CHAPTER 4
INTERMEDIATE
WASTEWATER PUMPING
STATION
(PACKAGE C)

4.1 Civil Design 4.1.1 Design Standard

1. Design Standard

(1) Permanent Structure

(a) Unit Weight

Reinforced concrete

 $yc = 2.5t/m^3$

Backfill sand

ys = $1.8t/m^3$ (under Ground water $0.8t/m^3$)

(b) Design Stress

· Concrete

Concrete	
Bending compressive stress	210(kg/cm ²)
σса	

· Reinforcement

Reinforcement	deformed bar
Tensile and compressive stress	3,000(kg/cm ²)
tsa	

(c) Allowable Stress

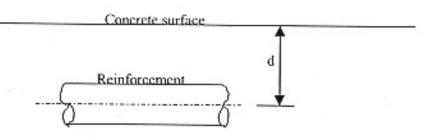
· Concrete

Concrete	210(kg/cm ²)
Bending compressive stress oca	70(kg/cm ²)
Shearing stress τea	3.6(kg/cm ²)

Reinforcement

Reinforcement	deformed bar
Tensile and compressive stress	1,600(kg/cm ²)
тѕа	

(d) Reinforcement Arrangement


· Diameter (mm)

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 28, 30, 32, 36

· Cover (d mm)

Underside of bottom slab d = 120 mm (with pile structure)

d = 100 mm (without pile structure)

Other slab and wall d = 70 mm (h≥300mm)

d = 50 mm(h < 300 mm)

Beam and Columnd = 70mm

Minimum space between two bars of reinforcement (face to face)

For slab and wall t0 = 100mm

(In this calculation, the space between two bars (center to center) should be taken following two cases, 125mm or 250mm.)

For beam and column t0 = 50mm

· Minimum amount of reinforcement

Deformed bar

Beam

 $As = 0.002 \text{ b} \cdot d \le As \le 0.02 \text{ b} \cdot d$

Column

As = $0.0015 \text{ A} \le \text{As} \le 0.06 \text{ A}$

· Lap length

Plain bar and Deformed bar L = 35d (d = diameter of reinforcement)

- (e) Design Load
 - · Basic parameters

Unit weight of soil $\gamma = 1.8(t/m^3)$, friction angle $\phi = 30^\circ$

Under ground water

 $y' = 0.8(t/m^3)$

Vehicle load

H30 (30T)

· Vertical load

Soil load $p1 = h \times \gamma$

Vehicle load $p2 = (n \times P)/A$

Back axle weight = 12T

One tire weight P = 12/2 = 6T (The space of tire

Is 1.6m)

Loading area

 $A = (0.2+2 \times h \times \tan 30^{\circ}) \times (0.6+2 \times h \times \tan 30^{\circ})$

n: over load factor 1.3

(If depth of upper slab is more than 1.4m, two tire

loads should be considered)

Under ground water load

Pw (unit weight is 1.0t/m3)

· Horizontal load

Soil pressure

P = (vertical soil load) × Ko

Ko = 0.5 (Earth pressure at rest)

Horizontal load pressure

Pv = (Vertical load) × Ko

(For calculation of Box Culvert. Vertical vehicle load and horizontal vehicle load are not loaded at the same time.))

Axial load

Pa = 1.0 t/m² (For calculation of under ground

wall. If there is no road near the structure, axial load is 0.5t/m2))

Under ground water pressure Pw

· Inside of structure

Vertical water load

Horizontal water pressure

· Equipment weight

Mechanical equipment load (activity load)

Electrical equipment load

- · Building load
- Uplift strength

(2) Temporary structure

(a) Sheet Pile: Stress for calculation

Tensile Stress	2,700 kg/cm ²
Bending Compressive Stress	2,700 kg/cm ²
Shearing Stress	1,300 kg/cm ²

(b) H section steel

Tensile Stress	2,100 kg/cm ²
Bending Compressive Stress (*)	2,100 kg/cm ²
Shearing Stress	1,200 kg/cm ²

* Bending Compressive Stress is according to length of H section

 $1/r \le 20$

2,100 kg/cm²

20 <1/r <93

{ 1,400 - 8.4(1/r - 20)}

93 ≤ 1/r

 $\{12,000,000/(6700+(1/r)^2)\} \times 1.5$

Here 1: length of H section r = radius gyration of H section

(c) Stress Iron Weld Connection

Allowable stress of Shop Welding is same as the above. Allowable stress of Field Welding is 80 % of Shop welding.

(d) Stress for Bolt Connection

Shearing Stress	1,300 (kg/cm ²)
Surface Compressive	2,900 (kg/cm ²)

2. Design method of Spread Foundation

(1) Allowable Bearing Capacity of Soil

Allowable bearing capacity of soil is calculated by following equetion

$$qa = 1/3 (\alpha \times C \times Nc + \beta \times r1 \times B \times Nr + r2 \times Df \times Nq)$$

Here

Qa: Allowable bearing capacity of soil (t/m2)

C: Cohesion of soil under the bottom of foundation (t/m2)

r1: Unit weight of soil under the bottom of foundation (t/m³)
 Use submerged unit weight if soil is under the ground water

r2 : Average unit weight of soil upper side of bottom foundation (t/m³) Use submerged unit weight if soil is under the ground water

α, β: Shape factor

Nc,Nr,Nq: Bearing capacity factor (function of internal friction of soil (φ))

Df: Depth from lowest point of ground which close to foundation, to bottom level of foundation (m)

B: Smallest width of bottom foundation (m)

Shape factor

Shape of bottom foundation	Continuous footing	Square	Rectangular	Circular
α	1.0	1.3	1.0+0.3(B/L)	1.3
β	0.5	0.4	0.5 - 0.1(B/L)	0.3

Bearing capacity factor

ф	Nc	Nr	Nq
0°	5.3	0	3.0
5	5.3	0	3.4
10	5.3	0	3.9
15	6.5	1.2	4.7
20	7.9	2.0	5.9
25	9.9	3.3	7.6
28	11.4	4.4	9.1
32	20.9	10.6	16.1
36	42.2	30.5	33.6
More than 40	95.7	114.0	83.2