Structural Analysis of Foundation for Kazungula Bridge

1. Design of Substructure

1.1 Design Condition

1.1.1 Design Reaction of Superstructure

The Design Reaction of Superstructure is shown in Table 1.1.1.

- Rigid piers must resist all horizontal loads of the superstructure
- Movable piers must resist seismic load generated by each pier reaction

Table 1.1.1 Design Reaction of Superstructure

14010 11111 2 00.8 1104001011 01 04001011								
	A1	P1	P2]	23	P 4		
	(A2)	(P8)	(P7)	(1	P6)	(P5)		
Bearing Condition	M	F	M	M	M	Е		
Dead Load	6830	18000	18000	6830	8910	113400		
Live Load	620	2800	2800	620	1400	2830		
D + L Load	7450	20800	20800	7450	10310	116230		
Horizontal Load	680	4740	1800	680	890	12300		
(Earthquake)								

(KN)

1.1.2 Condition of Substructure dimension

(1) P4, P5

- The pile cap soffit height is 926.600m which is water level with 2,000m3/sec discharges
- Embedment length into the fresh basalt is equivalent to pile diameter These conditions are shown in Figure 1.1.1 and Table 1.1.2

(2) A1, A2, P1, P2, P3, P6, P7, P8

- The overburden on pile cap is more than 50cm
- Embedment length into the weathered basalt is equivalent to pile diameter

1.2 Proposal of Pile Diameter

(1) P4, P5

The comparison of pile diameter for P4 and P5 is shown in Table 1.1.3. The diameter 3.0m cast-in-place concrete pile is proposed because of economic and engineering advantages.

Table 1.1.3 Comparison of Pile Diameter (as pile length 18m)

	4		\ 1			
		Pile Diameter (m)				
		2.0	2.5	3.0		
Pile Cap	Longitudinal	24.0	24.0	21.0		
Dimension (m)	Transverse	29.0	30.0	29.0		
	Depth	4.5	4.5	4.5		
Number of Piles		26	14	8		
Quantity of	Pile Cap	2907	2888	2234		
Concrete (m3)	Pile	1470	1237	1018		
Ratio of Cost		1.12	1.09	1.00		

(2) A1, A2, P1, P2, P3, P6, P7, P8

The comparison of pile diameter for A1, A2, P1, P2, P3, P6, P7, P8 is shown in Table 1.1.4. The diameter 1.0m cast-in-place concrete pile is proposed.

Table 1.1.4 Comparison of Pile Diameter (as pile length 4.0m)

		Pile Diameter (m)				
		0.8	1.0	1.5	2.0	
Pile Cap	Longitudinal	6.0	7.0	7.0	9.0	
Dimension (m)	Transverse	12.0	11.0	11.0	11.0	
	Depth	1.5	1.5	1.8	2.0	
Number of Piles	Number of Piles		12	6	4	
Quantity of	Pile Cap (m3)	108.0	115.5	138.6	198.0	
Concrete	Pile (m)	72	48	24	16	
Ratio of Cost		1.02	1.00	1.08	1.26	

1.3 Design of Pile

1.3.1 Design Model of P4, P5

The analytical model of pile cast-in-placed in weathered and fresh basalt is calculated as a pile supported by elastic springs. The pile top supporting condition has two types such as rigid and hinge.

1.3.2 Calculation Result

(1) P4, P5

Table 1.1.5 Calculation Result of P4, P5 (buoyancy neglected)

	ulation Result (Standard	Earthquake Loading			
		Loading	Longitudinal		Transverse	
		Louding	Rigid	Hinge	Rigid	Hinge
—	X7 (1 XT)	107100				
Design	V (kN)	187403	184574	184574	184574	184574
Reaction	H (kN)	0	19417	19417	18517	18517
	M (kNm)	0	97274	0	171224	0
Coefficient of ground	reaction					
	(kN/m3)	60962		121	.924	
Ground bearing	Allowable	24074		363	252	
Capacity (kN)	Force	23426	28	603	30966	
Pull out Force (kN)	Allowable	-2376		-40	026	
	Force	23426	17:	540	15177	
Bending Moment of P	ile Section					
	(kNm)	0	16082	24546	15323	23409
Re-bar Arrangement			52xD51 ctc 163			
Concrete Stress	Allowable	8.0		12	2.0	
(N/mm2)	Working	2.7	7.8	10.9	7.8	10.6
Re-bar Stress	Allowable	-	300.0			
(N/mm2)	Working	_	12.7	68.3	4.1	49.9
Displacement	Allowable		15.0			
(mm)	Working	0	8	5.6	8	3.2

(2) A1, A2, P1, P2, P3, P6, P7, P8 The calculation result of P6 is shown in Table 1.1.6 as a typical pile foundation of the approach span bridges.

Table 1.1.6 Calculation Result of P6 (buoyancy neglected)

1able 1.1.0 Ca	iculation Resu	III OI PO (buoyancy ne	giecieu)			
	Standard	Earthquake Loading					
		Loading	Longitudina	al	Transverse	Transverse	
			Rigid	Hinge	Rigid	Hinge	
Design	V(kN)	30135	28115	28115	28115	28115	
Reaction	H (kN)	0	2719	2719	2719	2719	
	M (kNm)	2288	30772	0	33598	0	
Coefficient of ground	d reaction						
(kN/m3) sandy s	soil(1.5m)	24316		48	631		
sandy s	soil(2.0m)	60789		121	.578		
hard ro	ck(1.0m)	121578		243	3156		
Ground bearing	Allowable	2820	4240				
Capacity (kN)	Force	2601	3670 3476			176	
Pull out Force (kN)	Allowable	-308		-557			
	Force	2421	10)16	1209		
Bending Moment of	Pile Section						
_	(kNm)	_	2351	2074	976	699	
Re-bar Arrangement			12	2xD22 ctc 1	183		
Concrete Stress	Allowable	8.0		12	2.0		
(N/mm2)	Working	-	9.1	6.5	10.3 3.8		
Re-bar Stress	Allowable	200.0	300.0		0.0		
(N/mm2) Working		-	13.4	40.9	195.6	20.1	
Displacement	Allowable		15.0				
(mm)	Working	0.3	4	.0	2	2.5	

1.4 Condition of Foundation at the Main Pier

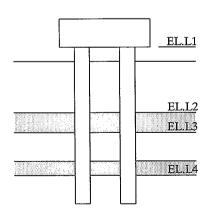


Figure 1.1.1

Table 1.1.2	Condition	of Rock	
Elevation	P4	P5	Type of Rock
EL.L1	926.600	926.600	Water
EL.L2	918.000	921.700	AS
EL.L3	917.000	914.300	weathered BA
EL.L4	913.000	910.600	VS2

No	Station	X	Y
A 1	15+97.0	1968191.799	27769.074
P1	16+39.5	1968223.229	27797.680
P2	16+82.0	1968254.490	27826.473
P3	17+24.5	1968285.750	27855.265
P4	18+47.0	1968375.855	27938.256
P5	20+67.0	1968537.674	28087.301
P6	21+89.5	1968627.779	28170.292
P7	22+32.0	1968659.039	28199.085
P8	22+74.5	1968690.300	28227.877
A2	23+17.0	1968721.561	28256.670

Future Economic Framework Low Growth Scenario

		Pros	spect of Economic	Growth	Prospec	Prospect of Traffic Growth		
Zone	Traffic Zone		1 5	Growth in Cargo	up to 2005	2006-2015	Average	Remarks
		GNP Increase	Industrial Output				-	
	Cape Town		4.20%		4.20%	2.10%	2.80%	
	East London		4.20%		4.20%	2.10%	2.80%	
3	Durban		4.20%		4.20%	2.10%	2.80%	
	Northern Cape		4.20%		4.20%	2.10%	2.80%	
	Johannesburg		4.20%		4.20%	2.10%	2.80%	
6	Swaziland	4.90%			4.90%	2.45%	3.26%	
	Lesotho	4.50%			4.50%	2.25%	2.99%	
	Maputo	5.40%		8.50%	5.40%	2.70%	3.59%	
9	Beira	5.40%		10.00%	5.00%	2.50%	3.33%	
10	West Zimbabwe,		4.20%		4.20%	2.10%	2.80%	
	Bulawayo East Zimbabwe, Harare		4.20%		4.20%	2.10%	2.80%	- AAA
	Zimbabwe, Hwange		4.20%		4.20%	2.10%	2.80%	
12		6.50%			8.50%		5.65%	The rates multiplied 1.3 of elasticity between
13	Western Botswana	6.30%			8.5070	7.2370	3.0570	traffic growth and economic growth
14	Eastern Botswana, Gaborone	6.50%	:		8.50%	4.25%	5.65%	
15	South Namibia, Walvis	3.40%		12%	6.00%	3.00%	3.99%	Half of Cargo Handling
16	Bav. Windhoek	2.400/	4.20%		4.20%	2.10%	2.80%	
	North Namibia	3.40%	4.20%		4.20%	2.10%	2.80%	
	South Angola		4.20%		4.20%	2.10%	2.80%	
	Angola, Lobito	5.000/	4.20%		5.00%	2.50%	3.33%	
	Malawi	5,00%	4.20%		4.20%	2.10%	2.80%	
	Tanzania		4.20%		4.20%	2.10%	2.80%	
	Congo	4.00%	4.2070		5.50%	2.75%		The rates including 1.5% of regional economic
	East Zambia North East Zambia	4.00%			5.50%	2.75%		development
	Kabwe	4.00%			5.50%	2.75%	3.66%	development
	Lusaka	4.00%			5.50%	2.75%	3.66%	4
	Lusaka Copper Belt	4.00%	15.00%		15.00%	7.50%	9.94%	
	Western Zambia	4.00%	13.0070		5.50%	2.75%	3.66%	
	Kafue	4.00%			5.50%	2.75%	3.66%	1
	Southern Zambia	4.00%			5.50%	2.75%	3.66%	1
					5.50%	2.75%		
30	Livingstone	4.00%	ļ		2.30%	2.1370	3.0070	

A verage = $[(1 + R_1)^5 \times (1 + R_2)^{10}]^{\frac{1}{15}} - 1$

 R_1 = Traffic Growth Rate (up to 2005) R_2 = Traffic Growth Rate (2006-2015)

Future Economic Framework High Growth Scenario

Γ.		Pro	spect of Economic	Growth	Traffic Growth	Prospect of Traffic Growth		Growth	
Zone	Traffic Zone	Prospect of	Prospect Major	Growth in Cargo	of Low Growth	up to 2005	2006-2015	Average	Remarks
			Industrial Output	Handling at Port	Scenario	*			
1	Cape Town		4.20%			5.50%	2.75%		The rates multiplied 1.3 of elasticity between
	East London		4.20%			5.50%	2.75%	3.66%	traffic growth and economic growth
	Durban		4.20%			5.50%	2.75%	3.66%	
			4.20%			5.50%	2.75%	3.66%	
	Johannesburg		4.20%			5.50%	2.75%	3.66%	
	Swaziland	4.90%				6.40%	3.20%	4.26%	
7	Lesotho	4.50%				5.80%	2.90%	3.86%	
	Maputo	5.40%		8.50%		8.50%	4.25%	5.65%	
9	Beira	5.40%		10.00%		10.00%	5.00%	6.64%	
	West Zimbabwe,								
10	Bulawayo		4.20%			5.50%	2.75%	3.66%	
	East Zimbabwe, Harare		4.20%			5.50%	2.75%	3.66%	
	Zimbabwe, Hwange		4.20%			5.50%	2.75%	3.66%	
									The rates multiplied 1.3 of elasticity between
13	Western Botswana	7.60%				9.88%	4.94%	6.56%	traffic growth and economic growth
14	Eastern Botswana,					0.0007	4.040/	6.56%	
i	Gaborone	7.60%				9.88%	4.94%	0.30%	m
15	South Namibia, Walvis	4.20%		12.00%		12.00%	6.00%	7 96%	The rates multiplied 1.3 of elasticity between
	Bav. Windhoek	4.20%		12.0070	48.	5.50%		3.66%	traffic growth and economic growth
	North Namibia			<u> </u>	·	5.50%		3.66%	
	South Angola	4.20%		16.70%		16.70%		11.06%	
	Angola, Lobito	4.20% 5.00%		10.7076		6.50%		4.32%	
	Malawi	4.20%				5.50%		3,66%	
	Tanzania	4.20%				5.50%		3.66%	
		4.20%			5.50%	7.20%			The rates multiplied 1.3 of elasticity between
	East Zambia				5.50%	7.20%			traffic growth and economic growth and traffic
	North East Zambia	<u> </u>	 		5.50%	7.20%			growth of low growth scenario
	Kabwe	<u> </u>			5.50%	7.20%		4.79%	I Stown of low Brown security
	Lusaka		30.00%		3.30%	30.00%		19.80%	ALC: N
	Copper Belt		30.00%		5.50%	7.20%			The rates multiplied 1.3 of elasticity between
	Western Zambia				5.50%	7.20%			traffic growth and economic growth and traffic
	Kafue					7.20%		4 79%	marrie grown and economic grown and name
29					5.50%	7.20%		4.79%	growth of low growth scenario
30	Livingstone]		<u> </u>	5.50%	1.20%	3.0070	7.79/0	

A verage =
$$[(1 + R_1)^5 \times (1 + R_2)^{10}]^{\frac{1}{15}} - 1$$

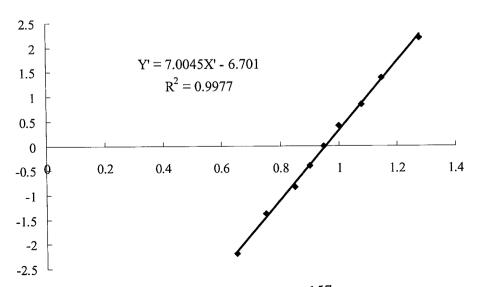
 $R_1 = \text{Traffic Growth Rate (up to 2005)}$

 R_2 = Traffic Growth Rate (2006-2015)

(1) Relation between Route Selection Percentage and Travel Time Ratio

The following traffic diversion curve is used by the Bureau of Public Roads in USA.

Where, traffic diversion is expressed by the following formula:


$$y = \frac{1}{1 + \alpha e^{-\beta x}}$$

The parameters are obtained by linear regression as follows:

$$\log\left(\frac{1}{y} - 1\right) = \log \alpha - \beta x$$

$$Y' = \log\left(\frac{1}{y} - 1\right) \qquad \alpha' = \log \alpha - \beta x$$

$$Y' = \alpha' - \beta x$$

Y	X	log((1/y)-1)
0	1.5	
0.1	1.28	2.19722458
0.2	1.15	1.38629436
0.3	1.08	0.84729786
0.4	1	0.40546511
0.5	0.95	0
0.6	0.9	-0.4054651
0.7	0.85	-0.8472979
0.8	0.75	-1.3862944
0.9	0.65	-2.1972246
1	0.48	

then,

$$\beta = -7.0045$$

$$y = \frac{1}{1 + \alpha e^{7.0045x}}$$

where,

y = Percentage of Kazungula Bridge Users

x = Travel Time Ratio (Kazungula Route/Chirundu Route)

The persentage of Kazungula Bridge users is given 0.45, where travel time ratio is given 0.75 with comparison of driving condition between Chirundu route and Kazungula route. The parameter α is given as follows:

$$\alpha = \frac{\left(\frac{1}{y} - 1\right)}{e^{-\beta x}} = \frac{\left(\frac{1}{0.45} - 1\right)}{e^{7.0045 \times 0.75}} = 0.0063896$$

In general, the relation between route selection percentage and travel time ratio is expressed as follows.

$$y = \frac{1}{1 + 0.0063896e^{7.0045x}}$$

(2) Relation between Toll Rate and Traffic Volume

The relation between Toll Rate and Traffic Volume is also defined by similar diversion formula, where

The share of traffic using Kazungula Bridge is given as follows:

$$y = \frac{V_{kz}}{V_{kz} + V_c + V_{kt}}$$

where,

y = Share of Kazungula Bridge

v_{kz} = Traffic volume of Kazungula bridge

v_c = Traffic volume of Chirundu bridge

Vkt = Traffic volume of Katima Mulilo bridge

Traffic cost by way of Kazungula vs average traffic cost by other Zambezi crossing is given by the following formula:

$$x = \frac{kzT_c}{\frac{cT_c + ktT_c}{2}}$$

where,

x = Traffic cost by way of Kazungula VS Average Traffic cost by other Zambezi crossing

_{kz}T_c = Traffic cost via Kazungula between Lusaka and Durban

_{cTc} = Traffic cost via Chirundu between Lusaka and Durban

ktTc = Traffic cost via Katima Mulilo between Lusaka and Durban

On the above assumption, the parameter β , under the same parameter of α , obtained in the (1), is calculated as follows:

$$\beta = \frac{\log \alpha - \log \left(\frac{V_{kz}}{V_{kz} + V_{c} + V_{kt}} - 1 \right)}{\frac{k_{z}T_{c}}{\frac{c}T_{c} + k_{t}T_{c}}}$$

The traffic costs via Kazungula and Chirundu between Lusaka in Zambia and Durban in South Africa are given as follows:

				Unit: US\$
Route	VOC	Travel Cost	Fee	Total
Kazungula	1,670.9	102.4	29.44	1,802.7
Chirundu	1,516.9	113.1	1.0	1,634.0

As a result, the relation between toll rate and traffic volume is defined as follows:

$$y = \frac{1}{1 + 0.0063896e^{5.0992x}}$$