7.5
Capacity of Facility

1. Basic Data and Condition

1.1. Design Period

Phase I = 2001 ~ 2005 (Modified Aeration Process)

Phase II = 2006 ~ 2010 (Modified Aeration Process)

Final Phase = 2011 ~ 2020 (Conventional Activated Sludge Process)

1.2. Sewer System

Combined Sewer System (Storm Water Discharged Overflow Chamber QmaxH → Diversion Chamber)

1.3. Design Location (Sewer Development Area)

Tau Hu - Ben Nghe, Doi - Te Area (THBNDT Area) in Ho Chi Minh City.

1.4. Design Area (Service Area)

Phase I = 828.4 ha

Phase II = 828.4 + 1,963.2 = 2,791.6 ha

Final Phase = 2,791.6 ha

1.5. Design Population

Phase I = 425,830 persons in 2010 year, 2005 year = 432,076 persons

Phase II = 1,390,282 persons in 2020 year, 2010 year = 1,421,778 persons

Final Phase = 1,390,282 persons in 2020 year

1.6. Domestic Wastewater Flow

1997 year = 170 l/person-day

2000 year = 200 l/person-day

2005 year = 260 l/person-day. Design Wastewater Flow per capita

2010 year = 300 l/person-day (Phase I & Phase II)

2020 year = 335 l/person-day (Final Phase)

1.7. Diurnal Wastewater Flow

OaveD = OmaxD

QmaxH = QmaxRH = 1.4 * QmaxD (Domestic Wastewater) + Groundwater

1.8. Design Wastewater Flow

Phase II : QmaxD (= QaveD) =
$$469,000 \text{ m}^3/\text{day}$$

QmaxH (= QmaxRH) = $1.4 * \text{QmaxD} + \text{Groundwater}$
= $640,000 \text{ m}^3/\text{day}$

☐ Ground Water Flow = 10% of Domestic Wastewater (QmaxD)

1.9. Formula Wastewater Flow Calculation

1.10. Design Wastewater Characteristics (Pollutant Load)

BOD = 60 g/person-day*1,390,282 persons
$$\circ$$
 512,000 m³/day = 162.9 mg/l \rightarrow 163 mg/l SS = 60 g/person-day*1,390,282 persons \div 512,000 m³/day = 162.9 mg/l \rightarrow 163 mg/l

1.11. Design Wastewater Characteristics For WWTP

Refer to "Mass Balance" Calculation. Result from the Mass Balance Calculation take side streams into consideration and decide:

BOD =
$$163 * 1.20 = 196 \rightarrow 200 \text{ mg/l}$$

SS = $163 * 1.30 = 212 \rightarrow 210 \text{ mg/l}$

1.12. Design Effluent Quality (VIETNAMESE STANDARD TCXD 188 - 1996)

Phase I: BOD = 50 mg/l below ☐ TCXD 188 – 1996:

SS = 50 mg/l below

SS = 100 mg/l below Urban Wastewater Standard For Discharge

Phase II: BOD = 50 mg/l below ☐ Phase I = Limitation values "B"

SS = 100 mg/l below Phase II = Limitation values "B"

Final Phase: BOD = 20 mg/l below Final Phase = Limitation values "A"

1.13. Design WWTP Removal Efficiency (Considering Recycle Water Loading)

Item	Designed Water Quality (mg/l)		Removal Efficiency (%)			Remarks
	Influent	Effluent	Primary Sed. Tank	AT + Final Sed, Tank	Total	
	200	20	40	83.3	90.0	Total Removal Efficiency = 90~95% possibly
BOD	(200)	(50)	(30)	(64.3)	(75.0)	Total Removal Efficiency = About 70%
SS	210	30	50	71.4	85.7	Total Removal Efficiency = 90~95% possibly
	(210)	(60)	(35)	(56)	(71.4)	-

Acration Tank Water Quality; BOD = 120 mg/l (140 mg/l) SS = 105 mg/l (137 mg/l)

() shows Phase I & II

1.14. Wastewater Treatment System and Necessary Train

Phase I: Modified Aeration Process (1/8 train)
Phase II: Modified Aeration Process (4/8 train)
Final Phase: Conventional Activated Sludge Process (for AO (8/8 train)
System, take Step Aeration System together)

1.15. Sludge Treatment System

"Separate Thickening ~ Sludge Storage ~ Dewatering ~ Composting"

* Separate Thickening : Raw Sludge = Gravity Thickener

Excess Sludge = Centrifugal Thickener

* Sludge Storage Tank : Mechanical Mixing

* Dewatering : Centrifugal Dewatering

1.16. Excess Sludge Final Disposal System

Disposal of WWTP by sanitary landfill

* Composting, screenings, scum, grit etc...

1.17. Inlet Pipes

 $\begin{array}{ll} \mbox{(Phase I):} & \boxdot & 1{,}300^{\rm W} * 1{,}200^{\rm H} * 0.5\% * 2 \mbox{Box, BL} = -3.314 \ m \ (L.P.S.\ Point) \\ \mbox{(Phase II):} & \boxdot & 2{,}000^{\rm W} * 1{,}700^{\rm H} * 0.4\% * 2 \mbox{Box , BL} = -3.890 \ m \ (L.P.S.\ Point) \\ \end{array}$

□ Lift Pumping Station BL = - 3.890 - 0.300 + α = - 4.200 m

1.18. WWTP Ground Level

Present GL 🗆 + 0.600 m

Design GL = + 2.200 m (About 1.6 m banking)

1.19. Condition at Outlet Point

Outlet Point: "Tac Ben Ro Canal" (Tidal River)

HWL = + 1.650 m (100 Year Probability, Nha Be Point) LWL = - 2.690 m (")

1.20. WWTP Inlet Fluctuation

Actual Result of Water Supply Following

1.21. WWTP Inlet Water Increase

Refer to "Inlet Wastewater Increase"

1.22 Initial Consideration

- Installation of Bypass Waterway
 (Primary Sedimentation Tank, Aeration Tank, Final Sedimentation Tank, Disinfection Tank, Design to Bypass Waterway all Water Establishment)
- (2) Division of Aeration Tank (devices into 4 = 1:1.5:1.5:2.25)
- (3) Set up Step Waterway for Step Aeration System
- (4) Extension of each Tank (including Disinfection Tank)
- (5) Subdivision of Gravity Thickener. Total 2 tanks → change to 4 tanks

1.23. Characteristic of Inlet Pipes / Flow, Velocity, Water Depth, Water Level

Phase	Flow Category	Flow (m³/sec)	Velocity (m/sec)	Water Depth (m)	Water Level
Phase I	QmaxD	1.632	0.848	0.740	-3.460
	QmaxH	2.222	0.909	0.940	-3.260
Phase II	QmaxD	4.294	0.994	1.080	-3.120
	QmaxH	5.868	1.068	1.373	-2.827

- ☐ Lift Pumping Station Inflow Bottom Level = 4,200m
- ☐ Inlet Pipes:

(Phase I): ■ 1,300^W * 1,200^H * 0.5‰ * 2Box, BL = - 3.314 m (L.P.S. Point)

(Phase II):

2,000^W * 1,700^{II} * 0.4‰ * 2Box, BL = - 3.890 m (L.P.S. Point)

1.24. Sludge Density (Conventional Activated Sludge Process)

- Raw Sludge (Primary Sedimentation Tank Sludge) = 2.0 ~ 4.0 → 2.0%
- (2) Excess Sludge (Final Sedimentation Tank Sludge) = 0.5 ~ 1.0% → 0.6%

= 3.0%

- (3) Density of Return Sludge = 3,000 6,000mg/l
- (4) Combined Sludge = 1.0% (Raw Sludge + Excess Sludge)
- (5) Gravity Thickened Sludge (Combined Sludge) = 2.5%
- (6) " (Raw Sludge)(7) Centrifugal Thickening Sludge = 4.0%
- (8) Dewatering Sludge = 20 ~ 22% → 20% (Centrifugal Dewatering)
- (9) Compost Sludge = 30 ~ 40% (No Additive)

= 40 ~ 50% (Additive)

1.25. Solids Capture Rate (SS)

- Gravity Thickening (Combined Sludge) = 80 ~ 90%
- (2) " (Raw Sludge) = 80 ~ 90%
- (3) Centrifugal Thickening = 85 ~ 95%
- (4) Floatation Thickening = 85 95%
- (5) Dewatering Sludge (Centrifugal, Beltpress, Filter Press) = 90 ~ 95%

1.26. Sludge Generated Rate (Removed SS)

- Conventional Process = 100%
- (2) Batch Process (High Loading) = 100%
- (3) Batch Process (Low Loading) = 75%
- (4) OD Process = 75%
- (5) Long Time Aeration Process = 75%
- (6) Rotating Contractor Process = 92%

1.27. Design Amount of Sludge Production (Solid Amount = t/day): Dry Base

QmaxD (m³/day) * Inlet SS Density (mg/l) * 10⁻⁶ *
Total WWTP SS Removal Rate (%) * 10⁻² *
Sludge Generation Rate SS per Removed Sludge (%) * 10⁻².

1.28. Design Amount of Sludge Production (m3/day): Wet Base

Design Amount Sludge Production (t/day) * 100 / Density of Sludge (%) + Specific Gravity (t/m³)

(Note): In general, Gravity Rate of wet base sludge is 1.0 t/m³ (Dewatering Cake, Composting Sludge is shown considering a part).

Recycle Flow Loading (WWTP Design Inflow Water Quality – Design Influent Quality)

There is a case that SS load of wastewater quality (influent) reaches over 100% depending on the operation (condition). But the operation works is fine, SS load of recycle flow will be kept around 20 ~ 40%. Also BOD load of recycle flow is generally below 20% (Maintenance management guideline in Japanese Standard).

2.1. Mass Balance Calculation

(1) SS Solids Recovery (Solids Capture Rate)

- ① Gravity Thickening Sludge (Raw Sludge) = 80 ~ 90%
- © Centrifugal Thickening Sludge (Excess Sludge) = 85 95%
- ③ Sludge Dewatering (Centrifugal Dewatering) = 90 ~ 95%
- Additive Rate of Polymer = 1.0%

(2) Mass Balance Calculation

$$D = 85 - (X_1 + r_1) + r_2$$

D: Design Sludge Production

R: Solids in Recycle Flow

X1: Inlet Solids at Thickener (Gravity and Centrifugal Thickener)

X3: Inlet Solids at Dewatering Facility

X4: Dewatering Cake

r₁: SS Recovery Rate of Thickener = 80 ~ 95% (Gravity and Centrifugal Thickener)

r₃: SS Recovery Rate of Dewatering Facility = 90 ~ 95%

r₂: Additive Rate of Polymer = 1.0%

(Note)

Calculate the Sludge Production of each facilities at the case of Inlet Solid = 100, Design Sludge Production (D) = 85, and take the mass balance of all WWTP then confirm the loading rate of recycle flows.

Loading rate to design a WWTP facilities is calculated by the following equation:

Design WWTP Inlet Water Quality = WWTP Inlet Water Quality + Recycle Water Load (* WWTP Inlet Water Quality = Pollutant Loading / Design Wastewater)

(3) Case Study (Mass Balance)

[1] Case 1: (Lower Collection Rate)

$$r_1 = 80\%$$
, $r_3 = 90\%$, $r_2 = 1.0\%$

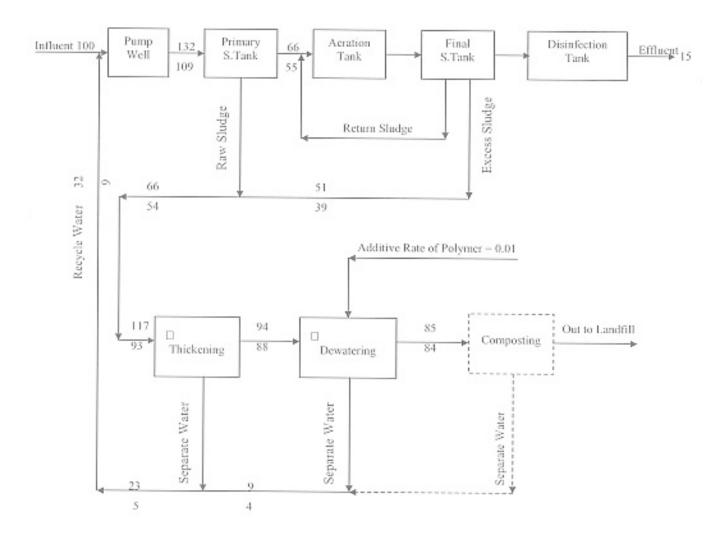
$$X_1 = D * 1/[r_1*(r_3 + r_2)] = 85 * 1/[0.80 * (0.90 + 0.01)] = 116.8 \rightarrow 117$$

$$X_3 = X_1 * r_1 = 117 * 0.80 = 93.6 \rightarrow 94$$

$$X_4 = X_3 * r_3 = 94 * 0.90 = 84.6 \rightarrow 85$$

[2] Case 2: (Higher Collection Rate)

$$r_1 = 95\%$$
, $r_3 = 95\%$, $r_2 = 1.0\%$


$$\mathrm{X_1} = \mathrm{D} \, * \, 1/[\,\, \mathrm{r_1} * \, (\mathrm{r_3} + \mathrm{r_2})] = 85 \, * \, 1/[\, 0.95 * \, (0.95 + 0.01)\,] = 93.2 \, \rightarrow \, 93$$

$$X_3 = X_1 * r_1 = 93 * 0.95 = 88.4 \rightarrow 88$$

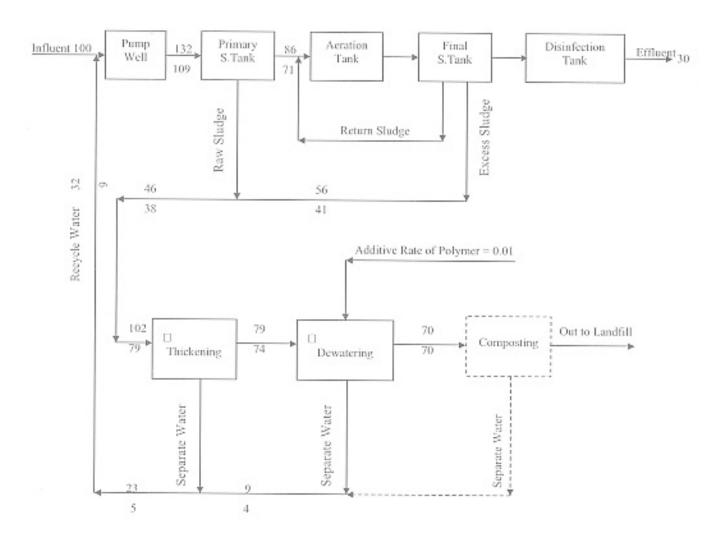
$$X_4 = X_3 * r_3 = 88 * 0.95 = 83.6 \rightarrow 84$$

(4) Mass Balance Calculation Result of WWTP (Final Phase)

(Primary Sedimentation SS Removal Rate = 50%)

(Legend)

Upperstreams = Case 1. (Lower)


Downstreams = Case 2. (Higher)

☐ Thickening = Gravity + Centrifugal Thickener

Dewatering = Centrifugal Dewatering

(5) Mass Balance Calculation Result of WWTP (Phase I, II)

(Primary Sedimentation SS Removal Rate = 35%)

(Legend)

Upperstreams = Case 1. (Lower)

Downstreams = Case 2. (Higher)

- □Thickening = Gravity + Centrifugal Thickener
- Dewatering = Centrifugal Dewatering

2.2. WWTP Design Influent Water Quality Determination

(1) Consideration

It is difficult decided SS capture rate, sludge density, density of Separate Water, because there are many factors such as wastewater treatment flow, operating condition, influent character, character area etc...

 The density of total solids of Separate Water is desirable less than 1,000 mg/l. It is necessary to keep less than 5,000 mg/l in the worst case.

[2] Return Pollutant Load is generally described below:
In case of good operation, SS loading recycle flow generally 20 ~ 40%, sometimes it reaches 100%. BOD Loading Recycle Flow is generally below 20% (Design Criteria).

(2) WWTP Design Influent Quality

[1] Calculation Result of Mass Balance (SS Return Load)

$$9 \sim 32\% \rightarrow 30\%$$

[2] Return Load

Recycle Flow Rate, result of mass balance calculation is decided as below: SS Recycle Rate = 30% BOD Recycle Rate = 20%

[3] WWTP Design Influent Quality

BOD =
$$163 * 1.20 = 196 \rightarrow 200 \text{ mg/l}$$

SS = $163 * 1.30 = 212 \rightarrow 210 \text{ mg/l}$

3. Design Criteria for Main Facilities

3.1 Primary Sedimentation Tank

Item	Conventional Activated Sludge System	Modified Aeration System
Surface Loading	50 m ³ /m ² -day	100 m ³ /m ² -day About
Effective Depth	3.0 m	Same Left
Overflow Weir Loading	250 m ³ /m-day	500 m ³ /m ² -day About
Length: Width Ratio	3:1~5:1	Same Left
Width of Tank	2.5 ~ 5.0m (@0.5 m)	Same Left
Bottom Slope of Tank	1/100 ~ 2/100	Same Left
BOD Removal Efficiency	40%	30%
SS Removal Efficiency	50%	35%
COD Removal Efficiency	30 ~ 50% (Other reference)	
Bypass Waterway	Establish	Same Left
Length of Sludge Collector	Up to about 40 m	Same Left
Slope of Hopper	60° over	Same Left
Baffle Wall Opening Efficiency	15% Above	Same Left
Baffle Plate	Install	Same Left
Freeboard	50 cm About (Beam to clear Tank)	Same Left
Diameter of Sludge Pipe	150 mm Above	Same Left

[☐] Load for Modified Aeration System = Result of "Pilot Plant Experiment Work".

3.2. Aeration Tank (Conventional Activated Sludge Process)

HRT = 6.0 hr (Step Aeration Process = 4.0 ~ 6.0 hr)

MLSS = 1,500 ~ 2,000 mg/l (Step Aeration Process = 1,000 ~ 1,500 mg/l)

Return Sludge Ratio = 50 ~ 100% (Normal ~ Maximum)

☐ Return Sludge Pump = No stand by Pump

Effective Depth = 5.5 m

Density of Return Sludge = 3,000 ~ 6,000 mg/l

BOD-SS Loading = 0.2 ~ 0.4 kg-BOD/kg-SS-day

ASRT = 3 6 days, $SRT \ge 4$ day, $Sa \ge 3$ day

Width Waterway = Water Depth 1 ~ 2 times with in

Freeboard = 80 cm about (Beam to clear Tank)

Bypass Waterway = Establish

Division of Tank = 4 Division (1:1.5:1.5:2.25)

Baffle Wall opening efficiency: Part enter bottom = 1.0(W)m *1.0(H)m*1Place/Wall

Upper part overside bottom = 0.5(W)m * 0.3(H)m * 2 Place/Wall

* Opening way for water flow

1 Scale Tank = 2,500 ~ 7,500 m³/day-tank

Operation process: 0 = Aerobic zone, A = Anaerobic zone or No Air zone (Only mixing)

- (1) Operation with Regular Conventional Activated Sludge Process = 0 + 0 + 0 + 0
- (2) Operation with Controlling Filamentous Bulking = A + 0 + 0 + 0 or A + 0 + A + 0

□Operation with Controlling Nitrification Reaction N-BOD increase in treated water.

- (3) Operation along Energy = A + 0 + 0 + 0 or A + 0 + A + 0
- (4) Beginning of operation, Loading operation

3.3. Aeration Tank (Modified Aeration Process)

BOD-SS Loading = 1.5 ~ 3.0 kg-BOD/kg-SS-day (4.0 kg-BOD/kg-SS-day below)

BOD Volume Loading = 0.6 ~ 2.4 kg/m³-day

MLSS = 400 - 800 mg/l

Sludge Age = $0.3 \sim 0.5$ day

Air Feeding = 2 ~ 4 Time of Wastewater Volume

HRT = 1.5 - 2.5 hr

Return Sludge Ratio = 5 - 10%

SVI = 50 About

BOD Removal Rate = 70% About

Excess Sludge Production Rate = 1 ~ 2 % About

☐ (BOD-SS Loading) = Result of "Pilot Plant Experiment Work".

3.4. Final Sedimentation Tank

Item	Conventional Activated Sludge System	Modified Aeration System
Surface Loading	25 m ³ /m ² -day [After revise of temperature]	58 m ³ /m ² -day below
Effective Depth	3.5 m	Same Left
Overflow Weir Loading	120 m³/m-day	240 m3/m2-day About
Sludge Hopper	QmaxD * 30 min.	Same Left
Length: Width Ratio	3:1 ~ 5:1	Same Left
Bottom Slope of Tank	1/100 ~ 2/100	Same Left
Slope Hopper	60° over	Same Left
Baffle Wall opening efficiency	15% Above	Same Left
Bypass Waterway	Establish	Same Left
Freeboard	50 cm About (Beam to clear Tank)	Same Left
Baffle Plate	Install	Same Left
Diameter of Sludge Pipe	150 mm Above	Same Left

[□] Load for Modified Aeration System = Result of "Pilot Plant Experiment Work".

3.5. Disinfection Tank

Item	Conventional Activated Sludge System	Modified Acration System
Contact Time	More than 15 minute (QmaxRH to consider)	Same Left
In Tank Average Velocity	Velocity at with Sludge does not settlement	Same Left
Freeboard	50 cm About (Beam to clear Tank)	Same Left

3.6. Gravity Thickener (For Raw Sludge)

Solid Surface Loading = 90 kg/m²-day

Effective Depth = 4.0 m About

Density of Thickened Sludge = 2.0 ~ 4.0% → 3.0%

Dimension Thickener = Cycle (Standard)

Bottom Slope = 5/100 Above

Diameter of Sludge Pipe = 150 mm Above

Diameter for Sludge Pump = 80 mm Above

3.7. Centrifugal Thickener (For Excess Sludge)

Density of Thickened Sludge = 4.0 %

Operation Time = 24 hours continuous operation, with stand by.

3.8. Sludge Dewatering (Centrifugal Dewatering Method)

Density of Cake = 18 ~ 25% → 20% (Centrifuge)

Operation Time = 24 hours continuous operation, with stand by.

3.9. Sludge Composting Facilities

For market product = During composting material has to be kept at a temperature over 65C for 2 days.

Composting Period = 10 ~ 14 days (Standard)

If not stabilized material should be cured without any Mechanical Aeration for another = 30 ~ 60 days (Natural Aeration), and = 20 ~ 30 days (Mechanical Drying)

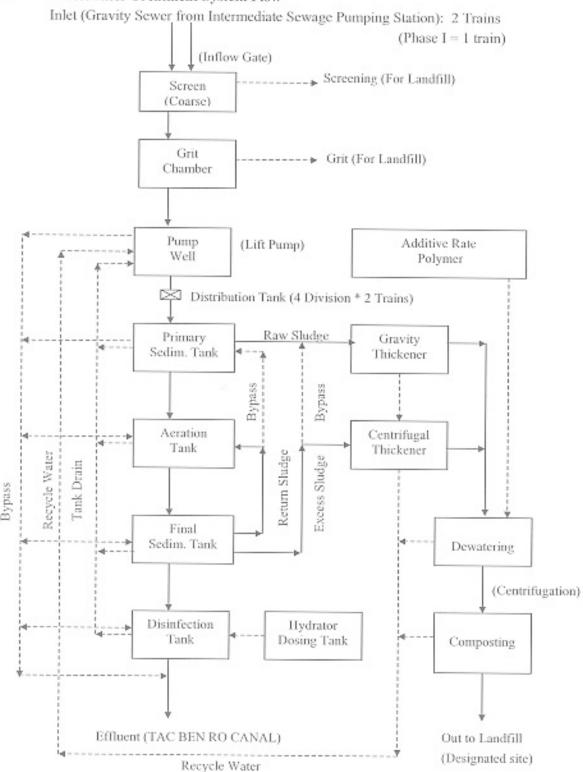
High of Storing Compost at Composting Tank = Less than 3.0 m (Standard)

= Less than 5.5 m (Additive)

Air = 10 ~ 20 Ne/min-m³ (Standard)

In case reducing of composting period

Stores Area, Capacity of Hopper = 1 ~ 2 day


Purpose of composting in this Study = Safety Stabilization, handling (No balance for product market).

Required Quality of Product for Market:

PH = 6.0 ~ 8.5, Water Content = 30 ~ 40%

BOD = 30 mg/g-DS less, C/N Ratio = 20 less

4. Wastewater Treatment System Flow

5. Capacity Calculation of WWTP

5.1. Inflow Gate

Item	Final Phase	Phase I
QmaxH	699,000 m ³ /day	192,000 m ³ /day
Dimension	1,500mm * 4 unit	1,500mm * 2 (1) unit
Inflow Water Depth	H = 1.373 m	H = 0.940 m
Velocity	V = Q/A	(2pond)
	= 2.023/(1.5*1.373) = 0.982 m/sec	V ₁ = 1.111/(1.5*0.940) = 0.788 m/sec
		(Ipond)
		V2 = 2.222/(1.5*0.940) = 1.576 m/sec
Gate Loss	$h = 1.5 * V^2/2g$	$h_1 = 1.5* \text{ V}_1^2/2g \text{ (2 pond)}$
	= 1.5 * 0.982 ² /2g = 0.074 m	$= 1.5 *0.788^{2}/2g = 0.048m$
	1949 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$h_2 = 1.5* V_2^2/2g$ (1pond)
		$= 1.5 *1.576^{2}/2g = 0.190m$
	☐ Use h = 200mm	☐ Same Left

5.2. Coarse Screen

Item	Final Phase	Phase I
QmaxH	699,000 m³/day	192,000 m ³ /day
Dimension	3.5m ^W *100mm*60°*FB-9* 4unit	3.5m ^W *100mm*60°*FB-9* 2(1) unit
Inflow Water Depth	H = 1.373 m	H = 0.940 m
Velocity	V= Q/A	$V_1 = Q/A $ (1pond)
	= 2.023/(0.100*1.373*3.5/0.109)	= 2.222/(0.100* 0.940 * 3.5/0.109)
	= 0.459 m/sec	= 0.736 m/sec
		$V_2 = Q/A$ (2pond)
		= 1.111/(0.100* 0.940 *3.5/0.109)
		= 0.368 m/sec
Screen Loss	$h = 2.34*\sin 60°*(9/100)^{4/3}*0.459^2/2g$	h ₁ =2.34*sin60°*(9/100) ^{4/3} *0.736 ² /2g
	= 0.001 m	= 0.002 m (1pond)
		$h_2 = 2.34 * \sin 60^{\circ} * (9/100)^{4/3} *$
		$0.368^2/2g = 0.001 \text{ m (2pond)}$
	☐ Use h = 200mm	☐ Same Left
		(Note)
		The Pumping Station will extend in
		the Phase II, But in the Phase I, just
		about 1/2 of capacity of Pumping
		Station will be constructed.
		Facilities depend on the requirements
		of the run off.

5.3. Grit Chamber (Simple Type)

Item	Final Phase	Phase I
QmaxH	699,000 m³/day	192,000 m ³ /day
Dimension of Tank	3.5m ^W * 3.0m ^L * 4 tank	3.5mW + 3.0mL + 2 (1) tank
Inflow Water Depth	H = 1.373 m	H = 0.940 m
Surface Area	A = 3.5 * 3.0 * 4 = 42.0m ²	$\Lambda_1 = 3.5 * 3.0 * 1 = 10.5 \text{m}^2$
		$A_2 = 3.5 * 3.0 * 2 = 21.0 \text{m}^2$
Surface Loading	699,000 / 42.0 = 16,643 m ³ /m ² -day	192,000 / 10.5 = 18,286 m ³ /m ² -day
		192,000 / 21.0 = 9,143 m ³ /m ² -day
Velocity	V = 2.023/(3.5*1.373) = 0.421m/sec	$V_1 = 2.222/(3.5*0.940) = 0.675 \text{m/sec}$
		V ₂ = 1.111/(3.5*0.940) = 0.338m/sec
(Note)	Establish simple Grit Chamber in	
	WWTP, because Grit Chamber and	
	Screen already treated at Intermediate	
	Sewage Pumping Station	

5.4. Primary Sedimentation Tank

Item	Final Phase	Phase I
QmaxD	512,000 m ³ /day	141,000 m ³ /day
Treatment System	Conventional Activated Sludge Process	Modified Aeration Process
Number of Train	10tank 20waterway/train * 8 trains = 80 tank 160 waterway	10tank 20waterway/train * 1 train = 10 tank 20 waterway
Required Surface Area	SA = 512,000/(50*8*20) = 64.0 m ² /waterway	SA = 141,000/(50*1*20) = 141.0 m ² /waterway
Dimension of Tank	5.0m ^W * 13.0m ^L * 3.0m ^H * 10tank 20waterway/train*8trains (Hunch of bottom) = 300 ^W * 600 ^H 0.3 * 0.6 * 1/2 = □ 0.09 m ³ /m	5.0m ^W * 13.0m ^L * 3.0m ^H * 10tank 20waterway/train*1train Same Left
Required Weir Length	L = 512,000/(250*8)	L = 141,000/(250*1)
	= 256.0 m/train	= 564.0 m/train
	= 12.8 m/waterway	= 28.2 m/waterway
	4.5m 0.5m HS 0.5m H.5m 0.5m	Same Left
	Both side 4.5m + Outlet side 4.0m	Same Left
Surface Area	A = 5.0 * 13.0 * 1 = 65.0 $m^2/waterway$	Same Left
Volume	V = 65.0*3.0-[0.09*(13.0*2+5.0)] = 192.21 m ³ /waterway	Same Left
Surface Loading	$50 \text{ m}^3/\text{m}^2$ -day (Standard) $512,000/(65*160) = 49.2 \text{ m}^3/\text{m}^2$ -day	- 141,000/(65.0*20) = 108.5 m ³ /m ² -day
Retention Time	(OK) 1.5 hr (Standard) 192.21/3,200 * 24 = 1.44 hr (OK)	- 192,21/7,050 * 24 = 0.65 hr

Item	Final Phase	Phase I
Overflow Weir	250 m3/m-day (Standard)	-
Loading	3,200/(4.5 * 2 + 4.0) = 246.2 m³/m-day (OK)	141,000/[(4.5 * 2 + 4.0)*20*1] = 542.3 m³/m-day
Length and Width	3:1 ~ 5:1 (Standard)	Same Left
Ratio	L:W = 13.0: 5.0 = 2.6:1 \(\sigma \) 3:1 (OK)	
Average Velocity	0.20 m/min below (Standard)	Same Left
	QmaxD = 3,200 m ³ /day-waterway	QmaxD = 7,050 m3/day-waterway
	= 2.22 m ³ /min-waterway	= 4.90 m ³ /min-waterway
	V(ave) = 2.22/(5.0*3.0-0.09*2) =	V(ave) = 4.90/(5.0*3.0-0.09*2) =
	0.150m/min (OK)	0.331m/min
Volume of Raw	Density of Sludge = 2.0%	Same Left
Sludge	512,000 * 210 * 0.50 * 10-6 =	141,000 * 210 * 0.35 * 10-6 =
	53.760 t/day	10.364 t/day
	$53.760/2.0*10^2 = 2,688 \text{ m}^3/\text{day}$	$10.364/2.0*10^2 = 518.2 \text{ m}^3/\text{day}$
Bypass Waterway	Establish	Same Left
Sludge Hopper	Itank 2 waterway Establish Iplace	Same Left

5.5. Aeration Tank

Item	Final Phase	Phase I
QmaxD	512,000 m³/day	141,000 m ³ /day
	= 64,000 m ³ /day-train	= 141,000 m ³ /day-train
	= 6,400 m ³ /day-tank	= 14,100 m ³ /day-tank
Treatment System	Conventional Activated Sludge Process	Modified Aeration Process
Number of Train	10 tank / train * Strains = 80 tank	10 tank / train * 1train = 10 tank
BOD (in)	512,000 * 200 * (1 - 0.40) * 10 ⁻³	141,000 * 200 * (1 - 0.30) *10 ⁻³
	= 61,440 kg/day	= 19,740 kg/day
SS (in)	512,000 * 210 * (1 - 0.50) * 10-3	141,000 * 210 * (1 - 0.35) * 10-3
	= 53,760 kg/day	= 19,247 kg/day
BOD (Removal)	512,000 * (120 - 20) *10-3	141,000 * (140 - 50) * 10 ⁻³
	= 51,200 kg/day	= 12,690 kg/day
Required Volume	V = 64,000 / 24 * 6.0	V = 141,000 / 24 * 2.0
	= 16,000 m ³ /train = 1,600 m ³ /tank	= 11,750 m ³ /train = 1,175 m ³ /tank
Dimension of	10.5 m ^W * 28.0 m ^L * 5.5m ^H *	10.5 m ^W * 28.0 m ^L * 5.5m ^H *
Tank	10 tank / train * 8 trains	10 tank / train * 1 train
	(Hunch of bottom and top side) 500 ^W * 500 ^H * 4 place	Same Left
Volume	V = 10.5 * 28.0 * 5.5 * 1 - (0.5 ² * 1/2 *2 * 28) = 1,610.0 m ³ /tank	Same Left
HTR	6.0 hr (Standard)	1.5 ~ 2.5 hr (Standard)
	1,610.0/6,400 * 24 = 6.04 hr (OK)	1,610.0/14,100 * 24 = 2.74 hr (OK)
BOD-SS Loading	0.2-0.4kg-BOD/kg-SS-day (Standard)	1.5-3.0kg-BOD/kg-SS-day (Standard),
	3	4.0 kg-BOD/kg-SS-day below (Result
		of Pilot Plant Experiment Work)
	61,400/(1,610.0*80*1,500 ~ 2,000/103)	19,740/(16,100.0*80*400 ~ 800/10³)
	= 0.318 ~ 0.239 kg-BOD/kg-SS-day	= 3.07 ~ 1.53 kg-BOD/kg-SS-day
	(OK)	(OK)
BOD Volume	0.600 kg/m3-day (Standard)	0.60 ~ 2.40 kg/m³-day (Standard).
Loading	61,440/(1,610.0 * 80)	19,740/(16,100.0 * 80)
10000 1000 10 0 00	= 0.477 kg/m ³ -day (OK)	= 1.226 kg/m³-day (OK)

Volume of Return Sludge	Return Sludge Ratio = 50% (Ordinary) ~ 100 % (Max) Rr = (MLSS-Ci) / (Cr-MLSS) * 10 ² Ci: Density of SS Influent (= 105mg/l) Cr: Density of Return Sludge (= 6,000mg/l) MLSS = 1,500~2,000mg/l → 1,700mg/l Rr1 (In case MLSS = 1,700mg/l)	Phase I Return Sludge Ratio = 5 ~ 10% MLSS = 400 ~ 800 mg/l
Sludge	Rr = (MLSS-Ci) / (Cr-MLSS) * 10 ² Ci: Density of SS Influent (= 105mg/l) Cr: Density of Return Sludge (= 6,000mg/l) MLSS = 1,500~2,000mg/l → 1,700mg/l Rr1 (In case MLSS = 1,700mg/l)	MLSS = 400 ~ 800 mg/l
	Ci: Density of SS Influent (= 105mg/l) Cr: Density of Return Sludge (= 6,000mg/l) MLSS = 1,500~2,000mg/l → 1,700mg/l Rr1 (In case MLSS = 1,700mg/l)	MLSS = 400 ~ 800 mg/l
	Cr: Density of Return Sludge (= 6,000mg/l) MLSS = 1,500~2,000mg/l → 1,700mg/l Rrt (In case MLSS = 1,700mg/l)	MLSS = 400 ~ 800 mg/l
	(= 6,000mg/l) MLSS = 1,500~2,000mg/l → 1,700mg/l RrI (In case MLSS = 1,700mg/l)	MLSS = 400 ~ 800 mg/l
	MLSS = 1,500~2,000mg/l → 1,700mg/l Rrt (In case MLSS = 1,700mg/l)	MLSS = 400 ~ 800 mg/l
	Rrt (In case MLSS = 1,700mg/l)	$MLSS = 400 \sim 800 \text{ mg/l}$
	- (1 700 105) (c 000 1 700) e+0?	
	= (1,700-105)/(6,000-1,700)*10 ² = 37,09%	
	Rr2 (In case MLSS = 2,000mg/l, Normal Operation)	
	= (2,000-1050)/(6,000-2,000) * 10 ²	
	= 47.38% (□ 50%)	
	$Qr = Qi * Rr / 10^2$	Same Left
	Qr: Volume of Return Sludge	Same Cert
	Qi: Influent Sewer Flow Rate	
	Rr: Return Sludge Ratio	
	Qr = 512,000 * 50 ~ 100/10 ²	Qr = 141.000 * 5 ~ 10/10 ²
	$= 256,00 \sim 512,000 \text{ m}^3/\text{day}$	= 7,050 ~ 14,100 m ³ /day
	= 177,78 ~ 355.56 m ³ /min	= 4.90 ~ 9.79 m ³ /min
	□ No Stand-by Pump	□ Same Left
F/M Ratio	0.40kg-BOD/kg-MLVSS (Standard)	-
	F/M = (61,440+512,000*0.5~1.0*20*	F/M = (19,740+141,000*0.05~0.10
	10-3)/(1,610.0*80*1,500~2,000	*50*10 ⁻³)/(16,100*400~800
	* 0.8 * 10 ⁻³) = 0.431 ~ 0.348	* 0.8 * 10 ⁻³) = 3.900 ~ 1.984
	kg - BOD/kg -MLVSS (OK)	kg-BOD/kg-MLVSS
Chules to a co	□ MLVSS/MLSS = 0.80	□ Same Left
Sludge Age ①	Sa 3.0days (Standard)	0.3 ~ 0.5day (Standard)
	Sa = 1,610.0*80*1,500-2,000*10 ⁻³ /	Sa = 16,100 * 400~800*10 ⁻³ /19,247
	53,760 = 3.6 ~ 4.8 days (OK)	= 0.3 ~ 0.7 day (OK)
	1	

Item	Final Phase	Phase I	
0	SRT4.0days	-	
	SRT= (Va * MLSS + Vs * MLSS)/	Same Left	
	(Qw * Cr + Q * SSo)		
	Vs: Volume of Final Sedimentation	Vs = 17,995 m ³	
	$Tank = 71,979 \text{ m}^3$		
	Qw: Volume of Excess Sludge	$Qw = 1.796.3 \text{ m}^3/\text{day}$	
	$= 6,397.5 \text{ m}^3/\text{day}$		
	SSo: Density of SS Wastewater	SSo = 60 mg/l	
	= 30mg/l		
	SRT=(1,610*80*1,500~2,000+71,979*	SRT = (16,100*400~800+17,995*	
	1,500~2,000)/(6,397.5*6,000+512,000*	400~800)/(1,796.3*2,000+141,000*	
	30) = 5.6 ~ 7.5 days (OK)	60) = 1.1 ~ 2.3 days (OK)	
(3)	ASRT (Part of Aerobic SRT)	Same Left	
	According to the Operating Condition.	110000000000000000000000000000000000000	
Operation Process	O + O + O + O (Regular Operation)		
	A + O + O + O (Controlling		
	Filamentous Bulking and Other		
	Operation)		
	A+O+A+O (")		
	□ O = Aerobic Part		
	□ A = Anaerobic Part		
Water Volume	2,500 ~ 7,500 m3/day-tank (Standard)	Same Left	
per 1 tank	V = 512,000/80 = 6,400 m ³ /day-tank		
	(OK)		
Tank Division	4 Division (1:1.5:1.5:2.25)	Same Left	
Opening of Baffle	Up-size (Both side * 2 places)	Same Left	
Wall Size	= 0.5mW * 0.3mH *2 places		
	Down-size (central Bottom * 1 place)	Same Left	
	= 1.0m ^W * 1.0m ^H * 1 place	//	
Tank Width	Water Depth * 1 ~ 2 times (Standard)	Same Left	
	T.W. = 10.5/5.5 = 1.91 times (OK)		
Bypass waterway	Establish	Same Left	
Step Waterway	Establish	Same Left	

5.6. Final Sedimentation Tank

Item	Final Phase	Phase I	
QmaxD	512,000 m ³ /day	141,000 m ³ /day	
	= 64,000 m ³ /day-train	= 141,000 m ³ /day-train	
	= 3,200 m ³ /day-waterway	= 7,050 m ³ /day-waterway	
Treatment System	Conventional Activated Sludge Process	Modified Aeration Process	
Number of Train	10tank 20waterway/train * 8trains	10tank 20waterway/train * 1train	
	= 80 tank 160 waterway	= 10 tank 20 waterway	
Required Surface	$A = 64,000/25 = 2,560 \text{ m}^2/\text{train}$	A = 141,000/58 = 2,431 m ² /train	
Area	= 2,560/20 = 128 m ² /waterway	= 2,431/20 = 122 m ² /waterway	
Dimension of	5.0mW * 26.0mL * 3.5mH * 10 tank	5.0m ^W * 26.0m ^L * 3.5m ^H * 10 tank	
Tank	20waterway/train*8trains	20waterway/train*Itrain	
	(Hunch of Bottom)	Same Left	
	300mm ^W * 600mm ^H		
	$0.3 * 0.6 * 1/2 = 0.09 \text{ m}^3/\text{m}$		
Required Weir	L = 64,000/120 = 534.0 m/train	L = 141,000/120 = 1,175 m/train	
Length	= 534/20 = 26.7 → 27.0 m/waterway	= 1,175/20 = 58.8 m/waterway	
5.	□ 13.5m * Both side * 2place/waterway	Same left	
Surface Area	A = 5.0 * 26.0 * 1 = 130.0 m ² /waterway	Same Left	
	(OK)		
Volume	V = 130.0 * 3.5 - [0.09*(26.0*2 +5.0)]	Same left	
	= 449.87 m ³ /waterway	Same lett	
Surface Loading	25 m³/m²-day (Standard)	58 m ³ /m ² -day (Result of Pilot Plant	
	, (Experiment Work)	
	3,200/130.0 = 24.6 m ³ /m ² -day (OK)	$7,050/130.0 = 54.2 \text{ m}^3/\text{m}^2\text{-day (OK)}$	
Retention Time	3.0 hr (Standard)	- 34.2 iii Aii -day (OK)	
	449.87/3,200 *24 = 3.37 hr (OK)	449.87/7,050 * 24 = 1.53 hr	
Overflow Weir	120 m³/m-day (Standard)	- 1.55 m	
Loading	3,200/(13.5*2) = 118.5 m ³ /m-day (OK)	7,050/(13.5*2) = 261.1 m ³ /m-day	
Length and Width	3:1 ~ 5:1 (Standard)	Same Left	
Ratio	26.0 : 5.0 = 5.2 : 1 🗆 5 : 1 (OK)	Same Left	

Item	Final Phase	Phase I		
Average Velocity	0.200m/min (Standard) V(ave) = 2.22/(5.0*3.5 - 0.09*2) = 0.128 m/min (OK)	- V(ave) = 4.90/(5.0*3.5 - 0.09*2) = 0.283 m/min (OK)		
Volume of Excess Sludge	Density of Sludge = 0.6% 512,000 * 210 * (1-0.50) * 0.714 * 10 ⁻⁶ = 38.385 t/day 38.385/0.6*10 ² = 6,397.5 m ³ /day	Same Left 141,000 * 210*(1-0.35)*0.560*10* = 10.778 t/day 10.778/0.6*10 ² = 1,796.3 m ³ /day		
Volume of Sludge Hopper	QmaxD * 30 min V = 3,200/(24*60)*30 = 66.7 m³/waterway = 133.4 m³/tank Upper Tank Volume = 10.5 * 3.0 * 3.5 = 110.3 m³	Same Left		
	Necessary Hopper Volume = $133.4 - 110.3 = 23.1 \text{ m}^3 \text{ above}$ □ $(10.5 * 3.0 + 0.8^2) / 2 * \text{H} \ge 23.1 \text{ m}^3 \text{(V)}$ □ H = 1.5 m above - ① Excess Sludge Volume = 6,397.5 m ³ /day-tank □ $(10.5 * 3.0 + 0.8^2) / 2 * \text{H} \ge 80 * 1/2$ [12 hour Pull Out Sludge] □ H = 2.5 m above - ②	Same Left		
Sludge	3.0m 13.5m 10.8m 1	Same Left		
Siudge		gh + Triangular Notch		
	□ Hopper = 2waterway 1Place	Same Left		
	ITank 2waterway	Same Left		
Dama = 21/- 1	Sludge Hopper Depth = 2.5m above	Same Left		
Bypass Waterway	Establish	Same Left		

5.7. Disinfection Tank

Item	Final Phase	Phase I	
QmaxD	512,000 m³/day	141,000 m³/day	
	= 355.56 m ³ /min	= 97.92 m ³ /min	
	= 5.926 m ³ /sec	= 1.632 m ³ /sec	
Treatment System	Conventional Activated Sludge Process	Modified Aeration Process	
Required Volume	$V = 512,000/(24*60)*15 = 5,334 \text{ m}^3$	1/2 System will be constructed on	
		the Phase I	
Dimension of	5.0m ^W * 54m ^L * 5.0m ^H * 3bend	5.0mW * 27.0mL * 5.0mH * 3bend	
Tank	4waterway 1tank	4waterway 1tank	
	(Hunch of bottom)	Same Left	
	300mm ^W * 300mm ^H		
	$0.3*0.3*1/2 = 0.045 \text{ m}^3/\text{m}$		
Section Area	A = 5.0*5.0 - (0.3*0.3*1/2*2)	Same Left	
	= 24.910 m ² /waterway		
Volume	V = 24.910*54.0*4	V = 24.910*27.0*4	
	$= 5,380.56 \text{ m}^3 > 5,334 \text{ m}^3 \text{ (OK)}$	$= 2,690.28 \text{ m}^3 > 2,667 \text{ m}^3 \text{ (OK)}$	
Average Velocity	V(ave) = 5.926/24.910 = 0.238 m/sec	V(ave) = 1.632/24.910 = 0.066m/s	
	(OK)	(OK)	
Contact Time	T = 5,380.56/355.56 = 15.1 min	T = 2,690.28/97.92 = 27.5 min	
	(OK)	(OK)	
	□ Contact Time of Effluent Pipe is not	□ Same Left	
	considered	V. 40 Sec. C C 45 Sec. 40	
Bypass Waterway	Establish	Same Left	

5.8. Gravity Thickener (For Raw Sludge)

Item	Final Phase	Phase I	
Volume of Raw	Density = 2.0% (1.5%)	Same Left	
Sludge	53.760 t/day (D.S)	10.364 t/day (D.S)	
	2,688 m³/day (3,584 m³/day)	518.200 m ³ /day (690.933 m ³ /day)	
Required Surface Area	$\Lambda = 53.760*10^3/90 = 598 \text{ m}^2$	A = 10.364*10 ³ /90 = 115.2 m ²	
Dimension of Tank	14.0m * 3.5m ^H * 4tanks	14.0m * 3.5m ^H * 1tank	
Surface Area	$A = \pi * 7.0^2 * 4 = 615.8 \text{ m}^2 \text{ (OK)}$	$A = \pi * 7.0^2 * 1 = 153.9 \text{ m}^2 \text{ (OK)}$	
Volume	$V = 615.8 * 3.5 = 2,155.3 \text{ m}^3$	V = 153.9 * 3.5 = 538.65 m ³	
Solid Surface Loading	53.760 * 10 ³ /615.8 = 87.3 kg/m ² -day (OK)	10.364*10 ³ /153.9 = 67.3 kg/m ² -day (OK)	
Retention Time	T = 2,155.3/2,688*24 = 19.2 hr (OK)	T=538.65/518.200*24 =24.9 hr (OK)	
	(In case Density of Raw Sludge = 1.5%); CHECK	(Same Left)	
	T' = 2,155.3/3,584*24=14.4 hr (OK)	T'=538.65/690.933*24=18.7 hr (OK)	
Volume of	Density of Sludge = 3.0%	Same Left	
Thickened Sludge	53.760/3.0*10 ² = 1,792.0 m ³ /day	$10.364/3.0*10^2 = 345.5 \text{ m}^3/\text{day}$	
(Note)	① In case of Effective Depth = 4.0m, Retention Time will be more than 22.0 hr. Consider H= 3.5m to keep thickened and Sedimentation zones.	① Same Left	
	② In case of sludge is small at the operation start Time, pipes are arranged to use a gravity thickener for the Combined Sludge. (Bypass Pipe Establish).	② Same Left	

5.9. Centrifugal Thickener (For Excess Sludge)

Item	Final Phase	Phase I
Volume of Excess Sludge	Density of Sludge = 0.6% 38.385 t/day (D.S) 6,397.5 m³/day	Same Left 10.778 t/day (D.S) 1,796.3 m ³ /day
Volume of Thickened Sludge Centrifugal Thickener Capacity	Density of Sludge = 4.0% 38.385/4.0*10 ² = 959.6 m ³ /day 70m ³ /hour * 6 unit	Same Left 10.778/4.0*10 ² = 269.5 m ³ /day 70m ³ /hour * 2 unit

5.10. Sludge Storage Tank

Item	Final Phase	Phase I	
Volume of Inlet	① Gravity Thickened Sludge:	① Same Left:	
Sludge	Density of Sludge = 3.0%	Same Left	
	53.760 t/day (D.S)	10.364 t/day (D.S)	
	1,792.0 m³/day	345.5 m³/day	
	② Centrifugal Thickened Sludge:	② Same Left:	
	Density of Sludge = 4.0%	Same Left	
	38.385 t/day (D.S)	10.778 t/day (D.S)	
	959.6 m³/day	269.5 m ³ /day	
	③ Total:	③ Same Left:	
	Density of Sludge (Ave) = 3.35%	Density of Sludge (Ave) = 3.44%	
	92.145 t/day (D.S)	21.142 t/day (D.S)	
	2,751.6 m³/day	615.0 m ³ /day	
Required Volume	Retention Time = 12 hr above	Same Left	
	Operation Time of Dewatering Machine = 24 hr/day.	□ Same Left	
	$V = 2,751.6*12/24 = 1,376m^3$	$V = 615.0 \cdot 12/24 = 308 \text{m}^3$	
Dimension of	Will be change with Dewatering and	Same Left	
Tank	Centrifugal Thickener Building.	2.000	
	V 1,376 m ³	V 308 m ³	
Retention Time	T = 1,376/2,751.6 * 24 = 12.0 hr above	T = 308/615.0 * 24 = 12.0 hr above	

5.11. Sludge Dewatering (Centrifugal Dewatering)

Item	Final Phase	Phase I
Volume of Inlet Sludge	Density of Sludge = 3.35% 92.145 t/day (D.S) 2,751.6 m ³ /day	Density of Sludge = 3.44% 21.142 t/day (D.S) 615.0 m ³ /day
Operation Time	24 hr/day Continued Operation U Stand by Correspondence.	Same Left
Dewatering Cake Volume	Density of Sludge = 20.0% 92.145/20.0*10 ² = 461 m ³ /day	Same Left 21.142/20.0*10 ² = 106 m ³ /day
Centrifugal Dwatering Capacity	30m³/hour * 6 unit	30m³/hour * 2 unit

5.12. Composting Facility

Item	Final Phase	Phase I
Volume of Inlet Sludge	Dewatering Cake:	Dewatering Cake:
	Density of Sludge = 20.0%	Density of Sludge = 20.0%
	92.145 t/day 461 m³/day	21.142 t/day (D.S) 106 m ³ /day

7.6

Hydraulic Calculation

1. BASIC DESIGN CRITERIA.

1.1 Sewerage System

Combined Sewer System. (Over QmaxH wastewater volume won't influence into the WWTP, because it will discharged at the Storm Overflow Chamber. Refer to Sewer Pipe Design).

1.2 Formula

Manning's Formula

n = 0.013 (HP, DCIP, SP), 0.010 (VP, VU, FRPM)

1.3 Design Wastewater Quantity (Unit: m³/day)

Items	Final Phase	Phase I	Phase II	Remarks
QmaxD	512,000	141,000	469,000	QaveD = QmaxD
QmaxH	699,000	192,000	640,000	QmaxH = QmaxRH

☐ Return Sludge Quantity = Daily Maximum Wastewater Quantity * 100% (Max)

(Daily Fluctuation Rate)

QaveD = QmaxD

QmaxH = QmaxRH

= 1.4 * QmaxD (Domestic wastewater) + groundwater

1.4 Specification of Inlet Pipe

1.5 Specification of Effluent Pipe

⊙ 2,500 mm * 1.2‰ (HP), L □ 100m

1.6 Outline of WWTP Site

1) Location:

Binh Hung / Binh Chanh District

Administrative Situation:

Green Area (Future)

Design Ground Elevation GL = + 2.200m (Present condition GL = + 0.600m)

1.7 Condition of Outlet

(1) Outlet:

Tac Ben Ro Canal

(2) Water Level of Outlet (Tidal River): HWL = + 1.650m

LWL = -2.690 m

Nha Be Point (100 Year Probability)

1.8 Water Velocity, Water Depth, Water Level

(Bottom Level of Inlet Pipe) Phase I = - 3.314 m, Phase II = - 3.890 m

 \Box L.P.S. Inflow Bottom Level (BL) = -3.890 - 0.300 + α = -4.200 m

Item		QmaxD QmaxH	QmaxH	Remarks
Discharge	m ³ /s	1.632	2.222	QaveD = QmaxD
		4.294	5.868	
Velocity	m/s	0.848	0.909	QmaxH= QmaxRH
		0.994	1.068	
Water Depth	m	0.740	0.940	
		1.080	1.373	
Water Level	m	-3.460	-3.260	
		-3.120	-2.827	

Upper Row = Phase I

Lower Row = Phase II

1.9 Outline of Wastewater Treatment Plant (Final Phase)

(1). Primary Sedimentation Tank

5.0m^(W) * 13.0m^(L) * 3.0m^(H) * 10 tanks 20 waterway/train*8 trains,

Overflow Weir Length = 13.0m/waterway, Including Bypass Waterway

(2). Aeration Tank

10.5m(W) * 28.0m(L) * 5.5m(H) * 10 tanks / train * 8 trains Including Bypass Waterway

(3). Final Sedimentation Tank

5.0m^(W) * 26.0m^(L) * 3.5m^(H) * 10 tanks 20 waterway/train*8 trains,

Overflow Weir Length = 27.0m/waterway, Including Bypass Waterway

(4). Disinfection Tank

5.0m^(W) * 54.0m^(L) * 5.0m^(E) * 3 bends 4 waterway * 1 tank * 1 train,
.
Including Bypass Waterway

 \Box 5.0m^(W) * 27.0m^(L) * 5.0m^(H) * 3 bends 4 waterway * 1 tank * 2 trains, (Future: In Case of Two Outflow System), Including Bypass Waterway

1.10 Design Condition and Future Consideration

(1) Treatment process and capacity is designed in each phase as follows:

	Process	Train	QmaxD (m³/day)	QmaxH (m3/day)
Phase I	Modified Aeration	1/8	141,000	192,000
Phase II	Modified Aeration	4/8	469,000	640,000
Final Phase	Conventional Activated Sludge	8/8	512,000	699,000

(2) Design Capacity

Facilities to be constructed in Phase I and Phase II are mainly designed at a capacity of QmaxD or QmaxH of Phase I and Phase II, respectively. However, some of facilities in Phase I and Phase II are designed at a capacity of Final Phase because of more economical and only 8% increase in design Flow of wastewater from Phase II to Final Phase. The following items are considered to be designed at a capacity of Final Phase.

- 1) Phase I Facilities to be constructed at a capacity of Final Phase
 - Effluent Pipe of WWTP (Φ2,500 * 1.2% * 1 unit)
 - Connection Pipe between Outflow Pit of FST and Secondary Treated Effluent Tank (Φ2,500 * 1 unit)
 - Inlet Pipe (pressurized) (1,800mm * 2 unit)
- 2) Phase II Facilities to be constructed at a capacity of Final Phase
 - Disinfection Tank

(3) Review of Outlet Location of WWTP in Phase II

It is very important to review another outlet location in Phase II. If effluent can be flowed to Xom Cui Canal in addition to Tac Ben Ro Canal, wastewater processing facilities can be lowered one meter. It can reduce the construction cost. The decision, whether another outlet of WWTP can be installed or not, is determined by the result of EIA and other relating considerations. Therefore, the review will be executed very carefully in Phase II. It will be important review because hydraulic characteristic of WWTP is determined.

2. FORMULA

2.1 Effluent Pipe / Connection Pipe

(1) Circle Pipe

h= (fe +
$$\partial$$
 * L/D + fo) * V²/ (2 x g)

- h: Head Loss (m)
- fe: Inlet Loss (= 0.5)
- fo: Outlet Loss (= 1.0)
- g: Gravitation Acceleration (= 9.8m/s)
- V: Velocity (= Q/A, m/s)
- ∂: Friction Head Loss Coefficient (8 * g * n²/R¹/3, R = D/4)
- L: Length (m)
- D: Diameter (m)

(2) General Section

$$hf = (n^2 * V^2 * L) / R^{4/3}$$

- hf: Friction Head Loss (m)
- n: Roughness Coefficient (= 0.013 ~ 0.010)
- R: Hydraulic Radius (m)
 - R = D/4 (Circular Pipe Flowing full)
 - R = Area / Wetted Perimeter = B * H/(B+2H) (General Section)

B: Width (m), H: Water Depth (m)

$$hf = (f' * L \times V^2) / (2 * g * R)$$

f: Friction Head Loss Coefficient (General Section) = $2*g*n^2/R^{1/3}$

2.2 Disinfection Tank.

(1). Suppressed Rectangular Weir

$$Q = C * B * h^{3/2}$$

 $h = [Q/(1.84 * B)]^{2/3}$

- Q: Overflow Rate (m3/s)
- B: Weir Width (m)
- h: Overflow Water Depth (m)
- C: Discharge Coefficient (=1.84)

(2) Friction Head Loss

I: Hydraulic Slope

$$I = (Q/K)^2 = [(n * V) / R^{2/3}]^2$$

$$R = B * H / (B + 2 * H)$$

- B: Width (m)
- H: Water Depth (m)

(3) Bend Loss: 180° Bend

$$hf = f * V^2/2g * n = 1.4 * V^2 / 2g * n$$

- f: Bend Loss Coefficient (=1.4)
- n: Number of Bends

(4) Inflow Gate (Submerged Orifice)

$$Q = C * B * H * \sqrt{(2 * g * h)}$$

- C: Discharged Coefficient (= 0.6)
- B: Gate Width (m)
- H: Gate Hight (m)
- h: Head Loss (m)

$$h = [Q/(0.6 * B * H)]^2 * 1/(2 * g)$$

(5) Inflow Gate (Gate Discharge Formula)

$$h = [Q/(0.73 * B * H)]^2 * 1/(2 * g)$$

2.3 Sedimentation Tank

(1) Outflow Waterway (Inlet Waterway): Friction Head Loss

$$h_L = I \circ L$$

- h_L: Friction Head Loss (m)
- I: Slope
- L: Length (m)

$$I = (n * V / R^{2/3})^2$$

(2) Outflow Trough:

$$h_c = [r * Q^2 / (g * B^2)]^{1/3}$$

h_c: Critical Depth (m)

r: Non Uniform Velocity Distribution Coefficient (= 1.10)

Q: Outlet Discharge Rate (m3/s)

B: Trough Width (m)

$$h_o = \sqrt{3*} h_c$$
 (Free Overflow)

ho: Water Depth at Upstream of Contracted Trough

☐ Bottom Slope of Trough i = 0

$$h_0 = \sqrt{(2 * h_c^3 / h_c + h_c^2)}$$
 (Submerged Overflow)

(3) Triangular Notch (Triangle Weir)

$$Q = C * h^{5/2}$$

Q: Discharge (m³/s)

C: Discharge Coefficient (= 1.42)

h: Overflow Depth (m)

$$h = (q / 1.42)^{2/5}$$

q: Overflow Rate Per Notch (m3/s)

(4) Inflow Gate (Case of Entrance Loss / Outlet Loss)

$$h = 1.5 * V^2 / (2 * g)$$

☐ In other cases, refer to Gate Discharge Formula

2.4 Aeration Tank / Distribution Tank

(1) Suppressed Rectangular Weir

$$h = [Q / (1.84 * B)]^{2/3}$$

(2) Movable Weir

$$Q = C * B * H^{3/2}$$

Q: Overflow Rate for 1 unit (m3/s)

C: Discharge Coefficient (= 1.84)

B: Weir Width (m)

H: Overflow Water Depth (m)

$$h = [Q/(1.84 * B)]^{2/3}$$

2.5 Measurement Range of Discharge at Outflow Weir (Reference)

Refer to Hydraulic Formula Handbook (Japan)

Suppressed Rectangular Weir of Disinfection Tank

B = 5.0m (Maximum Width at Hydraulic Formula Handbook (Japan))

Range of Water Head = 0.030 ~ 0.800 m

Measurement Range of Discharge = 4,320 ~ 611,712 m³/day

 $=50 \sim 7,080 \text{ l/sec}$

* Here in B = 5.0 m

List of Formula

Name of formula	Formulas	Application
(1) Manning	V = (1/n) * I ^{1/2} R ^{2/3} V: Average Velocity (m/s) n: Roughness Coefficient I: Hydraulic Gradient R: Hydraulic Radius (m)	Iron Concrete Pipe, Waterway
(2) Darcy-Weisbach	hf = f * (L /D) * (V²/2g) f: Coefficient of Friction Head Loss L: Straight Length Pipe (m) D: Diameter (m) f = 0.02 + 1/(2.000D)	Cast iron or Pressure Pipe with mortar lining or Steel Pipes
(3) Francis	$L = Q/(1.84 * h^{3/2}) : Full Overflow$ $L = Q/[1.84 * (h_1 + 1.4h_2) * \sqrt{h_1}: Not Full Overflow$ $L: Length Weir (m)$ $Q: Over Quantity (m^3/s)$ $h, h_1, h_2: Overflow Depth (m)$	Suppressed Rectangle Weir
(4) Thomson	Q = 1.42h ^{5/2} h: Overflow Depth (m)	Triangle Weir Sedimentation Tank Weir Plate
(5) Oki	Q = 1.84 b h ^{3/2} B b: Length of Weir (m) h: Water Depth (m)	Rectangle Weir
(6) Bill Mount	$\begin{split} Q &= Q_1 \{1 - (h_2/h_1)^n\}^{0.385} \\ Q_1 &: \text{Over Quantity with Water Depth when Gravity Free} \\ &\text{Flow } (m^3/s) \\ h_1 &: \text{Weir Angle Upstream Water Depth } (m) \\ h_2 &: \text{Weir Angle Downstream Water Level } (m) \\ n &: \text{(Suppressed Weir 1.50, Rectangular Weir 1.45, Rectangular Weir 2.50)} \end{split}$	Submerged Sharp-crested Weir

(6) Bill Mount	$\begin{array}{c c} & & & & \\ \hline & h_1 & & & \\ \hline & h_2 & & \\ \hline & & & \\ \hline & & & \\ \hline \end{array}$	
(7) Tomas- Camp	h₀ = √3 hcl: Gravity Downstream Flow h₀ = √(2 hcl³/ hl) + hl²: Non-Gravity of Downstream Flow h₀: Shape Upstream Side Water Depth (m) hcl: Maximum Water Depth (m) hl: Shape Downstream Trough Water Level (m) hcl= ³√(αQ²/gB¹) α: Kinetic Correction Coefficient by Flow Velocity (distribution connection = 1) Q: Downstream Total Flow (m³/s) B: Trough Width (m) □ Bottom Slope Trough Water Level	Overflow Trough at Sedimentation
(8) Kirusmel	h = $\beta \sin\theta (t/b)^{4/3} V^2/2g$ h: Head Loss of Screen Bar (m) β : Coefficient of Screen Section Bars θ : Angle of Screen (°) t: Slope of Screen (mm) b: Space between of Screen Bar (mm) b: Space between of Screen Bar (mm) V ₁ V ₂ Vertical section Side section β = 1.60 β = 1.77 β = 2.34 β = 1.73 (a) (b) (c) (d)	An amendment of 10 cm Head Loss is usually considered rubbish accumulated

[Loss of Shape]

 $h = f * V^2/2g$

f: Shape Loss Coefficient

		[f]
(1) Outlet Fl	ow	1.0
(2) Bend	(90°)	1.0
"	(180°)	$1.4 \sim 3.0$
(3) Turn	(45°)	0.13 (CIP Φ900)
"	(90°)	0.2 (CIP Φ900)
(4) Orifice		3.0
(5) Inlet Flor	W	0.5

Reference

Shape of	Flow	Size of Reference Eeir and Overflow Range								
Weir	Range Q(I/s)	Width Bxb(m)	Range of Overflow water h(m)	L ₁ (m)	L _x (m)	L ₂ (m)	L(m)	W(m)	P ₁ (m)	P₂(m)
Suppressed	6~67	0.6	0.030~0.150	≥ 1.35	0.30	≥ 1.05	0.15	0.30	0.50	0.60
	9~190	0.9	0.030~0.225	≥ 2.05	0.45	≥ 1.60	0.23	0.30	0.60	0.75
	12~400	1.2	0.030-0.300	≥ 2.70	0.60	≥ 2.10	0.30	0.30	0.70	0.90
	15~690	1,5	0.030~0.375	≥ 3.40	0.75	≥ 2.65	0.38	0.4	0.90	1.05
	20-1430	2.0	0.030~0.500	≥ 4.50	1.00	≥ 3.50	0.50	0.50	1.20	1.50
	30-3950	3.0	0.030~0.750	≥ 6.75	1.50	≥ 5.25	0.75	0.75	1.70	2.00
★(This time)	50~7080	5.0	0.030~0.800	≥ 9.0	1.60	≥ 7.40	0.80	1.00	2.00	2.50
Rectangle	4~92	0.9x0.36	0.030~0.270	≥ 1.71	0.54	≥ 1.44	_	0.20	0.50	0.60
	5~150	1.2x0.48	0.030~0.312	≥ 2.14	0.63	≥ 1.83	-	0.25	0.60	0.75
Triangle	2~25	0.60	0.070-0.200	≥ 1.00	0.40	≥ 0.80	-	0.12	0.35	0.50
	2-48	0.80	0.070~0.260	≥ 1.32	0.52	≥ 1.06	-	0.30	0.60	0.75

Quantity Formula

Suppressed Rectangle Weir

$$Q=C*B*h^{3/2}$$

$$C = 1.785 + (0.00295/h + 0.237 * h/W) * (1+\epsilon)$$

Here in:

Q: Overflow (m³/s), B: Width of Weir (m), h: Depth of Water (m), C: Discharge Coefficient (m¹²/s), W: Height from Bottom of Trough to the Top of the Weir (m).

Explanation:

This Formula is used = JIS B 8302. The Adapted Range is B □ 0.5m, W = 0.3 ~ 2.5m,

h = 0.03 ~ 0.8m (Use in the Range of h < W and h < B/4)

In this Range, 95% of Flow Quantity is certain.

Uncertain Quantity is ± 1.7 %.

3. CALCULATION OF HYDRAULIC PROFILE

3.1 Effluent Pipe Head Loss (Disinfection Tank Outflow Pit Water Level)

Item		Unit	QmaxD	QmaxH
Quantity		m³/d	512,000	699,000
		m³/s	5.926	8.090
Establis	shment Number	Number	1	1
Unit Flo	OW	m³/s	5.926 8.090	
Effluen	t Pipe Form	-	O2,500 mm (HP) * 1.2%	
Section	Area	m ²	A = 4.909	
Length		m	Abo	out 100
Velocity	у	m/s	1.207	1.648
Effluen	t Water Level	m	HWL = +1.65	0, LWL = - 2.690
	Inlet Loss	m	0.037	0.069
Head	Outlet Loss	m	0.074	0.139
Loss	Straight Pipe Loss	m	0.045	0.083
	Total	m	0.156	0.291
Water Level		m	+ 1.810	+ 1.950

NOTE:	$h = (fe + \partial * L/D + fo) * V^2/2g, \ \partial = 8gn^2/R^{1/3}, R = D/4, n = 0.013$
	(Section Area)
	$A = \pi * 2.5^2 * 1/4 = 4.909 \text{ m}^2$
	(Velocity) V = Q/A
	V(QmaxD) = 5.926/4.909 = 1.207 m/s
	V(QmaxH) = 8.090/4.909 = 1.648 m/s
	R=2.500/4 = 0.625, $\partial = 8 * 9.8 * 0.013^2/0.625^{1/3} = 0.015$
	(Inlet Loss)
	$h(QmaxD) = 0.5 * 1.207^2/2g = 0.037 m$
	$h(QmaxH) = 0.5 * 1.648^2/2g = 0.069 m$
	(Outlet Loss)
	$h(QmaxD) = 1.0 + 1.207^2/2g = 0.074 m$
	$h(QmaxH) = 1.0 * 1.648^2/2g = 0.139 m$
	(Straight Pipe Loss)
	$h(QmaxD) = 0.015 * 100/2.5 * 1.207^2/2g = 0.045 m$
	$h(QmaxH) = 0.015 * 100/2.5 * 1.648^2/2g = 0.083 m$
	(Water Level)
	$WL(QmaxD) = +1.650 + 0.156 + \alpha = +1.810 \text{ m}$
	$WL(QmaxH) = +1.650 + 0.291 + \alpha = +1.950 \text{ m}$

3.2 Disinfection Tank, Outflow Weir Head Loss (End Point Water Level of Disinfection Tank)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	1	1
Unit Flow	m³/s	5.926	8.090
Dimension of Overflow Weir	Suppressed	Rectangular Weir B	5.0m (Fixed Weir)
Downstream Water Level	m	+ 1.810	+ 1.950
Weir Level	m	+ 2	.000
Overflow Water Depth	m	0.746	0.918
Water Level	m	+ 2.750	+ 2.920

NOTE:	$h = [Q/(1.84 * B)]^{2/3}$
	(Overflow Water Depth) h(QmaxD) = [5.296/(1.84 * 5.0)] ^{2/3} = 0.746 m h(QmaxH) = [8.090/(1.84 * 5.0)] ^{2/3} = 0.918 m
	(Water Level) (Water Level) $(\text{WL}(\text{QmaxD}) = + 2.000 + 0.746 + \alpha = + 2.750 \text{ m})$
	WL(QmaxH) = $+2.000 + 0.740 + \alpha = +2.750 \text{ m}$ WL(QmaxH) = $+2.000 + 0.918 + \alpha = +2.920 \text{ m}$
	Comment:
	In case of H.W.L of discharged river, it is possible to discharge by gravity flow.
	Because the top level of discharged weir is set higher than the High water level in the discharged pit, therefore, hydraulically, it is separated from discharged river. Therefore, gate at discharged point or closing equipment is not hydraulically necessary.

3.3 Disinfection Tank Inside Head Loss (Inlet Point Water Level of Disinfection Tank)

Item		Unit	QmaxD	QmaxH
Quantity		m³/d	512,000	699,000
		m³/s	5.926	8.090
Establishme	ent Number	Number	1	1
Unit Flow		m³/s	5.926	8.090
Dimension	of Disinfection Tank	Disinfection Tank - 5.0m ^(W) * 54.0m ^(L) * 5m ^(H) * 3 waterway *1 tank		
Downstream	n Water Level	m	+ 2.750	+ 2.920
Velocity		m/s	0.237	0.313
	Straight Pipe Loss	m	0.001	0.002
Head Loss	Bend Loss	m	0.012	0.021
	Total	m	0.013	0.023
Water Level		m	+ 2.770	+ 2.950

NOTE:	$h_L = I * L, I = (Q/K)^2 = [(n * V)/R^{2/3}]^2,$ $R = B * H/(B + 2H), hf = 1.4 * V^2/2g * n$
	(Velocity) V = Q/A
	V(QmaxD) = 5.926/(5.0 * 5.00) = 0.237 m/s
	V(QmaxH) = 8.090/(5.0 * 5.17) = 0.313 m/s
	(Hydraulic Slope)
	$I(QmaxD) = [(0.013 * 0.237)/1.667^{2/3}]^2 = 4.803 * 10^{-6}$
	$I(QmaxH) = [(0.013 * 0.313)/1.685^{2/3}]^2 = 9.685 * 10^{-6}$
	(Hydraulic Radius)
	R(QmaxD) = 5.0*5.00/(5.0 + 2 * 5.00) = 1.667 m
	R(QmaxH) = 5.0*5.17/(5.0 + 2 * 5.17) = 1.685 m
	(Friction Head Loss)
	hL(QmaxD) = 4.803 * 10 ⁻⁶ * 54.0 * 4 = 0.001 m
	hl(QmaxH) = 9.685 * 10 ⁻⁶ * 54.0 * 4 = 0.002 m
	(Bend Loss)
	$hf(QmaxD) = 1.4 * 0.237^2/2g * 3 = 0.012 m$
	$hf(QmaxH) = 1.4 * 0.313^2/2g * 3 = 0.021 m$
	(Water Level)
	$WL(QmaxD) = +2.750 + 0.013 + \alpha = +2.770 \text{ m}$
	$WL(QmaxH) = +2.920 + 0.023 + \alpha = +2.950 \text{ m}$
	(Disinfection Tank Bottom Level) H = 5.0 m
	BL = + 2.770 - 5.000 = - 2.230 m

3.4 Disinfection Tank Inflow Gate Head Loss (Inlet Pit Water Level of Disinfection Tank)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	1	1
Unit Flow	m³/s	5.926	8.090
Downstream Water Level	m	+ 2.770	+ 2,950
Dimension of Inflow Gate	-	2,000mm ^(W) * 2,0	
Velocity	m/s	1.482	2.023
Gate Head Loss	m	0.168	0.313
Water Level	m	+ 2.940	+ 3,270

Bypass Waterway Line (Bypass Gate = 2,000mm * 1 Gate + Stop Log) Inlet gate (2,000mm ^(W) * 2,000mm ^(H) * 1 Gate) $h = 1.5 * V^2/2g$, or $h = [Q/(0.73 * B * H)]^2 * 1/2g$.
(Velocity) V = Q/A V(QmaxD) = 5.926/(2.0 * 2.0) = 1.482 m/s
V(QmaxH) = 8.090/(2.0 * 2.0) = 2.023 m/s
(Gate Head Loss)
$h(QmaxD) = 1.5 * 1.482^{2}/2g = 0.168 m$ $h(QmaxH) = 1.5 * 2.023^{2}/2g = 0.313 m$
(Water Level)
$WL(QmaxD) = +2.770 + 0.168 + \alpha = +2.940 \text{ m}$ $WL(QmaxH) = +2.950 + 0.313 + \alpha = +3.270 \text{ m}$

3.5 Disinfection Tank ~ Secondary Treatment Water Tank Connection Part Head Loss (Water Level of Secondary Treatment Water Tank)

Item	Unit	QmaxD	QmaxII
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	1	1
Unit Flow	m³/s	5.926	8.090
Downstream Water Level	m	+ 2.940	+ 3.270
Dimension of Connection	-	5.0	m ^O
Section Area	m ²	2:	5.0
Connection Method	-	Direct C	onnection
Velocity	m/s	0.237	0.324
Connection Part Head Loss	m	0.004	0.008
Water Level	m	+ 2.950	+ 3.280

NOTE:	$V = Q/A$, $h = 1.5 * V^2/2g$
	(Section Area)
	$A = 5.0 * 5.0 = 25.0 \text{ m}^2$
	(Velocity)
	V(QmaxD) = 5.926/25.0 = 0.237 m/s
	V(QmaxH) = 8.090/25.0 = 0.324 m/s
	(Connected Part Head Loss)
	$h(QmaxD) = 1.5 * 0.237^2/2g = 0.004 m$
	$h(QmaxH) = 1.5 * 0.324^2/2g = 0.008 m$
	(Water Level)
	$WL(QmaxD) = +2.940 + 0.004 + \alpha = +2.950 \text{ m}$
	$WL(QmaxH) = +3.270 + 0.008 + \alpha = +3.280 \text{ m}$

3.6 Secondery Treatment Water Tank ~ Final Sedimentation Tank, Outflow Pit Connection Pipe Head Loss (Final Sedimentation Tank Outflow Pit Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	1	1
Unit Flow	m³/s	5.926	8.090
Downstream Water Level	m	+ 2.950	+ 3.280
Dimension of Pipe Connection	mm	⊙2,500 (S	P) * 1 pipe
Section Area	m ²		009
Length	m	Abo	ut 65
Velocity	m/s	1.207	1.648
Connection Pipe Head Loss	m	0.140	0.262
Water Level	m	+3.090	+ 3.550

NOTE:	$h_c = (1.5 + \delta * L/D) * V^2/2g$, $R = D/4 = 2.5/4 = 0.625$ $\delta = 8 * g * n^2/R^{1/3}$, $n = 0.013$
	(Section Area) $A = \pi * 2.5^2 * 1/4 = 4.909 \text{ m}^2$
	(Velocity) V(QmaxD) = 5.926/4.909 = 1.207 m V(QmaxH) = 8.090/4.909 = 1.648 m
	(Connection Pipe Head Loss) $\delta = 8 * 9.8 * 0.013^2 / 0.625^{1/3} = 0.015$ h(QmaxD) = $(1.5 + 0.015 * 65/2.5) * 1.207^2 / 2g = 0.140$ m h(QmaxH) = $(1.5 + 0.015 * 65/2.5) * 1.648^2 / 2g = 0.262$ m
	(Water Level) WL(QmaxD) = + 2.950 + 0.140 + \alpha = + 3.090 m
	$WL(QmaxH) = +3.280 + 0.262 + \alpha = +3.550 \text{ m}$

3. 7 Final Sedimentation Tank, Outflow Waterway Head Loss (Final Sedimentation Tank, Outflow Waterway, Upstream Water Level)

Item	Unit		QmaxD	QmaxH
Quantity	m³/d		512,000	699,000
	m ³ /s		5.926	8.090
Process of Calculation	by open water	rway, therefor	e the combination	is high, if all the waterway is designed on system of pressure pipe and open is calculated by longest waterway for
			(8/8Q) To Sec	ondary Treatment Water Tank
	(Open waterwa B = 2.0m		1	A = 5/8Q
	Final S.T	3/8Q 1/8Q 2/8Q	Q 3/8Q 4/8	B Bend 90°
	AT	1	†	Pressure Pipe =2.0m
	Primary S.T Primary ST	1	+1	
	AT	1		
	Final S.T	1/8Q 2/8Q	2 3/8Q 4/80	D Bend 90°
	(Open waterwa B = 2.0m	y) H	i) F (1	
			stribution Tank (4 pass Waterway (0	Division * 2 trains) Open), B = 1.5 m
	(A) Division: (B) 90° Bend;	4/8 Q;	L 🛭 100 m (Ab Pit	out)
	(C) Division: (D) 90° Bend:	4/8 Q;	Pit	out), Pressure Pipe
	(E) Division: (F) Division:	4/8 Q; 3/8 Q:	L 🗆 120 m (Ab L 🗆 120 m (Ab	
	(G) Division:	2/8 Q;	L = 120 m (Ab	
	(H) Division:	1/8 Q;	L □ 120 m (Ab	

(1) Part (A) Critical Depth (Part (A) Downstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Flow Rate	-	5/8 Q	5/8 Q
Unit Flow	m³/s	3.704	5.056
Downstream Water Level	m	+3.090	+ 3.550
Dimension of Waterway	-	2.0 m ^w *	1 (open)
Critical Depth	m	0.727	0.895
Bottom Level	m	+ 2.	.700
Water Level	m -	+ 3.430	+3.600

NOTE:	h = $[1.10 * Q^2/(g * B^2)]1/3$ (Critical Depth) h(QmaxD) = $[1.10 * 3.704^2/(9.8 * 2.0^2)]^{1/3} = 0.727 \text{ m}$
	$h(QmaxH) = [1.10 * 5.056^2/(9.8 * 2.0^2)]^{1/3} = 0.895 m$
	(Water Level)
	$WL(QmaxD) = +2.700 + 0.727 + \alpha = +3.430 \text{ m}$
	$WL(QmaxH) = +2.700 + 0.895 + \alpha = +3.600 \text{ m}$

(2) Part (A) Friction Head Loss (Part (A) Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Flow Rate	Number	5/8 Q	5/8 Q
Unit Flow	m³/s	3.704	5.056
Downstream Water Level	m	+ 3,430	+3.600
Dimension of Waterway	-	2.0 m ^{w s}	1 (open)
Length	m		ut 100
Water Depth	m	0.730	0.900
Velocity	m/s	2.537	2.809
Bottom Level	m	+2	.700
Friction Head Loss	m	0.344	0.361
Water Level	m	+3.780	+ 3.970

NOTE:	$V = Q/A$; $I = [(n * V)/R^{2/3}]^2$; $h = I * L$
	R = B * H /(B + 2H); n = 0.013
	(Velocity)
	V(QmaxD) = 3.704/(2.0 * 0.730) = 2.537 m/sec
	V(QmaxH) = 5.056/(2.0 * 0.900) = 2.809 m/sec
	(Hydraulic Radius)
	R(QmaxD) = 2.0 * 0.730/(2 + 2 * 0.730) = 0.422 m
	R(QmaxH) = 2.0 * 0.900/(2 + 2 * 0.900) = 0.474 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013 * 2.537)/0.422^{2/3}]^2 = 3.436 * 10^{-3}$
	$I(QmaxH) = [0.013 * 2.809)/0.474^{2/3}]^2 = 3.608 * 10^{-3}$
	(Friction Head Loss)
	$h (QmaxD) = 3.436 * 10^3 * 100 = 0.344 m$
	$h (QmaxH) = 3.608 * 10^{-3} * 100 = 0.361 m$
	(Water Level)
	$WL(QmaxD) = +3.430 + 0.344 + \alpha = +3.780 \text{ m}$
	$WL(QmaxH) = +3.600 + 0.361 + \alpha = +3.970 \text{ m}$

(3) Part (B): 90° Bend Head Loss (Part (B) Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
72	m³/s	5.926	8.090
Flow Rate	-	4/8 Q	4/8 Q
Unit Flow	m³/s	2.963	4.045
Downstream Water Level	m	+3.780	+ 3.970
Head Loss	m	0	0
Water Level	m	+3.780	+ 3.970

NOTE:	90° Bend Head Loss at pit "part (B)" is neglected, because a bottom elevation of the pit is designed to the same level as invert of Pressure Pipe.
	However Head Loss Inlet and Outlet, and Friction Loss of Pressure Pipe is considered.

(4) Part (C): Pressure Conduit Pipe Head Loss (Part (C) Upstream Water Level)

Item		Unit	QmaxD	QmaxH
Quantity		m³/d	512,000	699,000
		m³/s	5.926	8.090
Flow R	tate	Number	4/8 Q	4/8 Q
Unit Flow		m³/s	2.963	4.045
Downstream Water Level		m	+3.780	+3.970
Dimension of Pressure Pipe		-	2.0 m(W)*2.0 m(H)* 1 (Pressure Conduit Pipe	
Section Area		m ²	4.000	
Length		m	About 185	
Velocit	У	m/s	0.741	1.011
Head	Inlet/Outlet Loss	m	0.042	0.078
Loss	Straight Pipe Loss	m	0.029	0.055
	Total	m	0.071	0.133
Water Level		m	+ 3.860	+4.110

 $h = 1.5 * V^2/2g$, $hf = (n^2 * V^2 * L)/R^{4/3}$ NOTE: R = B * H/(B+2H) ; V = Q/A ; n = 0.013(Section Area) $A = 2.0 * 2.0 = 4.000 \text{ m}^2$ (Velocity) V(QmaxD) = 2.963/4.000 = 0.741 m/sV(QmaxH) = 4.045/4.000 = 1.011 m/s(Hydraulic Radius) R = 2.0 * 2.0/(2.0+2*2.0) = 0.667 m(Inlet and Outlet Loss) $h(QmaxD) = 1.5 * 0.741^2/2g = 0.042 m$ $h(QmaxH) = 1.5 \cdot 1.011^2/2g = 0.078 \text{ m}$ (Straight Loss) $hf(QmaxD) = (0.013^2 * 0.741^2 * 185)/0.667^{4/3} = 0.029 \text{ m}$ $hf(QmaxH) = (0.013^2 * 1.011^2 * 185)/0.667^{4/3} = 0.055 m$ (Water Level) $WL(QmaxD) = +3.780 + 0.071 + \alpha = +3.860 \text{ m}$ $WL(QmaxH) = +3.970 + 0.133 + \alpha = +4.110 \text{ m}$

(5) Part (D): 90° Bend Head Loss (Part (D) Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
70 00	m³/s	5.926	8.090
Flow Rate	-	4/8 Q	4/8 Q
Unit Flow	m³/s	2.963	4.045
Downstream Water Level	m	+ 3.860	+4.110
Head Loss	m	0	0
Water Level	m	+3.860	+4.110

NOTE:	The Bend Loss will be neglected, because upstream of the bend is ope Waterway. However Head Loss of Inlet, Outlet and Loss of Pressure Pipe considered.

(6) Part (E) Critical Depth (Part (E) Downstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Flow Rate	-	4/8 Q	4/8 Q
Unit Flow	m³/s	2.963	4.045
Downstream Water Level	m	+3.860	+4.110
Dimension of Waterway		2.0 m ** *	1 (open)
Critical Depth	m	0.627	0.771
Bottom Level	m	+ 3	.400
Water Level	m	+4.030	+ 4.180

NOTE:
$$h = [1.10 * Q^{2}/(g * B^{2})]^{1/3}$$
(Critical Depth)
$$h(QmaxD) = [1.10 * 2.963^{2}/(9.8 * 2.0^{2})]^{1/3} = 0.627 \text{ m}$$

$$h(QmaxH) = [1.10 * 4.045^{2}/(9.8 * 2.0^{2})]^{1/3} = 0.771 \text{ m}$$
(Water Level)
$$WL(QmaxD) = +3.400 + 0.627 + \alpha = +4.030 \text{ m}$$

$$WL(QmaxH) = +3.400 + 0.771 + \alpha = +4.180 \text{ m}$$

(7) Part (E) Friction Head Loss (Part (E) Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Flow Rate	Number	4/8 Q	4/8 Q
Unit Flow	m³/s	2.963	4.045
Downstream Water Level	m	+ 4.030	+4.180
Dimension of Waterway	-	2.0 m ^w	* 1 (open)
Length	m	About 120	
Water Depth	m	0.630	0.780
Velocity	m/s	2.352	2.593
Bottom Level	m	+ 3	.400
Friction Head Loss	m	0.398	0.410
Water Level	m	+ 4.430	+ 4.590

NOTE:	$V = Q/A$; $I = [(n * V)/R^{2/3}]^2$; $h = I * L$
	R = B * H /(B + 2H); n = 0.013
	(Velocity)
	V(QmaxD) = 2.963/(2.0 * 0.630) = 2.352 m/s
	V(QmaxII) = 4.045/(2.0 * 0.780) = 2.593 m/s
	(Hydraulic Radius)
	R(QmaxD) = 2.0 * 0.630/(2 + 2 * 0.630) = 0.387 m
	R(QmaxH) = 2.0 * 0.780/(2 + 2 * 0.780) = 0.438 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013 * 2.352)/0.387^{2/3}]^2 = 3.315 * 10^{-3}$
	$I(QmaxH) = [0.013 * 2.539)/0.438^{2/3}]^2 = 3.416 * 10^{-3}$
	(Friction Head Loss)
	$h (QmaxD) = 3.315 * 10^{-3} * 120 = 0.398 m$
	h (QmaxH) = $3.416 * 10^{-3} * 120 = 0.410 \text{ m}$
	(Water Level)
	$WL(QmaxD) = +4.030 + 0.398 + \alpha = +4.430 \text{ m}$
	$WL(QmaxH) = +4.180 + 0.410 + \alpha = +4.590 \text{ m}$

(8) Part (F) Friction Head Loss (Part (F) Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8,090
Flow Rate	Number	3/8Q	3/8Q
Unit Flow	m³/s	2.222	3.034
Downstream Water Level	m	+4.430	+ 4.590
Dimension of Waterway	-	2.0 m * 1 (open)	
Length	m	About 120	
Water Depth	m	1.030	1.190
Velocity	m/s	1.079	1.275
Bottom Level	m	+ 3.400	
Friction Head Loss	m	0.058	0.074
Water Level	m	+4.490	+ 4.670

NOTE:	$V = Q/A; I = [(n*V)/R^{2/3}]^2; h = I*L$
	R = B*H/(B+2H); n = 0.013
	(Velocity)
	V(QmaxD) = 2.222/(2.0*1.030) = 1.079 m/s
	V(QmaxH) = 3.034/(2.0*1.190) = 1.275 m/s
	(Hydraulie Radius)
	R(QmaxD) = 2.0*1.030/(2+2*1.030) = 0.507 m
	R(QmaxH) = 2.0*1.190/(2+2*1.190) = 0.543 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013*1.079)/0.507^{2/3}]^2 = 4.867*10^4$
	$I(QmaxH) = [0.013*1.275)/0.543^{2/3}\hat{j}^2 = 6.202*10^{-4}$
	(Friction Head Loss)
	$h(QmaxD) = 4.867 * 10^{-4} * 120 = 0.058 m$
	$h(QmaxII) = 6.202 * 10^{-4} * 120 = 0.074 m$
	(Water Level)
	$WL(QmaxD) = +4.430 + 0.058 + \alpha = +4.490 \text{ m}$
	$WL(QmaxH) = +4.590 + 0.074 + \alpha = +4.670 \text{ m}$

(9) Part (G) Friction Head Loss (Part (G) Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8,090
Flow Rate	Number	2/8Q	2/8Q
Unit Flow	m³/s	1.482	2.023
Downstream Water Level	m	+ 4,490	+ 4,670
Dimension of Waterway	-	2.0 m * * (open)	
Length	m	About 120	
Water Depth	m	1.090	1.270
Velocity	m/s	0.680	0.796
Bottom Level	m	+ 3	.400
Friction Head Loss	m	0.022	0.028
Water Level	m	+4.520	+4.700

NOTE:	$V = Q/A; I = [(n*V)/R^{2/3}]^2; h = I*L$ R = B*H/(B+2H); n = 0.013
	(Velocity) V(QmaxD) = 1.482/(2.0*1.090) = 0.680 m/s V(QmaxH) = 2.023/(2.0*1.270) = 0.796 m/s
	(Hydraulic Radius)
	R(QmaxD) = 2.0*1.090/(2+2*1.090) = 0.522 m R(QmaxH) = 2.0*1.270/(2+2*1.270) = 0.559 m
	(Hydraulic Slope) $I(QmaxD) = [0.013*0.680)/0.522^{2/3}]^2 = 1.859*10^{-4}$ $I(QmaxH) = [0.013*0.796)/0.559^{2/3}]^2 = 2.325*10^{-4}$
	(Friction Head Loss) h(QmaxD) = 1.859 * 10 ⁻⁴ * 120 = 0.022 m h(QmaxD) = 2.325 * 10 ⁻⁴ * 120 = 0.028 m
	(Water Level)
	$WL(QmaxD) = +4,490 + 0.022 + \alpha = +4.520 \text{ m}$ $WL(QmaxH) = +4,670 + 0.028 + \alpha = +4.700 \text{ m}$

(10) Part (H) – Friction Head Loss (Part (H) - Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Flow Rate	Number	1/8 Q	1/8 Q
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+4.520	+4.700
Dimension of Waterway	-	2.0 m * 1 (open)	
Length	m	About 120	
Water Depth	m	1.120	1.300
Velocity	m/s	0.331	0.389
Bottom Level	m	+ 3	.400
Friction Head Loss	m	0.005	0.007
Water Level	m	+ 4.530	+ 4.710

NOTE:	$V = Q/A$; $I = [(n * V)/R^{20}]^2$; $h = I * L$ R = B * H/(B+2H); $n = 0.013$	
	(Velocity)	
	V(QmaxD) = 0.741/(2.0*1.120) = 0.331 m/s	
	V(QmaxH) = 1.011/(2.0*1.300) = 0.389 m/s	
	(Hydraulic Radius)	
	R(QmaxD) = 2.0 * 1.120/(2.0 + 2 * 1.120) = 0.528 m	
	R(QmaxH) = 2.0 * 1.300/(2.0 + 2 * 1.300) = 0.565 m	
	(Hydraulic Slope)	
	$I(QmaxD) = [0.013*0.331)/0.528^{2/3}]^2 = 4.339*10^{-5}$	
	$I(QmaxH) = [0.013*0.389)/0.565^{2/3}]^2 = 5.475*10^{-5}$	
	(Friction Head Loss)	
	$h(QmaxD) = 4.339 * 10^{-5} * 120 = 0.005 m$	
	$h(QmaxH) = 5.475 * 10^{-5} * 120 = 0.007 m$	
	(Water Level)	
	$WL(QmaxD) = +4.520 + 0.005 + \alpha = +4.530 \text{ m}$	
	$WL(QmaxH) = +4.700 + 0.007 + \alpha = +4.710 \text{ m}$	

3.8 Final Sedimentation Tank, Outflow Trough Head Loss (Trough Upstream Water Level): Free Overflow

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	20*8*2=320	320
Unit Flow	m³/s	0.019	0.025
Downstream Water Level	m	+ 4,530	+ 4.710
Trough Width	m	0.5	00
Trough Bottom Level	m	+ 4.800	
Trough Bottom Slope	%	i = 0	
Trough Head Loss	m	0.095	0.113
Water Level	m	+ 4,900	+ 4,920

$h_c = [1.10 * Q^2/(g * B^2)]^{1/3}, h_o = \sqrt{3} * h_c \text{ (Free Overflow)}$
(Critical Depth) h_c (QmaxD) = $[1.10 * 0.019^2/(9.8 * 0.5^2)]^{1/3} = 0.055 \text{ m}$ h_c (QmaxH) = $[1.10 * 0.025^2/(9.8 * 0.5^2)]^{1/3} = 0.065 \text{ m}$
(Trough Head Loss)
$h_0(QmaxD) = \sqrt{\frac{3}{3}} * 0.055 = 0.095 \text{ m}$ $h_0(QmaxH) = \sqrt{3} * 0.065 = 0.113 \text{ m}$
(Water Level)
$WL(QmaxD) = +4.800 + 0.095 + \alpha = +4.900 \text{ m}$
$WL(QmaxH) = +4.800 + 0.113 + \alpha = +4.920 \text{ m}$

3.9 Final Sedimentation Tank, Triangular Notch Head Loss (Final Sedimentation Tank, Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	20*8=160	160
Unit Flow	m³/s	0.037	0.051
Downstream Water Level	m	+4.900	+4.920
Triangular Notch Form	-	Wear Plate (Tr	iangular Weir)
Notch Degree	No/m	7 (Trough L = 27.0 m/waterway	
Number of Notch	Number/waterway	7 * 27.0 = 189	
Bottom Level	m	+ 5.000	
Overflow Depth	m	0.029	0.032
Water Level	m	+5.030	+5.040

NOTE:	$h = (q/1.42)^{2/5}$
	(Quantity per Notch)
	$V(QmaxD) = 0.037/189 = 1.958 * 10^4 \text{ m}^3/\text{s}$
	$V(QmaxH) = 0.051/189 = 2.698 * 10^{-4} \text{ m}^{3}/\text{s}$
	(Overflow Depth)
	$h(QmaxD) = [(1.958 * 10^4) / 1.42]^{2/5} = 0.029 \text{ m}$ $h(QmaxH) = [(2.698 * 10^4) / 1.42]^{2/5} = 0.032 \text{ m}$
	$h(QmaxH) = [(2.698 * 10^{-4})/1.42]^{2/5} = 0.032 m$
	(Water Level)
	$WL(QmaxD) = +5.000 + 0.029 + \alpha = +5.030 \text{ m}$
	$WL(QmaxH) = +5.000 + 0.032 + \alpha = +5.040 \text{ m}$
	(Final Sedimentation Tank Bottom Level) H = 3.5 m
	BL = +5.030 - 3.500 = +1.530 (most shallow point)

3.10 Final Sedimentation Tank, Inflow Gate Head Loss (Final Sedimentation Tank, Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	1,024,000	1,211,000
	m³/s	11.852	14.016
Establishment Number	Number	10+8-80	80
Unit Flow	m³/s	0.148	0.175
Downstream Water Level	m	+5.030	+5.040
Dimension of Gate	-	500mm ^(W) * 500mm ^(H) * 80 pcs	
Velocity	m/s	0.592	0.700
Gate Head Loss	m	0.027	0.038
Water Level	m	+ 5.060	+5.080

NOTE:	Return Sludge = QmaxD * 100% (Max) $h = 1.5 * V^2/2g$, $V = Q/A$
	(Velocity) V(QmaxD) = 0.148/(0.5 * 0.5) = 0.592 m/s V(QmaxH) = 0.175/(0.5 * 0.5) = 0.700 m/s
	(Gate Head Loss) h(QmaxD) = 1.5 * 0.592²/2g = 0.027 m h(QmaxH) = 1.5 * 0.700²/2g = 0.038 m
	(Water Level) WL(QmaxD) = $+5.030 + 0.027 + \alpha = +5.060 \text{ m}$ WL(QmaxH) = $+5.040 + 0.038 + \alpha = +5.080 \text{ m}$

3.11 Aeration Tank, Overflow Weir Head Loss (Aeration Tank, Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	1,024,000	1,211,000
	m³/s	11.852	14.016
Establishment Number	Number	10*8=80	80
Unit Flow	m³/s	0.148	0.175
Downstream Water Level	m	+ 5.060	+ 5,080
Overflow Weir Form	-	Suppressed Rectangle Weir, B = 8.25m	
Weir Level	m	+ 5.200	
Overflow Depth	m	0.046	0.051
Water Level	m	+ 5.250	+5.260

NOTE:	$h = [Q/(1.84 * B)]^{2/3}$
	(Overflow Depth)
	$h(QmaxD) = [0.148/(1.84 * 8.25)]^{2/3} = 0.046 m$
	$h(QmaxH) = [0.175/(1.84 * 8.25)]^{2/3} = 0.051 \text{ m}$
	(Water Level)
	$WL(QmaxD) = +5.200 + 0.046 + \alpha = +5.250 \text{ m}$
	$WL(QmaxH) = +5.200 + 0.051 + \alpha = +5.260 \text{ m}$
	(Aeration Tank, Bottom Level) H = 5.5 m
	BL = +5.250 - 5.500 = -0.250 m

3.12 Aeration Tank, Inflow Movable Weir Head Loss (Aeration Tank, Inflow Waterway Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	10*8=80	80
Unit Flow	m³/s	0.074	0.101
Downstream Water Level	m	+ 5.250	+ 5.260
Dimension of Inflow Movable Weir	-	Movable Weir, B = 500mm	
Weir Level	m	+ 5,500	
Overflow Depth	m	0.186	0.229
Water Level	m	+ 5.690	+ 5.730

NOTE:	$h = [Q/(1.84 * B)]^{2/3}$	
	(Overflow Depth) h(QmaxD) = [0.074/(1.84 * 0.5)] ^{2/3} = 0.186 m h(QmaxH) = [0.101/(1.84 * 0.5)] ^{2/3} = 0.229 m	
	(Water Level) WL(QmaxD) = $+5.500 + 0.186 + \alpha = +5.690 \text{ m}$ WL(QmaxH) = $+5.500 + 0.229 + \alpha = +5.730 \text{ m}$	

3.13 Aeration Tank, Step Movable Weir Head Loss (Aeration Tank, Step Waterway Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	80*4=320	320
Unit Flow	m³/s	0.019	0.025
Downstream Water Level	m	+5,250	+ 5.260
Dimension of Step Movable Weir	-	Movable Weir, B = 500mm * 4 places/t (4 Point Step)	
Weir Level	m	+ 5.500	
Overflow Depth	m	0.075	0.090
Water Level	m	+ 5.580	+ 5.590

NOTE:	$h = [Q/(1.84 * B)]^{2/3}$	
	(Overflow Depth) $h(QmaxD) = [0.019/(1.84 * 0.5)]^{2/3} = 0.075 \text{ m}$ $h(QmaxH) = [0.025/(1.84 * 0.5)]^{2/3} = 0.090 \text{ m}$	
	(Water Level) WL(QmaxD) = $+5.500 + 0.075 + \alpha = +5.580 \text{ m}$ WL(QmaxH) = $+5.500 + 0.090 + \alpha = +5.590 \text{ m}$	

3.14 Primary Sedimentation Tank, Outflow Trough Head Loss (Primary Sedimentation Tank, Outflow Trough Upstream Water Level): Free Overflow

Item	Unit	QmaxD	QmaxII
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	20*8*2=320	320
Unit Flow	m³/s	0.019	0.025
Downstream Water Level	m	+ 5.690	+ 5.730
Trough Width	m	0.50	00
Trough Bottom Level	m	+ 5.800	
Trough Bottom Slope	%	i = 0	
Critical Depth & Trough Head Loss	m	0.094	0.113
Water Level	m	+ 5.900	+ 5.920

NOTE:	$h = \sqrt{3} * [1.10 * Q^2/(g * B^2)]^{1/3} = Free Overflow$	
	(Critical Depth_and Trough Head Loss) $\begin{array}{l} h_o(QmaxD) = \sqrt{3} * [1.10 * 0.019^2/(9.8 * 0.5^2)]^{1/3} = 0.094 \text{ m} \\ h_o(QmaxH) = \sqrt{3} * [1.10 * 0.025^2/(9.8 * 0.5^2)]^{1/3} = 0.113 \text{ m} \end{array}$	
	(Water Level) $WL(QmaxD) = +5.800 + 0.094 + \alpha = +5.900 \text{ m}$ $WL(QmaxH) = +5.800 + 0.113 + \alpha = +5.920 \text{ m}$	

3.15 Primary Sedimentation Tank Triangular Notch Head Loss (Primary Sedimentation Tank Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	20*8=160	160
Unit Flow	m³/s	0.037	0.051
Downstream Water Level	m	+ 5.900	+ 5.920
Triangular Notch Form	-	Wear Plate (Tr	angular Weir)
Notch Degree	Pitch/m	7 (Trough, L = 1.	
Number of Notch	Number/waterway	7 * 13.0 = 91	
Bottom Level	m	+ 6.0	000
Overflow Depth	m	0.038	0.043
Water Level	m	+ 6.040	+ 6.050

NOTE:	$h = (q/1.42)^{2/5}$
	(Overflow Rate per Notch)
	$q(QmaxD) = 0.037/91 = 4.066 * 10^{-4} \text{ m}^3/\text{s}$
	$q(QmaxH) = 0.051/91 = 5.604 * 10^{-1} m^3/s$
	(Overflow Depth)
	$h(QmaxD) = (4.066 * 10^{-4}/1.42)^{2/5} = 0.038 m$
	$h(QmaxH) = (5.604 * 10^{-4}/1.42)^{2/5} = 0.043 m$
	(Water Level)
	$WL(QmaxD) = +6.000 + 0.038 + \alpha = +6.040 \text{ m}$
	$WL(QmaxH) = +6.000 + 0.043 + \alpha = +6.050 \text{ m}$
	(Primary Sedimentation Tank Bottom Level) H = 3.0 m
	BL = +6.040 - 3.000 = +3.040 m (most shallow point)

3.16 Primary Sedimentation Tank, Inflow Movable Weir Head Loss (Primary Sedimentation Tank, Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Number	Number	10*8=80	80
Unit Flow	m³/s	0.074	0.101
Downstream Water Level	m	+ 6.040	+ 6.050
Dimension of Inflow Movable Weir	-	Movable Wei	r, B = 500mm
Weir Level	m	+ 6.200	
Overflow Depth	m	0.186	0.229
Water Level	m	+6.390	+ 6.430

NOTE:	$h = [Q/(1.84 * B)]^{2/3}$
	(Overflow Depth) $h(QmaxD) = [0.074/(1.84 * 0.5)]^{2/3} = 0.186 \text{ m}$ $h(QmaxH) = [0.101/(1.84 * 0.5)]^{2/3} = 0.229 \text{ m}$
	(Water Level) $WL(QmaxD) = +6.200 + 0.186 + \alpha = +6.390 \text{ m}$ $WL(QmaxH) = +6.200 + 0.229 + \alpha = +6.430 \text{ m}$

3.17 Bypass Waterway Critical Depth (Part of Final Sedimentation Tank, Downstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+4.530	+ 4.710
F.S.T. Waterway Bottom Level	m	+ 3.	400
Dimension of Waterway	6-8	1.5 m * * 1 (open)/train	
Critical Depth	m	0.301	0.371
Bypass Waterway Bottom Level	m	+ 4.	700
Water Level	m	+5.010	+ 5.080

NOTE:	$h = [(1.10*Q^2)/(g * B^2)]^{1/3};$
	(Critical Depth) $h(QmaxD) = [1.10 * 0.741^2/9.8*1.5^2)]^{1/3} = 0.301 \text{ m}$ $h(QmaxH) = [1.10 * 1.011^2/9.8*1.5^2)]^{1/3} = 0.371 \text{ m}$
	(Water Level) $WL(QmaxD) = +4.700 + 0.301 + \alpha = +5.010 \text{ m}$
	$WL(QmaxH) = +4.700 + 0.371 + \alpha = +5.080 \text{ m}$

3.18 Bypass Waterway Friction Head Loss (Part of Final Sedimentation Tank, Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m ³ /s	0.741	1.011
Downstream Water Level	m	+5.010	+ 5.080
Dimension of Waterway	-	1.5 m * * 1	(open)/train
Length	m	About 30	
Water Depth	m	0.310	0.380
Velocity	m/s	1.594	1.774
Bottom Level	m	+ 4	.700
Friction Head Loss	m	0.098	0.100
Water Level	m	+5.110	+5.180

NOTE:	$V = Q/A$; $I = [(n * V)/R^{2/3}]^2$; $h = I * L$ R = B*H/(B+2H); $n = 0.013$
	(Velocity) V(QmaxD) = 0.741/(1.5*0.310) = 1.594 m/s
	V(QmaxH) = 1.011/(1.5*0.380) = 1.774 m/s
	(Hydraulic Radius)
	R(QmaxD) = 1.5*0.310/(1.5+2*0.310) = 0.219 m
	R(QmaxH) = 1.5*0.380/(1.5+2*0.380) = 0.252 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013*1.594)/0.219^{2/3}]^2 = 3.253*10^{-3}$
	$I(QmaxH) = [0.013*1.774)/0.252^{2/3}]^2 = 3.341*10^{-3}$
	(Friction Head Loss)
	$h(QmaxD) = 3.253 * 10^{-3} * 30 = 0.098 m$
	$h(QmaxH) = 3.341 * 10^{-3} * 30 = 0.100 m$
	(Water Level)
	$WL(QmaxD) = +5.010 + 0.098 + \alpha = +5.110 \text{ m}$
	$WL(QmaxH) = +5.080 + 0.100 + \alpha = +5.180 \text{ m}$

3.19 Bypass Waterway, Critical Depth (Part of Aeration Tank, Downstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+5.110	+ 5.180
Dimension of Waterway	-	1.5 m * * 1 (open)/ train	
Critical Depth	m	0.301	0.371
Bypass Waterway Bottom Level	m	+ 5.	.200
Water Level	m	+ 5.510	+ 5.580

NOTE:	$h = [(1.10*Q^2)/(g*B^2)]^{1/3};$
	(Critical Depth) $h(QmaxD) = [1.10 * 0.741^2/9.8*1.5^2)]^{1/3} = 0.301 \text{ m}$ $h(QmaxH) = [1.10 * 1.011^2/9.8*1.5^2)]^{1/3} = 0.371 \text{ m}$
	(Water Level) WL(QmaxD) = $+5.200 + 0.301 + \alpha = +5.510 \text{ m}$ WL(QmaxH) = $+5.200 + 0.371 + \alpha = +5.580 \text{ m}$

3.20 Bypass Waterway Friction Head Loss (Part of Aeration Tank, Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+ 5.510	+ 5.580
Dimension of Waterway		1.5 m * * 1 (open)/ train	
Length	m	About 30	
Water Depth	m	0.310	0.380
Velocity	m/s	1.594	1.774
Bottom Level	m	+ 5.200	
Friction Head Loss	m	0.098	0.100
Water Level	m	+ 5.610	+ 5.680

NOTE:	$V = Q/A$; $I = [(n * V)/R^{2/3}]^2$; $h = I * L$
	R = B * H/(B+2H); n = 0.013
	(Velocity)
	V (QmaxD) = 0.741/(1.5*0.310) = 1.594 m/s
	V (QmaxH) = 1.011/(1.5*0.380) = 1.774 m/s
	(Hydraulic Radius)
	R(QmaxD) = 1.5*0.310/(1.5+2*0.310) = 0.219 m
	R(QmaxH) = 1.5*0.380/(1.5+2*0.380) = 0.252 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013*1.594)/0.219^{2/3}]^2 = 3.253*10^{-3}$
	$I(QmaxH) = [0.013*1.774)/0.252^{2/3}]^2 = 3.341*10^{-3}$
	(Friction Head Loss)
	$h(QmaxD) = 3.253 * 10^{-3} * 30 = 0.098 m$
	$h(QmaxH) = 3.341 * 10^{-5} * 30 = 0.100 m$
	(Water Level)
	$WL(QmaxD) = +5.510 + 0.098 + \alpha = +5.610 \text{ m}$
	$WL(QmaxH) = +5.580 + 0.100 + \alpha = +5.680 \text{ m}$
	A STATE OF THE STA

3.21 Bypass Waterway Critical Depth (Part of Primary Sedimentation Tank, Downstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8,090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+5.610	+5.680
Dimension of Waterway	-	1.5 m ** 1	(open)/ train
Critical Depth	m	0.301	0.371
Bypass Waterway Bottom Level	m	+ 5.	700
Water Level	m	+6.010	+ 6.080

NOTE:	$h = [(1.10*Q^2)/(g * B^2)]^{1/3};$
	(Critical Depth) $h(QmaxD) = [1.10 * 0.741^2/9.8*1.5^2)]^{1/3} = 0.301 \text{ m}$ $h(QmaxH) = [1.10 * 1.011^2/9.8*1.5^2)]^{1/3} = 0.371 \text{ m}$
	(Water Level) WL(QmaxD) = $+5.700 + 0.301 + \alpha = +6.010 \text{ m}$ WL(QmaxH) = $+5.700 + 0.371 + \alpha = +6.080 \text{ m}$

3.22 Bypass Waterway, Friction Head Loss (Part of Primary Sedimentation Tank, Upstream Water Level)

Item	Unit	QmaxD	Hmax
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+6.010	+ 6.080
Dimension of Waterway	-	1.5 m * * 1	(open)/ train
Length	m	About 15	
Water Depth	m	0.310	0.380
Velocity	m/s	1.594	1.774
Bottom Level	m	+ 5.	700
Friction Head Loss	m	0.049	0.050
Water Level	m	+6.060	+6.130

NOTE:	$V = Q/A$; $I = [(n * V)/R^{2/3}]^2$; $h = I * L$
	R = B * H / (B+2H); n = 0.013
	(Velocity)
	V (QmaxD) = 0.741/(1.5*0.310) = 1.594 m/s
	V (QmaxH) = 1.011/(1.5*0.380) = 1.774 m/s
	(Hydraulic Radius)
	R (QmaxD) = 1.5*0.310/(1.5+2*0.310) = 0.219 m
	R (QmaxH) = 1.5*0.380/(1.5+2*0.380) = 0.252 m
	(Hydraulic Slope)
	$I(QmaxD) = [0.013*1.594)/0.219^{2/3}]^2 = 3.253*10^{-3}$
	$I (QmaxH) = [0.013*1.774)/0.252^{2/3}]^2 = 3.341*10^{-3}$
	(Friction Head Loss)
	$h(QmaxD) = 3.253 * 10^{-3} * 15 = 0.049 m$
	$h(QmaxH) = 3.341 * 10^{-3} * 15 = 0.050 m$
	(Water Level)
	$WL(QmaxD) = +6.010 + 0.049 + \alpha = +6.060 \text{ m}$
	$WL(QmaxH) = +6.080 + 0.050 + \alpha = +6.130 \text{ m}$

3.23 Primary Sedimentation Tank, Inflow Waterway Friction Head Loss (Primary Sedimentation Tank, Inflow Waterway Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+ 6.390	+ 6.430
Dimension of Waterway	-	1.0 m * + 1 (open) / train	
Length	m	About 115	
Water Depth	m	0.590	0.630
Velocity	m/s	1.256	1.605
Bottom Level	m	+ 5.800	
Friction Head Loss	m	0.175	0.275
Water Level	m	+ 6.570	+ 6.710

NOTE:

$$I = [(n * V)/R^{2/3}]^2; h = I * L; V = Q/A$$

$$R = B * H/(B+2H); n = 0.013$$

(Velocity)

(Hydraulic Radius)

$$R(QmaxD) = 1.0*0.590/(1.0+2*0.590) = 0.271 \text{ m}$$

$$R(QmaxH) = 1.0*0.630/(1.0+2*0.630) = 0.279 \text{ m}$$

(Hydraulic Slope)

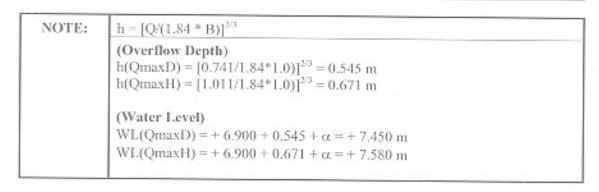
$$I(QmaxD) = [0.013*1.256)/0.271^{2/3}]^2 = 1.520 * 10^{-3}$$

$$I(QmaxH) = [0.013*1.605)/0.279^{2/3}]^2 = 2.388*10^{-3}$$

(Friction Head Loss)

$$h(QmaxD) = 1.520 * 10^{-3} * 115 = 0.175 m$$

$$h(QmaxH) = 2.388 * 10^{-3} * 115 = 0.275 m$$


(Water Level)

$$WL(QmaxD) = +6.390 + 0.175 + \alpha = +6.570 \text{ m}$$

$$WL(QmaxH) = +6.430 + 0.275 + \alpha = +6.710 \text{ m}$$

3.24. Distribution Tank Movable Weir Head Loss (Distribution tank, Upstream Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	8	8
Unit Flow	m³/s	0.741	1.011
Downstream Water Level	m	+ 6.570	+ 6.710
Weir Form		Movable Weir B = 1.0m	
Weir Level	m	+ 6.5	
Overflow Depth	m	0.545	0.671
Water Level	m	+7.450	+7.580
	Bypass	(3 = 1.0m, 4Divison * 2tra	nins)
→ 1/8Q → 1800 ⁶ 2	Bypass	(3 = 1.0m, 4Divison * 2tra	ins) 1/8Q (Pipe Gallery)
→ 1/8Q	Bypass lovable Weir	4/8Q + -	ins) 1/8Q

3.25. Distribution Tank ~ Discharge Tank Connection Pipe Head Loss (Discharge Tank Water Level)

Item	Unit	QmaxD	QmaxH
Quantity	m³/d	512,000	699,000
	m³/s	5.926	8.090
Establishment Number	Number	2	2
Unit Flow	m³/s	2.963	4.045
Downstream Water Level	m	+7.450	+ 7.580
Dimension of Connection Pipe	-	1,800 mm * 2 trains	
Section Area	m ²	3.240 / train	
Length and Bend	m	About 300, 90° bend * 1	
Velocity	m/s	0.915	1.248
Connection Pipe Head Loss	m	0.084	0.156
Bend/Inlet/Outlet Loss	m	0.107	0.199
Total	m	0.191	0.355
Water Level	m	+ 7.650	+ 7.940

 $h = (n^2 * V^2 * L)/R^{4/3}$; R = B * H / (B + 2H), n = 0.013NOTE: $h = 1.0 * V^2/2g * n$; n = 1 (90° Bend); V = Q/A, $h = 1.5 * V^2/2g$ (Section Area) $A = 1.8 * 1.8 = 3.240 \text{ m}^2 / \text{train}$ (Velocity) V(QmaxD) = 2.963/3.240 = 0.915 m/sV(QmaxH) = 4.045/3.240 = 1.248 m/s(Hydraulic Radius) R = 1.8 * 1.8/(1.8 + 2*1.8) = 0.600 m(Connected Pipe Head Loss) $h(QmaxD) = (0.013^2 * 0.915^2 * 300) / 0.600^{4/3} = 0.084 \text{ m}$ $h(QmaxH) = (0.013^2 * 1.248^2 * 300) / 0.600^{4/3} = 0.156 m$ (Bend Loss) + (Inlet Loss) + (Outlet Loss) $h(QmaxD) = 2.5 * 0.915^2 / 2g * 1 = 0.107 m$ $h(QmaxH) = 2.5 * 1.248^2 / 2g * 1 = 0.199 m$ (Water Level) $WL(QmaxD) = +7.450 + 0.191 + \alpha = +7.650 \text{ m}$ $WL(QmaxH) = +7.580 + 0.355 + \alpha = +7.940 \text{ m}$