4.1.2 Diaphragm Wall

CONTENTS

1. INTRODUCTION	4-1-7
2. DESIGN CONDITION	4-1-8
2-1 Design Codes	
2-2 Design Parameters	
2-3 Load Catergories and Combination	
2 5 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
3. SHAPE AND DIMENSIONS	4-1-18
4. STUDY ON LENGTH OF WALL	4-1-25
4-1 Study on penetration length by earth pressure balance	
4-2 Study on boiling	4-1-35
4-3 Study on penetration length by elasto-plastic analysis	
4-4 Summary of penetration length	
5. STUDY ON DIAPHRAGM WALL IN THE TEMPORARY CONDITION	4126
5-1 Impute data	
5-2 Calculation step	
5-3 Calculation results	
5-4 Check on stress	4-1-66
6. STUDY ON WALING AND STRUTS	4-1-74
6-1 Study on waling	4-1-74
6-2 Study on struts	4-1-78
6-3 Study on brace	4-1-82
7. STUDY ON INTERMEDIATE PILES	4-1-84
7-1 Shape and Dimensions	
7-2 Study on No.1 pile	
7-3 Study on No. 2 pile	
8. STUDY ON SECONDARY COFFERDAM	
8-1 Shape and Dimensions	
8-2 Study on penetration length by earth pressure balance	
8-3 Study on boiling	
8-4 Summary of penetration length	4-1-98
8-5 Study on secondary cofferdam	4-1-99
9. STUDY ON DIAPHRAGM WALL IN THE PERMANENT CONDITION	4-1-102
9-1 Impute data	
9-2 Section force	
	4_1_113

1. INTRODUCTION

In this paper, the design calculation of cofferdam for the intermediate sewage pumping station is made.

The cofferdam of the intermediate sewage pumping station will be constructed by diaphragm wall method. This cofferdam constructed by diaphragm wall is used as permanent wall of the intermediate sewage pumping station.

Calculation of diaphragm wall uses an Elasto-plastic analysis method.

2. DESIGN CONDITION

2-1 DESIGN CODES

- Structure design index (1998)
 Japan Sewage Works Agency.
- Temporary structure index for earth works of road (1990).
 Japan Road Association.
- Specification for Highway Bridges; Part 4 (1990).
 Japan Road Association.
- (4) Standard Specification for Design and Construction of Tunneling: Open cut method, (1996). Japan Society of Civil Engineering.
- (5) Standard Specification for Design and Construction of Concrete Structures: (1996). Japan Society of Civil Engineering.

2-2 DESIGN PARAMETERS

2-2-1 Structural Parameters

(1) Concrete

Show the allowable stress of concrete in slurry in the following table.

a) Temporary structure

 (N/mm^2)

Concrete Strength rete Strength in the water	f'ck	30	35	10
rete Strength in the water	1 CK			
		24	27	30
For bending moment		12.0	13.5	15.0
For axial force	O ca	10.0	11.0	12.5
When a diagonal re-bar is used.	τal	0.59	0.63	0.68
When a diagonal re-bar is not used.	та2	2.55	2.70	2.85
Bond stress of re-bar		1.80	1.95	2.10
۰	For axial force When a diagonal re-bar is used, When a diagonal re-bar is not used,	For axial force When a diagonal re-bar is used. tal When a diagonal re-bar is not used. ta2	For axial force 0'ca 10.0 When a diagonal re-bar is used. 10.59 When a diagonal re-bar is not used. 10.59 When a diagonal re-bar is not used. 10.59	For axial force σ'ca 10.0 11.0 When a diagonal re-bar is used. τa1 0.59 0.63 When a diagonal re-bar is not used. τa2 2.55 2.70

b) Permanent structure

 (N/mm^2)

			_		(1 vin
	Concrete Strength	f'ck	30	35	40
Con	crete Strength in the water	ICK	24	27	30
Compressive	For bending moment		8.0	9.0	10.0
stress	For axial force	o'ca	6.5	7.5	8.5
Shearing	When a diagonal re-bar is used.	τal	0.39	0.42	0.45
stress	When a diagonal re-bar is not used.	та2	1.70	1.80	1.90
	Bond stress of re-bar		1.20	1.30	1.40

c) When the temporary structure is used as the permanent structure.

 (N/mm^2)

	Concrete Strength		20	25	1 40
		f'ck	30	35	40
Con	crete Strength in the water	1 04	24	27	30
Compressive	For bending moment	_,	10.0	11.0	12.5
stress	For axial force	σ'ca	8.0	9.4	10.5
Shearing	When a diagonal re-bar is used.	τa1	0.49	0.53	0.56
stress	When a diagonal re-bar is not used.	та2	2.13	2.25	2.38
	Bond stress of re-bar		1.50	1.63	1.75

(2) Reinforcement

Show the allowable tension stress of reinforcement in the following table.

 (N/mm^2)

	Type of reinfe	orcement		SD295A,B	SD345	
D	esign yield strength	fy	450	500		
In the slurry	Tempor		270	300		
	When the	Temporary structure			225	250
	structure is used	Permanent	Long term	osa	160	160
	as the permanent structure	structure	Short term		270	300

(3) Steel

Show the allowable stress of steel in the following table.

 (N/mm^2) –

			(IVIIII		
Туре	e of steel	SS400	SM490		
Allowable	tension stress	210	280		
		1/r ≤ 18 210	1/r ≤ 16 280		
	e compressive	92 < 1/r	$16 < 1/r \le 79$ $185 - 1.2 (1/r - 16) \times 1.2$ $79 < 1/r$ $1,200,000$		
		$\frac{1,200,000}{6,700 + (1/r)^2} \times 1.5$ 1:Buckling length (mm) r:Radius of gyration (mm)	$\frac{1,200,000}{5,000 + (1/r)^2} \times 1.5$ I :Buckling length (mm) r :Radius of gyration (mm)		
	Tension side	210	280		
Allowable Bending stress	Compression side	$1/b \le 4.5$ 210 $4.5 < 1/r \le 30$ $140 - 2.4 (1/b - 4.5) \times 1.5$	$1/r \le 4.0$ 280 $4.0 < 1/r \le 30$ $185 - 3.8 (1/b - 4.0) \times 1.5$		
		l : Fixed distance of flange (mm) τ:Width of flange (mm)	l : Fixed distance of flange (mm) r:Width of flange (mm)		
Allowable	shearing stress	120	160		
Allowable	bearing stress	315	420		

(4) Sheet pile

Show the allowable stress of sheet pile in the following table.

 (N/mm^2)

	Тур	e of steel		SY295
Base- metal	All	owable ter	sile stress	270
part	Allow	able comp	ressive stress	270
		Butt welding	Tensile stress	240
	Factory welding		Compressive stress	240
Welding			Shearing stress	130
part		Site Butt	Tensile stress	216
	Site welding		Compressive stress	216
			Shearing stress	120

2-2-2 Ground Surface Level

The following original ground surface level is applied.

EL+2.00m

2-2-3 Ground Water Level

The following original ground water level is applied.

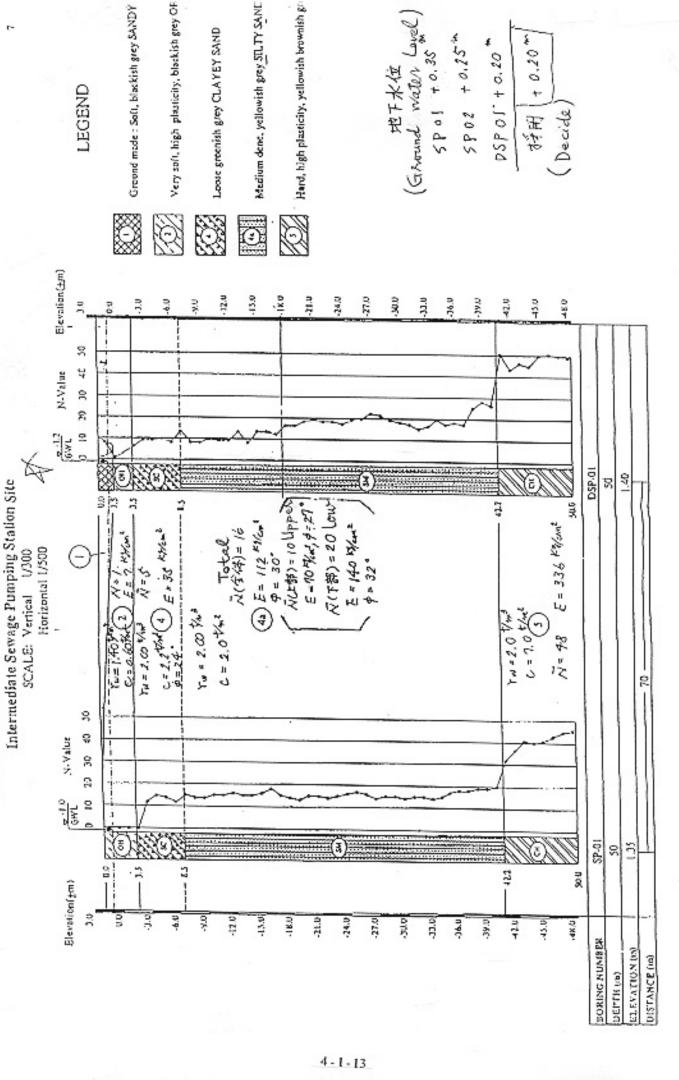
EL+0.20m

2-2-4 Geotechnical Parameters

A summary of the geotechnical parameters used for the structural analysis, is given in following table.

Table Geotechnical design parameters

Layer	Level	Depth (m)	γ _b (kN/m³)	N - value	φ' (deg)	C (kN/m ²)	E' _c (kN/m ²)
Made ground	EL+2.00m (GL) ~ EL - 0.10m	2.10	18.0 (9.0)	3	30	0.0	840
Soft clay	EL - 0.10m ~ EL - 2.10m	2.00	14.0 (5.0)	1	0	6.0	700
Soft clay	EL - 2.10m ~ EL - 7.10m	5.00	20.0 (11.0)	5	24	22.0	3,500
Medium Stiff clay (1st Clay)	EL - 7.10m ~ EL - 18.0m	10.90	20.0 (11.0)	10	27	20.0	7,000
Silty sand (1st Sand)	EL - 18.0m ~ EL - 40.8m	22.80	20.0 (11.0)	20	32	20.0	14,000
Very stiff clay (1st Clay)	EL – 40.8m ~	-	20.0 (11.0)	48	0	70.0	33,600


Legend:

 γ_b ... Bulk unit weight

 φ^\prime ... Effective internal friction angle

Cu ... Shear strength

E'c ... Drained Young's modulus for loading/reloading

ENGINEERING COLOGY CROSS SECTION A-A

Boring data

2-3 LOAD CATEGORIES AND COMBINATION

A load takes the following into consideration.

The categories with respective nomenclature are given as follows;

- (1) W ... dead load
- (2) Q ... live load
- (3) Pw ... water pressure
- (4) P ... carth pressure
- (5) T... other loads

Each load category can be divided into sub-groups that cover all expected actions and analysis purposes. Herewith, each load category is designated by a letter that represents the load category itself and an index number that assign it to a specific sub-group or analysis purpose. Generally, loads that occur together can group, prior to the actual analysis.

2-3-1 Dead load (W)

Self Weight (W1)

The volume used in calculating self-weights is based on the nominal dimensions of the structure.

$$W_1 = y \cdot V$$

In calculating the dead load due to self-weight, the following unit weight (y) is applied.

* Reinforced concrete	25.0 kN/m ³
* Mass concrete	23.0 kN/m3
 Back fill concrete 	24.0 kN/m ³
* Steel	78.5 kN/m3

2-3-2 Live load (Q)

A uniform traffic surcharge of 10 kN/m2 is applied.

2-3-3 Water pressure load (Pw)

Water pressure load is calculated as follows.

$$P_w = \gamma_w \cdot z_w$$

Where:

γw ... unit weight of water (=10.0 kN/m3)

zw ... depth below water table for the load case considered

2-3-4 Earth pressure (P)

(1) Soil Overburden (Pv)

The load due to weight of soil overburden in drained condition is calculated as follows.

Sand layer

$$P_{v} = \gamma_{b} \cdot z_{o} + \gamma' \cdot z_{w}$$

Clay layer

$$P_{v} = \gamma_{b} \cdot z_{o}$$

where:

γ_b ... Bulk unit weight of soil (given in section 2-2-4)

 γ' ... buoyant unit weight (= $\gamma_b - \gamma_w$)

γw ... unit weight of water (=10.0 kN/m3)

z ... depth from surface

zo ... depth from surface to water table

zw ... depth below water table

(2) Lateral Earth Pressure (PH)

a) Static earth pressure

Static earth pressure is calculated multiplying the soil overburden by the respective coefficient of lateral pressure (k_{os}) given in the following.

Sand layer

$$k_{os} = 1 - \sin \phi$$

where, \(\phi' : Effective internal friction angle

· Clay layer

N - value	k _{os}
N ≧ 8	0.5
4 ≧ N < 8	0.6
2 ≧ N < 4	0.7
N < 2	0.8

The static earth pressure load, PBS, is calculated as follows.

$$P_{H} = (P_{V} + q) \cdot k_{os}$$

where, q: live load

b) Active earth pressure

Active earth pressure is calculated multiplying the soil overburden by the respective coefficient of lateral pressure (k_o) given in the following.

Sand layer

$$k_{\infty} = \tan^2 (45 - \phi/2)$$

where, \$\phi\$: Effective internal friction angle

Clay layer

N - value	Shallower excavate de	Deeper than the excavate depth	
	Formula	pth k _{oal} Minimum	k _{ns2}
NP8	0.5 - 0.01H	0.3	0.5
4 ≦ N < 8	0.6 - 0.01H	0.4	0.6
2 ≦ N < 4	0.7 - 0.025H	0.5	0.7
N < 2	0.8 - 0.025H	0.6	0.8

The active earth pressure load, PH, is calculated as follows.

Sand

$$P_{H} = (P_{v} + q) \cdot k_{oa} - 2 \cdot c \cdot \sqrt{k_{oa}}$$

where, Pv : Vertical pressure.

q: Live load.

Clay

Shallower than the excavate depth

$$P_{H} = (P_{v_1} + q) \cdot k_{m_1}$$

Deeper than the excavate depth

$$P_{H} = (P_{v_1} + q) \cdot k_{out} + P_{v_2} \cdot k_{ou2}$$

where, Pvi : Vertical pressure of the shallower than the excavate depth.

Pv2: Vertical pressure of the deeper than the excavate depth.

c) Passive earth pressure

Passive earth pressure is calculated multiplying the soil overburden by the respective coefficient of lateral pressure (k_{op}) given in the following.

Sand and clay layer

$$k_{ap} = \frac{\cos^2 \phi}{\left[1 - \sqrt{\frac{\sin(\phi + \delta) \cdot \sin \phi}{\cos \delta}}\right]^2}$$

where, φ: Effective internal friction angle

δ: Frictional angle with the cofferdam and the soil (=φ/3)

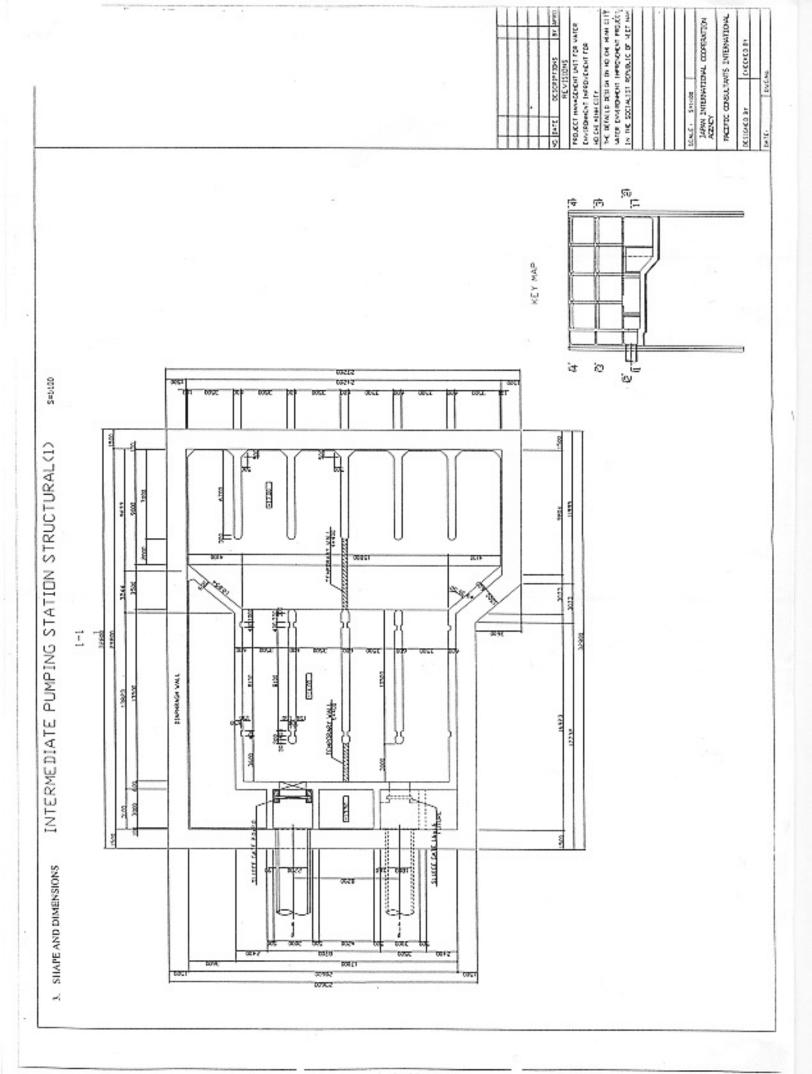
The active earth pressure load, PH, is calculated as follows.

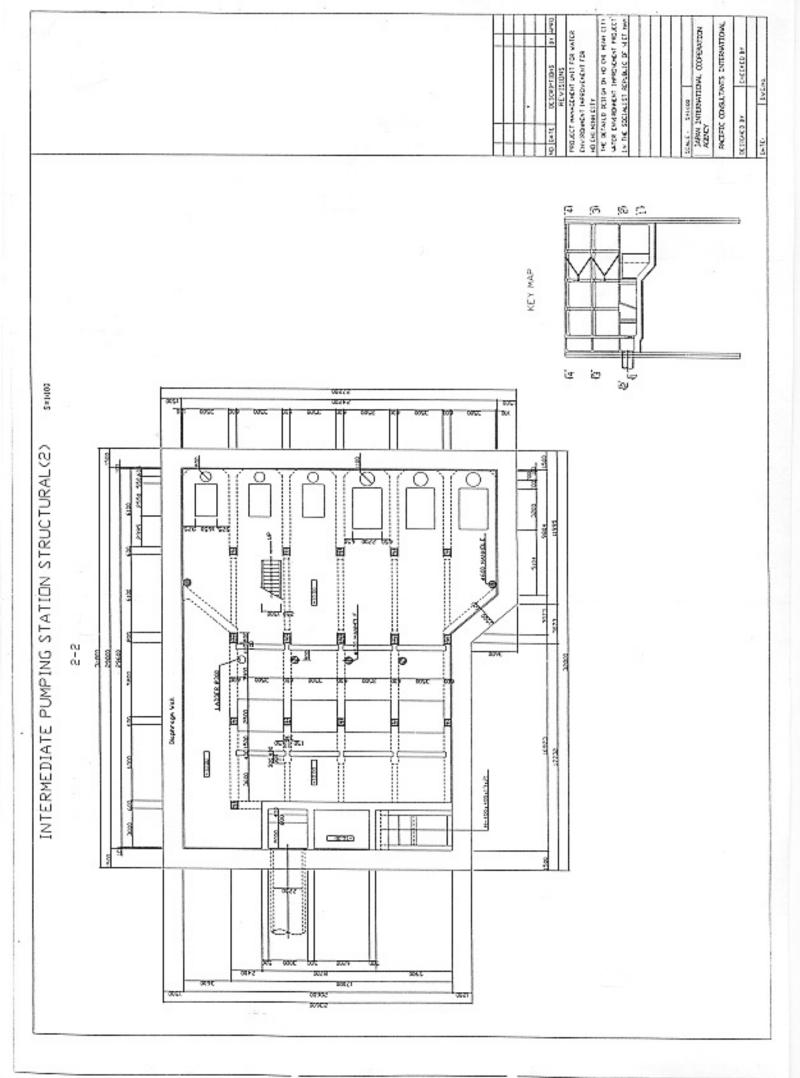
Sand and clay layer

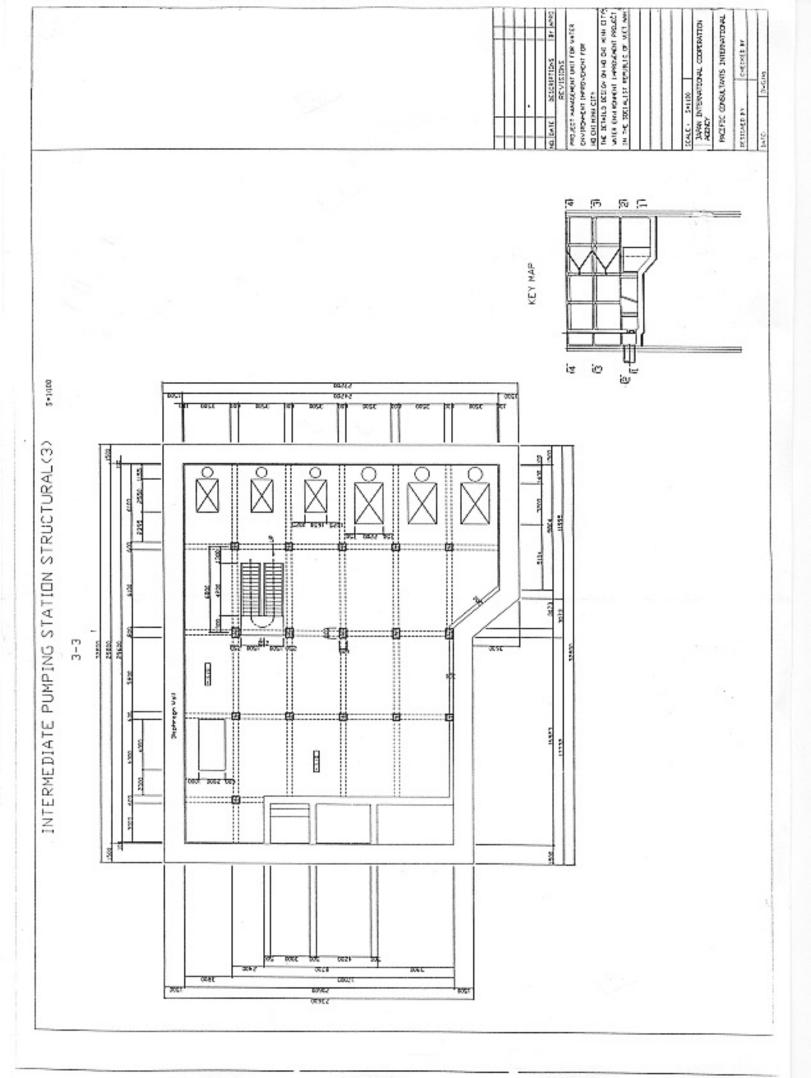
$$P_{H} = (P_{V} + q) \cdot k_{op} + 2 \cdot c \cdot \sqrt{k_{op}}$$

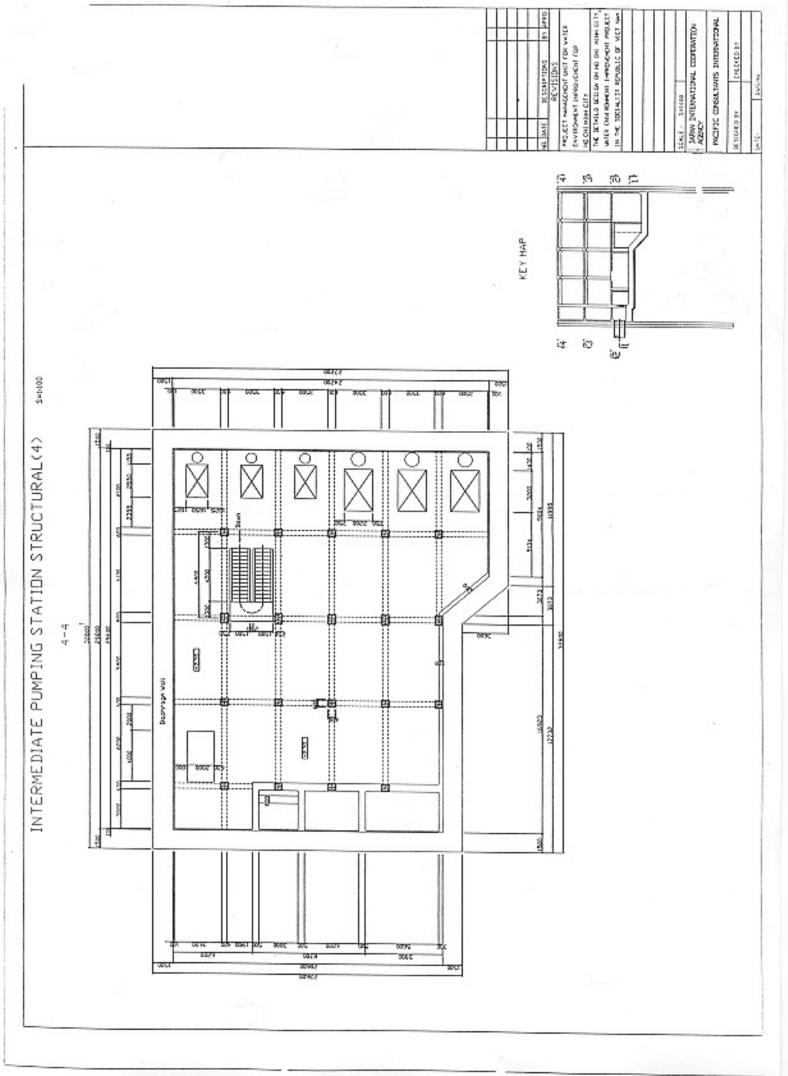
2-3-5 Other loads (T)

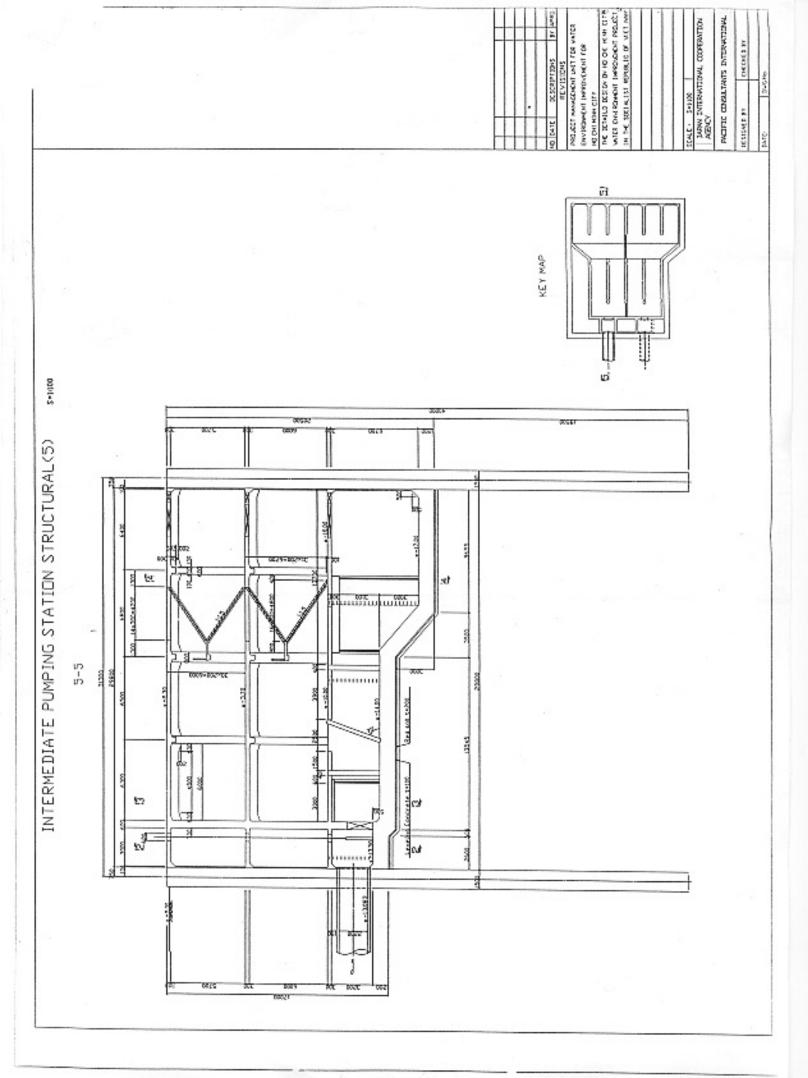
(1) Effect of Temperature (T1)

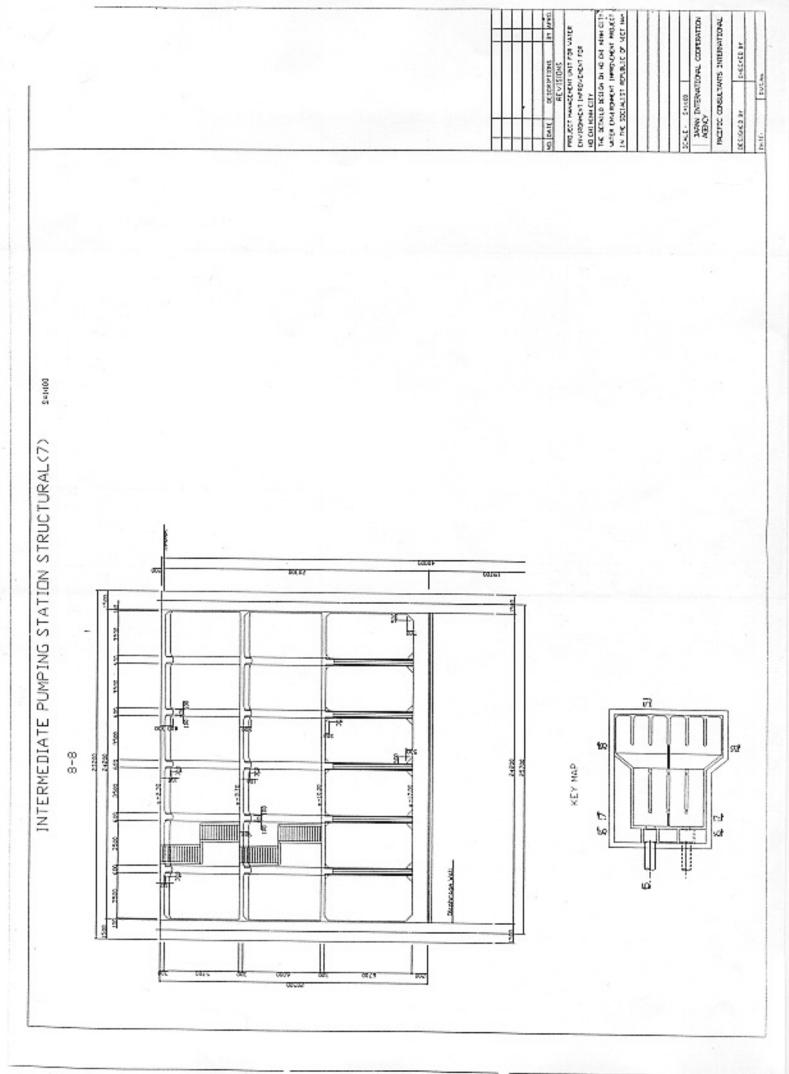

 $T_1 = 150.0 \text{ kN/m}^2$


(2) Vertical load on strut (T2)


Vertical loads on strut are the self-weight of strut and 5.0 kN/m2.


(3) Buckling control load (T3)


Vertical advantage force is 2% of axial force of strut,



4. STUDY ON LENGTH OF WALL '

4-1 STUDY ON PENETRATION LENGTH BY EARTH PRESSURE BALANCE

4-1-1 Ground condition

				q=	10.00						
		8.			G. L. 1. 90		In 18.0	. Y.	φ	Co	Soil
		-18	\Box		G. L 1. 9 0-	1. Thendy	8 14 (9. 0 5. 0	30.0	0.0	粉
		8) Q			2. clay 8	20 (0. 0 24. 0	6. 0 22. 0	砂
20.80	19.60	2.00 2.00 3.00 3.00 3.00 3.00 3.00 3.00	300			3, Sand or	-	- 11.0	211.0		
,,,		2.20 2.4	00000000			4.5am =	20.0	11.0	27. 0	20. 0	砂
	02	772									
						5, Sard 23	20. 0	11.0	32. 0	20. 0	6):
						s, sand S	20.0	, 11. V	32. 0	20.0	**
						Clays.	20. 0		0. 0	70. 0	粘
		oil p	arayıs	otore	a part day	Service Services	Child Childhood	s estesis	added ook	Sigor .	
	, >	OIX P	Soil	N Valu	e i	1. 0			200	_	
	No	層厚 h m	土質	N値	湿潤重量 y t kN/m³	水中重量 kN/m³	摩擦角 皮 度	粘着力 co kN/m²	粘着增分 Δ c kN/m³		
	-		T.I. 606		-					+	
	1 2 3 4 5	2. 30	砂粘砂砂	3.0	18. 0 14. 0	9. 0 5. 0 11. 0	30. 0 0. 0	0. 0 6. 0	0.0		
	3	5. 00	砂蟹	5. 0	20. 0 20. 0 20. 0	11.0	24. 0	22. 0	0.0		
	4 5	10.90	砂質	10.0	20.0	11.0 11.0	32.0	20.0	0.0		
	ĕ	2. 30 2. 00 5. 00 10. 90 22. 80 7. 80	粘性	1. 0 5. 0 10. 0 20. 0 48. 0	20. 0	11.0	0. 0 24. 0 27. 0 32. 0 0. 0	6. 0 22. 0 20. 0 20. 0 70. 0	0.0		
	_	71 + 4.								_	

4-1-2 Strut position

段	支保工深さ G.Lm	depth of strut
1 2 3 4 5 6 7 8	1. 50 4. 50 7. 50 9. 80 11. 80 14. 20 16. 40 18. 60	

4-1-3 The calculation of the requirement penetration length

(1) Before final excavation

The required penetration length decided from a balance of moment by the soil pressure of bottom from the strut. The ground water pressure is assumed zero at the tip of wall.

The pressure that acted on the wall was calculated with the formula of the section 2-3-4.

Excavation level of this case is GL – 19.6 m.

Active side

Active earth pressure $\frac{d^2 + d^2}{d^2} = \frac{d^2 + d^2}{d^2} = \frac{$ 1) Active side

No	深さz G.Lm	層厚 h m	kN/m³	₽度	c kN/m²	Σγh+q kN/m²	Ka	pa kN/m²
1	0. 00 1. 90	1. 90	18. 0	30. 0	0. 0 0. 0	10.00 44.20	0. 33333	3. 33 14. 73
2	1. 90 2. 30	0. 40	9. 0	30. 0	0. 0 0. 0	44. 20 47. 80	0. 33333	14. 73 15. 93
3	2. 30 4. 30	2. 00	5. 0	0. 0	6. 0 6. 0	47. 80 57. 80	1. 00000	35. 80 45. 80
4	4. 30 9. 30	5. 00	11. 0	24. 0	22. 0 22. 0	57. 80 112. 80	0. 42173	0. 00 19. 00
5	9. 30 16. 40	7. 10	11.0	27. 0	20. 0 20. 0	112. 80 190. 90	0. 37552	17. 85 47. 18
6	16. 40 19. 60	3. 20	11.0	27. 0	20. 0 20. 0	190. 90 226. 10	0. 37552	47. 18 60. 39
7	19. 60 20. 20	0. 60	11. 0	27. 0	20. 0 20. 0	226. 10 232. 70	0. 37552	60. 39 62. 87
8	20. 20 24. 59	4. 39	11.0	32. 0	20. 0 20. 0	232. 70 280. 99	0. 30726	49. 33 64. 16

Moment by active earth pressure XXLLS

					9 00	0
No	深さz G.Lm	層厚 h m	pa kN/m²	水平力 Pa kN	アーム長 y m	モーメント Ma kN・m
6	16. 40 19. 60	3. 20	47. 18 60. 39	75. 48 96. 63	1. 07 2. 13	80. 51 206. 15
7	19. 60 20. 20	0. 60	60. 39 62. 87	18. 12 18. 86	3. 40 3. 60	61. 60 67. 90
8	20. 20 24. 59	4. 39	49. 33 64. 16	108. 27 140. 84	5. 26 6. 73	569. 87 947. 39
Σ				458. 20		1933. 42

Moment by water pressure pw hmickness of layer Araba land water pressure pw hmickness of layer land land land water pressure pw hmickness of layer land layer land layer land layer land layer land layer lay 145. 00 177. 00 232. 00 283. 20 247. 47 604. 16 16.40 3.20 1.07 19.60 2.13 2 19.60 24.59 4.86 6.53 4.99 177.00 441.62 2147.72 0.00 0. 00 0.00 Σ 956.82 2999.35

Total horizontal pressure

Total moment

Pa = 1415 kN

Ma = 1933 + 2999 = 4932 kN m

2) Passive pressure

Passive pressure

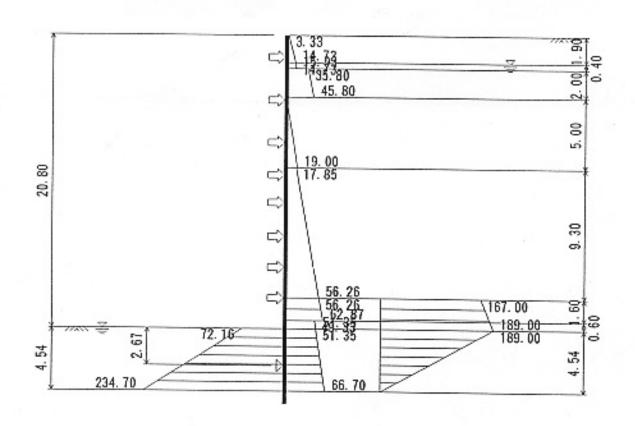
Passive pressure

AR Y h) Kρ+2 c V (Kp), Kρ=tan² (45+φ/2)

No	深さz G. Lm	P m	kN/m²	ゆ 度	kN/m²	Σγh+q kN/m²	. Кр	pp kN/m²
7	19. 60 20. 20	0. 60	11.0	27. 0	20. 0 20. 0	0. 00 6. 60	2. 66294	65. 27 82. 85
8	20. 20 24. 59	4. 39	11. 0	32. 0	20. 0 20. 0	6. 60 54. 89	3. 25459	93. 64 250. 81

Moment by passive earth pressure

				1	7	/
No	深さz G. Lm	層厚 h m	pp kN/m²	水平力 Pp kN	アーム長 y m	モーメント Mp kN・m
7	19. 60 20. 20	0. 60	65. 27 82. 85	19. 58 24. 85	3. 40 3. 60	66. 58 89. 48
8	20. 20 24. 59	4. 39	93. 64 250. 81	205. 54 550. 52	5. 26 6. 73	1081. 85 3703. 16
Σ				800. 50		4941. 07


Total horizontal pressure

Pp = 800 kN

Total moment

Mp = 4941 kN m

Show a load figure in the following.

3) Balance of moment

Balanced depth (Z) is 4.99 m

Therefor,

Penetration length
$$D = Z \times 1.2 = 5.99 \text{ m P } 3.00 \text{ m}$$
 (GL-25.59 m)

OK!

4) Depth of virtual supporting point

$$Y = \frac{Mp}{Pp} - L0$$

Where, L0: Length between excavation level and strut

$$= 19.6 \text{ m} - 16.4 \text{ m} = 3.2 \text{ m}$$

$$= \frac{4941}{800} - 3.2$$

(2) Final excavation

The pressure that acted on the wall is calculated with the formula of the section 2-3-4.

Excavation level of this case is GL -20.8 m.

Active side

Active earth pressure $pa = Ka (\Sigma y b + q) - 2c \sqrt{Ka}$. $Ka = tan^2 (45 - \phi / 2)$ Excavation level of this case is GL - 20.8 m. 1) Active side

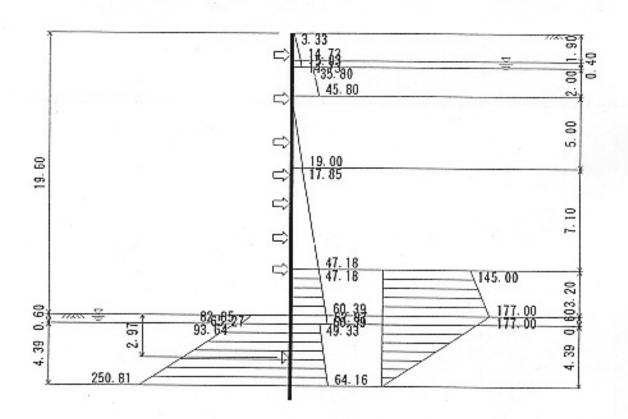
No	深さ z G. Lm	屋厚 h m	kN/m³	◆ 度	c kN/m*	$\begin{array}{c} \Sigma \gamma h + q \\ kN/m^2 \end{array}$	Ka	pa kN/m²
1	0. 00 1. 90	1.90	18. 0	30. 0	0. 0 0. 0	10. 00 44. 20	0. 33333	3. 33 14. 73
2	1. 90 2. 30	0. 40	9. 0	30. 0	0. 0 0. 0	44. 20 47. 80	0. 33333	14. 73 15. 93
3	2. 30 4. 30	2. 00	5. 0	0.0	6. 0 6. 0	47. 80 57. 80	1. 00000	35. 80 45. 80
4	4. 30 9. 30	5. 00	11.0	24. 0	22. 0 22. 0	57. 80 112. 80	0. 42173	0. 00 19. 00
5	9. 30 18. 60	9. 30	11.0	27. 0	20. 0 20. 0	112. 80 215. 10	0. 37552	17. 85 56. 26
6	18. 60 20. 20	1. 60	11.0	27. 0	20. 0 20. 0	215. 10 232. 70	0. 37552	56. 26 62. 87
7	20. 20 20. 80	0. 60	11.0	32. 0	20. 0 20. 0	232. 70 239. 30	0. 30726	49. 33 51. 35
8	20. 80 25. 34	4. 54	11.0	32. 0	20. 0 20. 0	239. 30 289. 24	0. 30726	51.35 66.70

Moment by active carth pressure 深さz G. L. -m 層厚 水平力 PakN - ム長 モーメント Ma kN・m pa kN/m² No h m y m 18.60 20.20 56. 26 62. 87 1.60 45. 01 50. 30 0. 53 1. 07 24. 01 53. 65 20. 20 20. 80 7 0.6049. 33 51. 35 14. 80 15. 41 1.80 2.00 26. 64 30. 81 8 4.54

20. 80 25. 34 51. 35 66. 70 116. 57 151. 41 3. 71 5. 23 432. 88 791. 35 Σ 393.50 1359.34

omen	t by water	- /	to the state of	- Larinal	June 1	The sail of the sa
No	深さz G. Lm	層厚 h m	pw kN/m²	水平力 Pw kN	アーム長 y m	モーメント Mw kN・m
1	18. 60 20. 80	2. 20	167. 00 189. 00	183. 70 207. 90	0. 73 1. 47	134. 71 304. 92
2	20. 80 25. 34	4. 54	189. 00 0. 00	429. 03 0. 00	3. 71 5. 23	1593. 13 0. 00
Σ				820. 63		2032. 76

		Total h	norizontal	-			a = 1214 kN	I	
Pa	assive	pressure pressure	/	14 2 c v			Ia = 1359 +	2033 = 3392 kl	N m
	No	深さ z G. Lm	層厚 h m	kN/m³	度	c kN/m²	Σγh+ kN/m²	9 Кр	pp kN/m²
	8	20. 80 25. 34	4. 54	11. 0	32. 0	20. 0 20. 0	0. 00 49. 94		72. 16 234. 70
М	oment	by passi	ve earth p	Sessure	24	A Sant	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	onding of	Swan
	No	深さ z G. Ln	層 h m	pp kN/r	n² /	水平力 Pp kN	アーム長 y m	モーメント Mp kN・m	
	8	20. 80 25. 34	4. 54	72. 234.	16 70	163. 81 532. 76	3. 71 5. 23	608. 27 2784. 56	
	Σ					696. 57		3392. 83	


Total horizontal pressure

Total moment

Pp = 697 kN

Mp = 3393 kN m

Show a load figure in the following.

3) Balance of moment

$$Mp / Ma = 3393 / 3392 = 1.0$$

OK!

Balanced depth (Z) is 4.54 m

Therefor,

$$D = Z \times 1.2 = 5.45 \text{ m P } 3.00 \text{ m}$$
 (GL-26.25 m)

4) Depth of virtual supporting point

$$Y = \frac{Mp}{Pp} - L0$$

Where, L0: Length between excavation level and strut

$$= 20.8 \text{ m} - 18.6 \text{ m} = 2.2 \text{ m}$$

$$= \frac{3393}{697} - 2.2$$

4-2 STUDY ON BOILING

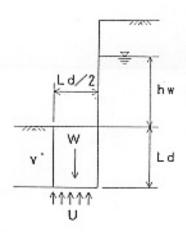
Boiling is checked with the following formula.

$$Fs = \frac{2 \cdot \gamma' \cdot Ld}{\gamma_w \cdot h_w}$$

where,

γ_b ... Bulk unit weight of soil (given in section 2-2-4)

 γ^\prime ... buoyant unit weight (= $\gamma_b - \gamma_w$ = 10.0 kN/m³)


γw ... unit weight of water (= 10.0 kN/m3)

Ld ... penetration length (assumed = 11.34 m)

h, ... depth below water table (= 18.9 m)

$$Fs = \frac{2 \times 10 \times 11.34}{10 \times 18.90}$$

= 1.2 P Fsa = 1.2 OK!

4-3 STUDY ON PENETRATION LENGTH BY ELASTO-PLASTIC ANALISYS

Penetration Length by Elasto-plastic analysis adopts the value that the rate of elastic region of the part penetration is more than 50%.

DW length (m)	Rate of elastic region (%)	
32.5	42.49	NG
33.5	45.12	NG
34.5	47.56	NG
35.5	49.92	NG
36.5	52.20	OK

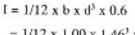
4-4 SUMMARY OF PENETRATION LENGTH

Case		Excavation Depth (m)	Penetration Depth (m)	Length of wall (m)
Penetration length by	Before final excavation	19.60	5.99	25.6
earth pressure balance	Final excavation	20.80	5.45	26.3
Check on bo	iling	20.80	11.34	32.1
Penetration Length by analysis		20.80	15.70	36.5

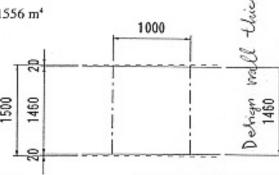
Therefore, Diaphragm wall length is 36.5 m.

5. STUDY ON DIAPHRAGM WALL IN THE TEMPORARY CONDITION

Diaphragm wall in the temporary condition is calculated with an Elasto-plastic analysis method.


5-1 INPUTDATA

5-1-1 Specifications of diaphragm wall


(1) Length

$$L = 36.5 \text{ m}$$

(2) Moment of inertia

$$= 1/12 \times 1.00 \times 1.46^{3} \times 0.6$$

(3) Elastic modulus

$$E = 25,000,000 \text{ kN/m}^2$$

(4) Calculation step

$$S = 13$$

5-1-2 Spring constant of strut

(1) Strut

Spring constant of strut is calculated with the following formula,

$$Ks = \frac{2 \cdot \alpha \cdot E \cdot A}{L} \times \frac{1}{b}$$

where,

a : coefficient (=0.5)

E: Elastic modulus of strut (= $2.1 \times 10^8 \text{ kN/m}^2$)

A : Section area of strut

Туре	Area (m²)
H - 300 x 300 x 10 x 15	0.01184
H - 350 x 350 x 12 x 19	0.01719
H - 400 x 400 x 13 x 21	0.01720

L: Length of strut

No.1 ~ No.6
$$\Rightarrow$$
 L = 29.60 m

No.7 ~ No.8
$$\Rightarrow$$
 L = 24.00 m

b : Horizontal interval of strut (= 5.0 m)

Strut	Туре	Area (m²)	Spring constant (kN/m)
No.1	H - 300 x 300 x 10 x 15	0.01184	16,800
No.2	H - 300 x 300 x 10 x 15	0.01184	16,800
No.3	2 H - 300 x 300 x 10 x 15	0.02368	33,600
No.4	H - 300 x 300 x 10 x 15	0.01184	16,800
No.5	2 H - 300 x 300 x 10 x 15	0.02368	33,600
No.6	2 H - 300 x 300 x 10 x 15	0.02368	33,600
No.7	2 H - 300 x 300 x 10 x 15	0.02368	41,440
No.8	H - 300 x 300 x 10 x 15	0.01184	20.720

(2) Slab

Spring constant of slab is calculated with the following formula.

$$Kc = \frac{2 \cdot E \cdot A}{L \cdot (1 + \phi_e)} \cdot \frac{I}{b \cdot (1 - \epsilon_e)} \cdot \beta$$

where,

E: Elastic modulus of concrete (= $2.5 \times 10^7 \text{ kN/m}^2$)

A : Section area of slab

Туре	Area (m²) 0.30	
Middle Slab		
Base Slab	1.20	

L: Length of slab (= 29.6 m)

b: Horizontal interval of strut (= 1.0 m)

φ_c: Creep coefficient of concrete (= 1.2)

ε_c: Drying shrinkage strain of concrete (= 180 x 10⁻⁶)

 β : Coefficient of opening (= (L1 - L2)/L1)

L1: Internal width (m)

L2: Opening width (m)

Туре	L1	L2	β	
Middle Slab	24.0	11.55	0.519	
Base Slab	24.0	0.00	1.00	

Middle slab

Kc =
$$\frac{2 \times 2.5 \times 10^7 \times 0.3}{29.6 \times (1 + 1.2)} \times \frac{1}{1.0 \times (1 - 180 \times 10^{-6})} \times 0.519$$

= 119,527 kN/m

Base slab

$$Kc = \frac{2 \times 2.5 \times 10^{7} \times 1.2}{29.6 \times (1 + 1.2)} \times \frac{1}{1.0 \times (1 - 180 \times 10^{-6})} \times 1.00$$
$$= 921,210 \text{ kN/m}$$

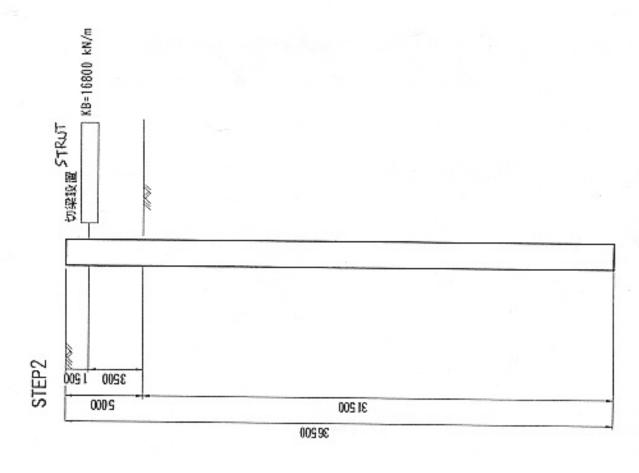
5-1-3 Coefficient of horizontal subgrade reaction

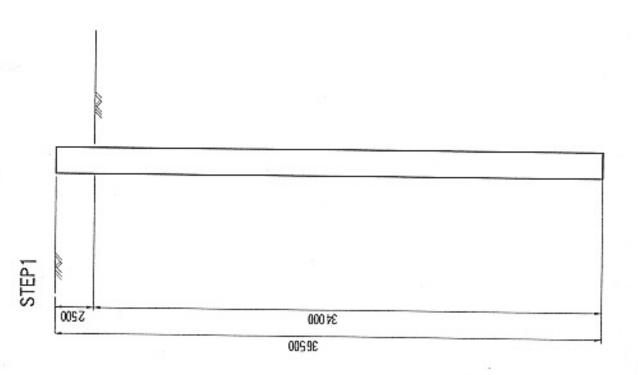
Coefficient of horizontal subgrade reaction is calculated with the following formula.

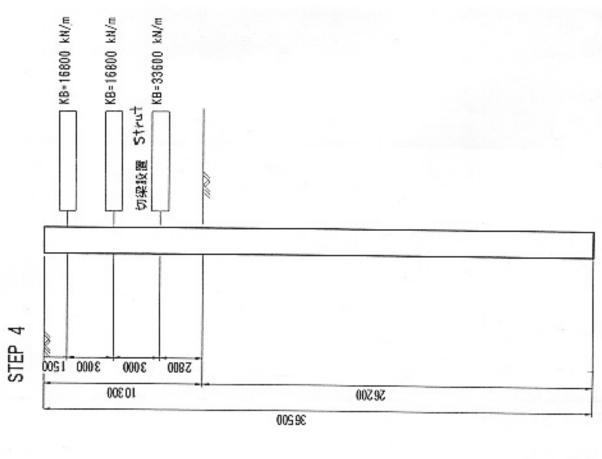
$$Kh = \ \frac{1}{0.3} \cdot \alpha \cdot E_0 \cdot \left(\frac{B}{0.3}\right)^{-\frac{3}{4}}$$

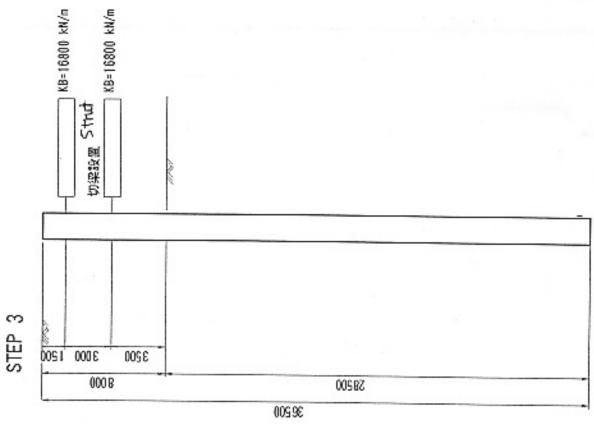
where,

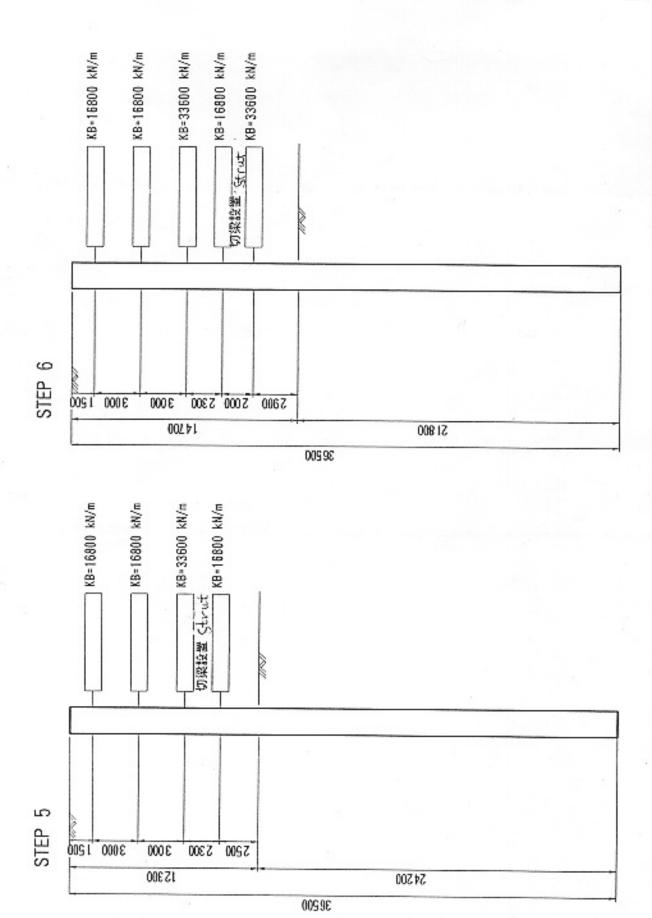
 E_0 : Modulus of deformation of ground (kN/m²)

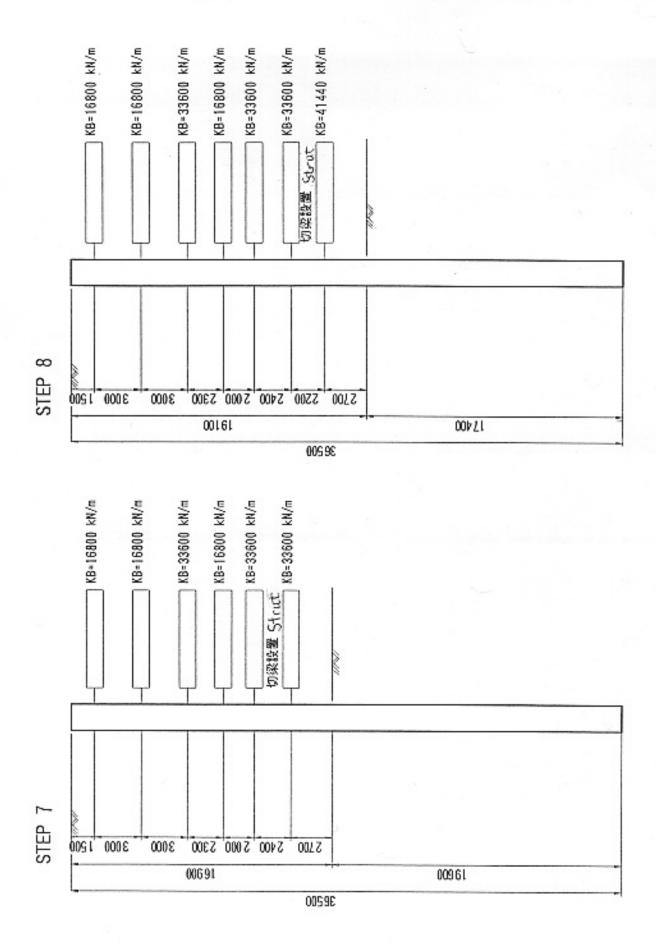

B: Loading width (= 10.0 m)

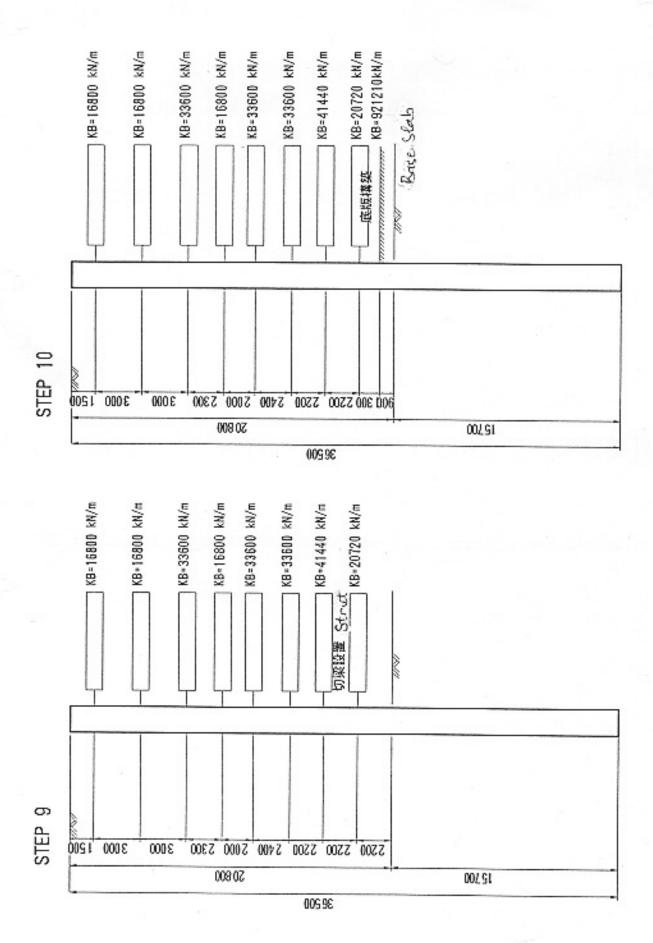

 α : Coefficient (= 4)

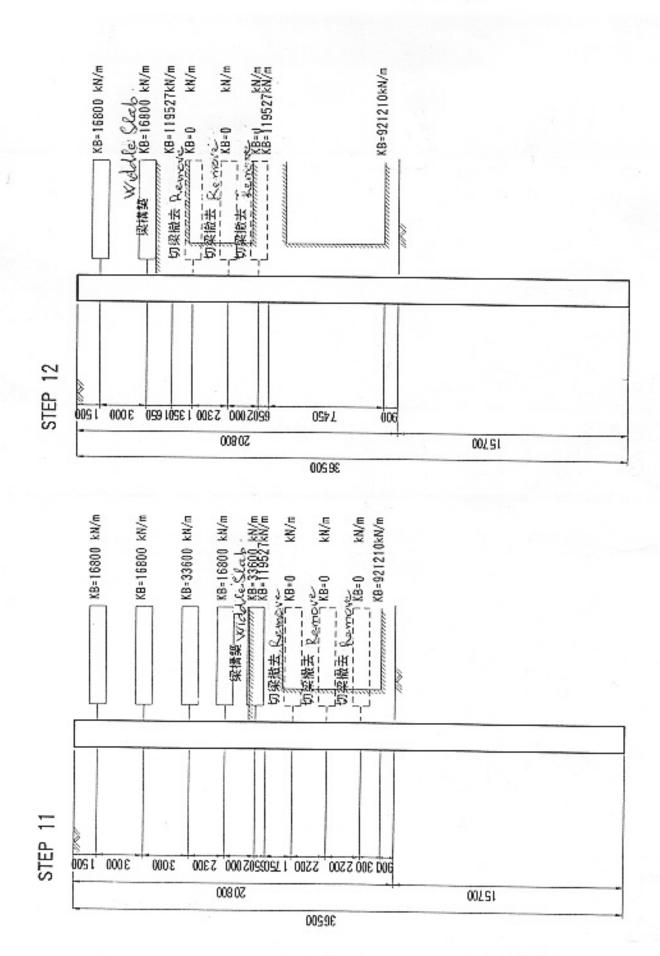

Layer	E ₀ (kN/m ²)	α	B (m)	Kh (kN/m³)
Made ground	840	4	10.0	807
OH layer	700	4	10.0	673
SC layer	3,500	4	10.0	3,363
SM(u) layer	7,000	4	10.0	6,728
SM(I) layer	14,000	4	10.0	13,456
CH layer	33,600	4	10.0	32,294

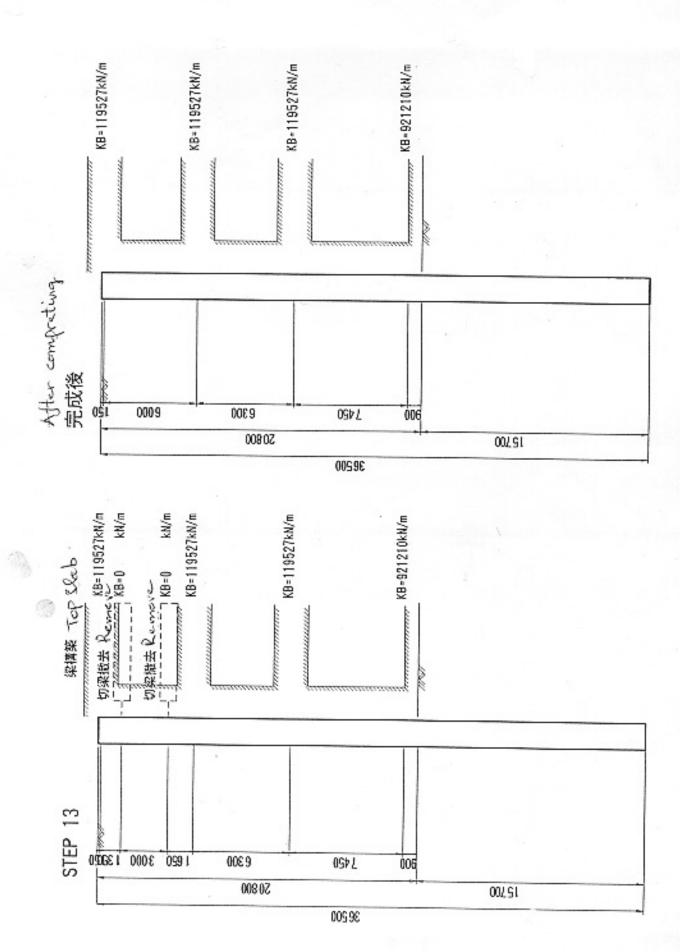


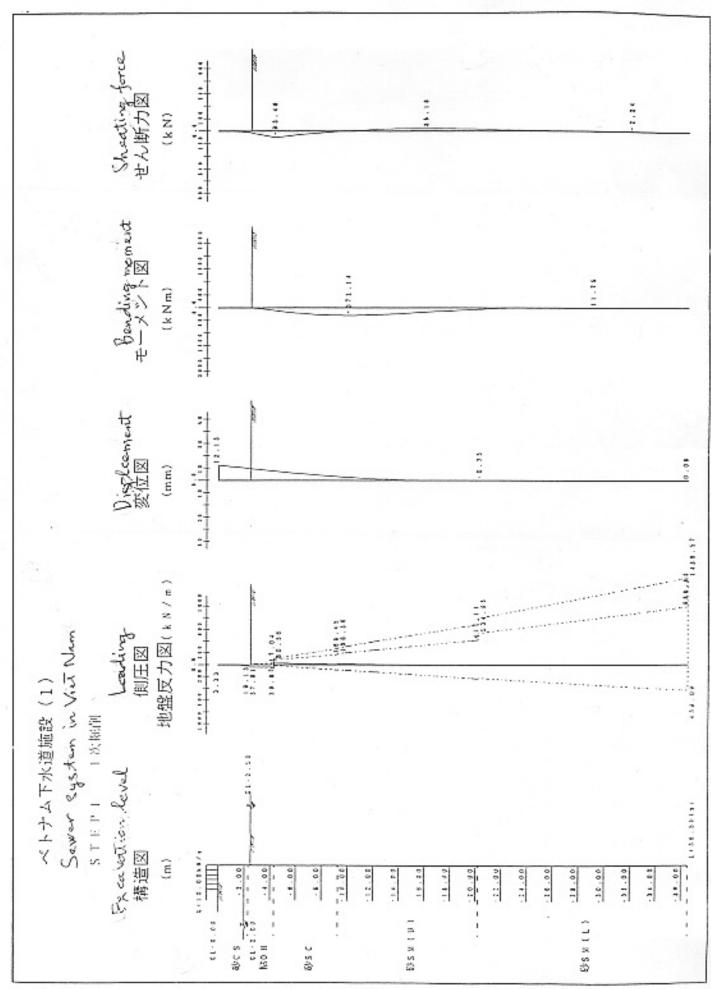

(e) 施工ステップ図

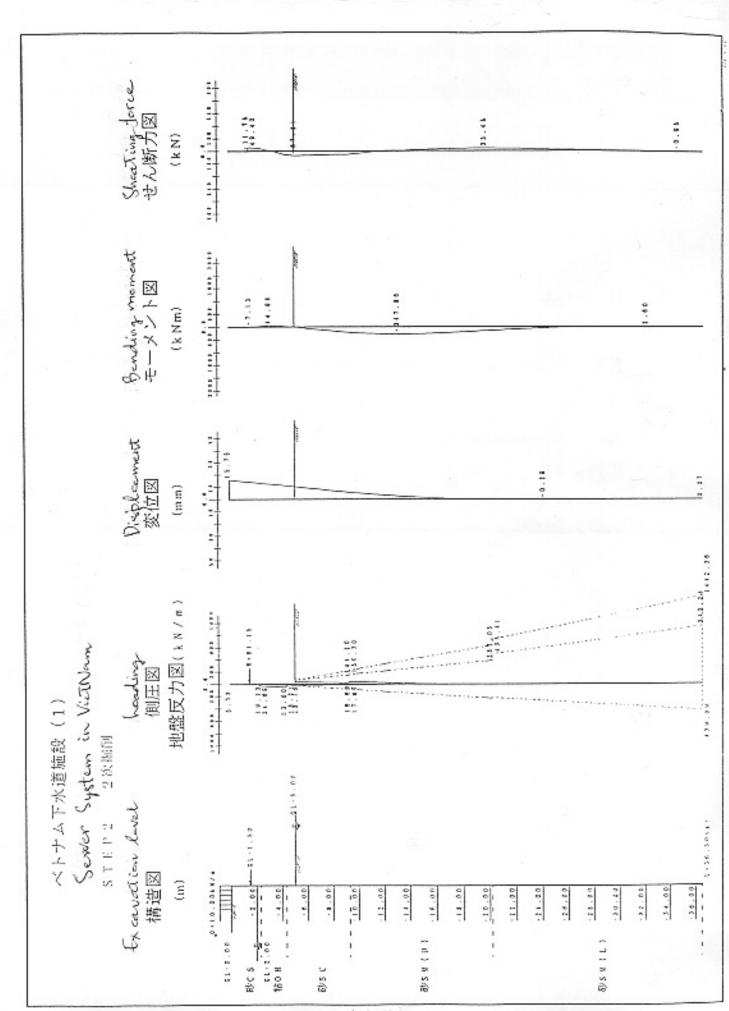




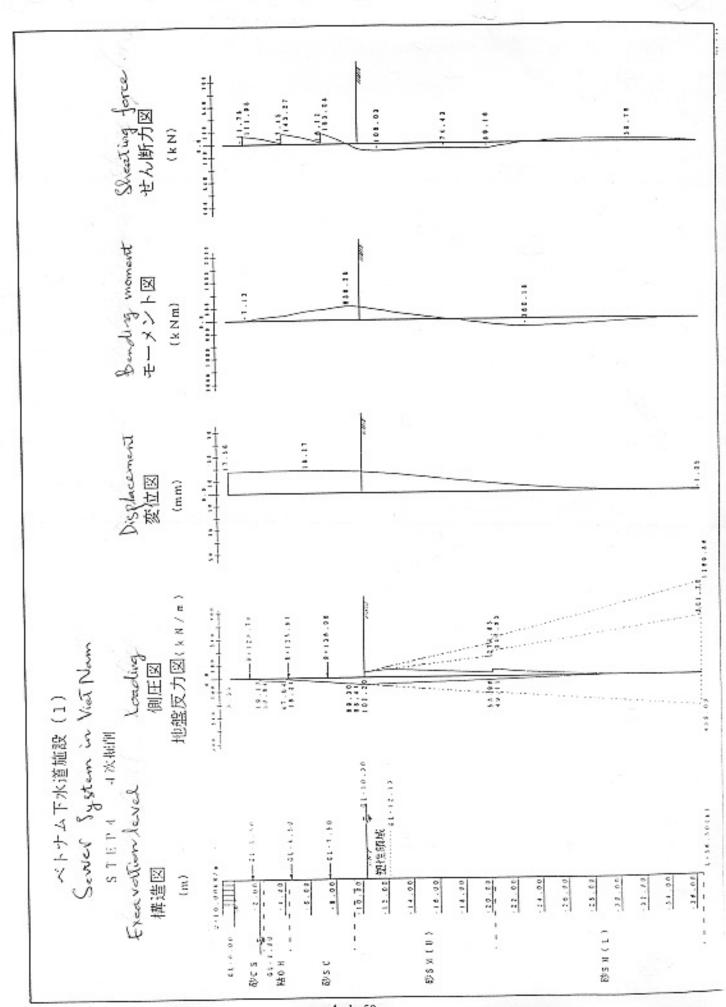


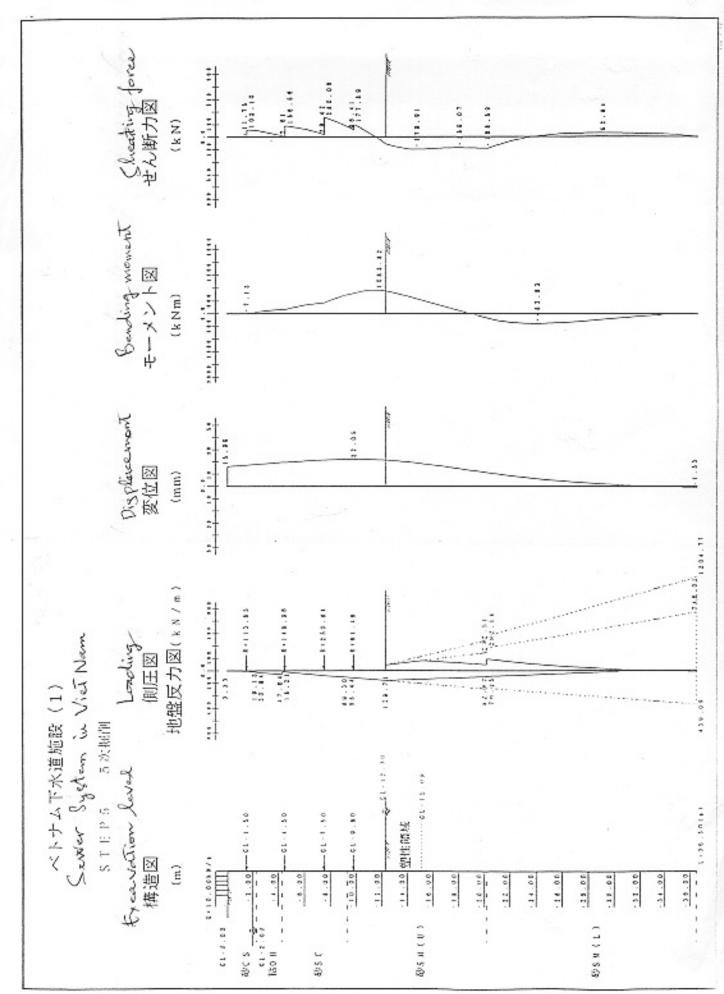


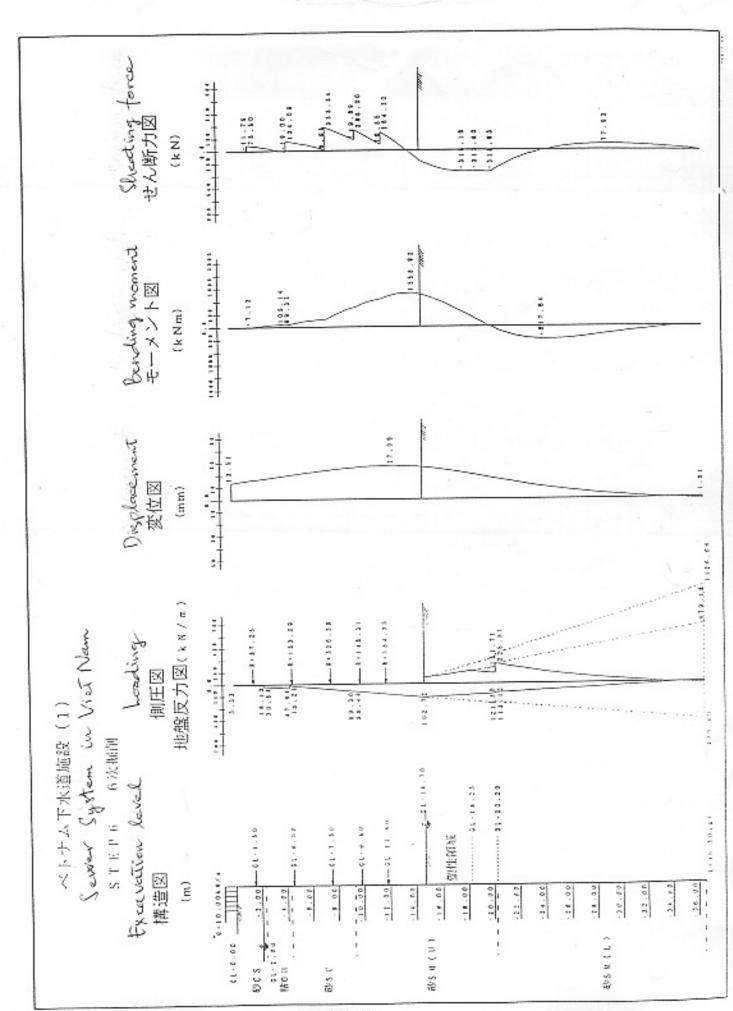


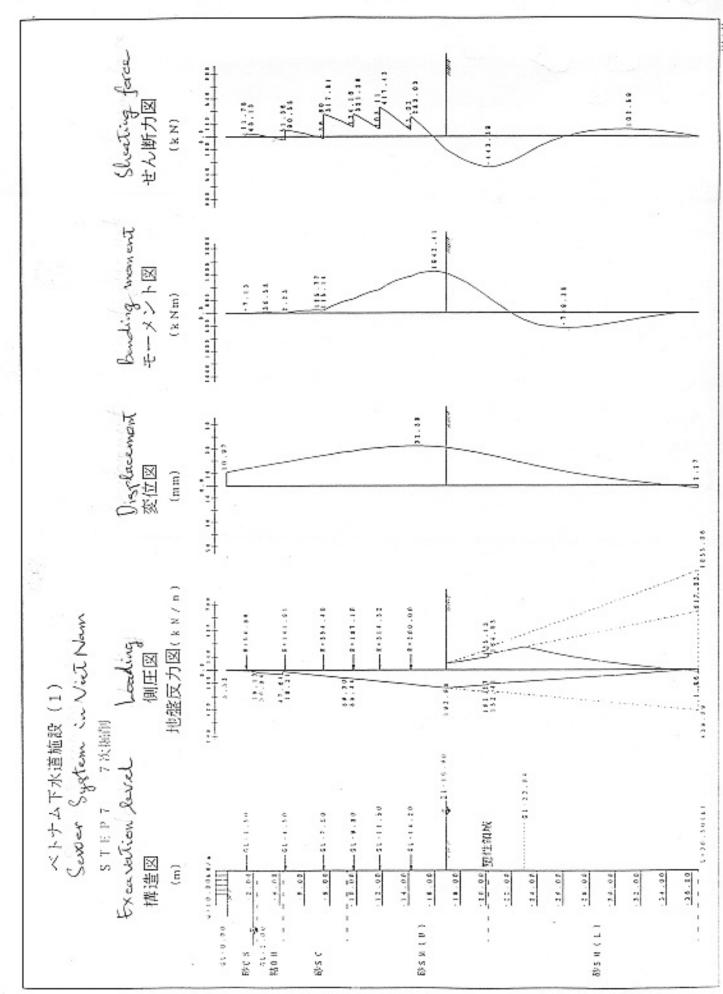


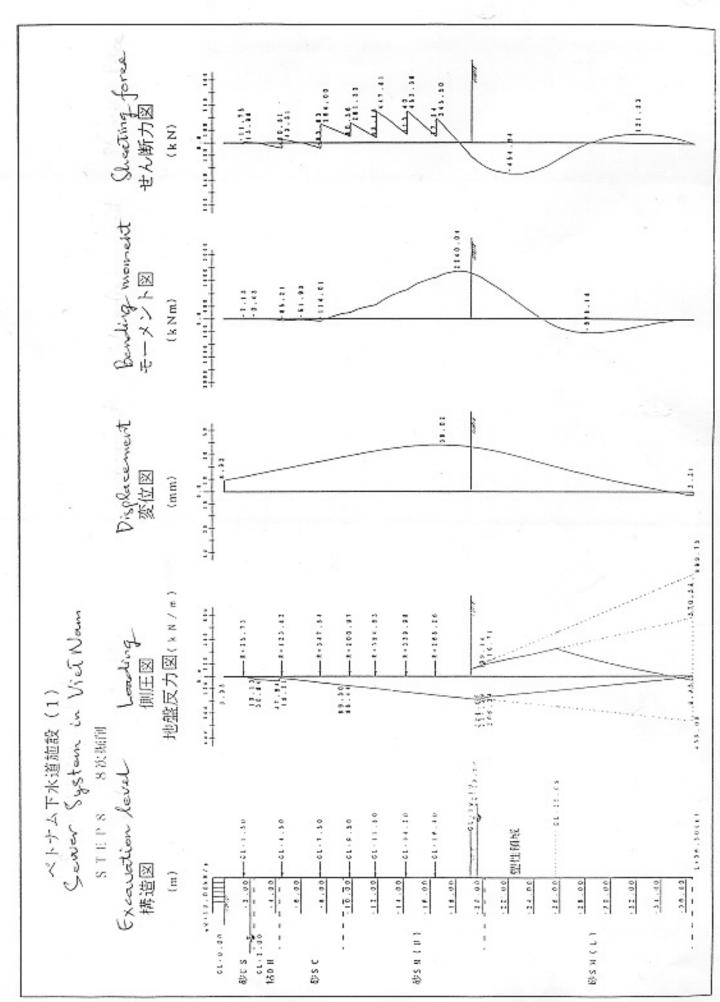
5-3 CALCULATION RESULTS

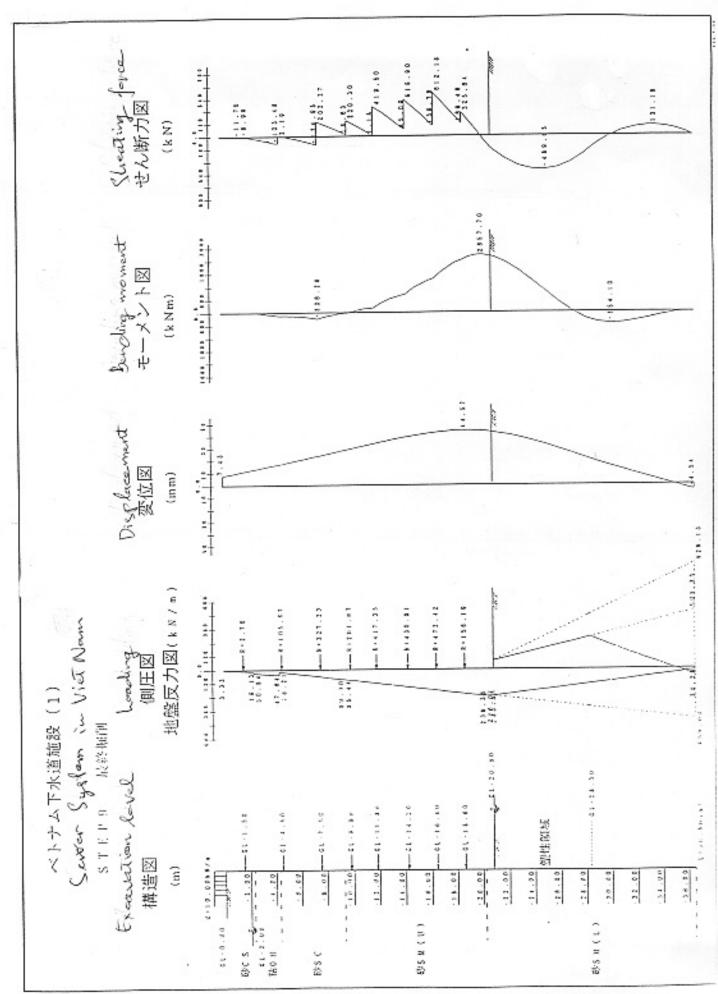

5-3-1 Figures of maximum section force

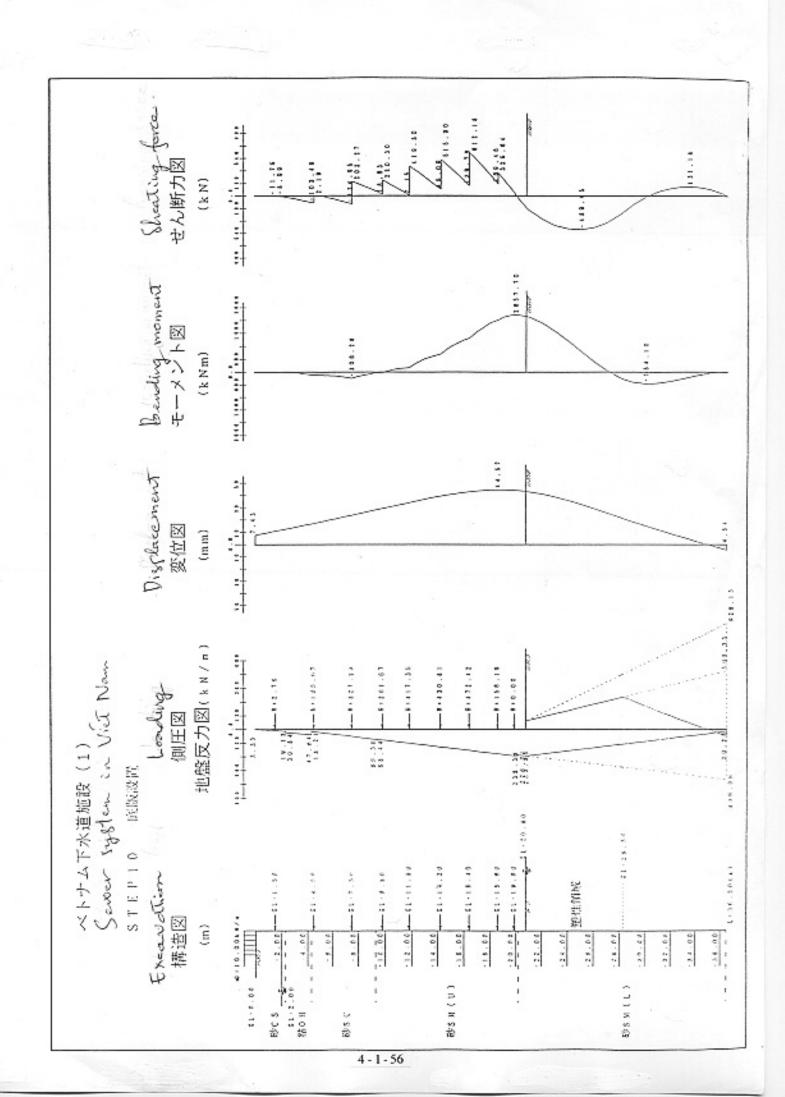

- a) Excavation level
- b) Loading
- c) Displacement
- d) Bending moment
- e) Shearing force
- f) Step
- Step 1 1st excavation
- Step 2 2nd excavation
- Step 3 3rd excavation
- Step 4 4th excavation
- Step 5 5th excavation
- Step 6 6th excavation
- Step 7 7th excavation
- Step 8 8th excavation
- Step 9 9th excavation (final excavation)
- Step 10 Base slab construction
- Step 11 2nd middle slab construction
- Step 12 1st middle slab construction
- Step 13 Top slab construction

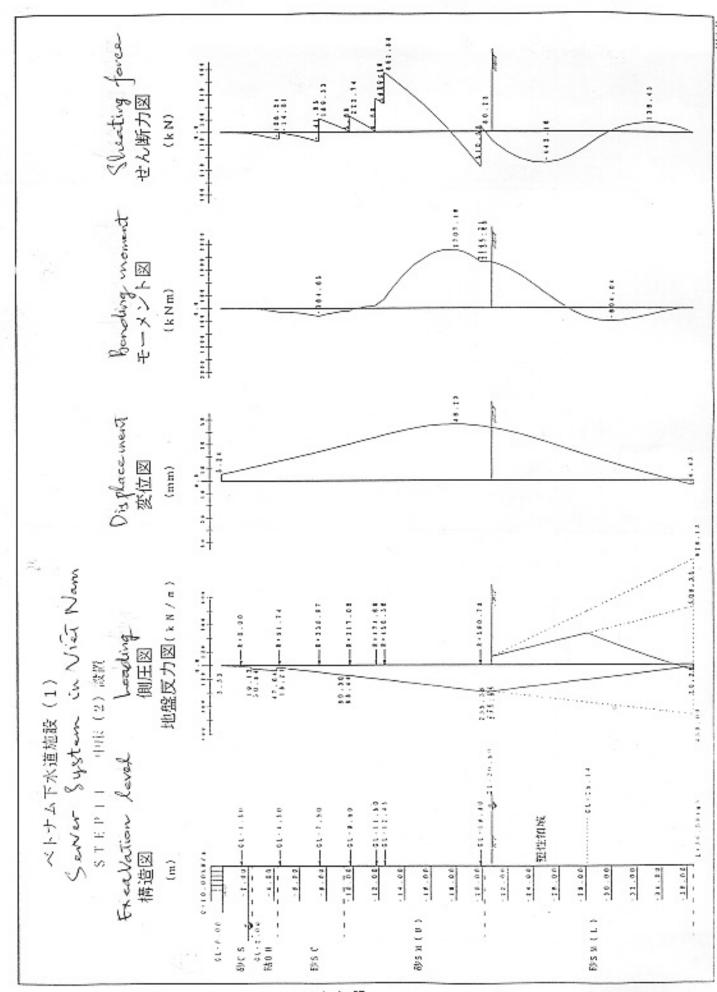


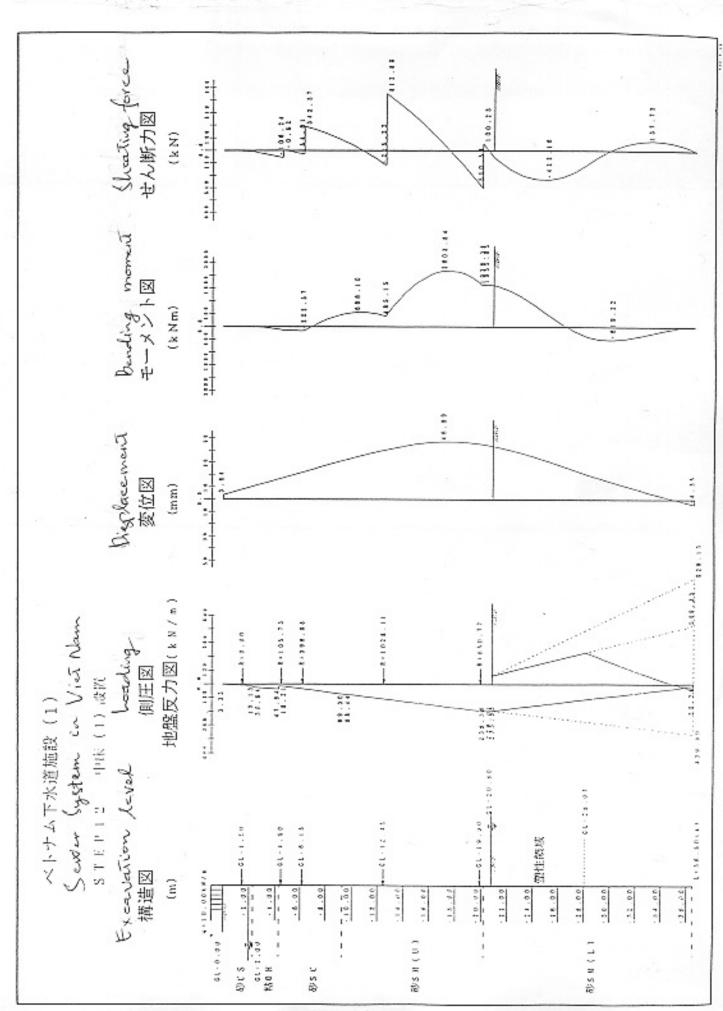


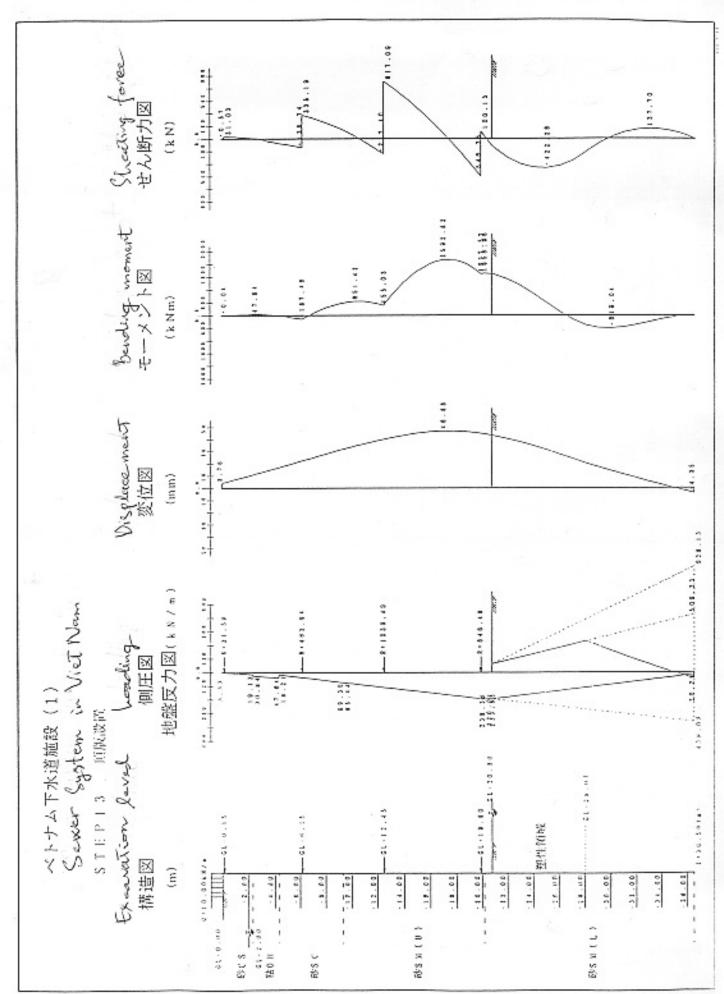


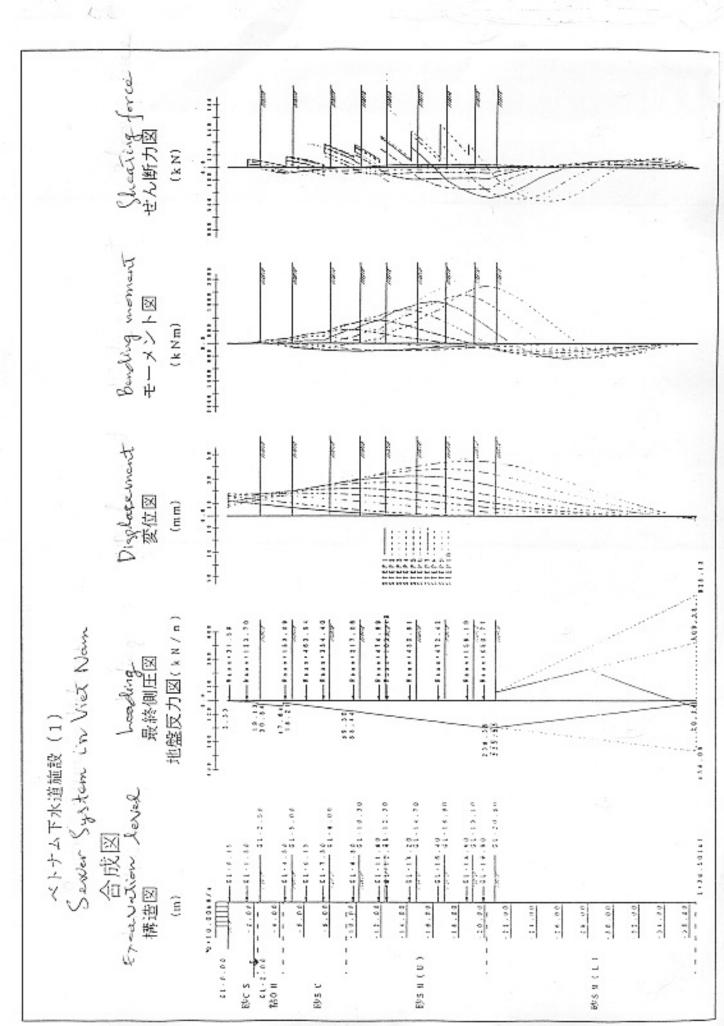












4 - 1 - 57

5-3-2 Tables of maximum section force

- (1) Summary of maximum section force
 - a) Displacement
 - b) Bending moment (maximum, minimum)
 - c) Shearing force
- (2) Summary of support reaction
 - a) Strut
 - b) Slab

Sewer Spoten in Vietnam

+名... ベトナム下水道施設(1) Maximum terce and displacement [最大節面力および最大変在 一覧表

Unit, ohisplacement: Mr. Bending Moment: KN.m/m. shearing force KN/m) (単位 変位: mm モーメント: KN.m/n せん断力: KN/n)] Maximum amount Page 上段:最大值 upper column : -ower 4 34 1 47

上級・海大郎・安子 は は は は は は は は は は は は は は は れ い い い い						-7-				
せん断力 最大値	-93.48 GL -4.30	et57. 21	ct1, 50	CL -7.50	260.06 cl7.50	333.34 G7.50	-443.39 GL-20.20	-458.58 GL-22.44	612.18 GL-16.40	
モーメント 負の最大値	-372. 14 GL -9. 97	-347.88 GL-12.94	-287. 94 GL-22. 32	-361. 41 GL-23. 37	-484. 76 GL-23. 74	-622. 58 GL-24. 48	-710.19 GL-26.18	-670, 38 GL-28, 25	-555. 70 GL-30. 19	
モーメント正の最大値	11.80 GL-28.72	46.34 GL -3.25	330.04 GL -7.02	639. 60 GL -9. 47	1090.50 G11.47	1564. 01 GL-13. 74	1943. 50 GL-15. 89	2242. 21 GL-18. 14	2657.88 GL-20.04	
操	12. 13 GL 0. 00	15. 75 GL 0. 00	18. 09 GL 0. 00	18, 27 GL -5, 56	22. 05 GL -9. 85	27. 09 GL-12. 35	32. 40 GL-14. 50	38. 03 GL-16. 70	44. 58 GL-18. 79	
施工ステップ番号 Step Number	1:1次据的 4st Excavation	2:2次据削 2 nd	3:3次据削 3rd	4:4次据的	5:5次据即 6九	6:6次据即 Ctv	7:7次据制 714	8:8次据削 8元	9.最終据制 有mal	

MOUNTMENT Shenring force bending PHINIPHER morment WANT MUMP Bending Moment Displacement Most mant

4 - 1 - 62

Sower System in Vielnam

KASEISU-5X V 7.5-Hev 1 ページ1U5 mument: KN K/m sheaving force KN/m) Sydament: Bandring mument: KN M/m sheaving force KN/m) 数位: m ホーメント: kN m/n はん魅力: kN/m)] が思 件名...ストナム下水道施設(1) May immy force and displacement [最大陸面力および最大変位 一覧表

上級:最大值 DPPer: Maximum amount 下級:位置 Lower: PLns. 817.09 CL-12.45 852. 89 G.-12. 45 (11) 612.18 GL-16.40 852.88 GL-12.45 Q-12.89 なん魅力 最大質 ホーメントかの最大衛 -710.19 ct.-26.18 (7) -621.75 GL-29.75 -555. 70 6L-30. 19 -604, 70 GL-29, 88 -621. 94 GL-29. 75 オーメントにの扱うとは 2657.88 GL-20.04 2726.94 GL-17.56 2607. 21 ct.-17. 38 2726.94 GL-17.56 (11) 2616. 68 ct-17. 36 GL-17, 37 (12) 44.58 GL-18.79 46.93 GL-17.37 46.93 GL-17.37 46. 24 GL-17. 83 (X)电 大型 最大価 最大位置 最大値のステップ 12:中床(1) 設置 11:中床(2) 段置 核エステップ報号 Step number 10:底板玻璃 13:顶板设置

phaxemen Maximum marinum marinum displacement bending shearing moment force.

4-1-63

Sewer Suptem in Victnam FS...ベトナム下水道階級(1) Unit Struct Unit [切梁反力 一覧表 (単位:kN/m)

KASELSU-5A V 1.5-Mev 1 A-VIUD

		c- strut Lavel	1st Excavation	2 Fd												
	0	GL-18. 60 &									156. 186	156. 186	CUT	cur	CUT	156.186
	80	GL-16. 40								268.263	472, 422	472. 422	CUT	CUT	CUT	472. 422
ップ物化)	7	GL-14.20							200.004	339. 982	430.812	430.812	cur	cur	CUT	430.812
(切案が投資されたステップ番号)	69	GL-11.80						184, 351	314. 324	384, 634	417.354	417.354	474.686	CUT	cut	474. 686
切成が後輩	LD.	GL -9.80					81.482	148.311	187.103	200.971	201.672	201.672	217.061	CUT	CUT	217.061
50深路中(4	GL -7.50				136.981	250, 638	326.393	354, 403	347.838	327. 229	327. 229	330.975	CUT	CUT	354, 403
	ю	GL -4.50			87, 357	125.813	148.959	153, 086	141.909	123.820	105.668	105.668	91. 738	105.727	CUT	153.086
	2	GL -1.50	vation	61.148	116.815	123.697	113.849	87.246	54.880	25. 733	Ach 2. 764	2:764	000 0	0.000	CUT	123.697
	Step	7	1:1次指型 4st grannhin	2:2次抵削 2㎡	3:3次据则,3 ^{rkk}	4:4次假阳 4件	5:5次据制 5件	6:6次据削 6件	7:7次班別 74	8:8次推削 8 th	9:最終振門 好吃し	- 10:底板板置	9-11:中保(2)投置	12:中床(1) 股置	13:頂旗設置	最大資

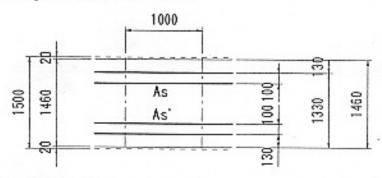
Maximum

Support Reaction 1

Sewer System in Viel None 件名...ベトナム下水道路段(1) Unit Strut 「切架反力 一覧表 (単位: kN/m)

XASE1SU-5X V 7.5-Rev 1 <-->10/

Number of Strut		- strut level	-> 1st Excessation	-> 2nd Excavotion	-> 3rd Exampation	-> 4th Excavation	-> 5th Excavation	-> 6th Frecavation	4 7th Excanor thon	-> 8th Excavation	-> Final Excavation					
- ップ番号)																
切果番号(切案が設置されたステップ番号)	13	GL -0.15	datedol												31. 594	31. 594
切保备号(12	GL-12.45 GL -6.15	midale stabi									4		396.984	463.937	463, 937
	П	GL-12, 45											456.356	650, 774 1028, 113	646. 480 1039. 489	74 1039, 489
	10	GL-19.90	Stabe middle								Alone	0.000	590.777	650, 774	646. 480	650.774
	Step	ステップ	1:1次据則 454	2:2次据則 3 nd	3:3次振則 3㎡	4:4次据则 A th	5:5次据削 544-	6:6次茲則 644	7:7次据削 7件	8:8次据制 8 44	9:是各框的 Final excession.	10:底板设置	11:中床 (2) 蛟置	12:中床(1)股置	13:頂腦設置	最大值


moximm

4 - 1 - 65

Support Reaction 2

5-4 CHECK ON STRESS

5-4-1 Arrangement of reinforcement bar

5-4-2 Resisting moment

Specification of reinforced concrete

Concrete grade

f'ck = 24 N/mm² (in slurry)

 $\sigma ca = 10 \text{ N/mm}^2$

· Reinforcement bar grade

SD295A,B

 σ sa = 225 N/mm²

Minimum pitch of re-bars

@150

Minimum amount of re-bars

 $0.002 \text{ bd} = 0.002 \text{ x } 133 \text{ x } 100 = 26.6 \text{ cm}^2$

5-4-3 Bending moment

(1) Calculation results of resisting moment

・仮設時の抵抗	モーメント		Bending mo	ment -	Axial force by self weight	
配置位置 Depth /position	配 筋 Bar Ayrangew	lent	掘削側(in)Mr In Side (kN·m)	背面側(out)Mr outskle (kN·m)	自重による軸力 (kN)	
GL- 0.00	D25@150 1段	in	022.01	000.01		
GL- 0.00	D25@150 1段	out	932.01	932.01	0.00	
CI - 9 CO(U)	D25@150 1段	in	111501			
GL- 8.60(U)	D25@150 1段	out	1115.21	1115.21	316.05	
GL- 8.60(L)	D29@150 1.5段	in	1000.01			
GL- 8.00(L)	D25@150 1段	out	1802.34	1112.73	316.05	
CL 12.00(L)	D29@150 1.5段	in				
GL-13.96(U)	D25@150 1段	out	1906.80	1224.36	513.03	
CI 12.00(I)	D32@150 2段	in				
GL-13.96(L)	D32@150 2段	out	2808.48	2808.48	513.03	
CI -02 40(II)	D32@150 2段	in				
GL-23.40(U)	D32@150 2段	out	2984.23	2984.23	859.95	
GL-23.40(L)	D29@150 1.5段	in				
GL-23.40(L)	D25@150 1段	out	2087.39	1424.56	859.95	
GL-29.90(U)	D29@150 1.5段	in				
GL-29.90(U)	D25@150 1段	out	2209.40	1547.00	1098.83	
GL-29.90(L)	D25@150 1段	in	4540.70			
GL-29.90(L)	D25@150 1段	out	1546.70	1546.70	1098.83	
GL-36.50	D25@150 1段	in	1075.15			
GL-30.50	D25@150 1段	out	1675.15	1675.15	1341.38	

Moment Calculation

■抵抗モーメントの計算 Roctangular

-10-11-		- reac foliational			
ケース番 タイトル	+itle	Na. 1 [矩 形] GL-0.00(in, out)	Na. 2 [矩 形] GL-8.60U(in,out)	Na. 3 [矩 形] GL-B. GOL (in)	No. 4 [矩 形] GL-8, 60L (out)
断面寸注 (m) Dimensio	B2 H2 B3 H3	1. 000 1. 460 0. 000 0. 000 0. 000	1. 000 1. 460 0. 000 0. 000 0. 000	1, 000 1, 460 0, 000 0, 000 0, 000	1. 000 1. 460 0. 000 0. 000 0. 000
BA DAM CALL	>HMr kN-m	932, 009 0, 000	1115. 206 316. 050	1802. 335 316. 050	1112.734 316.050
鉄筋量 Bar	d1 /As1 (m) (cm2)	1. 330 33. 782 (6. 667-D25)	1, 330 33, 782 (6, 667-D25)	1. 330 42. 829 (6. 667-D29)	1. 330 33. 782 (6. 667-D25)
parendous	d2 /As2 (m) (cm2)	0. 130 33. 782 (6. 667-D25)	0.130 33.782 (6.667-025)	1. 230 21. 411 (3. 333-D29)	0. 230 21. 411 (3. 333-029)
	d3 /As3 (m) (cm2)			0. 130 33, 782 (6, 667-D25)	0. 130 42. 829 (6. 667-D29)
Total	合計 cm2	67. 564	67.564	98. 022	98. 022
化分配 N/mm2	Trees TO TO TO A TS TS B	4.3 < 10.0 225.0 < 225.0	5.3 < 10.0 225.0 < 225.0	7. 0 < 10. 0 225. 0 < 225. 0	5. 0 < 10. 0 225. 0 < 225. 0
中立相	Accus m	0. 2964	0. 3456	0. 4213	0. 3325
MARCH AND	er dashruit Externito	n = 15.00	n = 15.00	n = 15.00	n = 15.00

■抵抗モーメントの計算 Reckingular

Moment Calculation

ケースキ タイトル	B号 Pumber	Na. 5 [矩 形] GL-13.96U(in)	Na. 6 [矩 形] GL-13.96U(out)	No. 7 [矩 形] GL-13.96L (in, out)	No. B [矩 形] GL-23.40U(in.out)
斯面寸; (m) Dimensia	B2 H2 B3 H3	1. 000 1. 460 0. 000 0. 000 0. 000	1. 000 1. 460 0. 000 0. 000 0. 000	1. 000 1. 460 0. 000 0. 000 0. 000	1.000 1.450 0.000 0.000 0.000
担抗モール	N kN	1906, 800 513, 030	1224, 356 513, 030	2808. 482 513. 030	2984, 230 859, 950
鉄筋量 lboy	d1 /As1 (m) (cm2)	1.330 42.829 (6.667-D29)	1. 330 33. 782 (6. 667-D25)	1. 330 52, 949 (6. 667-D32)	1. 330 52. 949 (6. 667-032)
Arrange m	d2 /As2 (m) (cn2)	1. 230 21. 411 (3. 333-D29)	0. 230 21. 411 (3. 333-D29)	1. 230 52. 949 (6. 667-D32)	1, 230 52, 949 (6, 667- <u>D</u> 32)
T	d3 /As3 (m) (cm2)	0.130 33,782 (6.667-025)	0.130 42.829 (6.667-029)	0. 230 52. 949 (6. 667-032)	0. 230 52. 949 (6. 667-D32)
	d4 /As4 (m) (cm2)			0. 130 52, 949 (6. 667-032)	0. 130 52, 949 (6. 667-032)
Total	合計 cm2	98, 022	98. 022	211. 796	211. 796
Check of 応力度 N/mm2	oc oca os osa	7.4 < 10.0 225.0 = 225.0	5.5 < 10.0 225.0 = 225.0	8.2 < 10.0 225.0 = 225.0	8.9 < 10.0 225.0 < 225.0
大学が		0.4408	0.3574	0. 4719	0. 4950
Picture of	EXEL Ratio	n = 15.00	n = 15.00	n = 15.00	n = 15.00

Moment Calculation

■抵抗モーメントの計算 Rectangular

		Rectangular			
ケース	出号 Yumber	No. 9 [矩 形] GL-23.40L(in)	Ma 10 [矩 形] GL-23.4GL(out)	No.11 { 矩 形.] GL-29.90U(in)	No. 12 [短 形] GL-29. 90U (out)
断面寸; (m) Dividensia	B2 H2 B3 H3	1. 000 1. 460 0. 000 0. 000 0. 000	1, 000 1, 450 0, 000 0, 000 0, 000	1. 000 1. 460 0. 000 0. 000 0. 000	1. 000 1. 460 0. 000 0. 000 0. 000
雅兴华	DINT' KN·m N KN Povce	2087. 387 - 859. 950	1424, 563 859, 950	2209, 398 1098, 830	1547, 004 1098, 830
鉄筋量 Bar	d1 /As1 (m) (cm2)	1. 330 42. 829 (6. 667-D29)	1. 330 33. 782 (6. 667-025)	1. 330 42. 829 (6. 667-D29)	1. 330 33. 782 (6. 667-D25)
AcTongemen	d2 /As2 (m) (cm2)	1. 230 21. 411 (3. 333-D29)	0. 130 52. 949 (6. 667-D32)	1. 230 21. 411 (3. 333-D29)	0. 230 21. 411 (3. 333-029)
	d3 /As3 (m) (cm2)	0. 130 33, 782 (6. 667-D25)		0. 130 33. 782 (6. 667-D25)	0. 130 42. 829 (6. 667-029)
Total	合計 cm2	98. 022	86.731	98. 022	98.022
Canack o 吃力度 N/mm2	oc oca os osa	B. 2 < 10. 0 225. 0 = 225. 0	6.4 < 10.0 225.0 = 225.0	8.8 < 10.0 225.0 < 225.0	6.9 < 10.0 225.0 < 225.0
中立相	AVIS m	0. 4719	0.3983	0.4914	0.4198
1457A	· 数比rohic	n = 15.00	n = 15.00	n = 15.00	n = 15.00

Moment Calculation

■抵抗モーメントの計算 Rectangular

		Kectong	MET.		
ケース	新号 number	No. 13 [恒 GL-29.90L(形] in, out)	No. 14 [5년 GL-36. 50	∰) J(in, out)
断面寸; -(m) Dimensio	B2 H2 n B3 H3	1. 000 0. 000	1. 460 0. 000 0. 000	1. 000 0. 000	1. 460 0. 000 0. 000
超號型	OHNE' kN-m N kN Force		46. 695 98. 830		1675. 148 1341. 380
鉄筋量 Boy	d1 /As1 (n) (cn2)	1. 330 3 (6. 667-0		1. 330 (6. 66	33. 782 7-D25)
Anongeme	d2 /As2 (m) (cm2)	0. 130 3 (6. 667-1		0. 130 (6. 66)	
	合計 cm2	(7. 564		67. 564
Check o 尼力度 N/mm2		7.3 < 225.0 <	10. 0 225. 0	7. 9 < 225. 0 <	10. 0 225. 0
中立軸			. 4364		0. 4590
Hedulus PUPI	数E mbio	n =	15. 00	n =	15.00

Moment

000

6500

8

50

D25 @

Nr=1675. I5kN+m

(Temporary use)

抵抗モーメント図 (仮設時)

(kNm) 背面側 (out) 掘削側 (in) 3000 2000 1000 0.0 1000 2000 3000 3500 2500 1500 500 500 1500 2500 3500 100 9 GL: 0.00 Mr-932.01kN-m Nr=932.01kN-m 120 **9** 150 8500 8500 025 025 Nr=1115. 21kN-m Mr=1115. 21kN+n GL- 8.60 © Nr=1112. 73kN·m 300 4r=1802. 34kN+n D29 @ 150 6500 co) 6500 œ 025 029 Nr=1224. 36kN+m 1679. 16kN-ly #r-1906. 80kN-n GL-13. 96 280 Mr - 2808. 48kN+m (GL-14.00) 1280 Mr = 2808. 48kN\n 9 150 032 @ 150 2726. 94kN-m 36500 36500 (GL-17.50) 2000 032 032 Mr = 2984. 23k) 1885. 58kM-Mr-2984. 23kN-m GL-23.40 (GL-23. DO) Mr = 1424. 5GkN-m =2087. 39kN·m 150 719. 19k**)**V-m 300 029 @ 150 (GL-29 18) 7500 7500 0 œ 025 Mr=1547. 00kN-m Mr=2209. 40kN-m GL-29.90 Mr=1546.76kN-m Mr=1546. 76kN-m

注) 背面側のGL-13.96~-23.40m間は、完成時(本体利用時)を考慮して決定した。 4-1-70

Mr=1675. 15kN-m

000

6500

GL-36.50

g 150

5-4-4 Shearing force

- (1) Calculation of resisting shearing force
 - a) The allowable shearing force that it can be borne only with concrete

The allowable shearing force that it can be borne only with concrete is calculated with the following formula.

$$Scr = \tau a \cdot b \cdot d$$

where, ta: Allowable shearing stress of concrete

$$(=0.49 \text{ N/mm}^2, \text{ f'ck} = 24 \text{ N/mm}^2 (\text{in slurry}))$$

d: Effective depth (= 133 cm)

$$Ser = (0.49 \times 100) \times 100 \times 133$$

b) The allowable shearing force in consideration of stirrup

The allowable shearing force in consideration of stirrup is calculated with the following formula.

$$Sr = Sh + Sc$$

$$Sh = \sigma sa \cdot d \cdot As / (1.15 \cdot a)$$

where, osa: Allowable tensile stress of concrete (= 225 N/mm2, SD295A,B)

d: Effective depth (= 133 cm)

As: Section area of stirrup (cm2/ m)

a: Pitch of stirrup (cm)

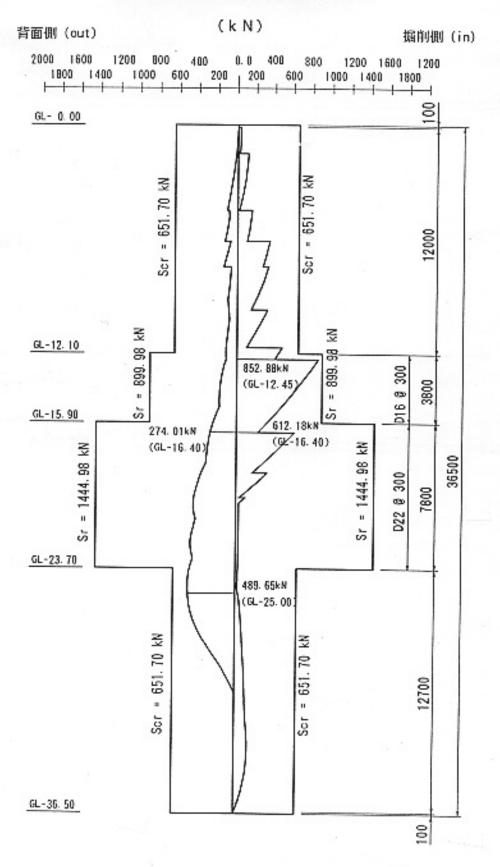
Diameter of stirrup	ı	\s	osa	d	a	Sh (kN)
D13	4.223	@300	225	133	30.0	366
D16	6.619	@300	225	133	30.0	574
D19	9.549	@300	225	133	30.0	828
D22	12.902	@300	225	133	30.0	1,119

$$Sc = 1/2 \cdot \tau a \cdot b \cdot d = 1/2 \cdot Scr$$

$$=652/2 = 326 \text{ kN}$$

Therefor.

Diameter of stirrup	Sh (kN)	Sc (kN)	Sr = Sh + Sc (kN)
D13	366	326	692
D16	574	326	900
D19	828	326	1,154
D22	1,119	326	1,445


(2) Check on bending stress

Moment Colculation

Rectongular

ケース番号 www タイトル bitte	xer No. 1 [矩 形] GL-14.00	No. 2 [矩	#≶ } GL-17.50	No. 3 [箕	形] GL-23.00	No. 4 [51	至 用≶) GL-26.18
断面寸法 B1 H1 (m) B2 H3 Dimension B3 H3	0.000	0.000	1.000 0.000	1. 460 0. 000 0. 000	1. 000 0. 000	1. 460 0. 000 0. 000	1. 000 0. 000	1. 460 0. 000 0. 000
斯面力 M kN N kN	m	1679, 160 514, 500		2726. 940 643. 130 -		1885.580 845.250		719. 190 962. 110
鉄筋量 dl /Asi Boar (n) (cn)	1.330	42.829 667-D29)	1.330 (6.66	52.949 7-D32)	1.330 (6.60	42.829 57-D29)	1.330 (6.6	33. 782 67-D25)
Arrangement 2 /As:		21. 411 333-D29)	1.230 (6.66	52.949 7-D32)	1. 230 (3. 33	21.411 33-D29)	0. 230 (3. 3	21. 411 33-029)
d3 /As: (m) (cm		33. 782 667-D25)	0. 230 (6. 66	52. 949 7-D32)	0. 130 (6. 66	33. 782 67-D25)	0.130 (6.6	42.829 67-D29)
d4 /As (m) (cm			0, 130 (6, 66	52.949 7-D32)				
合計の	n2	98.022		211.796		98. 022		98. 022
check of stress 记力度 oc o N/mn2 os o	ca 6. t		8.1 < 212.0 <		7. 5 198. 4		3. 0 53. 4	
Natural Axis 中立朝 x	n i	0. 4487		0. 4834		0. 4801		0.6118
Heply of class	aty n	= 15.00	n =	15.00	n :	= 15.00	n	= 15.00

Figure of Sharing Force (Temporary Case) 抵抗せん断力図(仮設時)

