ГЛАВА 3

ТЕКУЩЕЕ СОСТОЯНИЕ
 СИСТЕМЫI
 ВОДОСНАБЖЕНИЯ

ГЛАВА 3 ТЕКУЩЕЕ СОСТОЯНИЕ СИСТЕМЫ ВОДОСНАБЖЕНИЯ

3.1 Введение

В 50-х годах г. Астана обслуживался упрощенной системой водоснабжения с использованием подземных вод. Однако, в $60-\mathrm{x}$ годах была внедрена более комплексная система водоснабжения, которая включает Вячеславское водохранилище, водозаборную насосную станцию на Вячеславском водохранилище, водозаборную насосную станцию на p. Ишим, повысительные насосные станции и насосно-фильтровальную станцию. Схема расположения существующей системы водоснабжения показана на Рисунке 3.1.1.

Перед строительством этих сооружений для использования поверхностных источников воды, подземные воды являлись основным источником водоснабжения. В черте г. Астана находилось 30 скважин, но по причине ограниченности запасов подземных вод, их качества, повышенной жесткости воды, большинство из скважин было закрыто.

Водоснабжение г. Астана осуществляется путем использования вышеупомянутых сооружений, при этом коэффициент обслуживания составляет почти 100%, включая $26,8 \%$ населения, обслуживаемого водоразборными колонками. Две системы водоснабжения управляются и контролируются ACA, государственным предприятием по эксплуатации и техническому обслуживанию данных систем. Основная система предназначена для питьевого водеснабжения, а другая - для подачи неочищенной технической воды на предприятия для таких целей, как охлаждение, промывка и пр. АСА так же выставляет счета на оплату за воду и производит сбор платежей.

Утечки и потери представляют одну из серьезных проблем для АСА в плане дальнейшей эксплуатации. Коэффициент утечек из распределительных сетей и коэффициент утечек и потерь по вине потребителей составляют 26% и 20% соответственно. Потери из распределительньх сетей в основном происходят вследствие изношенности трубопроводов. В то время как утечки и потери воды по вине потребителей возникают вследствие низкого уровня обеспеченности индивидуальными водомерами, что в целом составляет 26%.
Принимая во внимание ограниченность возможных используемьх запасов источников водоснабжения и постоянный режим их эксплуатации, вышеупомянутые вопросы требуют незамедлительного решения.

3.2 Водопотребление

3.2.1 Текущее водопотребление и коэффициент потерь воды

Вследствие того, что на распределительной сети установлено очень мало расходомеров, данных по водопотреблению имеется недостаточно. Для того чтобы рассчитать объем воды, потребленной каждым пользователем, АСА применяет официальные данные Департамента жилья по количеству жителей, зарегистрированных по адресу, и нормативный объем водопотребления, составляющий 240 л/чел. Количество жителей, зарегистрированньх в Департаменте жилья, составляет около 200000 человек, численность же населения г. Астана в настоящее время составляет 300000 человек. Это означает, что около 50% счетов, выставляемых на оплату за воду, остаются неоплаченными, и, таким образом, представляют собой убытки для АСА.
Единственным надежным источником данных о расходе воды представляется объем воды, поступающей с НФС в распределительную сеть. В 1999 году средний объем воды, поступающей в распределительную сеть, составил $131000 \mathrm{~m}^{3} /$ сутки. Был проведен анализ с целью сравнения этих данных и данных по выставлемым счетам, предоствленных ACA. Результаты анализа кратко изложены в Таблице 3.2.1.

Таблица 3.2.1 Изменения спроса на питьевую воду (1998-1999)

Год	1998	1999
Водопотребленне (м $\left.{ }^{3} / с у т к и\right)$ Хозяйственно-питьевые нужды (по счетам) Хозяйственно-питьевые нужды (без выставления счетов) Общественно-быговые Промышленные и коммерческие предприятия Bcero	$\begin{array}{r} 37452 \\ 18726 \\ 6222 \\ \\ 26578 \\ 88978 \\ \hline \end{array}$	46667 23334 4814 22049 96864
Потери и утечки воды ($\mathrm{m}^{3} / \mathrm{cyr}$) Коэффицнент потерь Объем потерь и утечек	$\begin{aligned} & 26,5 \% \\ & 32146 \\ & \hline \end{aligned}$	$\begin{aligned} & 26,1 \% \\ & 34199 \\ & \hline \end{aligned}$
Bcero	121124	131063

Источник: «Водозабор и распределение, АСА»
Примечанне: При проведении данного аналнза объем без выставления счетов принимался за 50 \% от объема по выставленным счетам.
Данный анализ основан на принятом объеме водопотребления, составляющем приблизительно 240 л/чел., который представляется высоким по сравнению со средним объемом водопотребления в Eвропе,

составляющим 150 л/чел.
Объем воды, подаваемой в распределительную сеть с насоснофильтровальной станции (НФС), согласно замерам, проведенным в 1999 году, отображен в Таблице 3.2.2.

Таблица 3.2.2 Распределительный объем питьевой воды, подаваемой НФС

Год	Месяц	Распределительный объем ($\mathrm{m}^{3} /$ сутки)
1999	Январь	147871
	Феврал	147714
	Mapr	150581
	Aпрель	148500
	Май	131742
	Июон	129800
	Июлл	132387
	Abryct	123387
	Сентябрь	105200
	Oктя页b	101323
	Ноябрь	114700
	Декабрь	139548
Средний объем		2W\%.ki31063

Источникс: Данные по эксплуатацни с НФС, АСА
Ввиду расхождений был проведен еще один анализ путем сопоставления объема воды, поступившей в распределительную сеть, и объема сточных вод, поступивших на КОС в 1999 году, который составлял 81000 м $^{3} /$ сутки. Были сделаны определенные выводы относительно водопотребления на душу населения согласно различным типам жилых домов и уровню инфильтрации, подробные данные по которым приводятся в разделе A.1.1 Вспомогательного отчета.

В Таблице 3.2.3 приведены данные по сооружениям, имеющимся в домах различного типа, и численность населения на 1999 год, разбитая по типам домов.

Таблица 3.2.3 Разбивка населения по тнпам домов

N	Tип	Трубопр. Вода	Канапи- зация	Водонаг реватель	Районное отопление	Население	$\%$
1	Водоразбор- нье колонки	\times	\times	\times	\times	80700	26,8
2	Дома 1 типа	O	\times	\times	\times	25600	8,5
3	Дома 2 типа	O	O	O	\times	22500	7,5
4	Дома 3 типа	O	O	\times	O	172000	57,2
	Всего					300800	100

Результаты данного сопоставления приводятся в Таблице 3.2.4 и сравниваются с результами анализа, показанными в Таблице 3.2.1.

Таблица 3.2.4 Сопоставление обьема подачи воды и объема отведенных сточных вод

		$\begin{aligned} & \text { л/чел./ } \\ & \text { сутки } \end{aligned}$	Водопотребленне, $\mathbf{m}^{3} /$ сутки	\%	\%отведе- ния	Обвем сточных вод, $\mathrm{m}^{3} / \mathrm{Cy} \mathrm{тки}$	\%
1	Водоразборнье колонки	22	1775	1,8	0	0	0
2	Дома 1 типа	100	2560	2,7	0	0	0
3	Дома 2 типа	170	3825	4,0	90	3443	4
4	Дома 3 типа	270	46440	48,1	90	41796	52
	Иtoro	182	54600	56,6		45239	56
	Общественно-бытовые		4814	5,0	90	4333	5
	Коммерческне и промыппленые		14790	15,3	80	11832	15
	тэЦ		22260	23,1	30	6678	8
	Техническая вода ($20000 \mathrm{~m}^{3}$)				10	2000	2
	Итого		41864	43,4		24843	31
	\% инфильтрацин сточных вод (утечки)				30	10380	
	Итого		96464	100		80461	
	Измеренный объем сточных вод					81000	
	Обием подами воды		131063				
	Потери воды		34599	26,4			

Последние измерения объема водопотребления, проведенные ACA, показывают, что приведенные в Таблице нормы водовопотребления на душу населения являются обоснованными для г. Астана, судя по данным, приведенным в Таблице 3.2.5. Можно отметить, что в домах с общедомовыми водомерами объем водопотребления на душу населения выше, чем в домах, где установлены индивидуальные водомеры. Эrо означает, что в домах, где не установлены индивидуальные водомеры, имеет место большой процент утечек воды.

Таблица 3.2.5 Анализ замеров водопотреблсння на дупу населения

Объем водопотребления	Общедомовые водомеры (л/чел./сут.)	Индивидуальные водомеры (л/чел./сут.)
Мнннмальный	83,6	51,7
Максимальний	742,4	750,0
Средний (в процентном соотношении)	294,8	132,5

Представленные выше расчеты были составлены на основании ограниченных данных, в связи с этим их следует проверить после установки дополнительных расходомеров в распределительной системе.

Результаты данного анализа подтверждают, что утечки из распределительной сети составляют не меньше 26%, вероятно даже больше, так как, скорее всего, фактический объем водопотребления ниже объема водопотребления на душу населения, принятого выше.

3.3 Водоисточники

В настоящее время основными источниками воды, используемыми ACA, являются Вячеславское водохранилище и река Ишим. Имеются еще два источника - подземные воды и канал Нура-Ишим, но их использование было прекращено. Ниже приводится описание данных источников водоснабжения.

3.3.1 Вячеславское водохранилище

Водосборная площадь Вячеславского водохранилища составляет $5310 \mathrm{~km}^{2}$, максимальный и рабочий объемы водохранилища составляют 390 млн. м ${ }^{3}$ и 358,8 млн. м ${ }^{3}$, соответственно. Размеры водохранилища: протяженность 11,2 км, максимальная ширина - 9,8 км, максимальная глубина - 25 m , площадь зеркала воды - $54,3 \mathrm{~km}^{2}$. Водохранилище относительно мелководное. Верхний уровень воды в водохранилище имеет отметку +403 м, но вследствие скудного количества выпадаемых осадков, уровень воды падает. На 1-ое марта 2000 года, уровень воды составлял $+397,79$ м, что на 5 м ниже верхнего уровня воды, при этом вместимость водохранилища уменьшилась до 174,4 миллионов кубометров.

3.3.2 Река Ишим

Вода из реки Ишим в основном применяется в качестве технической воды, однако, в критических случаях АСА очищает сырую воду из р. Ишим для питьевого потребления. Согласно данным Ишимского БВУ, в течение последних 10 лет АСА использовало от 6 до 35 млн. м ${ }^{3}$ воды в год из реки Ишим, что эквивалентно 16000 и 96000 м $^{3} /$ сутки.

3.3.3 Другие источники воды

(1) Подземные воды

В прошлом эксплуатировалось 30 скважин, но ввиду их недостаточной производительности и качества воды многие скважины были закрыты. Подробный перечень скважин приводится в разделе А.2.1 Вспомогательного отчета. Повышенная жесткость и высокое содержание хлоридов характеризуют качество подземных вод, оба показателя превышают государственные нормативы по качеству питьевой воды, как показано в разделе А.2.2 Вспомогательного отчета.

На данный момент, в целях водоснабжения эксплуатируется только одна скважина, расположенная в северной части города. Эта скважина называется «Омская» и расположена в районе Акмолинского месторождения. Раньше там было расположено несколько скважин с промежуточным расстоянием 500 m , однако, в результате сокращения водопотребления некоторые из них были закрыты. Внутри скважины установлен насос с производительностью $6 \mathrm{~m}^{3} / ч а с$. Откачиваемые подземные воды подаются в водонапорный бак, откуда поступают самотеком по назначению. Десять семей обслуживаются данной системой. Как только финансовое положение будет улучшено, АСА рекомендуется провести ремонтно-восстановительные работы на данной скважине.

(2) Канал Нура-Ишим

Канал Нура-Ишим применялся в целях водоснабжения до 1991 года, до того момента, когда было обнаружено, что река Нура загрязнена ртутью. С тех пор использование воды из данного канала было прекращено.

3.4 Сооруження для подачи сырой воды

В г. Астана существуют две системы по подаче сырой воды на насоснофильтровальную станцию. Основная система - это водозаборная насосная станция на Вячеславском водохранилище и два водовода протяженностью 51 км каждый. Другая система перекачивает воду из р. Ишим на НФС по водоводу протяженностью 9 км.

3.4.1 Водозаборная насосная станция на Вячеславском водохранилище

В Таблице 3.4.1. представлены данные по строительной части этой водозаборной станции, а на Рисунке 3.4.1. показан её общий план.

Таблиц2 3.4.1 Данные по стронтельной частн водозаборной насосной станиии на
Вячеславском водохранилище

Сооружения	Tиm	Размеры
Машшнный зал	Железобетонная конструкция, 1-й этаж наземной части здания	Д $18 \mathrm{mxШ8m} \mathrm{\times H9m}$
Операционный зал	Железобетонная конструкция, 1-й зтаж подземной частн здания	Д $34 \mathrm{mxIII} 12 \mathrm{mxH7} 7 \mathrm{~m}$
Машинный зал	Железобстонная конструкция, 2-й зтаж подземной частн здания	Д $34 \mathrm{mxW12m} \mathrm{\times H7.3m}$
Насосы	Центробсжный	```4095 m}\mp@subsup{\mathbf{3}}{}{\prime кВт x }2\mathrm{ единнцы 6 300 m}/\mp@code{4ac x 95 mH x 2 000 kBt x 1 еднннща (резервньй)```

Подробное описание строительных конструкций и техническая характеристика механических сооружений и электрооборудования приводятся в Разделах А.3.1 и A.3.2 Вспомогательного отчета.

На насосной станции установлено три насоса, включая один резервный. Номинальная производительность насосньх установок составляет 4095 $\mathbf{m}^{3} /$ час $\times 2\left(=8190 \mathrm{~m}^{3} /\right.$ час $=196560 \mathrm{~m}^{3} /$ сут.), в то время как расход воды, определенный на основании показания расходомера, установленного в конце марта 2000 года, составил $140000-150000 \mathrm{~m}^{3} /$ сут., что соответствует $76 \%(150000 / 196560)$. Эта разница в расходах является причиной постоянной эксплуатации задвижек для сокращения напора в трубопроводах. Расход воды и давление регулируются с помощью задвижек с целью сокращения давления в трубопроводах, так как существующие два водовода, особенно самый старый, находятся в изношенном состоянии и недостаточно прочные, для того чтобы выдержать давление воды при работе насосов на полную мощность.
Для улучшения ситуации необходимо построить третью нитку водовода, строительство которой уже одобрено Правительством Республики Казахстан и будет финансироваться из республиканского бюджета.

Ниже приводится краткое изложение анализа системы:

- Существующие строительные конструкции пригодны для дальнейшей эксплуатации, однако, необходимые реконструкционные работы будет очень сложно осуществить, так как основная часть конструкций находится под землей.
- Основные насосы относительно новые и подлежат дальнейшей эксплуатации в течение последующих нескольких лет, однако электрооборудование сильно изношено и в значительной степени

устарело. Будет трудно осуществить замену электрооборудования, потому что внутреннее рабочее пространство ограничено.

- После введения в эксплуатацию нового водовода, напор насосов сократится почти на половину, следовательно, эксплуатация существующих насосов с высоким напором представляется неэкономичной. С экономической точки зрения, необходимо будет установить насосы с соответствующим напором и произвести замену электрооборудования.
- Еще одно затруднение заключается в том, что во время проведения ремонтно-восстановительньх работ сооружения будут эксплуатироваться.

3.4.2 Водозаборная насосная станция на р. Ишим

В Таблице 3.4.2. показана схема строительной части этой насосной станции. Во Вспомогательном отчете А.3.1 и 3.2 дается подробное описание строительных конструкций и техническая характеристика механических сооружений и электрооборудования. План водозаборной насосной станции на p. Ишим показан на Рисунке 3.4.2.

Таблица 3.4.2 Схема стронтельной частн водозаборной насосной станцин на р. Ииим

Сооружения	Tип	Размеры
Операцнонный зал	Железобетонная конструкция, 1-й этаж наземной части здания	Д $27.8 \mathrm{~m} \times \mathrm{W} 12.5 \times \mathrm{H} 8 \mathrm{~m}$
Машинный зал	Железобетонная конструкция, Подземное помещение	Д 19.5 м хШ $10.5 \times$ H 7.7m
Насосы	Центробежный	$1600 \mathrm{~m}^{3} / \mathbf{4}$ ас $\times 55 \mathrm{mH} \times 350 \mathrm{kBt} \times 1$ ед. $2400 \mathrm{~m}^{3} /$ час $\times 55 \mathrm{mH} \times 500 \mathrm{kBt} \times 2$ ед. (1-резервный) $2200 \mathrm{~m}^{3} /$ час $\times 55 \mathrm{mH} \times 500 \mathrm{kBt} \times 1$ ед. (1-резервный)

Сырая вода из p. Ишим перекачивается данной насосной станцией на НФС и сразу подается промышленным предприятиям на технические нужды.
Из четырех существующих насосов, три насоса ($2400 \mathrm{~m}^{3} /$ час $\times 2$ агрегата и 2 $200 \mathrm{~m}^{3} /$ час х 1 агрегат) были установлены в 1975 году и до сих пор эксплуатируются. Однако, ввиду спада промышленного производства большая производительность вышеупомянутых насосов является неоправданной. Поэтому, для того чтобы отвечать текущему спросу, был установлен насос, производительностью $1600 \mathrm{~m}^{3} /$ сут, который эксплуатируется на данный момент вместо насосов с более высокой мощностью.

Ниже приводится краткое изложение результатов анализа:

- Что касается строительных конструкций и зданий, то они подлежат дальнейшей эксплуатации, так как не наблюдается серьезных повреждений.
- Все насосы находятся в хорошем состоянии, однако, автореле панелей управления работает неисправно. Необходимо так же уделить особое внимание системе обеспечения безопасности.
- Если произвести замену панелей управления и обеспечить проведение надлежащего технического обслуживания, то работа водозаборной насосной станции на р. Ишим будет более эффективной.

3.4.3 Водоводы

На данный момент действует два водовода для перекачки воды из Вячеславского водохранилища на НФС. Оба водовода диаметром 1000 мм и протжженностью 51 км, были построены в 1967 и 1988 rr. Производительность водозаборного насоса, составляющая $4095 \mathrm{~m}^{3} / ч а с \times 2$ единицы $=196560 \mathrm{~m}^{3} /$ сут выше необходимой производительности, которая равна $150000 \mathrm{~m}^{3} /$ сут, поэтому расход воды и давление регулируется задвижками во избежание порывов на водоводах. Такого рода несоответствие между проектной и фактической производительностями снижает эффективность эксплуатации водоводов. Фактически, эти водоводы уже перенесли несколько поломок.

Оба водовода находятся в изношенном состоянии и подверглись коррозии в результате неудовлетворительной антикоррозийной защиты. Согласно расчетам, объем утечек из данных водоводов составляет 13000 м $^{3} /$ сутки или около $5,3 \mathrm{~m}^{3} /$ час/км, если сравнить данную цифру с нормативной $1 \mathrm{~m}^{3} / ч а с / к м$. Уже были предприняты меры по строительству нового трубопровода.
В 1975 году был проложен водовод от водозаборной насосной станции на p. Ишим до НФС. Диаметр этого водовода составляет $1000 \mathrm{mм}$, а протяженность - 9 км. Согласно данным, данный водовод находится в относительно удовлетворительном состоянии.
Быд проведен анализ гидравлических систем, и величина -С по вышеупомянутым водоводам рассчитана следующим образом. Подробная информация по расчетам приводится в разделах А.3.3 и А.3.4 Вспомогательного отчета.

	Величина - С
Водовод (№1) от Вячеславского водохраниянща	90
Водовод (№2) ог Вячеславского водохраннлнща	100
Водовод от р. Ищим	110

3.5 Очистные сооружения

3.5.1 Насосно-фильтровальная станция

План и функциональная схема НФС даются на Рисунках 3.5.1 и 3.5.2. Перечень очистных сооружений и нагрузка на сооружения приводятся в Таблице 3.5.1 и во Вспомогательном отчете А.4.1 и А.4.2. Строительные чертежи основных сооружений приводятся в приложении «Чертежи».

Таблица 3.5.1 Схема стронтельной части НФС

Сооружения	Tmi	Размеры	Нагрузка
Скорый смеситель	Железобетонная монструаиия	$\begin{aligned} & \text { Д } 12.0 \mathrm{~m} \times I I 16,0 \mathrm{~m} \times \mathrm{H} 3.2 \mathrm{~m} \text { (вверх) } \\ & \text { Д(} 12.0-12.5) \mathrm{m} \times \mathrm{III} 4.21 \mathrm{~m} \times \mathrm{H} 12.0 \mathrm{~m} \text { (вниз }) \end{aligned}$	6.4 ухй
Флокуларионный бассейн	Железобетонная понструирия	Д $3.6 \mathrm{~m} \mathrm{\times W} 6.0 \mathrm{~m} \mathrm{\times H} 6.0 \mathrm{mx} 20$ ед	20.0 мхн
Олстойник	Железобетонняя конструкция	Д $49.6 \mathrm{mxII} 6.0 \mathrm{mxH} 4.2 \mathrm{~m} \mathrm{\times 20eд}$	3.4 час
Скорый фиљтт	Железобетонная ронструсрия	Д $10.5 \mathrm{~m} \times \mathrm{H} 5.1 \mathrm{~m} \mathrm{\times H} 2 \mathrm{mx} 10$ ед.	157,1 w/cyr.
Хлорирование	Газообразный хлор	2 испарителя и иннсктора	
Резервуар питьевой воды	Железобетонная зонструапия	$20000 \mathrm{~m}^{3} \times 2$ eд	5.8 час
Резервуар для технической воды	Железобетоннам конструкция	$20000 \mathrm{~m}^{3} \times 2$ eд.	
Административное здание	Железобетонная ронструкаия, 3-и этаж	Д 12 mx П $16 \times \times 3$ й этаж	
Распределитељьные насосы			
Распределитељъые насосы (тех. вода)	Центробежннй	$\begin{aligned} & 3600 \mathrm{~m}^{3} / \text { час } \times 55 \mathrm{mH} \times 630 \mathrm{KBr} \times(1 \text { резервный) } \\ & 3200 \mathrm{~m}^{3} / \text { час } \times 55 \mathrm{mH} \times 630 \mathrm{xBr} \times(1-\text { резервный) } \\ & 500 \mathrm{~m}^{3} / \text { час } \times 70 \mathrm{mH} \times 320 \mathrm{KBT} \times 3 \text { ед. (1-резервный) } \end{aligned}$	

Примечанне: нагрузка означает продолжительность отстаивания, однако применительно скорых фильтров, это означает скорость фильтрации.

Ниже приводится краткое изложение:

- Бетонное перекрытие флокуляционных камер и отстойников препятствует проведению визуального наблюдения за качеством очистки воды, а так же осуществлению каких-либо строительных работ по усовершению системы внутри сооружений.
- В флокуляционных камерах нет смесительного оборудования, следовательно, флокуляционный процесс проходит не должным образом.
- В отстойниках отсутствуют выводящие лотки, поэтому осадочный ил находится в водовороте потока воды, образующегося в конце отстойника.
- Отмечается значительная изношенность новой секции фильтров, включая само здание и резервуары.
- Осуществляется механическая эксплуатация распределительных насосов на НФС в соответствии с уровнем воды в резервуарах.

3.5.2 Переработка и отведение ила

Из-за отсутствия сооружений для переработки ила, ил из отстойников напрямую сбрасывается в р. Ащы-сай вместе с водой, использованной для промывки фильтров. В настоящее время такая практика не может быть применена, так как отведенный ил увеличивает уровень мутности рек.

3.6 Сооруження по распределенню питьевой воды

На Рисунке 3.6.1 показан общий план существующей системы водоснабжения г. Астана. Весь город обслуживается с помощью распределительной насосной станции на НФС и повысительной насосной станцией №7. Ниже дается подробное описание.

3.6.1 Насосные станции (H / C)

Распределительная насосная станция на НФС, повысительная насосная станция №7 и станция «Аллювия» являются основными насосными станциями, которые расположены в черте г. Астана. Перечень сооружений на распределительной насосной станции на НФС дается во Вспомогательном отчете А.5. Ниже следует краткое изложение анализа текущего состояния:

Насосная станция на НФС

- Все насосы находятся в хорошем состоянии, однако, необходимо отметить изношенное состояние здания.
- В августе 2000 года производилась замена электрических панелей и оборудования по обеспечению электроэнергией.

Повысительная насосная станция №7

- Техническое состояние насосов хорошее. Так как проектная производительность насосов превышает фактический спрос, то расход воды контролируется задвижками.
- Панель управления находится в неисправном состоянии.

Повысительная насосная станция «Аллювия»

- Станция была построена в 1960 году. По сегодняшний день ведется её эксплуатация, однако, почти все строительные конструкции, механические сооружения и электрооборудование находятся в ветхом состоянии.

3.6.2 Распределительная сеть

(1) Текущее состояние

Как показано на Рисунке 3.6.1, весь город обслуживается распределительной насосной станцией на НФС и повысительной насосной станцией №7. Минимальное остаточное давление воды, необходимое для обслуживания 5 этажного дома, было рассчитано следуюшим образом:
$5-$ этажный дом $\times 3.2 \mathrm{~m}+5 \mathrm{~m}($ запас $)=21 \mathrm{~m}=0.21 \mathrm{MDа}$ Для поддержания минимального остаточного напора воды в сети на окраинах города необходимо, чтобы давление воды в трубопроводах возле НФС было достаточно высоким. Однако, чрезмерно высокое давление воды в трубопроводах при распределении с НФС крайне нежелательно, так как это приводит к утечкам воды из распределительных трубопроводов. Согласно проведенному опросу операторов, работающих на НФС, предусмотренное давление воды при распределении $5.5 \mathrm{kг} / \mathrm{cm}^{2}$ ($=0.56 \mathrm{M}$ Ма) контролируется задвижками при нынешней эксплуатации насосов.

План сети показан на Рисунке 3.6.2. Общая протяженность существующей распределительной сети составляет 489 км, характеристика распределительных трубопроводов дается в Таблице 3.6.1.

Таблица 3.6.1 Характеристика распределительных трубопроводов

Матернал	$<100 \mathrm{~mm}$	125-200 mm	225-400 mm	$>500 \mathrm{~mm}$	$\begin{array}{\|c\|} \hline \text { Общая } \\ \text { прогжжен } \\ \text { ность } \\ \hline \end{array}$	Доля в общей протяжен ности
	M	M	M	M	M	\%
Чугунные трубы	28639	90.114	97611	97058	313422	64.0
Сталыные трубы	33768	24164	38431	71806	168169	34.4
Асбестоцементнье трубы	0	3835	237	0	4072	0.8
Полиэтиленовые трубы	1113	1531	1034	0	3678	0.8
Обпая протвкенность (м)	63520	119644	137313	168864	489341	100.0
Доля в общей протвженности (\%)	13.0	24.5	28.1	34.5	100.0	

Источник: Данные, предоставленные АСА

Yenobrise obostaveriu

(2) Анализ распределительной сети

1) Основы анализа

Был проведен гидравлический анализ на основе данных по действующей трубопроводной сети. Ниже приводятся основные данные по анализу;

Основные данные для проведения анализа сети

Проектный расход	$\begin{array}{\|l\|} \hline 155000 \mathrm{~m}^{3} / \mathrm{cyt}\left(\mathrm{Q}_{\text {сут.макс }}\right), \\ 205000 \mathrm{~m}^{3} / \mathrm{CyT}\left(\mathrm{Q}_{\text {асс махс }}\right) \\ \hline \end{array}$
Насосы на НФС	$60 \mathrm{~m}^{3} / \mathrm{MиH} \times 65 \mathrm{mH} \times 2$ единицы
	$25 \mathrm{~m}^{3} / \mathrm{M} \boldsymbol{4} \times 65 \mathrm{MH} \times 2$ единицы
Насос на повысительной насосной станции №7:	$25 \mathrm{~m}^{3} /$ мин $\times 70 \mathrm{mH} \times 1$ единица
Коэффициент скорости воды в трубах	$\mathrm{C}=100$

2) Результаты анализа

- Скорость воды в трубопроводах относительно невелика. Средняя скорость воды составляет $0.44 \mathrm{~m} /$ сек. Обычно, при экономичном диаметре скорость воды в трубопроводе составляет $1.0 \mathrm{~m} /$ сек. Это означает, что диаметр существующих трубопроводов слишком велик. Следовательно, вся трубопроводная сеть представляется неэкономичной. Однако, существующая сеть имеет достаточную пропускную способность для удовлетворения спроса на воду в будущем.

В узле J-253 (см. Рисунок 3.6.2), остаточный напор воды составляет 0.17 МПІ, а это меньше минимального напора воды, который равен 0.21 МПа. Однако, такой напор не влияет на водоснабжение жителей, проживающих в частных и 2 -этажных домах.

3.7 Сооружения по распределению технической воды

Сооружения по распределению технической воды включают насосы по перекачке технической воды на НФС и трубопроводы протяженностью 16,4 км и диаметром от 300 мм до 1000 мм. Подробная информация по насосам по перекачке технической воды приводится в Таблице 3.5.1.

3.8 Эксплуатация и техническое обслуживаниее

(1) Водозаборная насосная станция на Вячеславском водохранилище

Ниже приводится растановка кадров на водозаборной насосной станции.
Обслухивающий персонал водоаборной станщин на Ввчеславском водохраннлиие

Должность	В настоящем
Управляющий	1
Электрик	1
Механик	1
Водитель	1
Ассистенты	2
Работники смен	2 чел х 4 смены
Итого	14

Существующее количество работников является излишним для эксплуатации и технического обслуживания насосной станции. Необходимо учитывать следующие эксплуатационные условия:

1) Вследствие того что, все насосы и электрическое оборудование установлены в подземной части здания, затрудняется осуществление ежедневной эксплуатации и технического обслуживания.
2) Так как насосная станция расположена в 51 км от города, перевозка обслуживающего персонала занимает много времени. Кроме того, обслуживающий персонал, работающий в четыре смены, должен находится там в течение 24 часов на случай аварий и устранения поломок.
3) Если эксплуатация этой насосной станции будет приостановлена по причине аварии, то водозаборная насосная станция на р. Ишим не сможет удовлетворить необходимый спрос на воду, что приведет к аварийной ситуации во всей системе водоснабжения. Следовательно, необходимо обеспечить проведение должного технического обслуживания и эксплуатации.
(2) Водозаборная насосная станция на р. Ишим

Ниже приводится расстановка кадров на насосной станции на p. Ишим. Необходимо отметить должное техническое обслуживание этой станции.

Обслуживаюииий персонал водозаборной станиии на р. Ииним

Должность	В настоящем
Управляющий	1
Работники смен	2 чел $\times 4$ смены
Итого	9

(3) Насосно-фильтровальная станция

Следующая таблица показывает текущее кадровое размещение на существующей НФС, включая распределительную насосную станцию. Одна смена состоит из двух операторов, одного механика и электрика. Эксплуатация и техническое обслуживание механического и электрического оборудования осуществляется в течение 24 часов при работе обслуживающего персонала в четыре смены.

Обслуаивающиій персонал насосно-фильтровапьной станции

Должность	В настоящем
Управляющий	1
Начатник службы	4
Инженер-электрик	1
Инженер-механик	1
Оператор	23
Ремонт и другое	26
Лаборатория	18
Ассистенты	10
Работники смен	4 чел $\times 4$ смены
Итого	

(4) Повысительная насосная станция №7

Повысительная насосная станция №7 обслуживает всю западную часть города и играет очень важную роль в системе водоснабжения. Существующая расстановка кадров на этой станции дается ниже.

Обслужлвающий персонал насосной станииия Nе 7

Должность	В настоящем
Электрик	0
Работники смен	2 чел $\times 4$ смены
Итого	

(5) Повысительная станция «Аллювия»

Ниже приводится существующая расстановка кадров на данной станции.
Обстужнваюиий персонал станцни «Аллювия»

Должность	В настоящем
Работники смен	1 чел $\times 4$ смены
Итого	

(6) ACA

Как показывает таблица ниже, в секторе водоснабжения занято около 310 работников ACA.

Обслуживающий персонал ACA	
Служба	В настоящем
Спужба по чрезвьчайным ситуациям	24
Участок эксптуатации водопровода (№1)	15
Участок эксплуатации водопровода (№2)	15
Мастерскал	10
Механический щех	150
Ремонт /Строитепьные работы	60
Служба энергетики	34
Иtoro	308

3.9 Краткое описание существующей системы

(1) Потери и утечки

Объем водопотребления на сегодняшний день включает утечки из распределительной сети и потери по вине потребителей, что составляет 26% и 20%, соответственно, от общего распределяемого объема воды. Принимая во внимание ограниченность водньх ресурсов, необходимо устранить утечки из распределительной сети путем замены существующих изношенных трубопроводов, а потери по вине потребителей будут снижены за счет полномасштабной установки индивидуальных водомеров и проведения образовательной работы среди населения о необходимости экономии водных ресурсов.
(2) Водозаборная насосная станция на Вячеславском водохранилище

Эта станция была построена в 1968 г. С момента введения станции в эксплуатацию почти все строительные конструкции и панели управления в значительной степени износились. В настоящее время эта насосная станция подает большой объем воды на НФС. Таким образом, при проведении ремонтно-восстановительных работ, следует сохранять необходимую производительность. Однако, будет очень сложно проводить работы по замене панелей управления из-за ограниченного рабочего пространства внутри помещения. Старые, разрушенные строительные конструкции невозможно отремонтировать и поэтому неизбежна их комплексная реконструкция. Насосы находятся в хорошем рабочем состоянии, но их производительность слишком высока по отношению к требуемому объему воды и напору насосов. Поэтому текущая эксплуатация насосов представляется неэкономичной. Необходимо установить насосы с соответствующей производительностью. Из этого следует, что для обеспечения постоянной подачи сырой воды в будущем, неизбежно

строительство новой насосной станции.
(3) Водозаборная насосная станция на p. Ишим

Данная насосная станция находится в хорошем состоянии и если, АСА будет проводить должное техническое обслуживание и осуществит замену панелей управления, то она прослужит еще несколько лет.
(4) $\mathrm{H} \Phi \mathrm{C}$

Существующая НФС была построена в период с 1970-1980 гг. с номинальной производительностью $100000 \mathrm{~m}^{3} /$ сут. В настоящее время все строительные конструкции находятся в изношенном состоянии. Особенно заметна деформация половины секций фильтров. Они требуют проведения комплексной реконструкции. Даже если будут проведены ремонтновосстановительные работы, эффективность очистки воды не будет существенно повышена, по причине структурного дефицита НФС. Кроме того, осуществить эти ремонтно-восстановительные работы будет достаточно трудно, так как для поддержания необходимой производительности очистного оборудования потребуется дополнительное техническое обслуживание. Таким образом, для удовлетворения спроса на воду в будущем, строительство новой НФС представляется крайне необходимым.
(5) Повысительная насосная станция №7

Эта насосная станция находится в хорошем состоянии и при условии, если ACA будет проводить должное техническое обслуживание и осуществит замену панелей управления, то она прослужит еще в течение нескольких последующих лет.

ГЛАВА 4

ПРОЕКТ БУДУЩЕЙ

СИСТЕМЫ

ВОДОСНАБЖЕНИЯ

ГЛАВА 4 ПРОЕКТ БУДУЩЕЙ СИСТЕМЫ ВОДОСНАБЖЕНИЯ

4.1 Стратегия планирования

Основными стратегиями настоящего ТЭО являются следующие:

- Будущее развитие всей системы водоснабжения зависит от модернизации действующих сооружений. Расширение системы необходимо свести к минимуму как на территории существующего города, так и на левобережье реки Ишим.
- Установленные сооружения по водоснабжению и план расширения системы должны основываться на политики рационального использования водных ресурсов, что требует сокращения утечек и потерь воды.
- Рационально спроектированные сооружения по водоснабжению улучшат процесс эксплуатации и проведение технического обслуживания, что будет способствовать устойчивой работе всей системы.

4.2 Прогнозирование спроса на воду

4.2.1 Установление нормы водопотребления

(1) Хозяйственно-питьевое водопотребление

На основании исследования показаний общедомовых и индивидуальных счетчиков, проведенного АСА, Исследовательской группой по разработке Генплана была подготовлена следующая сравнительная таблица водопотребления на душу населения:

Таблица 4.2.1 Водопотребление на душу населения согласно индивидуальным и обтедомовым счетчикам

Тнп счетчика	Общедомовой счетчнк $(\Omega / ч / \mathrm{c})$	Инддвидуальньй счетчик $(\pi / ч / \mathrm{c})$
Минимальньй	83.6	51.7
Максимальньй	742.4	750.0
Средний (Коэффициент)	294.8	132.5

Как показано в таблице, водопотребление по показаниям общедомовых счетчиков превышают показания индивидуальньх счетчиков, в среднем в два раза. При использовании общедомовых счетчиков плата за воду на человека рассчитывается путем деления общего объема водопотребления на количество проживающих, при этом не учитывается фактическое водопотребление. Тогда как, при наличии индивидуальных счетчиков, учитывается именно фактический объем водопотребления. По результатам

наблюдений и проведенной оценки такого положения можно сделать вывод, что водопользователи с индивидуальными счетчиками более заинтересованы в экономном использовании воды, чем потребители с общедомовыми счетчиками. Другими словами, водопользователи, проживающие в квартирах с общедомовыми счетчиками, не осознают потерь воды. Кроме того, в разницу между объемом водопотребления таких пользователей входят и утечки воды. Таким образом, если АСА заменит общедомовые счетчики на индивидуальные, объемы потребляемой воды населением значительно снизятся.

Объем водопотребления, замеренный по индивидуальным водомерам, представляется устойчивым, и норма 132,5 л/сут является средней нормой по показаниям индивидуальных водомеров по группе водопользователей № 4, как указано в Таблице 3.2.3, «дома с ванными и централизованным водоснабжением» на 1999 год, которая включает самых крупных водопользователей среди четырех групп.

Проектируемая норма водопотребления на хозяйственно-бытовые нужды в 2010 г., рубежный год технико-экономического обоснования, будет равна средней норме водопотребления по этим четырем группам. Однако, необходимо учесть эффект рационального использования, который окажет установка водомеров. На основании вышеупомянутого норма потребления воды на хозяйственно-питьевые нужды на душу населения на 2010 год была рассчитана следующим образом:

№	Групты водопопззвателей	Населенне	Норма водопотребления (л/чел/суг)	Обнем водопотреблекия ($\mathrm{m}^{3} / \mathrm{cyT}$)
1	Водоразборные колонки	77600	25	1940
2	Дома, не оснащенные ванными	47800	103	4923
3	Дома, оснащенные ванными и централизованными водонагревателями	42100	137	5768
4	Дома, оснащенные ванными и иентрализованным водонагревателями	322500	159	51278
Bcero		490000		63909
Средняя норма водопотребления			130	

Общая пропорциональная средняя норма составит 130 л/чел/сут, которая и принимается в данном технико-экономическом обосновании как проектируемая норма водопотребления на хозяйственно-бытовые нужды. Норма водопотребления по 4 группе водопользователей возрастет от 132.5 в 1999 г. до 159 л/чел./сутки в 2010 году.

Следует отметить, что к 2010 году необходимо будет пересмотреть норму

водопотребления, поскольку могут происходить колебания темпов развития города и, в связи с этим, потребуется произвести корректировку норм.
(2) Водопотребление на прочие нужды

1) Водопотребление на общественно-бытовые нужды, а также коммерческими и бюджетными организациями

Согласно данным ACA, соотношение водопотребления и количества работников в 1999 году составило:

Таблица 4.2.2 Водопотребление и каличество работников по категорням
водопользования за 1999 год

$\left.$| Водополззование | Водопотребление
 (м /сут) |
| :--- | :---: | :---: | :---: |\quad| Количество |
| :---: |
| работников | | Потребление |
| :---: |
| на работниса |
| (л/чел/сутки) | \right\rvert\,

Результаты анализа объема водопотребления общественными организациями, промышленными и коммерческими предприятиями, представленные в Таблице 4.2.2, показывают, что объем водопотребления на 1 работника составляет около 93 литров. Следует отметить, что водопотребление ТЭЦ не рассматривалось при проведении данного анализа.
Объем водопотребления на 1 работника в общественном, промышленном и коммерческом секторах показан в Таблице 4.2.3.

Таблица 4.2.3 Водопотребление на 1 работника по категориям водопользования
(Ед.изм.: л/чел./сутки)

Год	1999	2010
Общественный сектор	133	90
Промышленные предприятия	(81) $=>133$	90
Коммерческие предприятия		90

Прогнозирование водопотребления после 2010 года составлялось с учетом следующего:

В случае увеличения процента установки водомеров и реализации проектов по развитию системы, спрос на воду по каждой категории сократится до 80% от существующего спроса на воду и будет стабильным в будущем с учетом сокращения потерь воды.

2) $Т Э Ц$

Прогнозирование водопотребления производилось на основании среднесуточного водопотребления за период с 1994 года до 1999 года, которое составило $22260 \mathrm{~m}^{3} / \mathrm{cyт}$., и уровня ежегодного увеличения, который принимался в соответствии с прогнозируемым ростом населения.

(3) Техническая вода

По данным АСА, потребление технической воды за 1999 год составило $16000 \mathrm{~m}^{3} /$ сут., включая потребление двух ТЭЦ. Дополнительный спрос на воду до $5880 \mathrm{~m}^{3} /$ сут. за счет расширения ТЭЦ - 2 , проектируемого на 2006 r , должен быть включен в расчет спроса на воду в 2010 г, учитывая спрос на техническую воду, составляющий до $22200 \mathrm{~m}^{3} / \mathrm{cyт}$.
4.2.2 Прогнозирование спроса на воду на 2010 r .

Исходя из прогнозирования спроса на воду на душу населения, а также прогноза роста численности населения, составленного Исследовательской группой ЯАМС по разработке Генплана, был рассчитан будущий объем водопотребления в 2010 г. как указано в Таблице 4.2.4.

Таблица 4.2.4 Прогнознруемьй спрос на воду

	Год	1999	2010	2020	2030
Питьевая вода	Ед.изм.				
Населенне	человек	300800	490000	690000	800000
Бюдожетные организации		36100	61900	94300	108600
Промышленнне предппинтни		15900	28000	37000	44000
Коммерческие предприятия		95300	164900	247800	287500
Объем воды	(M/cyr.)	96783	115180	164970	201090
Хоз.-питьевые нужды		54920	63908	103500	136000
Общественно-бытовые		4814	5520	8016	8688
Промьшленные		14790	2550	3145	3520
Коммерческие			14610	21063	23000
ТЭЦ		22260	28590	29250	29880
Утечки	(m³/cyt.)	34599	28800	41240	50280
Коэффициент утечек	- -	$\begin{aligned} & 26 \\ & \% \\ & \hline \end{aligned}$	20\%	20\%	20\%
Итого по потребленно питьевой воды		131100	144000	206200	251400
Потребление на душу населения	($л / 4 /$ сут)	436	294	299	314

Общий объем водопотребления на 2010 г. по правобережью и левобережью p. Ишим рассчитан следующим образом:

	Правобережье р. イитим	Левобережье р. Ишим	Bcero ($\mathrm{m}^{3} / \mathrm{cyt}$)
Норма водопотребления (Q_{DA})	131650	12350	144000

4.2.3 Коэффициент колебания

Коэффициенты колебания, принятые при проектировании системы питьевой воды, основаны на максимальном суточном коэффициенте колебания в других городах мира такого же размера. Принятые коэффициенты отражены ниже.

Максимальньй суточный коэффициент колебания	1.2
Макснмальный часовой козффициент копебания	1.4

Что касается технической воды, то были приняты следующие коэффициенты колебания на основании данных по объему водопотребления на ТЭЦ:

Максимащный суточный козффицнеит колебання	1.9
Максимањньй часовой козффициент колебання	1.1

Водный баланс по спросу и потреблению на 2010 г. представлен во Вспомогательном Отчете А.6.

4.2.4 Сравнение с нормами водопотребления СНиП

В Таблице 4.2.5 показано сравнение норм водопотребления по стандартам СНиП и нормы водопотребления, рассчитанные группой по разработке ТЭО. Как показано в таблице, норма водопотребления, принятая в данном ТЭО, приблизительно соответствует средней норме водопотребления, основанной на СНиП.

4.3 Будущие источники воды

Водообеспеченность города Астана более подробна описывается в Отчете Исследовательской группы ЯАМС по разработке Генплана и в Главе 2 данного отчета. Ниже приводится краткое изложение данного вопроса.

4.3.1 Поверхностные воды

Источником водоснабжения r. Астана будет служить Вячеславское водохранилище, которое будет пополняться водой из канала ИртышКараганда по трубопроводу, соединяющему этот канал с p. Ишим. Водоотдача Вячеславского водохранилища составляет 89,2 млн. м ${ }^{3}$ и

представляется достаточной для удовлетворения спроса на воду до 2030 r .
Через канал Иртыш-Караганда в Вячеславское водохранилище может поступать 60 млн. м ${ }^{3}$ воды. Для обеспечения города Астана водой данных двух источников достаточно. Водозабор воды на технические нужды будет осуществляться по-прежнему из р. Ишим.

4.3.2 Подземные воды

Подземные источники использовались в г. Астана с 1938 года, но постепенно были заброшены, так как было построено Вячеславское водохранилище. Последние исследования показывают, что в черте г. Астана все еще имеются скважины, вода из которых может использоваться для питьевых целей. Данные запасы воды следует использовать только в экстренньх случаях.

4.3.3 Река Нура

Река Нура может служить дополнительным источником для водоснабжения г. Астана. Однако, как упомянуто в Главе 2.1.3, прежде, чем рассматривать использование воды из данной реки, на основании проекта Всемирного Банка необходимо определить технико-экономическую обоснованность очистки реки от ртути. Объем воды, необходимой для г. Астана, будет зависеть от объема воды, используемой в оросительных целях.
Таблица 4.2.5 Расчетное водопотребление (2010 год) по СНиП и технико-экомомическому обоснованию

No.	Типы водопотребления	Нормы СНип			По данным группы по ТЭО		
		Население	Норма (удельное водопотребление)	Объем ($\mathrm{m}^{3} / \mathrm{cyt}$)	Население	Норма	Объем $\left(\mathrm{m}^{3} / \mathrm{cyr}\right)$
1.	Население с водопользованием из водозаборных колонок	77600	30-50	2328-3880	77600	25	1940
2.	Дома без ванн	47800	125-160	5975-7648	47800	103	4923
3.	Дома с ванными и местными водонагревателями	42100	160-230	6736-9683	42100	137	5768
4.	Дома с централизованным городским водоснабженнем	322500	230-350	74175-112875	322500	159	51278
	Итoro	490000		89214-134086	490000		63909
	Коммерческне						14610
	Общественные						5520
	Неучтенные расходы			8921-13409			28800
	итого			98135-147495			112839

4.4 План водопроводных сооружений

4.4.1 Водозаборные сооружения

(1) Краткое описание

Необходимость строительства новой водозаборной Н/С обосновывается в Главе 3.8. Новая H / C на Вячеславском водохранилище будет построена на расстоянии 100 м вверх по течению от существующей, учитывая зону санитарной охраны. Будут построены необходимые здания и подъездные дороги, установлено механическое и электрическое оборудование. Однако, существующая электрическая подстанция может быть использована для новой Н/С. План насосной станции представлен на Рисунках 4.4.1(1) до (3).

(2) Проектируемая производительность насосов.

Проектируемая производительность насосов будет равна существующей производительности насосов на водозаборной Н/С: $200000 \mathrm{~m}^{3} /$ сут $(=8333$ $\left.\mathrm{m}^{3} / \mathrm{cyT}=138.9 \mathrm{~m}^{3} / \mathrm{Mин}\right)$.

Будет установлено 5 насосов, включая резервный насос. Характеристика насосов следующая:
35 м $^{3} /$ мин * 57 мн * 470 кВт * 5 единиц (1 резервный)
(3) Проектирование здания H / C и установка оборудования.

С точки зрения безопасности и для более легкого технического обслуживания, насосы и электрическое оборудование должны быть установлены на первом этаже.

Как показано на Рисунке 4.4.1(2), будут установлены центробежные насосы вертикального типа, и уровень машинного зала будет несколько выше максимального уровня воды. Будут установлены четыре затвора для учета сезонного уровня воды и колебаний качества воды. Основная конструкция здания будет построена по методу Кейссона, который предполагает надежность при применении.
(4) Зоны санитарной охраны

В настоящее время зоны санитарной охраны на существующем водозаборе не выделены и никакие санитарные мероприятия не проводятся.

При обследовании водозабора и прилегающих территорий можно сделать следующие выводы:

Имеется возможность выделить и организовать первый пояс в границах

требований СНиП 2.04.84, § 10.8. Свободная от застройки территория, включая акваторию подводящего канала в пределах 100 м удовлетворительна в санитарном отношении. Ее необходимо спланировать, огородить глухим забором высотой 2 m с колючей проволокой по верху ограждения.

Так же возможно организовать зоны санитарной охраны второго и третьего поясов.

4.4.2 Сооружения по подаче воды.

Правительство Казахстана приняло решение, согласно которому проект по строительству дополнительного трубопровода по подаче воды, называемый "Третья нитка водовода", в ближайшее время будет реализовываться за счет республиканского бюджета. Этот трубопровод диаметром 1400 мм и длиной 51 км будет соединять водозаборную H / C на Вячеславском водохранилище с НФС. Так же планировалась установка дополнительного водовода от водозаборной H/C на реке Ишим, но план выполнения работ еще не составлен.

4.4.3 Насосно-фильтровальная станция.

(1) План развития насосно-фильтровальной станции

План будущего развития насосно-фильтровальных станций на 2010 год в Таблице 4.4.1.

Таблнца 4.4.1 Водопотребление и необходимая производительность НФС

Год		1999	2010
Производителность$\mathrm{H} \Phi \mathrm{C}\left(\mathrm{~m}^{3} / \mathrm{cyT}\right)$	Существующая НФС	165000	82000
	Новая $\mathrm{H} \mathrm{\Phi C}$ (No.1)	-	100000
	Итого	165000	182000
	Суточное максимаљное водопотребление	165000	173000

Производительность существующей НФС составляет 165000 м $^{3} /$ сут. Но к 2010 году только производительность НФС уменьшится в два раза в связи с износом, в особенности в отделении песочных фильтров. Для того, чтобы удовлетворить спрос на воду в 2010 году, необходимо будет построить новую НФС для очистки дополнительного объема питьевой воды 100000 m^{3} /сут. Строительство данной НФС (НФС №1) предлагается на свободном участке существующей НФС. В соответствии с прогнозированием водопотребления и планом строительства НФС, подготовленным Исследовательской группой ЯАМС по разработке Генерального плана, для того, чтобы удовлетворить спрос на воду в 2020 г., строительство новой НФС представляется крайне необходимым. Строительство данной НФС (НФС №2) производительностью $120 \quad 000 \mathrm{~m}^{3} /$ сут планируется на левобережье реки Ишим.
Существующая НФС и НФС №l не обеспечат город водой в 2030 году, и для того, чтобы удовлетворить спрос на воду в 2030 году, на территории существующей НФС необходимо будет построить дополнительную НФС (НФС №3) производительностью $100000 \mathrm{~m}^{3} / \mathrm{cyr}$.

Расположение данных сооружений представлено на Рисунке 4.4.2.

(2) Действующая НФС

Существующая НФС будет эксплуатироваться до тех пор, пока не начнет функционировать новая НФС №3. Предполагается, что НФС №1 придет на замену действующей НФС. До окончания строительства новой НФС №1 данная НФС будет единственной в городе, и поэтому АСА необходимо будет обеспечить соответствующую эксплуатацию и техническое обслуживание данного сооружения.
(3) Предлагаемые очистительные сооружения для новой НФС №1

На рисунке 4.4.3 представлен общий план существующей и проектируемой новой НФС №1. На рисунке 4.4.4 показана схема системы НФС №1.

В Таблице 4.4.2 приводится краткое описание основных сооружений, проектируемых на НФС №1.

Таблнца 4.4.2 Основнье сооружения НФС

Сооружения	Тип	Размеры
Приемный резервуар	Железобетонный, прямоутольный	Д $6.0 \mathrm{~m} \times Ш 4.2 \mathrm{~m} \times 5.0 \mathrm{~m} \times 2$ един.
Скоростной смеситель	Механическое смешивание	Д4.2m \times Ш $4.2 \mathrm{~m} \times \Gamma 5.0 \mathrm{~m} \times 2$ един.
Камера хлопьеобразования	Трехступенчатьй горизонталньй	ШІ $1.3 \mathrm{~m} \times$ Д $9.0 \mathrm{~m} \times{ }^{2} 3.7 \mathrm{~m} \times 6$ каналов Ш $1.8 \mathrm{~m} \times$ Д 9.0м \times Г $3.7 \mathrm{~m} \times 6$ каналов Ш $2.4 \mathrm{~m} \times$ Д $9.0 \mathrm{~m} \times$ Г $3.7 \mathrm{~m} \times 6$ каналов
Отстойннк	Горнзонтальный с иловвм коллектором	Ш9m \times Д $50 \mathrm{~m} \times \Gamma .0 \mathrm{~m} \mathrm{\times 2}$ единицы
Скорый песчаный фитьтр	Нисходмщий поток	Ш 5.8m \times Д $12.6 \mathrm{~m} \times 12$ еддниц
Админнистративное здание	Железобетонныи, 3 этажа	Ш15.0 m $\times 60.0 \mathrm{~m} \times \mathrm{B} 12.5 \mathrm{~m}$
Распределительная насосная станции	Железобстонный подземный и первый этажи	W12.0 m C (66.0 mx В 8.0m

В результате исследования действующих очистных сооружений были сделаны следующие выводы:
a) Приемный резервуар спроектирован так, что можно будет провести замеры входящих потоков и анализ качества сырой воды.
b) В скором смесителе установлено соответствующее смешивающее устройство для обеспечения коагулирования.
c) В камере хлопьеобразования смешивание будет происходить поступающим потоком. Будут установлены трехступенчатые каналы. Для постепенного понижения скорости их ширина будет увеличиваться вниз по течению.
d) В конце отстойника будет установлен выводящий лоток для предотвращения перелива хлопьев.
е) В песчаном фильтре, будут предприняты следующие меры:

- Для поддержания равномерного потока ступенчатый вход заменит впускную трубу.
- Будет принята обратная и поверхностная промывка фильтров для создания наибольшего эффекта.
- Для упрощения процесса промывки будет принята «самопромывка». Процесс поверхностной промывки является незаменимым для данного типа скорых фильтров.
f) Несмотря на то, что в настоящее время нет необходимости в предварительном хлорирование, предполагается его применение в случае, если качество воды в Вячеславском водохранилище ухудшится вследствие эвтрофикации.
g) Следует рассмотреть метод очистки активированным углем в случае, если возникнут проблемы с запахом и вкусом.

Более подробная информация и расчет производительности данных сооружений приводится в Разделе А.7.1 Вспомогательного Отчета. Детальные проектные чертежи сооружений НФС представлены в приложении «Чертежи».

Планируется переоборудовать один из двух резервуаров для технической воды в резервуар для питьевой воды. Данный дополнительный резервуар позволит увеличить общий резервный объем питьевой воды до $60000 \mathrm{~m}^{3}$ (=20000 $\mathrm{m}^{3} \times 3$ един.). Разделив общую производительность на максимальное сугочное водопотребление в 2010 году ($=144000 \times 1.2=173$ $000 \mathrm{~m}^{3} /$ сут $=7208 \mathrm{~m}^{3} /$ час), получаем время сработки аварийного объема 8.3 часа ($=60000 / 7$ 208). Как показано в разделе А.4.2 Вспомогательного отчета, максимальное время сработки аварийного объема по японским критериям проектирования составляет 12 часов и 5,6 часов - по Казахстанским. Таким образом, максимальный аварийный объем в резервуаре будет достаточным для обеспечения непрерывной водоподачи.
(4) Предлагаемая система автоматического управления и авто-контроля

Система автоматического управления будет установлена в песчаных фильтрах, а система авто-контроля будет использована для контроля за работой насосов, расходом воды на подаче и давлением. Контроль за работой насосов осуществляется с помощью таймера, который фиксирует почасовое колебание расхода воды. Система авто-контроля будет установлена в той части административного здания НФС, где будет находиться центральный пульт управления, и где можно будет осуществлять визуальный контроль за всей системой.
(5) Зоны санитарной охраны

Существующая зона санитарной охраны полностью отвечает требованиям СНиП. Организация зон санитарной охраны является требованием условий эксплуатации и должна бытть выполнена АСА. Эти вопросы в ТЭО не рассматриваются и будут решены на стадии рабочего проектирования.

Техниюо-зкономнческое обоснование по проекту водоснабжения п подоотведения в r. Астана

Pисунох 4.4 .2
Общй пиаи существующих и проектнруемих водопроводних сооружений в г. Астана.

4.4.4 Распределительная насосная станция

(1) Распределительная H / C на НФС

Производительность новой НФС №1 должна удовлетворять максимальное суточное водопотребление $100000 \mathrm{~m}^{3} /$ сут. Для того, чтобы спроектировать производительность насосов, был рассчитан часовой максимальный расход: $140000 \mathrm{~m}^{3} /$ сут (100000×1.4). Будет установлено два насоса с разной производительностью для регулирования колебания потока. Производительность малого насоса будет примерно равна половине основного. Предлагается установить три основных и два буферных насоса. Производительность насосов была подсчитана следующим образом:

Таблица 4.4.3 Характеристика новых распределительных насосов

Основной насос	$\begin{aligned} & \phi 450 \mathrm{mм} \times 250 \mathrm{mм} \times 33.0 \mathrm{~m} / \text { мин } \times 200 \mathrm{xBr} \times 55 \mathrm{mH} \times 3 \text { единицы (} \\ & \text { резервный) } \end{aligned}$
Буферный насос	$\begin{aligned} & \phi 400 \mathrm{mм} \times 250 \mathrm{mм} \times 16.5 \mathrm{~m}^{3} / \text { мин } \times 160 \mathrm{kBt} \times 55 \text { мн } \times 2 \text { единицы (} 1 \\ & \text { резервный) } \end{aligned}$

Уровень и колебание расхода могут контролироваться насосом с производительностью $990 \mathrm{~m}^{3} /$ час. Эффективность работы насосной станции увеличится путем комбинирования работы вышеупомянутых насосов для подачи требуемого объема воды. В результате этого, предполагается постепенное сокращение потребления электроэнергии.

(2) Повысительная насосная станция

Повысительная H/C No.7, одна из существующих повысительных насосных станций, будет эксплуатироваться в будущем. С целью обеспечения безопасности, необходимо заменить панель управления.
Что касается повысительной H / C «Аллювий», предполагается её использование в будущем в случае происшествия каких-либо аварий.

4.4.5 Распределительные трубопроводы

(1) Существующие трубопроводы

Как описано в главе 3.6 .2 , размер большинства из существующих трубопроводов высок, но их пропускная способность будет достаточной для объемов водопотребления в будущем. Одной из главных задач АСА является замена изношенных труб с целью устранения утечек воды.
При отборе трубопроводов, подлежаших замене, принимались во внимание следующие критерии:
a) Стальные трубы, проложенные до 1970 года
b) Чугунные трубы, проложенные до 1960 года
c) Все асбестоцементные трубы, учитывая неустойчивые соединения и вопросы гигиены
d) Полиэтиленовые трубы, проложенные до 1960 года

В Таблице 4.4.4 указана длина трубопроводов, подлежащих замене, на основании срока давности их прокладки.

Таблица 4.4.4 Перечень существующих трубопроводов и длина трубопроводов, подлехапиих замене

Материал Диаметр		$<100 \mathrm{~mm}$	125-200mm	225-400Mm	$>500 \mathrm{~mm}$	Итoro	Процент
		M	M	M	M	M	\%
Чугунный	Общая длина	28639	90114	97611	97058	313422	64.0
	Заменяемая	1195	38093	2342	0	41630	42.7
Стальной	Обтая дтина	33768	24164	38431	71806	168169	34.4
	Заменяемая	8746	9355	17751	15987	51839	53.1
Асбестоцементный	Общая диина	0	3835	237	0	4072	0.8
	Заменяемая	0	3835	237	0	4072	4.2
Полиэтиленовый	Общая длина	1113	1531	1034	0	3678	0.8
	Заменяемая	0	0	0	0	0	0.0
Общая длина (м)		63520	119644	137313	168864	489341	100.0
Процент (\%)		13.0	24.5	28.1	34.5	100.0	
Заменяемая длина (м)		9941	51283	20330	15987	97541	100.0
Процент (\%)		10.2	52.6	20.8	16.4	100.0	

(2) Анализ распределительной сети

В 2010 году, строительство новой НФС №l на свободном участке существующей НФС будет завершено. Очищенная на этих двух станциях вода будет перекачиваться двумя распределительными насосными станциями. Основные проектные параметры насосов на данных насосных станциях пречислены ниже:

Расчетный расход	$261400 \mathrm{~m}^{3} /$ сут (Макс-ный часовой расход)
Насос на НФС (Суm-щая Н/С)	$60 \mathrm{~m}^{3} / \mathbf{\text { мин }} \times 65 \mathrm{mH} \times 2$ един (1 резервный)
	$25 \mathrm{~m}^{3}$ мин $\times 65 \mathrm{mH} \times 2$ един (1 резервный)
Насос на НФС (Новая H/C)	$33 \mathrm{~m}^{3}$ /мин $\times 55 \mathrm{mH} \times 3$ един (1 резервный)
	$16.5 \mathrm{~m}^{3} /$ мнн $\times 55 \mathrm{mH} \times 2$ един (1 резервный)
Насос на повысительной Н/С №. 7	$25 \mathrm{~m}^{3}$ мин $\times 70 \mathrm{mH} \times 3$ един (2 резервных)

Далее представлены результаты гидравлического анализа сети:

- В связи с тем, что в настоящее время скорость течения воды в трубопроводах низкая, от 0,02 до $0,79 \mathrm{~m} /$ сек, и средняя скорость составляет 0,28 м/сек, пропускная способность этих трубопроводов будет достаточной для объемов водопотребления в 2010 r.
- Строительство Правительственного центра планируется на левобережье реки Ишим. Весь район новых застроек будет обслуживаться

распределительной Н/С новой НФС №1. Водоводы будут проложены через реку Ишим как показано на Рисунке 4.4.5. Средняя скорость потока составит $0,78 \mathrm{~m} /$ сек. Для балансировки напора и скорости потока, два существующих трубопровода будут заменены следующим образом:

Tруба No.	Днаметр существующего трубопровода	Днаметр проектруемого трббопровода
P-63	$600 \mathrm{mм}$	900 m
P-221	$200 \mathrm{mм}$	$250 \mathrm{mм}$

4.4.6 Обратная промывка, переработка и отведение осадочного ила

(1) Проектируемые сооружения

Очистительные сооружения проектируются для переработки осадочного ила и воды обратной промывки.

Краткое описание предлагаемых сооружений:
a) Для переработки осадочного ила на действующей и новой НФС будет установлен илоуплотнитель.
b) Вода после промывки фильтров будет поступать в приемный резервуар для промывочной воды, а надосадочная жидкость - в приемный резервуар сырой воды.
c) Переработанный ил будет высушиваться на иловой площадке. Высушенный ил будет собираться погрузочной машиной и транспортироваться на площадки для илового кека.
d) В сливной резервуар будет поступать надосадочная жидкость с илоуплотнителя и фильтрат с иловых площадок. После отстаивания очищенная вода будет сбрасываться в реку Ащи-сай.
В Таблице 4.4.5 приводится перечень основных очистных сооружений.
Таблица 4.4.5 Перечень очистных сооружений

Сооружение	Тип	Размер
Илоуплотнитель	Железобетонный, круглый	$\begin{array}{\|l} \hline \phi 21.6 \text { м (внутренний диаметр) } \times \text { D } 3.5 \\ \text { м } \times 2 \text { един } \\ \hline \end{array}$
Приемный резервуар стока обратной промывки	Железобетонный, прямоутольный	Ш $14.0 \mathrm{~m} \times$ Д $29.0 \mathrm{~m} \times \Gamma 3.0 \mathrm{~m}$ $x 2$ един (1 резервный)
Сливной резервуар	Железобетонный, прямсутольный	$\begin{aligned} & \hline \text { Ш } 9.0 \mathrm{~m} \times 242.0 \mathrm{kм} \times \Gamma 4.0 \mathrm{~m} \\ & \times 2 \text { един (1 резервный) } \\ & \hline \end{aligned}$
Иловые площадкн	Железобетонный, прямоугольный песчаной и щебневой прослойкой	$\begin{aligned} & \mathrm{WI} 21.0 \mathrm{~m} \times Д 39.0 \mathrm{~m} \times \Gamma 1.0 \mathrm{~m} \\ & \times 9 \text { един } \end{aligned}$
Пгомадкки илового кека для	Железобетонный, прямоутольный	Ш $20.0 \mathrm{~m} \times$ Д $35.0 \mathrm{~m} \times 1$ един

Условиие обоавачептя

(2) Объем ила

Исходя из расчетов по мутности сырой воды, объем ила и сухого кека, полученного в процессе очистки, был подсчитан следующим образом:

Уплотненный ил	$81.7 \mathrm{~m}^{3} /$ сутки
Сухой век	$1.26 \mathrm{~m}^{3} /$ сутки

Объем сухого ила небольшой, поэтому он может использоваться как удобрение, например, в парковых зонах, при посадке зеленых насаждений и садоводстве.

4.5 План эксплуатации и технического обслуживания

4.5.1 Кадровое обеспечение

С целью обеспечения эффективной работы водопроводных сооружений, необходимо правильно разработать схему кадрового обеспечения. ACA необходимо внедрять программы по повышению квалификации служащих, проводить семинары и практическое обучение. Схема кадрового обеспечения по системе водоснабжения была разработана на основе следующих стратегий:

- Сокращение численности персонала, занятого в техническом обслуживании и эксплуатации водозаборной H/C Вячеславского водохранилища, должно быть минимальным, учитывая расположение данной насосной станции и уровень эксплуатации данного сооружения.
- Часть персонала, работающего на действующей НФС, будет переведена на новую станцию. Количество персонала, занятого в техническом обслуживании и эксплуатации, будет сокращено в результате внедрения на новой станции системы автоматического контроля и управления.
- Для обслуживания новых территорий, необходимо усилить персонал по техническому обслуживанию и эксплуатации водопроводной сети и электрооборудования.
- Что касается других объектов, то на них будет сохранена действующая расстановка кадров.
Предлагается следующая схема кадрового обеспечения по каждому сооружению:
- На водозаборной насосной станции на Вячеславском водохранилище следует сократить дежурных.
- На НФС необходимо сократить количество дежурных и работников по проведению ремонтных работ.
- ACA рекомендуется рапределить 50% дополнительных работников на водопороводном участке и в сфере обслуживания электрооборудования.

Технико-эконамическое обоснование по проекту водоснабжения и водоотведения в г. Астана в Республике Казахстан

- На насосной станции на р. Ишим в будущем предполагается состав работников с текущим графиком, а на повысительной станции № 7 необходимо назначить одного инженера-электрика.
- В будущем предполагается эксплуатация повысительная станции «Аллювий» в экстремальных случаях.
Предлагаемая расстановка кадров представлена в Таблице 4.5.1.
Таблица 4.5.1 Общая расстановка кадров в сфере водоснабжения

Место	B настоямее время	Проектируемое
Водозаборная H/C на Вячеславскомя водохранилиме	14	12
Итимская водоззборная H/C	9	9
H¢C	100	88
H/C No. 7	8	9
Повысительная Н/С Алпювнй	4	4
ACA	308	341
Иroro	443	463

Детали представлены в разделе А.8.1 Вспомогательного отчета.
Для более эффективной эксплуатации и обслуживания водопроводньх сетей предлагается создать в городе небольшие мастерские с надлежащими кадрами и оборудованием.
4.5.2 Закупка технического оборудования, экономия потребляемой энергии и потребление химических реагентов

(1) Оборудование

Замеры расхода, давления и уровня воды в резервуарах проводятся редко, в связи с чем планируется полная система контроля на новых сооружениях. При проектировании работ по эксплуатации и техническому обслуживанию необходимо принять во внимание следующее:

1) Необходимо иметь в наличии необходимые запасные части и хранить их на складе НФС. Инженеры-электрики должны знать методы технического обслуживания оборудования.
2) Лаборатория на существующей НФС не оснащена надлежащим оборудованием для проведения анализа качества воды, в частности анализа на содержание пестицидов и органических солей. Необходимо приобрести более современное оборудование, например, атомный абсорбционный фотометр или спектометр газовой хроматографии.
3) С целью быстрого осуществления ремонтных работ необходимое оборудование должно быть закуплено и распределено между мастерскими.
(2) Экономия электроэнергии

Работа каждой из насосных станций может быть более эффективной при условии, если будут предприняты следующие меры:

1) Напор в распределительной сети должен быть снижен. Расход воды должен контролироваться количеством эксплуатируемых насосов, а не с помощью задвижек.
2) Необходимый напор насоса новой водозаборной H / C на Вячеславском водохранилище будет снижен по мере завершения прокладки водовода по подаче сырой воды.
3) Необходимо как можно реже применять задвижки на Ишимской водозаборной H / C и повысительной H/C No. 7

Как показано в Таблице 4.5.2, потребление энергии в 2010 году будет снижено по сравнению с 1999 годом. Детали смотрите в разделе A.8.2. Вспомогательного отчета.

Таблица 4.5.2 Потреаление энергии
Ед.: миллион кВт-ч/год

H/C	H/C на Вячеславском водохранилище	Н/С на НФС		Ишшмская H/C	Повысите льная H/C No. 7	Итого
		Питьевая вода	Техниче ская вода			
В 1999r.	21.9	12.7	5.6	7.0	4.4	51.6
B 2010r.	11.0	6.0	3.8	4.7	2.9	28.4

(3) Потребление химических реагентов

На НФС применяются такие химические реагенты, как сульфат алюминия и жидкий хлор. На основании проектной интенсивности дозы было подсчитано годовое потребление химических реагентов в 2010 г., как показано в Таблице 4.5.3

Табица 4.5.3 Потребление химических реагентов

Химические реагенты	Коагулянт	Хлор
Стонмость (тонн/тенге)	11000	80000
Годовой объем воды (млн. м ${ }^{3}$)	55.367	
Объем закачнваемой жндкости ($\mathrm{Mr} / \mathrm{ת}$)	10.0	5.5
Годовое потребление (тонн)	553.7	304.5
Годовой расход (млн. тенте)	6.090	24.360

4.5.3 Управление производственной базой данных

Относительно управления базой данньх предлагается следующее:
Каждая Н/С, НФС, КОС должны подготавливать «Месячный отчет» в виде электронного документа и представлять его АСА. Этот отчет должен включать в себя все расходы, а именно на электричество, химические реагенты, затраты на топливо, рабочую силу, результаты анлизов по качеству воды, объем подаваемой или очищенной воды. Затраты по объему подаваемой или очищенной воды будут служить показателем эксплуатации и технического обслуживания. Так же в отчет должна быть включена информация о капитальном ремонте. С целью поддержания водного баланса необходимо анализировать собираемые данные, при этом следует расследовать любые значительные расхождения.

Компьютерная система картографирования должна быть введена для хранения информации и контролирования системы. Такая база данных должна включать следующее:

- Материал труб
- Год прокладки труб
- Диаметр
- Длину
- Расположение задвижек
- Данные о проведенном ремонте

Время от времени карты необходимо пересматривать.
Лаборатория на НФС должна быть модернизирована путем установки современного оборудования для проведения анализов качества воды. Отчет лаборатории, включая все расходы и результаты анализов, так же должен готовиться в виде электронного документа и ежемесячно представляться ACA. Работники лаборатории периодически должны проводить выборочные проверки качества воды.

4.5.4 Работа по устранению утечек

Одной из основных задач, стоящих перед АСА, является устранение утечек. С целью сокращения затрат на эксплуатацию насосов и приобретение химических реагентов, а также продления эксплуатации имеющихся ресурсов, необходимо как можно скорее сократить объем утечек из существующих трубопроводов. Наряду с заменой изношенных трубопроводов необходимо вести работу по обнаружению утечек. На водопроводном участке ACA необходимо создать рабочую rpynny no обнаружению утечек, а также приобрести специальное оборудование.

С целью выявления утечек и постоянной проверки обычно в каждом районе на распределительной сети устанавливаются расходомеры. Такая постоянная проверка позволит своевременно обнаруживать увеличение расхода в районе в результате увеличения объема утечек. Создание подобной системы предлагается в г. Астана, однако, необходимо разработать детальное проектирование распределительной сети для того, чтобы четко определить места установки расходомеров в районах и изменения в системе с целью создания таких районов.

4.6 Краткое описание предлагаемого плана развития системы водоснабжения

1) Установка индивидуальньх водомеров

Индивидуальные водомеры будут установлены в целях сокращения объема потерь воды по вине потребителей, а также в целях сохранения ограниченных водных ресурсов. В результате изучения отчета Европейского Банка реконструкции и развития, а также проведенных совещаний с АСА было принято решение о закупке и установке 65500 индивидуальных счетчиков.

2) Новая водозаборная H / C на Вячеславском водохранилище

Предлагается строительство новой водозаборной H / C, технические параметры которой представлены ниже:

Сооружения	Тип сооружения	Размеры
Машинный зал	Ж/б построенная Кейсона	по мструкция,
Насос	Вертисальный насос	35 м ${ }^{3} /$ мин $\times 57 \mathrm{~m} 470 \mathrm{kBt} \times 5$ насосов

3) Новая НФС (№1)

Новая НФС будет построена на территории действующей станции. Основные сооружения перечислены ниже:

Сооружения	Колнчество	Сооружения	Количество
Приемная камера	2	Здание для распределительньх насосов	1
Скорый смеситель	2	Илоуплотнитель	2
Флакуляионный бассейн	6 каналов	Резервуар обратной промьвки	2
Отстойних	6	Резервуар - отстойник	2
Скорый песочньй филтр	12	Иловая площапка	9
Административное здание	1	Площамка для сухого кека	1

4) Замена трубопроводов

В целях сокращения утечек воды предлагается произвести замену изношенных трубопроводов. Трубопроводы, подлежащие замене, указаны ниже:

Tип трубопровода	Размеры
Чугунные трубы	D $100-300 \mathrm{mм} . Д=41630 \mathrm{~m}$
Стапные трубы	D $50-1000 \mathrm{~mm}, ~ Д=51839 \mathrm{~m}$
Асбестоцементные трубы	D $150-300 \mathrm{~mm}, ~ Д=4072 \mathrm{~m}$
	Итого

5) Прокладка новых трубопроводов

Новые трубопроводы необходимы для обслуживания новых территорий. Список новых трубопроводов представлен ниже:

Тип трубопровода	Размеры
Чугунные трубы	D $150-800 \mathrm{mм}, Д=70876 \mathrm{~m}$
Стальные трубы	D $900-1800 \mathrm{~mm}, ~ Д=2252 \mathrm{~m}$
	Итого
	Д $=73128 \mathrm{~m}$

Следует отметить, что трубопроводы, подлежащие замене, а также новые трубопроводы должны быть оборудованы герметичными надежными соединениями. Это позволит избежать применяющегося в настоящее время примитивного метода соединения труб при использовании смоляной пряди и бетона.

Порядок проведения первоочередных работ приводится ниже.

1) Установка индивидульньх водомеров.
2) Замена трубопроводов.
3) Строительство новой водозаборной насосной станции на Вячеславском водохранилище.
4) Строительство новой насосно-фильтровальной станции №1.
5) Прокладка новых трубопроводов.
