4.1.3 Pumping Station

CALCULATION FOR INTERMEDIATE PUMPING STATION

1.MATERIAL PROPERTIES AND SOIL CONDIION

Ground water level	c	SWL =	+0.2
Concrete: Grade 250,		Rn =	70 kg/cm ²
Reiforcement type]IS:			_
Renorcement type jis:		Rk =	3.6 kg/cm ²
			1600 kg/cm ²
Backfill sand:		$\gamma_s \;\;=\;\;$	1.80 T/m ³
Coeficient of earth pressure at rest		$K_0 =$	0.5
Internal friction angle			20°
2. SEFT LOAD			
2.1 Slab at elevation +2.3m			
	2) + (20.6+ 24.4)/2x3.5+(9.1x 24		
	2) + (20.6 + 24.4)/2x3.5 + (9.1x 24	.4) - 76	b]x
0.3x 2.5		=	434.33T
In control room: Thickness of sin			
$W_{si} = 6.6x 8.2x 2.$.35x 0.2	=	33.53 T
2.2 Slab at elevation -3.7m			
Thickness of reinforced concrete	is 0.3m		
Thickness of sinder concrete is 0.	4m in electrical room		
$W_s = 434.33 + (2.5)$	35x 0.4x 19.1x 12.3)		655.16T
2.3 Slab at elevation -10m			
$W_s = [655, 11 - (1)]$	1.55+ 17x 2.5)]x 0.3x 2.5	-	450.79T
2.4 Bottom slab	-		
Wb = [655.11 + (20.6+24.4)/2x (4.6- 3.5)] x 1.2x 2	.5	2039.58 T
2.5 Beams			
Beam at elevation +2.3m			
Wb = [(6.6 + 6.4)]	+ 6.7+ 6.1)x 4+ 6.7+ 6.1]x 0.4x 0).7	81.2 T
0.4x 0.4x 18x 3.5x		=	25.2 T
Beam at elevation -10.0m			2012 1
0.4x 0.7x 6.1x 2.5	x 5	=	21.35 T
Beam at level -3.7m		_	113.34 T
2.6 Columns		-	115.541
0.6x 0.6x (5+ 5.3	x 17x 2.5	-	157.59 T
0.8x 0.6x (5+ 5.3		=	61.8 T
2.7 Walls	A 54 215	_	01.01
Wall at elevation -17m			
0.6x 7x 6.7x 5x 2.	5	=	351.75 T
Wall at elevation -14m		_	331.751
0.6x 10.5x 3.7x 3x	2.5	=	174.8 T
Wall thickness = $0.5m$	2.5	-	1/4.0 1
3x 0.5x 3x 15.8x 2	5	_	177 7F T
Wall thickness = $0.6m$		=	177.75 T
13.8x 2x 0.6x 3.7x	25	_	1E7 10 T
13.2x 15.5x 0.6x 2		=	153.18 T
5.3x (6.7+ 3.7)/2		=	306.9 T
Total weight	A U.UA 28 2.3	=	82.68 T
rotar weight		=	5320.93 T

3. LOADING AND CACULATION SCHEME

3.1 Loading to slab at elevation +2.5m

	This				
	Thickness (of reinforced concrete slab is 0.3m		3	
		$Ws = 0.3x \ 2.5$	=	0.75 T/m ²	
	In control	Live load	=	0.5 T/m ²	
				2	
		I concrete slab	=	0.75 T/m ²	
		of sinder concrete is 0.2m : 0.2x2.35	=	0.47T/m ²	
		+ weight of equipment	=	2.0 T/m ²	
22/	Total weig		=	3.32 T/m ²	
3.2 L080		at elevation -3.7m			
	Total In electrica	4	=	1.25 T/m ²	
	Total	1		2	
331000		at elevation -10m	=	3.69 T/m ²	
5.5 £0at	Total	at elevation - rom		1 05 71 2	
341000	ling to botto	m slah	=	1.25 T/m ²	
0.4 2000		ater pressure up to bottom slab: $GWL = +0.2m$			
		$Pw = (18.2 \pm 0.2) \times 1$	=	18.4 T/m^2	
	At elevatio			10.4 1/11	
		Pw = (15.2 + 0.2)x I	-	15.4 T/m ²	
3.5 Load	ting due to b		-	475 T	
	ling due to e		=	356.25 T	
3.7Chec		at due to ground water		10.01010.010	
	In case gro	und water level at +0.20			
		$P_{uplit} = P_{up1} + P_{up2} + P_{up3}$			
		20.6x16.9x15.4+(20.6+24.4)/2x3.5x(18.4+15.4)/2+			
		9.1x24.4x18.4		10777.7T	
	Total:	W of struture + W of buil + W of diaphagm			
	- <u></u>	5320.93+475+36.5x1.5x(2.5-1)x10!14492.97.54T>Pt	ıplift =	=10777.7T	
	-	eter of diaphragm is 105.9m			
	CHAMBER	diaphragm is 36.5m			
4.1 Self					
4.1 3611	Wall 1				
	man t	[0.65x 0.15+ 0.4x 3.55+ (0.9x 0.15+ 0.4x 3.55)x			
		1.5+ 0.5x 22]x 24.4x 2.5	=	1145.37 T	
		2.9x 0.4x 3.6x 22x 2.5	_	229.7 T	
	Slab	[4.2x (2.2+25.4)/2 + 2.5x 22+ 4x 22]x 0.3x 2.5	-	181.9 T	
	Wall 2	$(4.2^2 + 1.52^2)^{1/2} \times 2 \times 0.4 \times 2.9 \times 2.5$	=	25.9 T	
		0.4x2.5x2.9x5x2.5	=	36.25T	
	Bottom	[(22+25.4)/2 x4.2+22x 2.5+4x 22]x 0.5x 2.5	=	261.92T	
	Total			1881.04T	
	Load of wa	ter inside at elevation +0.61m			
	Landation	808.77x 2m	=	1617.5 T	
	Load of equ	21Tx 2			
	Live lead to	$slab = 0.5T/m^2$	=	42 T	
	Live load to	0.5x 1.3x 242.54		157 (5 7	
		0.54 1.54 £ 1£.5T	-	157.65 T	
4.2 Load	ing and calc	ulation scheme			
4.2.1 Vet					
	Horizontal	vehicle load from both side of the grit chamber			
		1 T/m ² x 0.5	-	0.5 T/m ²	

4.2.2 Soil load

In case of water level $= +0.2m$		
$Ps = (1,8x \ 1.8x \ 0.5) + (18-1)x \ 1.95x \ 0.5$	=	2.4 T/m ²
$Pw = 1 T/m^2 x 2$	=	2.0 T/m ²
Pressure of ground water to bottom slab		
$Pr = 1 T/m^3 x 2$	=	2.0 T/m ²
4.3 Checking pressure to base soil		
Total pressure to base soil		
$P_5 = (1881.04 + 1617.5 + 42 + 157.65)/808.77 =$	4	.57 T/m ²
4 ACbecking upliff that due to ground water		

4.4Checking uplift that due to ground water

For the most dangerous case, ground water is up to level +0.2m and the grit chamber is empty, without considering load of equipments

chamber is empty, without considering load of ed	Juipments	
Puplift = $(0.2 + 1.9)x 1$	=	2.1 T/m ²
Pself = 1881.04/ 808.77	=	2.33 T/m ²
Pself > Puplift		

5 CALCULATION

In case no water outside In case ground water level +0.2m Refer to attached result sheet for calculation value of street, steel area for sheet, beam and column elements

Calculation for Intermediate pumping statation

(The calculation based on Japanese standard)

1-parameters for calculation:

Concrete: Grade 1	250,	Rn =	70		
		RS =	3.6		
Reinforcement typ	e JIS:	Ra=	1600		
Back fill sand: $\gamma_s =$; Co	efficient of	earth pressure	at rest	$K_o =$
Internal friction	:	=	20°		

2-Load calculation (Base on Japanese standard):

3Calculation for bar arrangement:

Base on attached results of shell forces analised by SAP2000, choosing the most dangerous forces for calculation:

 $A_o = M/R_nbh_o^2$

h_o= (Element thickness-Cover thickness)

b: Width of calculated area(cm)

Required area of reinforcement:

Fa= M/yRaho

Beams

AREA	Values	Ao	γ	Fa	r arrangeme	ent
m2	(T.m)	1.1.1		(cm ²)	φ(mm)	quantity
b=0.60	-69.010	0.1287	0.931	41.00	30	6
h=1.20	-59.950	0.1118	0.941	35.25	30	6
1	39.780	0.0742	0.961	22.89	28	4
	37.980	0.0708	0.963	21.81	28	4
b=0.40	-29.210	0.1206	0.936	20.98	28	4
h=1.00	-25.000	0.1032	0.945	17.77	28	4
	19.950	0.0824	0.957	14.01	25	3
	12.100	0.0500	0.974	8.35	25	3
b=0.40	-18.000	0.1620	0.911	19.60	25	4
h=0.70	-12.820	0.1154	0.939	13.55	25	4
	10.070	0.0906	0.952	10.49	22	3
	9.550	0.0859	0.955	9.92	22	3

0.5

		pltch	of stirrup	(cm)	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0	15.0
		Dia. Of	stirrup	(mm)	14	14	14	14	14	14	14	14	14
		Number	of stirrup	branches	2	2	2	2	2	2	2	2	2
		Compare	er Conclude		NOT OK!	OKIII	NOT OK!						
		Degn Shearing Compare	surest (Sc)	(Kg/cm2)	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6	3.6
		Shearing	stresses	(Kg/cm2)	6.30	3.40	4.48	5.47	4.89	3.92	5.50	6.78	6.29
		Capacity of Shearing	concrete	(ton)	9.07	9.07	9.07	13.39	13.39	13.39	24.41	24.41	24.41
	=0.87	Values	(T.m)	(ð	15.88	8.57	11.28	20.33	18,18	14.59	37.27	45.99	42,65
(sdnups)	1/1.15)	c/2+	+ (h+s)/2		0.75	0.75	0.75	0.90	0.90	0.90	1.00	1.00	1.00
tween two st	ty factor (=	height of	column	c (m)	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
distance bet	onsider safe	height of	hand	(m) s	0.2	0.2	0.2	0.2	0.2	0.2	00	0.0	0.2
a: pitch of stirrup (distance between two stirrups)	i: coefficient that consider safety factor (= 1/1.15)	Width	of beam	(m) q	0.4	0.4	0.4	0.4	0.4	0.4	0.6	0.6	0.6
a: pitch]: coeffi	height of	beam	h (m)	0.7	0.7	0.7	1		-	1.2	1.2	1.2
		Frame	element		474	433	485	175	181	235	85	186	7

Checking shear forces:

-Height of hand for supporting coversiab s, so the section need to be checked shear bearing capacity is [c/2 + (h + s)/2]

In case Q >= Rsxbxd so the below case is to be considered

· In case concrete is not enough to bear shearing force, stirrups will be considered

Sc/2 + Ss >= Q (shearing force at section calculated) Where

Ss: shearing bearing capacity of reinforcement (kg) Sc: shearing bearing capacity of concrete (kg)

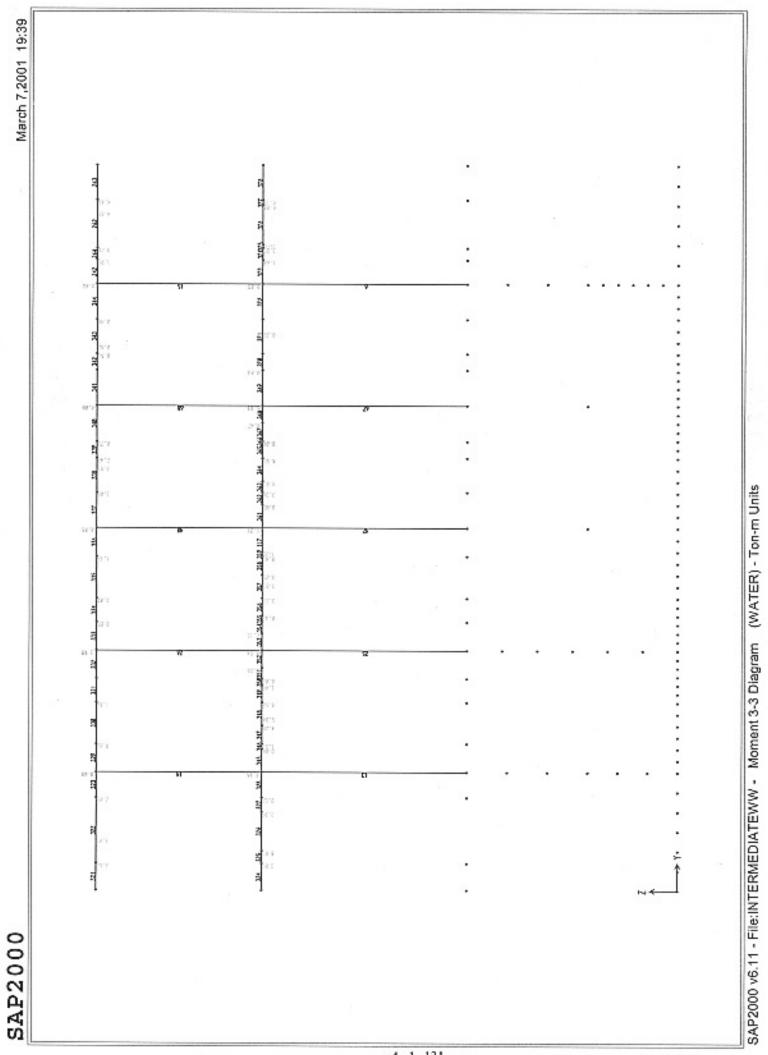
Ss=AsxRax|xd/a = Q - Sc/2

As: area of all stirrup in section considered

d: effective height of beam

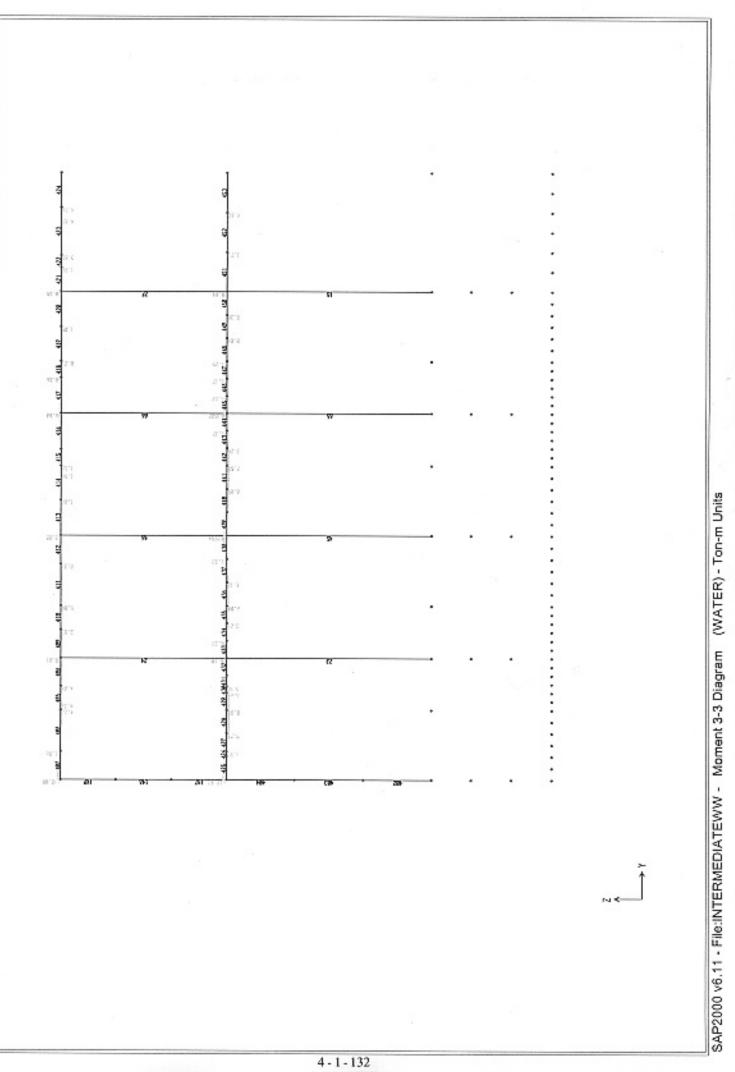
COLUMN60X60,60X80

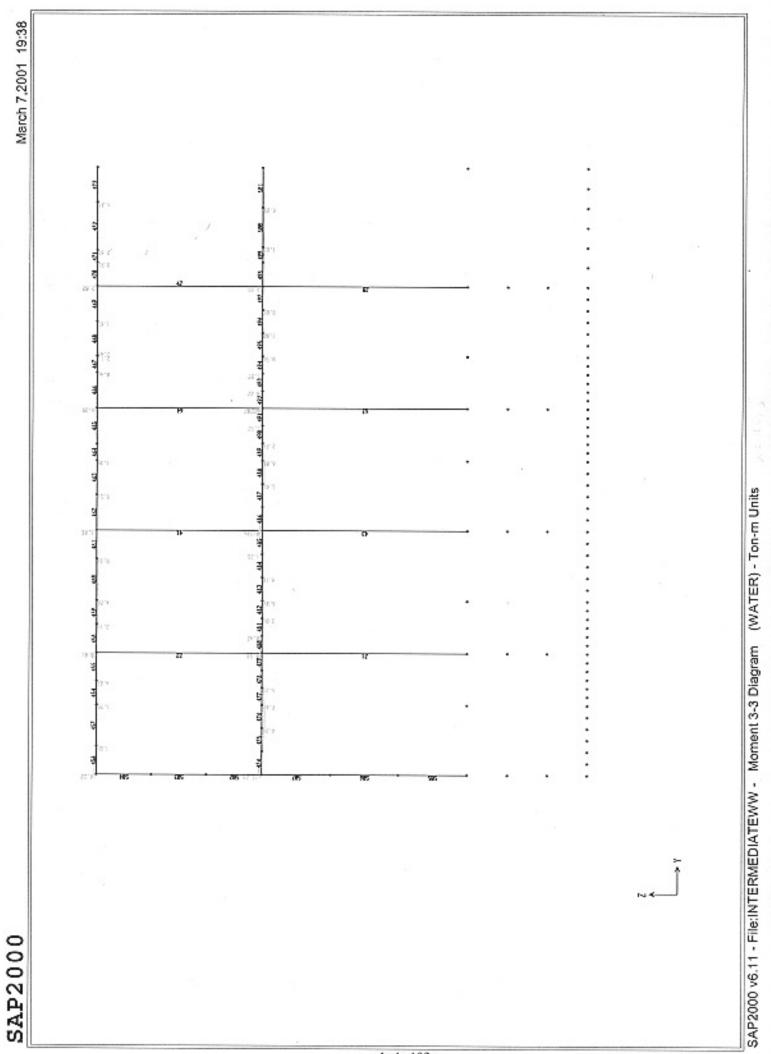
COLUMNS

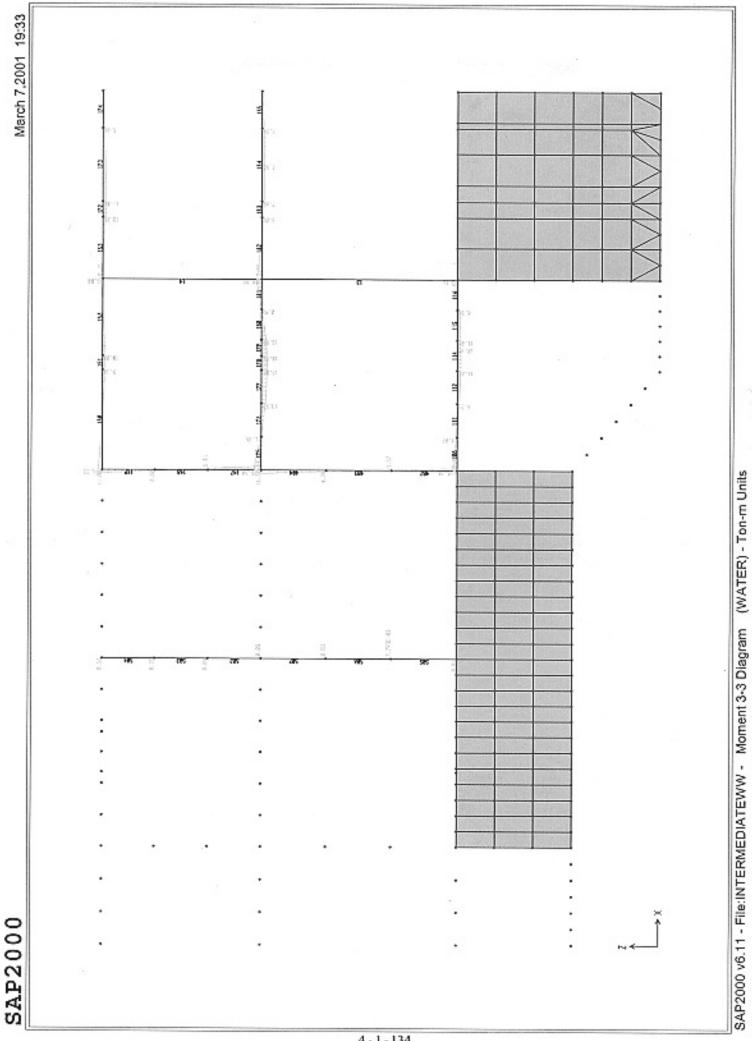

70 (Kg/cm2) 2E+05 (Kg/cm2) 2E+06 (Kg/cm2) 1600 (Kg/cm2) Grade 250 Type All Reinforcement LMATERIAL PROPERTIES Concrete

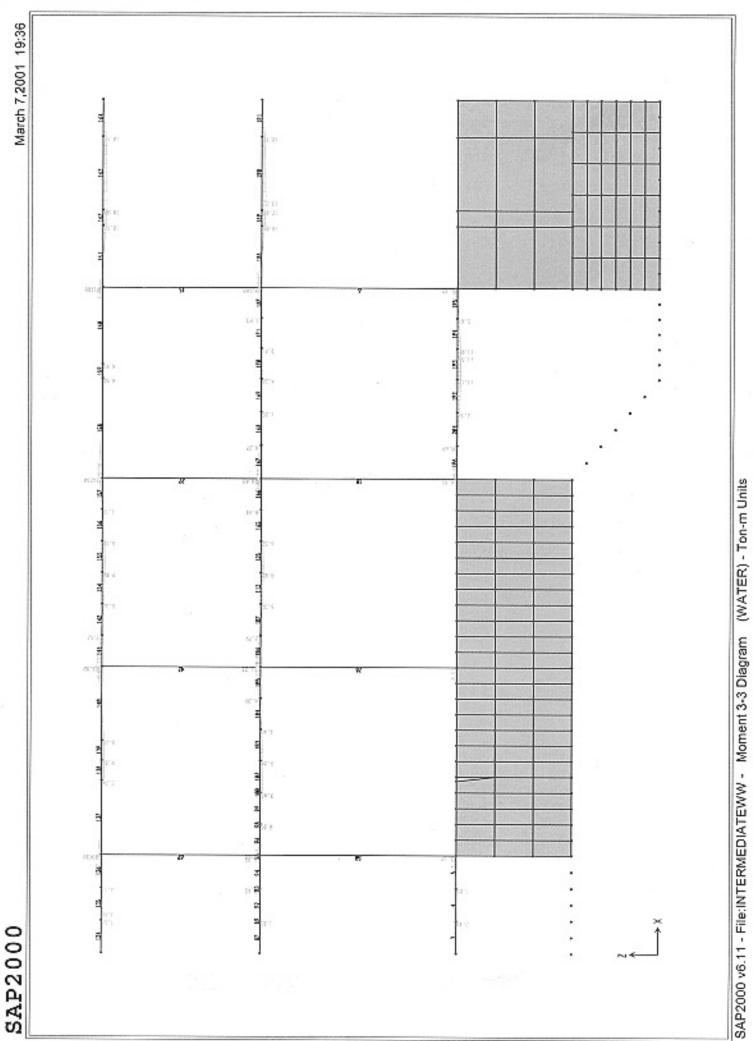
ILCALCULATION:

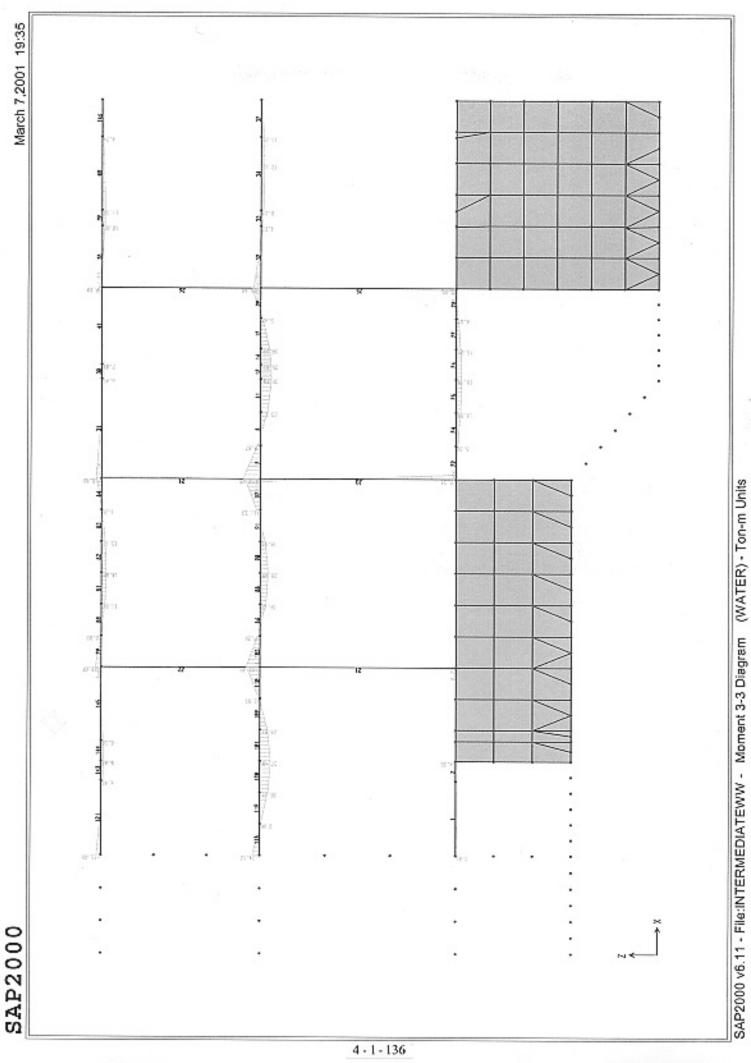
-	Т	12		6	13	80
e0/h		0.056	0.048	0.119	0.123	0.118
0	Ĵ	3.3	2.9	7.2	9.9	9.5
z	(Kg)	2.60E+05	2.68E+05	2.04E+05	3.00E+05	3.26E+05
Σ	(Kg.m)	10093 1030000 2.42E+03 2.60E+05	10093 1030000 1.36E+03 2.68E+05	10093 1080000 9.73E+03 2.04E+05	28619 2560000 2.00E+04 3.00E+05 9.9	28619 2560000 2.04E+04 3.26E+05
đ	(cm4)	1030000	1030000	1080000	2560000	2560000
Ja	(cm4)	10093	10093		28619	28619
Ш	(%)	0.6	0.6	0.6	0.6	0.6
AO		0.43	0.43	0.43	0.43	0.43
a O		0.62	0.62	0.62	0.62	0.62
Rn*	(Kg/cm2)	70	70	70	70	70
qш		1.00	1.00	1.00	1.00	00'1
ч		7.35	7.35	7.35	5.5125	5.5125
0	(cm)	441	441	441	441	441
ष्ट्र	(cm)	53	53	53	73	73
3=2'		7	4	4	7	7
ų	(cm)	60	60	9	80	80
q	(m)	60	\$	60	60	60
-	(cm)	630	630	630	630	630
NAME O	COLUMN	21	43	47	23	48

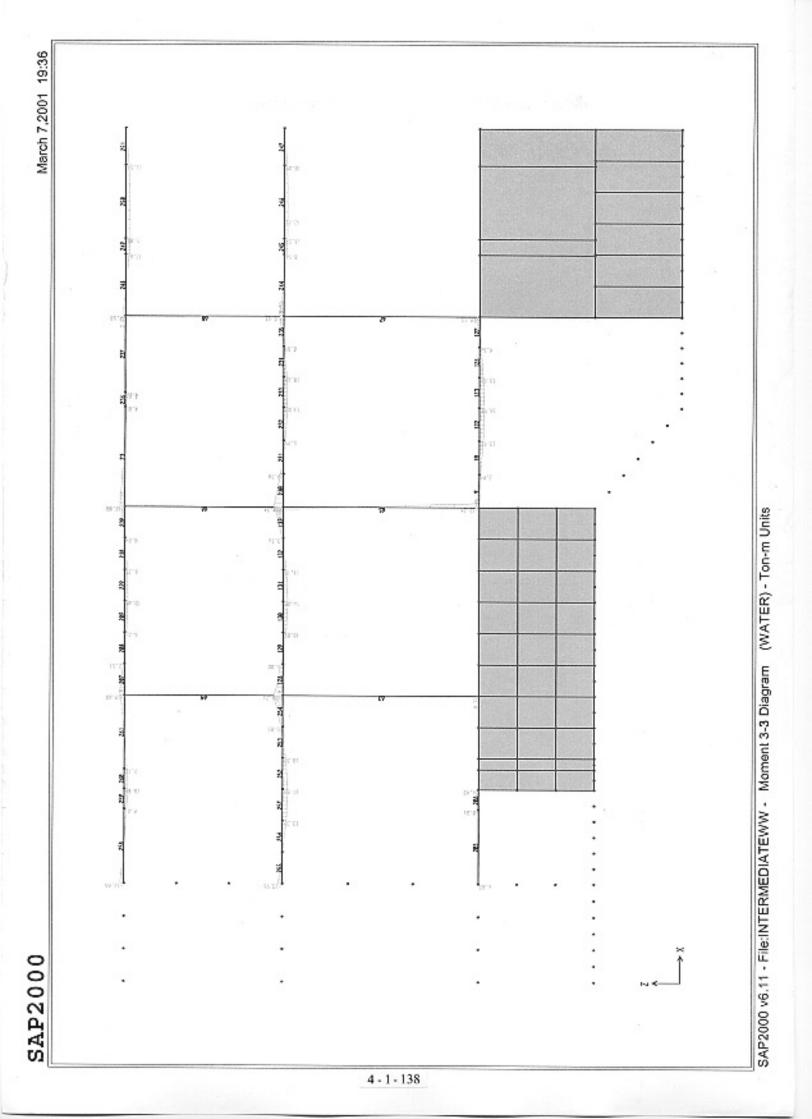

COLUMN60X60,60X80

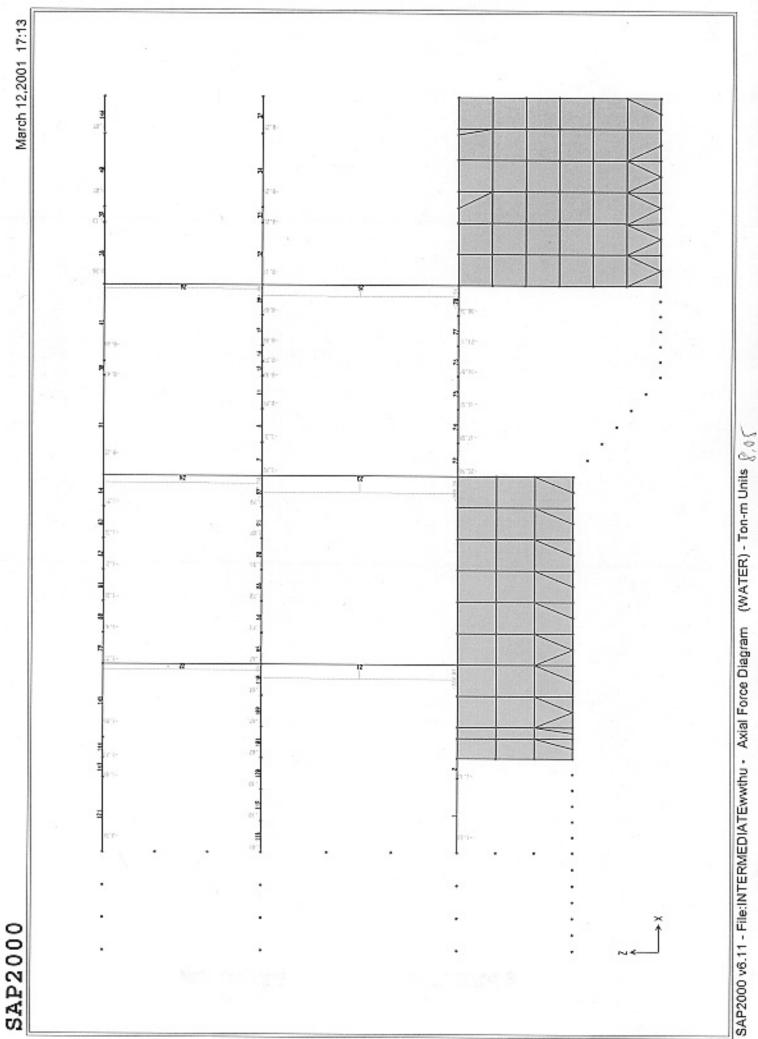

angement : Fa'	28	28	28	3D28	5D28
Seme orrangement Fa=Fa'	3D28	3D228	3D28	3D	50
Fa=Fa' (cm2)	13.8	15.2	5.6	18.4	27.3
-× (îm	54.7	55.3	48.5	64.8	65.4
αo.ho	32.9	32.9	32.9	45.3	45.3
(cm)	61.9	63.9	48.7	71.5	77.5
e (cm)	26.6	26.1	30.7	43.3	42.9
eOgh	16.86	16.86	16.86	21.90	21.90
h.e0 (cm)	3.56	3.11	7.66	10.27	9.86
L	1.070	1.070	1.069	1.040	1.043
Nth (Kg)	4.00E+06	4.13E+06	3.16E+06	7.72E+06	7.83E+06
Kdh	2.00	2.00	2.00	2.00	2.00
Ndh (Kg)	2.60E+05		2.04E+05	3.00E+05	
Mdh (Ke.m)	0.81 2.42E+03 2.60E+05	0.84 1.36E+03 2.68E+05	0.60 9.73E+03 2.04E+05	0.59 2.00E+04 3.00E+05	0.60 2.04E+04 3.26E+05
s	0.81	0.84	09.0	0.59	0.60

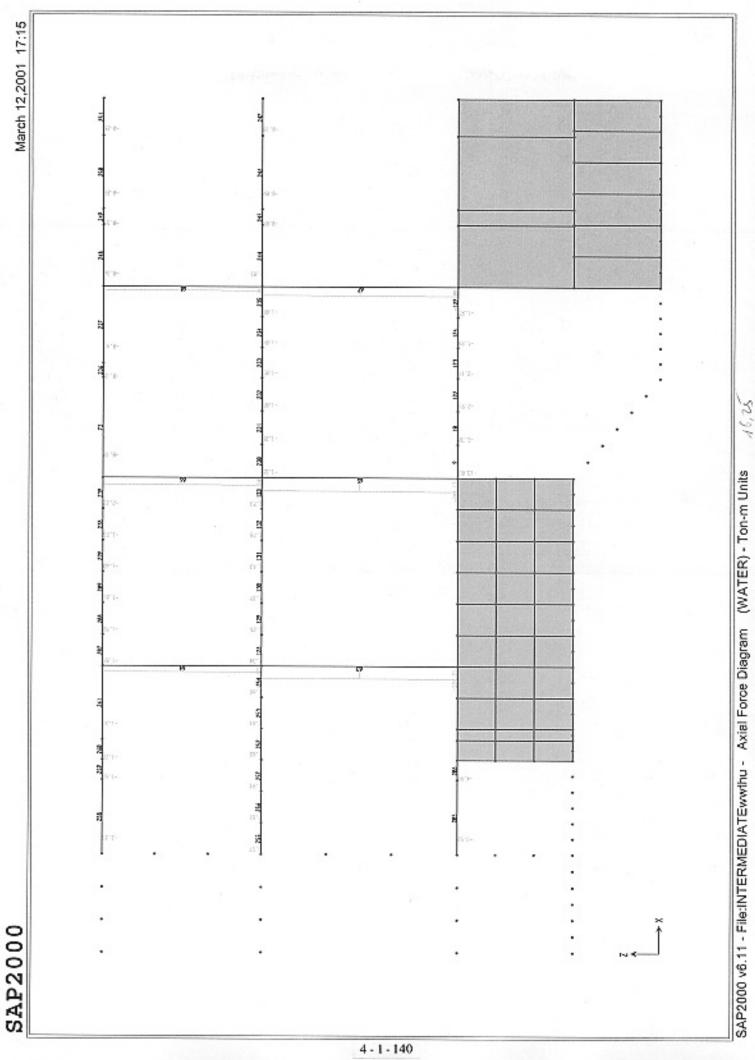


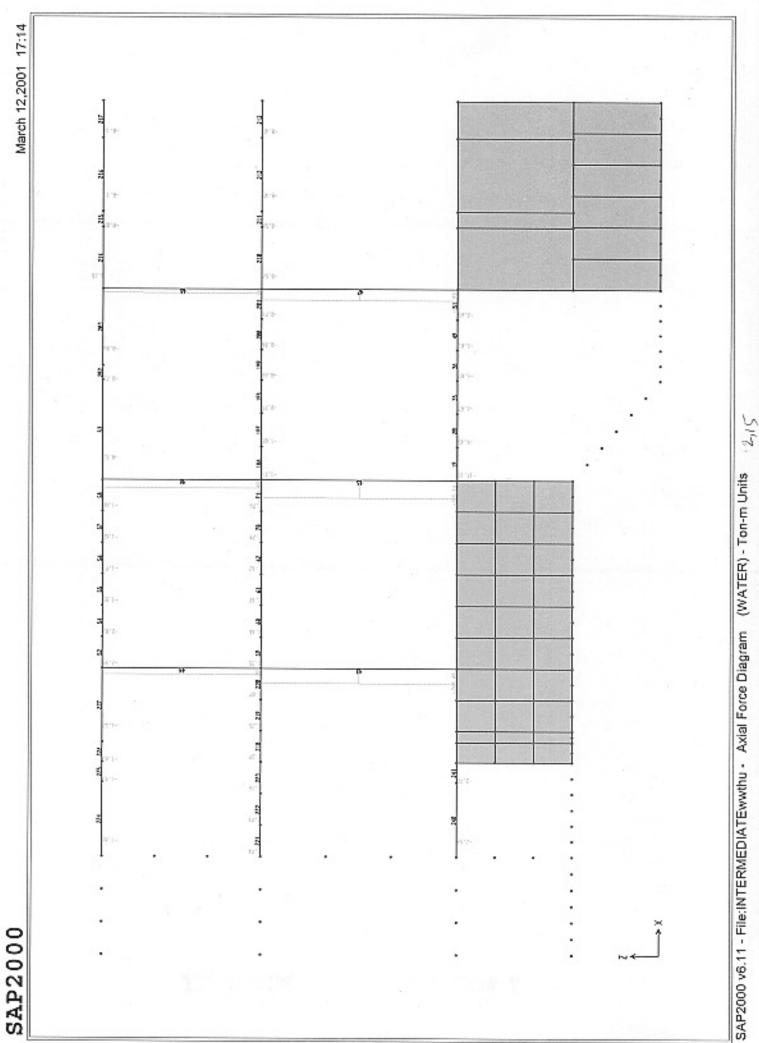


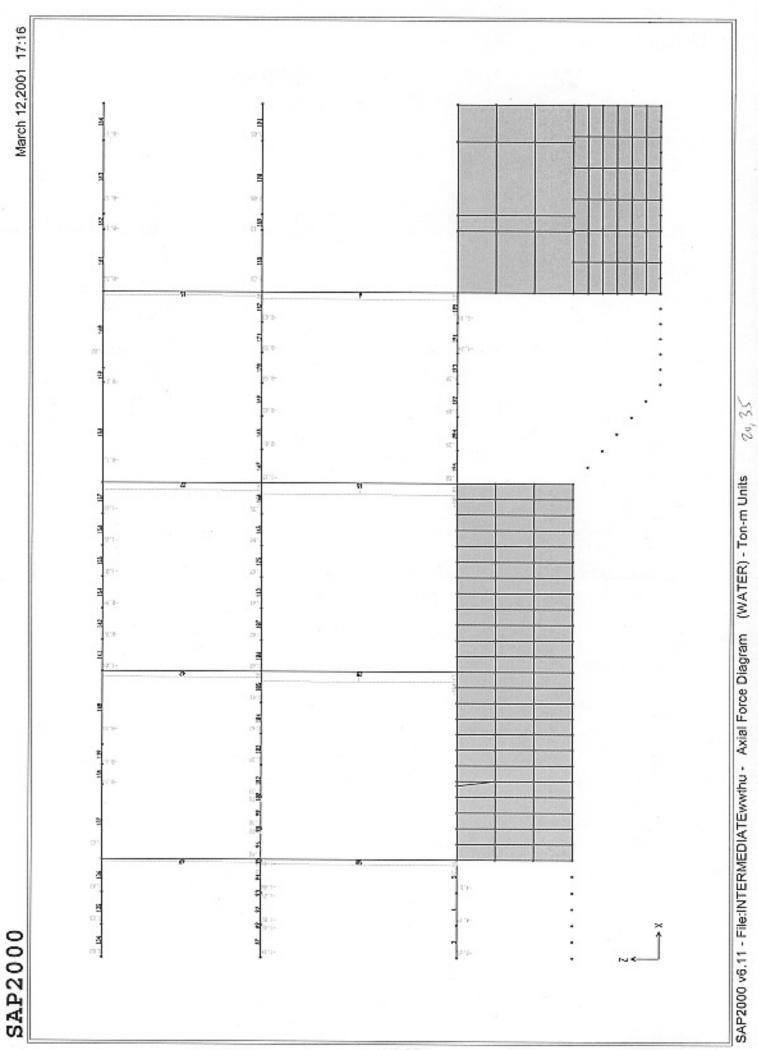

SAP2000

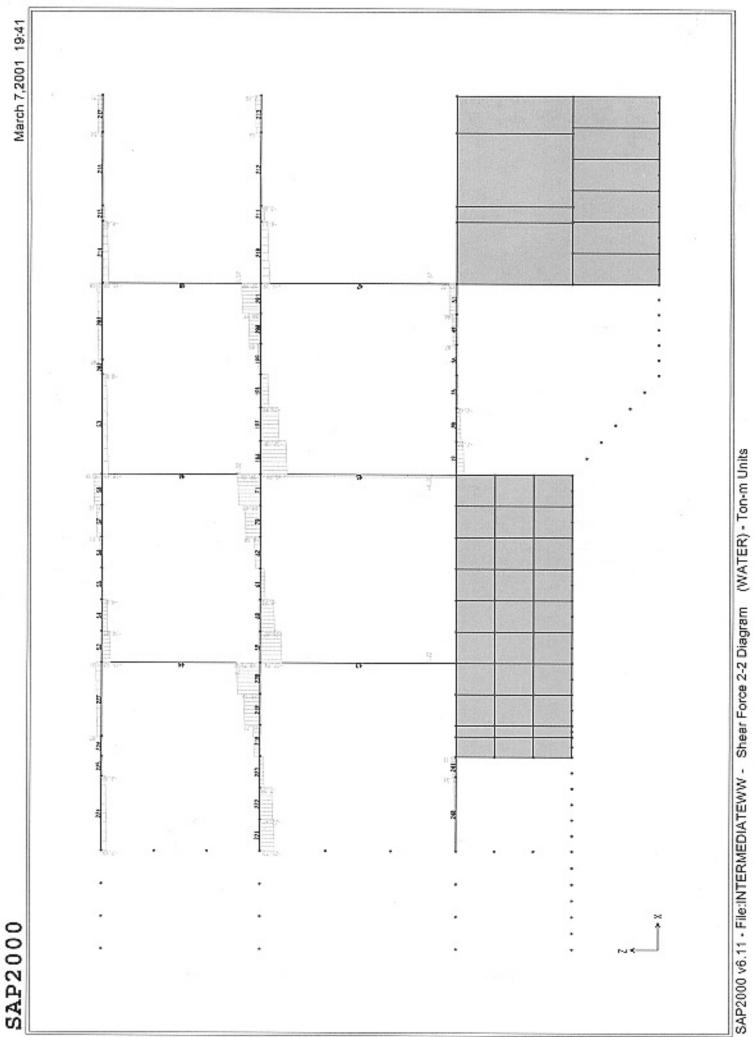


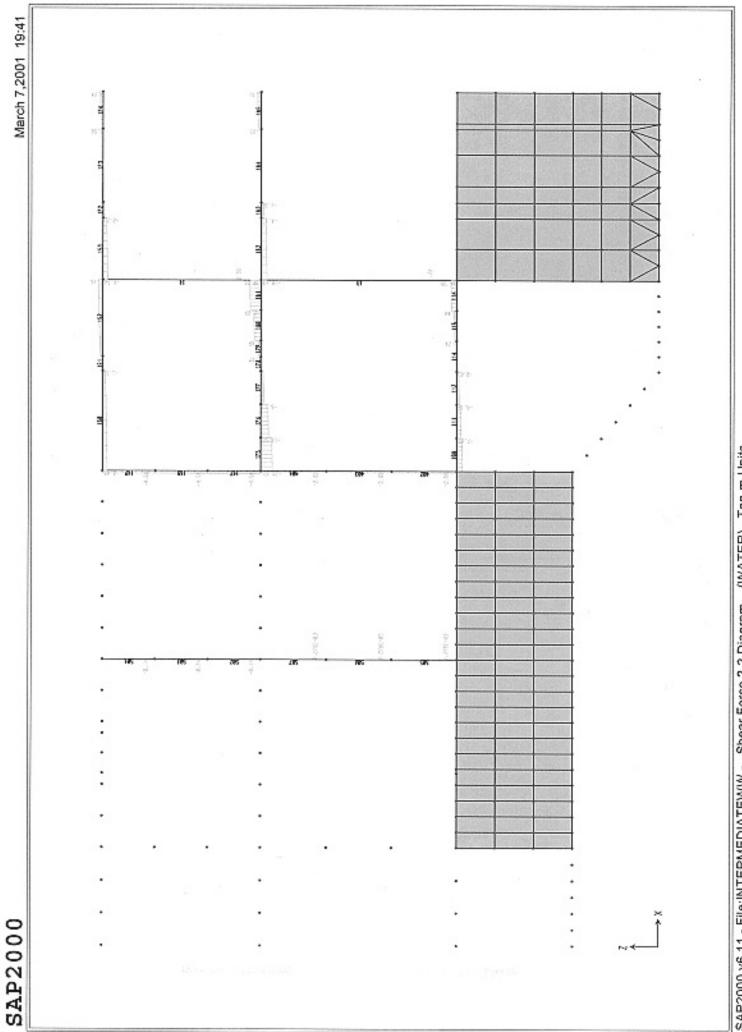


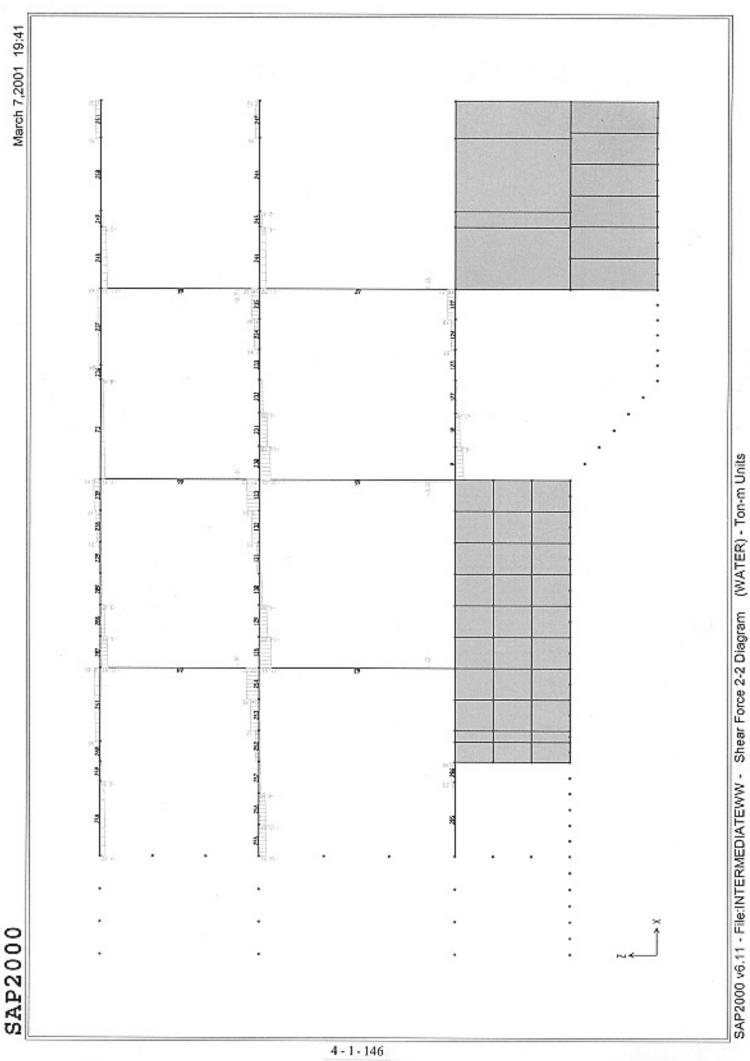


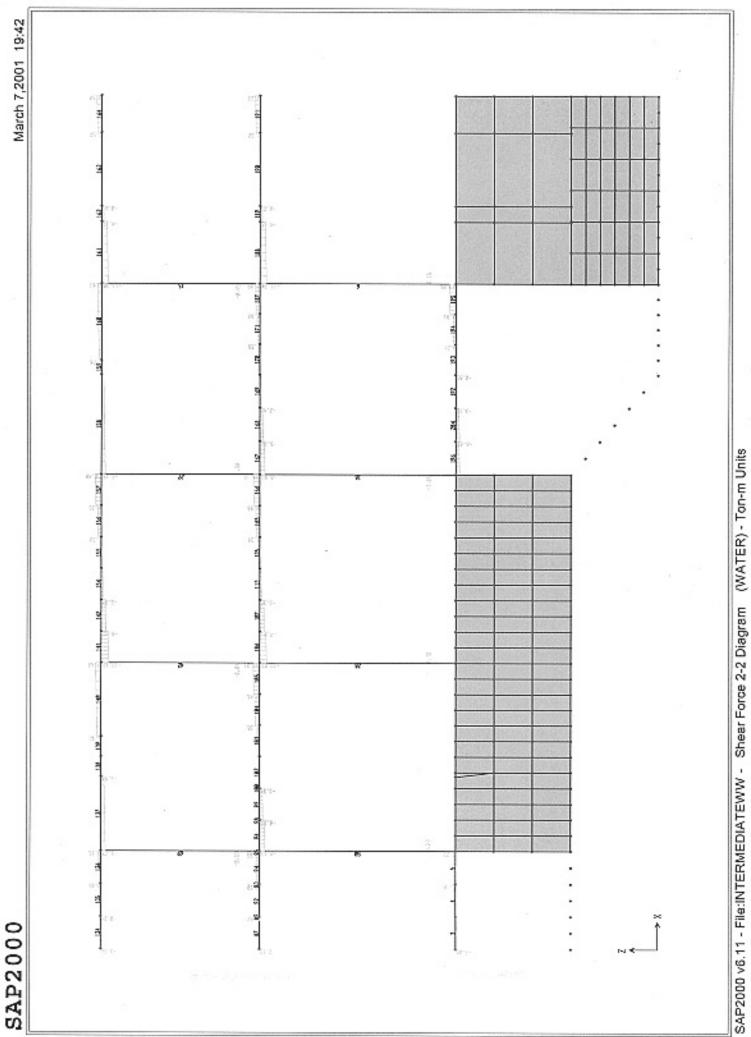


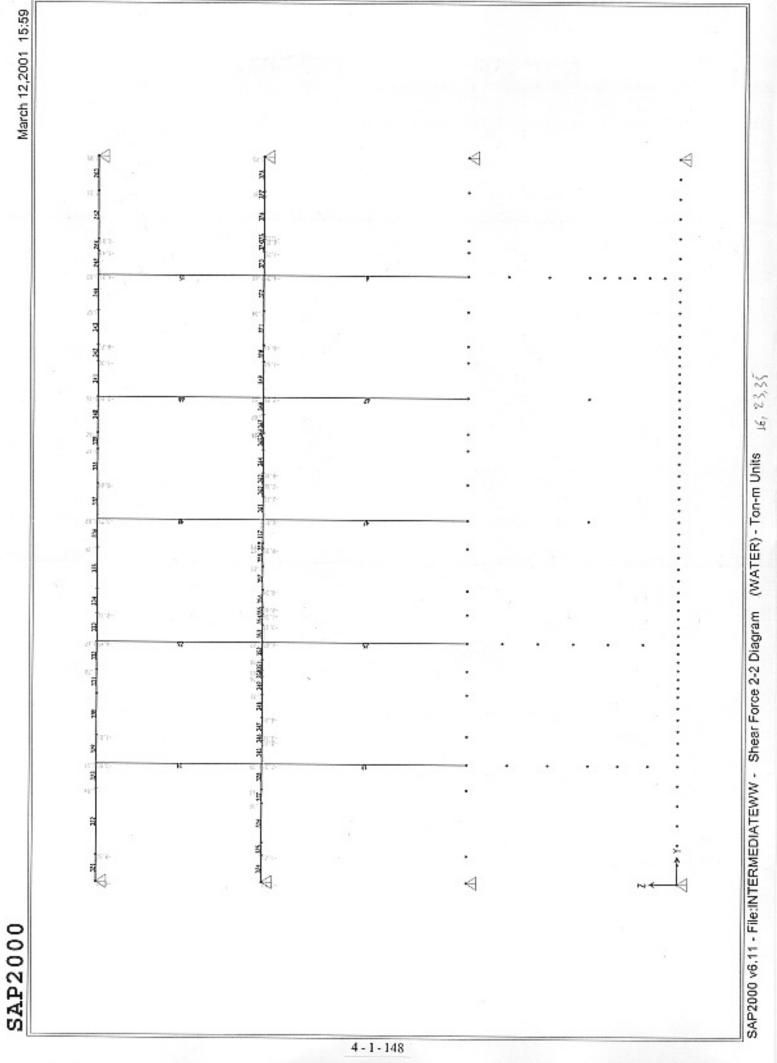




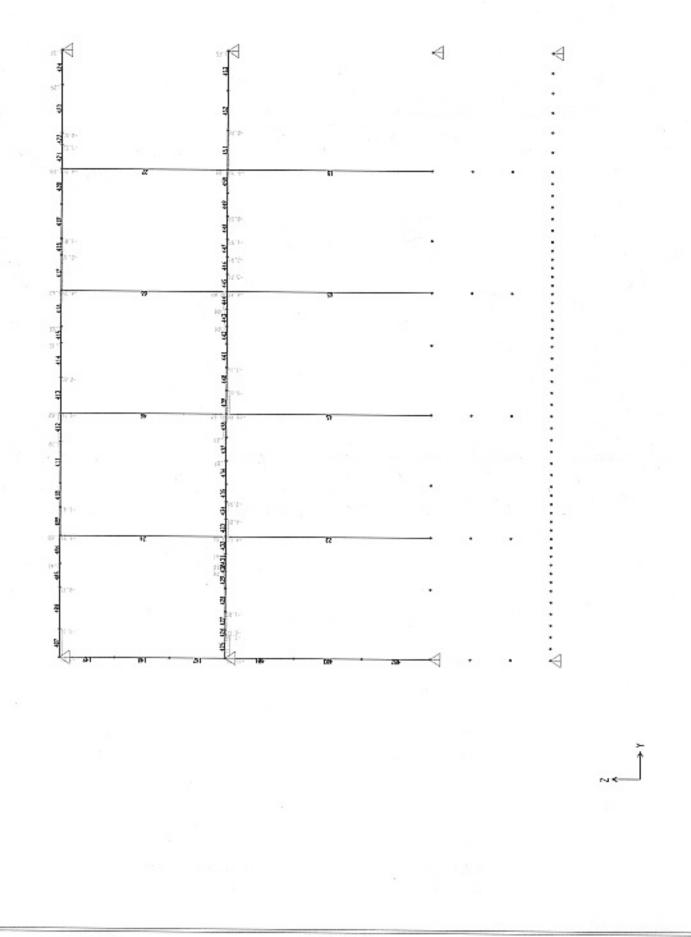






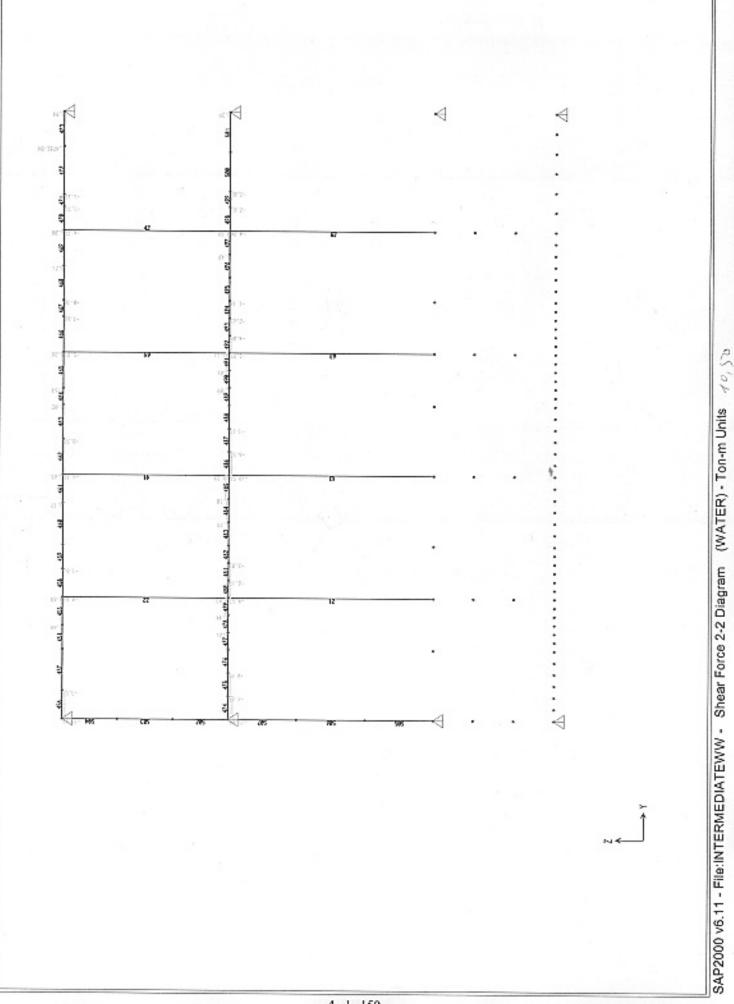


SAP2000 v6.11 - File:INTERMEDIATEWW - Shear Force 2-2 Diagram (WATER) - Ton-m Units



March 12,2001 15:59

March 12,2001 15:59


16,65

SAP2000 v6.11 - File:INTERMEDIATEWW - Shear Force 2-2 Diagram (WATER) - Ton-m Units

SAP2000

SAP2000

Calculation for Intermediate pumping station

(The calculation based on Japanese standard)

1-parameters for calculatio	n:			
Concrete: Grade 250,	Rn =		70	
	RS=		3.6	
Reinforcement type JIS:	Ra=		1600	
Back fill sand: $\gamma_s =$	1.80T/m3	;	Coefficient of earth pressure at rest Ko=	0.5
Internal friction	20deg			
2-Load calculation (Base of	n Japanese	sta	ndard):	
3-Calculation for bar arran	gement:			
5-carculation for bar allan	gement:			

Base on attached results of shell forces analised by SAP2000, choosing the most dangerous forces for calculation: $A = M/P bb^2$

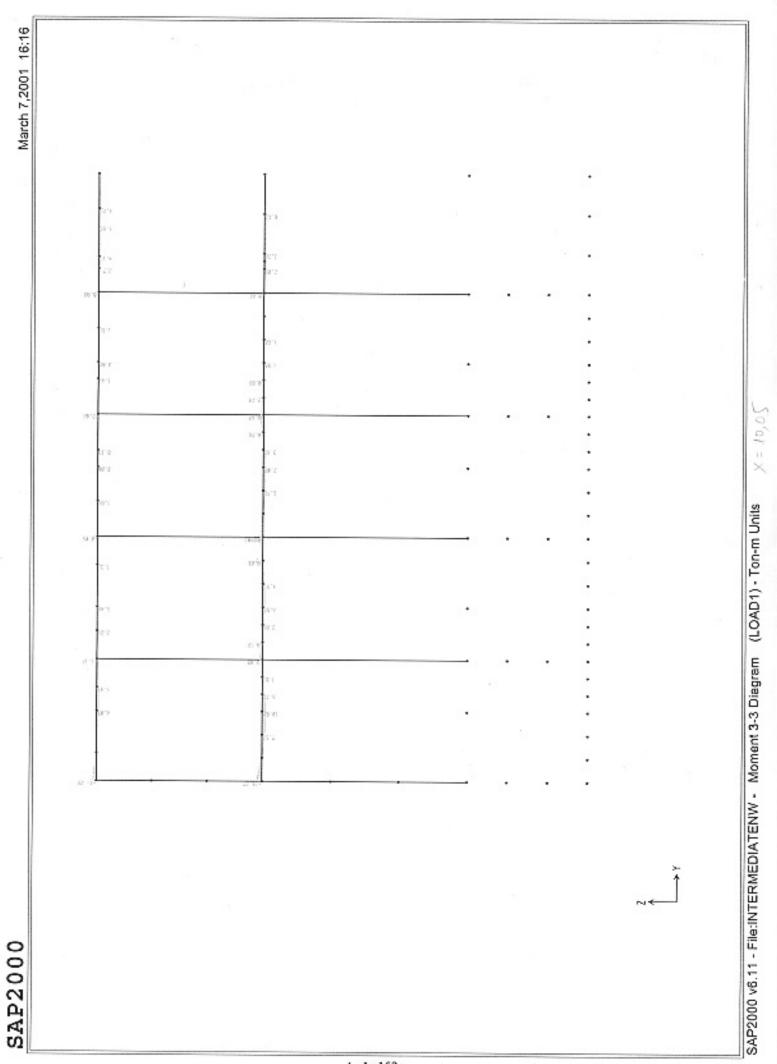
$$A_n = M/R_nbh$$

Fa= M/yRaho

Where, M: Maximum bending moment(T.m)

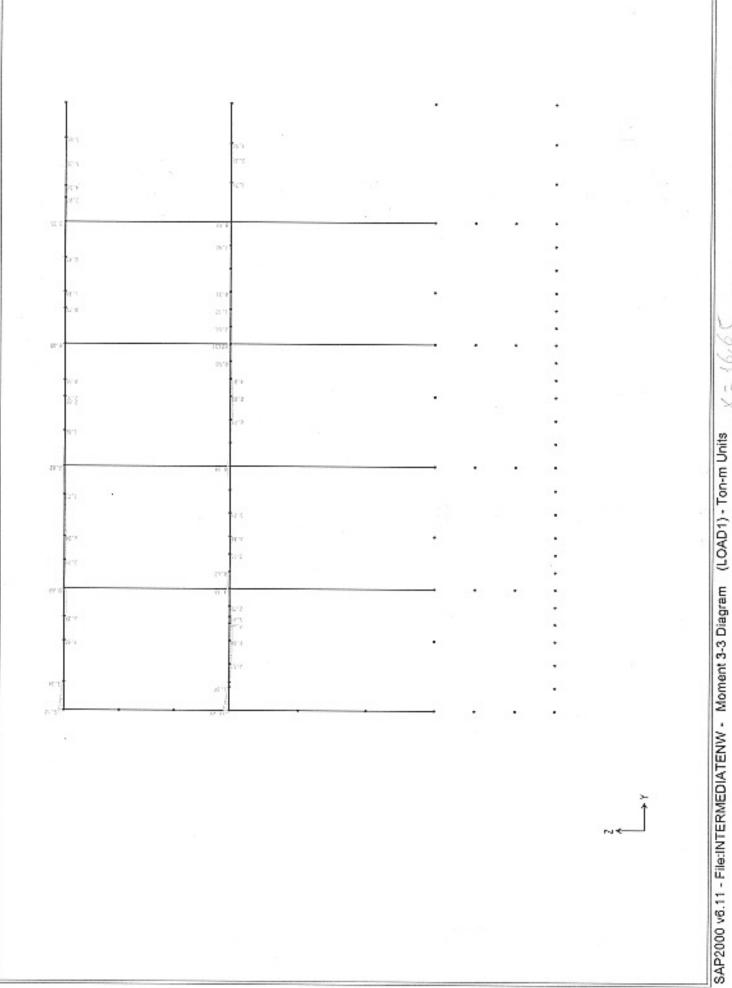
ho: Effective depth of bearing area(cm)

ho= (Element thickness-Cover thickness)

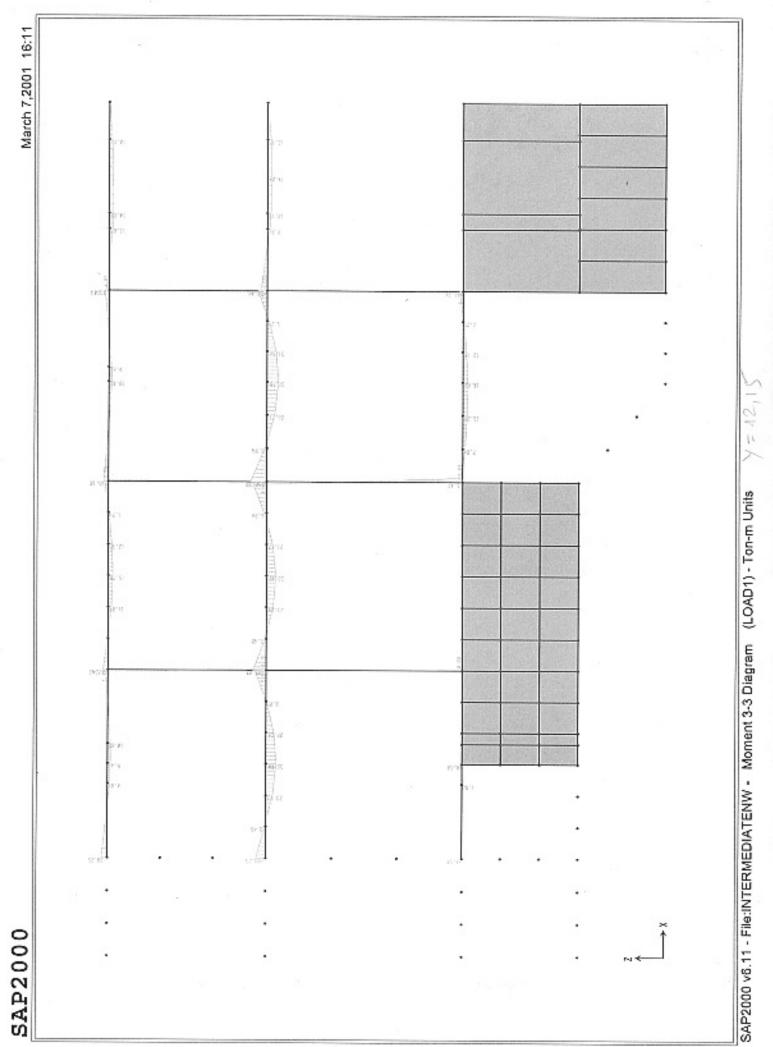

b: Width of calculated area(cm)

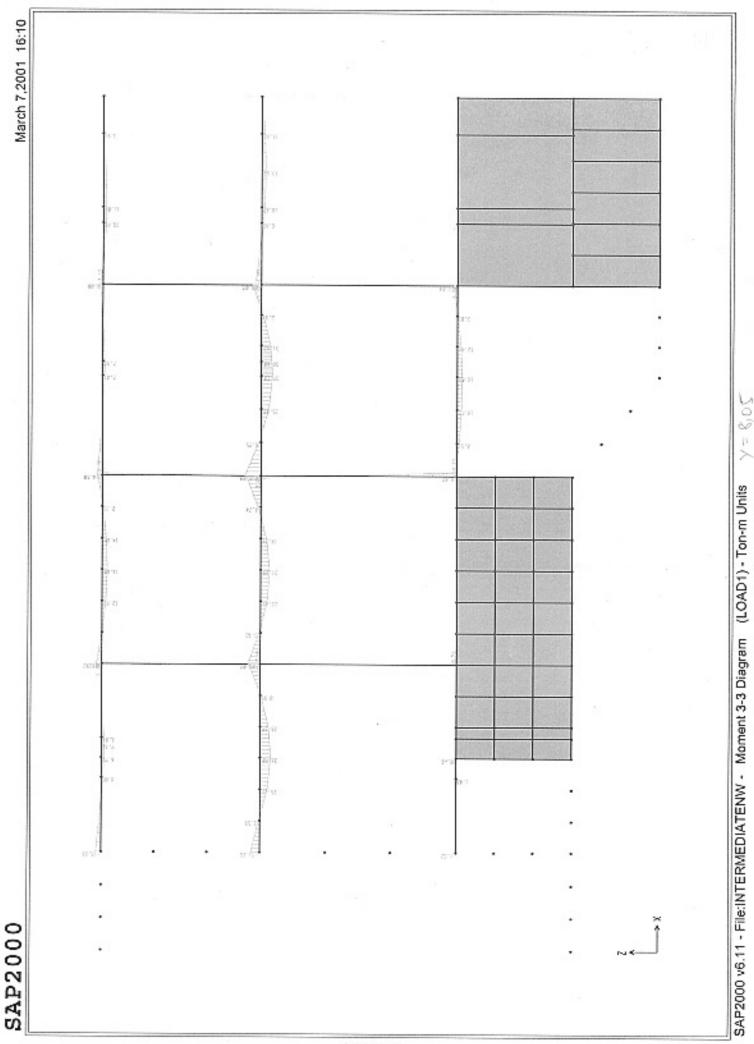
Required area of reinforcement:

Where: $\gamma = 0.5 + ((1-2Ao)^{1/2})/2$

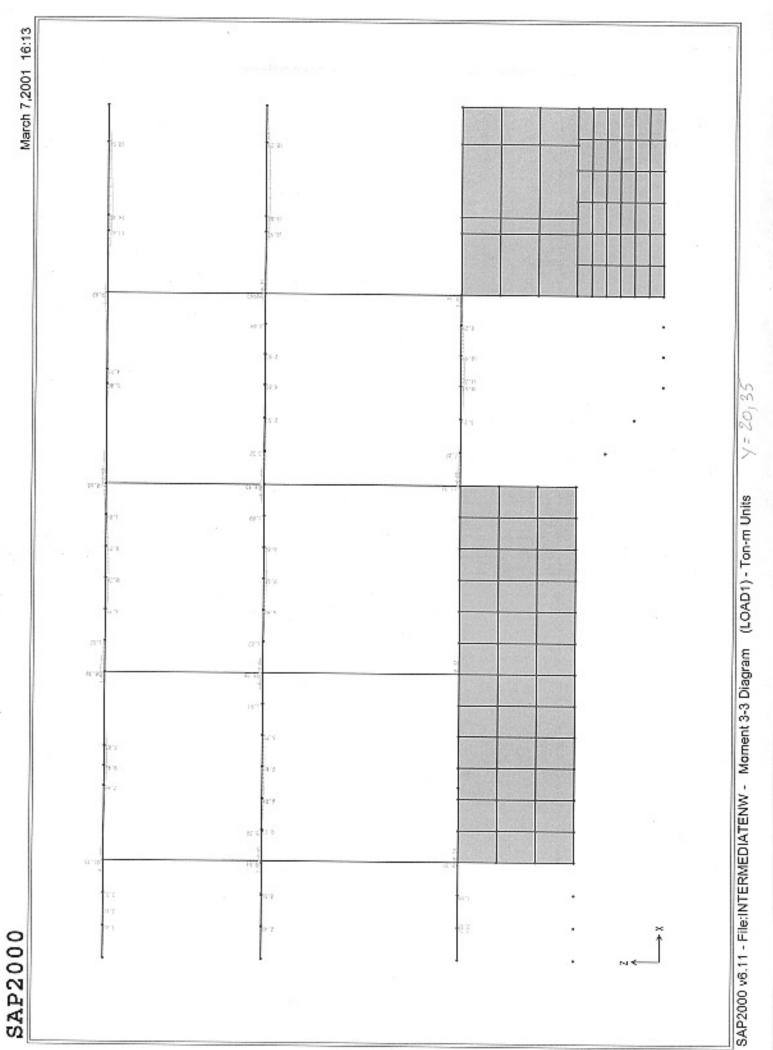

			JLAD				
AREA	LOCATION	Values	Ao	γ	Fa	Bar arrar	igement
m2		(T.m)			(cm ²)	φ(mm)	а
	BOTTOM	52.970	0.0649	0.966	30.32	25	125
h=1.20	SLAB	50.990	0.0625	0.968	29.14	25	125
		36.660	0.0449	0.977	20.75	25	250
	(A 44)	19.710	0.0241	0.988	11.04	25	250
	1	1.770	0.0478	0.976	4.93	14	250
h=0.30	SLAB LEVEL	1.640	0.0443	0.977	4.56	14	250
100	2.3	1.450	0.0392	0.980	4.02	14	250
		1.360	0.0367	0.981	3.77	14	250
	SLAB LEVEL	4.160	0.1123	0.940	12.02	14	125
h=0.30	-3.7	3.740	0.1010	0.947	10.74	14	125
		2.100	0.0567	0.971	5.88	14	125
		1.930	0.0521	0.973	5.39	14	125
	SLAB LEVEL	2.960	0.0799	0.958	8.39	14	125
h=0.3	-10	2.780	0.0751	0.961	7.86	14	125
		2.040	0.0551	0.972	5.71	14	250
		1.880	0.0508	0.974	5.25	14	250

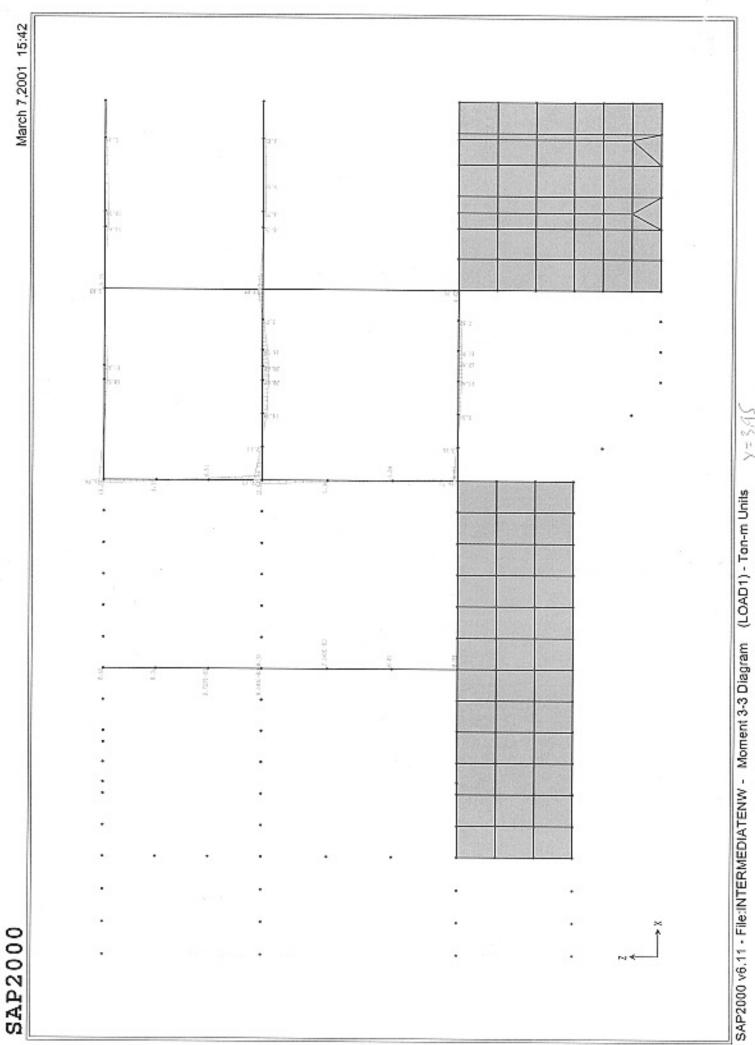
SLAB




March 7,2001 16:15


SAP2000

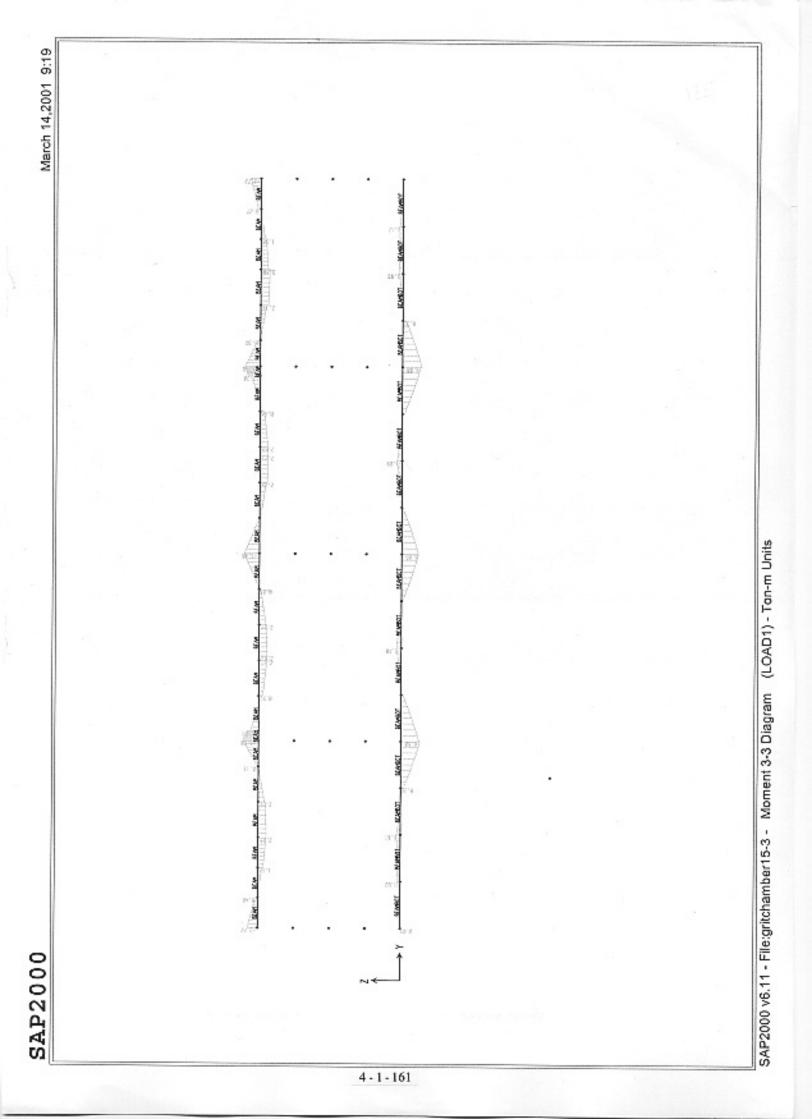



March 7,2001 16:14 1.4 71 SAP2000 v6.11 - File:INTERMEDIATENW - Moment 3-3 Diagram (LOAD1) - Ton-m Units 8 10 ŝ SAP2000

Calculation for bar arrangement for gritchamber

Base on attached results of shell forces analised by SAP2000, choosing the most dangerous forces for calculation:

$$A_o = M/R_a bh_o^2$$


Where, M: Maximum bending moment(T.m) h_o: Effective depth of bearing area(cm) h_o= (Element thickness-Cover thickness) b: Width of calculated area(cm)

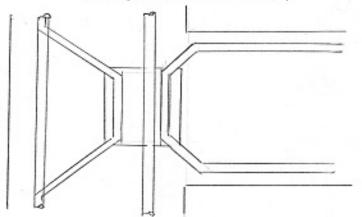
Required area of reinforcement: Fa= M/yRaho

Where: $\gamma = 0.5 + ((1-2Ao)^{1/2})/2$

NAME OF	Values	Ao	Ŷ	Fa	Bar an	rangement
ELEMENT	(T.m)			(cm ²)	φ(mm)	quantity
b=0.40	6.960	0.0307	0.984	4.91	20	3
h=1.00	1.740	0.0072	0.996	1.17	20	3
Beam 40x100						
b=0.40	5.660	0.0720	0.963	6.93	20	3
h=0.60	2.880	0.0366	0.981	3.46	20	3
Beam 40x60						
b=1.00	2.970	0.0802	0.958	8.42	14	8
h=0.30	3.520	0.0951	0.950	10.07	16	8
Slab thickness 0.3m						
b=1.00	12.430	0.1230	0.934	21.88	22	8
h=0.50	1.950	0.0527	0.973	5.45	12	4
Bottom Slab						
b=1.00	12.430	0.1631	0.910	25.86	22	8
h=0.40	3.520	0.0951	0.950	10.07	16	8
Waal thickness 0.4m						

Beams and Slabs

Calculation of shear connector


1. Bottom Slab

Shearing Force 20 t (from structure calculation)

(1) Calculation of anchor bar

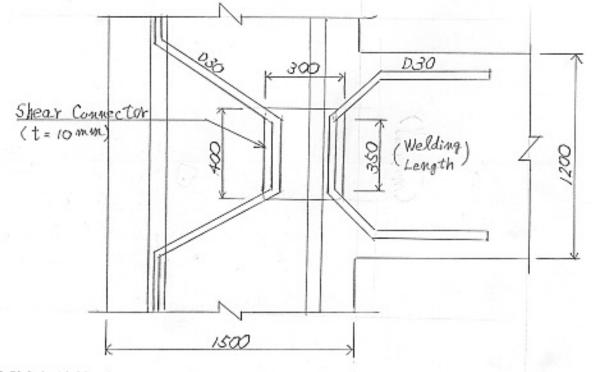
qa = fsa × a Here a : Effective Area of Bolt (cm², Reinforcement Bar) Fsa : Allowable Shearing Stress of Bolt

(800 kg/cm2, Reinforcement Bar)

2 bars for 1 plate

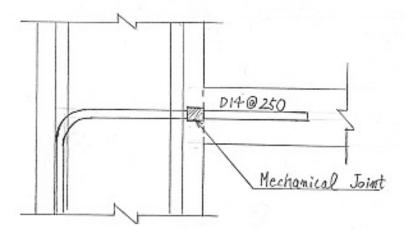
Necessary Bolt area (cm2)

Arec = 20,000 kg / 800 kg = 25.0 cm2Use D 30 (A = 7.07 cm2) $25.0 \text{ cm}2 / 7.07 \text{ cm}2 = 3.54 \rightarrow \text{ use 2 plates / 1m}$


(2) Necessary area of plate

Allowable shearing stress of plate 800 kg / cm2 (SS400) Necessary area

Arec = 20,000kg / 800 kg = 25.0 cm2 Use L = 25.0 cm, t = 1.0 cm


(3) Necessary welding length

Allowable shearing stress of welding spot 720 kg / cm2 (SS400) Thickness of welding a $(4mm \times both side = 8 mm (0.8cm))$ $L = 20,000 kg / (720 \times 0.8 cm) = 34.7 cm$ use 35 cm

2. B2 Slab (- 10.00 m)

 $\begin{array}{ll} \mbox{Shearing force} & 2.0 \ t \ (\ Including \ slab \ weight \) \\ \mbox{Anchor Bar} \ (\ Shear \ Bar \) \ D \ 14 \ space \ 250 \ mmmmmmmmmmmmmmmm (\ A = 1.54 \ cm2/1 \ bar \) \\ \ 1.54 \ cm2 \ \times \ 800 \ kg/m2 \ \times \ 4 = 4.98 \ t/m \ > 2.0 \ t/m \\ \end{array}$

3. B1 Slab (- 3.70 m)

(1) Beam and slab

(1) - 1 Electric room part

Beam shearing force 15.88 t

D 28 (A = 6.16 cm2) n = 4

6.16 cm2 × 800 kg/m2 × 4 = 19.71 t/m > 15.88 t/m

Slab shearing force 5.00 t D 16 (A = 2.01 cm2) space 250 2.01 cm2 × 800 kg/m2 × 4 = 6.43 t/m > 5.00 t/m

(1) - 2 Other part

Beam shearing force10.75 tD 22 (A = 3.80 cm2)n = 43.80 cm2 × 800 kg/m2 × 4 = 12.16 t/m > 10.75 t/mSlab shearing force2.00 tD 14 (A = 2.01 cm2)space 2501.54 cm2 × 800 kg/m2 × 4 = 4.98 t/m > 2.00 t/m

4. 1F Slab (+2.30 m)

(1) Beam

Beam shearing force 10.13 t D 22 (A = 3.80 cm2) n = 4 3.80 cm2 × 800 kg/m2 × 4 = 12.16 t/m > 10.13 t/m

(2) Beam

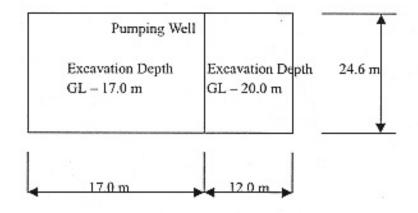
Slab shearing force 2.00 t

D 14 (A = 2.01 cm2) space 250

1.54 cm2 × 800 kg/m2 × 4 = 4.98 t/m > 2.00 t/m

4.1.4 Spread Foundation

Spread Foundation Calculation

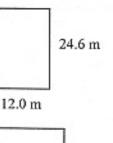

(a) Condition of soil of IWPS site

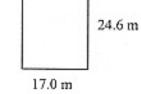
Typical soil condition of IWPS site is shown in bellow.

n	C.	р-	α_1	1
12	0		ω.	L.

OH Layer	rw = 1.40 t/m3GL-1.20 m (WL)
(Upper Layer)	
	- 2.10 m (Average)
OH Layer	rw = 2.00 t/m3
(Lower Layer)	C = 0 t/m2 (asuming)
	N = 5 (Average)
	Assuming of internal friction angle
	Equation in Japan
	$\phi = 15 + \text{square root}(15 \times \text{N}) = 23.6$
	Equation of Peck
	$\phi = 0.3 \times N + 27 = 28.5$
3 6 3	Equation of Dunham
	$\phi = 15 + \text{square root}(12 \times \text{N}) = 22.7$
18 C	
1.52	Use $\phi = 20^{\circ}$
- 1946 - 1	
S	
	– 7.10 m
	rw = 2.00 t/m3
CL Layer	C = 0 t/m2 (assuming)
(Clayer Sand)	
	N = 10 (Base slab depth)
	Assuming of internal friction angle
	Equation in Japan
	$\phi = 15 + \text{square root}(15 \times \text{N}) = 27.2$
	Equation of Peck
	$\phi = 0.3 \times N + 27 = 30.0$
	Equation of Dunham
	$\phi = 15 + \text{square root}(12 \times \text{N}) = 26.0$
1 1	

- (b) Allowable Bearing Capacity calculation
- · Pumping Well Part
 - * Calculation Condition

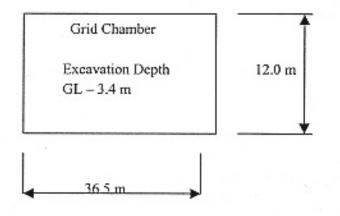

* Allowable Bearing Capacity of Soil


qa = 1/3 ($\alpha \times C \times Nc + \beta \times r1 \times B \times Nr + r2 \times Df \times Nq$)

case 1

Case 2

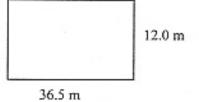
Rectangular foundation



Case 1 $\alpha = 1.0 + 0.3 \times 12.0/24.6 = 1.15$, $\beta = 0.5 - 0.1 \times 12.0/24.6 = 0.45$ C = 0 t/m2, r1 = 0.9 t/m3, r2 = 1.0 t/m3, Df = 20.0 m $\phi = 25^{\circ}$ then Nc = 9.9, Nr = 3.3, Nq = 7.6 B = 12.0 m qa = 1/3 ($1.15 \times 0 \times 9.9 + 0.45 \times 0.9 \times 12.0 \times 3.3 + 1.0 \times 20 \times 7.6$) = 52.7 t/m2 Case 2 $\alpha = 1.0 + 0.3 \times 17.0/24.6 = 1.21$, $\beta = 0.5 - 0.1 \times 17.0/24.6 = 0.43$ C = 0 t/m2, r1 = 0.9 t/m3, r2 = 1.0 t/m3, Df = 17.0 m $\phi = 25^{\circ}$ then Nc = 9.9, Nr = 3.3, Nq = 7.6 B = 17.0 m

qa = 1/3 ($1.21 \times 0 \times 9.9 + 0.45 \times 0.9 \times 17.0 \times 3.3 + 1.0 \times 17 \times 7.6$) = $50.6 \ t/m2 > 11.70 \ t/m2 \ OK$

· Grit Chamber Part

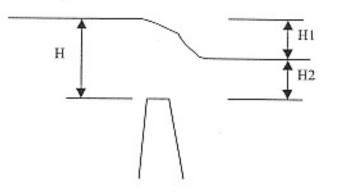

Calculation Condition

Allowable Bearing Capacity of Soil

 $qa = 1/3 (\alpha \times C \times Nc + \beta \times r1 \times B \times Nr + r2 \times Df \times Nq)$

Rectangular foundation

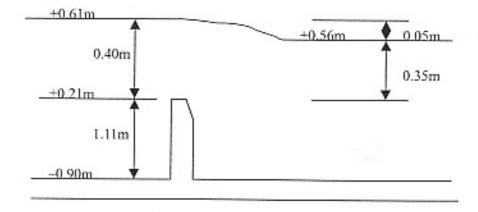
 $\begin{aligned} \alpha &= 1.0 \pm 0.3 \times 12.0/36.5 = 1.10, & \beta &= 0.5 - 0.1 \times 12.0/36.5 = 0.47 \\ C &= 0 \ t/m2, & r1 = 1.0 \ t/m3, & r2 = 0.74 \ t/m3, & Df = 3.4 \ m \\ \varphi &= 20 \ ^\circ & then \quad Nc = 7.9, & Nr = 2.0, & Nq = 5.9 \\ B &= 22.0 \ m \end{aligned}$


qa = 1/3 ($1.10 \times 0 \times 7.9$ + $0.47 \times 1.0 \times 12.0 \times 2.0$ + $0.74 \times 3.4 \times 5.9$) = 8.70 t/m2 > 4.56 t/m2 OK 4.1.5 Grit Chamber Over Flow Weir Calculation of Grit Chamber Weir

(a) Design Flow Rate (Hourly Maximum) Design hourly maximum flow rate is shown in bellow.

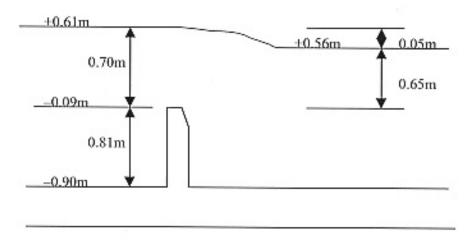
Phase 1	191,621 m3/day	(2.218 m3/s)
Phase 2	639,800 m3/day	(7.405 m3/s)
Final phase	698,618 m3/day	(8.086 m3/s)

(b) Result of Calculation of Weir Length

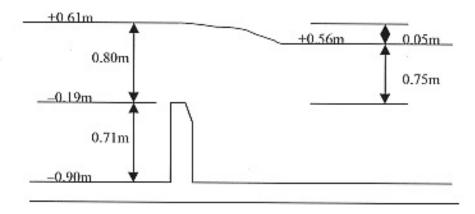

Weir length is calculated as submerged weir.

L = Q / 1.8 (H1 +1.4 × H2) × SQRT H1

(c) Result of calculation


Phase 1

Necessary Weir Length L = 10.2 m


4 - 1 - 168

Phase 2

Necessary Weir Length L = 19.1 m

· Final Phase

Necessary Weir Length L = 18.3 m

(c) Calculation of Weir Length

• Phase 1 H = 0.40m, H1 = 0.05m

L = 2.218 (m3/s) / 1.8 ($0.05 + 1.4 \times 0.35$) × SQRT 0.05 = 10.2 m

• Phase 2 H = 0.70m, H1 = 0.05m

L = 7.405 (m3/s) / 1.8 (0.05 + 1.4 \times 0.65) \times SQRT 0.05 = 19.1 m

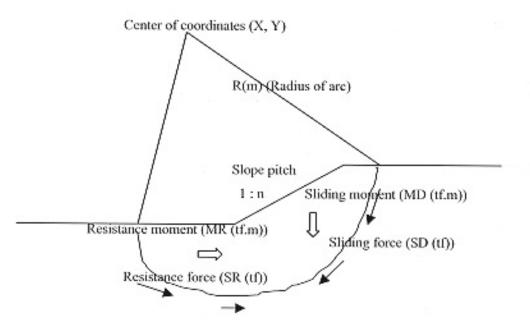
.

Final Phase
H = 0.80m, H1 = 0.05m

L = 8.086 (m3/s) / 1.8 (0.05 + 1.4 \times 0.75) \times SQRT 0.05 = 18.3 m

4.1.6 Slope Sliding

Slope stability analysis


Slope stability analysis is used to examine a stability of soil slope of open cut method or to examine a stability of soil slope of filling of soil.

It is calculated as a slope sliding of soil.

The result of calculation is checked by comparison of sliding force (moment) and resistance force (moment). Safety factor (SF) is a ratio of sliding moment and resistance moment. Necessary safety factor is

 $\label{eq:Forpermanent} For permanent structure \qquad Fs \geq 1.2$ For temporary structure \qquad Fs \geq 1.0

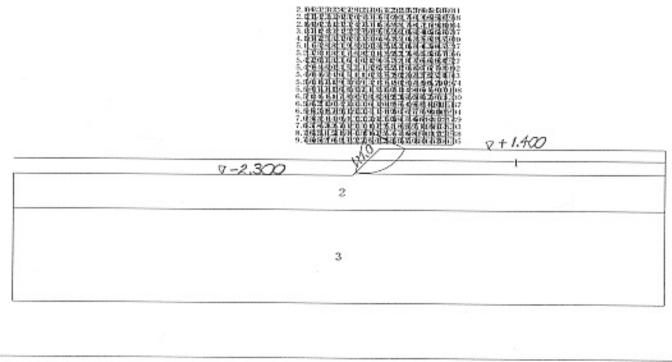
The typical calculation section is shown below

The calculation is done to meet a minimum safety factor in condition of assumed coordinates (X, Y) and radius of are (m). Also each soil condition is considered.

Result of calculation for Grid chamber part is shown in next page.

Calculation conditions are

Existing Ground Level	+ 1.40 m
Excavation Level	- 2.30 m
Slope Pitch	1:1.0
SF = 1.01 (For temporary	structure O K)


Intermediate Pumping Station

Grit Chamber Slope Sliding Calculation

Pump-lperl

	the second se		
安全率(モーノントの比)	Fs	1.01	(Minimum safety factor)
円弧中心座標	X (m)	-2.00	(Cordinate of the center)
円弧中心座標	Y (m)	4.00	()
円弧半径	R (m)	6.00	(Radius of arc)
抵抗力	SR(tf)	4.81	(Resistance force)
抵抗モーメント	MR(tf ·m)	28.84	(Resistance moment)
滑り力	SD(tf)	4.81	(Sliding force)
起動モーメント	MD(tf ·m)	28.62	(Sliding moment)
抑止力	(tf)	0.01	(Deterrent)

No	ブロック名称	$\gamma t (tf/m^3)$	$CO(tf/m^2)$	$k1(tf/m^3)$	ou(度)
1	oh (layer)	1.40	0.60	0.00	0.00
2	cs (layer)	2.00	2. 20	0.00	0.00
3	s (layer)	2.00	0, 00	0.00	30.00

-		-2.10					· · · · · · · · · · · · · · · · · · ·		 														
		VEL =															 						
		LON LE							 								 						
		34 Bol															 						
	· 信	2				::																	
©o	-2100										X	2	1		::	E		:		::			
								:::						::			 			11	::		
13 18 F	-8500	::::	:::		· ·	•••			 											::			
Case	×													11		E	 	:		::	::	::	
習自	P	::::	:::	::		::	:::			::	::	-		::			 						
廬															: : : : : :						· · · · ·		
2 2	NOO	::::	:::					:::				-		::			 	: :					
	(a# long																						
~ ⊕ 11	0,		:::	:::			::		 	::	::	-											
	9- 9+ 9-								 					::				:::	::				
	No.								 								 						• • •
6 t 2	11 入力 国居住 国経系								 			-					 						•
Д Б	四田田								 :::	: :				:: 			 						
9 20	5			:::	11		::		 ::	::				::	::		 ::		::				-

		1 - 2,30																											1							••••••				
		モレー		••••••													••••••								>			••••••												
		R.																																						
		AUNTION																																						
		AVA																																						
		Щ						Î		:	:											- 1																		
	1						••••••									****														•										
	in the second	1	<u>.</u>	Ľ		-	:	+			-	i		-		i	-		-	i	-	1	Į.		ļ		i		:	-		:			-			-		
(c)~	-2300	· · · ·														••••••				•••••			2.	1	0					•					••••••		-			
· · · · · · · · · · · · · · · · · · ·	-3.700 Y																:																	•••••	•••••					
1	×					••••••	• • • •								• • • •	•••••••••••••••••••••••••••••••••••••••	•																							
國國	•															••••	••••			••••••				•			•					• • • • •								
																											•••••													
2	100%					• • • • •				• • • • •																						• • • • •								
1	出出																												• • • • •						•••••		•••••			
1	8- 8- 10 10 10					• • • •				• • • •									••••••	•								-	•								••••••			
9	594005																		• • • • •							1.0.2	20					0.0	n							
DCHEEDERS III EA FE	日間								• • • • •													•••••									•••••			•••••••••••••••••••••••••••••••••••••••					:	
LOHEDERS! I HA	国人刀 圆柄性 回結果								• • • • •							•												-	:											
10	11 V.77	275	20.02		22.5.2		20.0-1		175	-			1					-	:			-	-	:		-	-		÷					•		:	1		-	• • •

4 - 1 - 174

					Overst	CH2CHV	i	- III -				1000							
UNDERGROUND LEUEL = 10	B H		0 0 9 5 1	1 .	調問			* ×	× 0000	so L									
	:::										K	Hole I	SC.P.C	1.001	1.1.1		111	::\$	1.0
	: : :										1	IN N		1445		Z.E.	11	2	
	•	:																	
	• •																		
	: :			::															
	• •																		::
	•																		: :
				:															
	: :												:						
	-																		
	• •								:		:								
	÷																		
													:						-
	•												::						
									•••••										-
	•					••••••													
										1112									
																			1
	-																		
												:							:
																			::
	,	••••••		:															: :
															•			:	-
				:															
																			:
				:	••••••						•••••								
																		•	:
				•••••															
	1			1														•	
	: ;										:								
	;	• • • • •		;															
				•															

ENGINEERING GEOLOGY CROSS SECTION A-A **Intermediate Sewage Pumping Station Site** SCALE: Vertical 1/300 Horizontal 1/500 v -1.2 → -1.0 Elevatic N-Value N-Value GWL 6WL 10 20 30 40 50 ∀ +1.40 3.0 10 20 30 40 0 50 0.0 Tw= 1.40 m 2 N=1 Kg/cm² C= 0.60 m 2 E= 7. Kg/cm² ::3 ORGANIC 1.5 0.0 CLAY 2.10 7 3.5 Yw = 2,00 t/4m3 N=5 -3.0 CLAYE c=2.2 t/m2 4 E= 35 1-3/cm2 SAND -6.0 7.10 γ. - 8.5 Yw = 2,00 1/m3 -9.0 C= 2,0 Vm2 -12. 入(全体)=16 (4a) E = 112 Egicm2 P = 30° -15.1 SILTY -18. N(上部)=10 SAND E= 70 Kg/m2, \$= 27° -21.1 反(下部)=20 -24.1 E = 140 K8/cm2 \$= 32° -27.1 -30 -33.1 -36.1 -39.1 R 40 ∇ 42.2 Tw=2.0 t/m3 CLAY -42.5 C = 7.0 t/AN2 -45.1 N= 48 E= 336 Kalom2 -48.0 50.0 DSP-01 50 +1.4070

4 - 1 - 176