CHAPTER 2 PUMP DRAINAGE IMPROVEMENT (PACKAGE B) 2.1 Civil Design 2.1.1 Design Standard

1.1.1 Design Standard

(1) Permanent Structure

(a) Unit Weight

Reinforced concrete	γc		2.5t/m3
Backfill sand	γs	=	1.8t/m3 (under Ground water 0.8t/m3)

(b) Design Stress

Concrete

Concrete	
Bending compressive stress	210(kg/cm2)
σca	

Reinforcement

Reinforcement	deformed bar
Tensile and compressive stress	3,000(kg/cm2)
τsa	

(c) Allowable Stress

· Concrete

Concrete	210(kg/cm ²)
Bending compressive stress oca	70(kg/cm ²)
Shearing stress tca	3.6(kg/cm ²)

Reinforcement

Reinforcement	deformed bar
Tensile and compressive stress	1,600(kg/cm ²)
τsa	

(d) Reinforcement Arrangement

· Diameter (mm)

6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 25, 28, 30, 32, 36

· Cover (d mm)

Concrete surface d Reinforcement Underside of bottom slab d = 120 mm (with pile structure) d = 100 mm (without pile structure) Other slab and wall d = 70 mm ($h \ge 300 \text{ mm}$) d = 50 mm(h < 300mm)Beam and Columnd = 70mm · Minimum space between two bars of reinforcement (face to face) For slab and wall t0=100mm (In this calculation, the space between two bars (center to center) should be taken following two cases, 125mm or 250mm.) For beam and column t0=50mm Minimum amount of reinforcement Deformed bar Beam As = $0.002 \text{ b} \cdot d \le \text{ As} \le 0.02 \text{ b} \cdot d$ Column $As = 0.0015 A \le As \le 0.06 A$ · Lap length Plain bar and Deformed bar L = 35d (d = diameter of reinforcement) (e) Design Load · Basic parameters Unit weight of soil friction angle $\phi = 30^{\circ}$ $\gamma = 1.8(t/m^3),$ Under ground water y' = $0.8(t/m^3)$ Vehicle load H30 (30T) · Vertical load Soil load $pl = h \times \gamma$ Vehicle load $p2 = (n \times P)/A$ Back axle weight = 12T One tire weight P = 12/2 = 6T (The space of tire Is 1.6m) Loading area $A = (0.2 \pm 2 \times h \times \tan 30^\circ) \times (0.6 \pm 2 \times h \times \tan 30^\circ)$ n : over load factor 1.3

	(If depth of upper slab is more than 1.4m, two tire
	loads should be considered)
Under ground water load	Pw (unit weight is 1.0t/m ³)
 Horizontal load 	
Soil pressure	P = (vertical soil load) × Ko
	Ko = 0.5 (Earth pressure at rest)
Horizontal load pressure	$Pv = (Vertical load) \times Ko$
(For calculation of Box Culver	t. Vertical vehicle load and horizontal vehicle load are
not loaded at the same time.))	
Axial load	Pa = 1.0 t/m2 (For calculation of under ground
wall. If ther	re is no road near the structure, axial load is 0.5t/m2))
Under ground water pressure	Pw
· Inside of structure	
Vertical water land	

Vertical water load Horizontal water pressure

 Equipment weight Mechanical equipment load (activity load)
 Electrical equipment load

- · Building load
- · Uplift strength

(2) Temporary structure

(a) Sheet Pile : Stress for calculation

Tensile Stress	2,700 kg/cm ²
Bending Compressive Stress	2,700 kg/cm ²
Shearing Stress	1,300 kg/cm2

(b) H section steel

Tensile Stress	2,100 kg/cm2
Bending Compressive Stress (*)	2,100 kg/cm2
Shearing Stress	1,200 kg/cm2

¿ * Bending Compressive Stress is according to length of H section

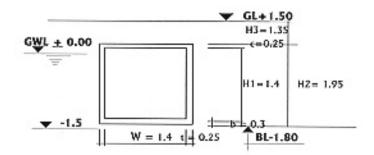
$l/r \le 20$	2,100 kg/cm ²
20 <1/r <93	{ 1,400 - 8.4(l/r - 20)}
$93 \leq 1/r$	{ 12,000,000 / (6700 +(1/r) ²)} × 1.5

Here 1 : length of H section r = radius gyration of H section

(c) Stress Iron Weld Connection

Allowable stress of Shop Welding is same as the above. Allowable stress of Field Welding is 80 % of Shop welding.

(d) Stress for Bolt Connection


Shearing Stress	1,300 (kg/cm2)
Surface Compressive	2,900 (kg/cm ²)

2.1.2 Thanh Da Pumping Station

CALCULATION FOR THANH DA PUMPING STATION

I-Calculation for culvert 1400x1400 (The calculation based on Japanese standard - JIS1999)

1-Geometry dimensions for calculation : (Calculation made for one m long of culvert):

2-Material properties and soil conditions:

Ground water level:	GWL=	±0.00		
Concrete: Grade 210,	Rn =	70 kg/cm ²		
	RS=	3.6 kg/cm ²		
Reinforcement type]IS:	Ra=	1600 kg/cm ²		
Back fill sand:	y = 1.8T/m3;	Coeficient of earth pressure at rest Ko=	0.5	
Internal friction =				20deg

3-Loading and calculation scheme:

3.1 Vehicle load:	1170	
Vehicle type:	H30	So design load is calculated as following formula:
		Pde=(1+I)X2P/Wo
Wh	ere;	P,weight of back wheel 12.00T
e 11 milion		Wo,width of occpled area of vehicle Wo = 2.75m i, impact coefficent, i=0.3
		Pde=2x12x(1+0.3)/2.75=11.35
		$W1 = 2h + 0.2 = 2 \times 1.35 + 0.2 = 2.90m$
		P1=Pde/W1=11.35/2.9=3.91T/m2
3.2 Soil load on cover	slab	
P2 -	-	$H_3 * \gamma_s = 1.475 * 1.8 = 2.655T/m2$
3.3 Horizontal load fro	m vertical lo	ad P1+P2 on two side of culvert
Рн-	- 1	2.655x0.5+0.5= 1.83T/m2
3.4 Horizontal triangle	load due to	earth from both side of the culvert
Pw	<u></u>	1.83+0.5x0.8x1.65+1.0x1.65=4.14T/m2

3.5 Reaction at the bottom slab of culvert

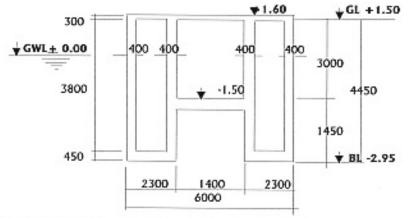
THA

4-Checking pressure to base soil

Total pressure to base soil

So at the depth of 3.3m strength of base soil must be bigger than 9T/m2

5-Checking uplift that due to ground water


Ground water level ± 0.00 and the culvert it empty

Total pressure : Ps=Psoil+Pself = 2.655+2.29=4.945T/m2 > Puplift

II-Calculation for pumping station

(Checking for section 6-6)

1-Geometry dimensions for calculation :

2-Loading and calculation scheme:

2.1 Vertical load

Surchange load on the cover slab Ps = 0.50T/m2

2.2 Horizontal triangle distributed load due to earth from both side of the pumping station

above ground water level

$$P_{11} = 1.8 \times 1.45 \times 0.5 = 1.31 \text{T/mZ}$$

2.3 Horizontal distributed uniform load due to surchange load from both side of the

pumping station

THA

2.4 Horizontal triangle distributed load due to earth from both side of the pumping station

under ground water level

Ps3=(1.8-1)x2.725x0.5+1.0x2.725=3.82T/m2

Total horizontal load from both side of the pumping station

$$P_{bor} = P_{s1} + P_{s2} + P_{s3} = 1.31 + 0.25 + 3.82 = 5.38T/m2$$

2.5 Pressure due to water inside from both wall of the pumping station

Pw=1.0x2.73=2.73T/m2

2.6 Reaction at the bottom stab of pumping station

Pb = Ps + (Wsl + Ww)/b = (0.50 + 0.75) + (4x4.18 + 3.5/5.6) = 4.86T/m2

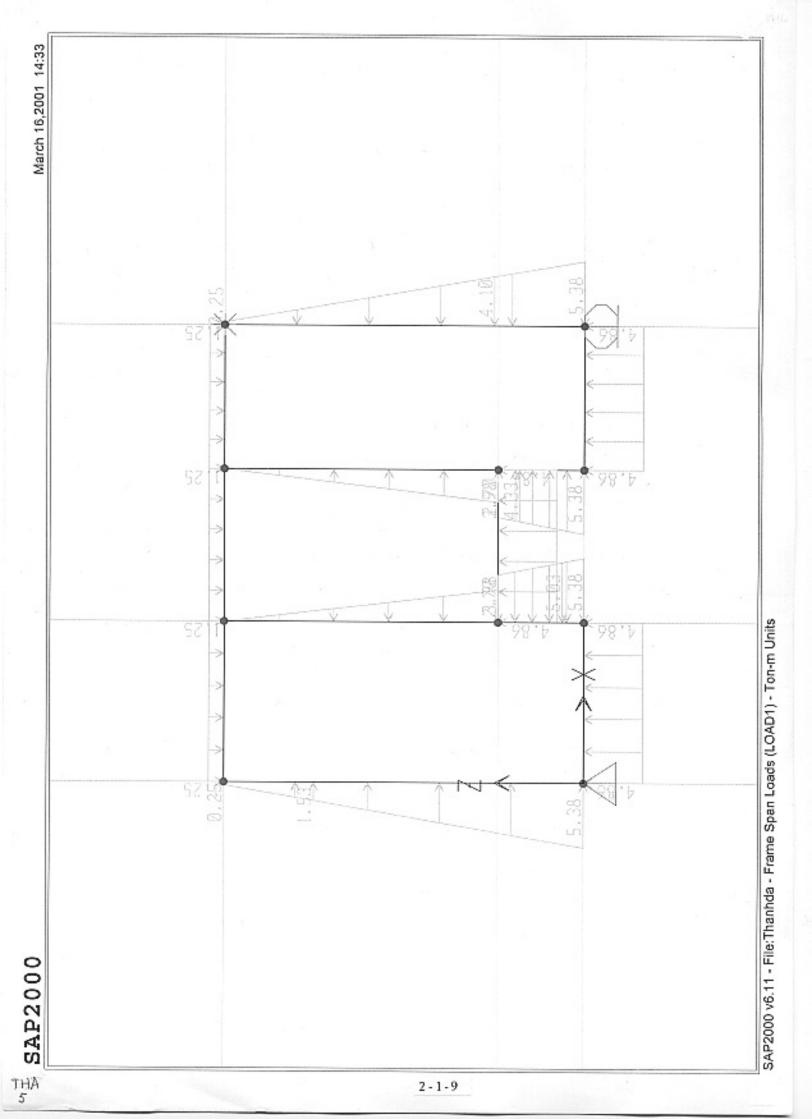
III-Calculation for streses and force:

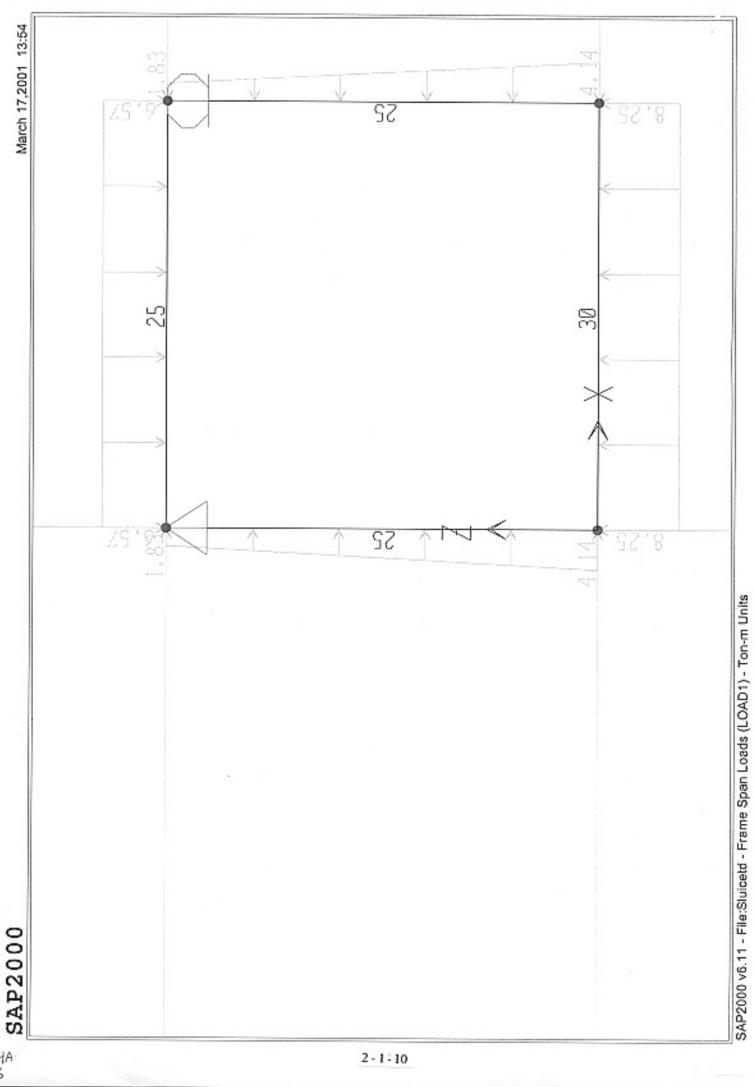
Refer to attached result sheet for calcution value of stress steel area for scheet elements

THA 3

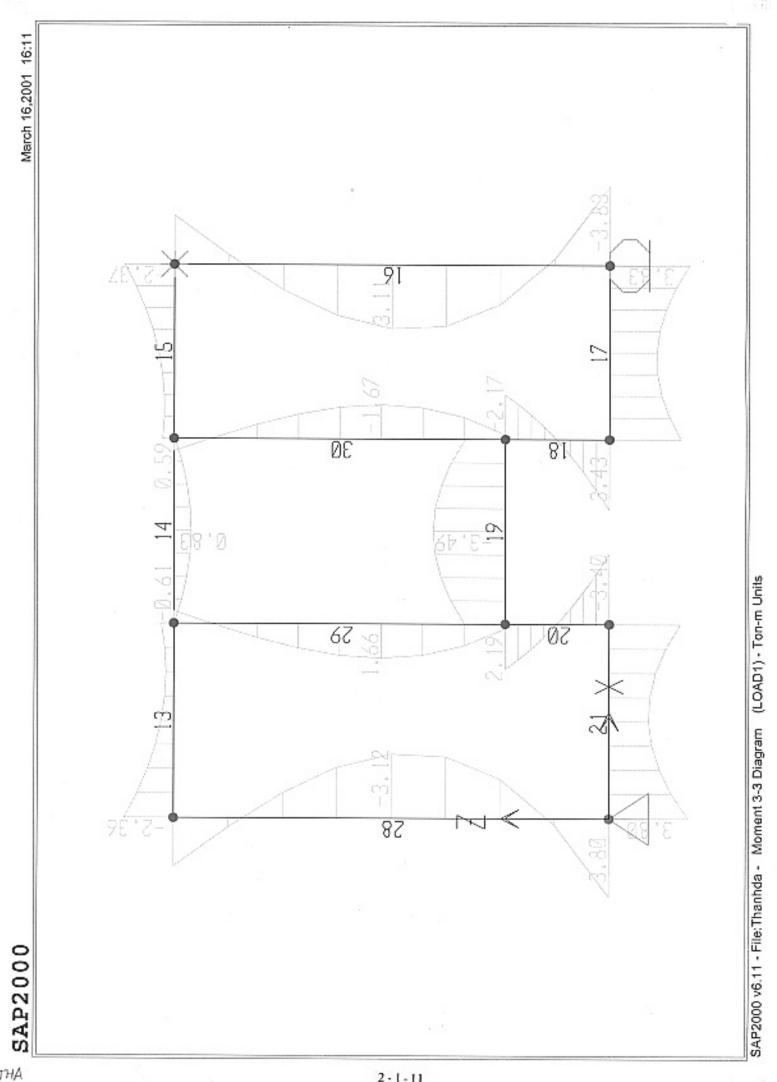
Calculation for bar arrangement for Thanh Da pumping station

Base on attached results of shell forces analised by SAP2000, choosing the most dangerous forces for calculation:

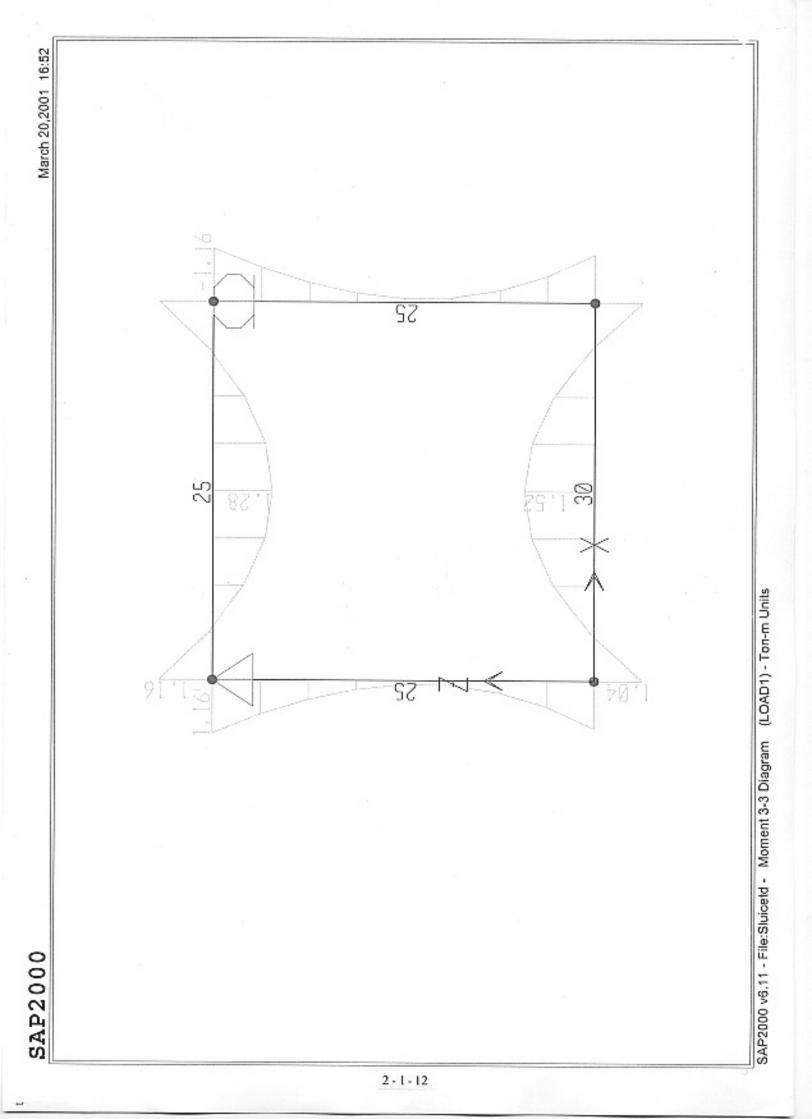

$$A_a = M/R_b h_a^2$$


Where, M: Maximum bending moment(T.m) h_o: Effective depth of bearing area(cm) h_o= (Element thickness-Cover thickness) b: Width of calculated area(cm)

Required area of reinforcement: Fa= M/yRaho


Where: $\gamma = 0.5 + ((1-2Ao)^{1/2})/2$

NAME OF	Values	Ao	Y	Fa	Bar an	rangement
ELEMENT	(T.m)			(cm ²)	¢(mm)	a(mm)
CULVERT1400X1400						
b=1.00	1.280	0.0564	0.971	4.58	14	250
h=0.25	1.160	0.0511	0.974	4.14	14	250
b=1.00	1.040	0.0281	0.986	4.40	14	250
h=0.30	1.520	0.0410	0.979	4.22	14	250
PUMPING STATION No13 bxh=1x0.3	2.360	0.0637	0.967	6.63	14	125
ELEMENT No 16	3.830	0.0502	0.974	7.45	14	125
bxh=1x0.4	3.110	0.0408	0.979	6.02	14	125
ELEMENT No 17 bxh=1x0.45	3.770	0.0373	0.981	6.32	14	125
ELEMENT No 18 bxh=1x0.4	3.430	0.0450	0.977	6.65	14	125



THA 6

тнА 7

Pile Foundation Calculation for THANH DA Pumping Station

(1) Soil condition of THANH DA Pumping Station

Typical soil condition of is shown in bellow.

	+1 30 m Existing GL
OH Layer	rw = 1.402 t/m3 N = 0 ~ 1Pile_Head_Lexel - 1.95 m 12.55 m
	– 14.50 m
CL Layer	rw = 1.721 t/m3 N = 2 ~ 4 1.70 m - 16.20 m
SC Layer	rw = 2.00 t/m3 N = 11 ~ 12 - 20.30 m
SM Layer	rw = 2.00 t/m3 8.00 m N = 11 ~ 12 13.10 m - 24.20 m
CL Layer	rw = 2.09 t/m3 N = 12 ~ 15 3.10 m - 27 30 m
SM Layer	rw = 2.00 t/m3 2.00 m N > 20 -29.30 m
	2.00 m

(2) Calculation Condition

PileConcrete Pile 300×300 Embed depth for SM Layer is 2.00 m (N > 20)Consider a positive friction for pile from SC Layrer (N > 10)Pile LengthL = 31.30 - 1.95 = 29.35 m

(3) Calculation of Allowable Bearing Capacity of Pile

Ra = 1/3 (Ru - Ws) + Ws - W

Ra : Allowable vertical bearing capacity of pile at pile head (t/pile)

Ru : Assumed ultimate bearing capacity of pile

 $Ru = qd \times A + U \times \Sigma Li \times Fi$

qd: 30 × N (t/m2)

A : area of tip point of pile (m2)

U: The girth of pile (m)

Li : Thickness of layer which consider positive friction (m)

Fi : Maximum friction of layer which consider positive friction (Fi = $0.2 \times N (t/m2)$)

Ws : Effective weight of soil which permute by soil (t)

W : Effective weight of pile and soil in the pile (t)

Average unit weight of soil (under ground water) (0.402 × 12.55 + 0.721 × 1.70 + 1.00 × 8.00 + 1.09 × 3.10 + 1.00 × 4.00)

÷ 29.35 = 0.74 t/m3

Consider positive friction for layer of N > 10.

 $\begin{aligned} &Ru = 30 \times 20 \times 0.30 \times 0.30 + 0.30 \times 4 \times ((13.10 \times (0.2 \times 10) \times + 2.00 \times (0.2 \times 20)) \\ &= 95.04 \text{ t} \\ &Ws = 0.30 \times 0.30 \times 29.35 \times 0.74 \text{ (t/m3)} = 1.95 \text{ t} \\ &W = 0.30 \times 0.30 \times 29.35 \times 1.50 \text{ (t/m3)} = 3.96 \text{ t} \end{aligned}$

 $Ra = 1/3 \times (95.04 - 1.95) + 1.95 - 3.96 = 29.00 t/pile$

(4) Pile number calculation

Total load	
Concrete	
Right Upstream	7.55 m3
Pumping Station	111.86 m3
Left Upstream	4.46 m3
Right Downstream	6.82 m3
Sub Total	110 /0 7
Sub Total	130.69 m3
130.69 m3 × 2.50 t/m	
	130.69 m3 n3 = 326.73
130.69 m3 × 2.50 t/m	
130.69 m3 × 2.50 t/r Equipment load	n3 = 326.73
130.69 m3 × 2.50 t/r Equipment load Main pump	n3 = 326.73 3.36 t

2-1-14

Water load	149.09 t
------------	----------

Total Load 481.29 t

2) Pile Numbers

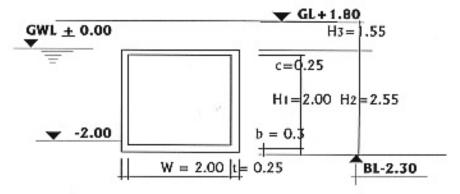
Allowable bearing capacity of pile = 29.00 t/pile Necessary numbers of pile

N = (481.29 t / 29.00 t/pile) = 17 piles

21 piles are arranged

(481.29 t/21 piles) = 22.92 t < 29.00 t/piles OK

2.1.3 Ben Me Coc (1) Pumping Station


CALCULATION FOR BEN ME COC PUMPING STATION

I-Calculation for culvert 2000X2000

(The calculation based on Japanese standard -]IS1999)

1-Geometry dimensions for calculation :

(Calculation made for one m long of culvert):

2-Material properties and soil conditions:

Ground water level:	GWL=	±0.00	
Concrete: Grade 210,	Rn =	70 kg/cm ²	
	RS=	3.6 kg/cm ²	
Reinforcement type JIS:	Ra=	1600 kg/cm ²	
Back fill sand:	$\gamma_{s} = 1.8T/m3;$	Coeficient of earth pressure at rest $K_{\sigma} =$	0.5
Internal friction =			20deg

3-Loading and calculation scheme:

3.1 Vehicle load:

Vehicle type:

H30 So design load is calculated as following formula:

Pde = (1+1)X2P/Wo

Where:

P,weight of back wheel 12.00T Wo,width of occpied area of vehicle Wo= 2.75m i, impact coefficent, i=0.3

Pde = 2x12x(1+0.3)/2.75 = 11.35

W1 = 2h + 0.2 = 2x1.55 + 0.2 = 3.30m

P1 = Pde/W1 = 11.35/3.3 = 3.44T/m2

3.2 Soil load on cover slab

P2=

 $H_{3*\gamma_{s}} = 1.55*1.8 = 2.79T/m2$

2-1-16

3.3 Horizontal load from vertical load P2 on two side of culvert

PH= 1.8x1.8x0.5+0.5= 2.12T/m2

3.4 Horizontal triangle load due to earth from both side of the culvert

3.5 Reaction at the bottom slab of culvert

Pb= 2.79+3.44+0.63+1.75/1.65=7.97T/m2

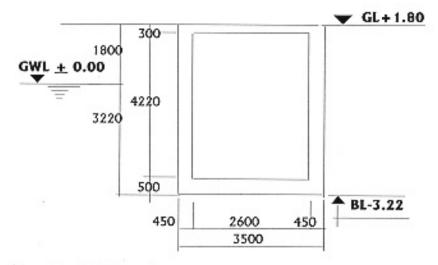
4-Checking pressure to base soil

Total pressure to base soil

Ps= 7.97+0.3x2.5=8.72T/m2

So at the depth of 3.3m strength of base soil must be bigger than 8.72T/m2

5-Checking uplift that due to ground water


Ground water level ± 0.00 and the culvert it empty

Total pressure : Ps=Psoil+Pself

= 2.79+0.55X2.5+(2X0.5X2.5)/2.5=5.165T/m2 >Puplift=2.15X1=2.15T/m2

II-Calculation for pumping station

1-Geometry dimensions for calculation :

2-Loading and calculation scheme:

2.1 Vertical load

Surchange load on the cover slab Ps = 0.50T/m2

2.2 Horizontal triangle distributed load due to earth from both side of the pumping station

above ground water level

$$P_{s1} = 1.8 \times 1.80 \times 0.5 = 1.62 \text{T/m2}$$

2.3 Horizontal distributed uniform load due to surchange load from both side of the pumping

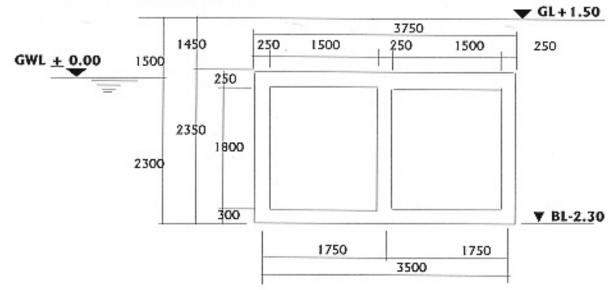
station

2.4 Horizontal triangle distributed load due to earth from both side of the pumping station

under ground water level

P₅₃=(1.8-1)x2.97x0.5+1.0x2.97=4.16T/m2

Total horizontal load from both side of the pumping station


$$P_{hor} = P_{s1} + P_{s2} + P_{s3} = 1.62 + 0.25 + 4.16 = 6.03T/m2$$

2.5 Reaction at the bottom slab of pumping station

 $P_{bott} = Ps + (Wsl + Ww)/b = (0.50 + 0.75) + (2x4.74/3.05) = 4.36T/m2$

III-Calculation for control gate

1-Geometry dimensions for calculation :

2-Loading and calculation scheme:

2.1 Vertical load

Surchange load on the cover slab Ps = 0.50T/m2

2.2 Soil load on cover slab

P2=

H3*ys=1.45*1.8=2.61T/m2

2-1-18

2.3 Horizontal distributed uniform load due to surchange load from both side of the pumping

station

$$P_{s1} = 0.5 \times 0.5 = 0.25 \text{T/m2}$$

2.4 Horizontal triangle distributed load due to earth from both side of the pumping station

above ground water level

$$P_{s2} = 1.8 \times 1.50 \times 0.5 = 1.35 \text{T/m2}$$

2.5 Horizontal triangle distributed load due to earth from both side of the pumping station

under ground water level

$$P_{s3} = (1.8-1)x2.075x0.5 + 1.0x2.075 = 2.91T/m2$$

2.6 Reaction at the bottom slab of pumping station

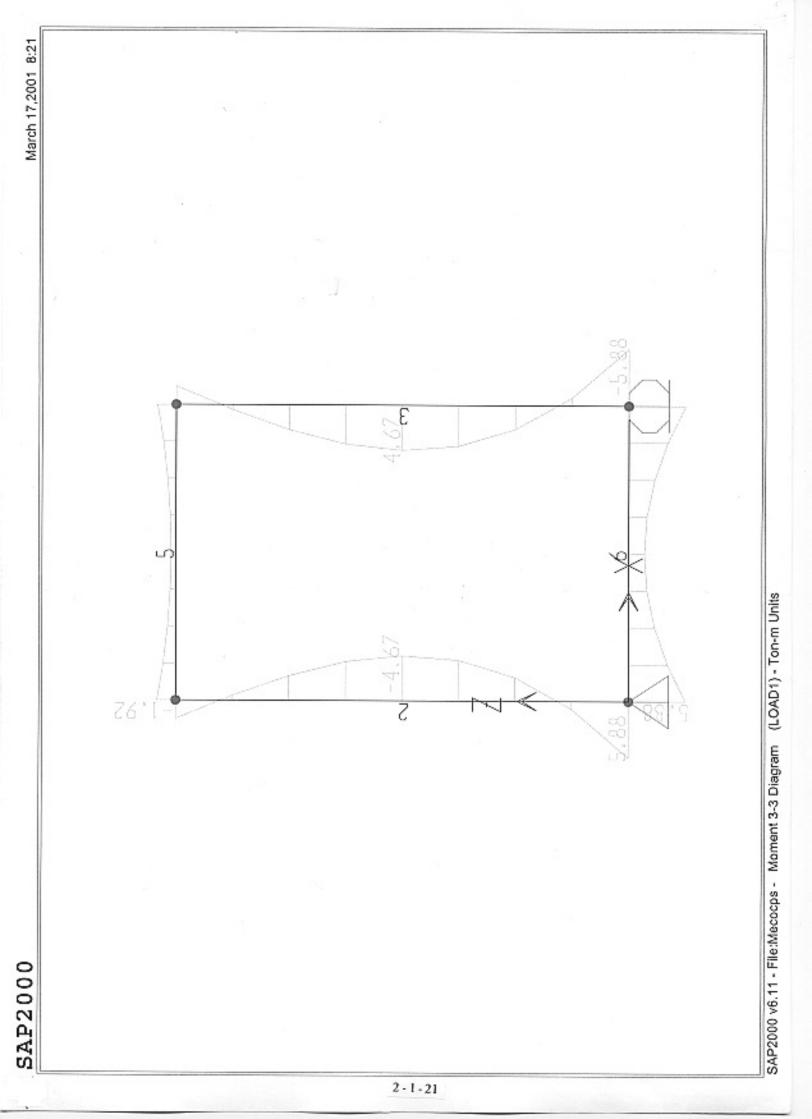
 $P_{bott} = Ps + (Wsl + Ww)/b = (0.50 + 2.61 + 1.375) + (3x1.8x0.25x2.5/3.5) = 5.46T/m$

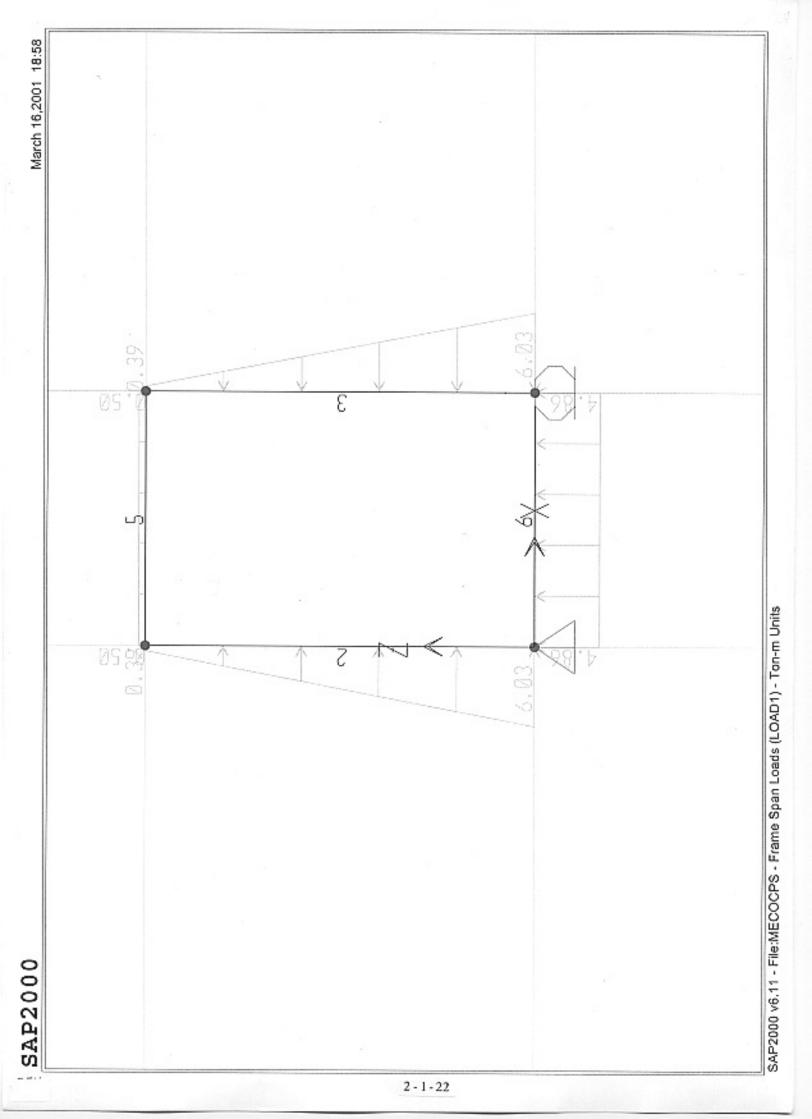
IV-Calculation for streses and force:

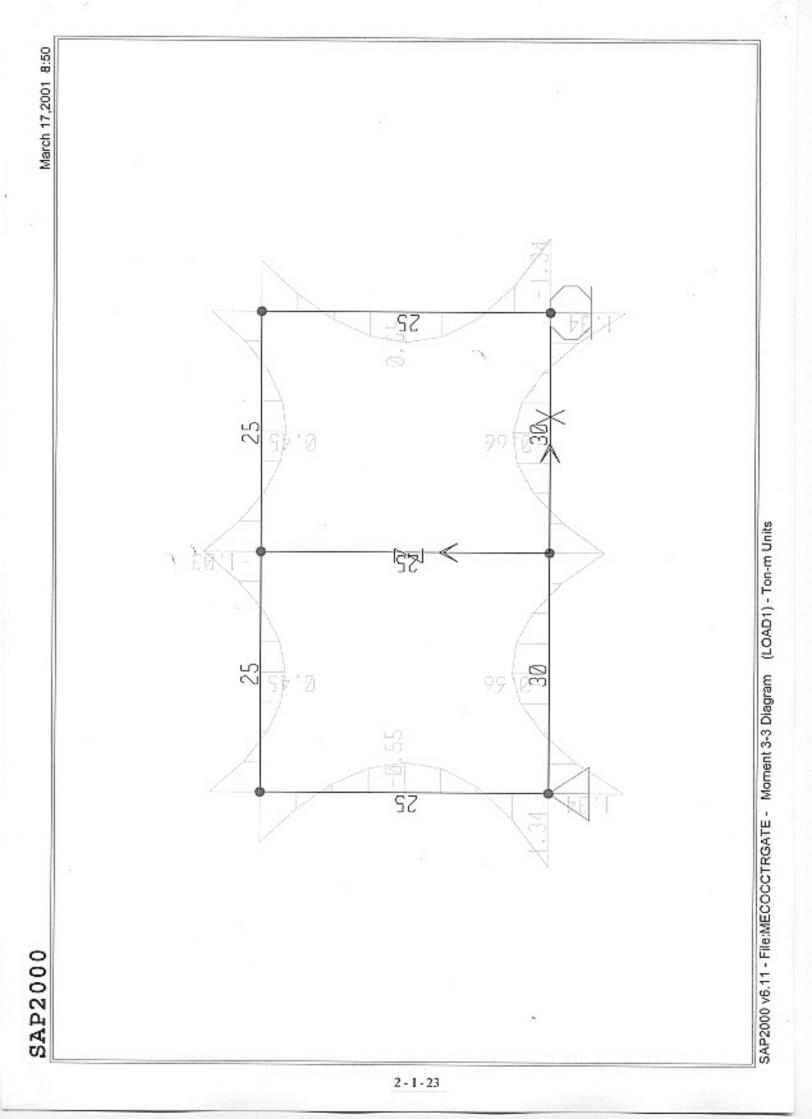
Refer to attached result sheet for calcution value of stress steel area for scheet elements

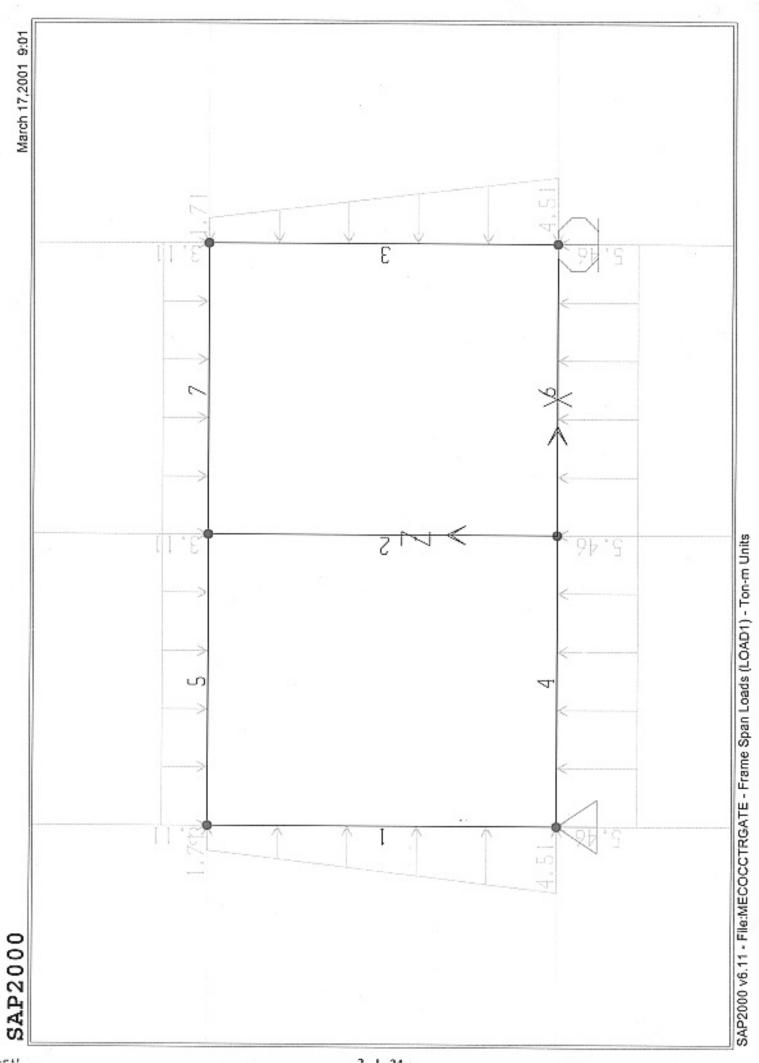
Calculation for bar arrangement for Me coc pumping station

Base on attached results of shell forces analised by SAP2000, choosing the most dangerous forces for calculation:

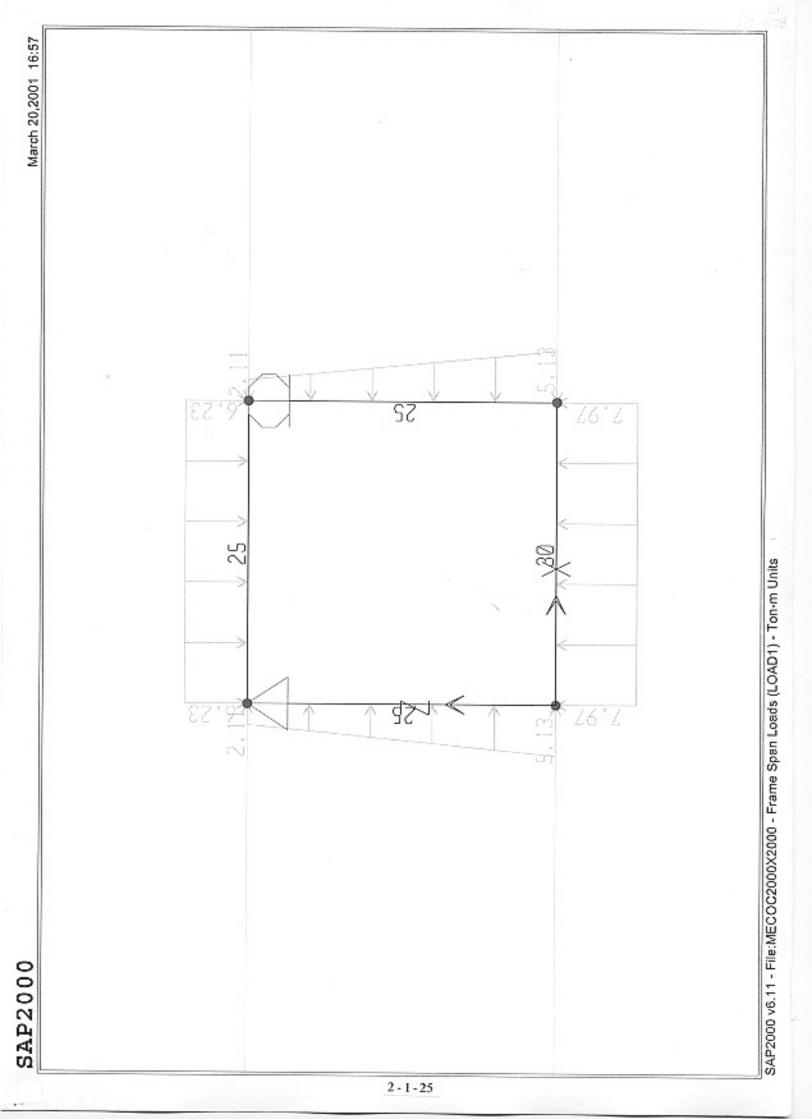

$$A_a = M/R_a bh_a^2$$

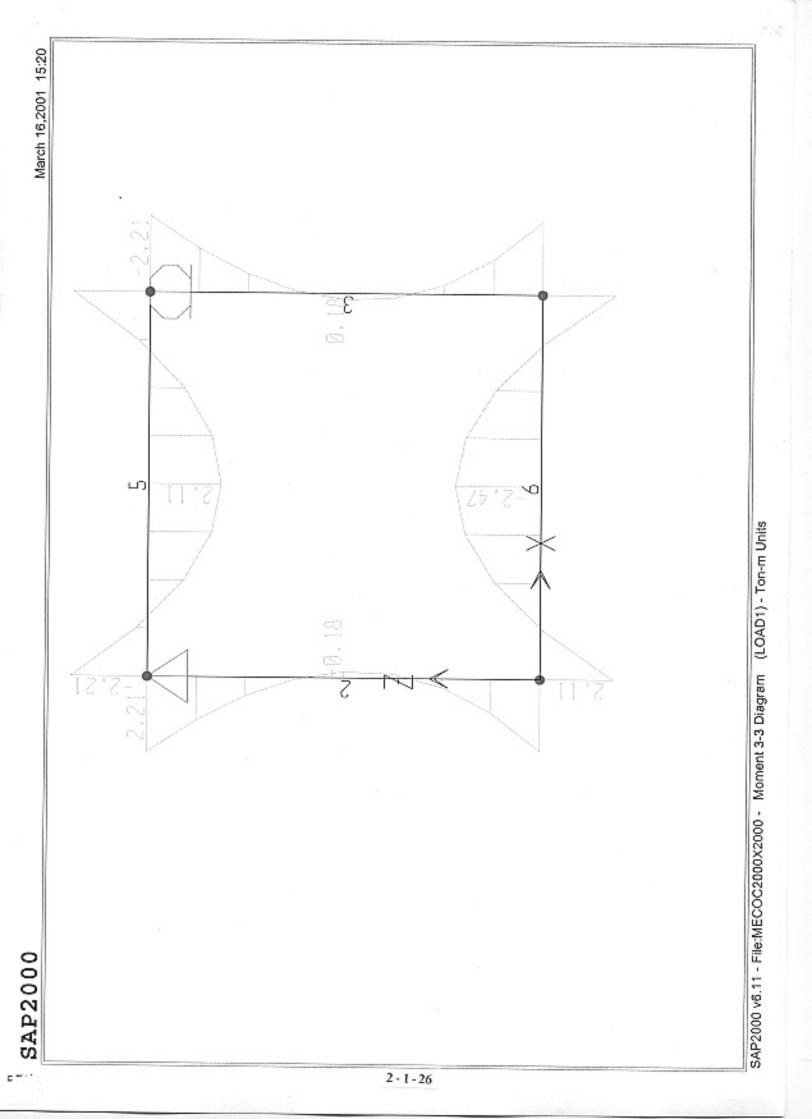

Where, M: Maximum bending moment(T.m) h_o: Effective depth of bearing area(cm) h_o= (Element thickness-Cover thickness) b: Width of calculated area(cm)


Required area of reinforcement: Fa= M/γRaho


Where: $\gamma = 0.5 + ((1-2Ao)^{1/2})/2$

NAME OF	Values	Ao	γ	Fa	Bar an	rangement
ELEMENT	(T.m)			(cm ²)	φ(mm)	a(mm)
CULVERT 2000X2000						
b=1.00	2.210	0.0974	0.949	8.09	14	125
h=0.25	2.110	0.0930	0.951	7.70	14	125
b=1.00	2.110	0.0930	0.951	7.70	14	125
h=0.30	2.470	0.1089	0.942	9.10	14	125
ME COC P.S						
b=1.00	1.920	0.0518	0.973	5.36	14	250
h=0.30						200
b=1.00	5.880	0.0582	0.970	9.97	16	125
h=0.45	4.670	0.0462	0.976	7.87	16	125
b=1.00	5.880	0.0582	0.970	9.97	16	125
h=0.50						
CONTROL GATE						
b=1.00	1.030	0.0454	0.977	3.66	14	125
h=0.25	0.550	0.0243	0.988	1.93	12	250
b=1.00	1.340	0.0591	0.970	4.80	14	125
h=0.30	0.660	0.0291	0.985	1.82	14	125





2 - 1 - 24

-e11

Pile Foundation Calculation for BEN ME COC (1) Pumping Station

(1) Soil condition of BEN ME COC (1) Pumping Station

Typical soil condition of is shown in bellow.

OH Layer(1)	rw = 1.471 t/m3 N = 0 ~ 1 Pile Head Level - 2.50 m
	10.60 m
OH Layer(2)	$N = 2 \sim 3$ 21.00 m - 34.10 m
	rw = 1.647 t/m3
CL Layer	N = 2 ~ 4 3.60 m
	- 37 70 m rw = 2.051 t/m3
SM Layer	$N = 8 \sim 9$ 4.00 m
	- 41.70 m
	rw = 2.064 t/m3
SC Layer	$N = 11 \sim 15$ 3.40 m
	45.10 m
CL Layer	rw = 2.086 t/m3 2.00 m
	N > 30 Pile Tip Point

(2) Calculation Condition

PileConcrete Pile 300×300 Embed depth for CL Layer is 2.00 m (N > 20)Consider a positive friction for pile from SC Layrer (N > 10)Pile Length L = 47.10 - 2.50 = 44.60 m

(3) Calculation of Allowable Bearing Capacity of Pile

Ra = 1/3 (Ru - Ws) + Ws - W

Ra : Allowable vertical bearing capacity of pile at pile head (t/pile)

Ru : Assumed ultimate bearing capacity of pile

 $Ru = qd \times A + U \times \Sigma Li \times Fi$

qd: 30 × N (t/m2)

A : area of tip point of pile (m2)

U: The girth of pile (m)

Li : Thickness of layer which consider positive friction (m)

Fi : Maximum friction of layer which consider positive friction (Fi = 0.2 × N (t/m2))

Ws : Effective weight of soil which permute by soil (t)

W : Effective weight of pile and soil in the pile (t)

Average unit weight of soil (under ground water) (0.471 × 10.60 + 0.582 × 21.00 + 0.647 × 3.60 + 1.051 × 4.00 + 1.064 × 3.40 + 1.086 × 2.00) ÷ 44.60 = 0.66 t/m3

Consider positive friction for layer of N > 10.

 $\begin{aligned} &Ru = 30 \times 30 \times 0.30 \times 0.30 + 0.30 \times 4 \times ((\ 3.40 \times (\ 0.2 \times 10\) \times + 2.00 \times (\ 0.2 \times 30)) \\ &= 103.56 \ t \\ &Ws = 0.30 \times 0.30 \times 44.60 \times 0.66 \ (t/m3) = 2.65 \ t \\ &W = 0.30 \times 0.30 \times 44.60 \times 1.50 \ (t/m3) = 6.02 \ t \end{aligned}$

Ra = 1/3 × (103.56 - 2.65) + 2.65 - 6.02 = 30.27 t/pile

(4) Pile number calculation

Total load	
Concrete	
Pit	10.12 m ³
Pumping Station	84.26 m3
Sub Total	94.38 m3
94.38 m3 × 2.50 t/n	n3 = 235.95 t
Equipment load	
Equipment load Main pump	2.60 t
	2.60 t 1.10 t
Main pump	
Main pump Flap gate	1.10 t

2 - 1 - 28

Total Load

339.24 t

2) Pile Numbers

Allowable bearing capacity of pile = 30.27 t/pile Necessary numbers of pile

N = (339.24 t / 30.27 t/pile) = 12 piles

13 piles are arranged

(339.24 t / 13 piles) = 26.10 t < 30.27 t / piles OK

2.2 Architecture Design 2.2.1 Design Standard

GENERAL NOTES

1. Design standards

- TCVN : Vietnamese Standard
- BS : British Standard
- JIS : Japanese Standard
- ASTM : American Standard for Materials
- 2. Load :
 - Load has been calculated based on standard loads defined in TCVN, ASTM. Some special loads has been calculated following the informations provided by the owner and Kirby company. These load to be clarified in below items
 - a. Gravity :
 - Concrete : γ = 2500 kg/m³
 - Reinforcement γ = 7850 kg/m³
 - Brick wall γ = 1800 kg/m³
 - Galvanized sheet γ = 30 kg/m²
 - b. Live load :

Live load has been calculated based on requirements of each items, and it was shown on every calculation sheet

- c. Wind load :
- Standard wind load : q_{tc} = 95 kg/m², in accordance with Vietnamese Standard
- Calculation method of wind load to be shown in every calculation sheet
- When calculation of wind, the designer did not consider dynamic wind load, because height of all items of this project is below 40 meters
 - d. Water, muddy gravity :
 - Water : $\gamma = 1000 \text{ kg/m}^3$
- Mud : γ = 1950 kg/m³

These above load are only considered when calcultion of water tanks with water and mud inside. These water tanks are designed with reinforcement concrete wall and bottom slab, which is enable to bear the water and muddy load

- e. Crane load :
- Maximum vertical crane load applying to crane beam has been provided by the owner, and has been shown carefully in every calculation sheet
- Maximum horizontal crane load is unique for all item. It was 5 tons
 - f. Machine and equipment load :
- Weight of machines and equipments has been taken following the technology and engineering drawings supplied by the owner
 - g. Safety load factor :

- Safety load factor was not considered in structural calculation
 - h. Load combinations :
- Load combinations have been shown clearly in every calculation sheet
- 3. Materials :
 - Concrete was used is C210 type (cylinder test) for all items, equivalent to C250 type (cubic test) in Vietnamese Standard
 - Properties of C250 concrete :
 - * Compressive strength: Rn = 110 kg/cm2
 - * Tensile strength : R_k = 8.8 kg/cm²
 - When consider safety factor k=1.1 (safety load factor was not considered in structural calculation):
 - * Compressive strength : Rn = 100 kg/cm²
 - * Tensile strength : Rk = 8.0 kg/cm²
 - Reinforcement steel bar has been calculated with tensile strength R_k = 2000 kg/cm² with a safety factor (according to Japanese Standard)
- 4. Design and structural analysis softwares :
 - SAP2000 : Calculation of stress
 - DAS 1.2 : Calculation of stress and design of reinforcement concrete
 - Sap Steel V1.0 : Design of reinforcement concrete from SAP2000 result files
 - Excel worksheets to be programmed for calculation of reinforcement concrete slab
 - Design of reinforcement concrete was in accordance with Japanese Standard, with material properties shown on item 3

2.2.2

Thanh Da Pumping Station

PROJECT : PUMP DRAINAGE IMPROVEMENT ITEM : THANH DA PUMP STATION

STRUCTURAL CALCULATION SHEET

STRUCTURAL ANALYSIS ITEMS :

A. MAIN FRAME STRUCTURAL ANALYSIS
 B. ATTACHED RESULT SHEETS

STRUCTURAL CALCULATION SHEET

- * Project : Pump Drainage Improvement
- * Item : Thanh Da Pump Station

Part I : CALCULATION OF LOAD

A. DEAD LOAD :

Roof:

No.	Material	Calculation	Applying load(kg/m ²)
1	Steel purlin & roof sheet		40
2	Others		50
		TOTAL	g ^{te} = 90 kg/m ²

B. LIVE LOAD :

- Live load to be taken based on Vietnamese Standard TCVN 2737-1995 ;
 - * Roof : p[%] = 75 kg/m²
- Load safety factor was not mentioned on above calculation because it will be included in structural analysis progress (see attached calculation sheet)
- Uniform load applying to beam to be shown on attached calculation sheet

C. WIND LOAD :

п

- Wind load imposed on project to be calculated based on Vietnamese Standard TCVN 2737-1995
- Wind load is calculated as follows :
 - W^{tc} = nxW^{tc}₀xkxC, where :
 - : load safety factor, taken as n=1
 - W⁴⁰ : standard wind pressure, area IIA, W₀⁴⁰ = 83 kg/m²
 - k : factor due to affect of project height and topography
 - C : factor of dynamic wind , C=0.8 for the area where wind load imposes directly, C=0.6 for the opposite side
- Refer to calculation sheet for further informations

Part II: STRUCTURAL ANALYSIS PROGRESS

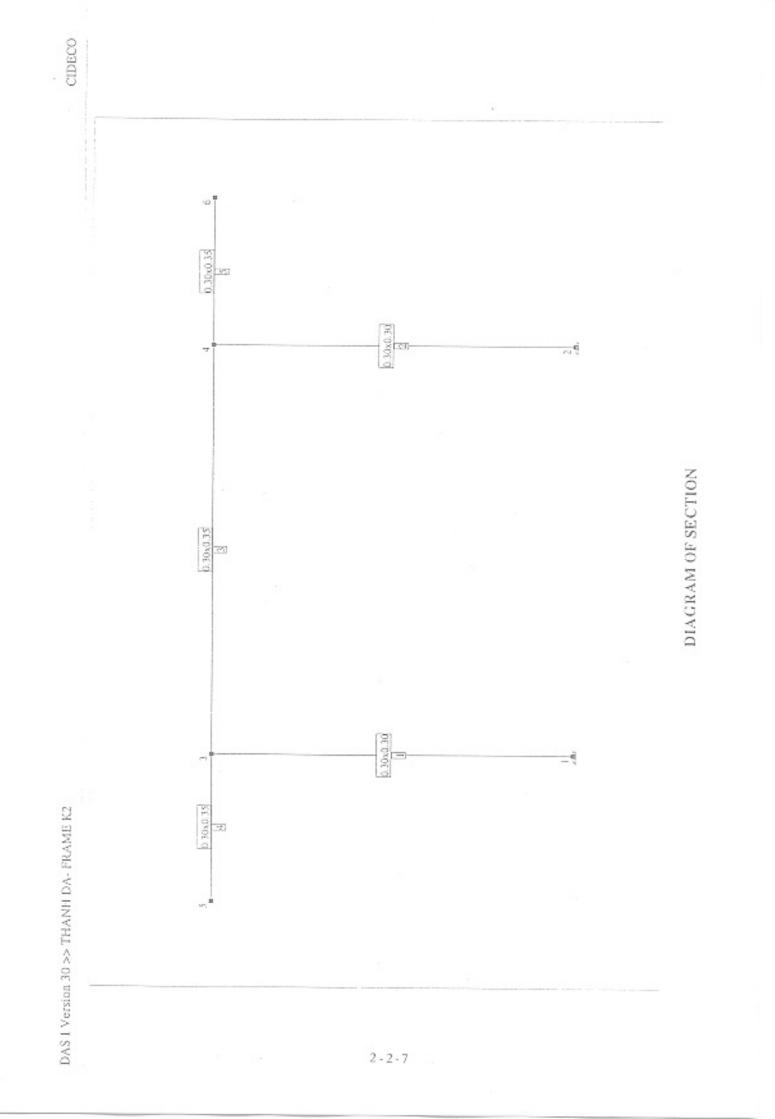
- The structure of Thanh Da Pump Station to be calculated by structural analysis program DAS

- The structural diagram is modelled as a frame with rigid connection at first floor elevation

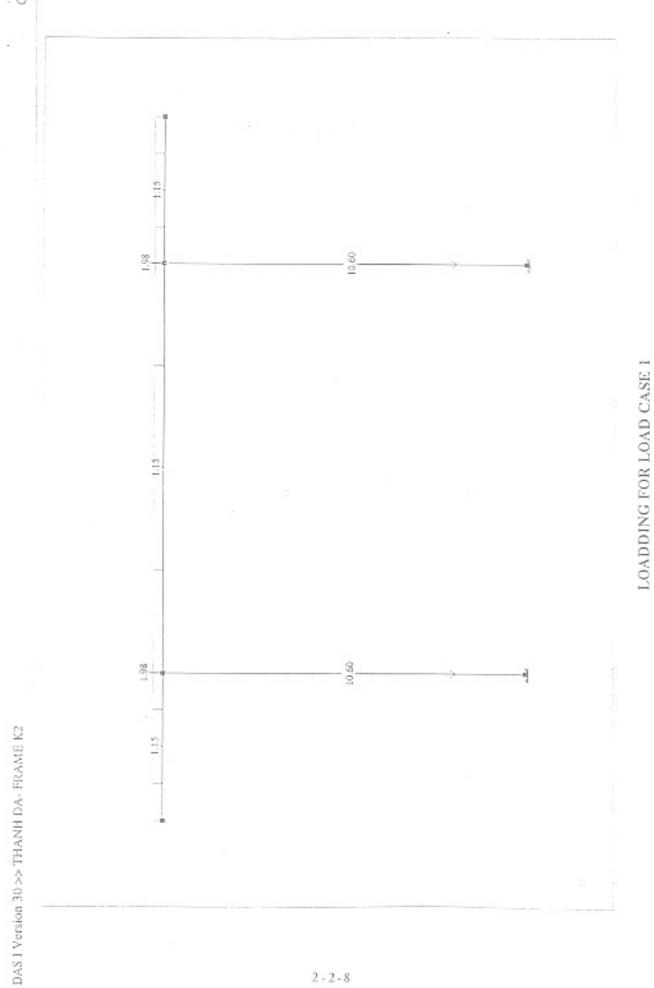
- All details about input load, beam and column section, static load case and load combination to be shown on calculation sheet

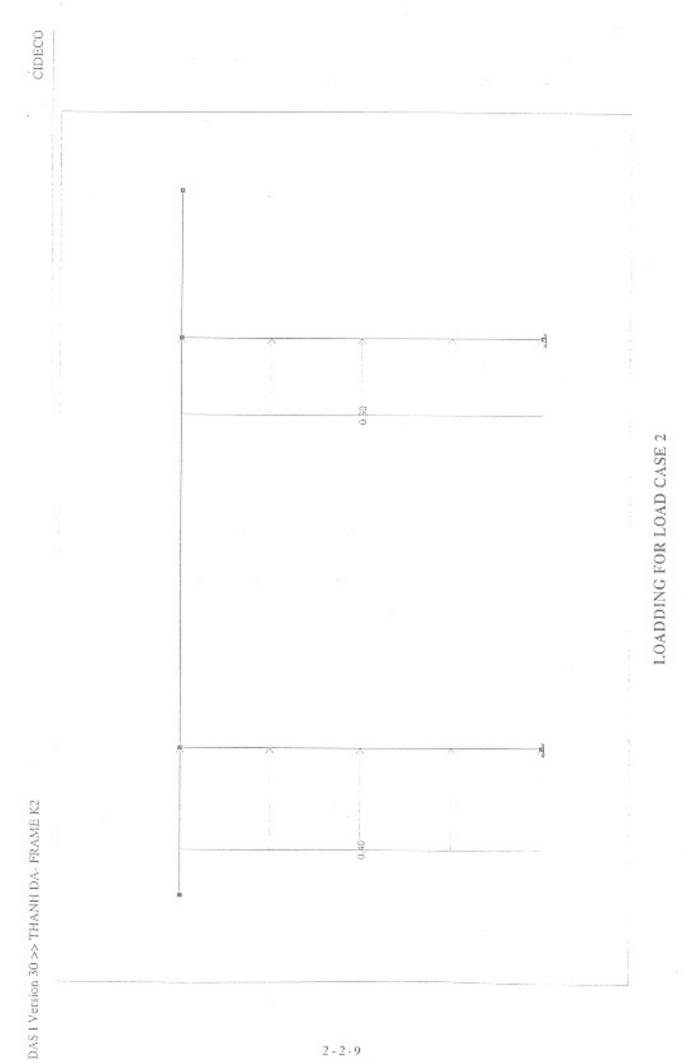
 Refer to attached result sheets for calculated value of stress, displacement, steel area for beam and column elements

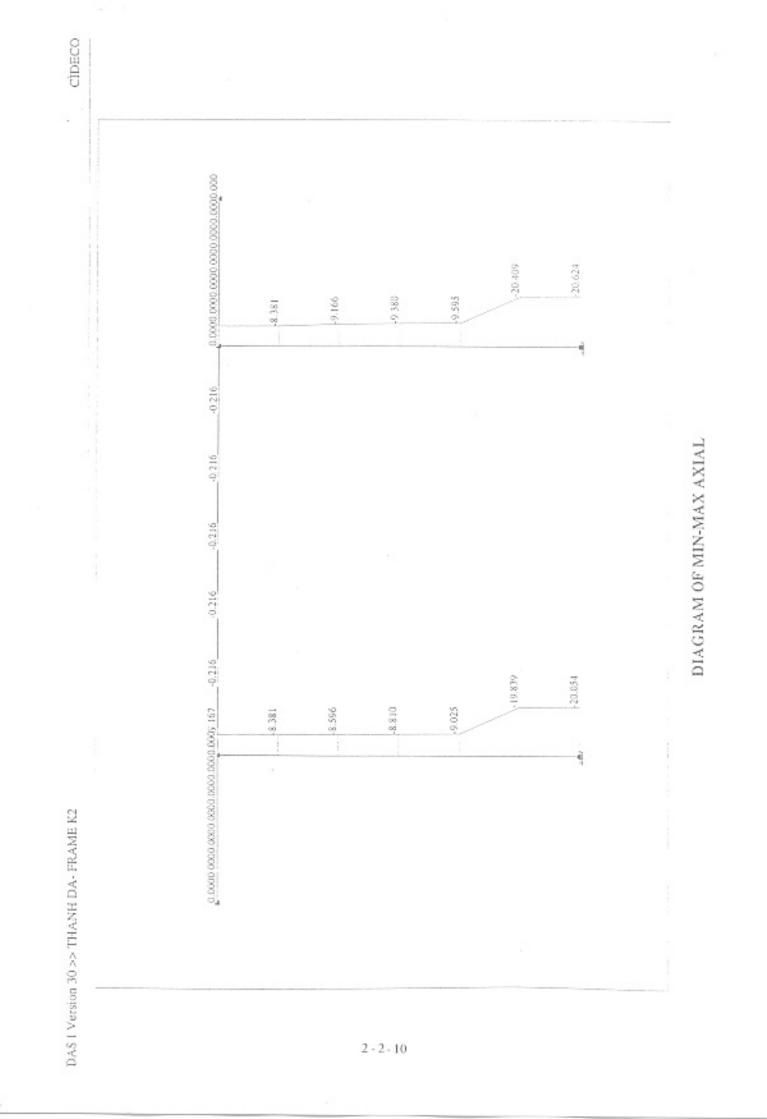
Load case mark	Description
DEAD	Ground floor & Roof dead load
LIVE	Ground floor & Roof live load
LWIND	Wind load (from left to right)
RWIND	Wind load (from right to left)

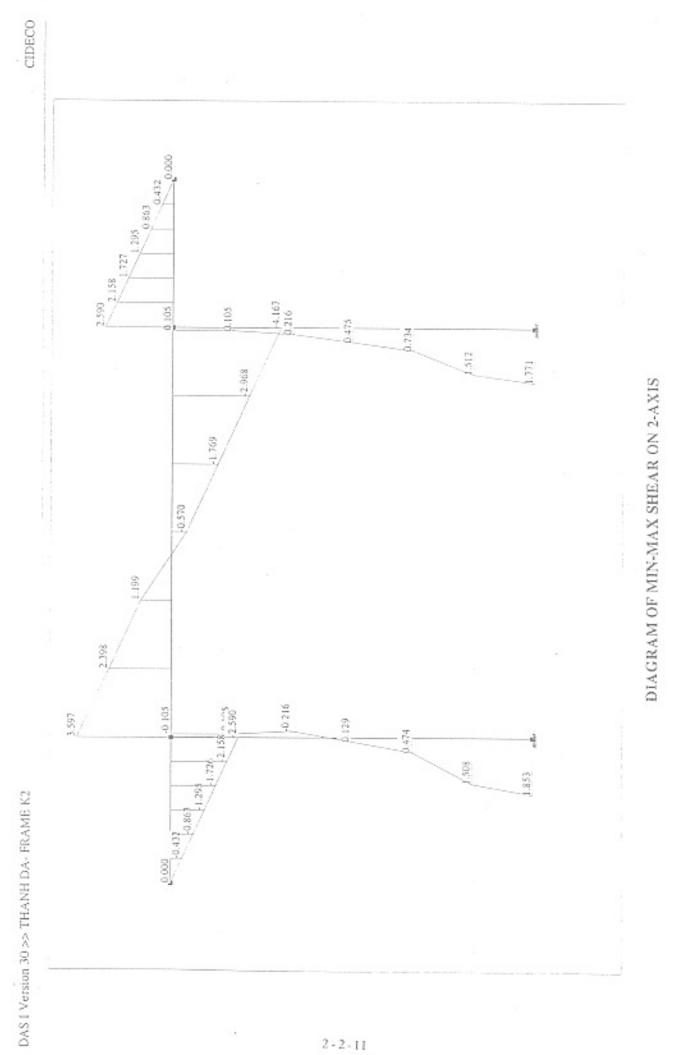

Static Load Cases :

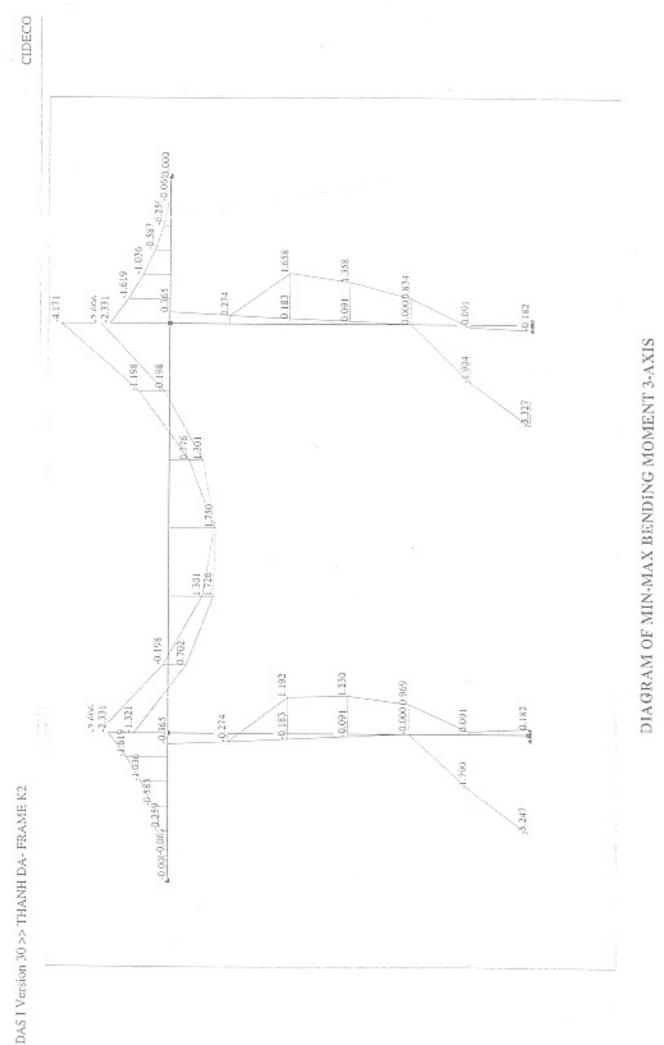
.


Part III : LOAD COMBINATION


PROJECT ITEM PUMP DRAINAGE IMPROVEMENT THANH DA PUMP STATION


RESULT SHEETS





2 - 2 - 12

8

Page I

DAS I Version 30 >> THANH DA- FRAME K2

COMBINATION FOR 3-AXIS STRESSES

Element ID Section	1 0.00	1 0.87	1 1.73	1 2.60	3.47	1 4.33	1 5.20	2 0.00	2 0.87	2 1.73	2 2.60	2 3.47	2 4.33	2 5.20	3 0.00	3 0.83	3 1.67	3 2.50	3 3.33	3 4.17	
Mmax	0.182	160'0	0.969	1.230	1.192	-0.274	-0.365	-0.182	160.0-	0.834	1.358	1.658	0.274	0.365	-1.321	0.702	1.726	1.800	1.301	-0.198	
Nsync	-20.054	-19,839	-8.455	-8.240	-8.026	-8.381	-8.167	-20.054	-19.839	-9.595	-9.380	-9.166	-8.381	-8.167	-0.216	-0.216	-0.216	-0.105	-0.105	-0.105	
MmIn	-3.247	062.1-	0:000	160'0-	-0.183	-0.274	-0.365	-3.327	-1.904	0:000	160'0	0.183	0.274	0.365	-2.696	-0.198	105.1	1.750	0.776	-1.198	
Nsync	-19,484	-19.269	-9.025	-8'810	-8.596	-8.381	-8.167	-20.624	-20.409	-9.025	-8.810	-8.596	-8.381	-8.167	-0.105	-0.105	-0.105	-0.216	-0.216	-0.216	
Msync	0.182	160:0	0000	160'0-	-0.183	-0.274	-0.365	-3.327	-1.904	0.834	1.358	1.658	0.274	0.365	-1.321	0.702	1.726	1.750	0.776	-1.198	
Nmax	-20.054	-19.839	-9.025	-8.810	-8.596	182.8-	-8.167	-20.624	-20.409	-9.595	-9.380	-9.166	-8.381	-8,167	-0.216	-0.216	-0.216	-0.216	-0.216	-0.216	
Qmax	1.853	1.508	0.474	0.129	-0.216	-0.105	-0.105	1.771	1.512	0.734	0.475	0.216	0.105	0.105	3.597	2.328	52. T	-0.570	-1.769	-2.258	States of the state of the stat

5
ME
FR
DA-
ANH
E
\$
8
Version
-
DAS

Page 2

Nmax Qmax	0.000 0.000			0.000 -1.295							0.000 1.295	0.000		
Msync	0.000	-0.065	-0.259	-0.583	-1.036	-1.619	-2.331	-2.331	-1.619	-1.036	-0.583	-0.259	-0.065	
Nsync	0.000	0.000	0.000	0:000	0:000	0:00	0,000	0.000	0.000	0.000	0:000	0.000	0.000	
Mimin	0.000	-0.065	-0.259	-0.583	-1.036	-1.619	-2.331	-2.331	619'1-	-1.036	-0.583	-0.259	-0.065	
Nsyne	00000	0000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	.0000	
Mmax	0.000	-0.065	-0.259	-0.583	-1.036	-1.619	-2.331	-2.331	-1.619	-1.036	-0.583	-0.259	-0.065	
Section	00.00	0:30	09:0	06.0	1.20	1.50	1.80	0.00	020	09.0	06.0	1.20	1.50	
Element ID	4	4	4	4	4	4	4	5	\$	5	\$	\$	5	

2 - 2 - 14

C1	
2.1	
- A.	
_	
1.0	
111	
-	
No. of Lot, No.	
-	
-	
~	
_	
11.	
~	
- C	
-	
0	
_	
_	
_	
_	
-	
~	
- L	
_	
_	
F	
_	
-	
~~	
- ^	
_	
~	
N	
_	
=	
100	
- 12	
	- 1 -
~	- 1
	- 51
la constitución de la constituci	- 1
-	- 11
6.00	
~	
-	
\Box	
р	1
Ω	1

REINFORCEMENT OF R.C. STRUCTURE

'Page 1

Stirrup Fa3(cm2) OUTPLANE 3.414 OUTPLANE 3.414 OUTPLANE 1.620 OUTPLANE 2.669 OUTPLANE 2.788	
	muy 0.843 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.400 0.233 0.255 0.255

2-2-15

Element ID	Section	Bu2(cm2)	ACTU	Colours	10-10-0		
		1	6mm	dnume	Lap(cm2)	truy	Stirrup
4	0.00	0.000	0.000	OUTPLANE	-0.473	0.050	Ø6a150/2
4	0:30	0.000	0.000	OUTPLANE	-0.473	0.050	Ø6a150/2
4	0.60	0.000	0.000	OUTPLANE	-0.473	0.050	Ø6a150/2
4	0.90	0.000	0:000	OUTPLANE	-0.888	0.094	Ø6a150/2
4	1.20	0:000	0.000	OUTPLANE	-1.588	0.168	Ø6a150/2
4	1.50	0.000	0.000	OUTPLANE	-2.500	0.265	Ø6a150/2
4	1.80	0.000	0.000	OUTPLANE	-3.636	0.385	Ø6a150/2
s.	0.00	00000	0.000	OUTPLANE	-3.636	0.385	Ø6a.150/2
5	0:30	0.000	0.000	OUTPLANE	-2.500	0.265	Ø6a150/2
5	0.60	0.000	0.000	OUTPLANE	-1.588	0.168	Ø6a150/2
5	06:0	0.000	0:000	OUTPLANE	-0.888	0.094	Ø6a150/2
5	1.20	0.000	0.000	OUTPLANE	-0.473	0.050	Ø6a150/2
5 .	1.50	0.000	0.000	OUTPLANE	-0.473	0.050	Ø6a150/2
5	1.80	0.000	0:000	OUTPLANE	0.473	0.050	CKenter M

2-2-16

PROJECT : PUMP DRAINAGE IMPROVEMENT ITEM : THANH DA PUMP STATION

CALCULATION OF FOUNDATION M1 (1.600 × 2.400)

1. Material:	CONCRETE #						
Compressible strength	Bn =	100	(Kg/cm2)				
Tensible strength	Ak =		(Kg/cm2)				
BEI	NFORCEMENT #						
Yield strongth	Ba,Ra' =	2000	(Kg/cm2)				
			l				
2. Standard foundation soil bearing capicity	9						
(after check displacement);	R ^{ti} te =	9.00	(T/m2)				
			- F.				
3. Sizing of foundation:							
Calculated moment	Mtt =		(Tm)				
Calculated axial force	Ntt =	20.60	(T)				
Calculated shear force	Qtt =	1.77	(T)				
Standard moment at foundation bottom	ΣMtc =	3.79	(Tm)	1.1			
Standard axial force at foundation bottom	ΣNtc =	28.82	(T)				
Eccentricity	Θ ₀ =	0.132	(m)	$\theta_0 = \Sigma M / \Sigma N$	10.10		
Preliminary area of foundation bottom		3.20	(m2)	F≥ N1c/(Rto	-y*hd}		
Ration between foundation length & width	a/b =	1.50					
Preliminary width of foundation	bm =	1.46	(m)				
Chosen width of foundation	8m =	1.60	(m)				
Chosen length of foundation	Am =	2.40	(m)				
Length of column cross section	ac =	0.30					
Width of column cross section	bc =	0.30					
			300 - F				
4. Check of pressure of foundation bottom:				$\sigma = (SN/F)_{\rm ff}$	(SMA	W)	
Overage pressure of foundation bottom	σtb =	7.50	(T/m2)	S Rtc=	5.00	(T/m2)	-→ 0.K
Minimum pressure of foundation bottom	σmin =	5.04	(T/m2)				
Maximum pressure of foundation bottom	σ max =	9.97	(T/m2)	≤ 1.2Rtc= 1	10.80	(T/m2)	→ 0.K
5 Charles of all and a state of the							
5. Check of shear strength of foundation:							
Minimum heigth of foundation	H ⁿⁱⁿ m =	0.57					
Minimum heigth of step-foundation	h ^{min} d ≠	0.25	(m)				
Chosen heigth of foundation	Hm =	0.60			-		
Shear strength checking	Nit -otb(ac +2			≤ 2(ac+bc+2H		(2/3)°H	mo*Ak
6 Balalana a tata		6	(T)	≤ 99.73333 (T)		→ 0.K
6. Reinforcement calculation:							
Moment (at long side of foundation)	Ma =	9.02					
Moment (at short side of foundation)	Mb +	4.38	(Tm)				
Rein. section (at long side of foundation)	Fa =	9.11	(cm2)	Chosen	8.9	Ø 12	@160
Rein. section (at short side of foundation)	Fb =		(cm2)	Chosen	4.3		\$560
		11.16	(anna)	onoach	4.0	0.15	\$300

2.2.3 Ben Me Coc Pumping Station ITEM

PROJECT : PUMP DRAINAGE IMPROVEMENT : BEN ME COC O/M OFFICE

STRUCTURAL CALCULATION SHEET

STRUCTURAL ANALYSIS ITEMS :

A. MAIN FRAME STRUCTURAL ANALYSIS

B. ATTACHED RESULT SHEETS

STRUCTURAL CALCULATION SHIFTY

- * Project : Pump Drainage Improvement
- * Item : Ben Me Coc O/M Office

Part I: CALCULATION OF LOAD

A. DEAD LOAD ;

Roof:

No.	Material	Calculation	Applying load(kg/m ²)
1	Steel purlin & roof sheet	-	40
2	Others		50
		TOTAL	g ^{tc} = 90 kg/m ²

B. LIVE LOAD :

Live load to be taken based on Vietnamese Standard TCVN 2737-1995 :

- * Roof : p^{1c} = 75 kg/m²
- Load safety factor was not mentioned on above calculation because it will be included in structural analysis progress (see attached calculation sheet)
- Uniform load applying to beam to be shown on attached calculation sheet

C. WIND LOAD :

n

С

 Wind load imposed on project to be calculated based on Vietnamese Standard TCVN 2737-1995

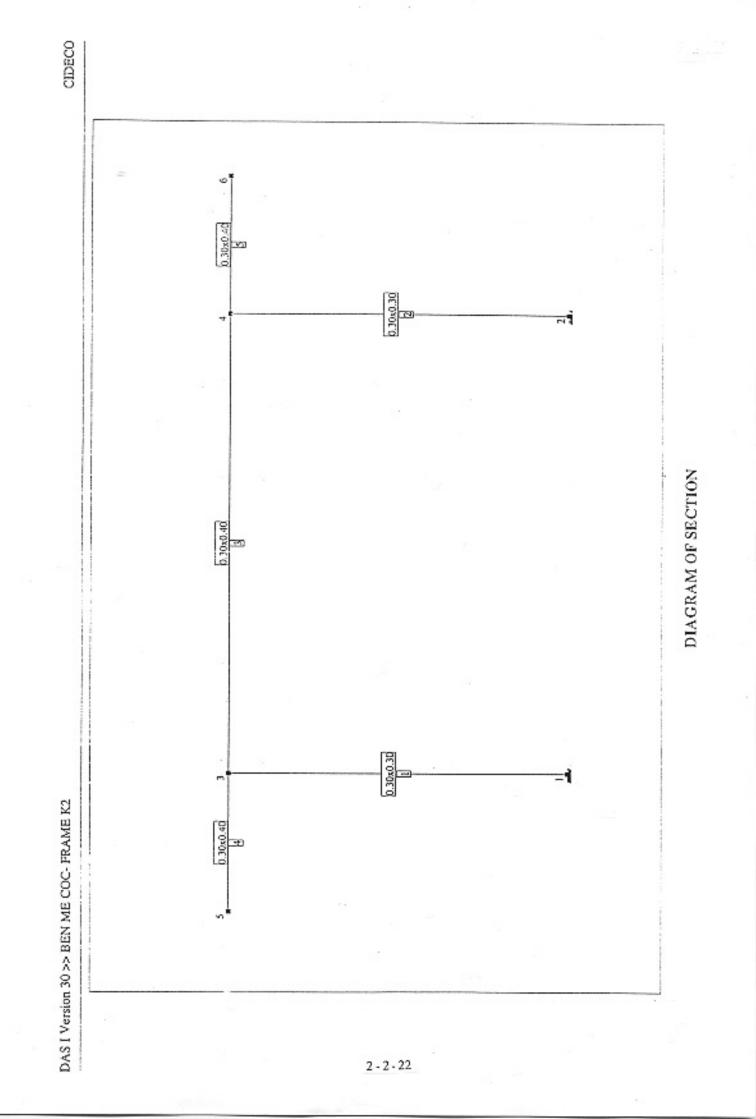
- Wind load is calculated as follows :
 - W^{kc} = nxW^{kc}₀xkxC, where :
 - : load safety factor, taken as n=1
 - W^c₀ : standard wind pressure, area IIA, W₀^{1c} = 83 kg/m²
 - k : factor due to affect of project height and topography
 - : factor of dynamic wind , C=0.8 for the area where wind load imposes directly, C=0.6 for the opposite side
- Refer to calculation sheet for further informations

Part II : STRUCTURAL ANALYSIS PROGRESS

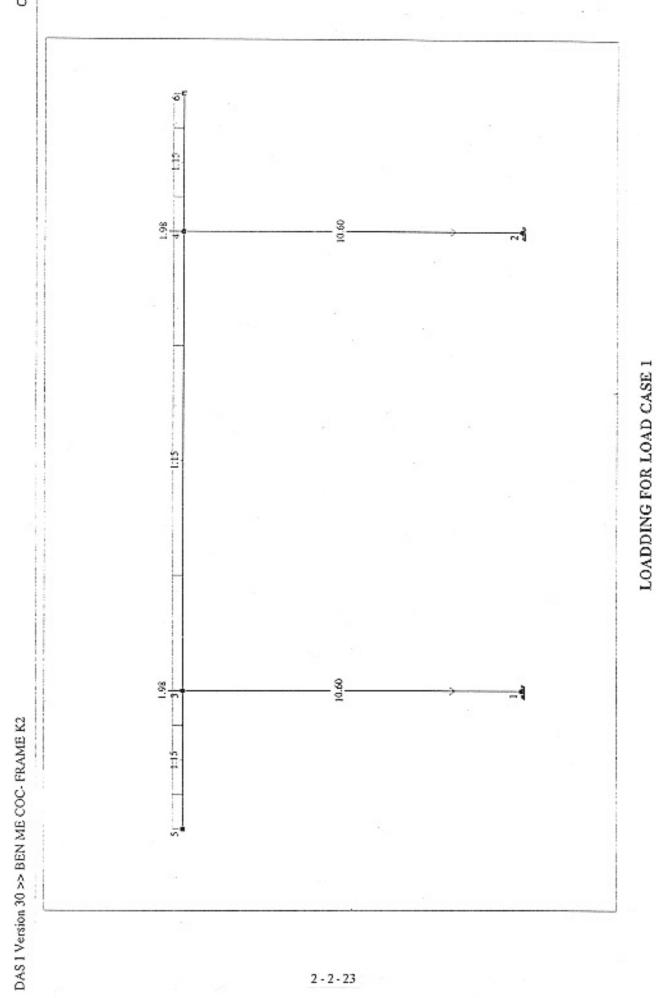
- The structure of Ben Me Coc O/M Office to be calculated by structural analysis program DAS

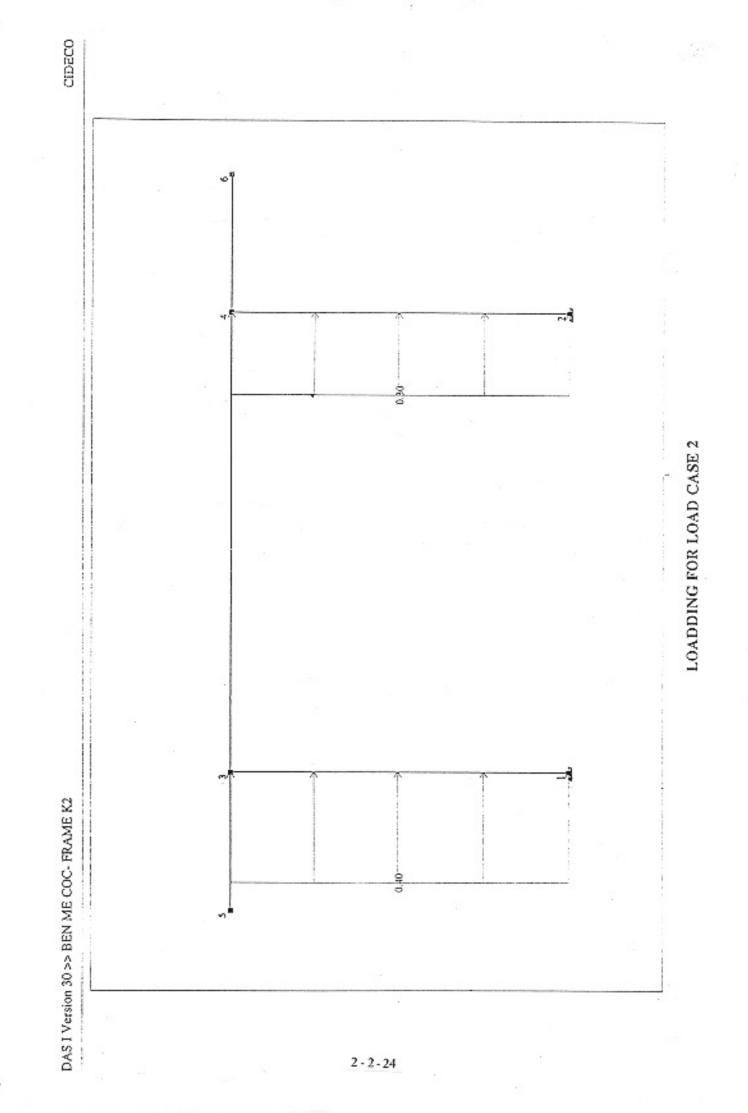
- The structural diagram is modelled as a frame with rigid connection at first floor elevation

 All details about input load, beam and column section, static load case and load combination to be shown on calculation sheet

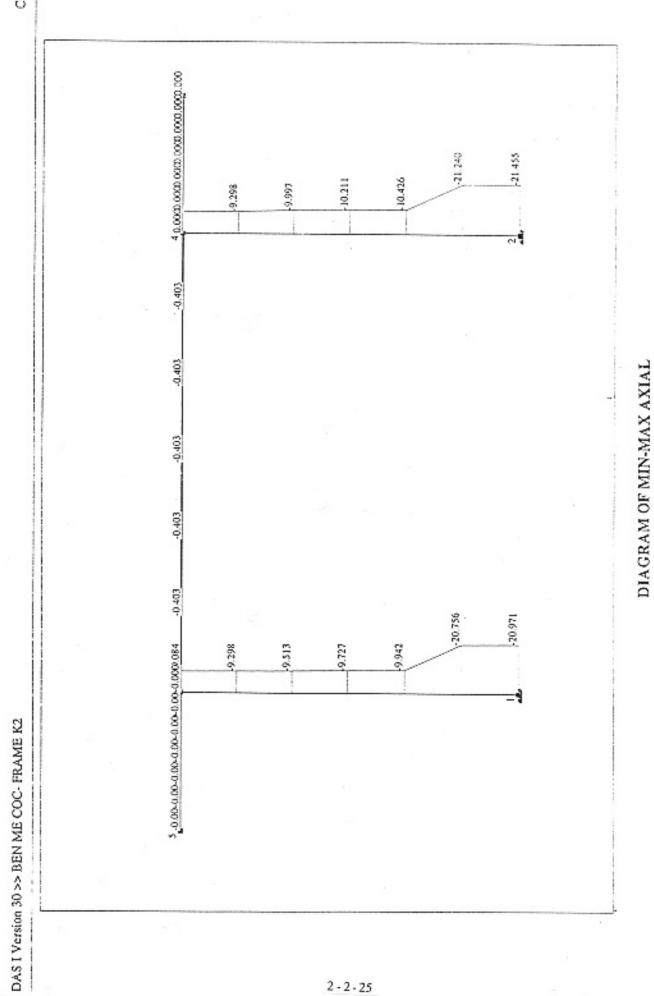

 Refer to attached result sheets for calculated value of stress, displacement, steel area for beam and column elements

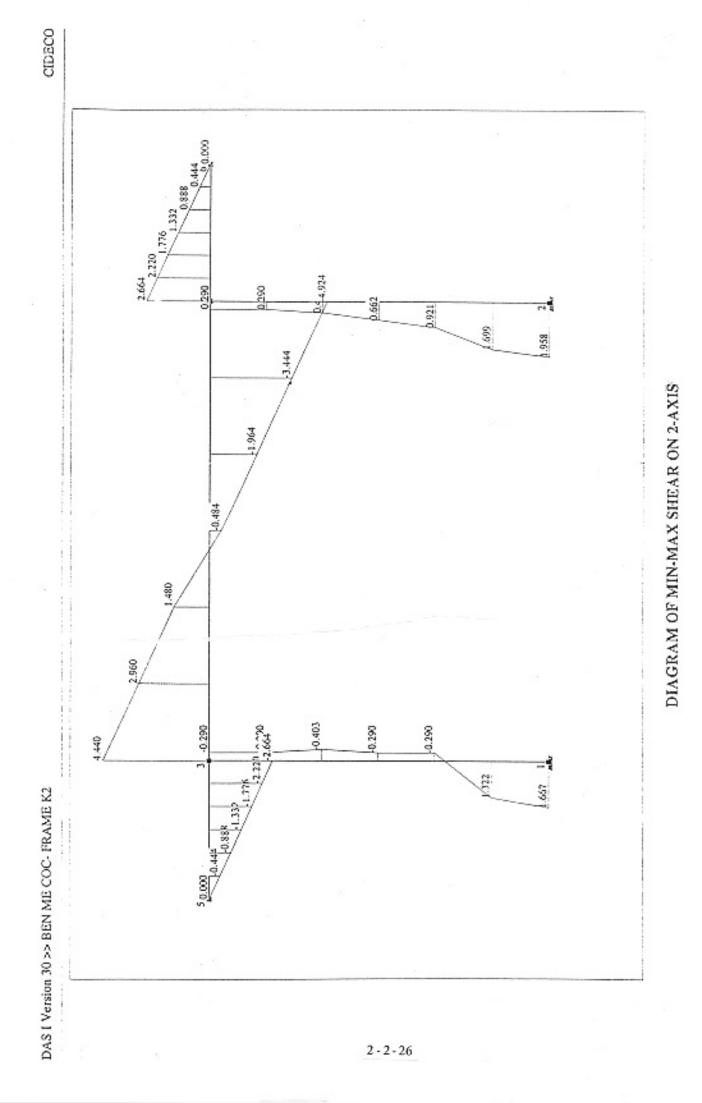
Load case mark	Description
DEAD	Ground floor & Roof dead load
LIVE	Ground floor & Roof live load
LWIND	Wind load (from left to right)
RWIND	Wind load (from right to left)

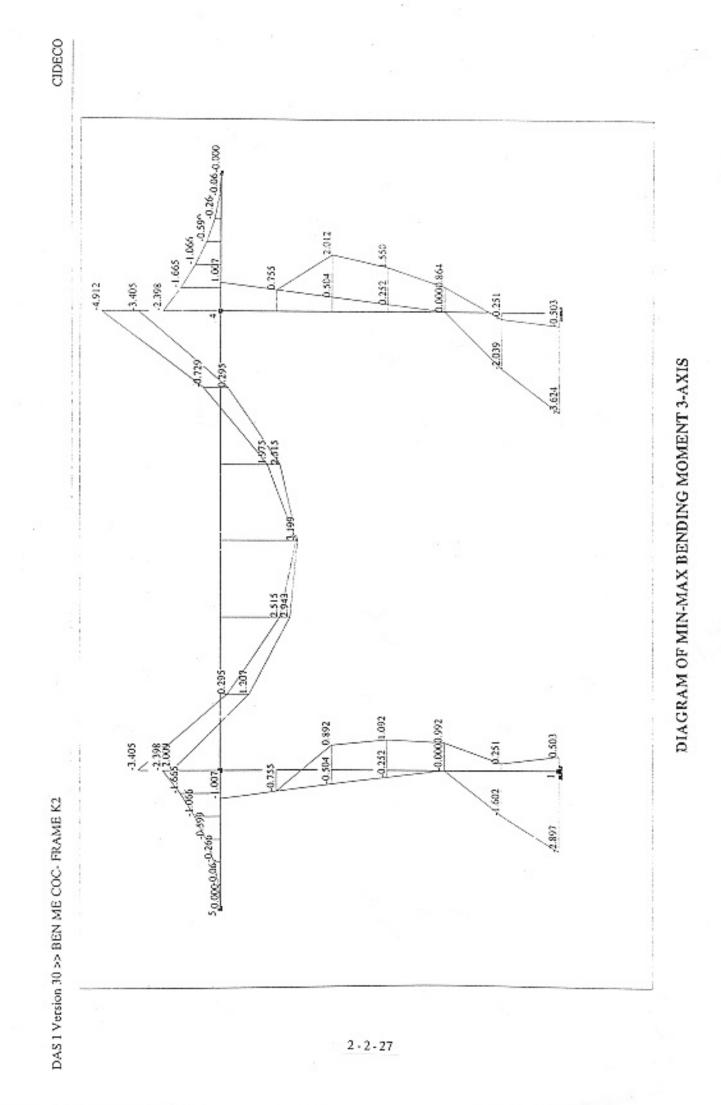

Part III : LOAD COMBINATION


PROJECT : PUMP DRAINAGE IMPROVEMENT ITEM : BEN ME COC O/M OFFICE

RESULT SHEETS




CIDECO



CIDECO

Page 1

DAS I Version 30 >> BEN ME COC: FRAME K2

COMBINATION FOR 3-AXIS STRESSES

Qmax	1.667	1.322	-0.290	-0.290	-0.403	-0.290	-0.290	1.958	1.699	0.921	0.662	0703	0.250	0.220	624,5	0567	1,480	-0,434	-1.954	-3.464	1011
Nmax	-20.971	-20.756	-9.942	-9.727	-9.513	-9.298	-9.084	-21.455	-21.240	-10.426	-10.211	-9.997	-9.298	-9.084	-0.403	-0.403	-0.403	-0.403	-0.403	-0.403	0700
Msyne	0.503	0.251	0.000	-0.252	-0.504	-0.755	-1.007	-3.624	-2.039	0.864	1.550	2.012	0.755	1.007	-2.009	1.207	2.943	3.199	1.975	-0.729	010 1
Nsync	-20.487	-20.273	-9.942	-9.727	-9.513	-9.298	-9.084	-21.455	-21.240	-9.942	-9.727	-9.513	-9.298	-9.084	-0.290	-0.290	-0.290	-0.403	-0.403	-0.403	0.403
Mmin	-2.897	-1.602	0.000	-0.252	-0.504	-0.755	-1.007	-3.624	-2.039	0.000	0.252	0.504	0.755	1.007	-3.405	0.295	2.515	3.199	1.975	-0.729	C10 P.
Nsync	-20.971	-20.756	-9,458	-9.244	-9.029	-9.298	-9.084	-20.971	-20.756	-10.426	-10.211	. 166.6-	-9.298	-9.084	-0.403	-0.403	-0.403	-0.290	-0.290	-0.290	0.290
Mmax	0.503	0.251	0.992	1.092	0.892	-0.755	-1.007	-0.503	-0.251	0.864	1.550	2.012	0.755	1.007	-2.009	1.207	2.943	3.255	2.515	0.295	-3.405
Section	0.00	0.87	1.73	2.60	3.47	4.33	5.20	0.00	0.87	.1.73	2.60	. 3.47	4.33	5.20	0.00	1.00	2.00	3.00	4.00	5.00	6.00
Element ID	1	1	1	.1	-	-	-	2	2	2	2	2	2	2	9	3	e	3	3 .	3	

DAS I Version 30 >> BEN ME COC- FRAME K2	

Element ID	Section	Mmax	Nsync	Mimin	Nsync	Msync	Nmax	Qmax
4	0.00	0.000	0.000	0.000	0.000	0.000	0.000	0:000
4	0.30	-0.067	0:000	-0.067	00000	-0.067	0.000	-0.444
4	0.60	-0.266	0.000	-0.266	0.000	-0.266	0.000	-0.888
4	06.0	-0.599	0.000	-0.599	0:000	-0.599	0.000	-1.332
4	1.20	-1.066	0.000	-1.066	0:000	-1.066	0.000	-1.776
A .	1.50	-1.665	0.000	-1.665	0.000	-1.665	0.000	-2.220
4	1.80	-2.398	0000	-2.398	0.000	-2.398	0.000	-2.664
5	0.00	-2.398	0.000	-2.398	0.000	-2.398	0.000	2.566
5	0.30	-1.665	0000	-1.665	0.000	-1.665	0:000	2.220
5	09.0	-1.066	0.000	-1.066	0:000	-1.066	0.000	1776
5	06:0:	-0.599	0.000	-0.599	0.000	-0.599	0.000	332
5	1.20	-0.266	0.000	-0.266	0.000	-0.266	0.000	.386
5	1.50	-0.067	0.000	-0.067	0.000	-0.067	0:000	777
Ŷ	1.80	0.000	0.000	0.000	0.000	0.000	0000	24

Page 2

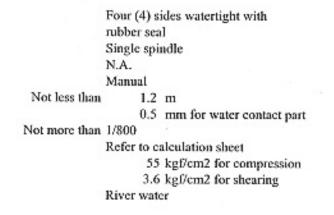
DAS I Version 30 >> BEN ME COC- FRAME K2

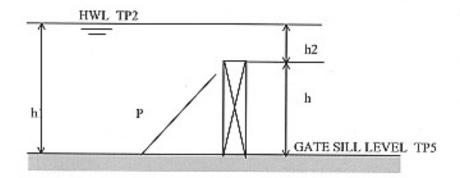
BEN 12

REINFORCEMENT OF R.C. STRUCTURE

Page I

Section 0.00 0.87	Fa2(cm2) 0.000	0.000	Stirrup OUTPLANE OUTPLANE	Fa3(cm2) 2.538	muy 0.627	Stirrup CHECKOK
1.73	0:000	0.000	OUTPLANE	1.620	0.400	CHECKOK
2.60	0:000	0.000	OUTPLANE	1.620	0.400	CHECKOK
3.47	0:000	0:000	OUTPLANE	1.620	0.400	CHECKOK
4.33	0:000	0:000	OUTPLANE	1.620	0.400	CHECKOK
5.20	0.000	0:000	OUTPLANE	1.620	0.400	CHECKOK
0.00	0:000	0:000	OUTPLANE	4.201	1.037	CHECKOK
0.87	0:000	0000	OUTPLANE	. 1.620	0.400	CHECKOK
1.73	0.000	00000	OUTPLANE	1.620	0.400	CHECKOK
2.60	0.000	0.000	OUTPLANE	1.620	0.400	CHECKOK
3.47	0.000	000'0	OUTPLANE	2.283	0.564	CHECKOK
4.33	0.000	0.000	OUTPLANE	1.620	0.400	CHECKOK
5.20	0.000	0.000	OUTPLANE	1.620	0.400	CHECKOK
0.00	0.000	0.000	OUTPLANE	-4.666	0.432	Ø6e150/2
1.00	0.000	000'0	OUTPLANE	1.616	0.150	Ø6e150/2
2.00	0.000	0.000	OUTPLANE	4.013	0.372	Ø6c150/2
3.00	0.000	0.000	OUTPLANE	4.455	0.412	Ø6= 150/2
4.00	0.000	0.000	OUTPLANE	3.414	0.316	Ø6: 150.2
5.00	0.000	0.000	OUTPLANE	-0.971	060'0	Ø6r.502
6.00	0:000	0.000	OUTPLANE	-6.849	0.634	Ø6a , 50/2

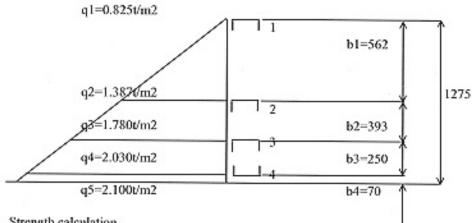

CALCULATION OF FOUNDATION M1 (1.600 × 2.400)


1. Material:	CONCRETE #						
Compressible strength	Rn =	100	(Kg/cm2)	105			
Tensible strength	Ak =		(Kg/cm2)				
REIN	FORCEMENT #						
Yield strength	Ra,Ra' =	2000	(Kg/cm2)				
			10.00				
2. Standard foundation soil bearing capicity							
(after check displacement):	R"tc =	9.00	(T/m2)				
3. Sizing of foundation:			25				
Calculated moment	Mtt =	3.60	(Tm)				
Calculated axial force	Ntt =	21.50	(T)				
Calculated shear force	Qtt =	1.96	(T)				
Standard moment at foundation bottom	ΣMtc =	4.15	(Tm)				
Standard axial force at foundation bottom	ΣNtc =	29.60	(T)				
Eccentricity	e. =	0.140	(m)	$e_0 = \Sigma M/\Sigma$	N		
Preliminary area of foundation bottom	Fm =		(m2)	F2 Ntc/(Ri		5	
Ration between foundation length & width	a/b =	1.50	(· · ·			Ś.,	
Preliminary width of foundation	bm =	1.48	{				
Chosen width of foundation	Bm =	1.60					
Chosen length of foundation.	Am =	2.40					
Length of column cross section	ac =	0.30			1		
Width of column cross section	bc =	0.30					
4. Check of pressure of foundation bottom:				$\sigma = (SN/F)$)±(SM/	WD O	
Overage pressure of foundation bottom	σtb =	7.71	(T/m2)		9.00	(T/m2)	→ О.К
Minimum pressure of foundation bottom	a min =	5.00	(T/m2)				
Maximum pressure of foundation bottom	σ max =	A DOWNER OF THE OWNER OF	(T/m2)	≤ 1.2Rtc=	10.80	(T/m2)	→ О.К
110							
5. Check of shear strength of foundation:			1020				
Minimum heigth of foundation	H ^{min} m =	0.57	(m)				
Minimum heigth of step-foundation	h ^{min} d =	0.25	(m)				
Chosen heigth of foundation	Hm =	0.60	(m)				
Shear strength checking	Ntt -otb(ac +2	Hmo)*(bc+2Hmo)	$\leq 2(ac+bc+2)$!Hmo)*	(2/3)*Hn	no*Rk
		6	(T)	≤ 99.73333	(T)		-+ O.K
6. Reinforcement calculation:							
Moment (at long side of foundation)	Ma =	9.36	(Tm)				
Moment (at short side of foundation)	Mb =	4.49	(Tm)				
				10000000			
Rein. section (at long side of foundation)	Fa =		(cm2)	Chosen			@170
Hein. section (at short side of foundation)	Fb =	4.54	(cm2)	Chosen	4.4	Ø 12	@550

2.3 Mechanical Equipment

- 1. Calculation of intlet gate for Thanh Da P.S. (Rev.1)
 - 1.1 Basic Conditions
 - 1.1.1 Design data
 - (a) Method of sealing
 - (b) Method of opening/closing
 - (c) Opening/closing speed (V)
 - (d) Operation
 - (c) Lift of gate
 - (f) Corrosion allowance of plate
 - (g) Deflection of gate beam
 - (h) Allowable stress of steel
 - (i) Allowable stress of concrete
 - (j) Water quality
 - 1.2 Design Load Condition

1.2.1 Design hydrostatic load at normal condition


$$P = 1/2 x (h1^2 - h2^2) x B x W_0$$

W0 : Specific gravity of water 1.0 tonf/r h : Height of gate 1.275 m h1 : Design water depth (TP2-TP5) 2.10 m h2 : h1 - h 0.83 m TP2 : 0.90 m
h1 : Design water depth (TP2-TP5) 2.10 m h2 : h1 - h 0.83 m
h2 : h1 - h 0.83 m
TP2 : 0.90 m
TP5 : -1.2 m
B : Sealing span (=clear span + 0.15) 1.35 m

1.3 Calculation

1.3.1 Main beam

(a) Arrangement of beams

(b) Strength calculation

 $Rw1 = b1 \times (2 \times q1 + q2) / 6$

Rw2-Rw3 = bi-1 x (qi-1+2 x qi)/6 + bi x (2 x qi + qi+1)/6

Rw4 = b3 x (q3 + 2 x q4) / 6 + b4 x (q4 + q5) / 2

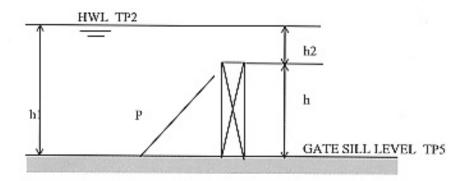
ql	: Hydrostatic pressure	0.825 tonf/m2
q2	: Hydrostatic pressure	1.387 tonf/m2
q3	: Hydrostatic pressure	1.78 tonf/m2
q4	: Hydrostatic pressure	2.03 tonf/m2
q5	: Hydrostatic pressure	2.1 tonf/m2
b1	:	0.562 m
b2	:	0.393 m
b3	;	0.25 m
b4		0.07 m
Rw1	: Load on beam1	0.284 tonf/m
Rw2	: Load on beam2	0.635 tonf/m
Rw3	: Load on beam3	0.557 tonf/m
Rw4	: Load on beam4	0.459 tonf/m

 $Mi = Ri \times B \times (2 \times L - B) / 8$

в	: Sealing span	1.35 m
L	: Supporting span	1.35 m
M1	: Bending moment of beam1	0.065 tonf-m
M2	: Bending moment of beam2	0.145 tonf-m
M3	: Bending moment of beam3	0.127 tonf-m
M4	: Bending moment of beam4	0.105 tonf-m

 $S = Ri \times B / 2$

S1	: Shearing force of beam1	0.192 tonf
S2	: Shearing force of beam2	0.429 tonf
S3	: Shearing force of beam3	0.376 tonf
S4	: Shearing force of beam4	0.310 tonf

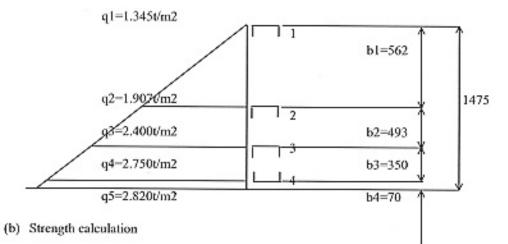

[100x50x5x7.5 ([99x49x4x6.5)

I	: Moment of inertia		129.54	cm4
Z	: Section modulus		26.44	cm3
Aw	: Area of web			cm2
$\sigma = Mi/2$	5			
σ2	: Bending stress of beam2		547.5	kgf/cm2
$\tau = S/A_{3}$	V < 70	<	1200.0	kgf/cm2
t - STA	- ta			
т 2	: Shearing stress of beam2		124.7	kgf/cm2
		<	700.0	kgf/cm2
$\delta = \operatorname{Rix} \mathbf{I}$ = 2.059	B x (L3 - 1/2 x L x B2 + B3 / 8) / (48 x E x I) 5 x Ri/I			
δ2	: Deflection of beam2		0.101	cm
L/δ2	a		1336	

- 1. Calculation of Outlet gate for Thanh Da P.S. (Rev.1)
 - 1.1 Basic Conditions
 - 1.1.1 Design data
 - (a) Method of scaling
 - (b) Method of opening/closing
 - (c) Opening/closing speed (V)
 - (d) Operation
 - (c) Lift of gate
 - (f) Corrosion allowance of plate
 - (g) Deflection of gate beam
 - (h) Allowable stress of steel
 - (i) Allowable stress of concrete
 - (j) Water quality
 - 1.2 Design Load Condition

1.2.1 Design hydrostatic load at normal condition

Four (4) sides watertight with rubber seal Single spindle N.A. Manual Not less than 1.4 m 0.5 mm for water contact part Not more than 1/800 Refer to calculation sheet 55 kgf/cm2 for compression 3.6 kgf/cm2 for shearing River water


$$P = 1/2 x (h1^2 - h2^2) x B x W_0$$

Р	: Design hydraulic load at normal condition	4.761	tonf
W0	: Specific gravity of water	1.0	tonf/m3
h	: Height of gate	1.475	m
h1	: Design water depth (TP2-TP5)	2.82	m
h2	: h1 - h	1.35	m
TP2	1	1.32	m
TP5	1	-1.5	m
в	: Sealing span (=clear span + 0.15)	1.55	m

1.3 Calculation

1.3.1 Main beam

(a) Arrangement of beams

Rw1 = b1 x (2 x q1 + q2) / 6

Rw2-Rw3 = bi-1 x (qi-1+2 x qi)/6 + bi x (2 x qi + qi+1)/6

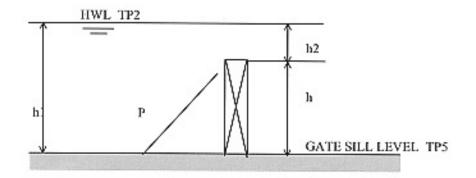
Rw4 = b3 x (q3 + 2 x q4) / 6 + b4 x (q4 + q5) / 2

ql	: Hydrostatic pressure	1.345 tonf/m2
q2	: Hydrostatic pressure	1.907 tonf/m2
q3	: Hydrostatic pressure	2.4 tonf/m2
q4	: Hydrostatic pressure	2.75 tonf/m2
q5	: Hydrostatic pressure	2.82 tonf/m2
b1	1	0.562 m
b2	:	0.493 m
b3	1.2	0.35 m
b4	11 T 1	0.07 m
Rw1	: Load on beam1	0.431 tonf/m
Rw2	: Load on beam2	0.994 tonf/m
Rw3	: Load on beam3	0.992 tonf/m
Rw4	: Load on beam4	0.752 tonf/m
Mi = Ri x J	Bx(2xL-B)/8	
в	: Sealing span	1.55 m
L	: Supporting span	1.55 m
M1	: Bending moment of beam1	0.129 tonf-m
M2	: Bending moment of beam2	0.298 tonf-m
M3	: Bending moment of beam3	0.298 tonf-m
M4	: Bending moment of beam4	0.226 tonf-m

 $S = Ri \times B / 2$

SI	: Shearing force of beaml	0.334 tonf
S2	: Shearing force of beam2	0.770 tonf
S3	: Shearing force of beam3	0.768 tonf
S4	: Shearing force of beam4	0.583 tonf

[125x65x6x8 ([124x64x5x7)

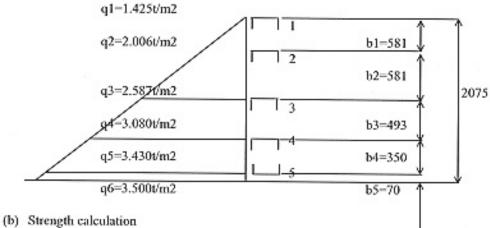

I	: Moment of inertia		292	cm4
Z	: Section modulus		47	cm3
Aw	: Area of web		5.5	cm2
$\sigma = Mi / Z$				
σ2	: Bending stress of beam2		635.0	kgf/cm2
		<	1200.0	kgf/cm2
$\tau = S / Aw$	< та			
τ2	: Shearing stress of beam2		140.0	kgf/cm2
		<		kgf/cm2
$\delta = \text{Ri x B}$ = 3.5789	x (L3 - 1/2 x L x B2 + B3 / 8) / (48 x E x I) 9 x Ri/I			
δ2	: Deflection of beam2		0.122	cm
L/82	:		1273	

1. Calculation of Outlet gate for Ben Me Coc (1) P.S. (Rev.1)

- 1.1 Basic Conditions
 - 1.1.1 Design data
 - (a) Method of sealing
 - (b) Method of opening/closing
 - (c) Opening/closing speed (V)
 - (d) Operation
 - (e) Lift of gate
 - (f) Corrosion allowance of plate
 - (g) Deflection of gate beam
 - (h) Allowable stress of steel
 - (i) Allowable stress of concrete
 - (j) Water quality
- 1.2 Design Load Condition

1.2.1 Design hydrostatic load at normal condition

Four (4) sides watertight with rubber seal Single spindle N.A. Manual Not less than 2.0 m 0.5 mm for water contact part Not more than 1/800 Refer to calculation sheet 55 kgf/cm2 for compression 3.6 kgf/cm2 for shearing River water


$$P = 1/2 x (h1^2 - h2^2) x B x W_0$$

Р	: Design hydraulic load at normal condition	10.986	tonf
W0	: Specific gravity of water	1.0	tonf/m3
h	: Height of gate	2.075	m
ht	: Design water depth (TP2-TP5)	3.50	m
h2	: h1 - h	1.43	m
TP2	:	1.50	m
TP5	:	-2.0	m
в	: Sealing span (-clear span + 0.15)	2.15	m

1.3 Calculation

1.3.1 Main beam

(a) Arrangement of beams

Rw1 = b1 x (2 x q1 + q2) / 6

Rw2-Rw4 = bi-1 x (qi-1+2 x qi)/6 + bi x (2 x qi + qi+1)/6

Rw5 = b4 x (q4 + 2 x q5) / 6 + b5 x (q5 + q6) / 2

q1 : H	ydrostatic pressure	1.425	tonf/m2
q2 : H	ydrostatic pressure	2.006	tonf/m2
q3 : H	ydrostatic pressure	2.587	tonf/m2
q4 : H	ydrostatic pressure	3.08	tonf/m2
q5 : H	ydrostatic pressure	3.43	tonf/m2
q6 : H	ydrostatic pressure	3.5	tonf/m2
b1 :		0.581	m
b2 :		0.581	111
b3 :		0.493	m
b4 :		0.35	m
b5 :		0.07	m
Rw1 : Lo	ad on beaml	0.470	tonf/m
Rw2 ; Lo	ad on beam2	1.165	tonf/m
Rw3 : Lo	ad on beam3	1.373	tonf/m
Rw4 : Lo	ad on beam4	1.278	tonf/m
Rw5 : Lo	ad on beam5	0.661	tonf/m

Mi = Ri x B x (2 x L - B) / 8

в	: Sealing span	2.15 m
L	: Supporting span	2.15 m
M1	: Bending moment of beam1	0.272 tonf-m
M2	: Bending moment of beam2	0.673 tonf-m
M3	: Bending moment of beam3	0.794 tonf-m
M4	: Bending moment of beam4	0.739 tonf-m
M5	: Bending moment of beam5	0.382 tonf-m

 $S = Ri \times B / 2$

S1 : Shearing force of beam1 0.505 tonf

S2	: Shearing force of beam2		1.253 to	nf
S3	: Shearing force of beam3		1.476 to	nf
S4	: Shearing force of beam4		1.374 to	nf
S5	: Shearing force of beam5		0.710 to	mf
[150x75x6	5.5x10 ([149x74x5.5x9)			
I	: Moment of inertia		906 ci	n4
Z	: Section modulus		122 ci	m3 ·
Aw	: Area of web		10.1 ci	m2
$\sigma = Mi/Z$				
σ3	: Bending stress of beam3		650.5 kg	gf/cm2
1000		<	1200.0 k	;f/cm2
$\tau = S / Av$	v< τa.			
τ3	: Shearing stress of beam3		146.2 kg	;f/cm2
		<	700.0 kį	gf/cm2
$\delta = Ri \times B$ $= 13.24$	5 x (L3 - 1/2 x L x B2 + B3 / 8) / (48 x E x I) 9 x Ri/I			
δ3	: Deflection of beam3		0.201 cr	n
L/83	4.1		1070	

DETERMINATION OF PUMP RATING

Thanh Da PS

۱.

2.

PAGE

BASIC	CONDITIONS	
1.1	DESIGN DATA FOR PUMP	
1.2	DETERMINATION OF COLUMN PIPE DIAMETER	
1.3	DESIGN DATA FOR INTAKE CHANNEL AND PIT	
1.4	BASIC DIMENSIONS	
PUMP	P SELECTION -	
2.1	CALCULATION OF PUMP TOTAL HEAD	
2.2	CALCULATION OF MOTOR OUTPUT	

1. BASIC CONDITIONS

1.1 DESIGN DATA FOR PUMP

D

600

(a)	TOTAL	FLOW	CAPAG	CITY	(QT)
-----	-------	------	-------	------	------

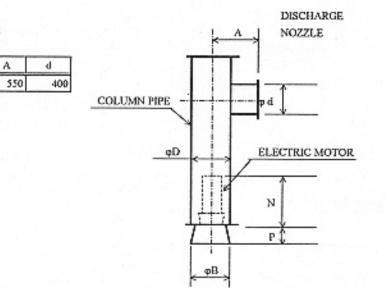
(b) NUMBER OF PUMP UNIT (N)

1.2 DETERMINATION OF COLUMN PIPE DIAMETER

APPROXIMATE DIMENSIONS

Ρ

345


Ν

1600

- (a) PUMP CAPACITY PER UNIT (q)
- (b) COLUMN PIPE DIAMETER (D)

в

480

0.70

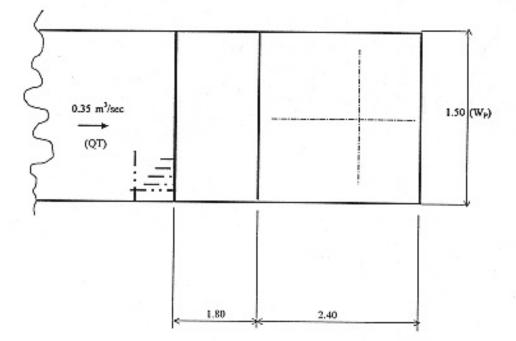
21.00

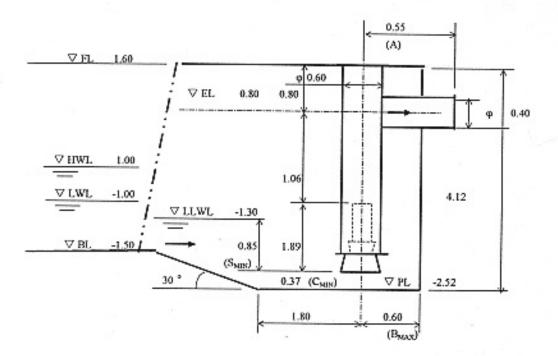
600

2

m3/sec

m3/min

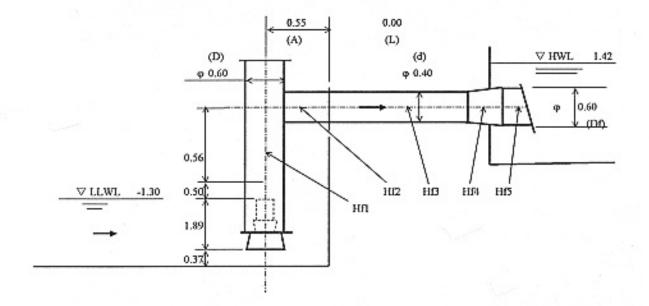

mm


units

1.3	DESIG	IN DATA FOR INTAKE CHANNEL AND PIT		
	(a)	HIGH WATER LEVEL OF INTAKE CHANNEL (H.W.L)	1.00	m
	(b)	LOW WATER LEVEL OF INTAKE CHANNEL (L.W.L)	-1.00	m
	(c)	LOWEST LOW WATER LEVEL OF INTAKE PIT (L.L.W.L)	-1.30	m
	(d)	BASIN LEVEL OF INTAKE CHANNEL (B.L)	-1.50	m
	(c)	WIDTH OF INTAKE CHANNEL (WC)	1.50	m
	(f)	LEVEL OF INTAKE PIT (P.L)	-2.52	m
	(g)	MINIMUM SUBMERGENCE (SMIN)	0.85	m
	(h)	MINIMUM BOTTOM CLEARANCE (CMIN)	0.37	m
	(i)	MAXIMUN BACK WALL CLEARANCE (BMAX)	0.60	m
	Ø	LEVEL OF INSTALLATION FLOOR (F.L)	1.60	m
	(k)	ANGLE BETWEEN BASIN AND PIT LEVEL (300 or 450)	30	deg.

2

5



2-3-12

2. PUMP SELECTION

2.1 CALCOLATION OF FUMP TOTAL READ	2.1	CALCULATION OF PUMP TOTAL HEAD
------------------------------------	-----	--------------------------------

(a)	LOWEST LOW WATER LEVEL OF INTAKE PIT (L.L.W.L)	1	-1.30	m	
(b)	HIGH WATER LEVEL OF DISCHARGE PIT (H.W.L)		1.42	m	
(c)	DESIGN STATIC HEAD (Ha)		2.72	m	
(d)	LENGTH OF DISCHARGE PIPE (L)		0.00	m	
(c)·	DIAMETER OF DISCHARGE PIPE (d)		0,40	m	
(f)	DIAMETER OF DISCHARGE FLAP VALVE (DI)		0.60	m	

(g) COLUMN PIPE LOSS (HII)

Hft = $\lambda x (L/D) x (vC2/2g)$

	Hf1 : COLUMN PIPE LOSS	0.00	m
	λ : LOSS COEFFICIENT (=(0.02+1/2000/D) x 1.5)	0.03	
	L : LENGTH OF COLUMN PIPE	0.56	m
	D : COLUMN PIPE DIAMETER	0.60	m
	VC : VELOCITY IN COLUMN PIPE	1.24	m/sec
(h)	DISCHARGE HEAD LOSS (Hf2)		

 $Hf2 = 1.0 \ge (vD2/2g)$

Hf2 : DISCHARGE HEAD LOSS	0.40	m
vD : VELOCITY ON DISCHARGE NOZZLE	2.79	m/sec

(i) DISCHARGE PIPE LOSS (HB)

 $H\Omega=\lambda x\,(L/d)\,x\,(vD2/2g)$

3

		HB : DISCHARGE PIPE LOSS	0.00	m
		λ : LOSS COEFFICIENT (=(0.02+1/2000/d) x 1.5)	0.03	
		L : LENGTH OF DISCHARGE PIPE	0.00	m
		d : DISCHARGE PIPE DIAMETER	0.40	m
		vD : VELOCITY IN DISCHARGE PIPE	2.79	misce
	(i)	REDUCER PIPE LOSS (Hf4)		
		$Hf4 = 0.25 \times (vD - vF)2/2g$		
		Hf4 : REDUCER PIPE LOSS	0.03	
		VF : VELOCITY ON FLAP VALVE	1.24	m m/sec
		VD : VELOCITY IN DISCHARGE PIPE	2.79	m/sec
	(k)	FLAP VALVE AND DISCHARGE LOSS (Hf5)		
		Hf5 = 1.5 x (vF2/2g)		
		HIS : FLAP VALVE AND DISCHARGE LOSS	0.12	m
		vF : VELOCITY ON FLAP VALVE	1.24	m/sec
	(1)	TOTAL HEAD LOSS (HI)		
		Hf = Hf1 + Hf2 + Hf3 + Hf4 + Hf3	0.55	ш
35	(m)	PUMP TOTAL HEAD (HT)		
		Ha -	2.72	m
		Hf =	0.55	m
		IIT = Ha + Hf	3.27	m
		INCLUDING SOME MARGIN, PUMP TOTAL HEAD IS DECIDED AS ;	3.52	m
2.2	CALC	JLATION OF MOTOR OUTPUT		
2.2	(a)	MOTOR OUTPUT (P)		
	(4)	Motor Control (r)		
		$\mathbf{P}=(0.163 \ \mathbf{x} \ \mathbf{q} \ \mathbf{x} \ \mathbf{HT} \ \mathbf{x} \ \gamma / \eta \mathbf{P} / \eta \mathbf{G}) \ \mathbf{x} \ \boldsymbol{\alpha}$		
		P : MOTOR OUTPUT	17.54	kw
		q : PUMP CAPACITY PER UNIT	21.00	m3/min
		HT : PUMP TOTAL HEAD	3.52	m
		γ : SPECIFIC GRAVITY OF WATER	1.00	kg/I
		ηP : PUMP EFFICIENCY	79	%
		ηG : GEAR EFFICIENCY	100	96
		a : ALLOWANCE	1.15	
		INCLUDING SOME MARGIN, MOTOR OUTPUT IS DECIDED AS ;	18.50	kw

DETERMINATION OF PUMP RATING

Ben Me Coc (1) PS Phase I

1.

2.

PAGE

BASIC	CONDITIONS		
1.1	DESIGN DATA FOR PUMP		
1.2	DETERMINATION OF COLUMN PIPE DIAMETER		
1.3	DESIGN DATA FOR INTAKE CHANNEL AND PIT		
1.4	BASIC DIMENSIONS		
UMP	SELECTION		
2.1	CALCULATION OF PUMP TOTAL HEAD		
2.2	CALCULATION OF MOTOR OUTPUT		

2-3-15

1. BASIC CONDITIONS 1.1

D

600

в

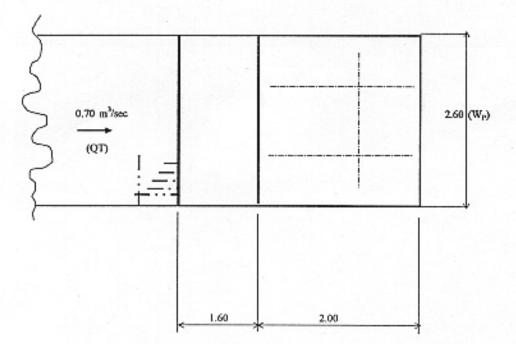
480

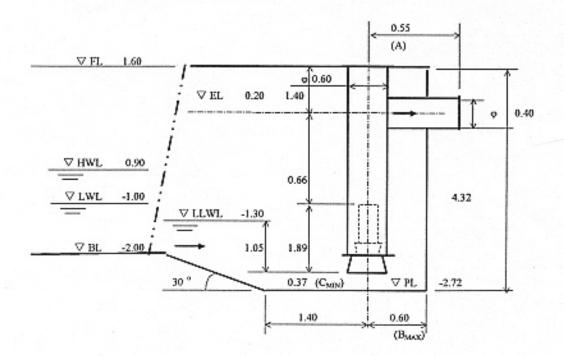
1.2

1.3

DESIG	N DATA FOR PUMP			
(a)	TOTAL FLOW CAPACITY (QT)	(FOR PHASE 1 ONLY)	0.70	m3/sec
(b)	NUMBER OF PUMP UNIT (N)		2	units
DETER	RMINATION OF COLUMN PIPE DIAMETER			
(a)	PUMP CAPACITY PER UNIT (q)		21.00	m3/min
(b)	COLUMN PIPE DIAMETER (D)		600	mm

DISCHARGE APPROXIMATE DIMENSIONS NOZZLE А Ρ Ν A d 345 1600 550 400 COLUMN PIPE d ELECTRIC MOTOR φD

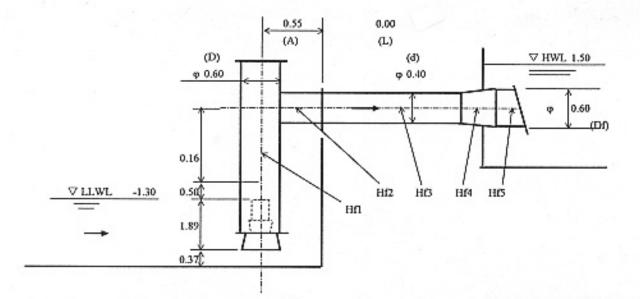

. i


Ν

				<u> ₽</u> ‡	
			φB		
			< 40	*	
ŀ	DESIG	N DATA FOR INTAKE CHANNEL AND PIT			
	(a)	HIGH WATER LEVEL OF INTAKE CHANNEL (H.W.L)		0.90	m
	(b)	LOW WATER LEVEL OF INTAKE CHANNEL (L.W.L)		-1.00	m
	(c)	LOWEST LOW WATER LEVEL OF INTAKE PIT (L.L.W.L)		-1.30	m
	(d)	BASIN LEVEL OF INTAKE CHANNEL (B.L)		-2.00	m
	(c)	WIDTH OF INTAKE CHANNEL (WC)		2.60	m
	(f)	LEVEL OF INTAKE PIT (P.L)		-2.72	m
	(g)	MINIMUM SUBMERGENCE (SMIN)		0.85	m
	(h)	MINIMUM BOTTOM CLEARANCE (CMIN)		0.37	m
	(i)	MAXIMUN BACK WALL CLEARANCE (BMAX)		0.60	m
	(i)	LEVEL OF INSTALLATION FLOOR (F.L)		1.60	m
	(k)	ANGLE BETWEEN BASIN AND PIT LEVEL (300 or 450)		30	deg.

2-3-16

.



2. PUMP SELECTION

2.1 CALCULATION OF PUMP TOTAL HEAD

(a)	LOWEST LOW WATER LEVEL OF INTAKE PIT (L.L.W.L)	-1.30	m
(b)	HIGH WATER LEVEL OF DISCHARGE PIT (H.W.L)	1.50	m
(c)	DESIGN STATIC HEAD (Ha)	2.80	m
(d)	LENGTH OF DISCHARGE PIPE (L)	0.00	m
(c)	DIAMETER OF DISCHARGE PIPE (d)	0.40	m
(f)	DIAMETER OF DISCHARGE FLAP. VALVE (Df)	0.60	m

(g) COLUMN PIPE LOSS (HIII)

Hfl = $\lambda x (L/D) x (vC2/2g)$

Hft : COLUMN PIPE LOSS	0.00	m
λ : LOSS COEFFICIENT (=(0.02+1/2000/D) x 1.5)	0.03	
L : LENGTH OF COLUMN PIPE	0.16	m
D : COLUMN PIPE DIAMETER	0.60	m
VC : VELOCITY IN COLUMN PIPE	1.24	m/sec

(h) DISCHARGE HEAD LOSS (Hf2)

Hf2 = 1.0 x (vD2/2g)

Hf2 : DISCHARGE HEAD LOSS	0.40	m
vD : VELOCITY ON DISCHARGE NOZZLE	2.79	m/sec

(i) DISCHARGE PIPE LOSS (Hf3)

$H\mathfrak{G}=\lambda x\,(L/d)\,x\,(vD2/2g)$

		H/3 : DISCHARGE PIPE LOSS	0.00	m
		λ : LOSS COEFFICIENT (=(0.02+1/2000/d) x 1.5)	0.03	
	· · ·	L : LENGTH OF DISCHARGE PIPE	0.00	m
		d : DISCHARGE PIPE DIAMETER	0.40	m
		vD : VELOCITY IN DISCHARGE PIPE	2.79	m/sec
	(i)	REDUCER PIPE LOSS (Hf4)		
		III4 = 0.25 x (vD - vF)2/2g		
		Hf4: REDUCER PIPE LOSS	0.03	m
		vF : VELOCITY ON FLAP VALVE	1.24	m/sec
		vD : VELOCITY IN DISCHARGE PIPE	2.79	m/sec
	(k)	FLAP VALVE AND DISCHARGE LOSS (H/S)		
		H/5 = 1.5 x (vF2/2g)		
		H/S : FLAP VALVE AND DISCHARGE LOSS	0.12	m
		vF : VELOCITY ON FLAP VALVE	1.24	m/sec
	0)	TOTAL HEAD LOSS (HI)		
		Hf = Hf1 + Hf2 + Hf3 + Hf4 + Hf5	0.54	m
	(m)	PUMP TOTAL HEAD (HT)		
		Ifa =	2.80	m
		Hf-	0.54	m
		HT = Ha + Hf	3.34	m
		INCLUDING SOME MARGIN, PUMP TOTAL HEAD IS DECIDED AS ;	3.7	m
	CHIC	I ATION OF MOTOR OF THE		
6.6	(a)	MOTOR OUTPUT (P)		
		P = (0.163 x q x HT x γ/ηP/ηG) x α		
		P : MOTOR OUTPUT	18.44	kw
		q : PUMP CAPACITY PER UNIT	21.00	m3/min
		HT : PUMP TOTAL HEAD	3.70	m
		γ : SPECIFIC GRAVITY OF WATER	1.00	kg/l
		ηP : PUMP EFFICIENCY	79	%
		ηG : GEAR EFFICIENCY	100	96
		a : ALLOWANCE	1.15	
		INCLUDING SOME MARGIN, MOTOR OUTPUT IS DECIDED AS ;	18.50	kw

Table : Equipment List (For Phase 1)

井	
72	
ā.	
Ξ.	
÷	
=	
3	
-	
a di	
3	
nic	
Ξ.	1
5	
3	
÷	
2	
-	

Equipment name	Thanh Da P.S.		Ben Me Cot (1) P.S.	Γ
Main pump (1)	0.35m3/s x 3.52m 400mm dia. (18.5kw)	61	0.35m3/s x 3.7m 400mm dia. (18.5kw)	64
Flap valve (1)	600mm dia.	64	600mm dia.	3
Pipe (1)	400 to 600mm dia.	2	400 to 600mm dia.	3
Bar screen (1)	1500mm W x 3100mm H	~	2600mm W x 3600mm H	-
Stoplog(1)	1500mm W x 3100mm H	2	2600mm W x 3600mm H	2
Inlet gate (1) Inlet gate (2)	1200mm W x 1200mm H 1000mm W x 1000mm H			
By-pass gate	1400mm W x 1400mm H	-	1500mm W x 1500mm H 2000mm W x 2000mm H	
Flap gate (1) Flap gate (2)	1000mm dia. 1200mm dia.		l S00mm dia.	-
Outlet gate (1)	1400mm W x 1400mm H	-	2000mm W x 2000mm H	-
2. Electrical equipment Equipment name	Thanh Da P.S.	1 [Ben Me Cor (1) P.S.] [
			and a fait and and man	

 Electrical equipment 				
Equipment name	Thunh Da P.S.		Bun Me Cot (1) P.S.	
H.V. incoming	AC22kV x 50Hz x 3phase Outdoor	-	AC22kV x 50Hz x 3phuse Outdoor	-
Transformer	AC22kV/380V x 150kVA Outdoor	-	AC22kV/380V x 200kVA Outdoor	-
L.V. distribution panel	AC380V x 50Hz x 3phase Outdoor	-	AC380V x 50Hz x 3phase Outdoor	-
Main punp panel	AC380V x 50Hz x 3phase Outdoor	-	AC380V x 50Hz x 3phase Outdoor	5
Water level gauge	Bellows type	4	Bellows type	1
Cable		-		-

2.4 Electrical Equipment

HO CHI MINH CITY, VIETNAM WATER ENVIRONMENT IMPROVEMENT PROJECT

Calculation Sheet

for

MCCB Capacity

Package :B

Plant : Thanh Da Pumping Station

Plant : Ben Me Coc (1) Pumping Station

P. 1/2

100 PUMP WELL 400 OTHER EQUIPMENT MCB Size E - 99H CUSTOMER VIETNAM/HCMO

Direct start	Aux. Auto TR start	Secondary Resistor	Star-Delta
۰	0	ŝ	8

MCCB.

Size

(LY)

200

200

30

B

8

150

8

52

		2			-														
		Rated	Current	c	(A)			CBI	C01	15	15		22				901	8	3
				Stand-by	(WN)														
			TOTAL	Outy	(WX)			1850	18.50	81	1.50		2.20	37,00			20.00	4.20	10.00
		Capacity	-	Stand-by	(WW)														
		Required Capacity	Phase-2	Outy	(W)														
			-	Stand-by	(W)														
			Phase-1	Duty	_			18.50	18.50	81	1.50		2.20	37,00			20.00	4 20	10.00
letta	1				-						-				2				
SD Star-Delta		STAI	RTIN	G METHOD	2			-	٥	٩	٥		G				a	a	a
30		Rev	ersib	le Operatio	-			'	'	œ	۲		œ				1	1	1
		VOL	TAG		8			350	360	300	280		380				220	220	220
		POV	VER		GWD			18.5	18.5	15	1.5		2.2				20	4.2	2
			тот	AL	_			-	-	-	-		-				-	-	-
			Phase-3	STAND B	۲														
				DUTY	-	_			_										
		Quantity	Phase-2	STAND B	Y	_		_	_					_					
		ā		DUTY	_	_	-	_			_								-
			Phase-1	STAND B	r	-		-	_	_	_								
1			đ	DUTY	+	-	-	-	-	-	-		-				-		-
	MOTORS AND AUXILIARIES LIST			EQUIPMENT NAME		Thanh Da Pump station		101 No.1 Main Pump	102 No.2 Main Pump	103 No.1 Sluice Gate	104 No.2 Stuice Gate		106 By-pass Gets	DIWID NETT EDMEMENT TOTAL		COTHER EQUIPMENT>	Miscellaneous (Pavel Tynting, Space heater etc.)	402 Instrument	401 Outdoor Lighting
			No.					101	102	103	104	105	106				401	402	403
			-			-	and the second second second	of the local division of the local divisiono											

P. 2/2

5	
m	
ç	1
	ACB Size

D Direct start O Aux. Auto TR start

Rated MOOB

Current Size

TOTAL

(M)

с (V)

Stand-by (M)

Cuty

000

150

136

20.00

20

35

58

22

89

10.00

8

3

5.00

54.20

91.20

EL di atra atra atra atra atra atra atra atra	All the start Aut. Acto TR start Acto TR start Aut.	
EL de vite starting method a a a	1 1000 0000 1000 1000 1000 1000 1000 1	Required brinse -1 Phase -2 (M) 0.00 0.00 10.00 0.00 0.00 10.00 0.00 10.00 0.00
	1 1000 0000 1000 1000 1000 1000 1000 1	Required brinse -1 Phase -2 (M) 0.00 0.00 10.00 0.00 0.00 10.00 0.00 10.00 0.00

2-4-3

P.1/2

MCB Size E - 99H	113M dWhd 001				00	Direct start Aux. Auto TR start	turt							
CUSTOMER VIETNAM/HCMC	400 OTHER EQUIPMENT	PMENT			80 00		inter							
MOTORS AND AUXILIARIES UST														
	Guantity		<u> </u>	POW	-	STAI		ž	Required Capacity	pacity			Rated	MOCB
	ee-1 Phase	п.	тот			RTIN	Phase-1	£	Phase-2	F	TOTAL		Current	
EQUIPMENT NAME	STAND BY DUTY STAND BY DUTY	STAND BI			le Operatio	G METHOD	Duty St.	Stand-by	Outy St	Stand-by	Duty	Stand-by		300
Ben Me Coc(1) Pump station			8	8	-		000	0400		(WN)	(WX)	(WO	8	(AT)
CPUMP WELL>			-		-			-	1	1				
Na,1 Main Pump	-		-	18.5 380	-	0	18.50			1	18.50		1	
102 No 2 Main Pump	-		-	18.5 300		-	18 SO				0201		: :	
ann d maM C.oN Cor	-		-	185 350		0			18.50		10.50		22	8 8
104 No.2 Stuice Gate (Inhat Cate)	-		-	22 350	e	۵	2.20				220		22	9
105 Byrpass Gate			-	22 330	2	٥	2.20				2.20		22	90
101 No.1 Sluice Gate	-		-	2.2 380	æ	0	2.20	-	-		2.20		22	00
107 Future Sluice Gate	-		-	2.2 380	æ	0			220		220		22	30
TREDE LINDWARDS TISM AND				_			37.00	-	16.50		55.50			
			-											
COTHER EQUIPMENT>					_									
401 Miscalanaous (Panel Igning, Space heater ate)				are and		4	-							

2-4-4

P. 2/2

MCB Size E - 99H

100 PUMP WELL

D Direct start C Aux. Auto TR start

Rated MCOB

Current Size

(TA)

e 3

8

22

136 150

35

5

99

34

2

35

22

60

8

29

_	MOTORS AND AUXULARIES LIST																
				Quantity	N			POV	\vdash	-				Required	Required Capacity		
Ň		F	Phase-1	Phase-2		Phase-3		TOT	TAC.	_		Phase-1		Phese-2		TOTAL	
	EOUPHENT NAME	DUTY	STAND B	DUTY	STAND B	DUTY	STAND B			le Operatio	IG METHO	Duty	Stand-by	AND .	Stand-by	Dete	Stand-by
		-	1		Y		Y	(WN)	2		_	(WV)	(MA)		000		000
402	402 Instrument	-				+	-	1 42	220	-	٥	4,20				4.20	
403	403 Outdoor Lähting	-				+		1 11.5	5 220	-	D	1150				1150	
ş	404 M/O Building	-					-	20.0	0 220		D	20.00				20.00	
405A	405A Guard house (Inint Gate)	-						1 100	0 220	'	٥	10.00				10.00	
4058	4059 Guard house (Pump station)	-				-	-	10.0	0 220	-	۵	10.00				10.00	
203	Spara			-			-	20	20		٥			5.00		500	
205	208 Spare			-			-	3	220	-	٥			500		80	
	OTHER EQUIPMENT TOTAL											55,70	-	10.00		65.20	
	ALL EQUEMENT TOTAL							_								121.20	

HO CHI MINH CITY, VIETNAM WATER ENVIRONMENT IMPROVEMENT PROJECT

Calculation Sheet

for

Power Cable Capacity

Package :B

Plant : Thanh Da Pumping Station

Plant : Ben Me Coc (1) Pumping Station

LIST
CABLE
POWER

[Pacage 8]			Than Da Pump Station									
244										電圧降下	把复款现	
R H	11111			数量	曹容	田町	起動方式	売留意見		誕定の	より進足の	Final
Cubation Uable No.	CADIB NO.	Matar No.	From Name of Equipment	0'ty	kw	>	Starter	S/current	Pf	Cable Size	Cable Size	Cable Size
- 1	DTH-1-1		Control Outline									
		-	Main 3/ 3 Control Cupicle	-	128	380	٥	267.40	0.8	38	150	
	2-1-11-1		MCC-IDI Incoming and Distribution Panel	-	40	380	٥	83,60	0.8	14	22	22
Pump Pit Equipment	quipment				T							
	PTH-2-1	TD101	No.1 Main Pump	-	18.5	380	0	910.80	0.0	60	1001	101
	PTH-2-2		No.2 Main Pump	-	18.5	380	0	210.80	80	00	001	200
									2.2	4	201	2
luice Gate	Sluice Gate Equipment	nt										
-	PTH-3-1	TD103	No.1 Sluice Gate	-	15	380	-	1710	0.0	25	2.0	
-	PTH-3-2	TD104	No.2 Sluice Gate	-	15	380		01.71	0.0	2.5	0.0	0.0
	PTH-3-3	TD105	No.3 Strice Gate	•	0.0	200	2	01.11	0.0	0.0	20	0.5
						200	2	20.10	0.8	3.5	3.5	e.
Other Equipment	oment											
	PTH-4-1	MCC-TD1	PTH-4-1 MCC-TD1 Incoming and Distribution Panel	-	30.0	380	G	118.40	OR	28	02	00
-	PTH-4-2	MCC-TD1	MCC-TD1 Incoming and Distribution Panel	-	0.22	380	0	0 BO	80	200	000	000
	PTH-4-3	MCC-TD1	PTH-4-3 MCC-TD1 Incoming and Distribution Panel	-	0.22	380	0	0.80	0.0	1.0	0.0	0.0
	PTH-4-4	MCC-TD1	PTH-4-4 MCC-TD1 Incoming and Distribution Panel	-	0.22	380		0.80	80	0.0	146	0.0
	6-6-HTH	MCC-TD1	PTH-4-5 MCC-TD1 Incoming and Distribution Panel	-	0.22	380		0.80	0.8	35	2.5	200
-	PTH-4-6	MCC-TD1	PTH-4-6 [MCC-TD1]Incoming and Distribution Panel	-	10.01	280	-	20.60	00		2 1	2.0

TD Power, PK-B-MCCB-Cable .xls

1/1

1/1

ST	
Ц	
CABL	
ER	
20	

In the second se			VICTURE 110 COLI MILLI VICY WALAR Environment Improvement Project									
[Pacage B]			Ben Mo Coc (1) Pump Station									
10										上数田輝	指御御辞	
	Onkin Ma			山気	噸	割田	起勤方式	起動電流		の仏教	の追溯のよ	Final
Substation	Callin NO.	- MOTOR NO.	From Name of Equipment	0.14	kW	>	Startor	S/current	¥	Cable Size		ő
	Dac-1-4	Main C/C										
		C/C LINN	Main 3/ 3 Control Cubicle	-	200	380	0	417,80	0.8			
	FUE-1-2	MCC-BM	PBE-1-2 MCC-BM1 Incoming and Distribution Panel	-	7	380	٥	14.60	0.8	38	3.5	38
Jump Pit E	Pump Pit Equipment											
	PBE-2-1	BM101	No.1 Main Pump	-	18.5	280	6	010.00	00			
	PBE-2-2	BM102	No.2 Main Pump		19.01	200	-	000012	0.0	00	001	100
						200	-	00012	0.0			
luice Gate	Sluice Gate Equipment	nt										
	PBE-3-1	BM104	No.1 Sluice Gate	-	0.0	100	4	UV OF	00	-		
	PBE-3-2	BM105	No.2 Sluice Gate	-	100	000		05'04	0.0	0.0	0.0	2.5
	PBF-3-3	RM106	No 2 Shire Cate	-	7.4	200		43.40	8.0	â		
		-		-	2.2	380	0	43.40	0.8			
Other Equipment	pment											
	PBE-4-1	MCC-BM1	PBE-4-1 MCC-BM1 Incoming and Distribution Panel	F	30.0	380	0	118.40	00	96	00	
	PBE-4-2	MCC-BM1	PBE-4-2 MCC-BM1 Incoming and Distribution Panel	-	0.22	380	0	0.80	0.8	o u c	2500	
	PBE-4-3	MCC-BMI	MCC-BMI Incoming and Distribution Panel	1	0.22	380	a	0.80	0.8	35		
	PBC-4-4	MCC-BMI	PBE-4-4 MCC-BM1 Incoming and Distribution Panel	-	0.22	380	٥	0.80	0.8	5.5	35	9.0
	0-1-100	Macoon	DBC-4-9 MCC-BMI Incoming and Distribution Panel	-	0.22	380	٥	0.80	0.8	3.5	3.5	
	1014-101	IMO-DDMI	MCC-DM IIIncoming and Distribution Panel	-	10.0	380	0	3950		0	4	

BM(1) Power, PK-B-MCCB-Cable .xls

WATER ENVIRONMENT IMPROVEMENT PROJECT

Issue date Rev.1 : 13-Jan-01

.

Calculation Sheet

for

Receiving Power Capacity for Thanh Da P/S

1. Introduction ;

The receiving power capacity of the plant is decided from the result of the following study.

- The classification of all electrical equipments and a character are examined.
- Total electrical capacity is computed in search of rated capacity of every item.
- Maximum demand power is calculated by using demand factor of each electrical equipments.

2. Calculation ;

- The result of the above item 1) and 2) is shown in the Table: Electrical equipment list
- Total maximum demand power can be looked for by using rated capacity and demand factor from the following formula;

(Receiving power capaci = (Maximum demand power) / (Efficency x Power factor)

		[Unit : kW]
Rated capacity	Demand factor	Max. demand power
106.4	0.7	75.5

3. Selection ;

Receiving power capacity was decided from the above result from the following reason.

- When the operation which become stable is done, paralell operation of receiving transformer is necessary.
- Future expansion shall be cosidered.

4. Attachment ;

1) Electrical Equipment List for Thanh Da pumping station

SOCIALIST REPUBLIC OF VIETNAM

Independence-Freedom-Happiness

ELECTRICAL EQUIPMENT LIST

Name of electric consumer : Thanh Da Pumping Station Address : Working table-time : Schedule of electric consumer:

No.	Electrical equipment name	Q'ty	Capa	city	Total	Remarks
			(HB)	(kW)	(kW)	(Demand Factor
	PUMP WELL					1
101	No.1 Main Pump	1	-	18.50	18.50	0.6
102	No.2 Main Pump	1		18.50	18.50	0.6
104	Inlet Gate No.1	1	-	1.50	1.50	0.6
105	Inlet Gate No.2	1	-	1.50	1.50	0.6
106	By-pass Gate	1		2.20	2.20	0.6
	OTHERS					
401	Miscellaneous	1	-	20.00	20.00	0.6
402	Instrument	1	-	4.20	4.20	0.6
403	Outdoor Lighting	1	-	10.00	10.00	0.9
404	M/O building	1	-	20.00	20.00	1.0
405	Guard house	1	-	10.00	10.00	1.0
	TOTAL	+ +			106.40	0.7

Sheet: 1 of 1

13-Jan-01

Rev.1

HO CHI MINH CITY, VIETNAM Sheet : 1 of 1 WATER ENVIRONMENT IMPROVEMENT PROJECT

Issue date Rev.1 : 13-Jan-01

....

Calculation Sheet

for

Receiving Power Capacity for Ben Me Coc (1) P/S

1. Introduction ;

The receiving power capacity of the plant is decided from the result of the following study.

- 1) The classification of all electrical equipments and a character are examined.
- Total electrical capacity is computed in search of rated capacity of every item.
- Maximum demand power is calculated by using demand factor of each electrical equipments.

Calculation ;

- 1) The result of the above item 1) and 2) is shown in the Table: Electrical equipment list
- Total maximum demand power can be looked for by using rated capacity and demand factor from the following formula;

(Receiving power capaci = (Maximum demand power) / (Efficency x Power factor)

		[Unit : KW]
Rated capacity	Demand factor	Max. demand power
150.0	0.7	103.8

3. Selection ;

Receiving power capacity was decided from the above result from the following reason.

- When the operation which become stable is done, paralell operation of receiving transformer is necessary.
- 2) Future expansion shall be cosidered.

Attachment ;

1) Electrical Equipment List for Ben Me Coc (1) pumping station

SOCIALIST REPUBLIC OF VIETNAM

Sheet: 1 of 1

Independence-Freedom-Happiness

ELECTRICAL EQUIPMENT LIST

Name of electric consumer : Ben Me Coc (1) Pumping Station Address :

Working table-time :

Schedule of electric consumer:

Issue date Rev.1

13-Jan-01

No.	Electrical equipment name	Q'ty	Capa	city	Total	Remarks
			(HB)	(kW)	(kW)	(Demand Factor
	PUMP WELL					
101	No.1 Main Pump	1	-	18.50	18.50	0.6
102	No.2 Main Pump	1	-	18.50	18.50	0.6
103	No.3 Main Pump (Future)	1	-	18.50	18.50	0.6
104	No.2 Sluice Gate	1	2	2.20	2.20	0.6
105	By-pass Gate	1	-	2.20	2.20	0.6
106	No.1 Sluice Gate	1	•	2.20	2.20	0.6
107	Future Sluice Gate	1	-	2.20	2.20	0.6
	OTHERS					
401	Miscellaneous	1		30.00	30.00	0.6
402	Instrument	1	-	4.20	4.20	0.6
403	Outdoor Lighting	1	-	11.50	11.50	0.9
404	M/O building	1	-	20.00	20.00	1.0
405	Guard house	2	-	10.00	20.00	1.0
2						
	TOTAL				150.00	0.7

ELECTRICAL EQUIPMENT LIST FOR THANH DA PUMPING STATION

No.	Name of Equipment	Type	Specification	Unit	Q'ty	Remarks
2.6.1.1	Electrical Equipment			-		
2.6.1.1.	2.6.1.1.1 Receiving transformer & meter cubicle	Outdoor, Pole mount type	160kVA, 15(22)kV/380-220V	set	-	
2.6.1.1.	2.6.1.1.2 Distribution panel	Outdoor, Self-standing type	3phase-4wire, 400A, 380-220V	set	-	
2.6.1.1.	2.6.1.1.3 Pump and gate control panel	Outdoor, Self-standing type	3phase-4wire, 400A, 380-220V	sets	5	
2.6.1.1.	2.6.1.1.5 Local control switch box	Outdoor, Stand type	PBS, Indicator	set	s	
2.6.1.2	Instrumentation Equipment			_		
2.6.1.2.	2.6.1.2.1 Submerged diaphragm type water level meter	Submerged diaphragm type	0-10m, DC 4-20mA	set	5	
2.6.1.2.	2.6.1.2.2 Electrode type water level control switch	Electrode type	4 contacts	set	6	
2.6.1.3	Outdoor Lighting Equipment					
.6.1.3.	2.6.1.3.1 Lighting panel	Indoor, Wall mount type	MCCB 2P	set	-	

2 - 4 - 13

ELECTRICAL EQUIPMENT LIST FOR BEN ME COC (1) PUMPING STATION

3.7.1.1Electrical Equipment 111 Electrical Equipment 111 111 111 111 1111 1111 1111 11111 11111 11111 111111 111111 111111 111111 1111111 1111111 11111111111 $111111111111111111111111111111111111$	No.	Name of Equipment	Type	Specification	Unit	Q'ty	Remarks
1. Receiving transformer & meter cubicle Outdoor, Fole mount type 250kVA, 15(22jkV380-20V) set 2. Distribution panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 3. Pump and gate control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 4. Gate control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 5. Local control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 5. Local control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 5. Local control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 5. Local control switch box Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 6. Local control switch box Outdoor, Self-standing type 3phase-twire, 400A, 380-220V set 7. Local control switch box Outdoor, Self-standing type 0utdoor, Self-standing type 3phase-twire, 400A, 380-220V set 8. Local control switch box Outdoor, Self-standing type 0utdoor, Self-standing type 3phase-twire, 400A, 380-220V set 1. Lettorde type water level meter Submerged dinphagen type Local control switch Local type set 2. Electrode type water level meter Electrode type	1.1.7	Electrical Equipment					
2 Distribution panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V sets 3 Pump and gac control punel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V sets 4 Gate control panel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V sets 5 Local control banel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V sets 5 Local control banel Outdoor, Self-standing type 3phase-twire, 400A, 380-220V sets 1 Submerged diaphnet Outdoor, Self-standing type PBS, Indicanor set 1 Submerged diaphnegu type water level meter Submerged diaphnegu type water level meter Submerged diaphnegu type set 2 Electrode type water level control switch Electrode type 4 contacts set 0 uddoor Lighting Equipment Indoor, Wall mount type MCCB 2P set	3.7.1.1.	l Receiving transformer & meter cubicle	Outdoor, Pole mount type	250kVA, 15(22)kV/380-220V	135	-	
3 Pump and gac control panel Outdoor. Self-standing type 3phase-twire, 400A, 380-230V sets 4 Gate control panel Outdoor. Self-standing type 3phase-twire, 400A, 380-230V set 5 Local control panel Outdoor. Self-standing type 3phase-twire, 400A, 380-230V set 5 Local control switch box Outdoor. Self-standing type 3phase-twire, 400A, 380-230V set 1 Submerged diaphragen type Outdoor. Self-standing type 0phonent set 2 Local control switch box Outdoor. Self-standing type 0phonent set 3 Local control switch box Stand type 0phonent set 4 Local control switch Electrode type 4 contacts set 2 Electrode type water level meter Electrode type 4 contacts set 2 Electrode type water level meter Electrode type 4 contacts set 3 Lighting Fquipment Indoor. Wall mount type MCCB 2P set	3.7.1.1.	2 Distribution panel	Outdoor, Self-standing type	3phase-4wire, 400A, 380-220V	set	-	
A Cate control panel Ourdoor, Self-standing type 3phase-twire, 400A, 380-20V set J Local control switch box Ourdoor, Stand type PBS, Indicator set J Instrumentation Equipment Curdoor, Stand type Doutdoor, Stand type set J Isubmerged diaphragem type water level meter Submerged diaphragem type 0-10m, DC 4-20mA set J Submerged diaphragem type water level meter Electrode type detector set set J Electrode type water level meter Electrode type detector set set set Outdoor Lighting Equipment Doutdoor Lighting panel Indoor, Wall mount type MCCB 2P set set	57.1.1.	3 Pump and gate control panel	Outdoor, Self-standing type	3phase-4wire, 400A, 380-220V	sets	0	
3 Local control switch box Outdoor, Stand type PBS, Indicator set Instrumentation Equipment Encode type 0-10m, DC 4-20mA set 1 Submerged diaphragm type water level meter Submerged diaphragm type 0-10m, DC 4-20mA set 2 Electrode type water level meter Electrode type 4 contacts set 1 Lighting Equipment Indoor, Wall mount type MCCB 2P set	7.1.1.5	4 Gate control panel	Outdoor, Self-standing type	3phase-4wire, 400A, 380-220V	set	-	
Instrumentation Equipment Instrumentation Equipment Instrumentation Instrumentation Instrumentation Equipment Submerged diaphragm type 0-10m. DC 4-20mA set Instrumentation Equipment Electrode type 0-10m. DC 4-20mA set Instrumentation Equipment Electrode type 0-10m. DC 4-20mA set Instrumentation Electrode type 4 contacts set Instrumentation Electrode type MCB 2P set	.7.1.1.	5 Local control switch box	Outdoor, Stand type	PBS, Indicator	las	4	
1 Submerged diaphragm type water level meter Submerged diaphragm type of 0-10m. DC 4-20mA set 2 Electrode type water level control switch Electrode type 4 contacts set 2 Electrode type water level control switch Electrode type 4 contacts set 0 Utdoor Lighting Equipment Image: Contact type MCCB 2P set 1 Lighting panel McOntact type MCCB 2P set	7.1.2	Instrumentation Equipment					
2 Electrode type water level control switch Electrode type 4 contacts set 0 utdoor Lighting Equipment MCCB 2P set set 1 Lighting panel MCCB 2P set	7.1.2.	l Submerged diaphragm type water level meter	Submerged diaphragm type	0-10m, DC 4-20mA	set	еi	
Outdoor Lighting Equipment I Lighting panel MCCB 2P	7.1.2.2	2 Electrode type water level control switch	Electrode type	4 contacts	set	CI.	
Indoor, Wall mount type MCCB 2P	7.1.3	Outdoor Lighting Equipment					
	7.1.3.	Lighting panel		MCCB 2P	set	-	

2 - 4 - 14