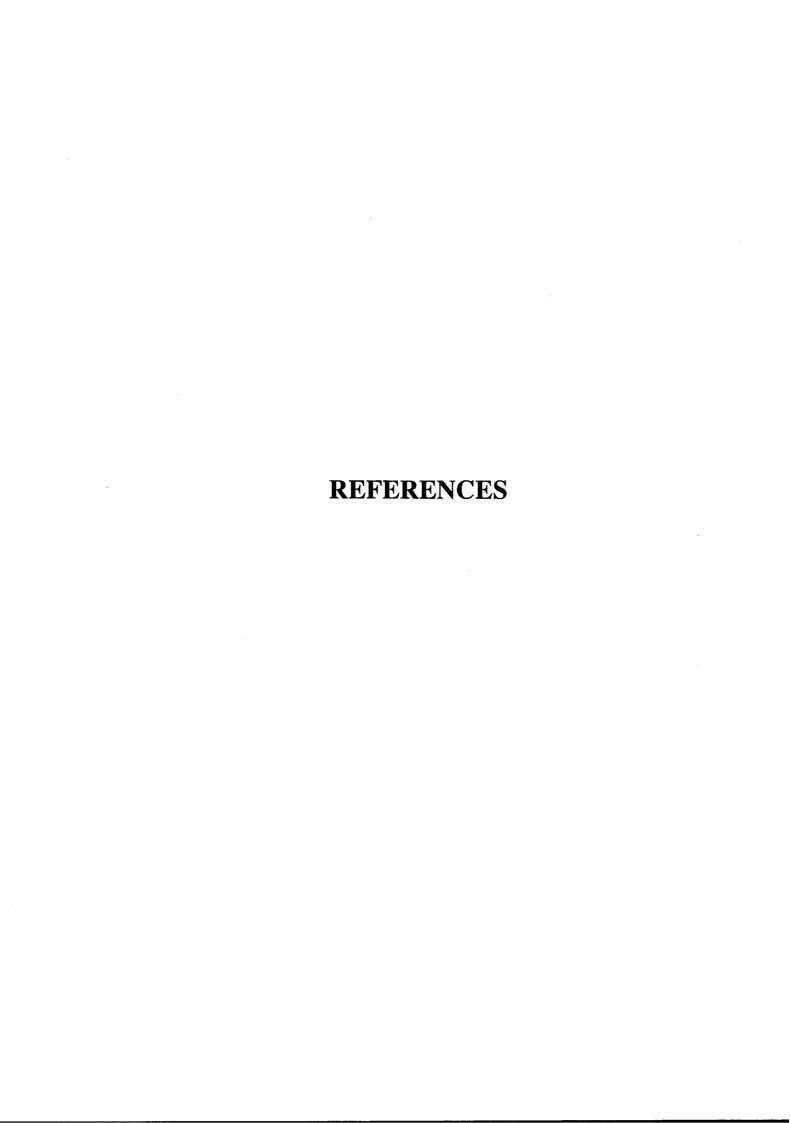
PART III CONCLUSIONS AND RECOMMEMDATIONS

PART III CONCLUSIONS AND RECOMMEMDATIONS

CHAPTER 1 CONCLUSIONS

A total of eight holes with a total length of 2,340.65m were drilled this year as the work for the third year of the mineral exploration in the Umm ad Damar area. The major objective of the drilling was to clarify the geology of the deep subsurface zones and the details of Au, Cu, and Zn mineralization of the promising areas extracted by geological survey, geophysical surveys (IP and TEM) and drilling carried out during the first and second years.


The results are summarized as follows.

- ① Mineralized zones containing Cu and Zn occur in four localities of the survey area. They are Jabal Sujarah district, Umm ad Damar North Prospect, Umm ad Damar South Prospect, and 4/6 Gossan Prospect. During the present year, drilling was carried out in the known mineralized zones of Jabal Sujarah, and 4/6 Gossan Prospect. Further, drilling was carried out also in promising zones extracted by geophysical exploration in other than the known mineralized zones.
- ② In the Jabal Sujarah district, volcanogenic massive sulfide mineralized zones consisting of massive, pebbly ores, and pyrite dissemination, and containing Cu and Zn occur in dacitic pyroclastic rocks. The massive and pebbly ores contain intercalation of shale, fine-grained tuff, chloritized rocks and the total thickness is estimated to be about 6m. The drilling carried out this year confirmed massive ore and disseminated zones but these do not contain Cu nor Zn. Integrating the work carried out during the second year, Cu and Zn content is indicated in parts of the massive and pebbly ores, but most of them have low grade. The extent of the ores in the strike direction is about 200m and is limited. Pyrite dissemination zones probably attain thickness of 100m, but the Au, Cu, and Zn contents are low.
- ③ In the 4/6 Gossan Prospect, volcanogenic massive sulfide mineralized zones occur consisting of massive, siliceous, and pebbly ores. During this year, the downward and southward extension of the mineralized zones was surveyed. Zn-rich massive ores were confirmed in the deeper subsurface extension, but the thickness was about 1.8m. Mineralization could not be observed in the southern extension of the ore zone. These results indicate that there are three mineralized zones in this prospect, but the most promising zone is less than 9.3m thick, about 100m long in the strike direction, about 120m in the dip direction and these mineralized zones are of small scale.

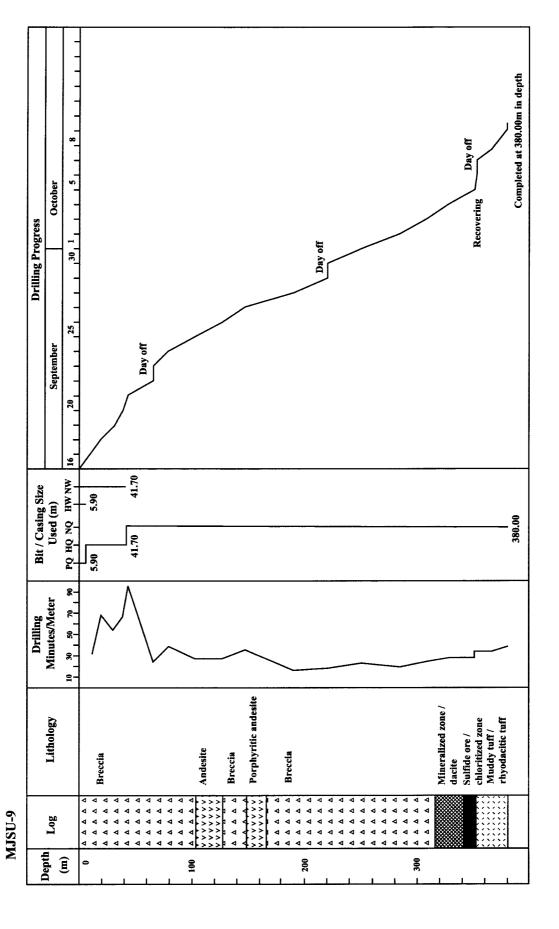
④ Outside the known prospects, areas with high chargeability anomalies and inferred conductive plates were surveyed. The results clarified that the high chargeability anomalies were caused by pyrite dissemination and pyrite veinlets, but the Au, Cu, and Zn contents were low.

CHAPTER 2 RECOMMENDATIONS FOR THE FUTURE SURVEY

- ① In the 4/6 Gossan Prospect, products of volcanogenic massive sulfide mineralization such as Cu-Zn-rich massive and pebbly ores occur but they are considered to be of small scale. Thus further exploration is not recommended in this prospect.
- ② In the Jabal Sujarah area, the products of volcanogenic massive sulfide mineralization were the target of our survey, but Cu and Zn contents were confirmed only in parts of the massive and pebbly ores and the major part of the ores were of low grade. Thus further exploration of this district is not recommended.
- ③ In areas other than the known prospects, the high chargeability anomalies with inferred conductive plates are mineralized zones of pyrite dissemination and pyrite veinlets. Thus further exploration is not recommended for these areas.

REFERENCES

- Bowen, R. A. and Smith, G. H., 1981. An Overview Study of the Jabal Sayid District: Technical Record RF-TR-01-2, 72p.
- BRGM-OF-07-6 (Open-file Report). Review of Gold Mineralization in the Arabian Schield, 4/6 Gossan, Umm ad Damar District: 10p.
- Chinkul, M., 1983. A Study of the Fluid Inclusions and O & H Stable Isotopes at Jabal Sayid and its Bearing on the Mineralization: Unpublished Ms.c. Thesis: Faculty of Earth Sci., King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia, 174p.
- Conraux, J., 1969. Aqiq-Umm ad Damar Drilling Hole Results: BRGM 15p.
- DGMR, 1994. Mineral Resources of Saudi Arabia: 322p.
- Hakim, H. D. and Chinkul, M., 1989. A Fluid Inclusion Study on Mahd adh Dhahab Gold Deposit, Saudi Arabia: JKAU: Earth Sci., vol.2, pp.51-68.
- Harvey T. V., 1984. Ground Geophysical Surveys at the Umm ad Damar Prospect, 1402 to 1404 Program (February 1982 to December 1983): Open-File Report RF-OF-04-12, 44p.
- Howes, D. R., 1984. Mineral Exploration of the Umm ad Damar Prospect: 1403-1404 Program (March 1983 to January 1984), Open-File Report RF-OF-04-4, 44p.
- Kemp, J., Gros, Y., and Prian, J., 1982. Explanatory Note to the Geologic Map of the Mahd adh Dhahab Quadrangle, Sheet 23E, Kingdom of Saudi Arabia: pp.1-39.
- Lewis, P. J. and Martin, G. J., 1983. Mahd adh Dhahab Gold-silver Deposit, Saudi Arabia ,Mineralogical Studies Associated with Metallurgical Process Evaluation: pp.63-72.
- Luce, R. W., O'Neil, J. R., and Rye, R. O., 1979. Mahd adh Dhahab: Precambrian Epithermal Gold Deposit, Kingdom of Saudi Arabia: U.S. Geological Survey (Saudi Arabian Project Report 256), 33p.
- Ramsom, D. M., 1982. Geology and Mineralization of the Umm ad Damar South Prospect, Jabal Sayid District, Kingdom of Saudi Arabia :Riofinex Geological Mission, 59p.
- Ramsom D. M., 1984. Regional Geology of the Umm ad Damar Area and Geology of the North Prospect: Open-File Report RF-OF-04-9, 23p.
- RF-1979-9. 6.2 Umm ad Damar: pp.95-98.
- Rye, R. O., Hall, W. E., Cunningham, C. G., Czamanske, G. K. Afifi, A. M., and Stacey, J. S., 1982.
 Preliminary Mineralogic, Fluid Inclusion, and Stable Isotope Study of the Mahd adh Dhahab
 Gold Mine, Kingdom of Saudi Arabia: Open-File Report USGS-OF-03-4, 26p.
- Sabir, H., 1981. Metalogic and Textural Features of Sulfide Mineralization at Jabal Sayid (Saudi Arabia): Bulletin du BRGM Section II, no.1-2/1980-1981, pp.103-111.
- Sahl, M. A., 1979. Geology and Mineralization at Umm ad Damar Area: Faculty of Earth Sciences, King Abdul Aziz University, pp.183-221.

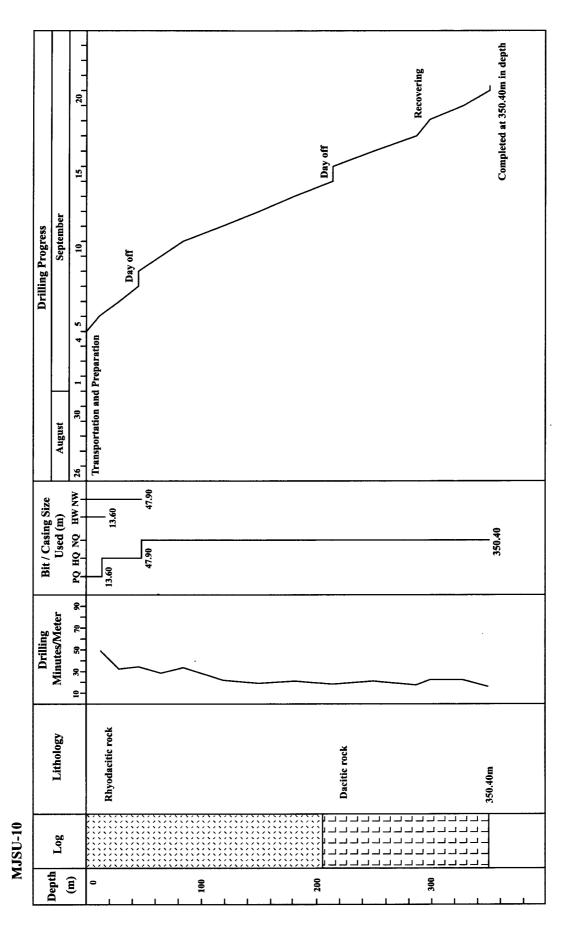

Appendix 1 Summary of Drilling Operation of MJSU-9

MJS	U-9			Suve	y Period			Total M	lan-day
Operation		Pe	riod	Day	Work Da	y O	ff Day	Engineer	Worker
Transportation	/Preparation	Sep.	16,2000						
Drilling		Sep. 16-	Oct. 9,2000	24	21		3	144	41
Dismantling		Oct.	9,2000						
Total				24	21		3	144	41
Drilling Lengtl	ı	(m)		(m)	C	ore Recovery	of Each 10	0m Hole	
Length Planne	d	275.00	Overburden	1.50			Core	Cumulat	ive Core
I		105.00	Core	270.25	Depth o		Recovery	Reco	very
Increase/Decre	ase in Length	105.00	Length	378.25	5 (m)		(%)	(%	5)
r		200.00	Core	00.5	5 0.00 to 100.00		98.3	98	.3
Length Drilled		380.00	Recovery	99.5	100.00 to 200.00		100.0	99	.1
Working Hour	s	(h)	(%)	(%)	200.00 to	300.00	100.0	99	.4
Drilling		184.9	62.5	60.9	300.00 to	380.00	100.0	99	.5
Other Work		92.1	31.1	30.3					
Recovering		19.0	6.4	6.3		Efficience	y of Drilling		
Subtotal		296.0	100.0	97.5	Total Length	/ Drilling	m	day	m/day
Preparation		3.5		1.2	Perio	od	380.00	24.0	15.83
Dismantlement	t	4.0		1.3	Total Length /	Total Drilling	m	shift	m/shift
Transportation				0.0	Shif	ts	380.00	40.0	9.50
Grand Total		303.5		100.0	Dril	ling Length /	Each Diam	eter (m)	
	Casing	Pipe Inser	ted		Bit Size Drilling Length		ngth (m)	Core Lei	igth (m)
G:	Matrice	Metrag	ge/Drilling	Recovery	PQ 5.9		0	4.	15
Size	Metrage (m)	Leng	th (%)	(%)	HQ 35.		30	35.	80
HW	5.90)	1.6	100.0	0.0 NQ 338.		30	338	.30
NW	41.70) :	11.0	100.0	0				

Appendix 2 Record of Drilling Operation of MJSU-9

	Drilling	Length		Daily	Total		Shi	ift	Man W	orking
Date	Shift 1	Shift 2	Dril	ling	Core I	ength	Drilling	Total	Engineer	Worker
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)
Sep. 16	2.00	9.40	11.40	11.40	9.65	9.65	2	2	7	2
Sep. 17	3.80	4.15	7.95	19.35	7.95	17.60	2	2	7	2
Sep. 18	6.00	4.90	10.90	30.25	10.90	28.50	2	2	7	2
Sep. 19	5.55	2.65	8.20	38.45	8.20	36.70	2	2	7	2
Sep. 20	2.75	2.40	5.15	43.60	5.15	41.85	2	2	7	2
Sep. 21	14.40	7.30	21.70	65.30	21.70	63.55	2	2	7	2
Sep. 22	Day off									
Sep. 23	6.35	6.70	13.05	78.35	13.05	76.60	2	2	7	2
Sep. 24	12.65	11.10	23.75	102.10	23.75	100.35	2	2	7	2
Sep. 25	9.90	15.00	24.90	127.00	24.90	125.25	2	2	7	2
Sep. 26	10.00	10.00	20.00	147.00	20.00	145.25	2	2	7	2
Sep. 27	24.00	19.30	43.30	190.30	43.30	188.55	2	2	7	2
Sep. 28	17.70	12.00	29.70	220.00	29.70	218.25	2	2	7	2
Sep. 29	Day off									
Sep. 30	14.30	15.70	30.00	250.00	30.00	248.25	2	2	7	2
Oct. 1	15.00	19.25	34.25	284.25	34.25	282.50	2	2	7	2
Oct. 2	12.75	11.65	24.40	308.65	24.40	306.90	2	2	7	2
Oct. 3	7.35	12.00	19.35	328.00	19.35	326.25	2	2	7	2 2
Oct. 4	14.00	8.75	22.75	350.75	22.75	349.00	2	2	7	2
Oct. 5	1.80		1.80	352.55	1.80	350.80	1	2	7	2
Oct. 6	Day off									
Oct. 7	2.45	10.70	13.15	365.70	13.15	363.95	2	2	7	2
Oct. 8	9.10	5.20	14.30	380.00	14.30	378.25	2	2	7	2
Oct. 9									4	1
Total			380.00	Ï	378.25		39	40	144	41

Appendix 3 Drilling Progress of MJSU-9

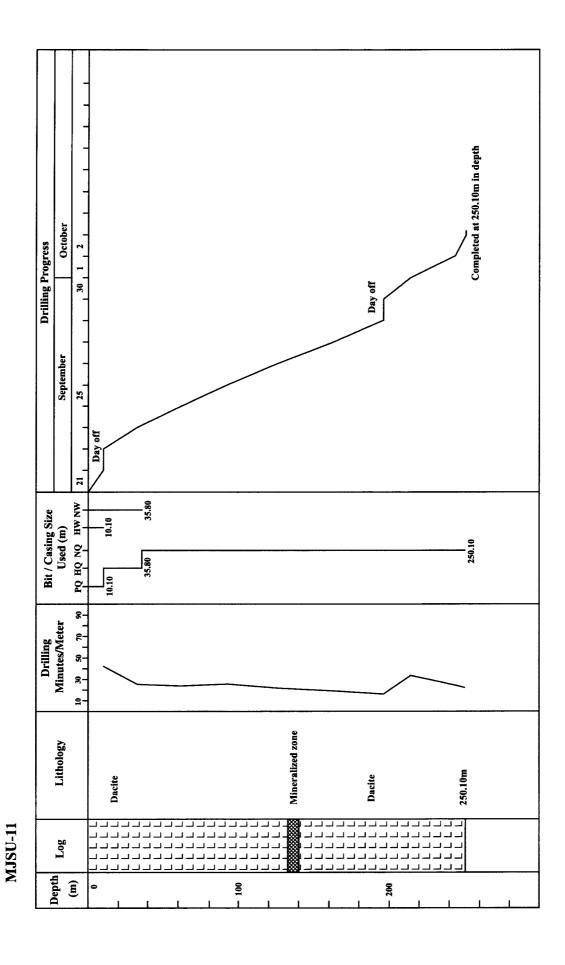

Appendix 4 Summary of Drillung Operation of MJSU-10

MJSU-10			Suv	ey Period		Total Man-	day	
1,1250 10	D	eriod	Day	Work Day	Off Day	Engineer	Worker	
Operation			Day	WOIK Day	On Day	Liigineer	WOLKE	
Transportation/Preparation	Aug.26 -	Sep.4,2000	10	9	1	63	14	
Drilling	Sep. 5 - 3	Sep.20,2000	16	14	2	98	28	
Dismantling	Sep.	21,2000						
Total			26	23	3	161	42	
Drilling Length	(m)		(m)		ore Recovery of Each	100m Hole		
Length Planned	250.00	Overburden	4.90	.90 Depth of Hole Core Recover		Cumulative	Core	
Increase/Decrease in	100.40	Core	345.50	50		Recover	y	
Length	100.40	Length	343.30	(m) (%)		(%)		
Length Drilled	350.40	Core	98.6	0.00 to 100.00	95.1	95.1		
Length Dimed	330.40	Recovery	96.0	100.00 to 200.0	00 100.0	97.6		
Working Hours	(h)	(%)	(%)	200.00 to 300.0	00 100.0	98.4		
Drilling	136.8	65.1	49.0	300.00 to 350.4	100.0	98.6		
Other Work	64.2	30.6	23.0					
Recovering	9.0	4.3	3.2		Efficiency of Dr	illing	•	
Subtotal	210.0	100.0	75.3	Total Length	/ m	day	m/day	
Preparation	52.5		18.8	Drilling Period	d 350.4	0 16.0	21.90	
Dismantlement	1.5		0.5	Total Length / To	otal m	shift	m/shift	
Transportation	15.0		5.4	Drilling Shifts	350.4	0 28.0	12.51	
Grand Total	279.0		100.0	Dri	lling Length / Each Di	ameter (m)		
Casing Pipe Inserted	sing Pipe Inserted			Bit Size	Drilling Length	Core Lens	gth	
Size Metrage (m)	Metrag	e/Drilling	Recovery	PQ	13.60	8.70		
Size Metrage (m)	Leng	th (%)	(%)	HQ 34.30		34.30		
HW 13.60		3.9	100.0	NQ	302.50	302.50		
NW 47.90	1	13.7	100.0					

Appendix 5 Record of Drilling Operation of MJSU-10

	Drilling l	Length		Daily	Total		Sh	ift	Man W	orking
Date	Shift 1	Shift 2	Dril	ling	Core	Length	Drilling	Total	Engineer	Worker
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)
Aug. 26	Transportation							1	7	
Aug. 27	Transportation	on						1	7	
Aug. 28	Preparation							1	7	2
Aug. 29	Preparation							1	7	2
Aug. 30	Preparation							1	7	2
Aug. 31	Preparation							1	7	2
Sep. 01	Day off									
Sep. 02	Preparation							1	7	2
Sep. 03	Preparation							1	7	2
Sep. 04	Preparation							1	7	2
Sep. 05	6.25	5.90	12.15	12.15	7.25	7.25	2	2	7	2
Sep. 06	5.55	10.55	16.10	28.25	16.10	23.35	2 2	2	7	2
Sep. 07	9.80	7.30	17.10	45.35	17.10	40.45	2	2	7	2
Sep. 08	Day off									
Sep. 09	3.75	14.85	18.60	63.95	18.60	59.05	2 2	2	7	2
Sep. 10	6.95	12.95	19.90	83.85	19.90	78.95	2	2	7	2 2 2
Sep. 11	14.05	19.65	33.70	117.55	33.70	112.65	2	2	7	2
Sep. 12	15.00	17.30	32.30	149.85	32.30	144.95	2	2	7	2
Sep. 13	15.10	16.00	31.10	180.95	31.10	176.05	2	2	7	2 2
Sep. 14	18.00	15.00	33.00	213.95	33.00	209.05	2	2	7	2
Sep. 15	Day off									
Sep. 16	21.00	14.05	35.05	249.00	35.05	244.10	2 2	2	7	2 2
Sep. 17	21.95	15.45	37.40	286.40	37.40	281.50	2	2	7	2
Sep. 18	Recovering	11.55	11.55	297.95	11.55	293.05	2	2	7	2 2
Sep. 19	15.00	15.00	30.00	327.95	30.00	323.05	2	2	7	2
Sep. 20	18.00	4.45	22.45	350.40	22.45	345.50	2	2	7	2
Sep. 21										
Total			350.40		345.50		28	37	161	42

Appendix 6 Drilling Progress of MJSU-10

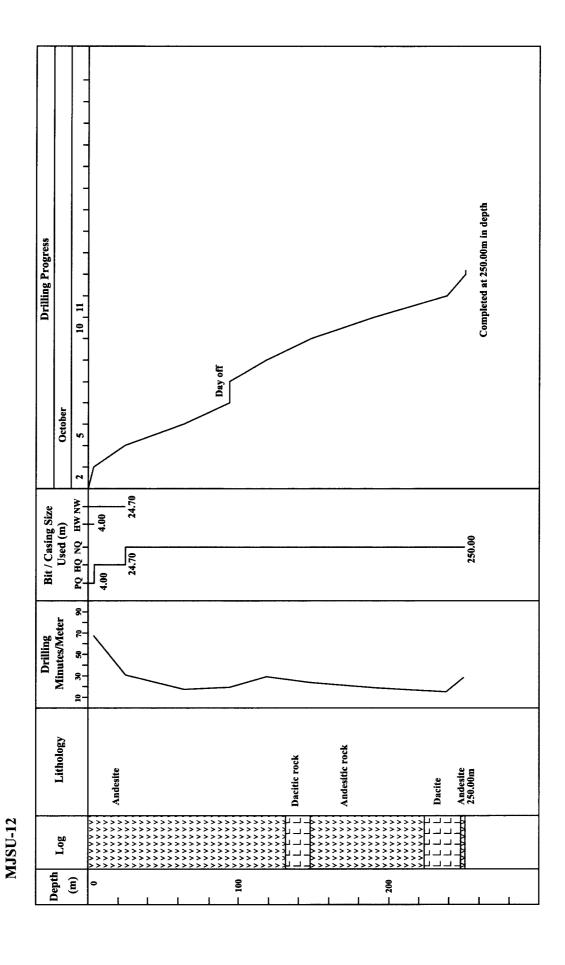

Appendix 7 Summary of Drilling Operation Of MJSU-11

MJSU	I-11			Suve	ey Period			Total M	[an-day	
Operation		P	eriod	Day	Work Day		Off Day	Engineer	Worker	
Transportation	/Preparation	Sep.	21,2000							
Drilling		Sep.21 -	Oct. 2,2000	12	10		2	70	20	
Dismantling		Oct.	2,2000							
Total				12	10		2	70	20	
Drilling Lengtl	h	(m)		(m)	Core Rec	cover	y of Each 100m H	ole		
Length Planne	d	250.00	Overburden	2.50	Depth of Hol		Core Recovery	Cumulat	ive Core	
Increase/Decre	ease in	0.10	Core	247.60	Depth of Hol	E	Core Recovery	Reco	very	
Length		0.10	Length	247.00	(m)		(%)	(%	6)	
Lamenth Deillad	ı	250.10	Core	99.0	0.00 to 100.0	Ю	97.5	97	.5	
Length Drilled	l .	230.10	Recovery	99.0	100.00 to 200.00		100.0	98	.8	
Working Hour	s	(h)	(%)	(%)	200.00 to 250.	.00	0 100.0 99.		.0	
Drilling		99.4	73.6	71.5						
Other Work		35.6	26.4	25.6						
Recovering		0.0	0.0	0.0		E	fficiency of Drillin	ıg		
Subtotal		135.0	100.0	97.1	Total Length	/	m	day	m/day	
Preparation		1.0		0.7	Drilling Perio	od	250.10	12.0	20.84	
Dismantlemen	t	3.0		2.2	Total Length / T	otal	m	shift	m/shift	
Transportation	l	0.0		0.0	Drilling Shift	ts	250.10	19.0	13.16	
Grand Total		139.0		100.0	Drilli	ng Le	ngth / Each Diam	eter (m)		
	Casing	Pipe Inse	erted		Bit Size	D	rilling Length	Core I	ength	
G: 1	Maharan ()	Metrag	e/Drilling	Recovery	PQ		10.10	7.0	50	
Size 1	Metrage (m)	Leng	th (%)	(%)	HQ		HQ 25.80		25.80	
HW	10.10		4.0	100.0	NQ		214.20	214	.20	
NW	35.80	:	14.3	100.0						

Appendix 8 Record of Drilling Operation of MJSU-11

	Drilling	Length		Daily	Total		Shift		Man Working	
Date	Shift 1	Shift 2	Dril	ling	Core I	.ength	Drilling	Total	Engineer	Worker
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)
Sep. 21	3.50	6.60	10.10	10.10	7.60	7.60	2	2	7	2
Sep. 22	Day off									
Sep. 23	8.00	14.70	22.70	32.80	22.70	30.30	2	2	7	2
Sep. 24	12.50	16.40	28.90	61.70	28.90	59.20	2	2	7	2
Sep. 25	14.10	16.70	30.80	92.50	30.80	90.00	2	2	7	2
Sep. 26	16.30	16.90	33.20	125.70	33.20	123.20	2	2	7	2
Sep. 27	18.40	18.70	37.10	162.80	37.10	160.30	2	2	7	2
Sep. 28	20.80	12.20	33.00	195.80	33.00	193.30	2	2	7	2
Sep. 29	Day off									
Sep. 30	8.60	9.40	18.00	213.80	18.00	211.30	2	2	7	2
Oct. 01	14.00	15.50	29.50	243.30	29.50	240.80	2	2	7	2
Oct. 02	6.80		6.80	250.10	6.80	247.60	2	2	7	2
Total			250.10		247.60		20	20	70	20

Appendix 9 Drilling Progress of MJSU-11

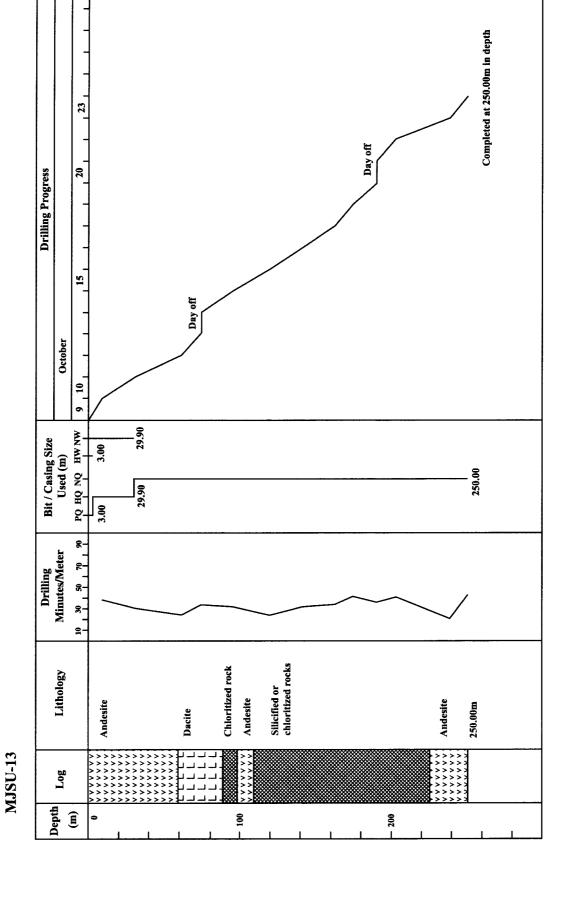

Appendix 10 Summary of Drilling Operation of MJSU-12

MJSU-12			Suvey	Period			Total Man-	day
Operation	Pe	eriod	Day	Work I	Day	Off Day	Engineer	Work er
Transportation/Preparation	Oct :	2,2000						
Drilling	Oct. 2, 2000	- Oct.11,2000	10	9		1	56	18
Dismantling	Oct.1	1,2000						
Total		•	10	9		1	56	16
Drilling Length	(m)		(m)	Cor	e Recove	ery of Each 100m	m Hole	
Length Planned	250.00	Overburden	1.20	D 4 . C	YY . 1	G P	Cumulative	Core
Increase/Decrease in	0.00	C I	240.00	Depth of	Hole	Core Recovery	Recover	у
Length	0.00	Core Length	248.80	(m)			(%)	
Laurath Duitta d	250.00	Core	99.5	0.00 to 10	00.00	98.8	98.8	
Length Drilled	230.00	Recovery	99.3	100.00 to 2	00 to 200.00 100.0		99.4	
Working Hours	(h)	(%)	(%)	200.00 to 2	250.00	100.0	99.5	
Drilling	91.7	75.2	73.7					
Other Work	30.3	24.8	24.3					
Recovering		0.0	0.0		E	fficiency of Drilli	ng	
Subtotal	122.0	100.0	98.0	Total Ler	igth /	m	day	m/day
Preparation	1.0		0.8	Drilling P	Period	250.00	10.0	25.00
Dismantlement	1.5		1.2	Total Lengtl		m	shift	m/shif t
Transportation			0.0	Drilling S	Shifts	250.00	16.0	15.63
Grand Total	124.5		100.0	Dr	illing Le	ngth / Each Diam	eter (m)	
Casing Pipe Inserted				Bit Size Drilling Length		lling Length	Core Leng	gth
	Metrage/Dr	illing Length	Recovery	y PQ 4.00		4.00	2.80	
Size Metrage (m)	(%)	(%)	HQ 20.70		20.70	20.70	
HW 4.00	1.6		100.0	0.0 NQ 225		225.30	225.30	
NW 24.70	9.9		100.0					

Appendix 11 Record of Drilling Operation of MJSU-12

	Drilling	Length		Daily	Total		Shi	ft	Man Working		
Date	Shift 1	Shift 2	Drilling		Core L	ength	Drilling	Total	Engineer	Worker	
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)	
Oct. 2		3.55	3.55	3.55	2.35	2.35	1	1	3		
Oct. 3	8.15	13.00	21.15	24.70	21.15	23.50	2	2	7	:	
Oct. 4	15.40	23.60	39.00	63.70	39.00	62.50	2	2	7		
Oct. 5	21.00	9.00	30.00	93.70	30.00	92.50	2	2	7		
Oct. 6	Day off			·							
Oct. 7	7.40	17.15	24.55	118.25	24.55	117.05	2	2	7	:	
Oct. 8	11.05	18.40	29.45	147.70	29.45	146.50	2	2	7		
Oct. 9	17.70	24.30	42.00	189.70	42.00	188.50	2	2	7	ï	
Oct. 10	25.00	23.00	48.00	237.70	48.00	236.50	2	2	7	2	
Oct. 11	12.30		12.30	250.00	12.30	248.80	1	1	4		
Total			250.00		248.80		16	16	56	10	

Appendix 12 Drilling Progress of MJSU-12

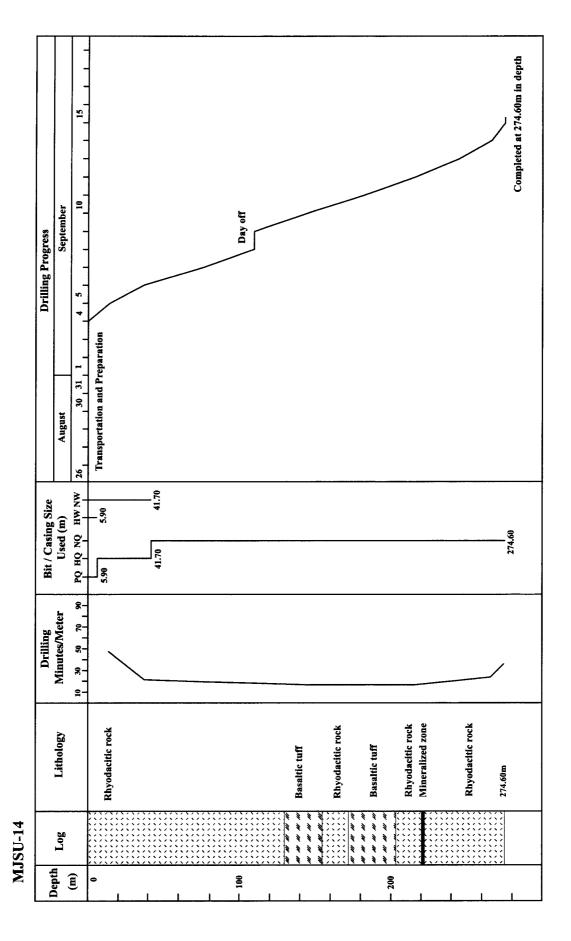

Appendix 13 Summary of Drilling Operation og MJSU-13

MIS	SU-13			Suvey I	Period			Total M	an-day
Operation	,6 15	Pe	riod	Day	Work Da	ıy	Off Day	Engineer	Worker
Transportatio	on/Preparation	Oct 9	9,2000						
Drilling		Oct. 9- O	ct.23,2000	15	13		2	91	26
Dismantling		Oct.2	3,2000						
Total				15	13		2	91 26	
Drilling Leng	gth	(m)		(m)	Co	re Reco	very of Each	100m Hole	
Length Plann	ıed	250.00	Overburden	0.90	D 4 . CI	r.1.	Core	Cumulati	ve Core
Increase/Dec	rease in	0.00	G I 1	240.10	Depth of H	Deptil of Hole		Recov	ery
Length		0.00	Core Length	249.10	(m)		(%)	(%)
I (1 D '11	•	250.00	Core	99.6	0.00 to 100.00		99.1	99.	1
Length Drille	ea	250.00	Recovery	99.6	100.00 to 200.00 100.0		100.0	99.6	
Working Hou	urs	(h)	(%)	(%)	200.00 to 25	0.00	100.0	99.6	
Drilling		127.3	66.0	64.9					
Other Work		65.7	34.0	33.5					
Recovering			0.0	0.0		Eff	iciency of Dri	Drilling	
Subtotal		193.0	100.0	98.5	Total Leng	th /	m	day	m/day
Preparation		2.0		1.0	Drilling Per	riod	250.00	15.0	16.67
Dismantleme	ent	1.0		0.5	Total Length	/ Total	m	shift	m/shift
Transportatio	on			0.0	Drilling Sh	ifts	250.00	26.0	9.62
Grand Total		196.0		100.0	Drilli	ing Len	ngth / Each Diameter (m))
Casing Pi	pe Inserted				T		ing Length	Core L	ength
G:	M	Metrage/Dr	illing Length	Recovery	PQ		3.00	2.1	0
Size	Metrage (m)	(%)	(%)	HQ		26.90	26.9	90
HW	3.00	1.2		100.0	0 NQ 2		220.10	220.	10
NW	29.90	12.0		100.0					

Appendix 14 Record of Drilling Operation of MJSU-13

	Drilling	Length		Daily	Total		Shi	ft	Man W	orking
Date	Shift 1	Shift 2	Dril	ling	Core	Length	Drilling	Total	Engineer	Worker
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)
Oct 9	1.10	8.00	9.10	9.10	8.20	8.20	2	2	7	2
Oct 10	13.25	8.60	21.85	30.95	21.85	30.05	2	2	7	2
Oct 11	17.30	13.05	30.35	61.30	30.35	60.40	2	_ 2	7	2
Oct 12	8.70	3.85	12.55	73.85	12.55	72.95	2	2	7	2
Oct 13	Day off									
Oct 14	6.15	15.50	21.65	95.50	21.65	94.60	2	2	7	2
Oct 15	17.50	6.60	24.10	119.60	24.10	118.70	2	2	7	2
Oct 16	7.70	13.85	21.55	141.15	21.55	140.25	2	2	7	2
Oct 17	9.85	11.20	21.05	162.20	21.05	161.30	2	2	7	2
Oct 18	4.00	8.30	12.30	174.50	12.30	173.60	2	2	7	2
Oct 19	5.55	9.55	15.10	189.60	15.10	188.70	2	2	7	2
Oct 20	Day off									
Oct 21	7.20	6.10	13.30	202.90	13.30	202.00	2	2	7	2
Oct 22	16.10	19.10	35.20	238.10	35.20	237.20	2	2	7	2
Oct 23	8.60	3.30	11.90	250.00	11.90	249.10	2	2	7	2
Total			250.00		249.10		26	26	91	26

Appendix 15 Drilling Progress of MJSU-13

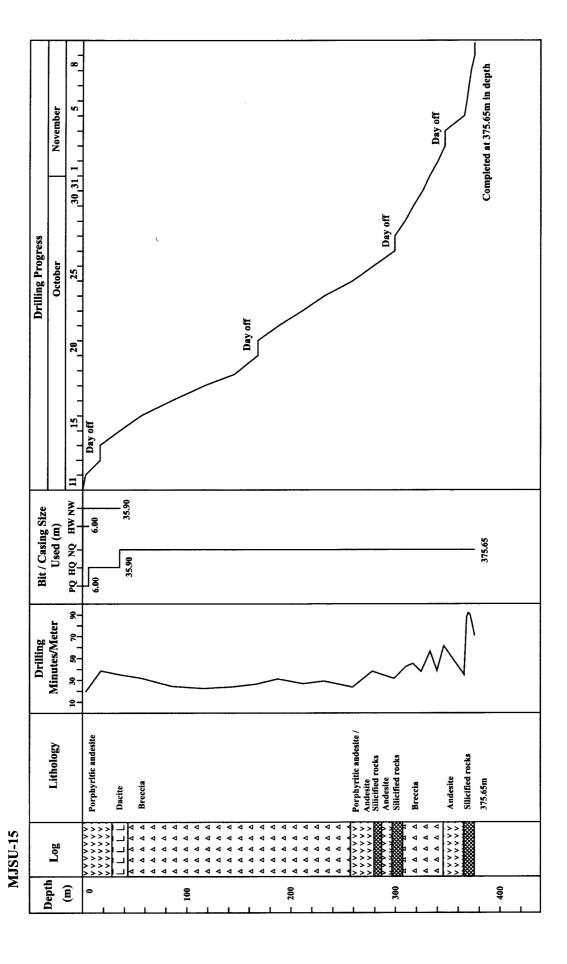

Appendix 16 Summary of Drilling Operation of MJSU-14

MJSU	I-14			Suvey P	eriod			Total M	an-day
Operation		Pe	riod	Day	Work I	Day	Off Day	Engineer	Worker
Transportation/	Preparation	Aug. 26 -	Sep.3,2000	8	7		1	49	7
Drilling		Sep. 4 - S	ep.14,2000	12	10		2	70	10
Dismantling		Sep.1	6,2000						
Total				20	17		3	119	17
Drilling Length	1	(m)		(m)	(Core Reco	overy of Each	100m Hole	
Length Planned	i	375.00	Overburden	0.00	D46	T7-1-	Core	Cumulati	ve Core
Increase/Decrea	ase in	100.40	G I 1	274.60	Depth of Hole		Recovery	Reco	very
Length		-100.40	Core Length	274.60	(m)		(%)	(%)
I 41 D -1111		274.60	Core	100.0	0.00 to 100.00		100.0	100	.0
Length Drilled		274.00	Recovery	100.0	100.00 to 200.00 100.0			100.0	
Working Hours	S	(h)	(%)	(%)	200.00 to 2	274.60	100.0	100	.0
Drilling		92.3	61.5	45.6					
Other Work		54.2	36.1	26.8					
Recovering		3.5	2.3	1.7		Eff	iciency of Dr	illing	
Subtotal		150.0	100.0	74.1	Total Ler	igth /	m	day	m/day
Preparation		35.0		17.3	Drilling P	eriod	274.60	12.0	22.88
Dismantlement		2.5		1.2	Total Lengtl	n / Total	m	shift	m/shift
Transportation		15.0		7.4	Drilling S	Shifts	274.60	22.0	12.48
Grand Total		202.5		100.0	Dri	Drilling Length / Each I		ameter (m	1)
Casing Pipe	Inserted				Bit Size Drilling Le		ng Length	Core L	ength
C: 1	(Metrage/Dr	illing Length	Recovery	PQ 5		5.95	5.9	5
Size N	Metrage (m)	(%)	(%)	HQ 2		HQ 26.80		30
HW	5.95	2.2		100.0	0 NQ 2		41.85	241.	85
NW	32.75	11.9		100.0					

Appendix 17 Record of Drilling Operation of MJSU-14

	Drilling	Length		Daily	Total		Shi	ft	Man Working		
Date	Shift 1	Shift 2	Dri	lling	Core I	ength	Drilling	Total	Engineer	Worker	
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)	
Aug. 26	Transportat	ion						1	7		
Aug. 27	Transportat	ion						1	7		
Aug. 28	Preparation	ı						1	7	2	
Aug. 29	Preparation							1	7	2	
	Preparation							1	7	2	
Aug. 31	Preparation							1	7	2	
Sep. 01	Day off										
	Preparation							1	7	2	
Sep. 03	Preparation							1	7	2	
Sep. 04	3.80	9.65	13.45	13.45	13.45	13.45	2	2	7	2	
Sep. 05		12.30	23.65	37.10	23.65	37.10	2	2	7	2	
Sep. 06		20.00	39.00	76.10	39.00	76.10	2	2	7	2	
Sep. 07	16.20	17.00	33.20	109.30	33.20	109.30	2	2	7	2	
	Day off										
Sep. 09	16.60	18.50	35.10	144.40	35.10	144.40	2	2	7	2	
Sep. 10	21.50	15.20	36.70	181.10	36.70	181.10	2	2	7	2	
Sep. 11	22.50	11.90	34.40	215.50	34.40	215.50	2	2	7	2	
Sep. 12	12.45	16.15	28.60	244.10	28.60	244.10	2	2	7	2	
Sep. 13	15.00	6.00	21.00	265.10	21.00	265.10	2	2	7	2	
Sep. 14	6.00	3.50	9.50	274.60	9.50	274.60	2	2	7	2	
Sep. 15	Day off										
Sep. 16											
Total			274.60		274.60		20	28	126	32	

Appendix 18 Drilling Progress of MJSU-14


Appendix 19 Summary of Drilling Operation of MJSU-15

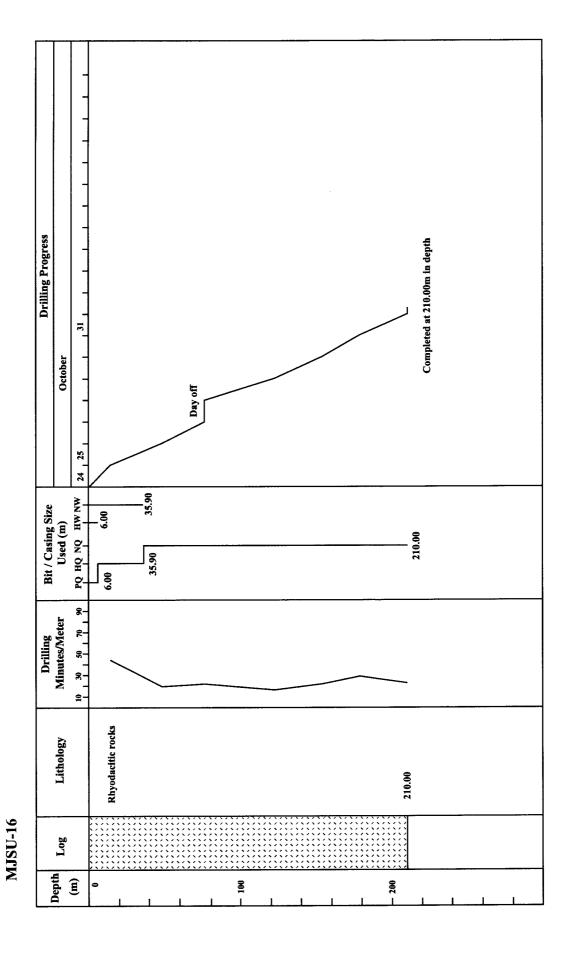
M	JSU-15			Suvey	/ Period			Total M	an-day
IVI.	130-13	D	eriod	Day	Wor	k Day	Off Day	Engineer	Worker
Operation		Teriod		Day	*****	k Day	On Day	Engineer	WOIRCI
Transportati	ion/Preparation	Oct	11, 2000				<u> </u>		
Drilling		Oct 11 - 3	Nov. 8, 2000	29		25	4	171	49
Dismantling	3	Nov.	9, 2000	1		1		7	2
Total				30		26	4	178	51
Drilling Len	igth	(m)		(m)		Core Reco	overy of Each	100m Hole	
Length Plan	ned	375.00	Overburden	1.80			Core	Cumulat	ive Core
Increase/De	crease in Length	0.65	Core Length	373.85		Depth of Hole (m)		Recovery (%) (%)	
Lamada Daili	1	375.65	Core	99.5	0.00 to	100.00	98.2	98	.2
Length Drill	ieu	373.03	Recovery	99.3	100.00	to 200.00	100.0	99	.1
Working Ho	ours	(h)	(%)	(%)	200.00	to 300.00	100.0	99	.4
Drilling		92.3	61.5	45.6	200.00 to 375.65 100		100.0	99.5	
Other Work		57.7	38.5	28.5					
Recovering				0.0		Effi	iciency of Dr	illing	
Subtotal		150.0	100.0	74.1	Total Leng	gth / Drilling		day	m/day
Preparation		35.0		17.3	Pe	riod	375.65		12.95
Dismantlem	ent	2.5		1.2		igth / Total	m	shift	m/shift
Transportati	ion	15.0		7.4		ng Shifts	375.65		7.67
Grand Total		202.5		100.0]	Drilling Len	gth / Each Di	ameter (n	1)
	Casing	Pipe Inser	ted		Bit Size		g Length	Core L	
Size Metrage (m)		Metrag	ge/Drilling	Recovery	PQ		.00	4.2	
		Length (%)		(%)	HQ		.90	29.	
HW	6.00		1.6	100.0	NQ 33		339.75		.75
NW	35.90		9.6	100.0					

Appendix 20 Record of Drilling Operation of MJSU-15

	Drilling	Length		Daily	Total		Shi	ift	Man W	Man Working	
Date	Shift 1	Shift 2	Dril	ling	Core I	ength	Drilling	Total	Engineer	Worker	
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)	
Oct. 11		3.05	3.05	3.05	1.25	1.25	1	1	3	1	
Oct. 12	8.00	6.00	14.00	17.05	14.00	15.25	2	2	7	2	
Oct. 13	Day off										
Oct. 14	12.65	6.20	18.85	35.90	18.85	34.10	2	2	7	2 2 2 2 2 2 2	
Oct. 15	10.90	9.40	20.30	56.20	20.30	54.40	2	2	7	2	
Oct. 16	12.80	16.80	29.60	85.80	29.60	84.00	2	2 2	7	2	
Oct. 17	16.20	15.00	31.20	117.00	31.20	115.20	2	2	7	2	
Oct. 18	15.55	13.25	28.80	145.80	28.80	144.00	2 2	2	7	2	
Oct. 19	12.00	9.00	21.00	166.80	21.00	165.00	2	2	7	2	
Oct. 20	Day off										
Oct. 21	8.95	12.05	21.00	187.80	21.00	186.00	2	2	7	2 2 2 2 2 2	
Oct. 22	11.85	11.80	23.65	211.45	23.65	209.65	2	2	7	2	
Oct. 23	6.20	14.00	20.20	231.65	20.20	229.85	2	2	7	2	
Oct. 24	7.00	20.15	27.15	258.80	27.15	257.00	2	2	7	2	
Oct. 25	7.95	11.05	19.00	277.80	19.00	276.00	2	2	7	2	
Oct. 26	10.20	10.80	21.00	298.80	21.00	297.00	2	2	7	2	
Oct. 27	Day off										
Oct. 28	3.75	5.95	9.70	308.50	9.70	306.70	2	2 2	7	2	
Oct. 29	2.85	5.25	8.10	316.60	8.10	314.80	2	2	7	2 2 2 2 2 2	
Oct. 30	4.15	5.00	9.15	325.75	9.15	323.95	2	2	7	2	
Oct. 31	4.35	2.00	6.35	332.10	6.35	330.30	2	2	7	2	
Nov. 1	5.70	2.80	8.50	340.60	8.50	338.80	2	2	7	2	
Nov. 2	1.95	4.20	6.15	346.75	6.15	344.95	2	2	7	2	
	Day off										
Nov. 4	11.25	7.65	18.90	365.65	18.90	363.85	2	2	7	2 2 2 2 2 2 2	
Nov. 5	1.50	0.95	2.45	368.10	2.45	366.30	2	2	7	2	
Nov. 6	1.10	0.95	2.05	370.15	2.05	368.35	2	2 2	7	2	
Nov. 7	1.10	0.75	1.85	372.00	1.85	370.20	2	2	7	2	
Nov. 8	1.90	1.75	3.65	375.65	3.65	373.85	2	2		2	
Nov. 9	Dismantleme	ent						1	7	2	
Nov. 10	Day off										
Nov. 11	Dismantleme	ent						1	7	2	
Nov. 12	Dismantlement							1	7	2 2 2	
Nov. 13	Dismantleme	ent						1	7	2	
Total			375.65		373.85		49	53	199	57	

Appendix 21 Drilling Progress of MJSU-15

Appendix 22 Summary of Drilling Operation of MJSU-16


MJSU-16				Suvey P	eriod			Total Man-day		
Operation		Period		Day	Work D	Day	Off Day	Engineer	Worker	
Transportation/Prepar	ation	Oct. 24, 2000								
Drilling		Oct 24 - C	Oct.31,2000	8	7		1	49	14	
Dismantling		Nov.	1,2000	1	1			7	2	
Total				9	8		1	56	16	
Drilling Length		(m)		(m)	(Core Rec	overy of Each	100m Hole		
Length Planned		200.00	Overburden	1.70	D	TT-1-	Core	Cumulat	ive Core	
Increase/Decrease in		10.00		200.20	Depth of	Hole	Recovery	Reco	very	
Length		10.00	Core Length	208.30	(m)		(%)	(%)		
		210.00	Core	00.2	0.00 to 100.00		98.3	98.3		
Length Drilled		210.00	Recovery	99.2	100.00 to 2	200.00	100.0	99	.2	
Working Hours		(h)	(%)	(%)	200.00 to 210.00		100.0	99	.2	
Drilling		79.1	76.8	70.3						
Other Work		23.9	23.2	21.2						
Recovering				0.0	Effici	ency of I	Drilling			
Subtotal		103.0	100.0	91.6	Total Len	igth /	m	day	m/day	
Preparation		2.0		1.8	Drilling P	eriod	210.00	8.0	26.25	
Dismantlement		7.5		6.7	Total Length	ı / Total	m	shift	m/shift	
Transportation	-			0.0	Drilling S	Shifts	210.00	14.0	15.00	
Grand Total		112.5		100.0	Drilling	Length /	Each Diameter	(m)		
Casing Pipe Insert	ed				Bit Size	Drill	ling Length	Core L	ength	
G: 14		Metrage/Dr	illing Length	Recovery	PQ		6.00	4.3	30	
Size Metrage	e (m)	(%)		(%)	НQ		29.90	29.	90	
HW	6.00	2	2.9	100.0	NQ		174.10	174	.10	
NW	35.90	1′	7.1	100.0						

Appendix 23 Record of Drilling Operation of MJSU-16

	Drilling	Length		Daily T	otal		Shift		Man Working		
Date	Shift 1	Shift 2	Dril	ling	Core	Length	Drilling	Total	Engineer	Worker	
	(m)	(m)	(m)	(Cum. m)	(m)	(Cum. m)	(Shift)	(Shift)	(man)	(man)	
Oct. 24	6.00	8.00	14.00	14.00	12.30	12.30	2	2	7	2	
Oct. 25	14.20	20.00	34.20	48.20	34.20	46.50	2	2	7	2	
Oct. 26	19.50	8.40	27.90	76.10	27.90	74.40	2	2	7	2	
Oct. 27	Day off										
Oct. 28	25.20	21.00	46.20	122.30	46.20	120.60	2	2	7	2	
Oct. 29	15.60	15.85	31.45	153.75	31.45	152.05	2	2	7	2	
Oct. 30	9.35	15.60	24.95	178.70	24.95	177.00	2	2	7	2	
Oct. 31	17.40	13.90	31.30	210.00	31.30	208.30	2	2	7	2	
Nov. 1	Dismantlen	nent						1	7	2	
Nov. 2											
Total			210.00		208.30		14	15	56	16	

1

Appendix 24 Drilling Progress of MJSU-16

Appendix 25 Drilling Meterage of Diamond Bits Used

PO	Item	Size	Bit No.					age/Each Bit				Total (m)
### PACKET 1.00 1.0	item			MJSU-14	MJSU-9	MJSU-13	MJSU-16	MJSU-10	MJSU-11	MJSU-12	MJSU-15	20.85
### PAPER		ΡŲ		3.95	5.90	3.00	6.00	1.30			6.00	9.50
Section Sect								6.80	10.10			18.70
Record Process Proce							5.00		10.10	4.00	6.00	
Page				5.95	5.90	3.00]	6.00	13.60]	10.10	4.00]	6.00	
## PARCELLED 1.60 1.00 1		но		26.80	7.50		17.25					51.55
### PATE PATE				20.00								0.60
## 1995 1995												
## 1												7.40
### Page 14						26.90	2.00					32.95
### PROPERTY 1.00 1			#9283647/9				4.60	24.20				4.60
Process								34.30	25.80			25.80
Solutional 26.00 35.50 20.90 23.85 34.00 23.80 20.70 29.90 222.00									25.00			50.60
No.			Subtotal	26.80	35.80	26.90	23.85	34.30	25.80	20.70	29.90	
## 1865-8910		- 210			5.001				·			5.90
## FIRST-SYPTO		NQ		3.00								5.95
### ### ### ### ### ### ### ### ### ##			#186549/10								2.60	2.60
## 21(31)\$(7)			#186552/10		49.95	1.10						
### PER				20.50	27.75	1.10						48.25
## PACKARD PAC						4.65						45.50
## PILASIA21/10												7.40
### ### ### ### ### ### ### ### ### ##						20.25	38 15				21.10	58.80
## ## ## ## ## ## ## ## ## ## ## ## ##				-	4.90	20.33	38.43					4.90
### ### ### ### ### ### ### ### ### ##				<u> </u>	4.70							0.40
Fig.			#8459365/10								0.70	0.70
Page				7.60	3.50						1 70	11.10
February												1.75
## #8459373/10					2.80							2.80
Response	i l										1.70	1.70
Page	_					48.80	55.80				8 20	
##8459384710	88											27.10
##8459384710	puo			<u> </u>			t					6.55
##8459384710	u a											3.45
##459587/0	Ä										8.75	
### ### ### ### ### ### ### ### ### ##						39.75			22 30		21.30	43.60
##845938970									22.50			9.50
##4545997/10			#8459387/10		14.90	2.00					1.45	16.90
#8459392/10				ļ			53.90					54.15
### ### ### ### ### ### ### ### ### ##							33.50				2.60	2.60
R8459398/10			#8459393/10									
#8459399010 59.85 38.55 27.00 12.24 33.5 33.5 3			#8459396/10			27.65					17.43	27.65
			#8459399/10		59.85	38.55	27.00					125.40
#8459884/10 #92843299 #92843349 #92843359 #92843379 #92843379 #92843379 #92843379 #92843379 #92843379 #92843379 #92843379 #92848569 #92848569 #92848569 #92848699 #92848699 #92848699 #92848699 #92848699 #92848699 #92848699 #928489699 #928489699 #928489699 #928489699 #928489699 #928489699 #928489699 #928489699 #92849909 #9284900000 #9284900000 #928490000 #928490000 #928490000 #928490000 #928490000 #9284900000 #928490000000000000000000000000000000000					16.70	16.70					56.25	
#928432599						1 00					30.23	1.00
#2843349						1.00		64.00	10.00			74.00
Heat			#9284329/9		24.05			61 45				24.05 61.65
Heat												39.15
Horizon Hori				76.55				57.10				76.55
#9284865.9			#9284761/9		17.90				76.00	2.00		17.90
Hem Size Bit No. Drilling Meterage Each Reaming Shell Total (m) Fig. 10				 	42.55	2 10		<u> </u>	/0.23	3,00		44.65
#92848759					74.33						20.90	20.90
Horizon Hori	1		#9284875/9			17.45						17.45 5.00
Heat Size Bit No. Drilling Meterage Each Reaming Shell Total (m) MJSU-14 MJSU-9 MJSU-15 MJSU-16 MJSU-10 MJSU-11 MJSU-12 MJSU-15 MJSU-16 MJSU-11 MJSU-11 MJSU-12 MJSU-15 MJSU-16 MJSU-16 MJSU-17 MJSU-18 MJSU-18 MJSU-18 MJSU-18 MJSU-18 MJSU-18 MJSU-19 MJSU-11 MJSU-12 MJSU-15 MJSU-15 MJSU-16 MJSU-17 MJSU-18 MJSU-18 MJSU-18 MJSU-18 MJSU-18 MJSU-19 MJSU-19 MJSU-11 MJSU-12 MJSU-15 MJSU-15 MJSU-15 MJSU-16 MJSU-17 MJSU-18				36.85	1 95		5.00					38.80
#92848969			#9284885/9	30.63								18.65
Heat Size Bit No. Drilling Meterage Each Reaming Shell Total (m)			#9284896/9									114.70 23.00
Horizon Hori				[44.00	-		23.00				44.00
#9284967/9 105.65 125.65 105.65	l '		#9284966/9		41.00						37.50	37.50
Heat			#9284967/9						105.65	222.30		
Titel Size Bit No. Drilling Meterage Each Reaming Shell Each Reaming Shell Total (m)	1			ļl				l	103.63		14.20	
Subtotal 241.85 338.30 220.10 180.15 302.50 214.20 225.30 339.75 2,062.1				97.35								97.35
Total 274.60 380.00 250.00 210.00 350.40 250.10 250.00 375.65 2,340.7			Subtotal		338.30	220.10	180.15	302.50	214.20	225.30	339.75	2,062.15
Total (m) Tota				1 074.70	200.00	350.00	310.00	250 401	250.10	250.00	275 65	
Size Bit No. MJSU-14 MJSU-9 MJSU-16 MJSU-10 MJSU-11 MJSU-12 MJSU-15	ļ	<u> </u>	Lotal	2/4.60	380.00	250.00	210.00	330.40	230.10	230.00	313.03	2,570.75
No. Size Bit No. MJSU-14 MJSU-9 MJSU-13 MJSU-16 MJSU-10 MJSU-11 MJSU-12 MJSU-12 MJSU-15	h	G:	Div M				ling Meterage/	Each Reaming	Shell			
#83516	Item		Bit No.			MJSU-13	MJSU-16	MJSU-10	MJSU-11	MJSU-12	MJS	
HQ #53972 26.80 35.80 26.90 22.20 111.7 #6WR1746 241.85 338.30 220.10 181.80 25.80 20.70 29.90 110.7 NQ #879512 241.85 338.30 220.10 181.80 982.0 #879529 302.50 214.20 225.30 339.75 339.75		PQ		5.95	5.90	3.00	6.00	12.60	10.10	4.00	6.00	
Fig. 1. Sept. 1. Sept	ᇐ	HO		26.80	35.80	26.90	22,20	13.00	10.10	4.00		111.70
NQ #8795112 241.85 338.30 220.10 181.80 982.0 #879529 302.50 214.20 225.30 742.0 #8795126 339.75 339.75	20	110						34.30	25.80	20.70	29.90	110.70
	nin	NQ	#8795112	241.85	338.30	220.10	181.80					982.05
	ear	l		 				302.50	214.20	223.30	339.75	339.75
	~		#8/95126 Total	274.60	380.00	250.00	210.00	350.40	250.10	250.00		

Appendix 26 Consumables Used

Expendable						Deill L	łole No.				Total
Items	Spec.	Unit	MJSU-9	MJSU-10	MJSU-11	MJSU-12	MJSU-13	MJSU-14	MJSU-15	MJSU-16	Amount
Diesel Fuel		1	1,855	1,505	960	820	1,235	990	2,370	695	10,430
Gasoline		1	398	278	195	165	263	190	485	138	2,112
Hydraulic. Oil		1	20			20	20	4	20		84
Engine Oil		1	60	10	42	22	42	40	91	20	326
Gear Oil		1	3	1	1		2	3	5		15
Grease		kg	15	8	12	2	10	8	15	6	76
Polymer GS550		kg	243	196	128	117	141	123	248	77	1,273
GS20		1					31		10		41
Lubtub		kg	10	20	25	20	3		7		85
Solcut		1	141		18	10	78	76	28	35	386
Stop Plus		kg	7	3	2	2	7	2	9	1	33
Inner Tube	PQ	pcs		1				1			2
Outer Tube	PQ	pcs		1				1			2
Adapter Coupling	PQ	pcs		1				1			2
Locking Coupling	PQ	pcs		1				1			2
Landing Ring	PQ	pcs						1			1
Stop Ring	PQ	pcs	1					1			2
Core Lifter	PQ	pcs	1	1				1			3
Core Lifter Case	PQ	pcs	1	1				1			3
Inner Tube	HQ	pcs		1				2			3
Outer Tube	HQ	pcs		2				1			3
Inner Tube Head Assem.	HQ	pcs		1				2			3
Adapter Coupling	HQ	pcs		1				1			2
Locking Coupling	НQ	pcs		1				1			2
Landing Ring	HQ	pcs						1			1
Stop Rong	HQ	pcs						2			2
Core Lifter	HQ	pcs	4			1		2			7
Core Lifter Case	HQ	pcs				1		2			3
Inner Tube	NQ	pcs		3			2	2			7
Outer Tube	NQ	pcs		1				1	1		3
Inner Tube Head Assem.	NQ	pcs		1				2			3
Adapter Coupling	NQ	pcs	1	1	1			1	2	1	7
Locking Coupling	NQ	pcs	1	1	1			1	2	1	7
Landing Ring	NQ	pcs		1				1		1	3
Stop Ring	NQ	pcs	1	2				2			5
Core Lifter	NQ	pcs	13	6	7	2	4	6	5	3	46
Core Lifter Case	NQ	pcs	4	5	1			3	1		14
Stabilizer	NQ	pcs		1						1	2
Shut off Valve	NQ	pcs					2	2			4
Core Box	PQ	pcs	3	5	4	2	2	2	3	3	24
Core Box	HQ	pcs	11	9	8	6	8	5	9	7	63
Core Box	NQ	pcs	75	67	47	50	50	57	74	39	459
Water (m ³)			400	260		120	270	200	410	110	1,940

Appendix 27 Geological Log of MJSU-9 to MJSU-16

Date Started Sep. 16, 2000 Date Completed : Oct. 8, 2000

Easting: E 707.184

Northing: N 2,620.785 Elevation (mSL): 966

Azimuth: 155

Inclination: -55

		Lithology	Mineralization & Alteration
0 -	0.00	0 - 1.5 m Gravel	
	-0000	1.5 - 1.9m Weathered rock	
	<u> </u>	1.9 - 2.7m Porphyritic dacite (?), weathered	
		a =	
5 -		2.7 – 8.5m Accidental lapillu tuff	2.7 = 8.5m Weak silicified
			2.7 - 6.5III Weak Silicineu
	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	71111111	8.5 – 8.9m Gray argillized rock	
10 -		8.9 – 10.1m Weak limonitized zone, argillized rock	
	 *****	10.1 - 11.9m Weathered rock, whitish	
		11.9 – 12.5m Limonitized zone, brecciated	
		12.5 – 13.4m Sheared zone(silicified rock and argillized rock)	
15 -		13.4 – 16.25m Strong silicified rock, weakly limonitized	
		(Water loss at drilling time from 15.35 to 15.55m)	
	-	16.25 – 16.75m Limonitized zone	
	- ***	16.75 – 17.2m Argillized zone	
20 -		17.2 - 18.7m Weakly silicified rock with limonite	
		network	
		18.7 – 19.35m Silicified zone with limonite network	
25 -	10/10/	19.35 – 24.55m Silicified breccia intruded by porphyritic andesite	
	- Q Q Q Q	(M. 4 1	
	\[\D	(Water loss at drilling time around 19.35m)	
		24.55 – 25.2m Silicified rock with limonite network	
30 -	V V	25.2 – 27.65m Silicified volcanic breccia, matrix	
	- ° ° °	silicified, limonite along crack	
	$-\frac{\vee}{\vee}$	27.65 – 29.8m Breccia of sili rock, matrix is	
	45454	hematite	
	4747	1 limenite dispersi	
35			
		32.4 – 34.7m Silicified lapillistone, tragment size	34.9 - 39.0m Limonite dissemination
40 -		34.9 – 50.0m Silicified volcanic breccia to	39.0 - 41.5m Py dissemination in breccia
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lapillistone, limonite along crack. Both breccia and	Solo Tribility disserimination in Electric
	- \(\times \) \(4	
			41.5 – 50.2m Py dissemination and veinlets in
45	\\ \daggregation \	7	matrix
	\ \ \ \ \ \ \ \ \ \ \ \ \		
		4	
	$- \begin{array}{c c} \triangle & \triangle & \triangle & \triangle \\ \hline \triangle & \triangle & \triangle & \triangle \\ \hline \end{array}$		47.1 - 49.2m Limonite veinlets, partly limonite
	$ \begin{array}{c c} $		stained
50	V V V V		

Date Started Sep. 16, 2000 Date Completed : Oct. 8, 2000

Easting: E 707.184

Northing: N 2,620.785 Elevation (mSL): 966

Azimuth: 155

Inclination: -55

	Lithology	Mineralization & Alteration
- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	1 50 0 50 0 1 100 1 CC	50 – 52m Py weak dissemi
- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
$-\frac{\Delta}{\Delta}$		
$\begin{array}{c} \begin{array}{c} 2 & \Delta & \Delta & \Delta \\ \Delta & \Delta & \Delta & \Delta \end{array}$		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		52 - 66m Py dissemination is weak to medium. Weal silicification
	52.0 – 66.0m Volcanic breccia, matrix composed of Qtz-Py, fragment : rhyodacite, shale, dacite, size	
4000	<10cm angular, size <1cm subrounded	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
$ \Delta $		
- Q Q Q Q	<- 58.8m Thin section : T-15 Meta-rhyodacitic	
$-\frac{\Diamond \Diamond \Diamond \Diamond \Diamond}{\Diamond \Diamond \Diamond \Diamond \Diamond};$	lithic tuff	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
ŽŽŽŽŽŽ		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
0000		
$\begin{array}{c c} & & & & \\ & & & & \\ \hline & & & & \\ \hline & & & \\ \hline \end{array}$		
$ \begin{bmatrix} \triangle \ \triangle $	66.0 – 79.4m Silicified volcanic breccia	66 - 79.4m Strong sili., Py medium dissemi.
$ \triangle$ \triangle \triangle \triangle \triangle	Y	
-		
7 4 4 4 4		
4 4 4 4		
4 4 4 4		
- \$ \$ \$ \$		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
V V V V		
	4	
		79.4 – 92.9m Py weak dissemi
$\neg \neg $	d /9.4 - 3/.5III VOICAING DIEGGIA, ITAGINETIC.	
$\neg \land \land \land \land \land$	porphyrite, chert, shale, silicified rocks	
- \(\frac{1}{2} \) \(\frac{1} \) \(\frac{1} \) \(\frac{1}{2} \) \(\frac{1}{2} \	4	
	4	
- \preceq \pre	4	
\document{\document}{\document{\document}{\document{\document}{\document{\document}{\document{\document}{\document{\document}{\document{\documen		
-	4	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	4	
	4	
7 7 7 7		
7 7 7 7	4, 2	
$\neg \land \land \land \land \lor$	4	
- \frac{1}{2} \fra	, C	92.9 - 93.2m Strong oxidized zone, hematite
- 2 2 2 2	4	stained
$-\frac{\Delta}{\Delta}\Delta\Delta\Delta$	4	
_ \ \ \ \ \ \ \ \ \	7	93.2 - 97.9m Oxidized zone, hematite in matrix
$\neg \neg \neg \neg \neg \neg \neg$	4	
\dagger \dagge	97.9 – 103.7 Silicified volcanic breccia	97.9 - 103.7m Py dissemi. weak

Date Started Sep. 16, 2000 Date Completed : Oct. 8, 2000

Easting: E 707.184

Northing: N 2,620.785 Elevation (mSL): 966

Azimuth: 155

Inclination: -55

1 '	Lithology	Mineralization & Alteration
A A A A A A		
$\triangle \triangle \triangle \triangle A$		
2002		
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1007 1070 An histo	
2222	103.7 - 107.8m Angelste	
100001		107.3 - 107.8m sheared, limonite stained
^^^^		
7.27.7	107.2 - 107.9m Shoared limonite stained	107.8 – 109.9m Py dissemi. medium, limonite along
		crack
10/0/2	107.8 - 109.9m Sheared silicified breccia	
ш ш	109.9 - 111.0m Jasper, sheared	109.9 - 111.0m Py or limonite fill fracture.
# <del>****</del>		
2222		
2222		
2222	111.0 - 127.4m Andesite	
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
2222		
^^^^		
2222		
	<-122.0m Thin section : T-17 Reworked meta-	
^^^^	rhyodacitic tuff	
10000		
2222		
^^^^		
\[\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{2}\frac{1}{		
$\triangle \triangle \triangle \triangle \triangle$	Y	
		127.4 – 131.3m Py dissemi, weak to medium, partly
$\neg \land \neg \land \neg \land \neg \land $		limonitized
$\triangle \triangle \triangle \triangle$		
0 0	133 – 134.2m Breccia	
		133.0 - 140.6m Py dissemi. medium
	d	
$\triangle \triangle \triangle \triangle$	1	
$\triangle \triangle \triangle \triangle$		
	4	
$\Diamond$ $\Diamond$	1400 1400 5	140.6 - 142.6m Dr. dissemi medium te strong
\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	140.0 - 142.0m Breccia	140.6 – 142.6m Py dissemi. medium to strong
\$ \$ \$ \$		
		142.6 - 148.7m Py dissemi. medium
	4	172.0 170.7111 y disserii. modium
	142.6 - 148.7 Silicified breccia	
10/10/	4	
1/2/		
10/10/		
10/10/		
- ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^		
	1	I .
		107.3 - 107.8m Sheared, limonite stained 107.8 - 109.9m Sheared silicified breccia 109.9 - 111.0m Jasper, sheared 111.0 - 127.4m Andesite  111.0 - 127.4m Andesite  127.4 - 133m Silicified volcanic breccia 131.3 - 133m Breccia filled with andesite 131.3 - 133m Breccia filled with andesite 131.3 - 134.2m Breccia 132.2 - 140.6m Silicified volcanic breccia 132.3 - 134.2m Breccia 133.4 - 142.6m Breccia 140.6 - 142.6m Breccia

Date Started Sep. 16, 2000 Date Completed : Oct. 8, 2000 Drill Hole No.: MJSU-9 Elevation (mSL): 966 Easting: E 707.184 Northing: N 2,620.785 Drilled by SGS/BRGM Inclination: -55 Azimuth: 155 Lithology Mineralization & Alteration 150 148.7 - 166.0m Rarely Py very weak dissemi 148.7 - 166m Porphyritic andesite 155 160 165 166 - 189.6m Volcanic breccia, pale blue glass 166.0 - 181.0m Py dissemi. medium spotted or fragments, rarely vein-like formed 170 175 180 181.0 - 182.0m Py band-formed disseminate ore 182.0 - 184.0m Py band-formed disseminated zone with qtz 185 184.0 - 188.5m Py fills breccia. Breccia also Pydisseminated. 188.5 - 189.6m Qtz-Py fill breccia

190

195

200

lapilli tuff

189.6 - 195.7m Conglomerate-like lapillistone to

<- 193.5m Thin section : T-19 Highly sheared felsic rock of rhyodacitic composition

195.7 - 205.0m Volcanic breccia with spotted pale

blue glass and glass veinlets

195.7 - 200.0m Py fills breccia. (like flow-filling)

189.6 - 195.7m Py fills fine-sized breccia

Date Started Sep. 16, 2000

Date Completed : Oct. 8, 2000

 $\mbox{Easting}: \mbox{ E 707.184} \qquad \mbox{Northing}: \mbox{ N 2,620.785} \qquad \mbox{Elevation (mSL)}: 966$ 

Azimuth : 155

Inclination: -55

	Lithology	Mineralization & Alteration
	7 4	
$\triangle \triangle \triangle \triangle$	7 4	
\\ \D \D \D \Z	_ 1	200.0 - 205.0m Py medium dissemination and
72222	_ 4	veinlets
\delta	a d	
7000	7 ¶ 7 ¶	
7222		1
$-\frac{\Delta}{\Delta}$	7 🖣	
\D\D\D\Z	7 🖯	005.0 047.0 D CH-L
_\D\D\D\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z\Z		. 205.0 - 217.0m Py fills breccia
\D\D\Z	7 🖔	
\delta	7 ₹ 205.0 − 217.0m Volcanic breccia, smaller breccia is	
4444		
Q Q Q Z		
0000	7 🦞	
<u>                                   </u>		
\\ \trianslate                                                                                                                                                                                                                                                                                                                                                   \qu		
7000	7 🖣	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
4444	/	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
7000	7	
\delta		017.0 010.0 P. Caraninskins work
\D\D\Z	7 🛚	217.0 – 219.0m Py dissemination weak
7000	7 √ <-219.0m Thin section : T-21 Meta-tuff of felsic	
$\neg \neg $		219.0 - 221.5m Qtz-Py fill breccia
- A A A A	d	
4 4 4 4	213.0 222.011 Lapinistotic, max size of magnetics is	
$\triangle \triangle \triangle \triangle$	Ž {	221.5 - 222.6m Py fills breccia
4000		
4000		
5 4 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	bands (chlorite?) or patch, and pale blue glass patch	222.6 – 234.2m Py lens and dissemination in
\display \di	Ż <b>∮</b>	chloritized parts
7000	<u>*</u> ]	
4000		
- 4444		
7 4 4 4 7		
A		
	<u> </u>	
$-\frac{1}{2}$	<b>▽</b> <	
4000		
$-\Delta\Delta\Delta$		
$\triangle \triangle \triangle$	abla  abla	
$-\Delta \Delta \Delta$		
$\mathbf{i} -   \nabla \Delta \nabla  $	$\nabla$ $d$	
$-\Delta \nabla \Delta$	Δ 4	234.2 - 246.7m Qtz-Py fill breccia partly with
	$\triangle$ 1 234.2 – 246.2m Lapillistone to Iapilli ture. Shape of	strong Py dissemination
	△ ¶ elongated like veinlet or spotted	
$\neg \nabla \triangle \nabla$	Δ 🧸	
$-\nabla \Delta \nabla$		
	$\Delta$ $\P$	
$\nabla \Delta \nabla$	$\Delta$ $\P$	
$-\frac{\triangle \nabla \triangle}{\triangle \nabla \triangle}$	$\Delta$ $$	
$ A \land A$		
$- \begin{array}{c} \nabla \Delta \nabla \\ \nabla \Delta \nabla \end{array}$	$\Delta $	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	abla  abla	
	$\nabla A$	
$\neg \land \land \lor$	$\Delta$ $\P$	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7. A	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	△ ¶ a.a.c.a. a.a.c. 7 Sd-t-ma(2) with class spats	
5 - \forall \Delta \neq \tau \neq \neq \tau \neq \tau \neq \tau \neq \tau \neq \tau \neq \tau \neq \neq \tau \neq \neq \tau \neq \tau \neq \tau \neq \tau \neq \tau \neq \tau \neq \neq \tau \neq \neq \tau \neq \neq \neq \neq \neq \neq \neq \neq	$\stackrel{\triangle}{\wedge}^{\forall}$ 246.2 – 246.7m Sandstone(?) with glass spots	
5 — V \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	△ √ 246.2 – 246.7m Sandstone(?) with glass spots	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	△ √ 246.2 – 246.7m Sandstone(?) with glass spots	246.7 - 254.5m Py dissemi. very weak

Date Started Sep. 16, 2000

Date Completed : Oct. 8, 2000

Drilled by SGS/BRGM

Easting: E 707.184

Azimuth: 155

300

Northing: N 2,620.785 Inclination: -55 Elevation (mSL): 966

Mineralization & Alteration Lithology 250 250.4 - 250.7m Black band (chlorite?) with pale blue glass, like muddy tuff 255 250.7 - 276.1m Lapilli tuff, partly coarse to sandy tuff-like, in some parts pale blue glass elongated 254.5 - 267.0m Py -Qtz fill breccia., Py veinlet-like from 257.0 to 258.5m. 260 260.2m Qtz-Py vein, 10cm in width 265 267.0 - 271.8m Weakly Py dissemi. 270 271.8 - 276.1m Py-Qtz fills breccia 275 276.1 - 281.0m Dacitic coarse tuff with pale blue glass patch (tuff?) 280 281.0 - 281.5m Pale blue glass rich rock 281.5 - 283.0m Strong silicified and Py dissemi. 281.5 - 283.0m Silicified rock 285 283.0 - 289.3m Volcanic breccia, partly pale blue glass patch contained 283.0 - 289.3m Qtz-Py dissemi. 289.3 - 289.8m Andesite 290 289.8 - 292.8m Py-Qtz fill breccia 289.8 - 297.55m Volcanic breccia with pale blue glass (292.8 - 292.9m Muddy rock or chloritized zone) 292.8 - 297.55m Py dissemi, very weak 295  $\Delta \setminus \Delta$ 

Date Started Sep. 16, 2000 Date Completed : Oct. 8, 2000

Easting: E 707.184

Northing: N 2,620.785 Elevation (mSL): 966

Azimuth: 155

Inclination: -55

		Lithology	Mineralization & Alteration
300 —	Δ΄、Δ΄		
_			
_		297.55 - 310.0m Volcanic breccia or tuff breccia with elongated glass patch. Frgaments are mainly	297.55 – 310.0m Py fills breccia
=		angular.	
305 —			
-	Δ΄、Δ΄		
-			306.4 - 309.0m Strong silicified
-	Δ΄、Δ΄		
-			
310 —	<u> </u>		•
-	\Q		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	310.0 - 315.7m Volcanic breccia with pale blue	310.0 – 315.7m Py lensy dissemination medium to strong
-	<u> </u>	glass	Strong
315			
313	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-		315.7 – 318.5m Mineralized zone, partly strongly	315.7 - 318.5m Py-Qtz veinlets and Py strong
		chloritized and weakly epidotized	dissemi
	V V V V		
320 -	\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	318.5 - 321.6m Silicified dacite(?)	318.5 - 321.6m Qtz-Py veinlets 3 to 4/m, but Py
-	V V V,		dissemi. very weak
			321.6 - 324.9m Py veinlets or lens abundant
	1333333	321.6 - 324.9m Chloritized tuff(?)	
	38888		
325 -		324.9 – 326.9m Dacite with qtz and green patch (intrusive)	
	V0000	222	326.9 - 328.1m Py lens abundant
	73333	326.9 - 328.1m Chloritized rock	320.9 S20.1III Fy letts abundant
	-\v\\\.		,
330 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√ 	
	-\v\v\v\		331.1m Qtz (-Py) vein 4cm wide
	-____\		
	-\v\v\v\		
205	- V V V		334.6 - 336.7m Py-Qtz fill fine-sized breccia
335 -		334.6 – 337.4m Lapillistone	
	-	337.4 - 330.7- Oblasticalidf	336,7 − 337.4m Py fills fine−sized breccia
	111111	337.4 – 339.7m Chloritized zone, a side of core consists of dacite	337.4 – 339.7m Abundant Py lens in chloritized
		339.7 – 339.9m Silicified breccia	zone
340 -	-1333333	339.9 - 341.25m Chloritized zone	339.7 - 341.25m Py-chlorite banded zone, partly
	1111111		cutted by Qtz-Py vein
		341.25 – 343.4m Sulfide ore	341.25 - 343.4m Py-Qtz banded ore
	<b>###</b>	343.4 - 343.9m Chloritized rock	343.4 - 343.9m Py banded dissemination
		343.9 - 345.0m Sulfide ore	343.9 - 345.0m Py-Qtz banded ore, cutted by Qtz
345 -	111111		vein (2cm in width)
		345.0 – 347.3m Chloritized rock	345.0 - 347.3m Py dissemi. strong
	7000		347.3 - 349.0m Banded ore with Py (-Cp) - Qtz, cutted by Qtz-Py veinlets
		347.3 - 349.0m Sulfide ore	349.5 - 350.0m Py-Qtz fill fine-grained breccia,
350 -	♦ • • • • • • • • • • • • • • • • • • •	349.0 - 349.5m Dacite (?)	cutted by Qtz-Py vein

Date Started Sep. 16, 2000

Date Completed : Oct. 8, 2000

Drilled by SGS/BRGM

Easting: E 707.184

Northing: N 2,620.785

Elevation (mSL): 966

Azimuth: 155

Inclination: -55

Mineralization & Alteration Lithology 350 350.0 - 350.3m Py lens or bands 350.3 - 350.8m Py dissemi 350.8 - 351.8m Qtz-Py banded ore or vein 351.8 - 352.55m Py lens and dissemi 349.5 - 350.0m Silicified lapillistone 350.0 - 350.8m Chloritized rock 350.8 - 351.8m Sulfide ore 352.55 - 353.4m Qtz-Py Vein or Sili. rock with Py 351.8 - 352.55m Chloritized rock 352.55 - 353.4m Silicified rock 355 353.4 - 355.1m Py lens and dissemi 353.4 - 354.6m Weakly laminated argillaceous tuff 355.1 - 355.5m Abundant Py lens in Strongly Py dissemi. tuff (?) 354.6 - 355.1m Chloritized rock 355.5 - 356.9m Strong Py dissemination 355.1 - 355.5m Tuff (?) 356.9 - 357.7m Py-Qtz banded ore 355.5 - 356.9m Silicified rock 360 357,7 - 359,9m Strong Py dissemi. 356.9 - 357.7m Sulfide ore 308.5 - 308.6m Strongly silicified and very strongly 357.7 - 359.9m Argillized muddy tuff with white elongated glass patch Py dissemi 359.9 - 362.0m Muddy tuff(?) with dark gray patch 308.6 - 380.0m Py dissemi. 365 362.0 - 363.6m Sheared black mudstone or tuffaceous mudstone 363.6 - 375.0m Muddy tuff or chloritized rock, weakly sheared 370 <- 370.9m Thin section: T-23 Strongly chloritized rhyodacitic tuff 375 375.0 - 380.0m Rhyodacitic tuff (?) 380

Date Started Sep. 05, 2000 Date Completed : Sep. 22, 2000

Easting : E 709.028

Northing: N 2,618.808 Elevation (mSL): 954

Azimuth: 300

Inclination: -55

		Lithology	Mineralization & Alteration
0 —	00000 00000 00000	0 – 4.9 m Sand and gravel	
-			
5 —		4.9 - 6.1m Brown weathered rock	
-			
10 —		6.1 – 42.1m Weathered rhyodacite, with flow-bands, consisting of whitish parts and reddish browm parts	9.4 – 9.8m Argillized and limonitized part (gossan)
-			
15 -			15.8 – 16.3m Dark brown gossan
20 -	_		19.7 – 21.1m Yellowish brown gossan
			21.1 - 23.75m limo. stained, soft (arg?)
25			23.75 - 23.85m Brown gossan
20			
30 -			
35 -			
40 -		(38.65m, 41.0m and 43.8m Water loss at drilling time)	
+∪ -			
	**************************************	42.1 – 42.9m Dark brownish gray basalt, weatered soft	42.9 - 67.5m Pyrite dissemi. (medium)
45 -		42.9 – 45.7m Rhyodacite, flow-banded, weathered	TEG 97.011 1 97.00 dissoliti. (modium)
		45.7 - 82.5m Whitish gray rhyodacite	48.0m Py-sphalerite-qtz-white clay vein (wd. 2cm)
50 -			48.8 - 49.0m limo veinlet (wd. 2mm)

Date Started Sep. 05, 2000

Date Completed : Sep. 22, 2000

Easting: E 709.028

Northing: N 2,618.808

Elevation (mSL): 954

Drilled by SGS/BRGM Azimuth: 300 Inclination: -55 Mineralization & Alteration Lithology 50 42.9 - 59.75m Weak silicified 45.7 - 82.5m Whitish gray rhyodacite 55 60 <- 60.0m Thin section : T-6 Meta-rhyodacitic fine 65 65.2 - 66.7m Glass part weakly argillized 66.7 - 67.5m Weakly silicified 67.5 - 70.6m Py dissemi. medium to strong, partly accompanied by Cp, rarely Sp, sili. 70 70.6 - 85.1m Silicified 70.6 - 71.0m Py dissemi medium 71.0 - 86.5m Py dissemi medium, weakly arg + sili 75  $\!<\!-$  77.0m Thin section : T-7 Meta-siltstone or meta-volcanic fine tuff of felsic composition 80 \$ \$ \$ \$ 😞 🌣 🛪 82.5 – 83.6m Dark green basalt (andesite?) 85 86.5 - 88.0m Py weak dissemi 83.6 - 90.2m Whitish gray rhyodacite 88.4m and 88.9m Cp-Sp-Qtz veinlets (wd. 1cm) L 90 88.0 - 90.0m Py dissemi weak to medium 90.2 - 95.3m Rhyodacitic tuff, pale greensih gray 90.0 - 99.1m Py dissemi weak <- 93.0m Thin section : T-8 Meta-rhyolitic to rhyodacitic tuff 95 95.3 - 96.0m Rhyodacitic lapilli tuff 96.0 - 99.1m Rhyodacitic tuff <- 99.5m Thin section: T-9 Reworked crystal rich ☆☆☆☆ 99.1 − 100.1m Basalt, dark gray 

Date Started Sep. 05, 2000

Date Completed : Sep. 22, 2000

Drilled by SGS/BRGM

Easting: E 709.028

Azimuth: 300

Northing: N 2,618.808

Inclination: -55

Elevation (mSL): 954

Mineralization & Alteration Lithology 100 100.1 - 110.0m Rhyodacitic tuff, pale gray 105 106.3 - 107.8m Py dissemi strong 107.8 - 110.0m Py dissemi medium 7777 110.7 - 113.3m Py dissemi weak 110.7 - 113.3m Rhyodacitic tuff 113.3 - 116.15m Basalt 115 -116.15 – 116.9m Rhyodacitic tuff, pale green 116.15 - 116.9m Py dissemi medium 🙈ଛଛଛା 116.9 − 117.5m Basalt 117.5 - 119.1m Rhyodacitic tuff 117.5 - 119.1m Py dissemi medium, 117.6 -118.0m strong Py dissemi ******* 119.1 - 119.7m Basalt 120 119.7 - 122.6m Py strong dissemi ( or network) 119.7 - 132.6m Rhyodacitic tuff 125 -126.7 - 128.0m Py-Qtz network, wd max 2cm 126.7 - 171.5m Py dissemi weak to medium 130 129.85 - 131.6m Py-Qtz network 132.6 - 135.1m Rhyodacite without flow-band L L L <- 133.5m Thin section : T-10 Meta-rhyolite 135 **** **** 135.1 - 136.8m Pale gray basait **☆☆☆** 137.9 - 139.7m Py-Qtz network 136.8 - 168.7m Rhyodacite, whitish gray 140 -141.5 - 142.2m Py (-Cp) - Qtz network, wd max 3mm 145 144.9 - 147.5m Py-Qtz network, wd max 5cm 150

Drill Hole No.: MJSU-10 Date Started Sep. 05, 2000 Date Completed: Sep. 22, 2000

Easting: E 709.028 Northing: N 2,618.808 Elevation (mSL): 954

Azimuth: 300 Inclination: -55 Drilled by SGS/BRGM

150	Lithology	Mineralization & Alteration
	ų.	149.5 - 152.8m Py-Qtz network
155 —		ASSOCIATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE PROPERTY AND ADMINISTRATION OF THE P
	ų	153.3 - 162.9m Strong Py dissemi or network
	ı	
100	ų	157.6 - 159.95m Very strong Pyrite dissemination (network)
160		
	ų	
	ų	
165 —		164.5 – 165.4m Py strong dissemi.
		165.4 - 175.7m Py weak dissemi.
	168.7 – 171.5m Rhyodacitic tuff, pale gray	
170		
	171.5 - 171.7m Qtz vein	
	171.7 - 174.7m Rhyodacite	
175	174.7 - 175.7m Dacitic (?) tuff	175.7 - 178.7m Py medium dissemi.
_	175.7 - 178.7m Rhyodacite	,
	-	
180	178.7 – 189.7m Rhyodacitic Iapilli tuff	178.7 - 183m Py dissemi weak to medium
		183 - 185.6m Py dissemi medium
185		
- \		185,6 - 200.0m Py dissemi weak to medium
- 2/2		
190		·
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	189.7 - 197.6m Rhyodacitic tuff	
-\/\/ -\/\/		
195		
1)))		
- 4 4	197.0 - 200.0III Milyodacide tuli breccia	
200		

Date Started Sep. 05, 2000

Date Completed : Sep. 22, 2000

Easting: E 709.028

Northing: N 2,618.808 Elevation (mSL): 954

Azimuth: 300

Inclination: -55

		191.1	MA' 1'- 1'- 2' Q A   A A
200 —	,,,,,,	Lithology	Mineralization & Alteration
-		200.0 - 202.7m Laminated tuff	200.0 – 202.7m Py medium impregnation along bedding
-	L :	202.7 - 203.5m Rhyodacite or tuff breccia	202.7 -205.8m Py weak dissemi
-		203.5 - 205.3m Rhyodacitic tuff	
205 —		205.3 - 205.8m Dacitic Iapilli tuff	
-		205.8 - 216.6m Dacitic tuff, small green patch tuff, rarely qtz fragments	
210 —		<- 210.0m Thin section : T-11 Highly sheared rhyolitic to rhyodacitic tuff	
215 —			
-			214.7 - 215.9m Qtz-Py veinlets
- 220 —		216.6 - 223.4m Qtz-eye dacitic tuff with small green patch, qtz eye 0.5 - 1cm in diameter	218.6 - 218.9m Qtz-Py veinlets
225 —	1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\ 1/\	223.4 – 226.9m Dacitic fine tuff, similar to laminated tuff	223.4 – 226.9m Py medium dissemi
- - - 230		226.9 − 234.5m Dacitic tuff with small green patch and partly Qtz−eye	226.9 - 239.1m Qtz-Py veinlets seldomly
- - -			
235 —			
245 —			239.1 - 245.5m Qtz-Py veinlets 2/m
- - - 250			245.5 - 251.6m Py weakly dissemi

Date Started Sep. 05, 2000

Date Completed : Sep. 22, 2000

Drilled by SGS/BRGM

Easting: E 709.028

300

Northing: N 2,618.808

Elevation (mSL): 954

Azimuth: 300 Inclination: -55 Mineralization & Alteration Lithology 250 250.1m Qtz-Py veinlets, 5cm in wide // // 251.1 - 251.6m Quartz dacite 1111111 251.6 - 261.2m Py-Qtz veinlets 2 or 3/m // //\\ 11 11 251.6 - 261.2m Dacitic tuff, partly containing small 11 11 green patch and qtz-eye //\\ //\\ 255 260 V _ V V_VV 261.2 - 270.5m Py(-Qtz) veinlets 1 or 2/m 261.2 - 270.5m Dacite with rarely Qtz-eye or Qtz , v v phenocrysts , v _v v 265  $|\mathring{\mathbf{v}} \mathbf{v} \mathring{\mathbf{v}} \mathbf{v}|$ <- 265.0m Thin section: T-12 Rhyodacitic crystal-rich tuff  $\vee \bigvee^{\bullet} \vee$  $\vee_{\vee}^{\bullet}\vee$ 270 270.5 - 272.0m Dacitic tuff with small green patch 272.0 - 273.5m Dacitic fine tuff 11 11 275 // ·. // // 273.5 - 276.2m Dacitic tuff with small grenn patch 273.5 - 276.2m Py veinlets 3 or 4/m , //``//` 276.2 - 277.7m Dacitic coarse tuff // // //\\ //\ 277.7 - 284m Dacitic tuff, partly containing small // // green patch 280 //\\/\\ . //\\ //\\ //\ //\ // // 283 - 284m Iregular-formed Py veinlets L 284 - 285.1m Rhyodacite 285 //\\ //\\ 285.1 - 286.6m Dacitic tuff //\`\ //\`\ 286.9 - 287.0m & 287.9 - 288.0m Laminated Qtz-286.6 - 288.8m Dacitic tuff, partly muddy Py zones //\\ 288.8 - 290.9m Dacitic tuff or dacite 11 11 290 // // 290.9 - 291.4m Rhyodacitic fine tuff 291.4 - 293.6m Seldomly Qtz-Py veinlets 291.4 - 293.6m Tuff 295 293.6 - 304.4m Dacitic tuff with small green patch // //^N , // // and Qtz-eve /// // 297.5 - 298.5m Py weakly dissemi 

Drill Hole No.: MJSU-10 Date Started Sep. 05, 2000 Date Completed : Sep. 22, 2000

Easting: E 709.028 Northing: N 2,618.808 Elevation (mSL): 954

Azimuth : 300 Inclination : -55 Drilled by SGS/BRGM

		Lithology	Mineralization & Alteration
300 —	1/11/11		
-	11/1/1/1		
_	111111111111111111111111111111111111111		
	1/11/1/11		301.0 - 302.4m Qtz veinlets and Py weakly dissesmi
-	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		
-	// //		
305 —	// //		
	1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/		
-	// //	304.4 - 309.95m Dacitic tuff without green patch,	
-	// //	partly Qtz-eye bearing	307.0m Qtz vein, 10cm in width
-	///////////////////////////////////////		
	111111111111111111111111111111111111111		
	// //		
310 —	V, V, V		309 - 309.95m Py weakly dissemi., fine-sized
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	309.95 - 314.3m Dacite, grayish green	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Section Busines, grayion green	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		309.95 - 314.3m Py dissemi very weakly
_	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
315 —	// ///		
_	11 11		
	1111 1111	314.3 – 330 7m Dacitic tuff, partly Qtz-eye bearing	
-	11 11		
-	11 11		317.5 - 318.95m Py weak dissemi
-	111111111111111111111111111111111111111		
320	//\/\		
320	11/1/11		
	1/11/11/11		
-	// //		
	111111111111111111111111111111111111111		
_	1/11/11		321.6 - 350.4m Py weakly dissemi
325 —	111111111111111111111111111111111111111		
-	/// ////		
-	// //		
	1111 1111		
_	111111111111111111111111111111111111111		
-	///////////////////////////////////////		
330 —	111111111111111111111111111111111111111		
_	V V 1		
	v.\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
_	Ĭvvvv	330.7 - 340.2m Dacite	
-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-	, v v v v		
335 —	11/ 1/ 1		
550	· · · · · · · ·		
-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
-	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-	<u>``</u> v.`v.		
_	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
	<u>``</u> , v <u>`</u> , v .		
340 —	× // //		
-	1111 1111		
-	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		
	// //		
-	11/11/11	340.2 - 350.4m Dacitic tuff	
-	11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1		
345 —	// //		
	/// ///		
_	111111111111111111111111111111111111111		
-	1/11/11/11		
-	11.11.		
_	111111111111111111111111111111111111111		
250	11/1/11		
350 —	1111111		1

Date Started Sep. 21, 2000 Date Completed : Oct. 2, 2000

Easting: E 710.023 Northing: N 2,618.581 Elevation (mSL): 963

Azimuth: 150

Inclination: -55

		Lithology	Mineralization & Alteration
0 -			
	<u> </u>	Sand	
		05.50.300	!
_		2.5 - 5.3m Whitish brown weathered rock	
5 -		5.3 – 6.8m Fractured and weathered rock, brown	
		5.5 S.SIN Fractured and Weathered Took, Slowin	
	<b>│</b>	6.8 – 11.9m Strong weathered rock, brown	
10 -	$1 \approx \approx$		
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	- V V V		
			110.050.1: 3
15 -	-____\	11.9 - 29.8m Weathered dacite (?), whitish brown	11.9 - 25.0m Limonite veinlets 1 to 2/m
	-___		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
20 -	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
25 -			
	], , , ,	25.1m and 29.6m Water loss at drilling time	25.0 - 29.8m Limonite dissemination
			25.0 - 31.8m Quartz-Limonite veinlets
20	-\v\v\v\		
30 -			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	29.8 – 35.9m Grayish green dacite, small quartz	29.8 - 35.9m Weakly disseminated pyrite
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	phenocryst bearing	
35 -			31.8 - 65.5m Qtz-Py veinlets 2 to 3/m
	-\v\v\v\		35.9 - 96.2m Py dissemination is very weak to weak
		Notation and the second	
40 -			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		V	
	-___\		
45 -			
		1	
	-____\	1	
50	V V		

Date Started Sep. 21, 2000 Date Completed : Oct. 2, 2000

Easting: E 710.023 Northing: N 2,618.581 Elevation (mSL): 963

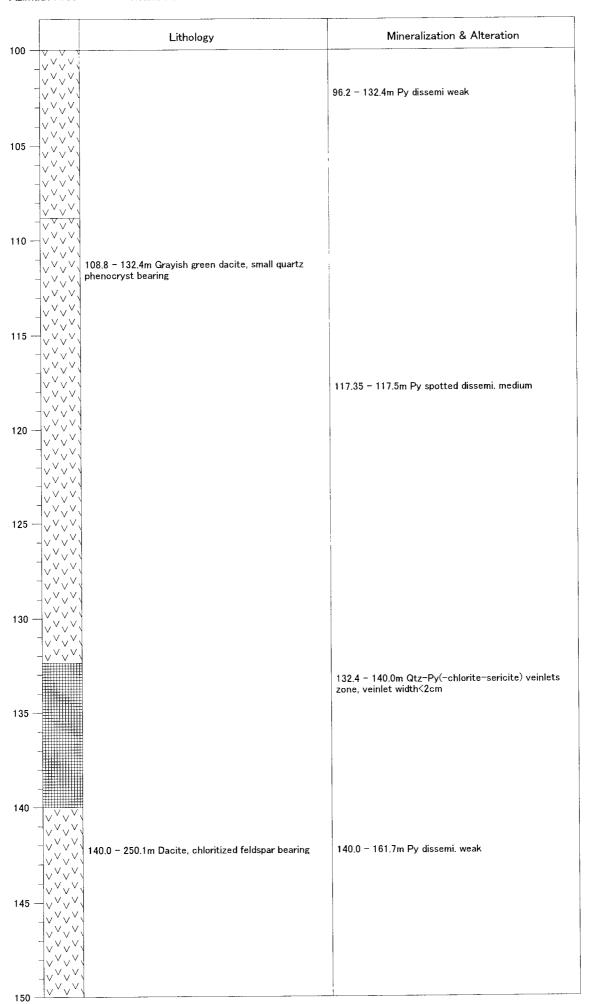
Azimuth: 150

Inclination: -55

			-
50		Lithology	Mineralization & Alteration
50 -	^^^		
			:
	-\^\^\		
55 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	55.0 – 65.5m Pale greenish gray dacite, small quartz	
	1, , , , ,	phenocryst bearing	
	1000		
	1, , , , ,	<- 57.6m Thin section : T-13 Rhyodacitic tuff or lava	
	-\v\v\\	lava	
60			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1, , , , ,		
٥.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
65 -			
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	___\\		27. 70.0 0. 11. 2 11.
		65.5 – 77.8m Grayish green dacite, chloritize feldspar bearing	67 – 70.2m Qtz-chlorite veinlets
70 -			
	-\'\'\\\		
	-		71 – 75m Py spotted dissemi. weakly
75 -		<- 75.3m Thin section : T-14 Rhyodacitic tuff or	
	7,,,,,	lava	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
			77.8m Barren Qtz vein 3cm in width
80 -	V V V V	77.8 – 80.0m Grayish green dacite, large chloritized feldspar rich	
	-\v\v\\ -\v\v\\	(81.7 - 83.6m Sheared)	
	-\v\v\	80.0 – 96.2m Grayish green dacite, small quartz	
	4000	phenocryst bearing, partly feldspar	
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
85 -	$\dashv \lor \lor \lor \lor \lor \lor$		
	$\exists \lor \lor \lor \lor$		
00	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
90 -			89.5 – 90.7m Py spotted dissemi
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
95 -	$\dashv \lor \lor \lor \lor \lor \lor$		
	4, 4, 4,	96.2 – 108.8m Grayish green dacite, chloritized	96.2 - 108.8m Qtz-Py veinlets 2 to 3/m,
	-\v\v\\ \v\v\\	feldspar bearing	width<1cm
100 -	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		

Date Started Sep. 21, 2000

Date Completed : Oct. 2, 2000


Easting: E 710.023

Northing: N 2,618.581

Elevation (mSL): 963

Azimuth: 150

Inclination: -55



Drill Hole No.: MJSU-11 Date Started Sep. 21, 2000 Date Completed : Oct. 2, 2000

Easting: E 710.023 Northing: N 2,618.581 Elevation (mSL): 963

Azimuth: 150 Inclination: -55 Drilled by SGS/BRGM

<del></del>		
150	Lithology	Mineralization & Alteration
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
1,,,,,	140.0 - 250.1m Dacite, chloritized feldspar bearing	
-	V 10.0 2007 M 2007 O 1007 O 2007 O 2007 M 20	
-\v\v\		152.4 - 155.7m Py-Qtz veinlets 5/m, partly
$155 - \bigvee_{\vee} \bigvee_{\vee} \bigvee_{\vee} \bigvee_{\vee}$		accompanied with Cp?
-\v\v\v\		155.7 – 169.5m Py weak to medium dissemi.
-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
160		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
]		161.7 - 186.5m Py dissemi. medium
		161.7 - 162.4m Qtz-Py veinlet zone
165 —		163.6 - 165.8m Py-Qtz veinlet zone
		103.0 103.011 Fy Qt2 veinlet 2016
-		
-\v\v\v\		168.8 - 169.5m Qtz-Py veinlet zone
170		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
]		
175		
-\v\\\		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		177.8m Py-Qtz vein, 20cm wide
-\\\\\\\		
180		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-\v\v\		182.0-182.4m Py-Qtz veinlets, high angle
7		
185 — \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		169.5 - 186.5m Py spotted dissemi. weak to medium
-\		186.5 – 201.2m Py spotted dissemi, weakly
-		Joseph Land Community of the Community o
190		182.4 - 201.2m Qtz-Py veinlets 1 to 2/m
-\v\v\v\		
-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	<b>\</b>	
105 JVVVV		
195		
]v,v,v,	<b>\</b>	
1,,,,,		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	√	
200 - VVV	\	

Date Started Sep. 21, 2000 Date Completed : Oct. 2, 2000 Drill Hole No. : MJSU-11

Northing: N 2,618.581 Elevation (mSL): 963 Easting : E 710.023

Drilled by SGS/BRGM Inclination: -55 Azimuth: 150

		Lithology	Mineralization & Alteration
200 –	V V V		
			:
	`\\\\\\	140.0 – 250.1m Dacite, chloritized feldspar bearing	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
205 -	<b>┤</b> `, ∨ `, ∨ `,		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\`\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	\ <u>`</u> \\\\\		
210 -	-\^\\\		
	-		
215 -	$- \langle \langle \langle \rangle \rangle \rangle$		
	- $$ $$ $$		215.8m Qtz-Py veinlet width 2cm
	-___		
			216.5 - 220.5m Py weakly dissemi
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
220 -			
	- 000		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
225			201.2 - 250.1m Qtz-Py veinlets 1 to 2/m, partly Py
	1, , ,		dissemi. very weakly
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
230	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	V V V		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	J	
	\v\v\v\	,	
235		\	
200			
	V V V V		
0.40	7, , , ,		
240	\v\v\		
	7~~~		
	7, , , ,	, )	
	7, ~, ~	$\sqrt{}$	
	7, 7, 7		
245	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	,	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\v\v\		
	-___\		
250		<u> </u>	

Date Started Oct. 2, 2000

Date Completed : Oct. 11, 2000

Easting: E 709.939

Northing: N 2,617.550 Elevation (mSL): 965

Azimuth: 270

Inclination: -55

		Likelen	Minary I and a good a good a good a good and a good and a good a good and a good and a good a
0 -	100.00	Lithology	Mineralization & Alteration
		0 - 1.2m Gravel	ı
		1.2 - 6.2m Grayish green andesite, sheared at 3.8-	
		5.8m, 6.9-7.4m, and 9.7-10.0m	
5 -			
•			
		6.2 - 8.1m Porphyritic andesite	
10 -			
		8.1 - 14.8m Andesite	
	- 2222		
15 -		14.8 – 15.9m Porphyritic andesite	
	2222	· ·	
		15.9 – 131.1m Andesite, dark greenish gray	
	2000		
20 –			19.6 – 20.7m Limonite weakly disseminated
·			
25 -			1.2 – 141.2m Limonite along crack
			7.2 141.2m Limonics dong stack
30 –			
35 -			
		36.0 − 37.8m sheared zone	
40 -			
		1	
	700000	1	
45	70000		
45 -			
		49.5 - 51.0m charged zone	
50 -		48.5 - 51.0m sheared zone	

Drill Hole No.: MJSU-12 Date Started Oct. 2, 2000 Date Completed : Oct. 11, 2000

Easting: E 709.939 Northing: N 2,617.550 Elevation (mSL): 965

Azimuth : 270 Inclination : -55 Drilled by SGS/BRGM

		Lithology	Mineralization & Alteration
) -	2000		
	100000		
	10000	450 4044 A 1 1 Library with many	
		15.9 – 131.1m Andesite, dark greenish gray	i I
			•
	100000		1
5 -			:
,	2222		
	2222		
			58 - 59m Py-Qtz veinlets a few
0 -	_^^^^^		
•			
	12222		
5 -			62.7 - 00m Dr. weekhi dinaami
		1	63.7 - 88m Py weakly dissemi
		64.6 - 67.8m sheared zone	
		<-69.3m Thin section : T-24 Microdiorite	
0 -		OS.SM TIME SOCION : ( 2) Misposis	
U			
	1		
		‡	
	2222		
5		1	40 4440 15 35 35 35 35
J			1.2 - 141.2m Limonite along crack
		75.7 - 75.9m sheared (water loss at drilling time)	
		1	
	70000	1	
	1222	78.7m Water loss at drilling time	
30		, ,	
	2000	1	
		1	
		3	
	^ ^ ^ ^	1	
		1	
		1	
35	100000	1	
- •		3	
	^^^^	84.1 - 87.7m weakly sheared	
		1	
		1	
		1	
90	4		88 - 93.7m Rarely Py dissemi
	^^^	:1	00 - 30./III Marely Fy ulsselli
		: 3	
		:1	
	7222	:1	
		3	
95		:1	00.7 100.0 D
JJ			93.7 - 102.0m Py weakly dissemi
	2222		

Date Started Oct. 2, 2000

Date Completed : Oct. 11, 2000

Easting: E 709.939

Northing: N 2,617.550 Elevation (mSL): 965

Azimuth: 270

Inclination: -55

	Lithology	Mineralization & Alteration
		1
		i
1222	1	
2222	15.9 – 131.1m Andesite, dark greenish gray	
	103.1 − 103.6m sheared zone	
-   ^^^^		
5	1	
2222		
72222	1	
	1	
^ ^ ^ ^		
o -   ^ ^ ^ ^ ^ ^ ^	1	
	3	1100 1117 D II D II I I
		110.6 - 111.7m Partly Py dissemi strong
1222	1	111.7 - 117.2m Py dissemi very weak
10000		
	]	
5	1147m 120 2m and 124 25m Water learner delling	
2222	114.7m, 120.2m and 124.85m Water loss at drilling time	
^^^	1	
^^^^	117.2 - 119.5m sheared	
	1	
10000		
	1	
10000		
^^^^^	1	
	1	
5 —	123 – 128.8m sheared	124.8 - 131.1m Py dissemi weak
2222	1	
70000	1	
42222		
2222	1	
70000	1	
o ⊣∻∻∻∻	1	1.2 - 141.2m Limonite along crack
		1.2 141.2m Emonics doing order
~~~	7	
-\v^v		
	131.1 - 140.1m Dacitic tuff or Dacite, whitish	131.1 - 140.1m Py lens-formed veinlets 3 to 5/m
\ <u>``</u> v <u>`</u> `v	greenish gray	
5 – , , , , , ,		
	<−135.7m Thin section : Meta-rhyodacite tuff or	
4~,`~.`	lava	
\v_\^\	\	
7~~~	\	
	\\	
, - \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	v	
// //		
11.11	140.1 – 143.1m Dacitic to andesitic tuff	140.1 - 143.1 Py lens-formed veinlets abundant
11.11	140.1 - 143.1m Dacitic to andesitic tuff	140.1 - 143.1 Py lens-formed veinlets abundant
11.11	140.1 - 143.1m Dacitic to andesitic tuff	140.1 - 143.1 Py lens-formed veinlets abundant
11.11	140.1 - 143.1m Dacitic to andesitic tuff	140.1 - 143.1 Py lens-formed veinlets abundant
0 -		140.1 - 143.1 Py lens-formed veinlets abundant
- // // // // // // // // // // // // //	140.1 – 143.1m Dacitic to andesitic tuff 143.1 – 147.6m Dacite or andesite	140.1 - 143.1 Py lens-formed veinlets abundant
- // // // // // // // // // // // // //	143.1 - 147.6m Dacite or andesite	140.1 - 143.1 Py lens-formed veinlets abundant
- // // // // // // // // // // // // //		140.1 - 143.1 Py lens-formed veinlets abundant
- // // // // // // // // // // // // //	143.1 - 147.6m Dacite or andesite Water loss at drilling time from 144.7m to 147.7m	140.1 – 143.1 Py lens-formed veinlets abundant
- // // // // // // // // // // // // //	143.1 - 147.6m Dacite or andesite Water loss at drilling time from 144.7m to 147.7m	140.1 – 143.1 Py lens-formed veinlets abundant

Date Started Oct. 2, 2000

Date Completed : Oct. 11, 2000

Easting: E 709.939

Northing: N 2,617.550 Elevation (mSL): 965

Azimuth: 270

Inclination: -55

150.8 – 175.1m Andesite 150.8 – 160.4m Py veinlet (lens-formed) 2 to 4/m 160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.8m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 186.8 – 198.1m Py veinlets 1 to 2/m 186.8 – 198.1m Py veinlets 1 to 2/m	_		Lithology	Mineralization & Alteration
180.4 - 163.3m Py weak dissemi and varielts 183.3 - 185.9m Py fills fractures of rock 171.5 - 172.6m Py varielts 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m	0 –	11_11_11_1		
180.4 - 163.3m Py weak dissemi and varielts 183.3 - 185.9m Py fills fractures of rock 171.5 - 172.6m Py varielts 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m		10000	· ·	•
180.4 - 163.3m Py weak dissemi and varielts 183.3 - 185.9m Py fills fractures of rock 171.5 - 172.6m Py varielts 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m				1500 1604- Divisiplet (lang-formed) 2 to 1/m
160.4 - 163.3m Py weak dissemi and veinlets 163.3 - 165.9m Py fills fractures of rock 171.5 - 172.8m Py veinlets 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Gtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 188.8m Andesitic tuff 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite		2222	150.8 - 1/5.1m Andesite	150.8 - 160.4m Py Veinlet (lens formed) 2 to 47 m
160.4 - 163.3m Py weak dissemi and veinlets 163.3 - 165.9m Py fills fractures of rock 171.5 - 172.6m Py veinlets 4/m 171.9 - 172.8m Py dissemi medium 178.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Gtz-foldspar eye andesite 186.8 - 188.8m Andesitic tuff 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m 186.8 - 198.1m Py veinlets 1 to 2/m				•
180.4 - 163.3m Py weak dissemi and veinlets 163.3 - 165.9m Py fills fractures of rock 171.5 - 172.8m Py veinlets 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 186.8 - 198.1m Py veinlets 1 to 2/m				
180.4 - 163.3m Py weak dissemi and veinlets 163.3 - 165.9m Py fills fractures of rock 171.5 - 172.8m Py veinlets 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 186.8 - 198.1m Py veinlets 1 to 2/m	_			
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Otz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Otz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Otz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
160.4 – 163.3m Py weak dissemi and veinlets 163.3 – 165.9m Py fills fractures of rock 171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Otz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite	_	10000		
163.3 - 165.9m Py fills fractures of rock 171.5 - 172.6m Py veinlets 4/m 171.9 - 172.8m Py dissemi medium 175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 188.8m Andesitic tuff 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		70000		160.4 - 163.3m Py weak dissemi and veinlets
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissermi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite				163.3 – 165.9m Py fills fractures of rock
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite	-			
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 187.1 – 192.7m Py dissemi weak to medium				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 187.1 – 192.7m Py dissemi weak to medium		222		
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 189.1 – 192.7m Py dissemi weak to medium		10000		
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 189.1 – 192.7m Py dissemi weak to medium				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 180.1 – 192.7m Py dissemi weak to medium				
171.5 – 172.6m Py veinlets 4/m 171.9 – 172.8m Py dissemi medium 175.1 – 185.2m Andesitic tuff 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 180.1 – 192.7m Py dissemi weak to medium				
171.9 – 172.8m Py dissemi medium 171.9 – 172.8m Py dissemi medium 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium) -			
171.9 – 172.8m Py dissemi medium 171.9 – 172.8m Py dissemi medium 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium			1	
171.9 – 172.8m Py dissemi medium 171.9 – 172.8m Py dissemi medium 180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium				
185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weinlets 1 to 2/m 186.8 – 198.8m Andesitic tuff 186.8 – 223.1m Andesite 180.0 – 185.2m Py veinlets 1 to 2/m 186.8 – 198.1m Py weinlets 1 to 2/m 186.8 – 198.1m Py veinlets 1 to 2/m		70000	1	171.5 - 172.6m Py veinlets 4/m
175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 186.8 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium		1222		171.9 - 172.8m Py dissemi medium
175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 186.8 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium				
175.1 - 185.2m Andesitic tuff 180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 186.8 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium	_			
180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium	o -	// // //		
180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium			1	
180.0 – 185.2m Py veinlets 1 to 2/m 185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		11/1/11		
180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium			175.1 - 185.2m Andesitic tuff	
180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium			1	
180.0 - 185.2m Py veinlets 1 to 2/m 185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium		-/////		
185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 188.8m Andesitic tuff 186.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium	٠ -			
185.2 – 186.8m Qtz–feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium	,	11 11 11		
185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		-""""	1	
185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		- 11 11 11	1	180.0 - 185.2m Pv veinlets 1 to 2/m
185.2 – 186.8m Qtz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		11/11/11		100.0 100.2hi i y voimeta i te 2/
185.2 – 186.8m Qtz-feldspar eye andesite 186.8 – 188.8m Andesitic tuff 186.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium			1	
185.2 – 186.8m Qtz-feldspar eye andesite 185.2 – 198.1m Py weak dissemi 186.8 – 188.8m Andesitic tuff 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium			1	
185.2 - 186.8m Qtz-feldspar eye andesite 185.2 - 198.1m Py weak dissemi 186.8 - 188.8m Andesitic tuff 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium	5 -		1	
186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium		222	1	
186.8 - 188.8m Andesitic tuff 186.8 - 198.1m Py veinlets 1 to 2/m 188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium		7222	185.2 – 186.8m Qtz-feldspar eye andesite	185.2 - 198.1m Py weak dissemi
186.8 – 188.8m Andesitic tuff 186.8 – 198.1m Py veinlets 1 to 2/m 188.8 – 223.1m Andesite 190.1 – 192.7m Py dissemi weak to medium			1	
188.8 - 223.1m Andesite 190.1 - 192.7m Py dissemi weak to medium			1,000 1000 4 1 111 155	1969 - 1991 - Dy vainlate 1 to 2/m
190.1 – 192.7m Py dissemi weak to medium] 186,8 − 188,8m Andesitic tuff	180.0 - 180.1m Py veiniets 1 to 2/m
190.1 – 192.7m Py dissemi weak to medium		7.2.2.2	1	
190.1 – 192.7m Py dissemi weak to medium 5 —	0 -	$ ^{^{\circ}}$ $^{^{\circ}}$ $^{^{\circ}}$	1999 - 223 1m Andesite	
5 — () () () () () () () () () (7 700.0 220.1111 Alliquistics	
5—————————————————————————————————————		2222	1	
5—————————————————————————————————————		10000	3	190.1 - 192.7m Py dissemi weak to medium
		48888	}	
		^ ^ ^ ^	1	
			3	
	5	$\dashv \hat{\hat{\otimes}} \hat{\hat{\otimes}} \hat{\hat{\otimes}}$	<u> </u>	
			1	
			3	
		12222		
		12222	1	
			3	
			· []	

Date Started Oct. 2, 2000

Date Completed : Oct. 11, 2000

Easting: E 709.939

Northing: N 2,617.550 Elevation (mSL): 965

Drilled by SGS/BRGM Azimuth: 270 Inclination: -55 Mineralization & Alteration Lithology 200 188.8 - 223.1m Andesite 205 210 211.0 - 212.8m Py lens-formed veinlets 5/m 212.8 – 220.0m Py lens-formed veinlets 1 to 2/m215 220 225 224.5 – 247.3m Py veinlets 1 to 2/m223.1 - 247.3m Dacite 227.75 - 227.95m Qtz-Py(-Cp) vein 230 231.6 - 232.0m Silicified brecciated part, pyrite strong dissemi 235 240 245 247.3m Qtz(-Py) vein, 10cm in width 247.3 - 250.1m Porphyritic andesite

Drill Hole No.: MJSU-13 Date Started Oct. 9, 2000 Date Completed : Oct. 23, 2000

Northing: N 2,617.120 Elevation (mSL): 965 Easting : E 709.835

Drilled by SGS/BRGM Azimuth: 330 Inclination: -55

	Lithology	Mineralization & Alteration
	0 – 0.9m Sand and Fragments of andesite	
	0.9 – 6.0m Dark greenish gray andesite, weakly fractured	0.9 - 54.4m Limonite along crack
	6.0 - 6.65m Limonitized rock	6.0 - 6.65m Limonitized rock
	6.65 − 10.8m Porphyritic andesite	0.0 - 0.05m Limoniuzeu fock
	10.8 – 17.2m Rhyodacitic tuff	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	16.05m Water loss at drilling time	
		17.2 – 17.7m Weakly silicified zone
	epidotized	
	24.0m Water loss at drilling time	
	→	
->>> ->>> ->>>	32.3 - 41.0m Rhyodacitic tuff, partly epidotized	
	34.0m Water loss at drilling time	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	41.0 - 52.6m Rhyodacitic tuff with mega-sized	
-\/\/ -\/\/ -\/\/	quartz-eye <-41.9m Thin section : Meta-rhyodacitic lapilli tuff	43.4 – 44.0m Py (–limo) dissemi weak
		43.4 - 52.6m Py veinlets 1 to 2/m
1///		

Date Started Oct. 9, 2000

Date Completed : Oct. 23, 2000

Easting: E 709.835

Northing: N 2,617.120

Elevation (mSL): 965

Drilled by SGS/BRGM Azimuth: 330 Inclination: -55 Lithology Mineralization & Alteration 50 52.6 - 59.1m Rhyodacitic tuff 59.1 - 60.2m Rhyolitic tuff 60 60.2 - 62.9m Rhyolite 60.2 - 62.9m Py weak dissemi <-61.8m Thin section: Meta-rhyolite crystal tuff or lava 62.9 – 64.8m Rhyolitic lapilli tuff 65 64.8 - 66.0m Rhyolite 64.8 - 66.0m Py weakly spotted and veinlets 66.0 - 69.0m Weakly silicified 66.0 - 69.0m Rhyolite with quartz-eye <-67.1m Thin section : Mylonitized felsic rock 69.0 - 88.4m Rhyodacite 69.0 - 86.0m Py very weakly dissemination, weakly silicified 71.3m Py lens-like veinlet, 2cm in width 72.1 - 72.7m Strongly silicified and Py weakly dissemi 75 74.1m Py veinlets (lens-like) with chlorite, 1nm wide 80 <-82.9m Thin section: Meta-rhyodacitic tuff 85 1/2 1/2 1/2 88.4 - 89.5m Fault clay and sheared silicified rock 90 89.5 - 98.1m Py veinlets 5/meter, weakly Py dissemi 89.5 - 98.1m Chloritized rock 91.8m Py veinlets zone, 10cm in width 95

Date Started Oct. 9, 2000

Date Completed: Oct. 23, 2000

Drilled by SGS/BRGM

Easting: E 709.835

Northing: N 2,617.120 Elevation (mSL): 965

Azimuth: 330

Inclination: -55

Lithology Mineralization & Alteration 100 98.1 - 109.0m Andesite, chloritized 98.1 - 182.5m Py weak dissemi 98.1 - 109.0 m Qtz-Py veinlets 1 to 2/m105 110 109.0 - 122.1m Andesite, silicified (leached) 115 114.2 - 117.55m Water loss at drilling time 120 122.1 - 123.7m Chloritized rock with quartz-eye 122.1 - 123.7m Py-Qtz veinlets 1 to 2/m 125 123.7 - 129.0m Andesite, silicified (leached) 129.0 - 130.9m Py veinlets 5/meter 129.0 - 130.9m Chloritized rock 130 130.9 - 132.4m Dacitic tuff, silicified 132.4 - 137.2m Py veinlets 3 to 5/m 135 132.4 - 137.0m Chloritized andesite. Water loss at drilling time 137.0 - 139.4m Dacite (?), chloritized 140 139.4 - 142.2m Rhyodacite 141.15 - 142.2m Py dissemination weak to medium 142.2 - 145.2m Chloritized dacite(?) 142.2 - 145.2m Py veinlets 1 to 2/m 145 145.2 - 147.4m Rhyodacite, chloritized 147.4 - 148.7m Rhyodacite 148.7 - 149.7m Py veinlets 5/m 148.7 - 149.7m Chloritized rock

Date Started Oct. 9, 2000

Date Completed : Oct. 23, 2000

Easting : E 709.835

Northing: N 2,617.120 Elevation (mSL): 965

Azimuth: 330

Inclination: -55

50 —		Lithology	Mineralization & Alteration
- -		149.7 - 153.7m Rhyodacite, 151.1m Wd. 10cm chloritized zone	151.1m Chloritized zone with Py veinlets and dissemi
-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		153.0 - 153.7m Py medium dissemination
55		153.7 - 155.1m Chloritized rock	153.7 - 155.1m Py dissemi
-		155.1 - 159.3m Rhyodacite	155.1 - 159.3m Py veinlets 1/m
60		159.3 - 160.6m Chloritized rock	
-	L L (160.6 - 182.5m Rhyodacite	
- 65 —			
70 —		<-170.0m Thin section : Meta-rhyolite crystal tuff	
_		or lava	
75 —			
_			
30 —			
-			182.5 - 183.0m Qtz-Py or -Limonite veinlets
- 35 —	18888	183.0 - 184.0m Rhyodacite 184.0 - 184.6m Sheared rhyodacite	184.6 - 188.4m Py dissemi medium
_		184.6 - 188.4m Chloritized rock	TOTAL TOUTH I J GISSONI INCOMMI
90		188.4 – 215.2m Rhyodacite	188.4 - 196.4m Py dissemi very weak
-			
95 —			
-	50000		
_ 00			

Date Started Oct. 9, 2000

Date Completed : Oct. 23, 2000

Easting: E 709.835

Northing: N 2,617.120 Elevation (mSL): 965

Azimuth: 330

Inclination: -55

00		Lithology	Mineralization & Alteration
00 —	LL		197.3 - 215.2m Py veinlets 1 to 2/m, partly Py
			weak dissemi
	L L		
1			
)5 —	L 4		
	L L		
-	L 4		
+			
10 —	L L		
+	L 4		
4			
	L L		
4			
15 —			
	MARIE		
	}}}}}		015 0 010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7		215.2 - 219.0m Chlorotized (-silicified) rock	215.2 - 219.0m Py veinlets abundant
1	}}}}}		
1	L L		
20 —	L L	219.0 - 222.7m Rhyodacite	
+			219.0 - 222.7m Py veinlets 3 to 4/m
-	L .		
1	333333		
-	333333	222.7 – 225.1m Chloritized rhyodacite	222.7 - 225.1m Py veinlets 5/m
225	333333	ELL.	
_			
		225.1 - 250.0m Andesite	
230			
_			
_			
235 —			
_			

_			
_			
240 —			
240			
-			
-			
-			
-			
245 —			
-			244.6 - 250.0m Py veinlets 1 to 2/m
-	^^^^	1	
_	2000		
-		1	

Date Started Sep. 04, 2000

Date Completed : Sep. 14, 2000

Drilled by SGS/BRGM

Easting: E 708.595

Azimuth: 245

Northing: N 2,617.720 Inclination: -55

Elevation (mSL): 964

Mineralization & Alteration Lithology 0 - 1.0 m Strongly wethered rock <u>~</u>____ \triangle Δ Δ Δ 1.0 - 19.0m Rhyodacitic tuff breccia, pale greenish \triangle gray 2.6 - 4.0m Weakly spotted limonite (hematite) in \wedge \triangle \triangle silicified breccia Δ \triangle \triangle 5 Δ Δ \triangle Δ \triangle \triangle Δ Δ \triangle Δ \triangle \triangle \triangle Δ \triangle \triangle ۵ ۵ \triangle 10 8.9 - 13.5m Quartz-calcite-sericite-chlorite veinlet, Δ wd <1 cm Δ 12.0 - 12.2m Sheared and wethered zone \triangle \triangle \triangle 13.5 - 14.2m Hema+limo. network + stained \triangle \triangle 15 \triangle 14.2 - 18.0m Weakly spotted py - limo aggregates in Δ Δ \triangle breccia \triangle \wedge Δ \wedge \triangle 18.0m Spotted py aggregates in matrix Δ 19.05m and 21.85m Water loss at drilling time 19.0 - 22.7m Partly py spotted aggregates in breccia 20 (max. 3mm) 19.0 - 22.7m Rhyodacitic lappili tuff 22.7m Quartz veinlet wd. 1cm parallel to bedding 22.7 - 22.9m Rhyodacitic tuff \triangle \triangle \triangle 23.7m Py aggregates in lens form in matrix (wd 1cm, 22.9 - 36.9m Rhyodacitic tuff breccia, pale greenish \triangle \triangle Δ length 3cm) 25 - \triangle Δ \triangle 25.8m Py aggregates in lens form in matrix (wd 0.7cm) \triangle \triangle \triangle Δ \triangle \triangle \triangle \triangle \triangle \triangle 30 \triangle Δ \triangle 30.6m Quartz venlet cutted by py-cp-qtz veinlet (wd. Δ \triangle \triangle \triangle Δ \triangle 33.0m - Very weakly py dissemi. in matrix Δ \triangle Δ 35 \triangle 36.9 - 60.2m Partly py aggregates mainly in matrix 36.9 - 60.2m Rhyodacitic lapilli tuff, pale green 40 45

Date Started Sep. 04, 2000

Date Completed : Sep. 14, 2000

Drilled by SGS/BRGM

Easting: E 708.595

Northing: N 2,617.720

Elevation (mSL): 964

Inclination: -55 Azimuth: 245 Mineralization & Alteration Lithology 50 55 60 60.2 - 67.8m Partly py (-cp) aggregates in matrix, angular, cutted by calcite micro-veinlet 60.2 - 68.0m Rhyodacitic tuff breccia, pale green \triangle \triangle \triangle \triangle \triangle \triangle \triangle \triangle 65 \triangle \triangle \triangle Δ \triangle \triangle Δ \triangle 67.8 - 68.3m Py-cp aggregates in breccia and matrx 68.0 - 70.0m Rhyodacitic lapilli tuff, pale green 70 69.0 - 69.5m Py-cp spotted aggregates in veinlet form (wd. 0.5-1cm) 70.0 - 72.9m Basalt (Micro-diorite?), dark green 72.9 - 75.7m Rhyodacitic lappilli tuff 75 75.7 - 86.6m Py weakly dissemi. 75.7 - 86.6m Rhyodacitic tuff, pale greenish gray 80 <84.1m Thin section: T-1 Fine vitric tuff of dacitic 85 composition >>>> 86.8 - 90.0m Basalt (?), pale greenish gray 6.6 = 90.0m Basait (9), p <- 88.0m Thin section : T-2 Reworked tuff of 90 90.0 - 97.1m Hema-qtz irregular form L 90.0 - 98.6m Rhyodacite (?), pale greenish gray 95 98.6 - 109.4m Rhyodacitic lapilli tuff with black 97.9 - 98.3m Py strong dissemi. fragments or layers in matrix 100

Date Started Sep. 04, 2000 Date Completed : Sep. 14, 2000

Easting : E 708.595

Northing: N 2,617.720 Elevation (mSL): 964

Azimuth: 245

Inclination : -55

	Lithology	Mineralization & Alteration
0	<u> </u>	
		98.6 - 109.4m Py dissemi. (medium)
- ()	98.6 - 109.4m Rhyodacitic lapilli tuff with black	
	fragments or layers in matrix	
5 — 💍		
	`&' 	
- \		
- \		
	`^'	
)	L	109.4 - 115.0m Py dissemi. (medium), partly py-qtz
4,	109.4 - 115.0m. Rhyodacite massive partly flow-	aggregates 2x4mm
	109.4 - 115.0m Rhyodacite, massive, partly flow- banded, pale greenish gray	
	L	
5	u u	
	`_	115.0 - 122.0m Py dissemi. medium to weak
	hvodacite	
	` △	
<u> </u>		
0		
	122.0 - 129.55m Rhyodacitic tuff, pale greenish gray	122.0 - 132.65m Py dissemi. weak
	22	
5	123.1 - 123.3m Basalt	
		125.6 - 126.5m Weakly arg.
1		
1),	<i>>></i>	
- , ,		
0	129.55 - 132.65m Basaltic tuff	
1 "	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
- "		
- × ×	☆ ☆ 7 ※ 余 3 ※ 余 4	132.7m Several Cp-Qtz veinlets
→ 🖈 🛠	132.65 – 135.75m Basalt(?)	
5 — 🛞 🖟	≈	
- "	135.75 - 136.5m Basaltic tuff	
→ 🕸	≋	136.5 - 141.5m Py dissemi. weak
⊣ ☆ 忿		
1		
0 -	∟ 138.8 − 139.5m Basaltic tuff	140.2 - 141.1m Many Py-Qtz veinlets parallel to
-	139.5 - 141.5m Rhyodacite, flow-banded	bedding, wd. 1 to 2cm.
	1.41.5 - 1.44.5m Basalt - hasaltic tuff	141,5 - 154,4m Py dissemi, weak to medium
- "		
15 — 🔪	144.5 - 146.3m Rhyodacitic tuff, partly containing	
	basalt breccia	
111	/// 1462 - 1544m Recelting tuff pale gray	
	140.3 = 154.4m Basalic tuit, pale gray	
\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	. \\\	1400 4505 5 0: :1:
7//		148.0 - 150.5m Py-Qtz veinlets - network

Date Started Sep. 04, 2000 Date Completed : Sep. 14, 2000

Easting: E 708.595

Northing: N 2,617.720 Elevation (mSL): 964

Azimuth: 245

Inclination: -55

	Lithology	Mineralization & Alteration
150		150.5 – 152.6m Qtz-Py network
155	154.4 - 154.6m Lapilli tuff (basic ?)	154.0 – 154.2m Py veinlets – network 155.4m Py disseminated band, wd.2cm
	154.6 – 158.6m Rhyodacitic tuff, pale greenish gray	
	158.6 – 159.6m Rhyodacitic lapilli tuff	158.6 - 159.6m Py dissemi very weak 159.6 - 160.8m Py-Qtz veinlets, Py dissemi medium
160	159.6 – 160.8m Basalt, dark gray	to strong 160.8 – 165.7m Py dissemi very weak, partly Py-Qtz
	160.8 – 166.1m Rhyodacitic tuff, partly lapilli tuff, pale greenish gray	aggregates
165	166.1 – 168.8m Black shale or shale flattened ball in	165.7 – 166.3m Py–Qtz veinlets, Py dissemi strong, silicified
	rhyodacitic tuff <- 167.2m Thin section : T-4 Phyllite (meta- volcanic equivalent of fine dacitic tuff)	166.3 - 168.8m Py dissemi medium 168.8 - 169.1m Py weak to medium disseminated
7///	168.8 - 169.1m Basaltic tuff	100.0 100.1111 1 y weak to mediani disseminated
170	169.1 – 170.8m Rhyodacitic lapilli tuff	169.1 - 170.8m Py medium dissemi. 170.8 - 172.3m Py-dutzemeitstookspy dissemi medium
-	171.7 - 176.8m Basalt breccia in rhyodacite or	to strong
	rhyodacitic tuff	172.3 - 176.8m Py dissemi weak to medium
180	176.8 – 182.0m Basaltic tuff, dark gray	176.8 – 179.0m Py weak dissemi.
-(1) (1)	1	179.0 - 182.0m Py-Qtz aggregates or veinlets rich
185	182.0 - 185.6m Rhyodacitic tuff containing black mud patch	182.0 - 185.6m Py dissemi weak, partly Py-Cp strong dissemi.
		185.6 – 190.9m Py dissemi weak to nul.
190 - 000	<- 188.5m Thin section : T-5 Highly sheared meta- volcanic rock	
	190.9 – 195.7m Dark gray basaltic tuff	190.9 - 195.7m Py dissemi weak, Many Py-Qtz veinlets (wd.<1cm)
195		195.7 - 196.3m A lot of Cp-Py patch, Py patch (wd.<3mm) and basaltic tuff layers in tuff
200	_ fragments	198.9 – 202.9m Py weak dissemi.

Date Started Sep. 04, 2000 Date Completed : Sep. 14, 2000

Easting : E 708.595

Northing: N 2,617.720 Elevation (mSL): 964

Azimuth: 245

Inclination: -55

٠.		Lithology	Mineralization & Alteration
00 —	111 111		
		199.2 - 202.9m Dark gray basaltic tuff	
-		203.2 - 204.1m Rhyodacitic tuff with black mud patch, gray	202.9 - 203.2m Siliceous tuff with black mud patch, Qtz layers, Py-Qtz patch and Py impregnation
5 –	·/////	204.45 - 204.5m Gray muddy tuff	204.1 - 204.45m Gray tuffacous mud with Py-Cp-
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	204.5 – 209.6m Rhyodacitic tuff, partly with black mud patch, pale greenish gray	Sp-Qtz inpregnation and layers
0 -	//// \\\\\	209.6 - 210.9m Rhyodacitic lapilli tuff, pale greenish gray	209.6 - 210.9m Py weak dissemi
-		210.9 - 214.1m Rhyodacitic lapilli tuff with black mud	210.9 - 214.1m Py weak dissemi, weakly sili
		patch 214.1 - 215.5m Whitish gray strong silicified rock with	214.1 - 215.5m Strong silicified, Py weak dissemi
5 -		mud patch	215.5 - 219.15m partly Py or Py-Cp veinlets and aggregats
		215.5 - 219.15m Lapilli tuff with mud patch	219.15 - 219.8m Py-Cp patch, Py weak dissemi, partly Py-Cp aggregates
		219.15 – 219.8m Muddy Iapilli tuff	219.8 - 220.1m Py-Cp strongly impregnated in mud
0 –		219.8 – 220.1m Black mud	220.1 - 220.2m Barren Qtz vein
		220.9 – 221.0m Black shale	
		221.0 - 221.2m Gray muddy tuff	220.2 – 220.9m Fine banded ore (Sp rich + Py-Cp or unknown mineral rich), wd of bands 1 to 15 mm
5		221.75 – 221.8m Black shale 221.8 – 222.35m Muddy lapilli tuff	220.9 – 221.0 Py weak dissemi
		222.35 – 233.6m Rhyodacitic lapilli tuff with mud	221.0 - 221.2m Py or Cp patch, black shale patch, Py-Cp-Sp dissemi strong
		patch, partly tuff breccia	221.2 - 221.75m Massive sulfide ore, weakly banded with Sp rich + Py-Cp rich, Qtz-clay layers
) -			221.75 - 221.8m Silicified
			221.8 - 222.35m Py weak dissemi, partly Py(-Cp) aggregates
5 –		233.6 – 242.6m Rhyodacitic tuff breccia	234.5 – 234.9m weak sili, Py strongly spotted dissem
0 -			
5 -		242.6 – 250.0m Rhyodacitic lapilli tuff with black mud patch	244.1 - 245.7m Py-Cp-Qtz veinlets
		242.6 – 250.0m Rhyodacitic lapilli tuff, pale greenish gray	

Drill Hole No.: MJSU-14 Date Started Sep. 04, 2000 Date Completed: Sep. 14, 2000

Easting: E 708.595 Northing: N 2,617.720 Elevation (mSL): 964

Azimuth : 245 Inclination : -55 Drilled by SGS/BRGM

		Lithology	Mineralization & Alteration
50 -	X X X X X X X X X X X X X X X X X X X	250.0 – 254.0m Rhyodacitic lapilli tuff, pale greenish gray	253.3m Py veinlet
255 — _	/\/\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	254.0 - 256.4m Rhyodacitic tuff	
- - 260 —		256.4 – 265.2m Rhyodacitic tuff breccia	256.4 - 265.2m Weakly silicified, Py weak dissemi.
- - -			
265 — - -		265.2 – 266.6m Basaltic tuff	265.6 – 274.6m Weakly silicified, Py weak dissemi.
- 270 		266.6 – 274.6m Rhyodacitic tuff breccia	
-			

Drill Hole No.: MJSU-15 Date Started Oct. 11, 2000 Date Completed : Nov. 8, 2000

Easting: E 707.367 Northing: N 2,620.625 Elevation (mSL): 944

Azimuth: 335 Inclination: -70 Drilled by SGS/BRGM

0 -		Lithology	Mineralization & Alteration
U ~	0,000 0,000 0,000	0 - 1.8m Gravel	1
	-	1.8 - 5.6m Porphyritic andesite, weathered and	1
5 -		carbonatized	4.2 - 4.6m Weakly limonitized
		5.6 - 14.4m Andesite, weathered 5.6 - 7.0m sheared	
		3.0 - 7.0m Sheared	
10 -		8.1 - 14.4m sheared	
15 -		14.4 – 28.0m Porphyritic andesite, weakly fractured and filled with thin calcite veinlets	
		(14.4 - 17.05m Water loss at drilling time)	
20 -			
		23.1 – 23.3m sheared	
25 -	- \(\) \(\		
			28.0m Quartz-Pyrite vein, 5cm in width
30 -	-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	28.0 - 32.1m Dacite	
	- V V V V V V V V V V V V V V V V V V V		
	- //\\ /\\\	32.1 – 33.2m Dacitic coarse tuff	
35		33.2 – 43.6m Dacite with quartz and feldspar phenocrysts	
		(35.9 – 46.8m Water loss at drilling time)	
40			
70			
			42.0 – 43.6m Hematite veinlets and dissemination
45		43.6 – 45.4m Volcanic breccia filled with hematite	43.6 – 45.4m Hematite fills breccia
		45.4 – 50.6m Volcanic breccia filled with Py–Qtz,	45.4 - 50.6m Pyrite-Quartz fills breccia

Date Started Oct. 11, 2000

Date Completed : Nov. 8, 2000

Easting: E 707.367 Northing: N 2,620.625 Elevation (mSL): 944

Azimuth: 335

Inclination: -70

		Lithology	Mineralization & Alteration
50 –	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
	\$ \$ \$ \$	50.6 - 51.9m sheared - argillized breccia with Qtz- Py	
		•	
	\[\sigma \sqrt{\sq}\sqrt{\sq}}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqit{\sqrt{\sq}}}}}}\signignightite{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}	51.9 – 60.3m Lapillistone to lapilli tuff with Qtz [–] Py, with ochre colored silicified glass	50.6 - 60.3m Qtz-Py fills breccia
	$ abla \Delta \Delta \Delta \Delta \Delta C $		
55 -	$ \begin{array}{c} $	(33.4 30.2m Water loss at urining time)	
	$\nabla \Delta \nabla \Delta \nabla \nabla$		
60			
60 -	$\nabla \Delta \nabla \Delta \nabla$		
		60.3 – 61.5m Sheared and silicified dacite (?) filled with Py-Qtz	60.3 - 61.5m Py-Qtz fills breccia
	7 2 2 2 2 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		61,5 - 80.0m Qtz-Py fills breccia
C.E.	$\Delta \Delta \Delta \Delta \Delta$		
65 -	$ \begin{array}{c} $	61.5 – 80.0m Lapillistone filled with Qtz-Py, fragments are mainly subrouded silicified rock. Size	
	$\Delta \nabla \Delta \nabla Z$		
70			
70 -			
	$\Delta \nabla \Delta \nabla \Delta$		
75 -			
73		V	
		4	
	$\nabla \Delta \nabla \Delta$	4	
	$\triangle \nabla \triangle \Delta \nabla$		
80 -	$\nabla \Delta \nabla \Delta$		
00	//\//\	80.0 – 81.0m Dacitic tuff (?)	80.0 - 81.0m Py dissemination very weak
	$\Delta \nabla \Delta \nabla \nabla$	4	
	$ \begin{array}{c c} & \nabla \nabla \nabla \nabla \\ & \nabla \nabla \nabla \nabla \end{array} $	4	81.0 - 121.7m Qtz-Py fills breccia
	$\begin{array}{c c} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$	value = 91.8m Lapillistone with Qt2=Fy, containing value green glass abundantly	The second second
85 -	$-\Delta \nabla \Delta \nabla \nabla \nabla \Delta \nabla$		
-	$\neg \Delta \nabla \Delta \nabla$	4	
	$ abla \Delta \Delta \Delta \Delta $	Voca of a long of the Water land at deliting	
	$-\Delta \nabla \Delta \nabla$	√ time)	
	$ \begin{array}{c} $	₹	
90	$ abla \Delta \Delta$	4	
	$-\Delta\nabla\Delta\nabla$	4	
	$-\frac{\nabla \Delta \nabla \Delta}{\cdots}$	1 .	
		91.8 - 100.0m Coarse tuff filled or disseminate with	
		Qtz-Py, containing plae blue or green argillized glass, partly with big rock fragments(maximum 3cm in	
95		glass, partly with big rock fragments(maximum 3cm in length)	
		:	
	-		
100			

Drill Hole No.: MJSU-15 Date Started Oct. 11, 2000

Date Completed : Nov. 8, 2000

Easting: E 707.367

Northing: N 2,620.625

Elevation (mSL): 944

Azimuth: 335

Inclination: -70

	Lithology	Mineralization & Alteration
\[\frac{1}{\sqrt{1}}\frac{1}\frac{1}{\sqrt{1}}\frac{1}{\sqrt{1}}\f	4	
V A V A V A V A V A V A V A V A	100.0 - 121.7m Lapillistone filled with Qtz-Py, fragments : conglomerate, chert (?), Py- disseminated rock, pale blue silicified glass	
$\begin{array}{c} - & \nabla \Delta \nabla \Delta \\ \nabla \Delta \nabla \Delta$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	1 1 111.8 – 112.0m Argillized zone	
V A V A	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	
7		
-	121.7 – 128.0m (Sheared) Volcanic breccia filled with Py	121.7 – 128.0m Py-Qtz fills breccia
- V V V V V V V V V V V V V V V V V V V	128.0 - 137.8m Volcanic breccia filled with Qtz-Py, partly containing big angular fragments (>5cm) and pale blue glassy clay, fragments : chert, ochre silicified glass, siltstone(?), dacite(?).	128.0 – 142.0m Qtz–Py fills breccia
, — — — — — — — — — — — — — — — — — — —	137.8 – 142.0m Coarse tuff filled with Qtz–Py and pale blue glass (clay), partly containing argillized breccia (<3cm).	
	142.0 – 145.4m Pale gray dacite (or andesite) intrusive	
V A V A V A V A	2	145.4 – 176.8m Qtz-Py fills breccia

Date Started Oct. 11, 2000 Date Completed : Nov. 8, 2000 Drill Hole No.: MJSU-15

Easting: E 707.367

Northing: N 2,620.625 Elevation (mSL): 944

Azimuth: 335

Inclination: -70

		Lithology	Mineralization & Alteration
50 –	7 A 7 A 7 A 7		
	7 4 4 4 4		
	\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\		
			!
	$7\Delta \nabla \Delta \nabla \Delta $		1
5 -	V V V V	154.8 - 156.9m Volcanic breccia filled with Qtz-Py	
	7242	156.9 – 160.8m Lapillistone filled with Qtz-Py,	
	$-\frac{\Delta}{\Delta}$	G	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		
0 -			
		160.8 – 163.8m Coarse tuff, silicified, filled with Qtz-	
		Py.	
	$-\Delta\nabla\Delta\nabla$		
5 -	$-\Delta \nabla \Delta \nabla Z$	162.9 - 169.0m Lanillistana filled with Otz-Py	
	$\triangle \nabla \nabla \nabla \nabla$		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ÿ	
	$\Delta \nabla \Delta \nabla \nabla$		
0 -	////////		
•	- 1/11/11/11		
	11 11		
	11 11	, , , , , , , , , , , , , , , , , , , ,	
_	- // //		
75 -			
	//////		
		176.8 – 179.1m Silicified coarse tuff	176.8 - 179.0m Py dissemination very weak
	$\nabla \Delta \nabla \Delta$	4	
0 -		4	
		7	
	$\neg \triangle \nabla \nabla \nabla$	179.1 - 188.2m Lapillistone filled with Qtz-Py	179.0 - 188.2m and 188.7 - 189.5m Qtz-Py fills
	$\Delta \nabla \Delta \nabla \nabla$	4	breccia
	$-\frac{\triangle \nabla \overline{\Delta} \nabla}{\Delta \nabla \Delta \nabla}$	4	
35	$ abla \Delta \Delta$	4	
		4	
	$-\frac{\nabla \Delta \nabla \Delta}{\nabla \Delta}$	4	
	Δ Δ Δ Δ Δ Δ Δ Δ	7	188.2 - 188.7m Py medium dissemination
0	$-\frac{\Delta\nabla\Delta\nabla}{\Delta\nabla\Delta\nabla}$	188 7 - 190 2m Lanillistone filled with Qtz-Pv	189.5 – 190.2m Limonite fills breccia
	$-\Delta\nabla\Delta\nabla$,	
	$-\Delta\nabla\Delta\nabla\nabla$	4	
	1/		190.2 - 198.3m Py medium disseminatiom, 198.3 -
	11 11		198.7m Py dissemination very strong
95	11 11	190.2 198.7111 Dacitie tuli (:), smolled	
- •			
	11 11		
	\(\frac{1}{\sqrt{2}}\)	4	

Date Started Oct. 11, 2000 Date Completed : Nov. 8, 2000 Drill Hole No. : MJSU-15

Easting : E 707.367

Northing: N 2,620.625 Elevation (mSL): 944

Drilled by SGS/BRGM Azimuth: 335 Inclination: -70

		Lithology	Mineralization & Alteration
200 -		Litriology	Willief all Zacioff & 7 (tol acioff
	7	198.7 - 203.1m Breccia composed of mono-	198.7 - 203.1m Py-Qtz fills breccia
		size is variable.	
205 -	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	203.1 – 210.5m Volcanic breccia with pale blue glass, filled with Qtz–Py	203.1 - 210.5m Qtz-Py fills breccia
210 -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		
		210.5 – 212.9m Silicified breccia , partly massive silicified rock, or filled with ochre-colored quartz	210.5 - 212.9m Py veinlets or Py fills fractures
215 -		212.9 – 220.8m Rhyodacite or dacite (?), silicified	212.9 - 220.8m Py strong dissemination
		212.9 - 220.0m Knyobacite or dacite (?), sincined	
220 -			
	- VAVA - VAVA - VAVA - VAVA - VAVA	220.8 – 227.7m Lapillistone filled with Qtz-Py. partly composed of very fine-grained fragments (coarse sand size)	220.8 - 227.7m Qtz-Py fills breccia
225 -	\[\forall \chi \chi \chi \chi \chi \chi \chi \chi		227.7 – 227.8m Py strong dissemination
	$\begin{array}{c c} & & & & \\ \hline & & & & \\ \hline & & & \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline \end{array}$	ZZ7./ III T date oldy	227.7 227.0III Fy Strong dissemiliation
230 -	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	227.8 – 232.0m Lapillistone. Abundant fragments filled with Py-Qtz	227.8 - 232.0m Py-Qtz fills breccia
			232.0 - 233.1m Py dissemination weak to medium
235 -	$ \begin{array}{c} $	filled with Py-Qtz	233.1 - 235.7m Py-Qtz fills breccia
		4	235.7 - 236.6m Py dissemination strong
240 -	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	236.6 – 240.8m Volcanic breccia, partly containing dacitic tuff big fragments	236.6 - 240.8m and 241.7 - 243.7m Qtz-Py fills breccia
240 -		240.8 - 241.7m Andesite, intrusive	
	- \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	dacitic tuff big fragments	
245 -		patch, rarely arranged in bedding or shear plane.	243.7 - 249.2m Py dissemi medium
	- //\\ //\\ - //\\ //\\		
250 -	\[\frac{1}{2} \frac{1}{2} \fra	4	

Date Started Oct. 11, 2000

Date Completed : Nov. 8, 2000

Easting: E 707.367

Northing: N 2,620.625 Elevation (mSL): 944

Azimuth: 335

Inclination: -70

EC		Lithology	Mineralization & Alteration
0 —	VΔ VΔ V VΔ VΔ V VΔ VΔ V	249.2 – 251.2m Lapillistone with pale blue glass fragments	249.2 - 251.2m Qtz-Py fills breccia
-	$\Delta \nabla \Delta \nabla \Delta \Delta$	251.2 – 252.8m Silicified Lapillistone cutted by siliceous vein	:
-	2000 2000 2000	252.8 - 256.6m Dacitic lapilli tuff, partly containing	252.8 - 256.6m Qtz-Py fills breccia
5 —	7		
-	AAAAA		256.6 - 271.5m Very rarely Qtz-Py veinlets
	2222		
0 –		256.6 – 271.5m Porphyritic andesite. Feldspar phenocrysts are 8mm in maximum size.	
	2000		
55 –			
	^^^^		
	- ^ ^ ^ ^ ^		
70 -			
	- 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
75 –		271.5 - 279.7m Silicified andesite or porphyritic andesite	
280			
.00	-		279.7 – 286.4m Py dissemi weak
		279.7 – 286.9m Silicified massive rock, fractures	
		 filled with pale blue or ochre or dark green silicified glasses. 	
85 -			
		anc o ann 7- Barrharitia andasita (290 7 -	286.4 - 289.7m Rarely Py dissemi
	- A A A A A A A A A A A A A A A A A A A	286.9 – 289.7m Porphyritic andesite (289.7 – 290.2m Silicified breccia with pale blue silicified glass	200.4 200.7III Nai ciy i y disseiii
90 -			
		290.2 – 296.6m Andesite, dark grayish green	
95 -			
		296.6 – 306.9m Silicified massive rock, partly	
		fractures filled with Py-Qtz.	296.6 - 299.8m Py dissemi partly
300 -			

Drill Hole No.: MJSU-15 Date Started Oct. 11, 2000 Date Completed : Nov. 8, 2000

 ${\sf Easting: E 707.367 Northing: N 2,620.625 Elevation (mSL): 944}$

Azimuth: 335 Inclination: -70 Drilled by SGS/BRGM

20	Lithology	Mineralization & Alteration
00	<- 300.2m Thin section : T-31 Meta-rhyodacitic	
		299.8 - 306.9m Py-Qtz partly fills fractures, or Py-Qtz fragments occur
05		
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
$10 - \begin{array}{ c c c c c c c c c c c c c c c c c c c$	mono-lithology and resemble to above massive rock. Commonly pale blue or ochre colored silicified	306.9 - 325.0m Qtz-Py partly fills breccia. At massive parts Py dissemi weak
\\ \tau \\ \ta	4	
15 — V V V V		
- V V V V V V V V V V V V V V V V V V V	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
-		
20 - \frac{\fint}{\fint}}}}}}}{\frac}}}}}{\frac}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\fir}}}}}{\fin}}}}}}}}}{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\firi		
_ \langle \lan	7	
25	4	
$ \begin{array}{c} $	₹ ₹ 325.0 – 335.5m Conglomerate–like volcanic breccia .	
$30 \begin{array}{c} - $	ochre glass (silicified)	
\\ \tau \\ \Delta \\ \Delt	4 4 4	
$ \begin{array}{c} $	4	332.1 - 335.6m Py dissemi strong
- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	Social villaesice, malasive	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	337.0 – 345.5m Conglomerate-like volcanic breccia with pale blue glass, filled with Qtz-Py. Partly	337.0 - 341.6m ,341.7 - 346.5m and 351.1 - 351.4m Qtz-Py fills breccia
70	green-colored glass with Py dissemination fills fractures. 341.6 – 341.7m Andesite intrusive.	
\\ \D \\ \\	4	
45 - \(\frac{1}{\sqrt{1}} \frac{1}{\sqrt{2}}	7	
	348.6 – 351.4m Conglomerate-like volcanic breccia	

Date Completed : Nov. 8, 2000 Date Started Oct. 11, 2000 Drill Hole No.: MJSU-15

Easting: E 707.367

Northing: N 2,620.625 Elevation (mSL): 944

Azimuth: 335

Inclination: -70

		Lithology	Mineralization & Alteration
350 -	VAVA VAVA VAVA VAVA VAVA VAVA VAVA VAV	350.8 - 351.1m Andesite to porphyritic andesite 351.1 - 351.4m Mono-lithologic breccia, filled with Qtz(-Py)	
355 -		351.4 – 355.2m Andesite intrusive	
360 -	- \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	355.2 - 365.1m Porphyritic andesite	
365 -		365.1 – 367.05m Strongly silicified rock, partly breccia, cutted by green or ochre silicified glass	365.1 - 365.6m A few Py veinlets 365.6 - 366.55m Py fills spotedly some fractures
370 -		367.05 - 372.1m Siliceous sandstone or tuff, cutted or filled by ochre quartz, partly brecciated	367.15 – 372.1m Partly Py filling fractures or occurring spotedly, almost barren for sulfide
375 -			373.5 - 375.65m Py fills fractures with green or ochre quartz

Drill Hole No. : MJSU-16 Date Started Oct. 24, 2000 Date Completed : Oct. 31, 2000

Easting : E 708.566

Northing: N 2,617.598 Elevation (mSL): 960

Drilled by SGS/BRGM

Azimuth: 245 Inclination: -55

		Lithology	Mineralization & Alteration
0 —	02/00	0 - 1.7m Gravel	
-		0 1.7m Gravei	
-			
5 -		1.7 – 12.2m Rhyodacitic tuff breccia, weathered,	4.5 – 21.2m Limonite along crack
-		greenish color	
-			
10 -			
-	<u></u>		
	->>>> ->>>>		
15 -	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	12.2 – 30.2m Rhyodacitic tuff, grayish green, partly	15.2 – 15.7m Limonite atrongly stained
		essential tuff breccia or rhyodacite	
			16.2 – 30.2m Pyrite very weakly disseminated
	- / / / /		Co.Emp yine very neural accomment
20 -			19.5m Limonite weakly stained (20cm in width)
			16.8 – 23m Py veinlets 3 to 5/m
	- - - - - - - - - - - - - - - - - - -		
25 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	-\//// \////		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	1222		
30 –	/// ///		30m Quartz veinlets with malachite
	/// /// /// ///	30.2 – 33.4m Basaltic tuff, pale grayish green (32.7	
35 -			
	- //\\ //\\		33.4 - 75.6m Partly bedded (foliated?) Pyrite aggregates
	/////		
40 -		38.9 - 48.2m Rhyodacitic tuff, glassy	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	十 <i>/////</i> 1////		
45 -	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
		48.2 - 50.0m Rhyodacitic tuff breccia, with	
		elongated glass	
50 -		elongated glass	

Date Completed : Oct. 31, 2000 Date Started Oct. 24, 2000 Drill Hole No.: MJSU-16

Easting: E 708.566

Northing: N 2,617.598 Elevation (mSL): 960

Drilled by SGS/BRGM Inclination: -55 Azimuth: 245

•		Lithology	Mineralization & Alteration
) —	· > > > >		
	7////		4
-		50.0 – 56.5m Rhyodacitic tuff, with elongated glass, grayish green	:
-		grayish green	
-			1
; —	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
-	12222		
-			
-	L L	56.5 - 60.2m Rhyodacite, pale grayish green	
		50.5 - 60.2m Knyouacite, pale grayish green	
) –	L		
		60.2 – 62.0m Rhyodacitic tuff breccia	
	\>>>>	62.0 – 63.1m Rhyodacitic coarse tuff	
	- L	02.0	
5 -	-	63.1 - 73.8m Rhyodacite, pale grayish green, partly	
		tuff breccia	
0 -		4	
	_ L	ų į	
		<u></u>	
_	7///		
5 -	7///		
	1222	73.8 - 88.1m Rhyodacitic tuff, partly tuff breccia (75.1 - 75.6m and 78.5 - 78.7m bedded rhyodacitic	
		75.1 - 75.0m and 76.5 - 76.7m betwee myddaethe fine tuff)	
	1,,,,		
	1))))		
0 -	17777		
	1		
	1		82.5 – 84.0m Partly Py medium dissemi
	17777		
35 -			
	1		84.0 - 116.0m Py dissemi very weak
	1222		84.0 - 110.0111 Fy dissellit very weak
0 -		elongated glass	
		1	
		4	
		90.0 - 101.6m Rhyodacitic tuff breccia	
		1	
95			
		4	
		4	
		4	
		*]	

Drill Hole No.: MJSU-16 Da

Date Started Oct. 24, 2000

Date Completed : Oct. 31, 2000

Easting : E 708.566

Northing: N 2,617.598

Elevation (mSL): 960

Azimuth: 245

Inclination: -55

	Lithology	Mineralization & Alteration
100	Δ Δ	
]2		
105	A 101 0 100 A File A 21 A 211	
	101.6 – 132.4m Rhyodacitic lapilli tuff, pale grayish green	
- (
110		
- _		
- (_		
- <		
- <_		
115		
		116.0 - 122.8m Partly bedded Py dissemi medium
120 — (
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
- (
- (
- (
125		122.8 - 133.9m Py very rarely dissemi
-		
- / -		
130		
7		
	132.4 – 133.9m Rhyodacite, glassy, sheared	
135	AND ADD ADD FOR THE AUTHORITAN	133.9 – 136.5m Partly bedded Py dissemi, whitish
/	133.9 – 136.5m Rhyodacitic tuff with elongated	gray color, weakly silicified
+		
۱ -	136.5 - 140.3m Rhyodacite, sheared	
- -	L	
140	L 4	
1	>>> >>>	
+/>	140.3 - 148.4m Rhyodacitic tuff with glass	
1		140.3 - 148.4m Py weak dissemi
145		
145		
1		
1	/// >>>	
7,	148.4 - 149.0m Basalt, intrusive	
	L	I

Drill Hole No.: MJSU-16

Date Started Oct. 24, 2000

Date Completed : Oct. 31, 2000

Easting: E 708.566

Northing: N 2,617.598 Elevation (mSL): 960

Azimuth: 245

Inclination: -55

 ${\sf Drilled\ by\ SGS/BRGM}$

50 —		Lithology	Mineralization & Alteration
4		-149.0 - 154.0m Rhyodacite, weak silicified	148.4 - 154.0m Py dissemi weak to medium, partly Py-Qtz veinlets bands
55 —\	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	154.0 - 162.1m Dacite with quartz phenocrysts, weak silicified (intrusive?)	154.0 - 162.1m Py weak dissemi
	V V V V V V V V V V V V V V V V V V V		
60	×		
		162.1 - 165.6m Rhyodacite	
65 —		165.6 – 167.3m Rhyodacitic essential lapilli tuff	
		167,3 = 167.5m Rhyodacitic accidental lapilli tuff with basaltic tuff fragments	
70		167.5 – 170.5m Rhyodacitic tuff to essential lapilli tuff	
	//// /////	170.5 – 173.1m Rhyodacitic tuff with elongated glass, rarely lapilli size fragments	
75		173.1 - 173.5m Basalt intrusive	
		173.5 - 180.3m Rhyodacitic tuff with elongated	
80 —		glass, rarely lapilli size fragments	
			1000 0100 B F incomed
85 —		180.3 - 210.0m Rhyodacitic tuff with big elongated glass, partly containing breccia-sized fragments, rarely intercalated by thin fine tuff	180.3 - 210.0m Py dissemi very weak
90 —			
			193.8 – 194.3m Py medium to strong dissemi in grayish color part
195 —			9Jon 2010
			198.2 - 199.2m Py strong dissemi in grayish white color part

Drill Hole No.: MJSU-16 Date Started Oct. 24, 2000 Date Completed : Oct. 31, 2000

Easting: E 708.566 Northing: N 2,617.598 Elevation (mSL): 960

Azimuth: 245 Inclination: -55 Drilled by SGS/BRGM

Lithology Mineralization & Alteration

200

205

210

Appendix 28 Borehole Deviations of MJSU-9 to MJSU-16

Drill Hole No.	Depth (m)	Direction	Inclination
Din Hole No.	Depui (iii)	(degree)	(degree)
MJSU-9	0.0	155	-55
	100.0	157	-53
	200.0	161	-51
	379.5	163	-48
MJSU-10	0.0	300	-55
	100.0	300	-55
	200.0	300	-51
	300.0	300	-51
	350.0	300	-50
MJSU-11	0.0	150	-55
	100.0	154	-54
	250.0	158	-54
MJSU-12	0.0	270	-55
	100.0	278	-54
	200.0	278	-51
	250.0	279	-50
MJSU-13	0.0	330	55
	100.0	336	54
	249.5	337	53
MJSU-14	0.0	245	-55
	100.0	244	-54
	200.0	245	-52
	274.0	248	-50
MJSU-15	0.0	335	-70
	100.0	340	-68
	200.0	337	-67
	375.0	348	-64
MJSU-16	0.0	245	55
	100.0	250	53
	209.5	250	50

Appendix 29 Results of Ore Assay(1)

Drill	Dept	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
Hole No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-9	2.70	4.20	1.50	<0.05	<1.0	192	77	13	<0.05
	5.70	7.20	1.50	<0.05	<1.0	113	14	11	<0.05
	8.70 11.70	10.20 13.20	1.50 1.50	<0.05 <0.05	<1.0 <1.0	100	66 44	17 16	0.25 0.44
	14.70	16.20	1.50	<0.05	<1.0	34	12	7	<0.05
	17.70	19.20	1.50	<0.05	1.0	86	8	20	<0.05
	20.70	22.20	1.50	<0.05	5.5	140	23	67	<0.05
	23.70	25.20	1.50	<0.05	3.0	283	23	25	<0.05
	26.70	28.20	1.50	<0.05	1.7	132	60	18	<0.05
	29.70	31.20	1.50	<0.05	<1.0	92	12	11	<0.05
	32.40	33.90	1.50	0.07	1.4	114	7	27	0.90
	33.90	35.40	1.50	0.06	1.6	73	7	21	0.36 1.05
1	35.40 36.90	36.90 38.40	1.50 1.50	<0.05 <0.05	1.4 1.6	156 39	8 7	15	0.44
	38.40	39.90	1.50	<0.05	1.6	19	6	20	0.93
	39.90	41.50	1.60	<0.05	1.7	33	14	21	1.08
	41.50	43.00	1.50	<0.05	1.8	645	10	17	5.11
	43.00	44.50	1.50	<0.05	1.7	76	8	30	2.08
	44.50	46.00	1.50	<0.05	1.7	328	15	29	4.86
	46.00	47.50	1.50	<0.05	1.1	249	20	32	2.93
	47.50	49.00	1.50	<0.05	2.3	1,205	1,050	43	3.17
	49.00	50.50	1.50	<0.05	<1.0	83	44	8	2.94
	50.50	52.00	1.50	<0.05	<1.0 2.3	83 394	5,505	6 24	2.73 4.38
	52.00 53.50	53.50 55.00	1.50 1.50	<0.05 <0.05	<1.0	153	5,505	12	3.26
	55.00	56.50	1.50	<0.05	<1.0	166	44	11	3.62
	56.50	58.00	1.50	<0.05	<1.0	393	60	16	5.22
	58.00	59.50	1.50	<0.05	<1.0	201	55	16	5.16
	59.50	61.00	1.50	<0.05	<1.0	317	83	13	4.75
	61.00	62.50	1.50	<0.05	1.2	459	42	15	5.26
	62.50	64.00	1.50	<0.05	1.0	194	44	16	4.65
	64.00	65.50	1.50	<0.05	<1.0	214	44	20	5.00
	65.50	67.00 68.50	1.50	<0.05 <0.05	1.0 <1.0	168 124	114 72	13 12	4.59 3.76
	67.00 68.50	70.00	1.50 1.50	<0.05	<1.0	179	26	14	4.65
	70.00	71.50	1.50	0.06	1.0	456	149	14	3.90
	71.50	73.00	1.50	0.06	1.5	321	29	16	5.83
	73.00	74.50	1.50	0.08	<1.0	259	67	9	3.09
	74.50	76.00	1.50	0.06	1.0	249	29	12	3.53
[76.00	77.50	1.50	0.09	1.0	241	14	13	6.30
	77.50	79.00	1.50	0.07	<1.0	185	36	12	3.86
]	79.00	80.50	1.50	0.05	<1.0	199	20	18	6.30
	80.50	82.00	1.50	0.05	1.0	189	26	13 13	5.38 4.91
	82.00 83.50	83.50 85.00	1.50 1.50	<0.05 <0.05	<1.0 <1.0	154 109	15 22	9	3.55
	85.00	86.50	1.50	<0.05	<1.0	139	12	9	2.85
	86.50	88.00	1.50	<0.05	<1.0	114	14	10	4.28
	88.00	89.50	1.50	<0.05	<1.0	65	14	10	5.02
	89.50	91.00	1.50	0.06	<1.0	66	10	11	5.00
	91.00	92.50	1.50	<0.05	<1.0	62	9	9	4.13
	92.50	94.00	1.50	<0.05	<1.0	64	17	7	2.36
	94.00	95.50	1.50	<0.05	<1.0	72	17	10	2.68
	95.50	97.00	1.50	<0.05	<1.0	51 56	52 159	7	0.34 1.14
	97.00 98.50	98.50 100.00	1.50 1.50	<0.05 <0.05	<1.0 <1.0	55 53	158 28	10 10	2.79
	100.00	100.00	1.50	<0.05	<1.0	62	28	10	4.49
	101.50	103.00	1.50	<0.05	<1.0	52	14	10	2.66
	103.00	103.70	0.70	<0.05	<1.0	72	21	13	4.60
	107.80	109.30	1.50	0.05	1.2	116	61	17	3.69
	109.30	109.90	0.60	<0.05	1.1	128	18	14	1.46
	109.90	111.00	1.10	<0.05	1.2	97	68	13	3.12
	127.40	128.90	1.50	<0.05	<1.0	115	36	7	1.96
	128.90	130.40	1.50	<0.05	<1.0	124	70	8	2.29

Appendix 29 Results of Ore Assay(2)

Drill	Dept		Width	Au	Ag	Cu	Zn	Pb	S
Hole No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-9	130.40	131.30 134.50	0.90 1.50	<0.05 <0.05	<1.0 1.1	91 73	49 43	7 12	3.04 5.23
	133.00 134.50	134.50	1.50	<0.05	1.6	76	26	10	5.35
	136.00	137.50	1.50	<0.05	1.0	193	44	9	4.44
	137.50	139.00	1.50	<0.05	1.6	233	69	27	7.27
	139.00	140.50	1.50	<0.05	1.3	232	45	16	7.36
	140.50	142.00	1.50	<0.05	<1.0	96	64	9	5.28
	142.00	143.50	1.50	<0.05	<1.0	99	32	13	6.55
	143.50	145.00	1.50	<0.05	<1.0	89	43	17	4.37
	145.00	146.50	1.50	<0.05	1.1	195	90	32	4.51
	146.50 148.00	148.00 148.70	1.50 0.70	<0.05 <0.05	<1.0 <1.0	83 71	20 44	10 13	4.06 4.17
	166.00	167.50	1.50	<0.05	<1.0	72	42	16	4.71
	167.50	169.00	1.50	<0.05	1.0	128	81	23	6.73
	169.00	170.50	1.50	<0.05	<1.0	79	80	29	4.14
	170.50	172.00	1.50	<0.05	<1.0	57	304	16	2.92
	172.00	173.50	1.50	<0.05	<1.0	92	285	28	5.00
	173.50	175.00	1.50	<0.05	<1.0	81	134	35	5.15
	175.00	176.50	1.50	<0.05	<1.0	68	252	84	4.55
	176.50	178.00	1.50	<0.05	<1.0	62	409	71	4.56 8.66
	178.00	179.50	1.50	<0.05	1.6 1.5	217	410 511	85 78	5.56
	179.50 181.00	181.00 182.50	1.50 1.50	<0.05 <0.05	1.8	189 377	533	118	9.91
	182.50	184.00	1.50	<0.05	1.8	401	532	128	10.62
	184.00	185.50	1.50	<0.05	1.2	250	297	70	7.65
	185.50	187.00	1.50	<0.05	1.3	395	257	99	13.68
	187.00	188.50	1.50	<0.05	1.0	295	189	62	9.18
	188.50	190.00	1.50	<0.05	1.0	427	98	75	12.43
	190.00	191.50	1.50	<0.05	1.1	468	68_	68	14.04
	191.50	193.00	1.50	<0.05	1.4	376	289	81	11.90
	193.00	194.50	1.50	<0.05	<1.0	297	187	58 67	8.55 7.70
	194.50 196.00	196.00 197.50	1.50 1.50	<0.05 <0.05	1.6 2.4	246 479	125 291	101	8.67
	197.50	199.00	1.50	<0.05	3.9	591	492	115	11.54
	199.00	200.50	1.50	<0.05	4.0	644	390	107	13.96
	200.50	202.00	1.50	<0.05	3.4	648	150	92	12.78
	202.00	203.50	1.50	<0.05	1.5	206	247	54	6.82
	203.50	205.00	1.50	<0.05	<1.0	66	92	31	6.90
	205.00	206.50	1.50	<0.05	<1.0	78	274	35	5.42
	206.50	208.00	1.50	<0.05	<1.0	164	960	49	7.94
	208.00	209.50	1.50	<0.05	1.6	266	616	76	9.59
	209.50	211.00 212.50	1.50 1.50	<0.05 <0.05	1.0 <1.0	425 459	79 37	62 53	13.82 13.15
	211.00 212.50	214.00	1.50	<0.05	<1.0	451	42	48	12.98
	214.00	215.50	1.50	<0.05	<1.0	410	39	49	13.07
	215.50	217.00	1.50	<0.05	1.4	400	151	56	11.89
	217.00	218.50	1.50	<0.05	1.5	260	333	45	8.07
	218.50	220.00	1.50	<0.05	1.3	176	582	45	5.72
	220.00	221.50	1.50	<0.05	1.3	185	448	36	6.29
	221.50	223.00	1.50	<0.05	2.2	283	353	86	10.29
	223.00	224.50	1.50	<0.05	1.3	219	592	61	11.52
	224.50	226.00	1.50	<0.05	1.3	218	589	59	7.84
	226.00 228.00	228.00	2.00	<0.05 <0.05	1.0 <1.0	188 215	145 78	38 40	6.07
	230.00	230.00	2.00	<0.05	<1.0	194	145	40	5.58
	232.00	234.00	2.00	<0.05	1.0	243	173	41	2.96
	234.00	236.00	2.00	<0.05	<1.0	100	346	21	6.34
	236.00	238.00	2.00	<0.05	<1.0	131	159	21	5.58
	238.00	240.00	2.00	<0.05	<1.0	111	550	19	3.92
	240.00	242.00	2.00	<0.05	<1.0	107	474	21	5.62
	242.00	244.00	2.00	<0.05	<1.0	77	140	19	4.10
	244.00	246.00	2.00	<0.05	<1.0	90	174	17	3.55
	246.00	248.00	2.00	<0.05	<1.0	103	56	18	3.43

Appendix 29 Results of Ore Assay(3)

Drill Hole	<u>-</u>	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-9	248.00	250.00	2.00	<0.05	1.0	148	60	22	4.30
ļ	250.00	252.00	2.00	<0.05	1.4	224	115	31	6.64
	252.00	254.00	2.00	<0.05	<1.0	149	129	20	4.19
	254.00	256.00	2.00	0.06	<1.0	266	136	41	8.71
	256.00	258.00	2.00	0.06	2.0	212 266	218 197	39 53	11.94
	258.00 260.00	260.00 262.00	2.00	<0.05 <0.05	2.2 1.4	338	276	52	12.00
	262.00	264.00	2.00	<0.05	1.5	302	138	48	9.94
	264.00	266.00	2.00	<0.05	2.1	330	343	56	11.07
	266.00	268.00	2.00	<0.05	2.1	305	212	45	8.50
	268.00	270.00	2.00	<0.05	1.9	143	248	38	6.71
	270.00	272.00	2.00	<0.05	2.2	175	278	107	6.07
	272.00	274.00	2.00	0.05	1.9	184	210	47	9.21
	274.00	276.00	2.00	<0.05	1.9	270	183	80	9.13
	276.00	278.00	2.00	<0.05	1.3	114	209	38	3.81
	278.00	280.00	2.00	<0.05	3.3	119	306	119	8.00
	280.00	282.00	2.00	<0.05	3.6	127	432	304	7.35
	282.00	284.00	2.00	<0.05	3.3	149	608	137	5.74
	284.00	286.00	2.00	<0.05	2.1	120	430	110	6.24
	286.00 288.00	288.00 290.00	2.00	<0.05 <0.05	2.5 1.2	172 158	542 319	181 86	7.22 3.93
	288.00	290.00	2.00	<0.05	4.7	301	843	626	7.71
	292.00	294.00	2.00	<0.05	2.9	206	608	63	8.34
	294.00	296.00	2.00	<0.05	2.6	215	360	56	9.36
	296.00	297.55	1.55	<0.05	3.8	281	245	54	8.24
	297.55	299.55	2.00	<0.05	2.3	252	113	46	7.56
	299.55	301.55	2.00	<0.05	2.0	342	189	51	9.26
	301.55	303.55	2.00	<0.05	2.9	286	593	42	8.29
	303.55	305.55	2.00	<0.05	2.3	305	269	45	7.94
	305.55	307.55	2.00	0.25	3.8	300	315	46	9.79
	307.55	310.00	2.45	<0.05	2.3	179	184	40	9.10
	310.00	312.00	2.00	<0.05	1.8	144	163	27	8.42
	312.00	314.00	2.00	0.08	5.8	797	451	70	13.44
	314.00	315.70	1.70 2.00	0.05 0.06	14.5 10.1	3,260 329	582 835	148 82	16.93 14.52
	315.70 317.70	317.70 318.50	0.80	<0.05	9.2	150	1,590	77	26.72
	321.60	323.60	2.00	0.07	8.2	516	724	161	18.16
	323.60	324.90	1.30	0.10	8.2	660	676	108	13.77
	326.90	328.10	1.20	0.22	10.6	347	471	106	16.00
	334.60	336.70	2.10	0.09	4.0	389	690	69	8.48
	336.70	337.40	0.70	<0.05	52.1	295	774	98	28.19
	337.50	339.90	2.40	0.06	42.5	238	649	111	16.02
	339.90	341.25	1.35	0.17	22.5	505	1,700	175	13.55
	341.25	343.40	2.15	0.33	86.6	885	4,540	490	23.67
	343.40	343.90	0.50	<0.05	17.5	192	1,280	166	7.70
	343.90	345.00	1.10	0.47	32.9	2,850 1,630	1,090	540	9.59
	345.00 347.30	347.30 349.00	2.30 1.70	0.23	34.1 31.6	1,630 574	1,120 1,760	218 386	16.73 18.33
	347.30	350.30	0.80	0.33	16.0	354	1,780	125	14.08
	350.80	351.80	1.00	0.07	20.7	562	996	230	14.97
	351.80	352.55	0.75	<0.05	27.7	184	1,530	200	7.60
	352.55	353.40	0.85	0.25	19.6	746	2,200	450	10.02
	353.40	354.60	1.20	0.09	3.6	175	335	92	12.77
	354.60	355.10	0.50	0.12	5.8	239	309	106	14.88
	355.10	355.50	0.40	0.16	8.7	551	708	97	17.99
	355.50	356.90	1.40	0.12	7.5	397	216	95	13.53
	356.90	357.70	0.80	0.16	9.0	805	343	112	21.80
	357.70	359.70	2.00	0.08	3.8	211	437	50	12.33
	359.70	361.70	2.00	0.08	1.2	193	2,380	74	9.30
	361.70	363.70	2.00	0.15	2.9	93	2,910	144	9.73
M IOU 40	363.70	365.70	2.00	0.07	1.6	80	336	45	6.67
MJSU-10	5.10	6.10	1.00	<0.05	<1.0	35	20 15	<5 <5	2.27 <0.05
	8.40	9.40	1.00	<0.05	<1.0	15	15	(3)	\0.03

Appendix 29 Results of Ore Assay(4)

Drill Hole	Dept	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-10	9.40	9.80	0.40	<0.05	<1.0	50	50	<5 <5	0.44
	9.80	10.80	1.00	<0.05 <0.05	<1.0 <1.0	30 30	50 60	<5	<0.05
	12.80 14.80	13.80 15.80	1.00	<0.05	<1.0	20	30	<5 <5	0.36
	15.80	16.30	0.50	<0.05	<1.0	35	40	√5	0.52
	16.30	17.30	1.00	<0.05	<1.0	20	60	15	0.34
	18.70	19.70	1.00	<0.05	<1.0	15	40	60	0.54
	19.70	21.10	1.40	<0.05	<1.0	30	110	20	0.39
	21.10	22.10	1.00	<0.05	<1.0	25	140	<5	<0.05
	22.75	23.75	1.00	<0.05	<1.0	30	190	_ <5	<0.05
	23.75	23.85	0.10	<0.05	<1.0	50	620	20	0.28
	23.85	24.85	1.00	<0.05	<1.0	35	700	<5	<0.05
	67.50	69.50	2.00	<0.05	<1.0	700	300	<5	4.57
	69.50	71.50	2.00	<0.05	<1.0	470	1440	15	3.65
	71.50	73.50	2.00	<0.05	<1.0	175	370	<5 <5	0.76
	73.50	75.50	2.00	<0.05	<1.0	360	440	<5 <5	2.51
	75.50	77.50	2.00	<0.05	<1.0 <1.0	170 65	820 490	<5	1.72
	77.50	79.50 81.50	2.00	<0.05 0.12	<1.0	70	760	50	2.32
	79.50 81.50	82.50	1.00	<0.05	<1.0	65	1600	70	2.45
	83.60	85.10	1.50	<0.05	<1.0	225	4760	420	3.40
	136.60	137.60	1.00	<0.05	<1.0	45	140	<5	6.00
	137.60	138.60	1.00	<0.05	<1.0	20	80	<5	4.22
	138.60	139.60	1.00	<0.05	<1.0	15	40	<5	4.88
	139.60	140.60	1.00	<0.05	<1.0	25	60	<5	10.32
	140.60	141.60	1.00	<0.05	<1.0	10	60	<5	4.76
	141.60	142.60	1.00	<0.05	<1.0	20	70	<5	6.88
	142.60	143.60	1.00	<0.05	<1.0	25	70	<5	5.32
	143.60	144.60	1.00	<0.05	<1.0	15	70	<5	4.36
	144.60	145.60	1.00	<0.05	<1.0	15	60	<5	10.53
	145.60	146.60	1.00	<0.05	<1.0	15	60	< 5	13.91
	146.60	147.60	1.00	<0.05	<1.0	10	40	< 5	13.61
	147.60	148.60	1.00	<0.05	<1.0	10	40 40	<5 <5	5.99 6.26
	148.60	149.60	1.00	<0.05 <0.05	<1.0 <1.0	10 15	40	₹ 5	9.37
	149.60 150.60	150.60 151.60	1.00	<0.05	<1.0	25	20	<u>√5</u>	8.77
	151.60	152.60	1.00	<0.05	<1.0	45	15	₹5	14.03
1	152.60	153.60	1.00	<0.05	<1.0	20	15	<5	8.75
	153.60	154.60	1.00	<0.05	<1.0	75	60	<5	8.12
	154.60	155.60	1.00	<0.05	<1.0	75	300	<5	10.52
3	155.60	156.60	1.00	<0.05	<1.0	35	30	<5	7.43
	156.60	157.60	1.00	<0.05	<1.0	25	20	<5	7.44
	157.60	158.60	1.00	<0.05	<1.0	25	20	<5	13.20
	158.60	159.60	1.00	<0.05	<1.0	150	110	<5	18.88
	159.60	160.90	1.30	<0.05	<1.0	40	20	25	15.23
	160.90	161.90	1.00	<0.05	<1.0	35	10	15	16.20
	161.90	162.90	1.00	<0.05	<1.0	70	15	15	18.48
	162.90	164.50	1.60	<0.05	<1.0	26	420 15	<5 <5	5.15 13.80
	164.50	165.40	0.90	<0.05 <0.05	<1.0 <1.0	25 35	50	<5	4.47
	200.00	201.00	1.00	<0.05	<1.0	65	30	< 5	4.47
	202.00	202.00	0.70	<0.05	<1.0	95	20	<5	4.94
MJSU-11	2.50	4.00	1.50	<0.05	<1.0	32	47	5	0.34
	5.50	7.00	1.50	<0.05	<1.0	26	40	3	0.36
	8.50	10.00	1.50	<0.05	<1.0	26	38	4	0.35
	11.50	13.00	1.50	<0.05	<1.0	6	26	4	0.22
	14.50	16.00	1.50	<0.05	<1.0	10	37	3	<0.05
	17.50	19.00	1.50	<0.05	<1.0	110	80	4	<0.05
	20.50	21.00	0.50	<0.05	<1.0	14	29	5	<0.05
	23.50	25.00	1.50	<0.05	<1.0	12	38	2	<0.05
	26.50	27.00	0.50	<0.05	<1.0	10	48	2	<0.05
	130.90	132.40	1.50	<0.05	<1.0	10	66	3	3.58
1	132.40	133.90	1.50	<0.05	<1.0	106	20	4	11.77

Appendix 29 Results of Ore Assay(5)

Drill Hole	Dept	n (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-12	133.90	135.40	1.50	<0.05	<1.0	48	16	2	8.52
	135.40	136.90	1.50	<0.05	<1.0	172	17	2	10.75
	136.90	138.40	1.50	<0.05	<1.0	20	35 54	5 4	8.55 8.63
	138.40	140.00 141.50	1.60	<0.05 <0.05	<1.0 <1.0	14	50	3	4.53
	140.00 150.90	152.40	1.50 1.50	<0.05	<1.0	6	31	3	2.77
	152.40	155.70	3.30	⟨0.05	<1.0	8	28	3	4.82
	155.70	157.20	1.50	<0.05	<1.0	6	25	2	5.86
	157.20	158.70	1.50	<0.05	<1.0	10	26	2	3.60
	158.70	160.20	1.50	<0.05	<1.0	8	26	2	2.54
	160.20	161.70	1.50	<0.05	<1.0	8	23	3	7.62
	161.70	162.40	0.70	<0.05	<1.0	8	19	3	8.40
	162.40	163.60	1.20	<0.05	<1.0	8	24	3	7.80
	163.60	165.80	2.20	<0.05	<1.0	10	21	2	10.30
	165.80	167.30	1.50	<0.05	<1.0	10	24	2 2	4.50 5.73
	167.30	168.80	1.50	<0.05	<1.0 <1.0	10 16	30 46	3	8.74
	168.80 169.50	169.50 171.00	0.70 1.50	<0.05 <0.05	<1.0	12	45	3	9.06
	182.00	182.40	0.40	<0.05	<1.0	14	91	2	4.73
	131.10	133.10	2.00	⟨0.05	⟨1.0	394	72	12	4.65
	133.10	135.10	2.00	<0.05	<1.0	125	63	13	3.29
	135.10	137.10	2.00	<0.05	<1.0	38	29	6	2.37
	137.10	139.10	2.00	<0.05	<1.0	197	41	6	2.92
	139.10	140.10	1.00	<0.05	<1.0	139	47	6	1.53
	140.10	142.10	2.00	<0.05	<1.0	931	114	8	6.31
	142.10	143.10	1.00	<0.05	<1.0	1,280	119	8_	5.20
	163.30	165.90	2.60	<0.05	<1.0	63	41	8	7.68
	211.00	212.80	1.80	<0.05	<1.0	53	78	8 18	1.63 28.34
	227.75	227.95	0.20	<0.05	<1.0 <1.0	223 144	39 58	8	6.16
MJSU-13	231.60 89.50	232.00 91.00	0.40 1.50	<0.05 <0.05	<1.0	161	117	7	3.77
MUSU-13	91.00	92.50	1.50	<0.05	<1.0	23	93	8	10.10
	92.50	94.00	1.50	<0.05	<1.0	37	142	8	1.90
	94.00	95.50	1.50	<0.05	<1.0	15	81	6	3.72
	95.50	97.00	1.50	<0.05	<1.0	24	95	10	12.87
1	97.00	98.10	1.10	<0.05	<1.0	88	163	6	4.88
	122.10	123.70	1.60	<0.05	<1.0	335	462	8	4.05
	129.00	130.90	1.90	<0.05	<1.0	1112	334	5	4.78
	132.40	133.90	1.50	<0.05	<1.0	906	291	7	3.12
	133.90	135.40	1.50	<0.05	<1.0	540 1486	472 244	7 8	4.13 5.27
	135.40 142.20	137.20 143.70	1.80	<0.05 <0.05	<1.0 <1.0	883	199	9	4.36
	143.70	145.70	1.50	<0.05	<1.0	1345	192	6	2.44
	148.70	149.70	1.00	<0.05	<1.0	193	230	8	5.99
	153.70	155.10	1.40	<0.05	<1.0	174	211	9	6.97
	159.30	160.60	1.30	<0.05	<1.0	215	191	5	6.10
	184.60	186.40	1.80	<0.05	<1.0	305	399	7	4.74
	186.40	188.40	2.00	<0.05	<1.0	139	659	10	2.70
MJSU-14	69.00	69.50	0.50	<0.05	<1.0	<5	80	<5	0.87
	97.90	98.30	0.40	0.09	<1.0	<5 <5	30	<5 /5	1.88 0.47
	109.40	111.40	2.00	0.10	<1.0	<5 <5	80 110	<5 <5	0.47
	111.40	113.40	2.00	<0.05 <0.05	<1.0 <1.0	50	100	<5 <5	0.73
	113.40 115.40	115.40 117.40	2.00	0.69	<1.0	<5	90	<5	0.56
	117.40	119.40	2.00	0.49	<1.0	110	35	⟨5	0.97
	119.40	121.40	2.00	<0.05	<1.0	40	30	<5	0.61
	140.20	141.10	0.90	<0.05	<1.0	90	250	⟨5	8.09
1	150.50	152.50	2.00	<0.05	<1.0	50	300	<5	2.12
	152.50	154.50	2.00	<0.05	<1.0	160	190	<5	3.41
	165.70	166.30	0.60	<0.05	<1.0	<5	135	<5	3.95
	166.30	167.30	1.00	<0.05	<1.0	20	250	<5	2.22
	167.30	168.30	1.00	0.08	<1.0	530	250	<5	1.83
	170.80	171.70	0.90	<0.05	<1.0	40	300	<5	2.89

Appendix 29 Results of Ore Assay(6)

Drill Hole	Deptl	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-14	171.70	172.30	0.60	<0.05	4.0	40	250	<5	6.66
	194.70	195.70	1.00	<0.05	<1.0	40	350	<5	2.27
	195.70	196.30	0.60	0.08	5.0	5,300	410	<5	3.44
	196.30	197.30	1.00	<0.05	2.0	2,770	335	<5	3.43
	197.30	198.90	1.60	<0.05	<1.0	480	370	<5	1.43
	198.90	199.20	0.30	<0.05	3.5	300	465	<5	1.43
	201.90	202.90	1.00	<0.05	<1.0	260	3,600	<5	2.36
	202.90	203.20	0.30	<0.05	1.5	120	250	<5 (5	17.60
	203.20	204.10	0.90	<0.05	2.5	500	1,300	<5 <5	1.66
	204.10	204.45	0.35	0.19	12.5	31,000	750	<5 <5	20.30
	204.45	205.45	1.00	<0.05	<1.0	80	75	<5 <5	0.36
	219.15	219.80	0.65	0.16	3.0	2,130	475	<5 <5	5.12
	219.80	220.10	0.30	0.27	7.5 <1.0	890 340	500 205	<5 <5	26.60 1.20
	220.10	220.20	0.10	<0.05 0.24	34.0	11,300	350,000	<5	25.90
	220.20 220.90	220.90 221.00	0.70 0.10	0.24	25.0	5,100	150,000	<5	10.48
	221.00	221.00	0.10	<0.05	<1.0	80	2,760	⟨5	1.19
	221.00	221.75	0.55	0.03	51.0	22,800	110,000	<5	30.00
	221.75	222.35	0.60	<0.05	1.5	760	3,000	⟨5	4.78
	222.35	223.35	1.00	<0.05	<1.0	100	165	<5	1.41
	234.50	234.90	0.40	<0.05	<1.0	50	750	<5	0.48
MJSU-15	43.60	45.40	1.80	<0.05	<1.0	172	425	33	0.46
1000 10	45.40	47.40	2.00	<0.05	1.9	378	459	57	9.35
	47.40	49.40	2.00	0.06	2.0	431	123	42	11.60
	49.40	51.40	2.00	<0.05	1.5	653	106	63	13.89
	51.40	53.40	2.00	<0.05	1.6	345	105	28	7.43
	53.40	55.40	2.00	<0.05	1.3	156	65	27	5.01
	55.40	57.40	2.00	<0.05	1.3	133	84	28	6.54
	57.40	59.40	2.00	<0.05	<1.0	102	75	24	4.42
	59.40	61.40	2.00	<0.05	1.4	130	113	29	4.52
	61.40	63.40	2.00	<0.05	1.4	116	184	32	5.87
	63.40	65.40	2.00	<0.05	1.1	82	272	22	4.74
	65.40	67.40	2.00	<0.05	1.4	88	329	27	7.07
	67.40	69.40	2.00	<0.05	1.8	72	120	32	5.71
	69.40	71.40	2.00	<0.05	2.4	75	168	39	6.84
	71.40	73.40	2.00	<0.05	1.6	118	71	33	6.48
	73.40	75.40	2.00	<0.05	1.0	94	84	27	6.65
	75.40	77.40	2.00	<0.05	<1.0	213	331 165	30 32	6.35 7.88
	77.40	79.40	2.00	<0.05	1.5 <1.0	334 86	167	24	4.46
	79.40	81.40 83.40	2.00	<0.05 <0.05	1.7	98	181	29	5.67
	81.40 83.40	85.40	2.00	<0.05	1.6	117	147	33	6.10
1	85.40	87.40	2.00	<0.05	1.1	102	146	28	5.74
	87.40	89.40	2.00	<0.05	1.3	74	90	28	4.74
	89.40	91.40	2.00	<0.05	1.8	134	130	55	6.21
	91.40	93.40	2.00	<0.05	1.3	98	110	26	5.79
1	93.40	95.40	2.00	<0.05	1.2	165	146	27	5.02
	95.40	97.40	2.00	⟨0.05	1.3	162	155	25	4.42
1	97.40	99.40	2.00	<0.05	1.2	128	66	30	4.94
	99.40	101.40	2.00	<0.05	1.0	137	106	27	4.63
	101.40	103.40	2.00	<0.05	1.1	114	129	28	5.29
	103.40	105.40	2.00	<0.05	1.0	85	78	27	4.85
	105.40	107.40	2.00	<0.05	<1.0	66	52	26	5.13
	107.40	109.40	2.00	<0.05	<1.0	76	58	24	4.75
	109.40	111.40	2.00	<0.05	<1.0	71	283	36	5.30
	111.40	113.40	2.00	<0.05	<1.0	74	163	30	4.69
	113.40	115.40	2.00	<0.05	1.4	68	186	67	4.50
	115.40	117.40	2.00	<0.05	1.3	65	635	54	5.04
	117.40	119.40	2.00	<0.05	1.3	85	113	40	6.30
	119.40	121.40	2.00	<0.05	1.5	128	347	39	6.49
	121.40	123.40	2.00	<0.05	1.4	259	84	58	12.24
	123.40	125.40	2.00	<0.05	2.4	544	68	69	15.83
	125.40	127.40	2.00	<0.05	2.6	612	97	77	17.18

Appendix 29 Results of Ore Assay(7)

Drill Hole	Dept	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-15	127.40	129.40	2.00	<0.05	1.8	264	92	44	10.44
	129.40	131.40	2.00	<0.05	2.0	181	320	35	7.46
	131.40	133.40	2.00	<0.05	1.8	192	132	40	7.81
	133.40	135.40	2.00	0.08	2.8	141	205 143	53 57	9.21
	135.40 137.40	137.40 139.40	2.00	<0.05 <0.05	1.8	210 291	292	82	10.22
	137.40	142.00	2.60	<0.05	1.3	146	319	50	8.21
	145.40	147.40	2.00	<0.05	1.4	217	212	55	5.78
	147.40	149.40	2.00	<0.05	1.4	128	1170	52	8.82
	149.40	151.40	2.00	<0.05	1.6	108	327	45	6.42
	151.40	153.40	2.00	<0.05	1.3	111	378	61	6.18
	153.40	155.40	2.00	<0.05	2.0	126	1300	105	9.17
	155.40	157.40	2.00	<0.05	1.5	98	409	30	5.97
	157.40	159.40	2.00	<0.05	1.0	144	407	53	6.79
	159.40	161.40	2.00	<0.05	1.3	80	253	35	6.22
	161.40	163.40	2.00	<0.05	2.3	75	511	40	5.21
	163.40	165.40	2.00	<0.05	1.4	106	484	57	7.83
	165.40	167.40	2.00	<0.05	2.1	144	319	70	8.45 5.17
	167.40	169.40 171.40	2.00	<0.05 <0.05	1.5 1.1	177 139	199 199	43 32	5.17
	169.40 171.40	171.40	2.00	<0.05	1.7	261	203	42	7.94
	173.40	175.40	2.00	0.05	2.3	343	392	57	11.56
	175.40	173.40	2.00	0.03	2.3	312	353	45	12.06
	177.40	179.40	2.00	<0.05	1.9	302	238	31	7.11
	179.40	181.40	2.00	<0.05	1.5	210	317	33	5.20
	181.40	183.40	2.00	<0.05	1.2	83	239	40	6.92
	183.40	185.40	2.00	<0.05	1.3	71	419	41	8.04
	185.40	187.40	2.00	<0.05	2.0	98	418	51	9.47
	187.40	189.40	2.00	<0.05	1.1	107	237	32	6.41
]	189.40	191.40	2.00	<0.05	2.5	84	592	37	3.74
	191.40	193.40	2.00	<0.05	1.2	61	69	21	3.18
	193.40	195.40	2.00	<0.05	1.2	63	58	19	3.34
	195.40	197.40	2.00	<0.05 0.05	1.3	82 160	140 259	25 50	4.08 9.02
	197.40 199.40	199.40 201.40	2.00	<0.05	1.4	128	201	23	6.96
	201.40	203.40	2.00	<0.05	2.5	174	311	34	8.60
	203.40	205.40	2.00	⟨0.05	1.2	106	191	34	6.26
	205.40	207.40	2.00	0.06	1.3	124	393	34	5.98
	207.40	209.40	2.00	<0.05	1.6	94	254	35	5.24
	209.40	211.40	2.00	<0.05	1.5	81	251	48	5.21
	211.40	213.40	2.00	<0.05	1.4	68	102	17	2.61
	213.40	215.40	2.00	<0.05	1.4	79	159	39	5.71
	215.40	217.40	2.00	<0.05	2.0	111	253	48	7.18
	217.40	219.40	2.00	<0.05	1.2	68	417	31	3.64
	219.40	221.40	2.00	<0.05	1.4	78	172	33	4.81
	221.40 223.40	223.40 225.40	2.00	<0.05 <0.05	1.0	61 70	48 437	22 28	2.65 5.93
	225.40	225.40	2.00	<0.05	1.7	70	466	29	5.48
	227.40	229.40	2.00	<0.05	2.8	110	273	35	5.54
	229.40	231.40	2.00	<0.05	3.1	176	216	39	6.11
	231.40	233.40	2.00	<0.05	1.2	100	209	20	2.31
	233.40	235.40	2.00	<0.05	1.9	330	92	43	7.53
	235.40	237.40	2.00	<0.05	1.6	230	125	37	4.97
	237.40	239.40	2.00	<0.05	2.1	113	115	22	4.18
	239.40	241.40	2.00	<0.05	<1.0	98	271	18	3.67
	241.40	243.40	2.00	<0.05	1.8	95	187	17	3.53
	243.40	245.40	2.00	<0.05	<1.0	47	49	8	2.70
	245.40	247.40	2.00	<0.05	<1.0	44	34	11	3.73
	247.40	249.40	2.00	<0.05	1.6	61	24	12	3.84
	249.40	251.40	2.00	<0.05	1.3	91	20	10 13	4.69 4.37
	251.40	253.40	2.00	<0.05	1.9	128 55	24 16	7	3.04
	253.40 255.40	255.40 256.60	2.00 1.20	<0.05 <0.05	2.4 1.1	100	33	11	2.80
	Z33.4U	200.00	1.20	\U.U3	1.1	100			2.00

Appendix 29 Results of Ore Assay(8)

Drill Hole	Dept	h (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-15	303.65	305.65	2.00	<0.05	1.9	95	29	13	6.98
	305.65	307.65	2.00	<0.05	1.0	84	107	5	2.36
	307.65	309.65	2.00	<0.05	1.9	137	1220	17	7.28
	309.65	311.65	2.00	<0.05	1.1	182	572	10	3.07
	311.65	313.80	2.15	<0.05	<1.0	87	485	8	3.03
	332.10	334.10	2.00	<0.05	<1.0	82	133	15	3.23
	334.10	336.10	2.00	<0.05	<1.0	76	194	16	4.65
	336.10	338.10	2.00	<0.05	<1.0	106	105	16	2.58
	348.60	350.40	1.80	<0.05	<1.0	191	31	15	4.74
	350.40	351.40	1.00	<0.05	<1.0	128	115	20	2.56
MJSU-16	133.90	135.90	2.00	<0.05	<1.0	<0.01	<0.01	<0.01	0.91
	135.90	137.90	2.00	<0.05	<1.0	<0.01	0.01	<0.01	1.13
	193.80	194.30	0.50	<0.05	3.2	0.02	<0.01	<0.01	9.76
	198.20	199.20	1.00	<0.05	1.1	<0.01	<0.01	<0.01	8.87

Appendix 30 Results of Microscopic Observation of Thin Section

No. Depth (m) Hook type MJSU-14 84.1 weekly meta MJSU-14 88.0 meta-andesitic to fine to the fine to fine for lava fine (ash) to fine (ash) to fine (ash) to fine fine for fine for lava fine (ash) to fine for lava fine fine (ash) to fine for lava fine fine to fine for lava fine fine for l	1		Phenoc	Phenocrysts or fragments	r fragme	ints		_			ground	groundmass or matrix	matrix			_		metan	norphic	metamorphic or afteration	ation	
MJSU-14 84.1 dacitic fine tuff, weakly meta MJSU-14 88.0 meta-andesitic to meta-andesitic to deciric fine tuff of meta-andesitic to deciric fine tuff of meta-mobolic fine tuff of meta-mobolic fine tuff of meta-mobolic fine tuff fine tuff fine tuff MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 133.5 meta-rhyodacitic fine tuff fine crystal tuff or lava MJSU-11 57.6 meta-rhyodacitic fine fine crystal tuff or lava fine fine fine fash tuff or lava siltstone fine fash tuff or lava fine fash tuff or lava siltstone fine fash tuff or lava fine fash tuff or lava fine fash tuff or lava siltstone fine fash tuff or lava fine fash tuff or lava fine fash tuff or lava siltstone fine fash tuff or lava siltstone fine fash tuff or lava fine fash tuff or lava siltstone fine fash tuff or lava siltstone fine fash tuff or lava fine		MP clp	욘	25	×	Ш	op others	rs MP	용	귵	75	ā	150	¥	opot	others	epi ch		np ser	#	д	others
MJSU-14 880 meta-dacitic to meta-andesitic to dacitic frome tuff of meta-andesitic to dacitic compo. MJSU-14 1368 dacitic compo. MJSU-14 188.5 from tuff of meta-dacitic compo. MJSU-10 60.0 meta-rhyodacitic frome tuff	porphyritic, weakly				0	7	٥				٥		◁	٥	_					_	◁	
MJSU-14 880 meta-andesitic to meta-andesitic to meta-andesitic to MJSU-14 186.8 fine tuff of meta-andesitic to decitic fine tuff fine tuff of meta-andesitic to decitic fine tuff fine tuff of meta-andesitic to mJSU-10 60.0 meta-rhyodacitic fine tuff meta-andesitic to meta-andesitic to meta-andesitic to meta-andesitic fine tuff or lava mJSU-11 57.6 meta-rhyodacitic fine for lava mJSU-9 90.0 meta-rhyodacitic fine filthic tuff MJSU-9 122.0 meta-rhyodacitic tuff or lava mJSU-9 122.0 reworked meta-rhyodacitic tuff mJSU-9 138.1 phylite or meta-siltstone meta-rhyodacitic tuff and mJSU-9 138.1 phylite or meta-siltstone meta-rhyodacite	foliated g	glassy shards and pumice fragments are devitrified and weakly to moderately chloritized	and pumi	se fragn	ents are	e devitri	fied and w	veakly to	modera	tely chi	oritized.											
MJSU-14 136.8 meta-andesitic to dacitic fine tuff of meta-andesitic to dacitic fine tuff of meta-andesitic to dacitic compo. MJSU-14 167.2 fine tuff of meta-dacitic compo. MJSU-10 60.0 meta-rhyodacitic fine tuff meta-rhyodacitic fine tuff meta-rhyodacitic fine tuff meta-rhyodacitic fine tuff muJSU-10 99.5 reworked crystal-rich tuff meta-rhyodacitic fine tuff or lava muJSU-11 57.6 meta-rhyodacitic fine filthic tuff meta-rhyodacitic fine filthic tuff filthic f	highly foliated and										◁	0			H	\exists) 	0			*	
MJSU-14 1368 meta-andestitic to dacitic fine tuff of meta-andestitic compo. MJSU-14 188.5 meta-rhyodacitic fine tuff or meta-rhyodacitic fine tuff fine fine crystal tuff or lava fine fine (sah) tuff for lava fine fine (sah) tuff fine fithic tuff fithic fi	sheared	Highly sheared	d and folis	ted roc	k of felsi	ic to int	and foliated rock of felsic to intermediate composition.	compos	ition.													
MJSU-14 167.2 fine tuff of meta- dacitic compo. MJSU-14 188.5 meta-rhyodacitic fine tuff MJSU-10 60.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal- mJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-10 220.0 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic fine tuff or lava MJSU-9 58.8 meta-rhyodacitic fine ithic i	foliated & sub-				(*)	٥	(*)				*	0			(*)	H) (*)	0	*		0	
MJSU-14 167.2 fine tuff of meta- dacitic compo. MJSU-10 60.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal- rich tuff MJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff MJSU-11 75.3 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic fine tuff or lava MJSU-9 58.8 meta-rhyodacitic fine ithic tuff MJSU-9 122.0 reworked meta-rhyodacitic fine ithic tuff or lava MJSU-9 112.0 reworked meta-rhyodacitic tuff MJSU-9 1138.1 phylite or meta-rhyodacitic tuff MJSU-9 1138.1 phylite or meta-rhyodacitic tuff MJSU-9 1138.1 phylite or meta-rhyodacite	porphyritic F	Feldspars phenocrysts are mostly altered to carbonate and chlorite.	nocrysts	are mos	tly alter	ed to ca	irbonate a	ind chlor		e fractu	Late fractures are filled by	filled by	carbonate	te.								
MJSU-14 188.5 highly sheared meta-rhyodacitic r. MJSU-10 60.0 meta-rhyodacitic r. MJSU-10 99.5 reworked crystal-rich tuff meta-rhyodacitic fine tuff or lava MJSU-11 57.6 meta-rhyodacitic fine tuff or lava mJSU-11 75.3 meta-rhyodacitic fine tuff or lava mJSU-9 90.0 meta-rhyodacitic fine tuff or lava mJSU-9 90.0 meta-rhyodacitic fine ithic ithic ithic tuff or lava mJSU-9 122.0 reworked meta-rhyodacitic tuff mJSU-9 138.1 reworked meta-rhyodacitic tuff mJSU-9 138.1 reworked meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacite tuff siltetorie	and			(*)	(*)		(*)				∇	◁	_		\vdash	H	(*) ©	0	◁	_	0	
MJSU-14 188.5 highly sheared meta-olcanic r. meta-rhyodacitic fine tuff MJSU-10 60.0 meta-rhyodacitic fine tuff MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal-rich tuff MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-11 265.0 fine tuff or lava MJSU-11 57.6 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic fine tuff or lava MJSU-11 75.6 meta-rhyodacitic fine orystal tuff or lava MJSU-11 75.3 meta-rhyodacitic fine orystal tuff or lava MJSU-9 58.8 meta-rhyodacitic finf MJSU-9 90.0 meta-rhyodacitic finf MJSU-9 122.0 rhyodacitic tuff MJSU-9 138.1 phylite or meta-siltstone MJSU-9 138.1 phylite or meta-siltstone	sheared	highly sheared	and schi	stosed r	ock of p	hyllitic ,	and schistosed rock of phyllitic composition.	on.														
MJSU-10 600 meta-rhyodacitic fine tuff MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal-rich tuff MJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff MJSU-11 75.3 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic fine crystal tuff or lava MJSU-9 58.8 meta-rhyodacitic fine ithic tuff MJSU-9 122.0 reworked meta-rhyodacitic fine ithic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phylite to meta-rhyodacitic tuff MJSU-9 138.1 phylite to meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacite tuff MJSU-9 138.1 phylite or meta-rhyodacite	strongly foliated &					7	\ \				0						9	0	◁		0	
MJSU-10 60.0 meta-rhyodacitic fine tuff fine tuff MJSU-10 77.0 wery fine-grained MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-11 265.0 fine tuff or lava MJSU-11 57.6 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic fine orystal tuff MJSU-11 75.6 meta-rhyodacitic fine orystal tuff MJSU-9 90.0 meta-rhyodacitic fine fine orystal tuff MJSU-9 90.0 meta-rhyodacitic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacitic tuff	cataclased	The rock has suffered both	suffered I		ductile and	brittle c	brittle deformation.	'n.														
MJSU-10 77.0 meta-sitstone. MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal-rich tuff MJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-11 285.0 fine crystal tuff or lava MJSU-11 57.6 meta-rhyodacitic fine crystal tuff or lava MJSU-11 75.3 meta-rhyodacitic fine crystal tuff or lava MJSU-9 58.8 meta-rhyodacitic fine crystal tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic fine crystal tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-siltstone	porphyritic &			٥	_	7	4				0					Ľ	○ *		0		_	
MJSU-10 77.0 meta-siltstone. MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 133.5 meta-rhyodacitic mJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-10 2265.0 fine crystal tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine crystal tuff or lava MJSU-9 122.0 meta-rhyodacitic fine crystal tuff or lava MJSU-9 122.0 meta-rhyodacitic tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic tuff or lava interactic tuff or		Phyllosilicates	comprise	d of ser	icte and	1 chlorit	comprised of sericte and chlorite are the main alteration products.	main alt	eration p	roducts												
MJSU-10 93.0 meta-rhyodacitic fine tuff MJSU-10 99.5 reworked crystal-rich tuff MJSU-10 133.5 meta-rhyodacitic fine tuff MJSU-10 285.0 fine crystal tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic tuff or lava MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacitic tuff meta-rhyoda	8			∇		()	(*)				0						_		0			
MJSU-10 99.5 reworked crystal- MJSU-10 133.5 meta-rhyodacitic MJSU-10 210.0 meta-rhyodacitic MJSU-10 265.0 fine crystal tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine in crystal tuff or lava MJSU-9 122.0 meta-rhyodacitic fine fight cuff MJSU-9 122.0 reworked meta-rhyodacitic fine (ash) tuff MJSU-9 138.1 phylite or meta- siltstone	foliated	Metasiltstone	6	olcanic	fine (ash) tuff of	metavolcanic fine (ash) tuff of felsic composition	mpositio	n,													
MJSU-10 99.5 reworked crystal—rich tuff MJSU-10 133.5 meta-rhyodacitic MJSU-10 210.0 meta-rhyodacitic MJSU-10 265.0 meta-rhyodacitic MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic MJSU-9 122.0 meta-rhyodacitic MJSU-9 122.0 reworked meta-rhyodacitic mJSU-9 138.1 phyllite or meta-rhyodacitic mHJSU-9 138.1 phyllite or meta-rhyodacitic meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacitic meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacitic meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacite	porphyritic & highly			0	*		*				0	*		*					0		⊲	
MJSU-10 133.5 meta-rhyolite MJSU-10 133.5 meta-rhyolite MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-11 57.6 fine crystal tuff MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine lithic tuff MJSU-9 122.0 fine (ash) tuff MJSU-9 122.0 reworked meta-rhyodacitic fine lithic tuff MJSU-9 138.1 phyllite or meta-rhyodacitic fine silvitone MJSU-9 138.1 phyllite or meta-rhyodacitic fine silvitone meta-rhyodacitic tuff mJSU-9 1122.0 reworked meta-rhyodacitic fine silvitone meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-silvitone	foliated	Deformation i	is marked	by flattening,	ning, str	etching	stretching, and fragmentation of quartz grains.	mentatio	in of qua	rtz grair	18.											
MJSU-10 133.5 meta-rhyolite MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine (ash) tuff or lava MJSU-9 122.0 meta-rhyodacitic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-rhyodacitic tuff	highly sheared &				4	<u> </u>	L	L		Ĺ	0	0			_	Ĭ	○		<u> </u>		◁	
MJSU-10 133.5 meta-rhyolite MJSU-10 265.0 fine tuff MJSU-11 57.6 fine crystal tuff MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic MJSU-9 90.0 meta-rhyodacitic fine lithic tuff MJSU-9 122.0 reworked meta-rhyodacitic fine saltstone MJSU-9 138.1 phyllite or meta-rhyodacitic fine saltstone meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacitic fine saltstone meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacitic fine saltstone		Poorly sorted	and crystal rich.	al rich.																		
MJSU-10 210.0 meta-rhyodacitic fine tuff MJSU-10 265.0 fine crystal tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic tuff or lava MJSU-9 122.0 meta-rhyodacitic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-rhyodacitic tuff MJSU-9 138.1 meta-rhyodacitic tuff	porphyritic &				◁		(*)				0	0			(*)	Ľ	(*)		\circ		(*)	
MJSU-10 265.0 meta-rhyodacitic fine tuff MJSU-11 57.6 meta-rhyodacitic fine tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine lithic tuff or lava MJSU-9 90.0 meta-rhyodacitic fine lithic tuff meta-rhyodacite meta-rhyodacite	foliated	Matrix recrys	stallized, gr	granular a	and foliated	ed.																
MJSU-10 265.0 meta-rhyodacitic fine crystal tuff MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine lithic tuff meta-rhyodacitic tuff meta-rhyodacite	highly sheared &			4							0	0			\vdash		(*)	0	\circ			
MJSU-10 265.0 meta-rhyodacitic fine crystal tuff MJSU-11 75.3 meta-rhyodacitic for lava MJSU-9 58.8 meta-rhyodacitic for lava mJSU-9 90.0 meta-rhyodacitic fine (ash) tuff MJSU-9 1122.0 reworked meta-rhyodacitic tuff MJSU-9 1132.1 reworked meta-rhyodacitic tuff mJSU-9 1132.0 reworked meta-rhyodacitic tuff mJSU-9 1138.1 phyllite or meta-rhyodacite tuff mJSU-9 1138.1 phyllite or meta-rhyodacite	mylonitized	very strongly deformed	deformed	and	sheared rock	Ż.																
MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic for lava MJSU-9 58.8 fine ithin cutf MJSU-9 90.0 meta-rhyodacitic fine ithin cutf MJSU-9 1122.0 fine (ash) tuff MJSU-9 1132.1 reworked meta-rhyodacitic tuff MJSU-9 1132.1 phyllite or meta-rhyodacite tuff MJSU-9 1138.1 phyllite or meta-rhyodacite	highly sheared &			0	4	_	\dashv				0	0			*		○ *		\circ	_		
MJSU-11 57.6 meta-rhyodacitic tuff or lava MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic tuff MJSU-9 90.0 meta-rhyodacitic fine (ash) tuff MJSU-9 112.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-rhyodacite tuff mJSU-9 138.1 phyllite or meta-rhyodacite tuff mJSU-9 138.1 phyllite or meta-rhyodacite	foliated	Crystal-rich r	rhyodacitic fine tuff	fine tu	<u>_</u>																	
MJSU-11 75.3 meta-rhyodacitic MJSU-9 58.8 meta-rhyodacitic fine lithic tuff or lava fine lithic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phylite or meta-rhyodacite tuff mata-rhyodacite	porphyritic, weakly			0	٥	7	٥				0	0						0	٥		٥	
MJSU-11 75.3 meta-rhyodacitic tuff or lava MJSU-9 58.8 meta-rhyodacitic fine lithic tuff MJSU-9 90.0 meta-rhyodacitic tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-siltstone meta-rhyodacite tuff mJSU-9 138.1 phyllite or meta-siltstone		Rock is affected by chlorite-sericite-carbonate and silica alteration	ed by chi	orite-se	ricite-ca	arbonate	e and silic	a alterat	ion.													
MJSU-9 58.8 meta-rhyodacitic fine lithic tuff meta-rhyodacitic fine lithic tuff mJSU-9 122.0 reworked meta-rhyodacitic tuff mJSU-9 138.1 phyllite or meta-rhyodacite meta-rhyodacite meta-rhyodacite meta-rhyodacite	ared &			0	ಶ	7	∇				0	ℴ				H	△	0	4		*	
MJSU-9 58.8 meta-rhyodacitic fine lithic tuff MJSU-9 90.0 meta-rhyodacitic fine (ash) tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-siltetone	foliated	Strikingly similar to	lar to san	sample no. T-13	T-13 in	texture	in texture and mineral composition.	ral comp	osition.													
MJSU-9 12.0 reworked meta- MJSU-9 12.0 reworked meta- rhyodacitic tuff MJSU-9 138.1 phyllite or meta- siltstone	fine-grained sub-				\dashv		_				0				*				0			
MJSU-9 90.0 meta-rhyodacitic fine (ash) tuff MJSU-9 122.0 reworked meta-rhyodacitic tuff MJSU-9 138.1 phyllite or meta-siltetone	porphyritic E	Effect of recrystallization is locally noticed on phenocrysts crystal	ystallizati	on is loc	ally noti	ced on	phenocrys	sts cryst	al margins.	JS.												
MJSU-9 12.0 reworked meta- rhyodaoritic tuff MJSU-9 138.1 phyllite or meta- siltstone meta-rhyodaorite	moderatly foliated			٥		()	(*)				0								0			
MJSU-9 122.0 reworked meta- rhyodaoritic tuff MJSU-9 138.1 phyllite or meta- siltstone	and sheared	Locally augen-shaped quartz-eye noticed	-shaped	quartz-e	ye notic	ed.																
MJSU-9 138.1 phyllite or meta-sittstone meta-thyodacite	groundmass fine to		٥	\dashv							0				-		*)	(*)	0		*	
MJSU-9 138.1 phyllite or meta-sittstone	medigrained E	Epidote-chlorite has completely replaced former amphibole phenocrysts.	ite has co	mplete	y replace	ed form	er amphib	ole phen	ocrysts.													
sittstone sittstone meta-rhvodacite	fine-grained &					7	Δ) @	(*)		0			
meta-rhyodacite	highly foliated	Locally zoisite occurs as gangue mineral to opaques.	occurs (s gangu	e miner	al to opi	aques.															
	highly sheared &				\dashv	7	٥				0	◁							0	_		
tuff or lava protomy	protomylonitic	Strong shearing has produced protomylonitic occelleur fabric.	ng has pr	panpo	protomy	onitic o	ccelleur f	abric.														

Appendix 30 Results of Microscopic Observation of Thin Section

Samole	Drill Hole					된	nocrvs	Phenocrysts or fragments	gments					1	embune	groundmass or matrix	atrix			L		metamo	metamorphic or alteration	rattera	و ا	
Š	Š	No. Depth (m)	Rock type	Texture	MP ch	\vdash	8	ā	×	8	others	ď₩	clp	로	24	lq lq	- K	f op	others	rs	동		ser	#	8	others
T-20	0-11/21	208.4	meta-rhyodacitic	porphyritic &		Н	0			*				H	0		Н		Щ	*	Ц	Ц	0		⊲	
-	6 DOG#	400.7	fine tuff	weakly foliated	Feldspars ar	e l	letely r	completely replaced by sericite.	y sericit	e;																
T-91	W ISH-0	9100	meta-fine (ash)	boteilot videom			0			٥							_			(*)			0		*	
-		0.013	tuff		Meta fine (ash) tuff of felsic composition.	sh) tufi	of felsi	compos	sition.																	
T-22	M. ISLI-0	228.0	tsidos ecimentados	extremely fine and						0					H		Н	Н			Ц	Ц	0			
77			William Street	foliated	The rock is		d by pe	affected by pervasive white mica alteration.	thite mic	a altera	tion.															
T-93	0-115I M	970.0	pervasively	very fine-grained		Ц	Ц										L	∇			0		◁			
67_1	NO SOL	0.070	chloritized rock	and foliated	Primary text	ure	1 miner	and mineral composition is obliterated by strong chlorite and patchy sericite alteration	sition is	oblitera	ted by s	trong ch	forite an	d patch	y sericit	e altera	ion.									
T-24	M. 1511-12	69.3	ativolbovoim	fine intersertal and										H	H	0	Н	0			0	Ш			٥	
-	7.000			sheared	The rock shows	ows int	erserta	fabric, w	there pla	gioclas	e grains	are rand	omly ori	ented ar	d their	inter gra	in space	s are fi	intersertal fabric, where plagioclase grains are randomly oriented and their inter grain spaces are filled by secondary alteration minerals.	scondary	y altera	tion min	nerals.			
T-25	M. ICH 1-12	135.7	meta-rhyodacite	porphyritic and	_	Н	ഥ	◁						Н	0	_	Н	◁	Щ	Ц	0		0			
-	7		tuff or lava	deformed	The felsic rock matrix accompanies phenocrysts and broken fragments of quartz and plagioclase.	ock mat	rix acc	mpanies	phenoc	rysts ar	d broke	n fragme	ints of q	uartz an	d plagio	clase.										
J. 1	MICHER		meta-rhyodacitic	porphyritic weakly		_	0								0					٥	0		0		*	
07_1	21000		lapilli tuff	deformed																						
T-27	M ICI I-13	818	meta-rhyolite crystal	porphyritic weakly		Ц	0	∇							0	- 0		(*)			0		٥		(*)	
			tuff or lava	foliated	Meta-rhyolitic-rhyodacitic crystal rich tuff, moderately deformed, sheared and granulated	tic-rhy.	dacitic	crystal r.	ich tuff,	modera	tely def	ormed, si	heared a	and gran	ulated.											
T_20	M ISH F-12	1 7 3	mylonitized felsic	highly deformed and			0	0															0			
- 70	200		rock	sheared	Coarse-grained		quartz a	nd plagiocla	se phenoc	lasts sug	gests that	probably t	he former	rock was	plutonic a	nd of gran	tic compc	sition. Th	fabric of quartz and plagicolase phenoclasts suggests that probably the former rock was plutonic and of grantic composition. That was strongly sheared and mylointized.	ongly shea.	ared and n	Tylonitized	-jo			
T-29	MJSU-13	82.9	meta-rhyodacitic	porphyritic, weakly			\bigcirc			*						\dashv	Н	*			Ц		0		(*)	
		_	tuff	deformed & sheared																						
T-30	M. ISH-13	170.0	meta-rhyolite crystal	porphyritic weakly			0			٥						٥	Н	Н					0			
3	2	_	tuff or lava	foliated	Strikingly similar to sample no.	milar to	sample	no. T-27	7 in text	are and	mineral	composi	ition exc	ept loca	Illy grap	nic inter	growth o	of quarts	in texture and mineral composition except locally graphic intergrowth of quartz over plagioclase is noticed.	agioclase	e is not	iced.				
T-31	M. ISH - 15	3002	meta-rhyodacitic	eakly			\circ			(*)			\dashv	_		\blacksquare	Н			٥	٥		0			
-	200		lithic tuff	foliated	The foliation	. ∞	larked l	are marked by suborientation of sericite patches.	entation	of seric	site pato	hes.														
T-39	M ICH-15	3046	meta-rhyodacitic	porphyritic weakly			0			0					0			L		٥	0	٥				
-		_	lithic tuff	foliated	Amphibole occurs in extremely fine—grained acicular form and in places forms disseminated rosettes.	occurs	n extre	nely fine	-grained	acicula	ır form a	nd in pla	ices forn	ns disse	minatec	rosette	si.									

Appendix 31 Results of Microscopic Observation of Polished Section

Sample	Drill Hole	Depth	Mineralization type		ср	со	СС	te	sp	ga	pr	ma	ru
No.	No.	(m)											
P-1	MJSU-14	203.1	sub-massive and foliated	0	Δ		Δ		Δ	Δ	Δ	Δ	
P-2	MJSU-14	204.2	sub-massive	0	0				Δ				
P-3	MJSU-14	219.9	sub-massive pyritic	0	Δ				Δ				
P-4	MJSU-14	220.3	laminated massive sulfide	0	0	Δ		Δ	0	L			
P-5	MJSU-14	220.8	laminated massive sulfide	0	0	Δ			0				
P-6	MJSU-14	221.5	laminated massive sulfide	0	0	Δ			0				
P-7	MJSU-10	139.8	sub-massive and foliated	0	Δ				Δ				
P-8	MJSU-10	159.5	weakly foliated massive sulfide	0	Δ				Δ			:	Δ
P-9	MJSU-11	135.7	sub-massive	0	Δ				Δ				
P-10	MJSU-11	153.4	sub-massive and strongly foliated	0					Δ				
P-11	MJSU-9	66.6	disseminated & aggregations	0	Δ				Δ				
P-12	MJSU-9	138.1	deformed & densely aggregated	0	Δ				Δ				
P-13	MJSU-9	197.6	sub-massive	0	Δ				Δ				Δ
P-14	MJSU-9	342.0	massive to submassive	0	Δ				Δ				Δ
P-15	MJSU-9	344.0	submassive & foliated	0	Δ				Δ				Δ
P-16	MJSU-9	348.0	massive	0	Δ				Δ	Δ			
P-17	MJSU-9	357.1	massive, recrystallized & foliated	0	Δ				Δ				
P-18	MJSU-12	164.7	fracture fillings	0	Δ				Δ				Δ
P-19	MJSU-13	91.8	submassive and foliated	0	Δ								Δ
P-20	MJSU-13	188.5	submassive & foliated	0	Δ								Δ

abbrev. cc:Chalcocite, co:Covellite, cp:chalcopyrite, ga:Galena, ma:Magnetite, pr:Pyrrhotite, py:Pyrite, ru:Rutile, sp:Sphalerite, te:Tetrahedrite-Tennentite

⊚abundant, Ocommon, ∆small

Appendix 32 Results of X-ray Diffraction Analysis

No. NJSU-2 S1.20	Sample	Drill Hole	Depth	qt	pl	kf	ch	se	mi	cl	ру
X-02	No.		(m)	•						+	-
X-03						ļ				 _ _ _	-
X-04 MJSU-2 167,60 ©						ļ			· '	 ^	-
X-05								$\frac{\Delta}{\lambda}$		<u> </u>	
X-06 M_JSU-2 220.50 ⊕					+ +			\ \ \		<u> </u>	
X-07					+					├ ──	
X-08					1 4						
X-09										 	
X-10										$\perp \Delta$	
X-11										ļ	
X-12								?	\ \ \ \		
X-13										-	
X-14	X-12								<u> </u>		
X-15											
X-16		+					_				
X-17											
X-18									Δ~?		
X-19											
X-20					\triangle						<u> </u>
X-21								\triangle			!
X-22 MJSU-14 207.00					Δ					$\perp \Delta$	
X-23										 	!
X-24										<u> </u>	
X-25					Δ					L_	
X-26										$\perp \Delta$	
X-27 MJSU-14 221.10										ļ	
X-28					\triangle			 			
X-29				<u>~</u>							
X-30										ļ	
X-31											
X-32							Ą				
X-33									?	ļ	
X-34	X-32				0		4				
X-35											
X-36							\triangle	4			
X-37							Δ	\triangle			
X-38								4	?		
X-39					?	Δ	\	4			Δ
X-40 MJSU-11 135.70 ◎ △ △ △ X-41 MJSU-11 233.00 ◎ △ △ △ X-42 MJSU-9 50.90 ◎ △ △ △ X-43 MJSU-9 70.10 ◎ △ △ △ X-44 MJSU-9 85.00 ◎ △ △ △ X-45 MJSU-9 130.80 ◎ △ △ △ X-46 MJSU-9 174.60 ◎ △ △ △ X-47 MJSU-9 228.00 ◎ △ △ △ X-48 MJSU-9 295.00 ◎ △ △ △ X-49 MJSU-9 350.50 ◎ ○ △ △ △ X-50 MJSU-9 358.20 ○ △ △ △ △ X-51 MJSU-9 366.60 ◎ △ △ △ △ X-52 MJSU-12 142.00 ○ △ ○ △ △ △<											
X-41 MJSU-11 233.00 ◎ △ △ △ X-42 MJSU-9 50.90 ◎ △ △ △ X-43 MJSU-9 70.10 ◎ △ △ △ X-44 MJSU-9 85.00 ◎ △ △ △ X-45 MJSU-9 130.80 ◎ △ △ △ X-46 MJSU-9 174.60 ◎ △ △ △ X-47 MJSU-9 228.00 ◎ △ △ △ X-47 MJSU-9 228.00 ◎ △ △ △ X-48 MJSU-9 295.00 ◎ △ △ △ X-49 MJSU-9 358.20 ○ △ △ △ X-50 MJSU-9 366.60 ◎ △ △ △ △ X-51 MJSU-9 366.60 ◎ △ △ △ △ X-52 MJSU-12 107.60 △ ◎ △ △ △ X										L	
X-42 MJSU-9 50.90 ∅ △ △ △ X-43 MJSU-9 70.10 ∅ △ △ △ X-44 MJSU-9 85.00 ∅ △ △ △ X-45 MJSU-9 130.80 ∅ △ △ △ X-46 MJSU-9 174.60 ∅ △ △ △ △ X-47 MJSU-9 295.00 ∅ △ △ △ △ X-48 MJSU-9 295.00 ∅ △ △ △ △ X-48 MJSU-9 350.50 ∅ ✓ △ △ △ X-50 MJSU-9 358.20 ○ △ △ △ △ X-51 MJSU-9 366.60 ∅ △ △ △ △ X-52 MJSU-12 107.60 △ ∅ ○ △ △ △ X-53 MJSU-12 142.00 ○ △ ∅ △ △ △ X-54 MJSU-12											\triangle
X-43 MJSU-9 70.10 ◎ △ △ △ X-44 MJSU-9 85.00 ◎ △ △ △ △ X-45 MJSU-9 130.80 ◎ △ △ △ △ X-46 MJSU-9 174.60 ◎ △ △ △ △ X-47 MJSU-9 228.00 ◎ △ △ △ △ X-48 MJSU-9 295.00 ◎ △ △ △ △ X-49 MJSU-9 350.50 ◎ △ △ △ △ X-50 MJSU-9 358.20 ○ △ △ △ △ X-51 MJSU-9 366.60 ◎ △ △ △ △ X-52 MJSU-12 107.60 △ ◎ △ △ △ X-53 MJSU-12 142.00 ○ △ ○ △ △ △ X-54 MJSU-12 191.70 ○ ○ ○ △ △ △					Δ	L	Δ			<u> </u>	
X-44 MJSU-9 85.00 ◎ △ △ △ X-45 MJSU-9 130.80 ◎ △ △ △ △ X-46 MJSU-9 174.60 ◎ △ △ △ △ X-47 MJSU-9 228.00 ◎ △ △ △ △ X-48 MJSU-9 295.00 ◎ △ △ △ △ △ X-49 MJSU-9 358.20 ○ △ △ △ △ △ X-50 MJSU-9 366.60 ◎ △ △ △ △ △ X-51 MJSU-9 366.60 ◎ △								\triangle		ļ	
X-45 MJSU-9 130.80 ∅ Δ Δ Δ X-46 MJSU-9 174.60 ∅ Δ Δ Δ X-47 MJSU-9 228.00 ∅ Δ Δ Δ X-48 MJSU-9 295.00 ∅ Δ Δ Δ X-49 MJSU-9 358.20 ○ Δ Δ Δ X-50 MJSU-9 366.60 ∅ Δ Δ Δ X-51 MJSU-9 366.60 ∅ Δ Δ Δ X-52 MJSU-12 107.60 Δ ∅ Φ Δ Δ X-53 MJSU-12 142.00 Φ Φ Φ Δ Δ X-54 MJSU-12 164.70 Φ Φ Φ Δ Δ Δ X-55 MJSU-13 82.20 Φ Δ Δ Δ Δ Δ X-57 MJSU-13 92.50 Φ Δ Δ Δ Δ Δ X-58 MJSU-13 117.80 <	X-43									<u> </u>	
X-46 MJSU-9 174.60 ∅ Δ Δ Δ X-47 MJSU-9 228.00 ∅ Δ Δ Δ X-48 MJSU-9 295.00 ∅ Δ Δ Δ X-49 MJSU-9 350.50 ∅ Δ Δ Δ X-50 MJSU-9 366.60 ∅ Δ Δ Δ X-51 MJSU-12 107.60 Δ ∅ Ω Δ Δ X-52 MJSU-12 142.00 Q Δ Φ Δ Δ Δ X-53 MJSU-12 142.00 Q Δ Φ Δ Δ Δ X-54 MJSU-12 191.70 Q Q Δ Δ Δ Δ X-55 MJSU-13 82.20 ∅ Δ Δ Δ Δ Δ X-57 MJSU-13 192.50 ∅ Δ Δ Δ Δ Δ X-58 MJSU-13 185.20 Q Φ Δ Δ Δ						L				1	
X-47 MJSU-9 228.00 ⊚ Δ Δ X-48 MJSU-9 295.00 ⊚ Δ Δ X-49 MJSU-9 350.50 ⊚ Δ Δ X-50 MJSU-9 358.20 O Δ Δ Δ X-51 MJSU-9 366.60 ⊚ Δ Δ Δ X-52 MJSU-12 107.60 Δ ⊚ O Δ Δ X-53 MJSU-12 142.00 O Δ Θ Δ Δ Δ X-54 MJSU-12 164.70 O O O Δ Δ X-55 MJSU-12 191.70 O O Δ Δ Δ X-56 MJSU-13 82.20 © Δ Δ Δ Δ Δ X-57 MJSU-13 92.50 © Δ Δ Δ Δ Δ X-58 MJSU-13 117.80 © Δ Δ Δ Δ X-59 MJSU-13 185.20 O	X-45										
X-48 MJSU-9 295.00 ◎ △ △ △ X-49 MJSU-9 350.50 ◎ △ △ △ X-50 MJSU-9 358.20 ○ △ △ △ △ X-51 MJSU-9 366.60 ◎ △ △ △ △ △ X-52 MJSU-12 107.60 △ ◎ △<						L	\triangle	-		_	<u> </u>
X-49 MJSU-9 350.50 □										ļ	
X-50	X-48			<u>©</u>	ألللا			\triangle		<u> </u>	
X-51					L						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										ļ	
X-53 MJSU-12 142.00 O △ Image: Control of the con											
X-54 MJSU-12 164.70 O O O ∆ ∆ X-55 MJSU-12 191.70 O O O ∆ ∆ ∆ X-56 MJSU-13 82.20 ⊚ ∆ ∆ ∆ ∆ ∆ ∆ X-57 MJSU-13 92.50 ⊚ ∆ △ ∆ ∆ ∆ ∆ X-58 MJSU-13 117.80 ⊚ ∆ ∆ ∆ ∆ X-59 MJSU-13 185.20 O ⊚ △ ∆ ∆					أحيا						
X-55 MJSU-12 191.70 O O O ∆ ∆ ∆ X-56 MJSU-13 82.20 ⊚ ∆ ∆ ∆ ∆ ∆ ∆ X-57 MJSU-13 92.50 ⊚ ∆ ⊚ ∆ ∆ ∆ X-58 MJSU-13 117.80 ⊚ ∆ ∆ ∆ ∆ X-59 MJSU-13 185.20 O ⊚ △ ∆ ∆								Δ			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											
X-57 MJSU-13 92.50 Θ Δ Θ Δ Δ Δ Δ Δ Δ Δ					_			L.,			A
X-58 MJSU-13 117.80 Θ Δ Δ Δ Δ Δ X-59 MJSU-13 185.20 Ο Θ Φ Δ Δ Δ Δ Δ Δ Δ Δ Δ									Δ		Δ.
X-59 MJSU-13 185.20 О											Δ
					Δ		_	Δ			
X-60 M.ISU-13 200 50											Δ
. 35 355 15 255.55	X-60	MJSU-13	200.50	0			Δ	Δ	Δ	Δ	Δ

 $Abbrev.\ ab: Albite,\ al: Alunite,\ ch: Chlorite,\ cl: Calcite,\ cp: Chalcopyrite,\ ep: Epidote, kf: Potash\ feldspar,\ mi: Minesotaite,\ chickenson and the control of t$

py:Pyrite, qt:Quartz, se:Sericite

⊚:Abundant, O:Common, ∆:Small amount, ?:Probable