	0.995	27
14																										7	4	18					360	7	382	0.796	0.995	386
15																										7	4	18	1	1				7	22	0.796	0.995	27
16		1																								7	4	18						7	22	0.796	0.995	27
17																										7	4	18						7	22	0.796	0.995	27
18															-											7	4	18						7	22	0.796	0.995	27
19																										7	4	18						7	22	0.796	0.995	27
20																										7	4	18						7	22	0.796	0.995	27
21																										7	4	18						7	22	0.796	0.995	27
22																										7	4	18	_					7	22	0.796	0.995	27
23				_																				_	_	7	4	18					2/0	7	22	0.796	0.995	27
24				_																				_	_	7	4	18					360	7	382	0.796	0.995	386
25					_							_												_	_	/	4	18	_					7	22	0.796	0.995	27
26					_							_												_	_	/	4	18	_					/	22	0.796	0.995	27
27		_										_											_		_	7	4	18		-				7	22	0.796	0.995	27
20												-								-					-	7	4	18						7	22	0.790	0.995	27
30																									-	7	4	18						7	22	0.796	0.995	27
31			-		-			-				-								-	-				-	7	4	18	_					7	22	0.796	0.995	27
32					_			-				_													_	7	4	18						7	22	0.796	0.995	27
33												-														7	4	18	-					7	22	0.796	0.995	27
34																										7	4	18					360	7	382	0.796	0.995	386
35																										7	4	18						7	22	0.796	0.995	27
36																										7	4	18						7	22	0.796	0.995	27
37																										7	4	18						7	22	0.796	0.995	27
38																										7	4	18						7	22	0.796	0.995	27
39																										7	4	18						7	22	0.796	0.995	27
40																										7	4	18						7	22	0.796	0.995	27
41																										7	4	18						7	22	0.796	0.995	27
42																										7	4	18						7	22	0.796	0.995	27
43					_							_					I	1			I	-	_			7	4	18	_	1				7	22	0.796	0.995	27
44	L	-		_	_												I	-			I	1	_	-		7	4	18	_	1			360	7	382	0.796	0.995	386
45			_		_							_					I		_	+	I		-	-	+	7	4	18	_	-1				7	22	0.796	0.995	27
46			_		_			_				_					I			+	I		_	_		7	4	18	_			├ ──		7	22	0.796	0.995	27
4/								_				_					I	+	_		1	1	-	+	+	7	4	10		1				7	22	0.796	0.995	27
48	<u> </u>		_		_							_					<u> </u>	-							_	7	4	10	_	-		<u> </u>		1 7	22	0.796	0.995	27
50		-	_		-			-+										+		-			-			7	4	18		-	-			7	22	0.790	0.995	27
51		+										+						-		+	+		-	-	+	7	4	18	-	+	-			7	22	0.790	0.995	27
52		1						-+										+		+		+	-		_	7	4	18	-					7	22	0.790	0.995	27
53	<u> </u>	-			_												l	1		+	1	-				7	4	18	_	-	-			7	22	0.790	0.995	27
54		1												-			<u> </u>				1	-				7	4	18					360	7	382	0.796	0.995	386
55		1										1					l				1	1				7	4	18		1			200	7	22	0.796	0.995	27
56																					1					7	4	18		1				7	22	0.796	0.995	27
57																										7	4	18	1	1				7	22	0.796	0.995	27
58																										7	4	18		1				7	22	0.796	0.995	27
59																										7	4	18						7	22	0.796	0.995	27
60																										7	4	18						7	22	0.796	0.995	27
Total	58	3 90	00 33	7 1,87	/2	9 136	79 4	96	27	438	283 1,25	54	1	9	2	31	1	1	7	7 19	19	29	98 14	2 73	34	385	580	990	9 41	3 10	149	71 367	1,800	2,322	9,611			11,411

Notes :

* These protection works are for the road cut slopes. ** Labor Conversion Factor (LCF) for unskilled labor cost = Standard Conversion Factor (SCF) x [1 - (unemployment rate : 0.2)]

NameSecondNameNam								(Unit : Rp. r	nillion)
Dergen Specialist Spe		(Cost-Items for Measures and	Actions (in 2000	constant market p	rice)		Standard	Economic
Skilled Skilled Operation (ask) Seed (b) Total (ask) Face (ask) Cost (ask) Seed (ask) Total (ask) Face (ask) Cost (ask) Cost (ask) <thcost (ask) Cost (ask) <thcost (ask) Cost (ask) Cost (ask)</thcost </thcost 		Foreign Specialist	Domestic Specialist/Expert	Training	Materials	Basic Fund	Annual	Conversion	Cost
Varia Labor Labor Cost realization cost money (A1) (K3) 2.32 1 1,741 91 550 36 2.418 0.995 2.40 3 1,741 80 550 36 2.447 0.995 2.39 4 1,741 80 550 24 2.395 0.995 2.38 5 182 1,600 1,782 0.995 1,77 6 182 1,600 1,782 0.995 1,77 9 182 1,600 1,782 0.995 1,77 10 182 1,600 1,782 0.995 1,77 12 182 1,600 1,782 0.995 1,77 13	Serial	Skilled	Skilled	Operation	Micro	Seed	Total	Factor	(AT x SCF)
1 1,741 143 550 160 2,534 0.095 2,20 3 1,741 80 550 36 2,407 0.095 2,38 5 182 1,600 1,782 0.095 1,77 6 182 1,600 1,782 0.095 1,77 7 182 1,600 1,782 0.095 1,77 9 182 1,600 1,782 0.095 1,77 10 182 1,600 1,782 0.095 1,77 11 182 1,600 1,782 0.095 1,77 12 182 1,600 1,782 0.095 1,77 13 12 18 0 0 0.095 1,77 14 12 12 18 0 0 0.095 1,77 13 12 16 0 0 0.095 1,77 14 12 16 0 0 0.095 1,77 15 0 0 0.095 0	Year	labor	labor	cost	realization cost	money	(AT)	(SCF)	
2 1,741 91 350 36 2,418 0.995 2,439 4 1,741 80 350 24 2,398 0.995 2,39 5 182 1,600 1,722 0.995 1,77 6 182 1,600 1,722 0.995 1,77 7 183 1,600 1,722 0.995 1,77 9 183 1,600 1,722 0.995 1,77 10 182 1,600 1,722 0.995 1,77 11 182 1,600 1,72 0.995 1,77 13	1	1,741	143	550		100	2,534	0.995	2,521
3 1,741 80 350 24 2,305 0.995 2,38 5 1,741 80 350 24 2,385 0.995 2,38 5 182 1,600 1,72 0.995 1,77 6 182 1,600 1,72 0.995 1,77 7 182 1,600 1,72 0.995 1,77 10 182 1,600 1,72 0.995 1,77 11 182 1,600 1,72 0.995 1,77 12 182 1,600 1,72 0.995 1,77 13 0 0.995 0 14 0 0.995 0 15 0 0.995 0 16 0 0.995 0 17 0 0.995 0 18 0	2	1,741	91	550	36		2,418	0.995	2,406
4 1,741 80 550 24 2,955 2095 2,787 5 182 1,600 1,782 0.095 1,77 6 182 1,600 1,782 0.095 1,77 7 182 1,600 1,782 0.095 1,77 9 182 1,600 1,782 0.095 1,77 10 182 1,600 1,782 0.095 1,77 11 182 1,600 1,782 0.095 1,77 13 10 172 0.095 1,77 0.095 1,77 14 10 18 1,600 1,782 0.095 1,77 14 10 0 0.095 0 0 0.095 1,77 15 10 10 0 0.095 0 0 0.095 1,77 16 10 0 0.095 0 0 0.095 0 17 10	3	1,741	80	550	36		2,407	0.995	2,395
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	4	1,741	80	550	24		2,395	0.995	2,383
0 164 1,000 1,182 0,995 1,172 7 182 1,600 1,182 0,995 1,77 8 182 1,600 1,182 0,995 1,77 9 182 1,600 1,782 0,995 1,77 10 182 1,600 1,782 0,995 1,77 11 182 1,600 1,782 0,995 1,77 13	5		182	1,600			1,782	0.995	1,//3
7 162 1,000 1,182 0.995 1,177 9 182 1,600 1,182 0.995 1,77 10 182 1,600 1,182 0.995 1,77 11 182 1,600 1,782 0.995 1,77 12 182 1,600 1,782 0.995 1,77 13	0		182	1,000			1,782	0.995	1,//3
s 164 1,000 1,185 0.995 1,175 10 182 1,600 1,178 0.995 1,177 11 182 1,600 1,178 0.995 1,177 12 182 1,600 1,178 0.995 1,177 13 2 0 0 0.995 0 14 2 0 0 0.995 0 15 2 0 0 0.995 0 16 2 0 0 0.995 0 17 2 2 0 0 0.995 0 18 2 2 0 0 0.995 0 20 2 2 0 0 0.995 0 21 2 2 0 0 0.995 0 23 2 2 0 0 0.995 0 25 2 2 0 0<	/		182	1,000			1,782	0.993	1,//3
5 1.00 1.7.2 0.93 1.7.7 10 182 1,600 1.7.82 0.935 1.7.7 11 182 1,600 1.7.82 0.935 1.7.7 13 0 0 0.935 1.7.7 14 0 0 0.995 0.0 15 0 0 0.995 0.0 16 0 0 0.995 0.0 17 0 0 0.995 0.0 18 0 0 0.995 0.0 19 0 0 0.995 0.0 20 0 0 0.995 0.0 21 0 0 0.995 0.0 22 0 0 0.995 0.0 23 0 0 0.995 0.0 24 0 0 0.995 0.0 25 0 0 0.0995 0.0 26	0		182	1,600			1,782	0.993	1,773
10 17.2 1	9		182	1,600			1,782	0.993	1,//3
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	10		182	1,000			1,782	0.995	1,772
12 1,000 1,102 0,035 1,102 13 0 0 0,035 1,102 14 0 0 0,035 0 15 0 0 0,035 0 16 0 0 0,095 0 17 0 0 0,095 0 18 0 0 0,995 0 20 0 0 0,995 0 21 0 0 0,995 0 22 0 0 0,995 0 23 0 0 0,995 0 24 0 0 0,995 0 25 0 0 0 0,995 0 26 0 0 0,995 0 0 27 0 0 0 0,995 0 28 0 0 0,995 0 0 30 0 0 0,995 0 0 31 0 0 0,995 <td>11</td> <td></td> <td>102</td> <td>1,000</td> <td></td> <td></td> <td>1,782</td> <td>0.993</td> <td>1,773</td>	11		102	1,000			1,782	0.993	1,773
14 0 0.098 0 15 0 0.098 0 16 0 0.098 0 17 0 0 0.995 0 18 0 0 0.995 0 19 0 0 0.995 0 20 0 0 0.995 0 21 0 0 0.995 0 22 0 0 0.995 0 23 0 0 0.995 0 24 0 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 30 0 0 0.995 0 32 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0	12		162	1,000			1,762	0.995	1,//2
15 0 0.098 0 16 0 0.099 0 17 0 0 0.995 0 18 0 0.095 0 0 0.995 0 20 0 0 0.995 0 0 0.995 0 21 0 0 0.995 0 0 0.995 0 22 0 0 0.995 0 0 0.995 0 23 0 0 0.995 0 0 0.995 0 24 0 0 0.995 0 0 0.995 0 25 0 0 0.995 0 0 0.995 0 25 0 0 0.995 0 0 0.995 0 26 0 0 0.995 0 0 0.995 0 29 0 0 0.995 0 0 0.995 0 31 0 0 0.995 0 0	13						0	0.995	(
16 0 0.098 0 17 0 0.0995 0 18 0 0 0.995 0 19 0 0.095 0 0 0.995 0 20 0 0 0.995 0 0 0.995 0 21 0 0 0.995 0 0 0.995 0 23 0 0 0.995 0 0 0.995 0 24 0 0 0.995 0 0 0.995 0 25 0 0 0.995 0 0 0.995 0 26 0 0 0.995 0 0 0.995 0 28 0 0 0.995 0 0 0.995 0 30 0 0 0.995 0 0 0.995 0 32 0 0 0.995 0 0 0.995 0 33 0 0 0.995 0 0	14						0	0.995	
17 0 0 0.095 0 18 0 0.095 0 0 0.995 0 20 0 0 0.995 0 0 0.995 0 21 0 0 0.995 0 0 0.995 0 23 0 0 0.995 0 0 0.995 0 24 0 0 0.995 0 0 0.995 0 26 0 0 0.995 0 0 0.995 0 27 0 0 0.995 0 0 0.995 0 28 0 0 0.995 0 0 0.995 0 30 0 0 0.995 0 0 0.995 0 31 0 0 0.995 0 0 0.995 0 33 0 0 0.995 0 0 0.995 0 36 0 0 0.995 0 0 0.995	16						0	0.995	
18 0 0 0.995 0 19 0 0 0.995 0 20 0 0 0.995 0 21 0 0 0.995 0 22 0 0 0 0.995 0 23 0 0 0 0.995 0 24 0 0 0.995 0 0 25 0 0 0.995 0 0 26 0 0 0.995 0 0 0.995 0 27 0 0 0.995 0 0 0.995 0 28 0 0 0.995 0 0 0.995 0 30 0 0 0.995 0 0 0.995 0 32 0 0 0.995 0 0 0.995 0 33 0 0 0.995 0 0 0.995 0 34 0 0 0.995 0 0	17						0	0.995	(
19 0 0 0.995 0 20 0 0.995 0 21 0 0 0.995 0 22 0 0 0.995 0 23 0 0 0.995 0 24 0 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 29 0 0 0.995 0 31 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 39 0 0 0.995 <	18						0	0.995	(
20 0 0 0.995 0 21 0 0.995 0 23 0 0 0.995 0 23 0 0 0.995 0 24 0 0 0.995 0 25 0 0 0.995 0 25 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 29 0 0 0.995 0 30 0 0 0.995 0 31 0 0 0.995 0 32 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 37 0 0 0.995 0 42 0 0 0.995 <	19						0	0.995	(
21 0 0 0.995 0 23 0 0 0.995 0 24 0 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 29 0 0 0.995 0 30 0 0 0.995 0 31 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 37 0 0 0.995 0 38 0 0 0.995 0 40 0 0 0.995 0 41 0 0 0.995 0 44 0 0 0	20						0	0.995	(
22 0 0 0.995 0 23 0 0 0.995 0 24 0 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 30 0 0 0.995 0 31 0 0 0.995 0 32 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 37 0 0 0.995 0 38 0 0 0.995 0 41 0 0 0.995 0 42 0 0 0.995 0 43 0 0 0	21						0	0 995	(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	22						0	0.995	(
24 0 0.995 0 25 0 0 0.995 0 26 0 0 0.995 0 27 0 0 0.995 0 28 0 0 0.995 0 29 0 0 0.995 0 30 0 0 0.995 0 31 0 0 0.995 0 32 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 37 0 0 0.995 0 38 0 0 0.995 0 40 0 0.995 0 0 41 0 0 0.995 0 42 0 0 0.995 0 43 0 0 0.995 0 44 0 0 0.995 <	23						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24						0	0.995	(
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	25						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	26						0	0.995	(
28 0 0 0.995 0 30 0 0 0.995 0 31 0 0 0.995 0 31 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 36 0 0 0.995 0 36 0 0 0.995 0 37 0 0 0.995 0 38 0 0 0.995 0 39 0 0 0.995 0 41 0 0 0.995 0 42 0 0 0.995 0 43 0 0 0.995 0 44 0 0 0.995 0 44 0 0 0.995 0 48 0 0 0.995 0	27						0	0.995	(
29 0 0 0.995 0 30 0 0.995 0 31 0 0.995 0 32 0 0 0.995 0 33 0 0 0.995 0 34 0 0 0.995 0 35 0 0 0.995 0 36 0 0 0.995 0 38 0 0 0.995 0 39 0 0 0.995 0 40 0 0.995 0 0 0.995 41 0 0 0.995 0 0 42 0 0 0.995 0 0 44 0 0 0.995 0 0 45 0 0 0.995 0 0 46 0 0 0.995 0 0 48 0 0 0.995 0 0 50 0 0 0.995	28						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	29						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	30						0	0.995	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32						0	0.995	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	33						0	0.995	(
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	34						0	0.995	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	35						0	0.995	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	36						0	0.995	(
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	37						0	0.995	(
39 0 0 0.995 0 40 0 0.995 0 41 0 0 0.995 0 42 0 0 0.995 0 43 0 0 0.995 0 44 0 0 0.995 0 45 0 0 0.995 0 46 0 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 <	38						0	0.995	(
40 0 0.995 0 41 0 0.995 0 42 0 0.995 0 43 0 0 0.995 0 44 0 0 0.995 0 45 0 0 0.995 0 46 0 0.995 0 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0	39						0	0.995	(
41 0 0.995 0 42 0 0.995 0 43 0 0 0.995 0 44 0 0 0.995 0 45 0 0 0.995 0 46 0 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 60 0 0.995 0 0 <	40						0	0.995	(
42 0 0.995 0 43 0 0.995 0 44 0 0 0.995 0 45 0 0 0.995 0 46 0 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 53 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 60 0 0 0.995 0 58 0 0 0.995 0 <td>41</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0.995</td> <td>(</td>	41						0	0.995	(
43 0 0 0.995 0 44 0 0 0.995 0 45 0 0 0.995 0 46 0 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 60 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 <	42						0	0.995	(
44 0 0 0.995 0 45 0 0 0.995 0 46 0 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 <t< td=""><td>43</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>0.995</td><td>(</td></t<>	43						0	0.995	(
43 0 0 0.995 0 46 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 60 0 0.995 0 0 59 0 0 0.995 0 60 0 0.995 0 <	44						0	0.995	(
40 0 0.995 0 47 0 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0.995 0 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 60 0 0.995 0 0 59 0 0 0.995 0 60 0 0.995 0 0 60 0 0.995 0 <	43						0	0.995	
47 0 0.995 0 48 0 0 0.995 0 49 0 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 60 0 0.995 0 0 59 0 0 0.995 0 60 0 0.995 0 0 60 0 0.995 0 0 60 0 0.995 0 <	40						0	0.995	
40 0 0.995 0 49 0 0.995 0 50 0 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	4/ /0						0	0.995	
+7 0 0.995 0 50 0 0.995 0 51 0 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	40						0	0.995	
50 0 0.993 0 51 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	49						0	0.995	
51 0 0.995 0 52 0 0 0.995 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	50						0	0.993	
53 0 0 0.993 0 53 0 0 0.995 0 54 0 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	52						0	0.995	
53 0 0 0.995 0 54 0 0.995 0 55 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0.995 0 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	52							0.993	
57 0 0 0.995 0 56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0 0.995 0 70tal 6,964 1,850 15,000 96 100 24,010 23.890	55						0	0.995	
56 0 0 0.995 0 57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0 0.995 0 701 0 0.995 0 0 702 0 0 0.995 0 703 0 0 0.995 0 704 0 0.995 0 0 704 0.964 1.850 15,000 96 100 24,010 23.890	54						0	0.993	
57 0 0 0.995 0 58 0 0 0.995 0 59 0 0 0.995 0 60 0 0 0.995 0 Total 6,964 1,850 15,000 96 100 24,010 23.890	55						0	0.995	
57 60 0 0.995 0 59 0 0 0.995 0 60 0 0 0.995 0 Total 6,964 1,850 15,000 96 100 24,010 23.890	57						0	0.995	(
59 0 0 0.995 0 60 0 0 0.995 0 Total 6,964 1,850 15,000 96 100 24,010 23.890	58						0	0.995	(
60 0 0.995 0 Total 6,964 1,850 15,000 96 100 24,010 23.890	59						0	0.995	(
Total 6,964 1,850 15,000 96 100 24.010 23.890	60						0	0.995	(
	Total	6.964	1.850	15.000	96	100	24.010		23.890

Table L.3.12 Economic Cost Spread Sheet of Community Empowerment Measures and Actions

															(Unit : Rp. 1	nillion)
					Cost-Iter	ns for Mea	asures an	d Actions	s (in 2000 co	nstant m	narket price)				Standard	Economic
Sorial	Villago	Trainir	ng Materi	als	Moot	Equ	upment (including	g replacemer	t)	Pers	onnel	Equipment	Annual	Conversion	Cost
Year	cadre	technology	patrol	cations	ing	FO *	FO	FO	of Manado	NUU	skilled labor	skilled labor	cost	(AT)	(SCF)	(AT X SCF)
1	455	150	0		6	743	383	133	305	222	2,058	684	39	5,178	0.995	5,152
2	189	150	0	25	6					6	1,173	234	39	1,822	0.995	1,813
3	189		0	25	6					6	1,1/3	204	39	1,642	0.995	1,634
5	189		0	25	6					6	1,173	174	39	1,612	0.995	1,604
6													39	39	0.995	39
7													39	39	0.995	39
8 9													39	39	0.995	39
10													39	39	0.995	39
11						743	383	133	305				39	1,603	0.995	1,595
12													39	39	0.995	39
15													39	39	0.993	39
15													39	39	0.995	39
16													39	39	0.995	39
17													39	39	0.995	39
19													39	39	0.995	39
20													39	39	0.995	39
21						743	383	133	305				39	1,603	0.995	1,595
22													39	39	0.995	39
23													39	39	0.995	39
25													39	39	0.995	39
26													39	39	0.995	39
27													39	39	0.995	39
29													39	39	0.995	39
30													39	39	0.995	39
31						743	383	133	305				39	1,603	0.995	1,595
32													39	39	0.995	39
34													39	39	0.995	39
35													39	39	0.995	39
36													39	39	0.995	39
38													39	39	0.995	39
39													39	39	0.995	39
40						742	202	122	205				39	39	0.995	39
41						/43	383	133	305				39	1,603	0.995	1,595
43													39	39	0.995	39
44													39	39	0.995	39
45													39	39	0.995	39
40													39	39	0.995	39
48													39	39	0.995	39
49							-						39	39	0.995	39
50						742	202	122	205				39	1 602	0.995	1 505
52						/43	202	155	505				39 <u>3</u> 9	1,003	0.995	1,395
53													39	39	0.995	39
54							-						39	39	0.995	39
55													39	39	0.995	39
57													39	39	0.995	39
58													39	39	0.995	39
59													39	39	0.995	39
Total	1.211	300	0	100	30	4 458	2,298	798	1.830	246	6.750	1.470	2.340	21.831	0.995	21.722
	,=-1	2.50	Ŷ			,0	,=.0		-,	= .0	2,.20	-,	=,= 10	,		,- ==

Table L.3.13 Economic Cost Spread Sheet of Institutional Capacity Development Measures

Notes : * FO means forestry offices.

																(Unit : Rp. 1	nillion)
					Cost-	Items for	Measu	ires an	d Actions	(in 2000 con	stant marl	ket price)			Labor	Standard	Economic
Corright	Direct	Cost for (Constru Equin	Iction	Chillod	Indirect	Cost	Mot	Mon	itoring Equip	ment	Engineering Services	Annual	Total	Conversion	Conversion	Cost
Year	labor	ed labor	ment	erials	labor	ed labor	ment	erials	purchase	replacement	materials	labor	labor (UL)	(0)	(LCF)	(SCF)	$+ O \times SCF$
1	9	130	14	254	2	26	3	51	516		38	286	156	1,173	0.796	0.995	1,291
2											112	286	0	398	0.796	0.995	396
3									-		112	286	0	398	0.796	0.995	396
4											112	286	0	398	0.796	0.995	396
6									133	42	62	168	0	405	0.796	0.993	403
7									100	.2	62	117	0	179	0.796	0.995	178
8											62	117	0	179	0.796	0.995	178
9											62	117	0	179	0.796	0.995	178
10									122	204	62	11/	0	550	0.796	0.995	178
12									155	504	62	8	0	70	0.796	0.995	70
13											62	8	0	70	0.796	0.995	70
14											62	8	0	70	0.796	0.995	70
15									100		62	8	0	70	0.796	0.995	70
16									133	65	62	60	0	320	0.796	0.995	318
17											62	8	0	70	0.790	0.995	70
19											62	8	0	70	0.796	0.995	70
20											62	8	0	70	0.796	0.995	70
21									133	437	62	60	0	692	0.796	0.995	689
22											62	8	0	70	0.796	0.995	70
23											62	8	0	70	0.796	0.993	70
25											62	8	0	70	0.796	0.995	70
26									133	26	62	60	0	281	0.796	0.995	280
27											62	8	0	70	0.796	0.995	70
28											62	8	0	70	0.796	0.995	70
30											62	8	0	70	0.796	0.993	70
31									133	343	62	60	0	598	0.796	0.995	595
32											62	8	0	70	0.796	0.995	70
33											62	8	0	70	0.796	0.995	70
34											62	8	0	70	0.796	0.995	70
36									133	26	62	60	0	281	0.796	0.995	280
37											62	8	0	70	0.796	0.995	70
38											62	8	0	70	0.796	0.995	70
39											62	8	0	70	0.796	0.995	70
40									133	437	62	8	0	692	0.796	0.995	689
42									155	457	62	8	0	70	0.796	0.995	70
43											62	8	0	70	0.796	0.995	70
44											62	8	0	70	0.796	0.995	70
45	-								122	20	62	8	0	70	0.796	0.995	70
40									153	26	62	8	0	281	0.796	0.995	280
48											62	8	0	70	0.796	0.995	70
49											62	8	0	70	0.796	0.995	70
50											62	8	0	70	0.796	0.995	70
51									133	304	62	60	0	559	0.796	0.995	556
52									1		62	8	0	70	0.796	0.995	70
54											62	8	0	70	0.796	0.995	70
55											62	8	0	70	0.796	0.995	70
56									133	26	62	60	0	281	0.796	0.995	280
57											62	8	0	70	0.796	0.995	70
59	-										62	8	0	70	0.796	0.995	70
60											62	8	0	70	0.796	0.995	70
Total	9	130	14	254	2	26	3	51	1,979	2,036	3,846	2,992	156	11,186			11,254

Table L.3.14 Economic Cost Spread Sheet of Monitoring System Development

Note : * Labor Conversion Factor (LCF) for unskilled labor cost = Standard Conversion Factor (SCF) x [1 - (unemployment rate : 0.2)]

	Ι	Е	It	Et	SCF
	Total Import	Total Export	Average	Average	Standard
	Value to	Value from	Import Tax	Export Tax	Conversion
Year	Indonesia (CIF)	Indonesia (FOB)	Rate	Rate	Factor
	(US\$ million)	(US\$ million)	(%)	(%)	
1980	10,834	n.a.	5.1	0.9	
1990	21,837	26,807	0.6	0.9	0.992
1991	25,869	29,635	0.4	0.3	0.996
1992	27,280	33,796	0.5	0.1	0.997
1993	28,328	36,607	0.5	0.2	0.997
1994	31,983	40,223	0.6	0.2	0.997
1995	40,630	47,454	0.3	0.2	0.998
1996	42,929	50,188	0.3	0.6	0.996
1997	41,694	56,298	0.2	0.8	0.995
1998	27,337	50,371	0.7	0.9	0.992
1999	24,004	51,242	n.a.	n.a.	
2000					
	Average Star	ndard Conversion	Factor (SCF)		0.995

 Table L.3.15
 Standard Conversion Factor for Economic Evaluation

Note :

SCF = (I+E) / [I (I + It / 100) + E (I + Et / 100)]

Sources :

2000 International Financial Statistics Yearbook, IMF
 International Financial Statistics, February 2001, IMF
 2000 World Development Indicators, World Bank

Table L.3.16 Economic Cost and Benefit Spread Sheet of Watershed Conservation Plan

Sensitivity Analysis on EIRR

Benefit - 10 % Cost+10% & Benefit-10%

Net Benefit

-11,891 -5,384

-5,101

-8,239

(Unit : Rp. mill										(Unit : Rp. million)							
Serial		Eco	nomic Incremen	tal Costs for Mea	asures and Action	ons			Economic Incremental	Benefits fro	m Measures and Acti	ons *	Net	Cost -	+ 10 %	Benefit - 10 %	
	Forestry	Agroforestry	Physical	Community	Institutional	Monitoring	Admini-	Increased Water	Strengthened Erosion	Conserved	Improved Forestry	Improved Agricultural	Economic				
Year	Measures	Measures	Construction	Empowerment	Development	System Dev.	stration	Resources	& Flood Control	Air Quality	Resources	Resources	Benefit	Total Cost	Net Benefit 1	otal Benefit N	√et Benef
1	96	1,664	0	2,521	5,152	1,291	85	0	0	0	0	0	-10,810	11,891	-11,891	0	-10,81
2	144	80	0	2,406	1,813	396	85	0	33	1	2	. 0	-4,888	5,416	-5,380	32	-4,89
3	106	80	0	2,395	1,634	396	85	0	66	2	4	0	-4,625	5,165	-5,094	64	-4,63
4	100	80	2,929	2,383	1,604	396	85	0	98	2	3	0	-/,4/1	8,555	-8,228	96	-/,48
5	1,031	600	5,181	1,//3	1,604	352	85	0	131	3	1	0	-10,485	11,689	-11,548	128	-10,49
0	1,056	594	27	1,//3	39	403	85	0	104	4	9	681	-3,119	4,375	-3,51/	1 417	-3,20
/	901	504	27	1,772	39	1/8	83	1	197	3	11	1,562	-2,089	4,050	-2,430	1,41/	-2,24
8	940	394	27	1,//3	39	1/8	83	1	229	3	13	1,810	-1,372	4,000	-1,950	1,636	-1,/
9	940	600	27	1,//3	39	1/8	85	1	262	0	14	2,270	-1,089	4,007	-1,453	2,298	-1,34
10	832	80	27	1,773	39	1/8	83	1	293	/	16	2,443	-231	5,510	-332	2,487	-3.
11	868	1,664	27	1,773	1,595	556	85	1	328	8	18	2,796	-5,418	7,225	-4,075	2,835	-3,7.
12	/68	80	27	1,//3	39	70	85	1	361	8	20	3,499	1,048	3,125	/63	3,500	0.
15	732	80	27	0	39	70	85	1	393	9	22	3,850	3,243	1,130	3,139	3,848	2,8
14	/32	80	380	0	39	70	85	1	426	10	24	4,025	3,095	1,530	2,956	4,037	2,64
15	365	80	27	0	39	70		1	426	10	24	4,025	3,905	639	3,847	4,037	3,43
16	246	80	27	0	39	518		1	426	10	24	4,025	3,776	/81	3,705	4,037	3,32
17	246	80	27	0	39	70		l	426	10	24	4,025	4,025	507	3,978	4,037	3,5
18	246	80	27	0	39	70		1	426	10	24	4,025	4,025	507	3,978	4,037	3,57
19	246	80	27	0	39	70		1	426	10	24	4,025	4,025	507	3,9/8	4,037	3,5
20	246	80	27	0	39	/0		1	426	10	24	4,025	4,025	507	3,9/8	4,037	3,5
21	281	1,664	27	0	1,595	689		l	426	10	24	4,025	230	4,681	-196	4,037	-21
22	281	80	27	0	39	70		1	426	10	24	4,025	3,989	546	3,939	4,037	3,54
23	246	80	27	0	39	70		l	426	10	24	4,025	4,025	507	3,978	4,037	3,5
24	246	80	386	0	39	70		l	426	10	24	4,025	3,666	901	3,584	4,037	3,21
25	365	80	27	0	39	70		1	426	10	24	4,025	3,905	639	3,847	4,037	3,45
26	246	80	27	0	39	280		l	426	10	24	4,025	3,815	738	3,747	4,037	3,36
27	246	80	27	0	39	70		1	426	10	24	4,025	4,025	507	3,978	4,037	3,57
28	246	80	27	0	39	70		l	426	10	24	4,025	4,025	507	3,978	4,037	3,57
29	246	80	27	0	39	70		1	426	10	24	4,025	4,025	507	3,978	4,037	3,5
30	246	80	27	0	39	/0		1	426	10	24	4,025	4,025	507	3,978	4,037	3,57
31	281	1,664	27	0	1,595	595		1	426	10	24	4,025	323	4,579	-93	4,037	-12
32	281	80	27	0	39	70		1	426	10	24	4,025	3,989	546	3,939	4,037	3,54
33	246	80	27	0	39	70		1	426	10	24	4,025	4,025	507	3,978	4,037	3,5
34	246	80	386	0	39	70		1	426	10	24	4,025	3,666	901	3,584	4,037	3,2
35	357	80	27	0	39	/0		1	426	10	24	4,025	3,913	630	3,856	4,037	3,40
36	238	80	27	0	39	280		1	426	10	24	4,025	3,823	729	3,756	4,037	3,3
3/	238	80	27	0	39	70		1	426	10	24	4,025	4,032	498	3,987	4,037	3,50
38	238	80	27	0	39	70		1	426	10	24	4,025	4,032	498	3,987	4,037	3,58
39	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,58
40	258	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,50
41	2/3	1,664	27	0	1,595	689		1	426	10	24	4,025	238	4,6/3	-18/	4,037	-2
42	2/3	80	27	0	39	/0		1	426	10	24	4,025	3,997/	538	3,948	4,037	3,54
43	238	80	27	0	39	70		1	426	10	24	4,025	4,032	498	3,987	4,037	3,50
44	238	80	586	0	39	/0		1	426	10	24	4,025	3,674	892	3,593	4,037	3,22
45	357	80	27	0	39	70		1	426	10	24	4,025	3,913	630	3,836	4,037	3,40
40	238	80	27	0	39	280		1	426	10	24	4,025	3,823	/29	3,/30	4,037	3,5
4/	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,50
48	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,58
49	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,50
50	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,057	3,50
51	2/3	1,664	27	0	1,595	556		1	426	10	24	4,025	3/0	4,527	-41	4,037	
52	2/3	80	27	0	39	70		1	426	10	24	4,025	3,997	538	3,948	4,037	3,5
55	238	80	27	0	39	70		1	426	10	24	4,025	4,032	498	3,987	4,037	3,50
54	238	80	386	0	39	70		1	426	10	24	4,025	3,674	892	3,593	4,037	3,2
33	357	80	27	0	39	/0		1	426	10	24	4,025	3,913	630	3,856	4,037	3,4
56	238	80	27	0	39	280		1	426	10	24	4,025	3,823	/29	3,756	4,037	3,3
5/	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,50
50	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,50
39	238	80	27	0	39	/0		1	426	10	24	4,025	4,032	498	3,98/	4,037	3,58
00 Tatal	258	80	2/	0	39	/0	1 100	1	426	10	24	4,025	4,032	498	3,98/	4,037	3,38
1 otal	21,278	16,870	11,411	23,890	21,722	11,254	1,190	53	22,589	523	1,248	207,894	124,690				

11,689	-11,548	128	-10,499	-11,562
4,375	-3,517	772	-3,205	-3,603
4,030	-2,456	1,417	-2,247	-2,613
4,000	-1,936	1,858	-1,779	-2,142
4,007	-1,453	2,298	-1,344	-1,708
3,316	-552	2,487	-527	-828
7,225	-4,075	2,835	-3,733	-4,390
3,125	763	3,500	659	375
1,136	3,139	3,848	2,815	2,712
1,530	2,956	4,037	2,646	2,507
639	3,847	4,037	3,457	3,399
781	3,705	4,037	3,327	3,256
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
4,681	-196	4,037	-219	-644
546	3,939	4,037	3,540	3,491
507	3,978	4,037	3,576	3,530
901	3,584	4,037	3,218	3,136
639	3,847	4,037	3,457	3,399
738	3,747	4,037	3,366	3,299
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
507	3,978	4,037	3,576	3,530
4,579	-93	4,037	-125	-541
546	3,939	4,037	3,540	3,491
507	3,978	4,037	3,576	3,530
901	3,584	4,037	3,218	3,136
630	3,856	4,037	3,465	3,407
729	3,756	4,037	3,374	3,308
498	3,987	4,037	3,584	3,539
498	3,987	4,037	3,584	3,539
498	3,987	4,037	3,584	3,539
498	3,987	4,037	3,584	3,539
4,673	-187	4,037	-211	-636
538	3,948	4,037	3,548	3,499
498	3,987	4,037	3,584	3,539
892	3,593	4,037	3,226	3,145
630	3,856	4,037	3,465	3,407
/29	3,/50	4,037	3,374	3,308
498	3,987	4,037	3,584	3,539
498	3,987	4,037	3,584	3,539
498	3,987	4,037	3,584	3,539
498	5,987	4,037	3,384	5,539
4,527	-41	4,037	-/8	-490
538	3,948	4,037	3,548	3,499
498	3,987	4,037	3,384	3,339
630	3,393	4,037	3,220	3,143
720	3,030	4,037	3,403	3,407
/29	3,/30	4,057	3,514	2,508
478	3,70/	4,037	3,504	2,239
498	3,78/	4,037	3,504	3,339
498	3,987	4 037	3 584	3,539
478	5,767	4,007	5,504	5,557
	3.9%		3.9%	3.3%

Economic Net Present Value (ENPV) with 12-% discount rate = Mil. Rp. Economic Benefit/Cost Ratio (E-B/C) wirh 12-% discount rate =

-24,318

Economic Internal Rate of Return (EIRR) = 4.5%

Note: * All the incremental benefits are assumed to be fully occurred in the 14th year of the project.

	(Unit : Rp. million in 2000 market price)																						
	_						Cos	t-Items	for Meas	ures ar	nd Act	ions (in	2000 c	constant p	rice)			-		L	2.44		Annual
Corrical	Fo	orestry B	oundar	y Mot	Chilled	Refores	tation Motorials &	Skilled	Forest P	atrol	Mat	Rese.*	Co	mmunity	Forest	iry Mot	Timb	er Planta	tion	Delivery	St.**	Annual	Total in
Vear	Jahor	od labor	Equip-	Mat-	labor	od labor	Materials &	labor	od labor	Equip-	Mat-	Jahor	labor	od labor	Equip-	Mat-	Jabor	od labor	Mat-	od labor	Mat-	Total	Drico***
1	42	14	14	30	14001	cu iaboi	equipment	14001	cu iaboi	ment	criais	labol	14001	cu iaboi	ment	criais	14001	cu iaboi	citais	cu iaboi	criais	100	101
2	12	6		30									107	2								146	151
3													98	1	1	7						107	112
4													98		1	2						101	108
5					116	4		108	60	120	66	74	98		1	2	376	6	16	2	2	1,051	1,141
6					- 98	115	36	108			6	74	98		1	2	376	168	34	1	1	1,118	1,234
7					98	120	11	108			6		98		1	2	376	168	34	1	1	1,024	1,149
8					98	120	11	108			6		98		1	2	376	162	19			1,001	1,142
9					98	120	11	108			6		98		1	2	368	162	19			1,001	1,101
11	1	6		30	98	10		108			6		98		1	2	368	162	18			908	1 088
12	1	6		30	98	10		108			6		,,,			_	368	162	18			807	983
13					- 98	10		108			6						368	162	18			770	954
14					- 98	10		108			6						368	162	18			770	970
15						10		54	2	120	5						135	54				380	486
16						10		54	2		5						135	54				260	338
17						10	-	54	2		5						135	54				260	344
10						10		54	2		5						135	54				260	355
20						10		54	2		5						135	54				260	361
21	1	6		30		10		54	2		5						135	54				200	420
22	1	6		30		10		54	2		5						135	54				297	427
23						10		54	2		5						135	54				260	380
24						10		54	2		5						135	54				260	386
25						10		54	2	120	5						135	54				380	574
26						10		54	2		5						135	54				260	399
27						10		54	2		5						135	54				260	406
20						10		54	2		5						135	54				260	412
30						10		54	2		5						135	54				260	426
31	1	6		30		10		54	2		5						135	54				297	495
32	1	6		30		10		54	2		5						135	54				297	503
33						10		54	2		5						135	54				260	448
34						10		54	2		5						135	54				260	455
35								54	2	120	5						135	54				370	658
36							-	54	2		5						135	54				250	452
38								54	2		5						135	54				250	400
39								54	2		5						135	54				250	475
40								54	2		5						135	54				250	483
41	1	6		30				54	2		5						135	54				287	564
42	1	6		30				54	2		5						135	54				287	573
43								54	2		5						135	54				250	507
44								54	2	100	5						135	54				250	516
45								54	2	120	5						135	54				370	522
40								54	2		5						135	54				250	535
47								54	2		5						135	54				250	551
49								54	2		5						135	54				250	560
50								54	2		5						135	54				250	569
51	1	6		30				54	2		5						135	54				287	665
52	1	6		30				54	2		5						135	54				287	676
53								54	2		5						135	54				250	598
54								54	2	100	5						135	54				250	608
55 56								54	2	120	5						135	54				370	915
57								54	2		5						135	54				250	630
58								54	2		5						135	54				250	650
59								54	2		5						135	54				250	660
60								54	2		5						135	54				250	671
Total	53	80	14	360	998	729	69	3,564	152	720	350	148	989	3	9	23	9,930	3,960	212	4	4	22,371	35,103

Table L.4.1 Financial Cost Spread Sheet of Forestry Measures and Actions

Notes :

* This research is for the non-wood forest products.
** This delivery stations are for the firewood plantation .
*** These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

(Unit : Rp. million in 2000 market price) Cost-Items for Measures and Actions (in 2000 constant price) Ann												
	Cost-Items for Measures and Actions (in 2000 constant price) Annual Administration Lecture Fee Meeting Cost Extension Services Annual rial Skilled Skilled Extension Extension Total											
Corrigi	Administration	Lecture Fee	Meeting Cost	Extension	Services	Annual	Total in					
Vear	labor	labor	waterials	equipment	maintenance	Total	Price *					
1	10001	lubbi		1 592	80	1 672	1 700					
2				1,072	80	80	83					
3					80	80	84					
4					80	80	85					
5	483	10	30		80	603	655					
6	483	5	29		80	597	659					
/	483	10	30		80	603 507	691					
9	483	10	30		80	603	699					
10	100	10	50		80	80	94					
11				1,592	80	1,672	2,004					
12					80	80	97					
13					80	80	99					
14					80	80	101					
15					80	80	102					
16					80	80	104					
18					80	80	100					
19					80	80	100					
20					80	80	111					
21				1,592	80	1,672	2,363					
22					80	80	115					
23					80	80	117					
24					80	80	119					
25					80	80	121					
20					80	80	125					
28					80	80	125					
29					80	80	129					
30					80	80	131					
31				1,592	80	1,672	2,785					
32					80	80	135					
33					80	80	138					
35					80	80	140					
36					80	80	145					
37					80	80	147					
38					80	80	150					
39					80	80	152					
40				1.502	80	80	155					
41				1,592	80	1,672	5,284					
42					80	80	160					
44					80	80	165					
45					80	80	168					
46					80	80	171					
47					80	80	173					
48					80	80	176					
49					80	80	179					
50				1 502	80	1 672	2 872					
52				1,392	80	80	188					
53					80	80	191					
54					80	80	195					
55					80	80	198					
56					80	80	201					
57					80	80	204					
58					80	80	208					
59 60					80	80	211					
Total	2 /15	10	1/10	0 552	00 // / 20	16 955	213					
rotal	2,413	40	148	9,332	4,480	10,933	20,420					

Table L.4.2 Financial Cost Spread Sheet of Agroforestry Measures and Actions

Notes :

* These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

	(Unit : Rp. million in 2000 market price)										4																				
		Chash	Dom		Divos Dad I	Ductocti	~ *	Divor Don	l. Destastion	1	Tilleide 1	Cost-Ite	ms to	Measu	res and	Actions (in 2	000 cons	stant price)	ation Coat		e. M	Cast	Admini	En Sor	DL	union Co			Paplacement	Annual	Annual Total in
Sorial	Skilled	Unekill	Dam Equip Ma	t S	killed Unskill	Equip	Mat-	Skilled Unski	L Equip Mat	Skiller	Inskill	Equip-	Mat-	5. Skillød	Upekill	Equip Mat-	Skilled	Unekill_E	auin- Mat-	Unekill	& M	un Mat-	Aumin. Land	Skilled	Filled	Unekill-	Equip	Mat-	Equip-	Total	Current
Vear	Jabor	ed labor	ment eria	de 1	labor ed labor	ment	- wiat-	Jabor ed Jab	r ment erials	labor	ed labor	Equip-	oriale	labor	ed labor	ment eriale	Jabor	ed labor	ment erials	ed labo	r mo	ant oriale	Acquisition	labor	Jabor	ed labor	Equip-	oriale	Equip-	Total	Drice**
1	14001	cu iaboi	ment ena	115 1		ment	criais		of ment enais	14001	cu laboi	ment	criais	10001	cu iaboi	ment erials	labol	cu iaboi	ment enais	s cu iabo	n me	citats	Acquisition	14001	10001	cu iabbi	ment	criais	ment	0	11100
2				-																										0	0
3				-																										0	0
4	10	300	112 6	24	0 136	70	106			1	0	2	31	1	7	7 10	6	90	40 23/		3	360	0	285	3	45	20	117		3.061	3 260
	30	600	225 12/	18	/ 150	17	470	27 43	8 283 1 254	1		2	51	1	,	7 17	13	208	102 500		5	500	,	128	7	104	51	250		5,001	5.947
6	37	000	223 12"	10				27 45	0 205 1,254								15	200	102 500	,	7	4 18		120	,	104	51	250		20	3,747
7				-																-	7	4 18								29	33
8				-																	7	4 18								29	33
9				-																	, 7	4 18								29	34
10																				1	7	4 18								29	34
11																				1 7	7	4 18								29	35
12																				1	7	4 18								29	35
13																				7	7	4 18								29	36
14																				7	7	4 18							360	389	490
15																				7	7	4 18								29	37
16		1															1			7	7	4 18								29	38
17		1															1			7	7	4 18								29	38
18																				7	7	4 18								29	39
19																				7	7	4 18								29	40
20																				7	7	4 18								29	40
21																				7	7	4 18								29	41
22																				7	7	4 18								29	42
23																				7	7	4 18								29	42
24																				7	7	4 18							360	389	578
25																				7	7	4 18								29	44
26																				1	/	4 18								29	44
27																				1	/	4 18								29	45
28				_																,	7	4 18								29	40
29				_						-											7	4 18								29	4/
30				_																	7	4 10								29	40
31				_																	7	4 10								29	40
33				-																	7	4 18								29	50
34																				2	7	4 18							360	389	681
35																				7	7	4 18								29	52
36																				7	7	4 18								29	52
37																				7	7	4 18								29	53
38																				7	7	4 18								29	54
39																				7	7	4 18								29	55
40																				7	7	4 18								29	56
41																				7	7	4 18								29	57
42																				7	7	4 18								29	58
43																				7	7	4 18								29	59
44											T									7	7	4 18							360	389	803
45						L														7	7	4 18								29	61
46				_		L				L	+									7	7	4 18								29	62
47				_				├ ──			<u> </u>									1 7	/	4 18								29	63
48																				7	/	4 18								29	64
49				_																	/	4 18								29	65
50				_					+ +	-	+									-	7	4 18								29	00
51				_					+ +		+ +										/	4 18								29	67
52				+				+	+		+ +						<u> </u>			-	7	4 18								29	60
54				_			-	\vdash	+ +	+	+										7	4 18							260	29	046
55			<u>├</u> ──	+				+ +	+ +	-	+ +									1 -	7	4 18							500	209	710
56							-			-											7	4 18								29	73
57				+					+ +	1	+ +										7	4 18								29	74
58				-			1			1	+ +						1			1 5	7	4 18								29	75
59				+																1 7	7	4 18								29	77
60																	1			7	7	4 18								29	78
Total	58	900	337 1,87	72	9 136	79	496	27 43	8 283 1,254	1	9	2	31	1	7	7 19	19	298	142 734	385	5 5	580 990	9	413	10	149	71	367	1,800	11,933	15,294

Notes :

* These protection works are for the road cut slopes.
** These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

	(Unit : Rp. million in 2000 market price) Cost-Items for Measures and Actions (in 2000 constant price) A										
	Cost-Items for Measures and Actions (in 2000 constant price) A Foreign Specialist Domestic Specialist/Expert Training Materials Basic Fund Annual To										
a	Foreign Specialist	Domestic Specialist/Expert	Training	Materials	Basic Fund	Annual	Total in				
Serial	Skilled	Skilled	Operation	Micro	Seed	Total	Current				
Year	labor	labor	cost	realization cost	money	0.50.1	Price *				
1	1,741	143	550		100	2,534	2,576				
2	1,741	91	550	36		2,418	2,499				
3	1,/41	80	550	36		2,407	2,529				
4	1,/41	80	550	24		2,395	2,558				
5		182	1,600			1,782	1,933				
7		182	1,000			1,782	2,000				
/		182	1,000			1,782	2,000				
0		182	1,000			1,782	2,033				
10		182	1,000			1,782	2,007				
10		182	1,000			1,702	2,101				
12		182	1,000			1,782	2,130				
12		102	1,000			1,702	2,171				
13						0	0				
15						0	0				
16						0	0				
17						0	0				
18						0	0				
19						0	0				
20						0	0				
21						0	0				
22						0	0				
23						0	0				
24						0	0				
25						0	0				
26						0	0				
27						0	0				
28						0	0				
29						0	0				
30						0	0				
31						0	0				
32						0	0				
33						0	0				
34						0	0				
35						0	0				
36						0	0				
37						0	0				
30						0	0				
<u> </u>						0	0				
40						0	0				
41						0	0				
43						0	0				
44						0	0				
45			<u> </u>			0	0				
46						0	0				
47						0	0				
48						0	0				
49						0	0				
50						0	0				
51						0	0				
52						0	0				
53						0	0				
54						0	0				
55						0	0				
56						0	0				
57						0	0				
58						0	0				
59						0	0				
60						0	0				
Total	6 964	1 850	15.000	96	100	24010	26 571				

Table L.4.4 Financial Cost Spread Sheet of Community Empowerment Measures and Actions

Notes :

* These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

Table L.4.5	Financial Cost Spread Sheet of Inst	titutional Capacity Development Measures
-------------	-------------------------------------	--

(Unit · I	Rn	million	in	2000	market	nrice)	
	Unit . I	ιvp.	minion		2000	market	price	

	Cost-Items for Measures and Actions (in 2000 constant price) Annual Total													Annual	
		Trainir	ng Materi	als		Equ	ipment (including	replacemen	t)	Perso	onnel	Equipment	Annual	Total in
Serial	Village	Information	Boarder	Publi-	Meet-	Province	District	Branch	University	NGO	International	Indonesian	Maintenance	Total	Current
Year	cadre	technology	patrol	cations	ing	FO *	FO	FO	of Manado		skilled labor	skilled labor	cost		Price**
1	455	150	0		6	743	383	133	305	222	2,058	684	39	5,178	5,264
2	189	150		25	6		H			6	1,1/3	234	39	1,822	1,883
3	189		0	23	6					6	1,173	174	39	1,042	1,723
4	189		0	25	6					6	1,173	174	39	1,012	1,722
5	109			23						0	1,175	1/4	39	1,012	1,730
7	-	l		ا ا	<u> </u> '		l						39	39	43
8		l			'		l						39	39	44
9					'	ł – – ł	l						39	39	45
10			1		'								39	39	46
11					<u> </u>	743	383	133	305				39	1.603	1.921
12					<u> </u> '	,							39	39	48
13					'								39	39	48
14					'								39	39	49
15				[39	39	50
16				· · · · ·									39	39	51
17				· · · · ·									39	39	52
18													39	39	52
19													39	39	53
20			I	í <u> </u>				I					39	39	54
21						743	383	133	305				39	1,603	2,265
22			Γ		ſ <u> </u> '			「 <u> </u>					39	39	56
23													39	39	57
24				<u> </u>	<u> </u>					_			39	39	58
25		l		<u> </u>	<u> </u>		ļ	ļ					39	39	59
26		l	ļ	ا <u>ــــــــــــــــــــــــــــــــــــ</u>	'		ļ	ļ	<u> </u>				39	39	60
27		ļ]	ļ	↓ '	ļ'		ļ	ļ					39	39	61
28		µ		↓ '	ļ'		ļ]	ļ					39	39	62
29		ļļ	ļ	└───	ļ'	 	ļ	ļ					39	39	63
30			ļ	 	 '	742	202	122	205				39 20	37 1 (02	04
31		⊢l		├ ────'	├ ───'	/43	383	155	303	ł			39	1,003	2,070
32			├	└─── ′	ļ'	├ ───┤		├────		ł			37	20 20	67
24				├─── ′	'	├ ───┤		├────	├				39	39	68
25				<u>├───</u> ′	'	├ ───┤							39	39	69
36		İ		┝───┘	<u> '</u>	┨────┤	l						39	39	71
37		I		├─── ┘	'	<u> </u>	I						39	39	72
38				H	'								39	39	73
39				├ ──┤	'								39	39	74
40					'								39	39	75
41					'	743	383	133	305				39	1,603	3,148
42					'					——			39	39	78
43					'								39	39	79
44				[]	'								39	39	80
45				· · · · ·									39	39	82
46													39	39	83
47			Ī					Ī					39	39	85
48			「 <u> </u>		ſ <u> </u> '			「 <u> </u>					39	39	86
49					<u> </u>								39	39	87
50			l	ا <u>ــــــــــ</u> ا	l'		I	l					39	39	89
51					'	743	383	133	305				39	1,603	3,712
52		ļ	ļ	''	ļ'		ļ	ļ					39	39	92
53		ļ]	ļ	↓ '	ļ'		ļ	ļ					39	39	93
54		µ		└─── '	ļ'		µ]	ļ					39	39	95
55				└─── ′	ļ'		µ						39	39	90
56		ļļ		└─── ′	'	↓	⊢−−−−	├					39	39	98 100
5/		ļļ		└─── ′	'	↓	⊢−−−−	├					39	37 20	100
50				───'	├ ────'	┣───┤		├────	├	ł			39	20	101
59 60				<u>├───</u>	<u> </u> '								39	39	105
Total	1 211	300	0	100	30	4 4 5 8	2 298	798	1 830	246	6 750	1 470	2 340	21.831	29 548

Notes :

* FO means forestry offices.
** These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

(Unit : Rp. million in 2000 market price) Cost-Items for Measures and Actions (in 2000 constant price) Ann														
					Cost-I	tems for	Measu	res and	d Actions	(in 2000 cons	stant price)		Annual
G · 1	Direct	Cost for	Constru	uction	01.11.1	Indirect	Cost		Mon	itoring Equip	ment	Engineering Services	Annual	Total in
Serial	Skilled	Unskill-	Equip-	Mat-	Skilled	Unskill-	Equip-	Mat-	Initial	Equipment	O & M	Skilled	Total	Current
1 tear	labol	120	14	254		26	ment 2	51	516	replacement		12001	1 220	1 251
2	9	130	14	234		20		- 51	510		112	280	1,329	411
3											112	286	398	411
4		-									112	286	398	425
5											62	200	354	384
6				-	<u> </u>			-	133	42	62	168	405	447
7		-		-							62	117	179	201
8		-		-							62	117	179	204
9				-							62	117	179	208
10								-			62	117	179	211
11				1					133	304	62	60	559	670
12											62	8	70	85
13		1									62	8	70	87
14		1									62	8	70	88
15											62	8	70	90
16									133	65	62	60	320	416
17											62	8	70	93
18		<u> </u>			<u> </u>	['					62	8	70	94
19											62	8	70	96
20											62	8	70	97
21					<u> </u>				133	437	62	60	692	978
22		ļ	ļ	<u> </u>	L	ļ	<u> </u>	<u> </u>			62	8	70	101
23	 		ļ	<u> </u>	 	ļ'	_	_	ļ	i	62	8	70	102
24				<u> </u>	_			_		i	62	8	70	104
25	 	<u> </u>			 		 		122	26	62	ð (0	/0	100
20	 				 				155	20	62	00	281	431
21				──		'	──			<u> </u>	62	0	70	109
20	 			+	 	'	<u> </u>	+	 	l	62	0 8	70	111
30				+	 	'	<u> </u>	+		i	62	8	70	115
31	┼────	1		+	──	'		+	133	343	62	60	598	996
37				<u> </u>	┨────		──	+	100	575	62	8	70	119
33		+		+	<u> </u>	'	<u> </u>	+			62	8	70	121
34		+		+	<u> </u>	'	<u> </u>	+			62	~ ~ 8	70	123
35		+		-		'		+			62		70	125
36				+	-	+		1	133	26	62	60	281	508
37				+			<u> </u>	+		-	62	8	70	129
38						+					62	8	70	131
39		+						1			62	8	70	133
40				-	1					+	62	8	70	135
41				1				1	133	437	62	60	692	1,359
42											62	8	70	140
43											62	8	70	142
44											62	8	70	144
45											62	8	70	147
46									133	26	62	60	281	599
47											62	8	70	152
48		<u> </u>				['					62	8	70	154
49											62	8	70	157
50						'					62	8	70	159
51		ļ	<u> </u>	<u> </u>	<u> </u>	ļ'	<u> </u>	<u> </u>	133	304	62	60	559	1,294
52				<u> </u>		i	<u> </u>	<u> </u>			62	8	70	165
53	 		ļ	<u> </u>	 	ļ'	_	_	ļ	i	62	8	70	168
54				──	_		 	──		I	62	8	/0	170
55	 			<u> </u>	 	ا ا	<u> </u>		122	26	62	ð (0	/0	1/3
50									133	20	62	60	281	/0/
57		-	-		───						62	8	70	1/9
50					<u> </u>						62	8	70	182
60			-		<u> </u>	'					62	8	70	188
Total	0	130	14	254	2	26	3	51	1 070	2 036	3 8/6	2 002	11 342	17 428
rotai	1 7	130	1.4	204	- 4	∠0	1 3	51	1,7/9	∠,050	5,040	2,792	11,342	17,420

Table L.4.6 Financial Cost Spread Sheet of Monitoring System Development

* These total costs in current price are calcuated with an average inflation rate of 1.66 % between 2 % in 1999 and 1.32 % in 2000.

Table L.5.1 Financial Cost and Revenue Spread Sheet of Watershed Conservation Plan

Sensitivity Analysis on FIRR

0 1			-			(Unit : Rp. million in current mar	ket price, with an a	iverage inflation rate of 1.66 % b	etween 2 % in 1999 and 1.32	% in 2000)					~
Serial	E	A 6 M	Financi Discretizer	al Incremental Costs for Meas	ures and Actions	Manitaria - Santar Davalana	A	Financial Revenues from Increme	ental Agroforestry Production	net D	Cost +	10 %	Benefit -	10 %	Cost+10% & Benefit-10%
Year	Forestry Measures	Agrotorestry Measures	Physical Construction	Community Empowerment	Institutional Development	Monitoring System Development	Administration	Field Crop	Tree Crop	Revenue	Total Cost	Net Rev.	l otal Benefit	Net Rev.	Net Rev.
1	101	1,700	0	2,576	5,264	1,351	86	0	L C	-11,0/9	12,186	-12,186	0	-11,079	-12,186
2	151	83	0	2,499	1,883	411	88	0	L C	-5,115	5,626	-5,626	0	-5,115	-5,626
3	112	84	2.200	2,529	1,725	418	89	0	l l	-4,958	5,454	-5,454	0	-4,958	-5,454
4	108	85	3,269	2,558	1,722	423	91	0	C.	-8,258	9,084	-9,084	0	-8,258	-9,084
5	1,141	655	5,947	1,935	1,/50	384	92	752		-11,905	13,095	-13,095	677	-11,905	-13,095
0	1,254	639	32	1,967	43	44/	94	/32		-5,724	4,924	-4,172	1 276	-3,/99	-4,247
8	1,149	681	33	2,000	44	201	93	2,072		2 163	4,018	-3,089	1,370	2 370	-3,242
0	1,142	600	33	2,033	44	204	97	2,072		-2,103	4,038	2,380	2 360	-2,570	-2,/94
10	1,101	94	34	2,007	45	208	100	2,055	251	-1,079	3,975	-1.092	2,509	-1.019	-1.381
11	1,027	2 004	35	2,101	1 021	670	100	2,031	766	4 605	8 751	5 400	3.016	4 940	5 735
12	1,000	2,004	35	2,150	1,921	85	102	2,585	1 817	738	3,876	-5,400	3,836	312	-5,755
12	954	99	36	2,1/1	48	87	104	2,445	2 375	3 440	1 462	3 307	4 292	2 963	2 830
14	970	101	490	0	40	88	103	2,394	2,575	3 264	1,402	3 083	4 562	2,757	2,000
15	486	101	37	0	50	90	107	2,500	2,002	4 387	842	4 310	4 637	3 872	3,795
16	338	102	38	0	51	416		2,120	2,772	4 291	1 042	4 196	4 714	3 767	3 672
17	344	106	38	0	52	93		2 507	2.818	4 693	696	4 629	4 792	4 160	4 097
18	350	108	39	0	52	94		2 549	2.865	4 770	707	4 706	4 872	4 229	4 165
19	355	109	40	0	53	96		2,591	2,912	4,850	719	4,784	4,953	4,299	4,234
20	361	111	40	0	54	97		2,634	2,961	4,930	731	4,864	5,035	4,371	4,304
21	420	2,363	41	0	2.265	978		2.678	3.010	-379	6.673	-985	5,119	-947	-1.554
22	427	115	42	0	56	101		2,722	3.060	5.042	814	4,968	5.204	4.464	4.390
23	380	117	42	0	57	102		2,767	3,111	5,180	768	5,110	5,290	4,592	4,522
24	386	119	578	0	58	104		2,813	3,162	4,731	1,368	4,607	5,378	4,134	4,009
25	574	121	44	. 0	59	106		2,860	3,215	5,172	993	5,082	5,467	4,565	4,474
26	399	123	44	. 0	60	431		2,907	3,268	5,118	1,163	5,013	5,558	4,501	4,395
27	406	125	45	0	61	109		2,956	3,322	5,532	820	5,458	5,650	4,905	4,830
28	412	127	46	0	62	111		3,005	3,377	5,624	834	5,548	5,744	4,986	4,910
29	419	129	47	0	63	113		3,055	3,433	5,718	848	5,641	5,839	5,069	4,992
30	426	131	48	0	64	115		3,105	3,490	5,813	862	5,734	5,936	5,153	5,075
31	495	2,785	48	0	2,670	996		3,157	3,548	-290	7,695	-989	6,035	-960	-1,660
32	503	135	49	0	66	119		3,209	3,607	5,944	959	5,857	6,135	5,263	5,176
33	448	138	50	0	67	121		3,263	3,667	6,107	905	6,025	6,237	5,414	5,332
34	455	140	681	0	68	123		3,317	3,728	5,578	1,613	5,431	6,340	4,874	4,727
35	658	142	52	0	69	125		3,372	3,790	6,116	1,151	6,011	6,446	5,399	5,295
36	452	145	52	0	71	508		3,428	3,853	6,052	1,351	5,930	6,553	5,324	5,202
37	460	147	53	0	72	129		3,485	3,917	6,541	947	6,455	6,661	5,801	5,715
38	467	150	54	. 0	73	131		3,543	3,982	6,649	962	6,562	6,772	5,897	5,810
39	4/5	152	55	0	/4	133		3,601	4,048	6,/60	978	6,671	6,884	5,995	5,906
40	483	155	56	0	/5	135		3,661	4,113	6,8/2	995	6,782	6,999	6,094	6,004
41	564	3,284	57	0	3,148	1,359		3,722	4,183	-507	9,253	-1,348	7,115	-1,297	-2,138
42	5/3	160	58	0	/8	140		3,/84	4,253	7,028	1,109	6,927	7,233	6,225	6,124
43	514	162	25	0	/9	142		3,840	4,323	6 507	1,045	6 126	1,333	5 764	6,308
44	510	165	803	0	80	144		3,910	4,393	7 210	1,0/9	7 007	7 500	6 264	5,390
45	522	108	61	0	82	147		3,973	4,400	7,210	1,337	6 991	7,599	6 277	0,242
40	542	171	62	0	03 85	153		4,041	4,542	7,130	1,575	7 610	7 854	6 830	6 737
48	551	175	64	0	85	152		4,108	4,010	7,711	1,110	7 736	7 984	6 952	6 849
49	560	170	65	0	87	157		4,177	4,074	7,040	1 153	7 865	8 116	7 068	6 963
50	569	182	66	0	89	159		4 316	4 852	8 102	1,173	7 995	8 251	7 185	7 079
51	665	3 872	67	0	3 712	1 294		4 388	4 932	-289	10 571	-1 250	8 388	-1 221	-2 182
52	676	188	68	0	92	1,27		4,500	5.014	8 286	1 308	8 167	8 527	7 339	7 220
53	598	191	69	0	93	168		4 535	5 097	8,512	1,232	8,400	8,669	7,549	7 437
54	608	195	946	0	95	170		4 610	5 182	7.778	2.216	7.576	8.813	6.798	6 597
55	915	198	72	0	96	173		4 687	5 268	8.500	1.600	8.355	8.959	7.505	7 359
56	629	201	73	0	98	707		4.764	5.355	8,413	1,878	8,242	9,108	7,401	7.230
57	639	204	74	0	100	179		4.844	5.444	9,092	1,316	8,972	9,259	8,063	7.943
58	650	208	75	0	101	182		4.924	5.535	9,243	1,338	9,121	9,413	8,197	8.075
59	660	211	77	0	103	185		5,006	5,626	9,396	1,360	9,272	9,569	8,333	8,209
60	671	215	78	0	105	188		5,089	5,720	9,552	1,382	9,426	9,728	8,471	8,345
Total	35,103	26,420	15,294	26,571	29,548	17,428	1,349	184,936	193,924	227,146					<i>.</i>
	, **	:,:=*	.;=/		. 30 . 0	.,	,			.,					

Financial Internal Rate of Return (FIRR) =

5.4%

4.8%

4.8%

4.2%

(FIRR assuming inflation rates of 10 % up to the 10th year and 1.66 % from the 11th year on) (FIRR assuming inflation rates of 10 % up to the 20th year and 1.66 % from the 21th year on) 7.4% 10.8%

	(Unit : Rp. million in 2000 market pric												harket price)
	Cost-fiems for Measures and Actions (in 2000 constant price)												Total Cash
Sorial	Forestry	Agroforestry	Du	Community	Institutional	Monitoring Admini		Total	Physical	Loan I Dhugiagh Cummulated		Polition Interest * Renavment **	
Year	Measures	Measures	Construction	Empowerment	Development	System	stration	(1)	Construction	Loan	Payment (2)	(3)	(1+2+3)
1	44	80	0	0	1 334	406	85	1 949	0	0	ruyment (2)	(5)	1 949
2	38	80	0	0	643	398	85	1,244	0	0	0		1,244
3	8	80	0	0	463	398	85	1.034	0	0	0		1,034
4	2	80	924	0	433	398	85	1.922	2.137	2.137	0		1,922
5	158	110	1,235	1,782	433	354	85	4,157	4,242	6,379	21		4,178
6	363	109	29	1,782	39	272	85	2,679	0	6,379	64		2,743
7	343	110	29	1,782	39	179	85	2,567	0	6,379	64		2,631
8	320	109	29	1,782	39	179	85	2,543	0	6,379	64		2,607
9	320	110	29	1,782	39	179	85	2,544	0	6,379	64		2,608
10	198	80	29	1,782	39	179	85	2,392	0	6,379	64		2,456
11	234	80	29	1,782	39	426	85	2,675	0	6,379	64		2,739
12	232	80	29	1,782	39	70	85	2,317	0	6,379	64		2,381
13	196	80	29	0	39	70	85	499	0	6,379	64		563
14	196	80	389	0	39	70	85	859	0	6,379	64		923
15	71	80	29	0	39	107	0	289	0	6,379	64	212	353
10	71	80	29	0	39	18/	0	280	0	0,100	62	213	562
17	71	80	29	0	39	70	0	289	0	5,934	60	213	561
10	71	80	29	0	39	70	0	289	0	5 528	57	213	559
20	71	80	29	0	39	70	0	289	0	5 316	55	213	557
20	107	80	29	0	39	559	0	814	0	5,010	53	213	1 080
22	107	80	29	0	39	70	0	325	0	4.891	51	213	589
23	71	80	29	0	39	70	0	289	0	4.678	49	213	551
24	71	80	389	0	39	70	0	649	0	4,465	47	213	908
25	71	80	29	0	39	70	0	289	0	4,253	45	213	546
26	71	80	29	0	39	148	0	367	0	4,040	43	213	622
27	71	80	29	0	39	70	0	289	0	3,827	40	213	542
28	71	80	29	0	39	70	0	289	0	3,615	38	213	540
29	71	80	29	0	39	70	0	289	0	3,402	36	213	538
30	71	80	29	0	39	70	0	289	0	3,190	34	213	536
31	107	80	29	0	39	465	0	720	0	2,977	32	213	965
32	107	80	29	0	39	70	0	325	0	2,764	30	213	567
33	71	80	29	0	39	70	0	289	0	2,552	28	213	529
34	/1	80	389	0	39	/0	0	649	0	2,339	26	213	88/
35	61	80	29	0	39	149	0	279	0	2,120	23	213	515
37	61	80	29	0	39	70	0	279	0	1,914	19	213	511
38	61	80	29	0	39	70	0	279	0	1 488	17	213	509
39	61	80	29	0	39	70	0	279	0	1,100	15	213	507
40	61	80	29	0	39	70	0	279	0	1.063	13	213	504
41	97	80	29	0	39	559	0	804	0	851	11	213	1,027
42	97	80	29	0	39	70	0	315	0	638	9	213	536
43	61	80	29	0	39	70	0	279	0	425	6	213	498
44	61	80	389	0	39	70	0	639	0	213	4	213	856
45	61	80	29	0	39	70	0	279	0	0	2	213	494
46	61	80	29	0	39	148	0	357	0				357
47	61	80	29	0	39	70	0	279	0				279
48	61	80	29	0	39	70	0	279	0				279
49	61	80	29	0	39	70	0	279	0				279
50	61	80	29	0	39	/0	0	279	0				279
51	9/	80	29	0	39	426	0	0/1	0				0/1
52	9/	80	29	0	20	70	0	210	0				210
53	61	80	29	0	39	70	0	630	0				630
55	61	80	209	0	39	70	0	279	0				279
56	61	80	29	0	39	148	0	357	0				357
57	61	80	29	0	39	70	0	279	0				279
58	61	80	29	0	39	70	0	279	0				279
59	61	80	29	0	39	70	0	279	0				279
60	61	80	29	0	39	70	0	279	0				279
Total	5,946	4,948	5,554	14,256	5,451	8,956	1,190	46,301	6,379		1,648	6,379	54,328

Table L.5.2 Cost Recovery Schedule for WCP Implementation

Notes :

* Assumed interest rate for donors' soft loan is a flat arate of 1 %.
** Maximum repayment (depreciation) period for the donors' soft loan is 40 years including 10-year grace period.

Figures

