PART III CONCLUSIONS

PART III CONCLUSIONS

CHAPTER 1 Results of the Survey

Mineral exploration was carried out in the Umm ad Damar area during the past three years from 1998. The work carried out included analysis and interpretation of existing data, geological survey, geophysical surveys (IP and TEM methods), and drilling (16 drill holes, total length of 4,492m). The results of the above surveys are summarized as follows.

1. The geology of the survey area consists mainly of rhyodacite, dacite, and andesite and their pyroclastic rocks belonging to the Late Proterozoic Arj Group, and these units are accompanied by jasper. These units are intruded by diorite, quartz diorite, tonalite, andesite, dacite, rhyodacite, and basalt. Andesite and andesitic pyroclastic rocks of Late Proterozoic Mahd Group overlies the above units unconformably in the western margin of the survey area. Of the above units, jasper and dacitic breccia occur near Jabal Sujarah in the northwestern part of the survey area. Granitic rocks occur throughout the survey area, but they are concentrated in the zone from the Umm ad Damar North Prospect to the Umm ad Damar South Prospect.

2. Mineralization containing Cu and Zn occur in four localities of this area. They are Jabal Sujarah district, Umm ad Damar North Prospect, Umm ad Damar South Prospect, and 4/6 Gossan Prospect. The mineralization in the Jabal Sujarah district, 4/6 Gossan Prospect, and a part of Umm ad Damar North Prospect is volcanogenic massive sulfide Cu-Zn mineralization. Also Cu vein mineralization occurs in Umm ad Damar North Prospect and Cu-Zn vein mineralization in Umm ad Damar South Prospect.

3. Chargeability anomalies have been extracted by IP survey in areas other than the above prospects. But only pyrite dissemination and veinlets occur in the high chargeability anomalies, and the Au, Cu, and Zn contents are low.

4. The mineralization in the Jabal Sujarah district is the volcanogenic massive sulfide Cu-Zn type and it occurs in dacitic breccia of the Arj Group. The orebodies consist of massive and pebbly ores and are accompanied by pyrite dissemination. The highest chargeability anomaly (over 30 mV/V, 800 m elevation) of the entire survey area occurs in this district, and it occurs over an areal extent of $200 \times 200 \text{m}$. These chargeability anomalies are caused by thick pyrite dissemination in the footwall of the massive and pebbly ores. This pyrite disseminated zone consists solely of pyrite and the Au, Cu, and Zn contents are negligible.

There are several layers of massive and pebbly ores and the total thickness of the mineralized zones including the intercalated pyrite dissemination is around 6m. The extent of the mineralized zones containing massive and pebbly ores is around 200m in the strike direction and longer than 250m in the dip direction. Although there are parts rich in Cu and Zn, most of the massive and pebbly ores consist mostly of pyrite and is of low grade.

5. In the Umm ad Damar North Prospect, five rows of Cu vein zones are inferred to occur. They are named No. $1 \sim$ No. 5 Mineralized Zones. Drilling was carried out for three of these zones. The veins and network ores confirmed by these drill holes consist of chalcopyrite-pyrite hosted by dacite and dacitic pyroclastic rocks of the Arj Group. There are few gangue minerals. Au and Ag grades are low and the margins of the ore veins are strongly chloritized.

Five holes were drilled during the past for No.1 Mineralized Zone, and it is 4.8m thick in average and the grade is Cu 1.40%. For No.2 Mineralized Zone, two holes were drilled and the occurrence of two to three mineralized layers of veinlets and dissemination have been confirmed. These are 3.5m thick in average and the grade is Cu 2.38%. For No.3 Mineralized Zone, four holes were drilled and in UAD-11 hole the ore layer is 3.1m thick and Cu 1.87%. The length of the Nos. 1 and 2 Mineralized Zones is estimated to be 400-500m in the strike direction, and that of No.3 Mineralized Zone about 300m. The grades of metals other than Cu, namely Au and Zn, are both low.

Nos. 4 and 5 Mineralized Zones have not been drilled, but the length in the strike direction is estimated from the surface manifestations to be about 200m and 400m respectively.

Aside from these Cu vein-type mineralization, a volcanogenic massive sulfide-type mineralized zone was confirmed by MJSU-5, but similar mineralized zones have not been found in drill holes in the vicinity and thus this is considered to be of small scale.

6. One row of vein-type Cu-Zn mineralized zone occurs in the Arj Group of Umm ad Damar South Prospect. Eleven hole were drilled for this zone in the past and four of them confirmed the existence of the mineralized zone. Vein-type mineralized zone was not encountered by the drilling carried out to the southwest of the mineralized zone during the present survey. Thus the scale of this mineralized zone is estimated to be 2.1-6.9m thick, 300m in the strike direction, at most 130m in the dip direction. The Cu grade of this zone is 1.99-2.93%. In some drill holes, Au grade of 0.3-1.1g/t and Zn grade of 0.2-3.1% have been obtained.

7. The mineralization observed in 4/6 Gossan Prospect is volcanogenic massive sulfide-type Cu-Zn mineralization in rhyodacitic tuff of the Arj Group. This mineralized body consists of massive, siliceous, and pebbly ores and the ore minerals are chalcopyrite, sphalerite, and pyrite.

Three ore layers occur in this mineralized zone. They occur both above and below (apparent) a basaltic tuff horizon intercalated in the rhyodacitic tuff. The mineralized body below the basaltic tuff is largely divided into two parts. The mineralized body immediately below the basaltic tuff is the thickest in MJSU-2 where the thickness is estimated to be about 3.7m. The grade of this part is Au 0.4g/t, Cu 0.96%, and Zn 2.17%.

The mineralized body in further deeper horizon is also thickest in MJSU-2 and is estimated to be about 9.3m. The grade here is Au 0.4g/t, Cu 1.00%, and Zn 3.67%.

Mineralized body also occurs above the basaltic tuff horizon. This is observed only in the MJSU-6 hole. The average grade is Au less than 0.1g/t, Cu 0.69%, and Zn 3.99% and the thickness is estimated to be around 2.5m.

The size of the two mineralized bodies below the basaltic tuff is estimated to be about 100m in the strike direction and the lengths of the dip direction more than 60m and 120m respectively. The body above the basaltic tuff was confirmed only in one drill hole and the length in both the strike and dip directions is estimated to be around 100m.

CHAPTER 2 Evaluation of the Study Area

Three prospects (Umm ad Damar North Prospect, Umm ad Damar South Prospect, and 4/6 Gossan Prospect) have been known in this survey area for many years, and various exploratory work have been carried out in limited parts of these prospects sporadically since 1966. But final assessment had not been made. Because of this situation, comprehensive assessment of the mineral potential of the total area was carried out during this cooperative exploratory project integrating the results of geological survey, geophysical surveys, and drilling. These work was based on the results of the past surveys and emphasis was laid on confirming the extent of the known ore bodies and on finding new ore deposits.

By drilling the geophysical anomalies extracted by IP geophysical prospecting, new Cu-Zn mineralized zones partly accompanied by Au were discovered in three prospects including the hitherto unknown Jabal

Sujarah district. It became clear, however, that the mineralized zones observed in this survey area do have high-grade parts, but they either converge or disperse in their lateral and downward extension and thus are of small scale. Therefore it is deemed difficult to develop these mineralized zones under the present economic conditions. Also the results of the geophysical surveys indicate that the possibility of locating mineralized zones larger than the known orebodies with further detailed surveys is small.

REFERENCES

REFERENCES

- Bowen, R. A. and Smith, G. H., 1981. An Overview Study of the Jabal Sayid District: Technical Record RF-TR-01-2, 72p.
- BRGM-OF-07-6 (Open-file Report). Review of Gold Mineralization in the Arabian Schield, 4/6 Gossan, Umm ad Damar District: 10p.
- Chinkul, M., 1983. A Study of the Fluid Inclusions and O & H Stable Isotopes at Jabal Sayid and its Bearing on the Mineralization: Unpublished Ms.c. Thesis: Faculty of Earth Sci., King Abdul Aziz University, Jeddah, Kingdom of Saudi Arabia, 174p.
- Conraux, J., 1969. Aqiq-Umm ad Damar Drilling Hole Results: BRGM 15p.
- DGMR, 1994. Mineral Resources of Saudi Arabia: 322p.
- Hakim, H. D. and Chinkul, M., 1989. A Fluid Inclusion Study on Mahd adh Dhahab Gold Deposit, Saudi Arabia: JKAU: Earth Sci., vol.2, pp.51-68.
- Harvey T. V., 1984. Ground Geophysical Surveys at the Umm ad Damar Prospect, 1402 to 1404 Program (February 1982 to December 1983): Open-File Report RF-OF-04-12, 44p.
- Howes, D. R., 1984. Mineral Exploration of the Umm ad Damar Prospect: 1403-1404 Program (March 1983 to January 1984), Open-File Report RF-OF-04-4, 44p.
- Kemp, J., Gros, Y., and Prian, J., 1982. Explanatory Note to the Geologic Map of the Mahd adh Dhahab Quadrangle, Sheet 23E, Kingdom of Saudi Arabia: pp.1-39.
- Lewis, P. J. and Martin, G. J., 1983. Mahd adh Dhahab Gold-silver Deposit, Saudi Arabia ,Mineralogical Studies Associated with Metallurgical Process Evaluation: pp.63-72.
- Luce, R. W., O'Neil, J. R., and Rye, R. O., 1979. Mahd adh Dhahab: Precambrian Epithermal Gold Deposit, Kingdom of Saudi Arabia: U.S. Geological Survey (Saudi Arabian Project Report 256), 33p.
- Ramsom, D. M., 1982. Geology and Mineralization of the Umm ad Damar South Prospect, Jabal Sayid District, Kingdom of Saudi Arabia :Riofinex Geological Mission, 59p.
- Ramsom D. M., 1984. Regional Geology of the Umm ad Damar Area and Geology of the North Prospect: Open-File Report RF-OF-04-9, 23p.
- RF-1979-9. 6.2 Umm ad Damar: pp.95-98.
- Rye, R. O., Hall, W. E., Cunningham, C. G., Czamanske, G. K. Afifi, A. M., and Stacey, J. S., 1982. Preliminary Mineralogic, Fluid Inclusion, and Stable Isotope Study of the Mahd adh Dhahab Gold Mine, Kingdom of Saudi Arabia: Open-File Report USGS-OF-03-4, 26p.
- Sabir, H., 1981. Metalogic and Textural Features of Sulfide Mineralization at Jabal Sayid (Saudi Arabia): Bulletin du BRGM Section II, no.1-2/1980-1981, pp.103-111.
- Sahl, M. A., 1979. Geology and Mineralization at Umm ad Damar Area: Faculty of Earth Sciences, King Abdul Aziz University, pp.183-221.

APPENDICES

First Phase

Appendix 1 Results of Microscopic Observation of Thin Section

			<u>MP cox hb qz pi Kf op otters MP hb qz pi Kf gl op lothers ep chi amp ser itt cb lothers</u>
	4/6 Gossan meta-volcanics weakly meta.	subophitic	I I </td
K9021804 4/6 Gos	4/6 Gossan dacite weakly meta.	subophitic	© O <@> · apa (·) Δ Δ ·
K9021805 4/6 Gos	4/6 Gossan dacitic tuff weakly meta	clastic	© O ≺@⟩ · ricite occurs along the cracks.
M9022013	tuff breccia weakly meta.	clastic to porphyritic	〈△〉 〈O〉 【③】 【 △】
M9020909	andesite tuff weakly meta.	porphyritic	(O) I I △ I ④ I I · I · I · O) I △ I O I · (◎) O I O I O I O I O I O I O I O I O I O
M9021004	andesitic lapilli tuff weakly meta.	clastic	<o>△ ↓ ↓ ◎ ↓ △ ↓ ↓ ↓ △ ↓ ○ ↓ Affic mineral except cpx replaced totally by chlorite. Pl into sericite and epidote. Epidote vein.</o>
M9021801	jasper	microcrystalline	0
K9022803 UAD N.	N. dacite Weakly meta.	porphyritic	<u>△ </u>
K9030101 UAD N.	N. trachytic andesite weakly meta.	trachytic	I I I I > minerals and groundmass totally replaced by chlor
M9020804 UAD N.		porphyritic	(O) (○) △ (△) (○) (○) (○) (○) (○) (○) 1 △ △ Mafic minerals replaced totally by chlorite and epidote. Opaque minerals into titanite.
K9021305 UAD N.	N. porphyritic diorite weakly meta.	porphyritic	© △ © ⊙ ○ ○ ○ ○ ○ ○ lekite texure is widespread. Mafic minerals replaced totally by chlorite and epidote.
K9022701 UAD N.	N. dacite weakly meta.	porphyritic	
K9022502 UAD N.		porphyritic	<o i="" o="" o<="" td=""></o>
K9022004 UAD N.		porphyritic	Hornhlanda is strongly renlaced by chlorifa and carbonate Plasioclase into sericite
K9022005	porphyritic diorite weakly meta.	porphyritic to subophitic	■ Myrmekite texure is common.
K9022401 UAD 5	S. microdiorite Weakly meta.	subophitic	0
K9021806 UAD S	S. microdiorite weakly meta.	subophitic	∆ ind albite.
K9021807 UAD S.		porphyritic	<o> △ O · · ◎ O (◎) △ apa (·) O O O O O O O O</o>
K9021302	tonalite weakly meta.	holocrystalline	(O) O ◎ △ △
K9021401	dacite weakly meta.	porphyritic	(O) 「 ③ 「 〇 「 〇 」 〇 」 〇 」 〇 」 〇 」 〇 」 〈② 〉 △ 】 ○ 】 〇 」 〇 」 △ △] ○] ○] ○] ○] ○] ○] ○] ○] ○]
K9021403	metabasalt weakly meta.	porphyritic	〇 「 〇 「 「 〈△〉 ◎ 〈◎)・ 〇 〇 ○ ○ ○ ○ ○ ○ ○
K9022001	tonalite weakly meta.	holocrystalline	
K9022002	dacite weakly meta.	porphyritic	© O ∆ ≺O> ∆ _ _ onate. Pl by sericite.
K9022003	basalt weakly meta.	porphyritic	△ ○ ○ ○ ○ ○ ○
K9022101	andesite weakly meta.	porphyritic	(O) ③ △ 」 ○ ○ ○ ○ ○ ③ △ (③) △ ○ ○ ○ ○ ○ ○ ○ ○ ○

abbrev. MP⊐pseudomorphs of mafic minerals, cpx=clinopyroxene, pl⊐plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar, epi=epidote, gf=glass or microcrystaliline aggregate, amp=green amphibole, cb=carbonate, ser=sericite, tit=titanite, apa=apatite, cly=clay minerals <> shows totally decomposed @abundant, Ocommon, ∆small, •rare

Appendix 1 Results of Microscopic Observation of Thin Sections Second Phase Geological Survey

Sample	Symbol	Locality	Rock type	Texture		Pheno	Phenocrysts or fragmnets	s or fr	agmn	ets			Ū	round	mass	Groundmass or matrix	trix			Met	Metamorphic or alteration	ohic o	r alte	ration	
No.					MP	clp h	hb qz	a Ia	Kf	op 🚥	others N	MP clp	dh q	zb	Iq	13	Kf	op ^{oth}	others epi	oi chl	amp	ser	tit	cb	others
KOODOEDE		B-12	Rhyodacite glomero-	glomero-				0	*					0	0				0	\bigtriangledown		*		⊲	
enenznny	-	Anomaly	weakly meta	porphyritic	Feldspar	's are m	oderate	ly alteri	ed to e	Feldspars are moderately altered to epidote and carbonate. Late microfractures are filled mainly by quartz and minor epidote, chlorite and carbonate.	nd carb	onate.	Late π	uicrofra	ctures	are fille	d mainl	y by qu	artz an	d minor	epidote	e, chlor	ite and	carbor	late.
LODODEDD	, i	B-12	Rhyodacite porphyrit	porphyritic			*	⊲	*					0	*			*	0	0				0	
ZNENZNNY	and	Anomaly	weakly meta		Rock i	is affec	ted by	/ prop	oylitic	affected by propylitic alteration where feldspars are mostly altered to epidote and carbonate.	ion w	here f	eldsp	ars ar	e mo;	stly alt	tered	to epi	dote ¿	and ca	arbona	ite.			
	-	B-12	Dacite	porphyritic			⊲	0		*				0	⊲	< >			0	0		*		0	
Incozony	0	Anomaly	weakly meta		Feldspars	are mod	srately a	ltered to	o epidote	Feldspars are moderately altered to epidote, carbonate and chlorite. Glassy material is mostly altered to chlorite. Late fractures are filled by quartz, carbonate, and epidote	te and c	hlorite. (lassy r	naterial	is mostly	/ altered	to chlor	ite. Late	fracture	es are fil	led by qu	uartz, ca	rbonate	, and epi	idote.
V0001406	×	Southeast	Rhyodacite glomero-	glomero			0	0	⊲					0	0			*	*	∇				V	
VUUZ 1400	ž	of J-18	weakiy meta	porphyritic	Matrix is	Matrix is weakly chloritized and carbonatized.	chloritiz.	ed and	carbon		arbonat	te forms	i patch	y altera	ition. La	cally m	ld iron (Carbonate forms patchy alteration. Locally mild iron staining along microfracture is due to oxidation of sulfides.	along n	hicrofrac	sture is	due to	oxidatic	n of su	lfides.
10001		Southeast	Rhyodacite porphyri	porphyritic			0	0	*					0	⊲	-		*		0		*		A	
NUU2 1400	_	of J-18	weakly meta		Weakly su	chistosed	some q	uartz pł	henocry	Weakly schistosed, some quartz phenocrysts show rotational effect and pressure shadows. Late microfractures parallel to shear plane are	rotation	al effect	and pre	assure s	hadows.	Late mi	crofract	ures para	allel to s	thear pla	ne are fi	illed by e	quartz a	filled by quartz and carbonate	onate.
K0012001	, r	East of 4/6 Dacite	Dacite	glomero-				0	*					0	⊲	$\hat{}$		*	*	0				⊲	
	2	Gossan	weakly meta	porphyritic	Feldspar	s pheno	crysts a	ire mos	tly alte:	Feldspars phenocrysts are mostly altered to carbonate, chlorite and epidote.	rbonate	e, chlori	te and	epidote		x is mo	derately	Matrix is moderately chloritized. Late microfractures filled with carbonate.	ized. La	ite micr	ofractui	res fille	d with o	carbona	te.
0000007	×	South	Rhyodacite glomero-	glomero-			Þ	0	*	*				0	Þ				*	0		*		Ā	goe *
	ζ	of J-18	weakly meta	porphyritic	Qz phenc	ocrysts ri	mmed by	v silica.	Feldspa	Qz phenocrysts rimmed by silica. Feldspars phenocrysts are altered to cb, chl, & epi. Two types cb noted (iron-rich & iron-poor). Matrix is moderately chloritized	srysts a	re altere	d to cb	, chi, &	epi. Two	types c	b noted	(iron-ric	:h&iror	n-poor).	Matrix i	s moder	ately ch	Iloritizea	Ť.
1001001	, T	South	Andesite	porphyritic				0						Þ	0			*	*	0				⊲	
	Č	of J-18	weakly meta	& vesicular	Andes	ite or (dacite.	. Mafi	cs tot	Andesite or dacite. Mafics totally altered to $chl +/-epi$.	ered 1	to chl	+/- +		mygd	ules (;	?) fille	Amygdules (?) filled with chl, cb, epi &	chl, c	sb, epi	& qz.				
12000	, r	East of 4/6 Andesite		porphyritic				0							0	$\hat{}$		*	4	0				⊲	
	P	Gossan	weakly meta	& vesicular	Basalt	Basaltic andesite.	esite.	Mafic	ss tot:	Mafics totally altered to chl,	sred t	o chl,	epi,	& cb.	Amyg	dules	filled	Amygdules filled with chl	~	qz.					
V0031405	۲۲ V	South of	Andesite	intersertal											0			0	0	0				⊲	
	R	J-18	weakly meta	& vesicular	Mafics to	Mafics totally altered to chl +/- epi.	red to ch	ıl +/- e⊧		Plagioclase mostly altered to epi, chl & cb.	ostly alt:	ared to e	pi, chl		ocally an	nygdules	filled w	Locally amygdules filled with chl, epi, cb & qz.	bi, cb &		Microfractures with epi, cb and qz fillings.	res with	epi, cb	and qz f	illings.

Abbrev. MP=pseudomorphs of mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblend, Kf=K-feldspar, epi=epidote, gl=glass or microcrystalline aggreagte, amp=green amphibole, cb=carbonate, ser=sericite, tit=titanite, apa=apatite, cly=clay minerals.

<> shows totally decomposed

© abundant O common Δ small

* rare

Drill Se	Sample Rock type	Texture	phenocryst or fragment groundmass or matrix metamorphic or alteration
			others MP hb gz pl Kf
I-NSCM	12 Rhyodacite	porphyritic	© 0 ∆ 0 0 <©> · apa (•) 0
	weakly meta		Sericite develops stongly along cracks and partly replace plagioclase. Devitrified glass partly into chlorite.
L	75 Rhyodacite lapilli tuff	uff clastic	
	weakly meta		Sericite occurs widely as a layer. Carbonate occurs in a matrix and as a vein.
	129 Rhyodacite coarse tuff	tuff clastic to	
	weakly meta	porphyritic	Sericite widely develops with a mesh-like structure.
L	199 Dacite tuff	clastic	
	weakly meta		Carbonate vein is common. Chlorite and sericite replace devitrified glass.
	248 Volcanic breccia	clastic	
	weakly meta		Sericite occurs as a layer replacing matrix. Chlorite replaces devitrified glass.
MJSU-2	45 Basalt	partly trachytic	
	weakly meta		natized and chloritized. Sericite occur
L	63 Basalt	originally	
	weakly meta	aphyric	Mafic minerals are totally replace by chlorite, sericite and carbonate. Carbonate vein.
L	65 Microdiorite	micro-ophitic	
	weakly meta		Glassy part and mafic minerals are totally replaced by chlorite and carbonate.
L	75 Basalt	porphyritic	
	weakly meta		ccurs along cr
	106 Basaltic tuff	clastic to	
]	weakly meta	sub-trachytic	Mafic minerals are totally replaced by chlorite and carbonate. Amygdule is filled by quartz and carbonate.
	120 Basaltic tuff	clastic	
	weakly meta		Glassy part is totally replaced by chlorite, sericite and carbonate. carbonate vein.
MJSU-3	10 Dacite	porphyritic	
	weakly meta		
	25 Silicified volcanic rock	ock porphyritic	-
	weakly meta		cified.
	41 Silicified volcanic rock	ock porphyritic	
	weakly meta		Matrix and feldspar are strongly silicified and sericitized. Carbonate vein.
	63 Dacitic lapilli tuff	clastic	
	weakly meta		Mafic minerals and matrix are replaced by chlorite and sericite. Plagioclase strongly by epidote and sericite.
L	89 Dacite	porphyritic	
	weakly meta		Mafic minerals are replaced by chlorite. Plagioclase strongly by epidote and sericite.
	131 Porphyritic dacite	porphyritic	
	weakly meta		Mafic minerals is replaced by chlorite. plagioclase by epidote. Carbonate vein.
L	150 Microdiorite	sub-trachytic	(○> O © Δ apa (·) ◎ Δ · O O
	weakly meta		Mafic minerals is replaced totally by chlorite. plagioclase by sericite. Carbonate vein.
I	171 Dacite coarse tuff	clastic	
	weakly meta		Mafic minerals by chlorite. Glassy part is by sericite.

	Sample Rock type	Texture	phenocryst or fragment groundmass or matrix metamorphic or alteration
Hole No. No.	. [MP cpx hb qz pl Kf op others MP hb qz pl Kf gl op others ep chl amp ser tit cb others
MJSU-3 21	217 Rhyodacite coarse tuff	clastic to	
	weakly meta	porphyritic	Mafic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite. Carbonate vein.
23	232 Dacite	porphyritic	
	weakly meta		Mafic minerals are replaced by epidote and chlorite. Plagioclase is replaced mainly by sericite. Carbonate vein.
24	243 Porphyritic dacite	porphyritic	
			Mafic minerals are replaced by epidote and chlorite. Plagioclase is replaced mainly by sericite. Carbonate vein.
	15 Diorite	ophitic	
	weakly meta		Mafic minerals are by epidote and chlorite. Plagioclase is locally by epidote. Graphic texture develops.
		micro-ophitic	I
	weakly meta		Mafic minerals except for hornblende are replaced by chlorite. Plagioclase is partly by epidote carbonate vein
4	40 Diorite	equigranular	O <©> ∆ apa (•)
	weakly meta		Plagioclase and mafic minerals are replaced totally by chlorite and sericite. Carbonate vein.
-	45 Silicified volcanics	porphyritic?	
	weakly meta		te vein is common.
	52 Rhyodacite coarse tuff	clastic to	(△>)
	weakly meta	porphyritic	Mafic minerals are replaced by chlorite. Plagioclase is replaced by sericite.
3	80 Porphyritic andesite	porphyritic	
			by chlorite, carbonate and actinolite. plagioclase by epidote. Carbonate
	95 Porphyritic andesite	porphyritic	
-	weakly meta		Mafic minerals are replaced by chlorite, epidote and carbonate. Plagioclase by sericite and carbonate.
1	121 Rhyodacite lapilli tuff	clastic to	· 0 0
	weakly meta	porphyritic	e and sericite. Plagioclase partly by sericite and c
7	136 Dacite coarse tuff	clastic to	
	weakly meta	porphyritic	agioclase is by sericite and
-	175 Andesite	porphyritic	
	weakly meta		s replaced strongly by sericite.
<u> </u>	193 Andesite lapilli tuff	clastic to	
	weakly meta	porphyritic	s replaced strongly by sericite. Carbonate v
2	222 Andesite lapilli tuff	clastic to	
	weakly meta	porphyritic	Mafic minerals are replaced by chlorite. Plagioclase is replaced strongly by sericite. Carbonate vein.
5	238 Andesite lapilli tuff	clastic to	
	weakly meta	porphyritic	Mafic minerals by chlorite and carbonate. Plagioclase by sericite and epidote. Carbonate and sericite veins.
5	259 Dacitic lapilli tuff	clastic to	
	strongly by carbonate	porphyritic	arbonate. Sericite occurs as a layer. (
28		clastic to	
	silicified	porphyritic	sricitization and chloritization are widespread. Carbonate vein.
2	288 Dacite	porphyritic	
	weakly meta		Mafic minerals are replaced by chlorite. Plagoclase is by sericite. Carbonate vein.

Hole No. Merio	phenocryst or fragment groundmass or matrix metamorphic or alteration
296 Rhyodacite tuff clastic too Imafic minerals are replaced by chlorit 25 Diorite Porphyritic Mafic minerals are replaced by chlorit 83 Diorite Porphyritic Imafic minerals are replaced by chlorit 83 Diorite Porphyritic Imafic minerals are replaced by chlorit 83 Diorite Porphyritic Imafic minerals are replaced by chlorit 83 Diorite Cols Imafic minerals are replaced by chlorit 83 Dolerite Clastic to Col Imagic 115 Dactic bapilit Luff clastic to Col Imagic 138 Dolerite porphyritic Mafic minerals are replaced by chlorite Imagic 138 Dolerite clastic to Col Imagic Imagic Imagic 138 Dolerite porphyritic Mafic minerals are replaced by chlorite Imagic 138 Dolerite porphyritic Mafic Imagic Imagic Imagic 145 Andesite lapilit tuff clastic to Col Imagic Imagic Imagic Imagic	az bi Kf op others MP hb
weakly meta porphyritic Mafic minerals are replaced by chloritic weakly meta porphyritic A lact loc A lact A lact	0 @ 0 0
25 Diorite porphyritic Weekly meta Colin Dy Colin 1 (0 (0) (0) (0) (0) (0) (0) (0) (0) (0)	and
weakly meta Hornblende is partly replaced by chlorit 63 Diorte ophitic (○)	0 © ∆ apa (•)
63 Diorite ophitic (○) [○] (○) [○] [○] 115 Decripti tuff weakly meta castic to (○) [○]	Hornblende is partly replaced by chlorite. Plagioclase is strongly by epidote and sericite.
weakly meta Mafic minerals are replaced by chloritic weakly meta Cols O (<0)	
115 Dacitic lapili tuff clastic to ○○ ○	minerals are replaced by
weakly meta porphyritic Mafic minerals are replaced by chlorital are veakly meta porphyritic (○)	
124 Andesite lapili tuff clastic to (○) ○ (○) ○ (○) ○ ○ 138 Dolerite weakly meta porphyritic Mafic minerals are by chlorite. Plagiot 138 Dolerite weakly meta colority (○) ○	Mafic minerals are replaced by chlorite. Plagioclase phenocryst totally by sericite
weakly meta porphyritic Mafic minerals are by chlorite. Plagio 138 Dolerite ophitic (○) △ (○) △ (○) △ (○) (○) △ (○) (○) △ (○) (○) <th></th>	
138 Dolerite ophitic (○)	Mafic minerals are by chlorite. Plagioclase phenocryst strongly by epidote and sericite. Carbonate vein.
weakly meta Clinopyroxene is strongly by chlorite a weakly meta Clinopyroxene is strongly by chlorite a weakly meta 194 Andesite lapilli tuff clastic to (○) </th <td></td>	
165 Andesite lapilli tuff clastic to (○) ○ (○) △ 194 Andesite coarse tuff porphyritic Mafic minerals are replaced by chloritic 194 Andesite coarse tuff clastic to (○) ○ (○) ○ ○ ○ 194 Andesite coarse tuff clastic to (○) ○ (○) ○ ○ <td>Clinopyroxene is strongly by chlorite and carbonate. Orthopyroxene(?) is totally by chlorite.</td>	Clinopyroxene is strongly by chlorite and carbonate. Orthopyroxene(?) is totally by chlorite.
weakly meta porphyritic Mafic minerals are replaced by chloritid 194 Andesite coarse tuff clastic to (○)	
194 Andesite coarse tuff clastic to (○) △ △ 210 weakly meta porphyritic Mafic minerals are replaced by chloritic ○ <t< th=""><td>Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite. Carbonate vein.</td></t<>	Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite. Carbonate vein.
weakly meta porphyritic Mafic minerals are replaced by chloritic 210 Andesite lapili tuff clastic to (○)	ŷ
210 Andesite lapilit tuff clastic to <○> ○	Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite.
weakly meta porphyritic Mafic minerals are replaced by chlorite. 264 Rhyodacite porphyritic (○) ()	
264 Rhyodacite porphyritic (○)	minerals are replaced by
weakly meta Mafic minerals are replaced by chlorite. 249 Rhyodacite lapili tuff clastic to (○)	
249 Rhyodacite lapili tuff clastic to < < < < <	Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite and epidote. Carbonate vein
weakly meta porphyritic Mafic minerals by chlorite. Matrix strongly by sericite and chlorite 283 Rhyodacite lapilli tuff clastic to 0	
283 Rhyodacite lapili tuff clastic to <>>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> <>> < <>> < <>> < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < <th>Matrix strongly by sericite and chlorite. sericite occurs as a lay</th>	Matrix strongly by sericite and chlorite. sericite occurs as a lay
weakly meta porphyritic Matrix strongly by sericite and chlorite 315 Dacitic lapilit tuff clastic to (○) △ (0 0 0 {@} · 0 0 {0 0 0 0 0 0 0 0
315 Dacitic lapilli tuff clastic to <0> ○ △ 337 Dacitic lapilli tuff porphyritic Mafic minerals are replaced by chlorite. 337 Dacitic lapilli tuff clastic to <0> ○ ○ 47 Basaltic tuff clastic to <0> ○ ○ ○ 58 Basaltic tuff clastic to <0> ○ ○ ○ ○ 58 Basaltic fine tuff clastic to <0> ○ ○ ○ ○ <td< th=""><td>Matrix strongly by sericite and chlorite. sericite layer develops.</td></td<>	Matrix strongly by sericite and chlorite. sericite layer develops.
weakly meta porphyritic Mafic minerals are replaced by chlorite. 337 Dacitic lapilit tuff clastic to <0> <0> <0 <	
337 Dacitic lapili tuff clastic to (○) ○ ○) △ 47 Basaltic tuff porphyritic Mafic minerals are replaced by chlorite. Pla 47 Basaltic tuff clastic to (○) ○ ○ ○ 58 Basaltic fine tuff clastic to (○) ○ ○ ○ 58 Basaltic fine tuff clastic to (△) ○ ○ ○ 74 Dolerite micro-ophitic Mafic minerals and matrix are replaced by chlorite. 73 Dolerite micro-ophitic Mafic minerals are totally replaced by chlorite. 132 Dacitic tuff clastic to ○ ○ ○ ○ ○ ○ ○ 132 Basaltic fine tuff porphyritic Mafic minerals are totally replaced by chlorite. 145 Basaltic fine tuff porphyritic Matrix is replaced by chlorite and sericite. 145 Basaltic fine tuff porphyritic Matrix is replaced by chlorite and sericite.	Mafic minerals are replaced by chlorite. Plagioclase phenocryst strongly by sericite and epidote. Carbonate vein
weakly meta porphyritic Mafic minerals are replaced by chlorite. Plasaltic tuff clastic to ⊘> O <∆> 47 Basaltic tuff clastic to ⊘> O <∆> O <∆> 58 Basaltic fine tuff porphyritic Mafic minerals and matrix are replaced tota <∆> O <∆> 58 Basaltic fine tuff clastic to <∆> Mafic minerals and matrix are replaced tota <∆> 74 Dolerite micro-ophitic Mafic minerals and matrix are replaced by chlor < <@>	
47 Basattic tuff clastic to ⟨⊙⟩ ⟨∆⟩ ⟨∆⟩ 58 Basattic fine tuff porphyritic Mafic minerals and matrix are replaced tota 58 Basattic fine tuff clastic to ⟨∆⟩ ⟨□⟩ ⟨□⟩ 58 Basattic fine tuff clastic to ⟨∆⟩ ⟨□⟩ ⟨□⟩ 74 Dolerite micro-ophitic Mafic minerals and matrix are replaced by chlor ⟨□⟩ ⟨□⟩ 132 Dacitic tuff clastic to Mafic minerals are totally replaced by chlor ⟨□⟩ ⟨□⟩ 132 Dacitic tuff clastic to Mafic minerals are totally replaced by chlor □ ⟨□⟩ ⟨□⟩ 145 Basattic fine tuff porphyritic Matrix is replaced by chlorite and sericite. 145 Basattic fine tuff □ ⟨□⟩ □ 145 weakly meta porphyritic Most of the minerals and matrix are replaced □ □ □	chlorite. Plagioclase phenocryst strongly by seri
porphyritic Mafic minerals and matrix are replaced tota clastic to <△> clastic to <△> porphyritic Mafic minerals and matrix are replaced by c micro-ophitic Mafic minerals are totally replaced by chlor clastic to O <o> clastic to O<o> porphyritic Matrix is replaced by chlor clastic to O<o> porphyritic Matrix is replaced by chlorite and sericite. clastic to <o> porphyritic Most of the minerals and matrix are replaced</o></o></o></o>	
clastic to <△> <<>> porphyritic Mafic minerals and matrix are replaced by chorter micro-ophitic Mafic minerals are totally replaced by chlor clastic to O <o< td=""> porphyritic Matrix is replaced by chlor clastic to O<o< td=""> porphyritic Matrix is replaced by chlor porphyritic Matrix is replaced by chlorite and sericite. clastic to O< porphyritic Most of the minerals and matrix are replaced</o<></o<>	Mafic minerals and matrix are replaced totally by chlorite. Carbonate vein.
porphyritic Mafic minerals and matrix are replaced by c micro-ophitic Mafic minerals are totally replaced by chlor clastic to O <0> △ porphyritic Matrix is replaced by chlor Clastic to ○ clastic to O <0> O <0> □ □ porphyritic Matrix is replaced by chlorite and sericite. clastic to ○ □ porphyritic Most of the minerals and matrix are replaced 0 □ □	
micro-ophiticAffic minerals are totally replaced by chlorClastic to \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc clastic to \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc porphyriticMatrix is replaced by chlorite and sericite.clastic to \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc porphyriticMost of the minerals and matrix are replaced	and matrix are replaced by
Mafic minerals are totally replaced by chlor clastic to Mafic minerals are totally replaced by chlor clastic to porphyritic Matrix is replaced by chlorite and sericite. clastic to <0> porphyritic Most of the minerals and matrix are replace	
clastic to I O <o> △ O porphyritic Matrix is replaced by chlorite and sericite. clastic to <o> <o> I porphyritic Most of the minerals and matrix are replace</o></o></o>	are totally replaced by chlorite
porphyritic Matrix is replaced by chlorite and sericite. clastic to <0> 1 <0 1 1 porphyritic Most of the minerals and matrix are replace	
clastic to porphyritic	rix is replaced by chlorite and sericite. Plagioclase phenocryst is highly by sericite.
porphyritic	
	Most of the minerals and matrix are replaced by chlorite and carbonate.

Appendix 1 Results of Microscopic Observation of Thin Section

MP cpc/ Inb gz pl/ Kf op others MP gz pl/ Kf gz other MP gz diastic to clastic to diastic to <thdiastic th="" to<=""> <thd< th=""><th>Drill</th><th>Sample</th><th>e Rock type</th><th>Texture</th><th>phenocryst or fragment groundmass or matrix metamorphic or alteration</th></thd<></thdiastic>	Drill	Sample	e Rock type	Texture	phenocryst or fragment groundmass or matrix metamorphic or alteration
72 Basatic fine tuff clastic to (○) (○) (△) (○) (△) (○) <t< th=""><th>Hole No.</th><td></td><td></td><td></td><td>cpx hb qz pi Kf op others MP hb qz pi Kf gi op others ep chi</td></t<>	Hole No.				cpx hb qz pi Kf op others MP hb qz pi Kf gi op others ep chi
Weakly meta porphyritic Mafic minerals by chlorite. Plagioclase phenocryst by sericite. Matrix by weakly meta porphyritic i = partix 20 Rwyadacite tuff clastic to Matrix is replaced highly by chlorite, sericite and carbonate. Placochroid of the weakly meta porphyritic i = partix 210 Basatt porphyritic (i) i = partix i = partix 240 Rhyodacite porphyritic (i) i = partix i = partix 240 Rhyodacite porphyritic (ii) i = partix i = partix 240 Rhyodacite porphyritic (iii) i = partix i = partix 20 Porphyritic (iii) (iii) (iii) (iiii) i = partix 20 Porphyritic (iii) (iii) (iii) (iiii) (iiii) (iiii) (iii) (iii) (iii) (iii) (iii) (iiii) (iii) (iiii) (iii	MJSU-7			clastic to	
202 Rhyodacite tuff clastic to Matrix is replaced highly by chlorite, sericite and carbonate. Ploorhoric Combonie Component. - apa (210 Basalt porphyritic Matrix is replaced highly by chlorite, sericite and carbonate. Antrix common veakly meta porphyritic - apa (210 Basalt porphyritic Col Col - col				porphyritic	minerals by chlorite. Plagioclase phenocryst by sericite. Matrix by
weakly meta porphyritic Matrix is replaced highly by chlorite, sericite and carbonate. Pleochroid Coll Coll <t< th=""><th></th><td>202</td><td></td><td>clastic to</td><td> © O • apa (</td></t<>		202		clastic to	© O • apa (
210 Basatt porphyritic (○)<			-	porphyritic	is replaced highly by chlorite, sericite and carbonate. Pleochroic
weakly meta Plagioclase is replaced highly by chlorite, sericite and carbonate. Matrix sueakly meta 240 Rhyodacite porphyritic (a) (b) (b) (c) (c) <th></th> <td>210</td> <td></td> <td>porphyritic</td> <td></td>		210		porphyritic	
240 Rhyodacite porphyritic (△)<			akly meta		is replaced highly by chlorite, sericite
weakly meta Mafic mineral (biotite?) is replaced by sericite. Sericite occurs commoning a weakly meta Porphyritic Allon I (a) I (a) <thi (a)<="" th=""> <thi (a)<="" th=""></thi></thi>		240		porphyritic	
10 Basalt Corr 10 1 (△) (○)				:	mineral (biotite?) is replaced by sericite. Sericite occurs commonly as a
Mafic minerals are replaced totally by chlorite. Matrix is by carbonate an hyritic Mafic phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is cit to Mafic phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is hyritic Mafic phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is cit to (△) (○) (∞) <t< th=""><th>MJSU-8</th><td></td><td></td><td>porphyritic</td><td></td></t<>	MJSU-8			porphyritic	
hyritic ⟨∞⟩					minerals are replaced totally by chlorite. Matrix is by carbonate and chlorite. Carbonate v
Mafic phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is hyritic Mafic minerals are by chlorite. Devirified glass is by chlorite(or clay mine hyritic Mafic minerals are by chlorite. Devirified glass is by chlorite(or clay mine hyritic Mafic minerals are replaced by carbonate. Carbonate vein. hyritic O O A hyritic Mafic minerals are replaced by carbonate. Carbonate vein. O O A hyritic Mafic minerals are replaced by carbonate. Carbonate vein. O <tho< th=""> <tho< <="" th=""><th></th><td>20</td><td></td><td>porphyritic</td><td></td></tho<></tho<>		20		porphyritic	
Lic to ⟨∆⟩ O ∆ O ∆ O ∑ ⟨∞⟩ ∆ hyritic Mafic minerals are by chlorite. Devirified glass is by chlorite(or clay mine cic to ⟨∞⟩ O (∞) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○					phenocryst are by carbonate. Matrix is by chlorite. Plagioclase is by
Hyritic Mafic minerals are by chlorite. Devirified glass is by chlorite(or clay mine ic to Apritic Mafic minerals are replaced by carbonate. Carbonate vein. Apritic Mafic minerals are replaced by carbonate. Carbonate vein. Apritic Mafic minerals are replaced by carbonate. Carbonate vein. Apritic Mafic minerals. Apritic Apritic Apritic Apritic Apritic Apritic Apritic Apritic Applicates(saussurite) is partly replaced by reminerals. Apritic Apritic Apritic Apritic Applicates Applicates by common. Applicates and glassy materials are highly replaced by sericite. Applocolase(saussurite) is partly replaced by reminerals.		39		clastic to	
Lic to ⟨∆⟩ O O O O ⟨⊗⟩ · ○ hyritic Mafic minerals are replaced by carbonate. Carbonate vein. O O ⟨∞⟩ ∆ Lic Mafic minerals are replaced mainly of aggregates o opaque minerals. O ∆ O ∆ O ⟨∞⟩ ∆ Lic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. O ∆ O ∆ O ⟨∞⟩ ∆ Lic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. O ∆ O ⟨∞⟩ ∆ O ⟨∞⟩ ∆ Lic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. O ∆ O ⟨∞⟩ ∆ O ⟨∞⟩ ∆ Lic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. O ○ ⟨∞⟩ ∆ O ○ ⟨∞⟩ ∆ hyritic Go O ○ ⟨∞⟩ ∆ O ○ ⟨∞⟩ ∆ O ○ ⟨∞⟩ ∆ hyritic Fragment of qz aggregate is common. Glassy part is replaced by sericite. O ○ ⟨∞⟩ ∆ O ○ ⟨∞⟩ ∆ hyritic Fragment of qz aggregate is common. Glassy part is replaced by endote. O ○ ○ ○ ○ ○ ○ ○ ○ ○			q	porphyritic	minerals are by chlorite. Devirified glass is by chlorite(or
Hyritic Mafic minerals are replaced by carbonate. Carbonate vein. ic Mafic minerals (?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Mafic minerals(?) are replaced by prehite and epidote. hyritic Mafic minerals are highly replaced by sericite. hyritic Plagioclase(saussurite) is partly replaced by prehite and epidote. hyritic Mafic minerals fic		57	Rhyodacite coarse tuff	clastic to	
ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. (ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. (ic I			weakly meta	porphyritic	minerals are replaced by carbonate. Carbonate
Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. (Icc Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Icc Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Icc Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Icc Ico Icrain boundaries and glassy materials are highly replaced by sericite. hyrtic Ico Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic mineral hyrtic Ico Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic mineral hyrtic Ico Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic mineral hyrtic Ico Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic mineral hyrtic Ico Plagioclase, totally sussurite, is replaced by chlorite. Sericite occurs at the grain bou ic Ico fic Ico hyrtic Ico fic Ico hyrtic Ico fic Ico fic Ico		91		clastic	
ic Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. Antic Mafic minerals(?) are replaced mainly replaced by sericite. Myritic Grain boundaries and glassy materials are highly replaced by sericite. Myritic Ao> O O A apa (.) A 0 O (.)			weakly meta		minerals(?) are replaced mainly of aggregates o opaque minerals. Quartz
Mafic minerals(?) are replaced mainly of aggregates o opaque minerals. ic Alfic minerals(?) are replaced mainly of aggregates o opaque minerals. hyritic Col O O O Sericite. hyritic Col O O O O O Sericite. hyritic Col O O O O O Sericite. hyritic Fragment of qz aggregate is common. Glassy part is replaced by sericite hyritic Mafic mineral Col Affic mineral hyritic Col O O O O Sericite hyritic Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic mineral Mafic mineral Mafic mineral ic O I O O O Sericite hyritic Plagioclase(saussurite) is partly replaced by rehnite and epidote. Mafic mineral Mafic mineral Mafic mineral ic Fragment of qz aggregate is common. Glassy part is replaced by ericite hyritic Mafic mineral Mafic mineral hyritic Fragment of qz aggregate is common. Glassy part is replaced by ericite hyritic Mafic mineral Mafic mineral <tr< th=""><th></th><td>98</td><td></td><td></td><td></td></tr<>		98			
ic			weakly meta		minerals(?) are replaced mainly of aggregates o
Grain boundaries and glassy materials are highly replaced by sericite. hyritic 〈△〉 △ (○) (O) (183		clastic	O ∆ apa (•)
hyritic $\langle \Delta \rangle$ $ \Delta $ $\langle \otimes \rangle$ $ \Delta $ $\langle \otimes \rangle$			weakly meta		boundaries and glassy materials are
Plagioclase(saussurite) is partly replaced by prehnite and epidote. Mafic min cic Fragment of qz aggregate is common. Glassy part is replaced by sericite hyritic ⟨O> ⟨@> O ⟨@> O ⟨@> O Image: Sericite hyritic ⟨O> (B) O ⟨@> O ⟨<@> O ⟨@> O		192		porphyritic	
ic I O I O I O I			weakly meta		is partly replaced by prehnite and epidote. Mafic minerals are
Fragment of qz aggregate is common. Glassy part is replaced by sericite porphyritic ⟨O> ⟨@> O ⟨@> Plagioclase, totally sussurite, is replaced partly by epidote. Mafic minera clastic Mafic minerals are replaced by chlorite. Sericite occurs at the grain bou clastic Mafic minerals are replaced by chlorite. Sericite occurs at the grain bou clastic Mafic minerals by chlorite and epidote. Plagioclase strongly by epidote.		207	7 Pumiceous volcanic breccia	clastic	0
porphyritic ⟨⊙⟩ ⟨⊕⟩ ⟨∞⟩ ⟨⊕⟩ ⟨∞⟩ ⟨⊕⟩ ⟨∞⟩ ⟨⊕⟩ </th <th></th> <td></td> <td>weakly meta</td> <td></td> <td>of qz aggregate is common. Glassy part is replaced by</td>			weakly meta		of qz aggregate is common. Glassy part is replaced by
Plagioclase, totally sussurite, is replaced partly by epidote. Mafic minera clastic IOI IOI <thi< th=""><th></th><td>226</td><td></td><td>porphyritic</td><td></td></thi<>		226		porphyritic	
clastic O O Serieite Serieite Col					sussurite, is replaced partly by epidote. Mafic minerals are by
Mafic minerals are replaced by chlorite. Sericite occurs at the grain bou clastic <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <△> <<		233		clastic	
clastic $\langle \Delta \rangle$ $ \langle \Delta \rangle$ $ \Delta \langle \Delta \rangle$ $ \odot O \Delta $ Mafic minerals by chlorite and epidote. Plagioclase strongly by epidote.			weakly meta		minerals are replaced by chlorite. Sericite occurs at the grain boundaries
Mafic minerals by chlorite and epidote. Plagioclase strongly by epidote.		244		clastic	
			weakly meta		Mafic minerals by chlorite and epidote. Plagioclase strongly by epidote. Prehnite and carbonate veins.

abbrev. MP=pseudomorphs of mafic minerals, cpx=clinopyroxene, pl=plagioclase, op=opaque minerals, qz=quartz, hb=hornblende, kf=K-feldspar epi=epidote, gl=glass or microcrystalline aggregate, amp=green amphibole, cb.=carbonate, ser=sericite, tit=titanite, apa=apatite, cly=clay minerals, prh=prehnite <> shows almost totally decomposed ©abundant, Ocommon, ∆small, •rare

Sample	Drill Hole					Phe	nocryst	Phenocrysts or fragments	gments		╞			groui	ndmass	groundmass or matrix	.×		Γ		me	tamorp	metamorphic or alteration	teration	
No.		Uepth (m)	Mock type	l exture	MP clp	\vdash	8	ā	Κf	op ot	others	MP c	cip hb	zp dz	ā	12	¥	8	others	epi	chl	dme	ser	tit cb	o others
ŗ	M.ISH-14	841	dacitic fine tuff,	porphyritic, weakly				0	Þ	4	\neg	\neg	\neg	⊲		⊲	⊲				0		_	4	
-			weakly meta	foliated	glassy shards	d pue sp.	umice fr	agments	are devi	and pumice fragments are devitrified and weakly to moderately chloritized	nd weakly	y to moc	Jerately	chloritize	ġ										
ر - ۲ ۲ - ۵	M 1011-14	0 88	meta-dacitic to	highly foliated and									_	⊲	0					⊲	0		_	£	
-	2000		meta-andesitic	sheared	Highly sheared and foliated rock of felsic to intermediate composition.	ared and	Foliated	rock of	felsic to	intermedi	late com	iposition.													
F	M ICI -14	176.0	meta-andesitic to	foliated & sub-				(*)		(*)		\vdash	$\left - \right $	(*)	0			(*)		(*)	0		(*)	0	
2			dacitic fine tuff	porphyritic	Feldspars phenocrysts are mostly altered to carbonate and chlorite. Late fractures are filed by carbonate.	chenocry	sts are I	nostly a	Itered to	carbonat	te and c	hlorite.	Late fra	ctures ai	e filled	by carbo	mate.								
+			fine tuff of meta-	highly foliated and			(*)	(*)		(*)		\vdash	L	∇	∇					(*)	0				
1	MU0014	77/01	dacitic compo.	sheared	highly sheared and schistosed rock of phyllitic composition.	ired and	chistos	ed rock	of phyllit.	ic compo	sition.														
u F	M ISI I		highly sheared	strongly foliated &			0			Δ				0							0		⊲	0	
- -	*1-000W	100.0	metavolcanic r.	cataclased	The rock has	as suffer	ed both	ductile .	and brittl	suffered both ductile and brittle deformation.	ation.														
e H	M ICI - 10		meta-rhyodacitic	porphyritic &			⊲			∇	\vdash			0						(*)	0		0	_	
<u>-</u>		0.00	fine tuff	foliated	Phyllosilicates comprised of sericte and chlorite are the main alteration products	ites com	rised of	⁵ sericte	and chlo	rite are t	the main	alteratio	on produ	icts.											
, r			meta-siltstone,	deformed &			⊲			(*)			\vdash	0									0		
<u>-</u>	01-0srw	0.17	very fine-grained	foliated	Metasiltstone or metavolcanic fine (ash) tuff of felsic composition.	me or me	tavolca	hic fine	(ash) tuff	: of felsic	compos	sition.													
			meta-rhyodacitic	porphyritic & highly			0	(*)		(*)				0	(*)		(*)				0		0	 ⊲	
2 -		93.0	fine tuff	foliated	Deformation		ed by fi	attening	stretchi	is marked by flattening, stretching, and fragmentation of quartz grains.	ragment	ation of	quartz g	rains											
ŀ	01 1011		reworked crystal-	highly sheared &			0	⊲						0	0					(*)	С		0	Þ	
- -	ni-uscm	C'AA	rich tuff	mylonitized	Poorly sorted and crystal rich	ted and c	rystal ri	ch.																	
F	01 101 11	100 5		porphyritic &			0	⊲		(*)				0	0			(*)		(*)	0	_	0	(*)	(
<u>-</u>	DI-DODW		mera-ruyonre	foliated	Matrix recrystallized, granular and foliated	ystallize	, granul	ar and fo	diated.																
1-1	M ISH-10	210.0	meta-rhyodacitic	highly sheared &			⊲	0						0	0					(*)	0		0		
-			fine tuff	mylonitized	very strongly deformed and sheared rock	gly deforr	hed and	sheared	l rock.																
1-1	M ICH-10	385 D	meta-rhyodacitic	highly sheared &			0	⊲			Η	$\left - \right $		0	0			(*)		(*)	0		0		
71_1			fine crystal tuff	foliated	Crystal -rich		rhyodacitic fine tuff	s tuff																ŀ	-
T_10	M 1011-11	57 £	meta-rhyodacitic	porphyritic, weakly			0	٩		۷	_	_		0	0						0		4	⊲	_
2		0.10	tuff or lava	foliated	Rock is affected by chlorite-sericite-carbonate and silica alteration	ected by	chlorite	-sericit	3-carbon	ate and s	silica alti	eration.													
, F	M 1011-111	75.0	meta-rhyodacitic	porphyritic, sheared &			0	Δ		۷				0	4					٥	0		⊲	*	<u></u>
<u>+</u> -		0.07	tuff or lava	foliated	Strikingly similar to sample no. T-13 in texture and mineral composition	similar to	sample	no. T-1:	3 in textu	rre and m	ineral co	ompositi	on.												
T_15		58.8	meta-rhyodacitic	fine-grained sub-			0							0				*					0		
<u>.</u>	6_000W	0.00	fine lithic tuff	porphyritic	Effect of recrystallization is locally	ecrystalli	cation is	locally	noticed c	noticed on phenocrysts crystal	crysts c	rystal mi	margins.												
T_16		0.00	meta-rhyodacitic	moderatly foliated			⊲			(*)				0							_	-	0		
01-1	R-DODM	90.U	fine (ash) tuff	and sheared	Locally augen-shaped quartz-eye noticed.	gen-shap	ed quar	z-eye n	oticed.																
÷		0 001	reworked meta-	groundmass fine to		⊲								0						⊲	(*)		Ø	(*)	()
/ _	MUSU-8	N'771	rhyodacitic tuff	medigrained	Epidote-chlorite has completely replaced former amphibole phenocrysts	nlorite ha	s compl	etely rep	laced for	rmer amp	hibole p	henocry	sts.												
÷	10110	1 901	phyllite or meta-	fine-grained &						۷									0	(*			0		
ΩI-I		1.36.1	siltstone	highly foliated	Locally zoisite occurs as gangue mineral to opaques.	site occt	rs as ge	ingue mi	neral to (opaques.															
F F	M ICH 0	100 F	meta-rhyodacite	highly sheared &			0			۷			_	0	4								Ø	_	
ה 	R-DODM	190.0	tuff or lava	protomylonitic	Strong shearing has produced protomylonitic occelleur fabric.	aring ha	produc	ed proto	mylonitic	c occeller	ur fabric														

Third Phase Drilling Exploration

Appendix 1 Results of Microscopic Observation of Thin Section

No.	m) Hock type meta-rhyodacitic fine tuff meta-fine (ash) tuff white-mica schist pervasively chloritized rock microdiorite		others MP cip hb qz pi gi Kf op others epi chi amp ser tit cb	ser tit
MJSU-9 MJSU-9 MJSU-9 MJSU-12 MJSU-12 MJSU-13				
MJSU-9 MJSU-9 MJSU-9 MJSU-12 MJSU-12 MJSU-13				⊘ ∠
MJSU-9 MJSU-9 MJSU-9 MJSU-12 MJSU-12 MJSU-13 MJSU-13			Feldspars are completely replaced by sericite.	
MJSU-9 MJSU-9 MJSU-12 MJSU-12 MJSU-13		La		
MJSU-9 MJSU-9 MJSU-12 MJSU-12 MJSU-13			Meta fine (ash) tuff of felsic composition.	
MJSU-9 MJSU-12 MJSU-12 MJSU-13 MJSU-13		extremely fine and		0
MJSU-9 MJSU-12 MJSU-12 MJSU-13		. r.	The rock is affected by pervasive white mice attention.	
MJSU-12 MJSU-12 MJSU-12 MJSU-13	_	very fine-grained	-	
MJSU-12 MJSU-12 MJSU-13			Primary texture and mineral composition is obliterated by strong chlorite and patchy sericite alteration.	
MJSU-12 MJSU-12 MJSU-13		fine intersertal and		
MJSU-12 MJSU-13	_		The rock shows intersertal fabric, where plagioclase grains are randomly oriented and their inter grain spaces are filled by secondary alteration minerals.	n minerals.
MJSU-12	meta-rhyodacite	porphyritic and		0
MJSU-13			The felsic rock matrix accompanies phenocrysts and broken fragments of quartz and plagioclase.	
21-020W	meta-rhyodacitic	porphyritic weakly		
		deformed		
N 101-12	meta-rhyolite crystal	porphyritic weakly		
	tuff or lava	foliated	Meta-rhyolitici-rhyodacitic crystal rich tuff, moderately deformed, sheared and granulated	
	mylonitized felsic	highly deformed and		0
1./0 61-USUM 82-1	rock	sheared	Course-praimed fabric of quarts and plagoclases phenoclasts suggests that probably the former rock was plutonic and of gravitic composition. That was strongly sheared and mylonutzed	viitized
T-20 M.ISH-13 82 0	meta-	porphyritic. weakly		
2. 000	tuff	deformed & sheared	pp	
T-20 M ISH-13 130.0	meta	porphyritic weakly		0
CI LOCOM	tuff or lava	foliated	Strikingly similar to sample no. T-27 in texture and mineral composition except locally graphic intergrowth of quartz over plagioclase is noticed.	d.
	meta-rhyodacitic	porphyritic weakly		0
2002 1-02 2002	lithic tuff	foliated -	The foliations are marked by suborientation of sericite patches.	
+ 20 MICH 15 2016	meta-rhyodacitic	porphyritic weakly		
	lithic tuff	foliated	Amphibole occurs in extremely fine-grained acicular form and in places forms disseminated rosettes.	

Results of Microscopic Observation of Polished Section Appendix 2

Localities	ities	Sample No.	Sample No. Rock Name	ру	cp te	te	bo sp	sp	pr	he ma	ma	=	ga	8	Ē
		K9030305	massive ore	0	⊲			٩							
Jabal Sayid		K9030306	massive ore	0	0			∇ 0	Þ		٩				
		K9030307	silicified ore	0	0			⊲	⊲						
Mahd adh		K9030308	cp-sp quartz vein	⊲	0		⊲	0					Δ		
Dhahab		K9030310	cp-ga massive vein	⊲	0	⊲	-	0		⊲		Þ	⊲		
Umm ad	West Hill	K9030102	gossan	Δ						0					
Damar	Southeast	K0030301	sulfide veinlet ore,	¢	С			<	<		<			<	
Prospect	Hill	1000001	UAD-6 No.17)	>			1	1		1			1	
Umm ad Damar	amar South	K0021400			C					C				< C	<
Southeast Extension	nsion	12021403	daar uz veni)					>				>	1
Geological Survey	ırvey														
-		Den th	4												

Second Phase

			Denth											
Localities		Sample No.	ín)	Rock Name	δ	д	8	8	ds	ga	pr ma	a Pe	ge	an
		108P	108.1	Py-cp-qtz vein	0	⊲			4			_		
-		111P	111.5	Py-cp-qtz vein	0	0		-	0		⊲			
	UAD-4	112P1	112.2	Disseminated sp-py ore	0	0	⊲	-	0		Δ			
		11909	1126	Disseminated sp-cp-py	©	Ø			C		<			
		7	2.4	ore)))		1			
		99P	99.1	Cp-py stringers	0	0	Δ		Δ	7	∇		4	⊲
		arut	7 N T	"Cp-py stringers,	¢	C	<		<		<		<	
Umm ad				dissemination"))	1	-	1	-	1		1	
orth		111P	111.1	Cp-py stringers	0	0	Δ		V				Δ	
		0010	3210	"Cp-py stringers,	C								<	
		1047	743.0	dissemination")	>				_			1	
South of 4/6 Gossan	ssan	K0013101		Siliceous Fe-oxides									0	
Northeast of M-27	12	KUD22AD3		Quartz vein? with		<							<	
Anomaly				Cu-oxides		1			_				1	

abbrev. an: Anatase, bo: Bornite, cc: Chalcocite, co: Covellite, cp: chalcopyrite, ga: Galena, ge: Goethite, he: Hematite, il: Ilmenite, ma: Magnetite, ml: Malachite, qtz: Quartz, pr: Pyrrhotite,

py:Pyrite, sp:Sphalerite, te:Tetrahedrite-Tennentite

©abundant, Ocommon, ∆small

First Phase

Appendix 2 Results of Microscopic Observation of Polished Section

Second Phase Drilling Exploration

	- 1						- 1															T			[]		
an		_									4	0	⊲		⊲		⊲		0	⊲			⊲	⊲			⊲
he										4					_			_									_
ma										0																	
na				_										_									⊲				
hs		⊲																									
a				Δ																	٩						
Ö													⊲						_	⊲		 	⊲	⊲	4		
8 8	0	⊲		Δ	Δ	Δ	٩		⊲				⊲								4						
sp	0	0	4	0	0	0	۷	⊲	0		0	⊲	0	⊲	٩	⊲		Þ	0		0	⊲	⊲	⊲	Δ	0	
 te																						⊲					
ວ ວ																					4						
8					⊲	⊲		٥													٩	-	-				
d:	0	0	0	0	0	0	∇		0	0	0	0	0		0	0	0	0		0	4	0	0	⊲	0	0	⊲
ð	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	⊲	⊲	0	⊲	0	٥		0	0	0	0	0
Rock Name	cp-py-sp stringers	cp-py-sp vein	cp-py breccia ore	py-cp-sp breccia ore	py-sph-cp massive ore	py-cp-sp massive ore	py breccia ore	py-cp massive ore	cp-py network vein	py-cp network vein	"py-cp vein, 4cm wide"	py-cp veinlets	‴py−cp vein, 15cm wide″	py-cp veinlets	disseminated & layered cppy	cp-py veinlets	"cp veinlets, 15cm wide"	massive py	layered py-cp-sp	"cp veinlets, 1.5m wide"	thinly banded breccia ore consisting of	‴cp∸qtz vein, 20cm wide‴	"cp-qtz veinlets, 1-2cm wide"	"cp-qtz veinlets, 15cm wide"	"py-cp massive ore fragment, 4 × 4cm"	"sp massive ore fragment, 7 × 7cm"	py-cp massive ore
Depth (m)	153.5	215.5	122.4	124.3	131.2	132.1	135.7	141.2	214.9	220.6	143.3	149.9	156.1	279.1	81.8	96.8	236.1	271.2	273.1	329.6	135.2	60.2	63.3	76.6	73.3	73.5	83.0
Sample No.	153P	215P	122P	124P	131P	132P	135P	141P	214P	220P	143P	149P	156P	279P	81P	96P	236P	271P	273P	329P	135P	60P	63P	76P	73P1	73P2	83P
es				•		Z-02rw	£			- 5-00rW								G-DORM		1	9-NSLM		MJSU-7	•		MJSU-8	
Localities					4/b Gossan						Umm ad	Damar North					Umm ad	Damar North			4/6 Gossan	-	northeast of	4/b Gossan		Jabal Sujarah	1

abbrev. al: Altaite, an: Anatase, cc: Chalcocite, cl: Clausthalite, co: Covellite, cp: chalcopyrite, ga: Galena, he: Hematite, ma: Magnetite, na: Naumannite, qtz: Quartz, py: Pyrite, sp:Sphalerite, te:Tetrahedrite-Tennentite

©abundant, Ocommon, ∆small

Results of Microscopic Observation of Polished Section Appendix 2

Drilling Exploration Third Phase

abbrev. cc:Chalcocite, co:Covellite, cp:chalcopyrite, ga:Galena, ma:Magnetite, pr:Pyrrhotite, py:Pyrite, ru:Rutile, sp:Sphalerite, te:Tetrahedrite-Tennentite

©abundant, Ocommon, ∆small

Appendix 3 Results of X-ray Diffraction Analysis

First Phase

Localities	ties	Sample No.	Rock Name	븅	σ	ch se	e Q	ep ta	aþ	77	ଌ	4	ð	d	sp
Jabal Sayid		K9030303	py, cp disseminated altered rock	0		0	⊲	⊲					0	0	
		K9030309	host rock of quartz vein	0		0		1					0	0	
Iniana aun unanao		K9030310	host rock of cp-ga massive vein	0		0			0	_					⊲
West of Jabal Sujarah	_	K9030105	jasper	0									⊲		
Jabal Sujarah		K9030302	carbonatized rock	0	0	\triangleleft	7	∇							
Northwest of Umm ad Damar South	d Damar South	M9022701	epidotized rock	٩	0	⊲	7	⊲				0			
		K9022801	hematite rock	0		0	Þ								
North Drocoport		K9022802	dacite	0		0	V								
	Southeast Hill	K9030301	sulfide veinlet ore, UAD-6 No.17	0		0							⊲		
Umm ad Damar South Prospect	h Prospect	K9022409	clay	0		4				0	0 0				

Second Phase Geological Survey

$ \begin{array}{ \mbox{Hole No.} \mbox{Hole No.} \mbox{Hole No.} \mbox{Hole No.} \mbox{Hole No.} \mbox{No.} \mbox{Mo.} Mo.$						$\left \right $	$\left \right $	$\left \right $	$\left \right $		$\left \right $	┞	ļ	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Localities (Drill Hole No.)		(m)	Rock Name	븅		टन टा		Se Be	pi ep	ta	ð	by D	he
Toolun UND-4 114X 114.5 Chloritized rock Image: Colored sector Image: Colored sector <t< td=""><td></td><td>112X</td><td></td><td>Chloritized rock</td><td>⊲</td><td> </td><td>0</td><td>⊲</td><td></td><td></td><td>0</td><td>⊲</td><td></td><td></td></t<>		112X		Chloritized rock	⊲		0	⊲			0	⊲		
ad Damar South K0020801 Strongly epidotized andesitic rock Δ \odot Anomaly K0021402 Silicified dactic rock with hematite \odot \odot Anomaly K0021402 Silicified and clayey dactic rock with hematite \odot \odot Anomaly K0021403 Silicified and clayey dactic rock with hematite \odot \odot -7 K0020602 Carbonatized rhyodactic rock with hematite \odot \odot AlSU-7 K0020601 Feruginous rhyodactic rock \odot \odot Sijarah K0020504 Strongly silicified dactic rock with hematite \odot \odot Anomaly K0022401 Strongly silicified dactic rock with hematite \bigcirc \bigcirc		114X	114.5	Chloritized rock	0	-	⊲ 0	⊲				⊲		
Anomaly K0021402 Silicified dactic rock with hematite Image: Control of the control o	West of Umm ad Damar South	K0000801		Strongly enidotized endecitic work	<	C	<	<		C				
Anomaly K0021402 Silicified dactic rock with hematite Image: Constraint of the con	Prospect	10007001			1)	1	1)				
Anomaly K0021403 Silicified and clayey dactic rock with hematite Image: Control of the context of	West of J-18 Anomaly	K0021402		Silicified dacitic rock with hematite	0				4					⊲
1-7 K0020602 Carbonatized rhyodacitic rock Image: Cock and the coc	West of J-18 Anomaly	K0021403		Silicified and clayey dacitic rock with hematite	0									\triangleleft
IJSU-7 K0020601 Ferruginous rhyodactic rock Sujarah K0020504 "Silicified rock with hematite, jasper?" Anomaly K0022401 Strongly silicified dactic rock with hematite	North of MJSU-7	K0020602		Carbonatized rhyodacitic rock	0	-	∇	` 	4					
Sujarah K0020504 "Silicified rock with hematite.jasper?" Anomaly K0022401 Strongly silicified dacitic rock with hematite	Northeast of MJSU-7	K0020601		Ferruginous rhyodacitic rock	0									⊲
Anomaly K0022401 Strongly silicified dacitic rock with hematite	North of Jabal Sujarah	K0020504		"Silicified rock with hematite, jasper?"	0									
	North of M-27 Anomaly	K0022401		Strongly silicified dacitic rock with hematite	0			∇ ∇	<					
	J-18 Anomaly	K0022408		Rhyodacitic rock with hematite	0		-	, ⊲	4					

Abbrev. ab:Albite, al:Alunite, ch:Chlorite, cl:Calcite, cp:Chalcopyrite, ep:Epidote, gy:Gypsum, py:Pyrite, qt:Quartz, se:Sericite, sp:Sphalerite, ta:Talc, tr:Tremolite

©abundant ⊖common ∆small

•

Appendix 3 Results of X-ray Diffraction Analysis

Second Phase Drilling Exploration

									ļ	[
Localities (Drill Hole No.)	e No.)	Sample No.	Depth (m)	Rock Name	ਚ ਚ	머	- se	<u>a</u>	ð	8
		98X	98.6	Rhyodacitic lapilli tuff	0	Þ	0	0		
		117X	117.4	Basaltic tuff	0	0 0	6	⊲		
(),		125X	125.7	Rhyodacitic lapili tuff	4	0	0		0	
4/0 Gossan	Z-USUM	129X	129.0	Rhyodacitic lapili tuff	0	⊲	∇			
		142X	142.2	Rhyodacitic tuff	0	0	6			
		144X	144.7	Rhyodacitic tuff	Ô	Δ	Δ	Δ		
		211X	211.5	Porphyritic dacite	0	0	∇ (
Umm ad Damar North	MJSU-3	217X	217.5	Rhyodacitic coarse tuff	0	⊲	Δ			
		224X	224.5	"Silicified volcanic rocks, thyodacitic?"	0	Ā	1	⊲		
		56X	56.3	Strongly silicified rhyodacitic? rock	70	0 7	0	_	⊲	
		61X	61.5	Silicified rhyodacitic rock	7 0	∠	0			
		131X	131.6	Rhyodacitic coarse tuff	0 0	0 ©	∇			
Umm ad Damar North	MJSU-4	138X	138.0	Dacitic coarse tuff	70	0 7	0	-		
		143X	143.1	Chloritized part	7 ©	© ∇	0		⊲	
		145X	145.3	Dacitic coarse tuff	7 0	0 7	0		0	
		285X	285.8	Pyritized part	7 0	0	0	_	0	
		79X	79.6	Strongly chloritized part	0	© 0	0		⊲	
		X96	96.3	Strongly chloritized part	0	0 ©	0			
		236X	236.1	Chloritized part	0		0		⊲	0
Umm ad Damar North	MJSU-5	246X	246.6	Chloritized part		0	0		⊲	
		270X	270.6	Chlorite & siliceous layer in thinly banded pyrite ore	0	0 ⊽		_		
		274X	274.3	Chlorite & siliceous layer in banded pyrite ore	V	9	0		٩	⊲
		331X	331.1	Strongly chloritized part	⊲	0	0			Δ
northeast of 4/6 Gossan	9-NSLM	134X	134.2	Qtz-vein in graphite	0					
		41X	41.7	"Brecciated silicified rock, rhyodacitic tuff?"	0	0	0	_		
باستثنا والعادا	M ISI LO	74X	74.6	Clayey fine tuff	4		© ⊲		0	
		141X	141.8	Pumiceous volcanic breccia	0	7	A	-	⊲	
		184X	184.9	Pumiceous lapili tuff		7			0	

Abbrev. ch:Chlorite, ci:Calcite, cp:Chalcopyrite, pi:Plagioclase, py:Pyrite, qt:Quartz, se:Sericite

©abundant ⊖conmon ∆small

Analysis
Diffraction
Results of X-ray
Appendix 3

Third Phase Drilling Exploration

ру					Δ	Δ	Δ			Δ		⊲	Δ	Δ	Δ	Δ	Δ	⊲	⊲	۵	٩	Δ	٩	Δ	Δ	⊲	Þ		Δ	⊲
с																						۷	٩	٩	٩	٩	⊲	٩	۷	⊲
mi	ċ					?																				⊲				⊲
se	Δ	0	Δ	Δ	Δ	۷	Δ	Δ	Δ	۷	Δ	⊲		Δ	Δ	Δ	Δ	٩		⊲	⊲	0	۷			⊲	⊲	٥		⊲
ch	Þ	⊲	⊲	⊲	⊲	⊲	⊲	⊲	⊲	٩	۷				۷	۵		⊲	0	⊲	⊲	0	0	0	0	⊲	0	⊲	0	⊲
kf							⊲																							
Ъ	⊲	0					د.		⊲		٩												٩	0	0	Þ	⊲	⊲		
đ	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	Δ	0	0	0	0	0	0	0	0
Depth (m)	260.10	274.00	36.00	55.00	74.00	140.00	159.00	172.20	47.80	135.70	233.00	50.90	70.10	85.00	130.80	174.60	228.00	295.00	350.50	358.20	366.60	107.60	142.00	164.70	191.70	82.20	92.50	117.80	185.20	200.50
Drill Hole	MJSU-14	MJSU-14	MJSU-10	MJSU-10	01-USLM	MJSU-10	MJSU-10	01-USLM			11-USLM	6-NSLM	6-USLM	6-NSLM	6-USLM	6-NSLM	MJSU-9	6-USLM	6-NSLM	6-NSLM	6-USLM	MJSU-12	MJSU-12	MJSU-12	MJSU-12	MJSU-13	MJSU-13	MJSU-13	MJSU-13	MJSU-13
Sample No.	X-31	X-32	X-33	X-34	X-35	X-36	X-37	X-38	X-39	X-40	X-41	X-42	X-43	X-44	X-45	X-46	X-47	X-48	X-49	X-50	X-51	X-52	X-53	X-54	X-55	X-56	X-57	X-58	X-59	09-X
ð																		⊲	¢.		c.			Δ	⊲					
ठ		\triangleleft						⊲				⊲	¢.	٩	۵	۵	Δ	⊲	ċ	⊲				Δ						
Ē		i								⊲	⊲	⊲		Þ	Δ	∆~?		⊲												
es Se	⊲	⊲	⊲	⊲	⊲	0	⊲	⊲	⊲	ć	ć	4	⊲	ć	⊲	⊲	٩	4	⊲		⊲	V	V	4	⊲	4	4	Þ	V	0
ч	0	0	\triangleleft	⊲	⊲	⊲	⊲	⊲	⊲	0	0	4	0	0	0	0	0	⊲	0	⊲	⊲	۷	\triangleleft	⊲	⊲	⊲	0	0	۷	\triangleleft
Ŧ																						-								
ā	⊲	\triangleleft	⊲	⊲	⊲	⊲	⊲	⊲	⊲	⊲	⊲	⊲	0	⊲	⊲	⊲		⊲	⊲	⊲		٩	⊲		۷	⊲			Δ	⊲
4	0	0	0	ø	0	0	0	0	0	0	0	0	0	0	0	0		0	0	∀~0	0	0	0	0	0	Ø	0	0	0	0
Depth (m)	30.40	51.20	83.70	167.60	181.50	200.00	220.50	236.40	249.40	19.80	45.10	64.50	85.30	104.70	125.10	136.80	151.00	170.10	193.10	200.10	203.60	207.00	210.20	212.00	214.50	219.50	221.10	222.10	230.20	240.10
Drill Hole	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-2	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14	MJSU-14										
Sample No.	10-X	X-02	×-03	×-94	X-05 X	90-X	X-07	X-08	60-X	X-10	X-11	X-12	X-13	X-14	X-15	X-16	X-17	X-18	X-19	X-20	X-21	X-22	X-23	X-24	X-25	X-26	X-27	X-28	X-29	X-30

Abbrev. ab:Albite, al:Alunite, ch:Chlorite, cl:Calcite, cp:Chalcopyrite, ep:Epidote,kf:Potash feldspar, mitMinesotaite, py:Pyrite, qt:Quartz, se:Sericite

©:Abundant, O:Common, ∆:Small amount, ?:Probable

indix 4 Results of Fluid In	clusion Study
indix 4 Res	Ъ
	pendix 4 Res

					Ĭ	3mogeniz	tion Tem	Homogenization Temperature (°C)			Salini	Salimity (wt% eq. NaCl)	NaCI)		Other	Other Analytical Results	
		Comple			-	,	ŀ										
Loca	Localities	No.	Rock Name	Kind of Inclusions	Number of Measured	Min	Max	Average	Standard	Number of Measured	Υ.	May	Average	Standard	Microscopic Observation of		X-ray
					Inclusions				Deviation	Inclusions			29 march	Deviation	Polished Section	Apert alo	Analysis
Jabal Sayid Deposit	eposit	K9030307	silicified ore	liquid-rich two-phase	22	111	3 08	260	47	5	0.7	10.9	8.3	1.7	py(©), œ(O), sp(∆), po(∆)	J	1
		K9030308	988mL.cp-s p qz vein	liquid-rich two-phase	15	147	276	221	46	14	0.6	12	6.0	02	″py(∆), cp(O), bn(∆), sp(©), ga(∆)	I	t
Mahd adh Dhahab Mine	hab Mine	K9030309	quartz vein	liquid-rich two-phase	12	174	233	198	19	ß	0.1	0.4	02	02	ł	ł	φr(@), cht(@), ser(Δ), ept(Δ), pv(O), ca(O)
Umm ad Damar	ar.	K9022006	quartz vein	liquid only	0	1	-	-	1	2	12.3	14.4	13.3	1.5	I	Cu 1.48%	
		K9030102	gossan	liquid only	0	ı	ı	1	1	3	11.7	12.5	12.2	0.4	py(∆), hem(©)	Cu 0.14%	-
>	West Hill	K9030103	quartz vein	mostly liquid nich two-phase	=	172	240	193	31	=	4.9	7.3	62	6:0	1	Ag 18.9g/t, Cu 0.17%	I
	Southeast Hill	K9030301	sulfide veinlet ore, UAD-6 NO.17	liquid-rich two-phase	-	>430		I	I	-	6.0		ŀ		py(©), cp(O), sp(∆), po(∆), mt(∆), cv(∆)	Cu 0.19%	₽7(O). ₽7(∆),
Lospect	Southeast	K9022501	quartz vein	liquid only or liqui d r ich two-phase	2	147	175	161	S 0	e	13.1	13.5	13.4	02	1	Cu 0.11%	1
L		K9022505	silicified ore	liquid-rich two-phase	10	147	191	<u>16</u>	14	4	12.4	18.4	14.7	2.8	1	Cu 0.60%	I
		K9022402	silicified rock	liquid-rich two-phase	20	150	181	<u>16</u>	12	2	1.5	4.1	32	1.0	1	ı	1
Umm ad Damar South Prospect	ar South	K9022403	qz-hem veinlet rock	liquid-rich two-phase	19	149	191	164	12	£	3.9	4.9	4.4	0.4	1	Cu 0.06%	ı
		K9022406	silicified ore	liquid-rich two-phase	23	132	175	148	12	9	3.6	5.6	5.0	0.7	1	Ag 18.2g/t Cu 1.91%	1
I Imm ad Damar South	er South	K9021402	quartz vein	liquid only	0	1	1	-	1	-	0.5		1	1	I	Cu 0.45%	1
Southeast Extension	ension	K9021404	quartz vein	liquid-rich two-phase(CO ₂ ?)	2	81	8	85	9	0	ŀ	1	I	I	: 1	Cu 0.45%	1
-	2	•	•	•													

abbrev. py = pyrite, cp = chalcopyrite, sp = sphalerite, po = pyrrhotite, bn = bornite, ga = galena, hem = hematite, mt = magnetite, cv = covelline, qz = quartz, chl = chlorite, ser = sericite, epi = epidote

•

©abundant, Ocommon, ∆small

Appendix 5 Results of Ore Assay (1)

First Phase

Loc	alities	Sample No.	Rock Name	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	Fe (%)
16.7 J. 19 Wile al.	-	K9021701	gossan	3.7	287	1.96	3.45	0.61	35.33
		K9021702	gossan	1.6	23.6	0.58	1.49	1.98	31.25
4/6 Gossan	Prospect	K9021703	gossan	<0.1	3.4	6.59	0.04	1.70	12.61
		K9021801	gossan	<0.1	2.3	0.05	<0.01	0.03	4.63
		K9021802	gossan	<0.1	1.9	0.03	0.01	0.01	11.29
West of Jab	al Sujarah	K9030105	jasper	0.4	5.9	0.21	<0.01	<0.01	2.02
North of Urr South	nm ad Damar	K9022006	quartz vein, wd 0.3m	<0.1	0.8	1.48	<0.01	<0.01	3.01
Southeast o Suiarah	of Jabal	M9021504	quartz vein, wd 0.12m	<0.1	0.4	0.09	<0.01	<0.01	2.15
	1	K9021101	gossan	0.3	3.3	10.12	<0.01	0.04	8.97
		K9030102	gossan	<0.1	2.2	0.14	<0.01	0.01	12.18
	West Hill	K9030103	guartz vein	0.3	18.9	0.17	<0.01	0.02	9.23
		K9022704	gossan	0.6	4.5	5.67	0.32	0.40	42.13
		K9022705	gossan	0.4	1.9	0.05	<0.01	0.04	25.66
Umm ad Damar North	Southeast	K9030301	sulfide veinlet ore, UAD-6 No.17	<0.1	3.8	0.19	<0.01	0.01	17. 49
Prospect	Hill	K9022702	gossan	<0.1	0.5	0.04	<0.01	<0.01	22.88
		K9022703	gossan	< 0 .1	0.6	0.13	<0.01	0.02	33.28
		K9022501	quartz vein	<0.1	1.5	0.11	<0.01	0.03	6.38
	Southeast	K9022503	gossan	<0.1	2.3	0.52	<0.01	0.03	28.28
Umm ad Damar South Prospect		K9022504	quartz vein	<0.1	1.5	0.60	<0.01	0.02	5.56
		K9022505	silicified ore	0.1	8.1	2.04	0.01	0.06	11.94
		K9022403	quartz-hematit e veinlet rock	<0.1	1.7	0.06	<0.01	<0.01	14.00
		K9022404	gossan	6.2	5.5	0.89	<0.01	0.04	57.44
		K9022405	quartz veinlet rock	0.2	5.5	0.21	<0.01	0.05	7.43
		K9022406	silicified ore	0.4	18.2	1.91	<0.01	0.36	5.24
		K9022407	silicified rock	1.4	13.1	1.07	0.03	0.41	20.74
		K9022408	ore containing Cu-oxide minerals	0.3	7.3	7.91	<0.01	1.22	18.71
		K9030313	ore containing Cu-oxide minerals	3.0	14.7	0.76	0.01	0.40	38.02
		K9021303	gossan, wd 0.3m	0.2	15.0	14.44	<0.01	0.02	13.20
		K9021402	quartz vein, wd 1.0m	<0.1	1.0	0.45	<0.01	<0.01	0.54
Umm ad Dar	mar South,	K9021404	quartz vein, wd 0.3m	<0.1	1.6	0.45	<0.01	<0.01	1.01
Southeast E	extension	K9021405	silicified rock, wd 2~3m	<0.1	0.9	0.82	<0.01	<0.01	0.38
		K9021409	quartz vein, wd 0.3m″	<0.1	0.9	1.25	0.05	<0.01	1.39
		K9021506	siliceous ore, float	<0.1	18.6	4.50	<0.01	<0.01	1.39

Appendix 5 Results of Ore Assay (2	Appendix	5	Results	of Ore	Assay (2)
------------------------------------	----------	---	---------	--------	-----------

Second Phase Geological Survey

Drill Hole No.	Sample No.		pth n)	Width (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	РЬ (%)	S (%)	Fe (%)
UAD-4	1	105.95	107.95	2.00	0.30	21.2	1.88	0.05	0.00	4.98	-
	2	107.95	109.95	2.00	0.35	26.8	2.37	0.07	0.00	6.98	-
	3	109.95	112.05	2.10	0.36	20.8	1.67	0.56	0.00	8.75	-
	4	112.05	114.05	2.00	1.00	38.4	3.56	3.60	0.00	15.50	-
	5	114.05	115.00	0.95	1.44	40.8	4.06	1.96	0.00	8.25	-
K0013101	ĺ	4/6 Gossa	n Prospect		<0.05	<1.0	0.01	0.01	0.01	+	31.09
K0020503	3	B-12 Char	geability And	maly	<0.05	3.2	0.04	0.02	0.11	-	2.30
K0020603	3	O-21 Char	geability And	omaly	<0.05	1.8	0.09	0.01	0.00	-	14.91
K0020604		O-21 char	geability Ano	maly	<0.05	<1.0	0.06	0.02	0.00	-	19.77
K0021401	1	West of Anomaly	J-18 Cha	argeability	<0.05	<1. 0	0.02	0.01	0.00	1	14.44
K0021402	2	West of Anomaly	J-18 Cha	argeability	0.08	6.2	0.02	0.01	0.00	I	8.86
K0021403	3	West of Anomaly	J-18 Cha	argeability	<0.05	<1. 0	0.02	0.01	0.00	-	8.33
K0021404	1	4/6 Gossa	n Prospect		0.05	1.4	0.01	0.01	0.01	-	3.31

Appendix 5 Results of Ore Assay (3)

Second Phase Drilling Exploration

e Drillir	ng Explor	ation							
Drill Hole No.	Dej (n	pth n)	Width (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	РЬ (%)	S (%)
MJSU-1	6.30	7.95	1.65	<0.05	0.6	<0.01	<0.01	<0.01	0.14
	13.50	14.55	1.05	<0.05	0.6	<0.01	<0.01	<0.01	<0.05
	14.55	15.00	0.45	<0.05	0.7	<0.01	0.01	<0.01	<0.05
	15.00	15.75	0.75	<0.05	0.6	<0.01	<0.01	<0.01	<0.05
	15.75	17.40	1.65	<0.05	0.7	0.01	0.01	<0.01	<0.05
	17.40	18.65	1.25	<0.05	0.6	<0.01	0.01	<0.01	<0.05
	23.05	24.20	1.15	<0.05	0.5	<0.01	0.01	<0.01	0.32
	24.20 25.75	25.75 26.65	1.55 0.90	<0.05 <0.05	0.6	<0.01 <0.01	0.01	<0.01 <0.01	<u>1.05</u> 0.43
	26.65	20.05	0.90	<0.05	0.5	0.01	0.01	<0.01	1.45
	31.00	32.75	1.75	<0.05	0.0	<0.01	<0.01	<0.01	1.45
	32.75	33.75	1.00	<0.05	0.6	<0.01	0.01	<0.01	1.40
	46.90	47.90	1.00	<0.05	1.0	0.01	0.01	<0.01	<0.05
	47.90	48.90	1.00	<0.05	1.2	0.04	0.01	<0.01	1.50
	48.90	49.90	1.00	<0.05	1.1	0.01	0.01	<0.01	0.26
	55.85	56.85	1.00	<0.05	0.7	<0.01	0.01	<0.01	0.40
	91.05	92.20	1.15	<0.05	2.7	0.01	0.51	0.01	10.50
	96.35	96.50	0.15	<0.05	13.2	2.19	0.01	0.01	5.92
	96.50	97.50	1.00	<0.05	0.9	0.02	0.01	<0.01	3.10
	97.50	98.50	1.00	<0.05	1.3	0.01	0.01	<0.01	5.20
	98.50	99.50	1.00	<0.05	1.5	0.02	0.01	<0.01	3.80
	99.50	100.50	1.00	<0.05	1.1	0.03	0.01	<0.01	1.26
	100.50 101.50	101.50 102.50	1.00	<0.05 <0.05	1.1	0.06	0.01	<0.01 <0.01	3.10 4.30
	101.50	102.50	1.00	<0.05	0.7	0.02	<0.01	<0.01	2.80
	102.50	103.30	0.70	<0.05	1.0	0.00	<0.01	<0.01	7.05
	120.85	121.50	0.65	<0.05	2.5	0.04	0.01	0.01	1.51
	122.50	123.00	0.50	<0.05	9.4	0.47	0.17	0.05	2.00
	123.00	123.10	0.10	<0.05	5.8	0.70	0.76	0.06	1.94
	150.70	151.60	0.90	<0.05	2.1	0.02	0.01	0.01	1.43
	151.60	152.30	0.70	<0.05	1.0	<0.01	0.01	<0.01	1.57
	152.70	153.40	0.70	<0.05	3.4	0.02	0.02	0.01	2.80
	153.40	154.10	0.70	0.05	8.3	0.09	0.26	0.11	4.42
	154.10	155.30	1.20	<0.05	0.7	<0.01	0.01	<0.01	3.15
	208.90	209.05	0.15	<0.05	4.1	0.37	0.16	0.01	1.30
	212.75	212.85	0.10	0.33	213.0	0.90	2.98	1.09	7.70
MJSU-2	215.45	215.60	0.15	0.48	150.0	0.95	1.91 0.04	0.48 <0.01	4.66 0.48
MJSU-Z	41.45 41.85	41.85 43.35	0.40	<0.05 <0.05	<0.5 <0.5	0.01	0.04	<0.01	1.72
	43.35	43.60	0.25	0.05	1.3	0.36	0.03	<0.01	1.00
	64.20	64.40	0.20	<0.05	4.6	0.00	0.04	<0.01	0.95
	106.25	107.25	1.00	<0.05	3.0	<0.01	0.02	<0.01	10.67
	107.25	108.25	1.00	<0.05	1.3	0.01	0.04	<0.01	5.70
	108.25	109.05	0.80	<0.05	1.0	<0.01	0.02	<0.01	4.04
	121.15	121.60	0.45	0.12	14.9	1.70	0.18	0.02	18.05
	121.60	122.30	0.70	0.14	18.6	0.17	0.03	0.01	1.32
	122.30	122.90	0.60	0.28	10.7	2.71	0.08	<0.01	11.04
	122.90	123.90	1.00	0.12	7.0	0.07	0.02	<0.01	3.95
	123.90	124.25	0.35	0.06	3.4	0.09	0.08	0.01	1.75
	124.25	124.75	0.50	0.65	55.4	1.66	9.81	0.45	14.00
	124.75	125.10	0.35	1.00	63.1	1.03	5.90	1.30	7.96
	125.10	125.40	0.30	1.40 0.10	44.9 3.9	0.99	6.81 1.21	0.68 0.16	3.34
	125.40 126.20	126.20 127.15	0.80	<0.05	2.3	0.03	0.04	<0.01	2.15
1	120.20	127.15	0.95	<0.05	1.9	0.01	0.04	<0.01	1.08
	127.15	128.10	0.93	0.30	12.6	0.96	0.02	<0.01	23.30
	128.20	129.05	0.85	<0.05	0.8	<0.00	0.03	<0.01	0.65
	129.05	130.10	1.05	<0.05	0.5	0.01	0.00	<0.01	0.20
	130.10	130.40	0.30	0.56	13.3	0.89	3.65	0.02	11.75
				0.74	1.5	0.23	0.03	<0.01	2.00
	130.40	130.50	0.10	0.74	1.0	0.20	0.00		2.00
	130.40 130.50	130.50 131.15	0.10	0.74	28.8	0.68	9.55	0.03	21.70

Appendix 5 Results of Ore Assay (4)

Second Phase Drilling Exploration

Drill		pth	14/: dala	A	٨٠	0.1	7-	DL	· ·
Hole No.		ptn n)	Width (m)	Au (g/t)	Ag (g∕t)	Cu (%)	Zn (%)	Рb (%)	S (%)
MJSU-2	133.10	133.90	0.80	0.21	9.7	1.23	3.95	0.01	7.10
	133.90	134.15	0.25	<0.05	7.6	0.48	1.97	0.02	23.00
	134.15	134.90	0.75	0.18	9.9	0.29	4.13	0.62	3.25
	134.90	136.20	1.30	<0.05	12.5	0.67	0.81	<0.01	26.55
	136.20 137.20	137.20 137.40	1.00 0.20	<0.05 0.70	2.8 51.6	0.20	0.10	<0.01 0.01	1.20 23.60
	137.40	137.40	0.20	<0.05	2.8	0.20	0.24	<0.01	1.20
	138.00	138.90	0.90	0.14	12.9	0.20	0.22	<0.01	11.25
	138.90	139.10	0.20	0.08	8.0	0.32	0.12	<0.01	4.65
	139.10	140.30	1.20	0.19	11.1	1.17	0.50	<0.01	5.50
	140.30	141.15	0.85	0.35	6.1	0.32	0.55	<0.01	13.83
	141.15	141.55	0.40	5.83	15.8	4.58	0.08	<0.01	33.83
	141.55	142.25	0.70	<0.05	4.5	1.05	0.12	0.01	18.70
	221.85	222.00	0.15	<0.05	9.0	0.03	0.71	<0.01	3.90
	224.05	224.15	0.10	<0.05	1.5	0.10	0.51	<0.01	0.85
MJSU-3	229.05 5<0.01	229.20 51.90	0.15	<0.05 <0.05	<u>5.3</u> 1.6	0.02	0.46	<0.01 <0.01	2.50 1.30
พมอบ~อ	5<0.01 51.90	53.30	1.90	<0.05	1.0	0.01	0.01	<0.01	1.50
	55.90	56.15	0.25	<0.05	1.7	0.07	0.02	<0.01	5.75
	56.15	57.10	0.95	0.06	1.4	0.02	0.02	<0.01	2.50
	57.10	59.05	1.95	<0.05	0.8	0.01	0.01	<0.01	2.65
	59.05	59.90	0.85	<0.05	1.2	0.01	0.01	<0.01	1.40
	68.85	71.85	3.00	<0.05	1.3	0.02	0.01	<0.01	2.55
	71.85	72.60	0.75	<0.05	1.3	0.02	0.01	<0.01	1.70
	81.55	83.55	2.00	<0.05	0.9	0.02	0.02	<0.01	2.20
	83.55	85.60	2.05	<0.05	1.1	0.04	0.02	<0.01	2.60
	95.65	97.75	2.10 1.60	<0.05 0.09	1.3	0.19	0.09	<0.01 <0.01	7.00
	104.60 106.20	106.20 107.80	1.60	0.09	0.8	0.01	0.01	<0.01	1.70
	107.80	11<0.01	2.20	<0.05	1.0	0.01	0.02	<0.01	1.70
	114.80	116.25	1.45	<0.05	1.1	0.01	0.01	<0.01	2.10
	116.25	117.70	1.45	<0.05	1.1	<0.01	0.01	<0.01	0.35
	117.70	119.20	1.50	<0.05	1.0	0.02	<0.01	<0.01	1.50
	119.20	120.75	1.55	<0.05	0.6	0.03	<0.01	<0.01	1.25
	153.15	154.50	1.35	<0.05	0.5	0.01	0.01	<0.01	2.10
	154.50	157.40	2.90	<0.05	0.6	0.01	0.01	<0.01	9.50
	157.40 159.00	159.00 160.55	1.60 1.55	<0.05 <0.05	2.8 2.3	0.37	0.02	<0.01 <0.01	2.80 0.60
	160.55	162.85	2.30	<0.05	0.9	0.19	0.01	<0.01	1.30
	162.85	164.45	1.60	<0.05	1.1	0.03	0.01	<0.01	0.90
	164.45	164.75	0.30	<0.05	1.5	0.09	0.01	<0.01	1.70
	177.60	178.50	0.90	<0.05	1.1	0.06	0.02	<0.01	1.50
	188.20	188.75	0.55	<0.05	3.9	1.57	0.02	<0.01	8.45
	188.75	189.45	0.70	<0.05	0.9	0.02	0.01	<0.01	0.40
	189.45	192.15	2.70	<0.05	1.1	0.09	0.01	<0.01	1.20
	204.25	206.70	2.45	<0.05	1.8	0.23	0.01	<0.01	<0.05
	206.70 208.60	208.60 210.60	1.90 2.00	<0.05 <0.05	1.9 0.9	0.33	0.01	<0.01 <0.01	<0.05 <0.05
	208.60	210.60	1.85	<0.05	0.9	0.03	0.01	<0.01	0.05
	210.00	212.45	2.25	<0.05	1.0	0.03	0.01	<0.01	1.20
	214.70	215.05	0.35	<0.05	13.3	5.05	0.06	<0.01	5.10
	215.05	217.05	2.00	<0.05	0.8	0.01	<0.01	<0.01	0.26
	217.05	218.90	1.85	<0.05	1.2	0.08	0.01	<0.01	1.60
	218.90	220.10	1.20	<0.05	0.8	0.02	0.01	<0.01	8.45
	220.10	220.90	0.80	<0.05	6.6	2.48	0.03	<0.01	3.00
	220.90	223.50	2.60	<0.05	0.7	0.03	0.01	<0.01	1.25
	223.50	226.30	2.80	<0.05	0.8	0.01	<0.01	<0.01	4.00
	041.05		1.40	<0.05	<0.5	0.06	0.01	<0.01	4.38
M 1011-4	241.85	243.25		Z0.05	/n E	1 /0 01	0.01	1 20 01	
MJSU-4	31.50	32.50	1.00	<0.05	<0.5 <0.5	<0.01	0.01	<0.01	0.73
MJSU-4	31.50 32.50	32.50 33.30	1.00 0.80	<0.05	<0.5	0.01	0.01	<0.01	0.40
MJSU-4	31.50	32.50	1.00						

Appendix	5	Results	of	Ore	Assay (5)
Appondix	v	Roourto	0.	0.0	10000 (0)

Second Phase Drilling Exploration

	ng Explor	ation				· · · · ·	r		
Drill Hole No.	Dej (n		Width (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	Рb (%)	S (%)
MJSU-4	60.25	61.25	1.00	<0.05	<0.5	<0.01	<0.01	<0.01	0.08
	61.25	62.25	1.00	<0.05	<0.5	<0.01	<0.01	<0.01	0.18
	62.25	63.15	0.90	<0.05	<0.5	0.05	0.01	<0.01	1.20
	63.15	64.30	1.15	<0.05	<0.5	0.01	0.01	<0.01	0.65
	64.30	65.15	0.85	<0.05	<0.5	0.02	0.01	<0.01	3.15
	65.15	66.15	1.00	<0.05	<0.5	0.02	0.01	<0.01	1.40
	66.15 67.20	67.20 67.60	1.05 0.40	<0.05 <0.05	<0.5 <0.5	0.02	<0.01 0.01	<0.01 <0.01	0.25
	67.60	67.85	0.40	0.06	<0.5	0.01	<0.01	<0.01	0.43
	111.40	111.65	0.25	0.00	12.0	1.82	0.10	<0.01	5.40
	133.15	133.30	0.15	0.07	12.0	0.24	0.02	<0.01	13.80
	140.50	141.00	0.50	<0.07	15.1	1.31	0.02	<0.01	3.30
	141.00	142.00	1.00	0.12	20.8	7.65	0.02	<0.01	5.66
	142.00	143.10	1.10	<0.05	0.5	0.10	0.02	<0.01	0.53
	143.10	143.40	0.30	0.28	24.7	10.40	0.19	<0.01	12.20
	143.40	144.85	1.45	<0.05	4.0	0.20	0.03	<0.01	0.83
	144.85	145.00	0.15	0.14	27.3	4.77	0.02	<0.01	6.53
	145.00	146.40	1.40	<0.05	2.4	0.15	0.01	<0.01	0.32
	146.40	146.60	0.20	0.15	38.6	4.60	0.03	<0.01	5.77
	146.60	147.30	0.70	<0.05	0.7	0.09	0.01	<0.01	0.40
	147.30	147.80	0.50	<0.05	16.7	1.37	0.01	<0.01	2.10
	147.80	148.80	1.00	<0.05	4.4	0.18	0.01	<0.01	0.82
	148.80	149.80	1.00	<0.05	0.6	0.09	0.01	<0.01	0.43
	149.80	149.90	0.10	<0.05 <0.05	4.0	0.32	0.03	<0.01 <0.01	0.95
	149.90 151.50	151.50 153.00	1.50	<0.05	1.4 0.8	0.13	0.02	<0.01	1.54
	153.00	154.50	1.50	<0.05	<0.5	0.07	0.02	<0.01	2.80
	154.50	155.50	1.00	<0.05	<0.5	0.07	0.00	<0.01	2.10
	155.50	156.05	0.55	<0.05	5.1	2.54	0.07	<0.01	3.40
	156.05	156.20	0.15	<0.05	12.0	18.95	0.87	0.04	12.94
	156.20	157.45	1.25	<0.05	2.3	0.38	0.02	<0.01	1.41
	157.45	158.25	0.80	<0.05	9.9	1.82	0.02	<0.01	2.50
	158.25	158.55	0.30	<0.05	1.2	0.29	0.03	<0.01	1.30
	158.55	158.85	0.30	0.07	17.7	3.64	0.07	<0.01	4.00
	158.85	160.50	1.65	<0.05	<0.5	0.05	0.02	<0.01	0.70
	160.50	162.00	1.50	<0.05	0.6	0.09	0.04	<0.01	1.02
	162.00	162.85	0.85	<0.05	0.7	0.06	0.03	<0.01	0.07
	162.85	163.00	0.15	<0.05	20.9	2.72	0.03	<0.01	2.80
	163.00	163.30	0.30	<0.05	1.0	0.04	0.02	<0.01 <0.01	0.83
	163.30 213.10	163.40 213.20	0.10	<0.05 <0.05	7.4 4.0	1.82	0.05	<0.01	2.40 2.28
	213.65	213.20	0.10	0.09	7.8	1.34	0.03	<0.01	3.90
	215.00	215.05	0.15	<0.05	4.3	0.64	0.02	<0.01	3.33
	217.00	217.10	0.10	<0.05	4.9	0.76	0.02	<0.01	3.42
	226.75	226.85	0.10	<0.05	13.0	3.28	0.03	<0.01	3.33
	227.25	228.05	0.80	<0.05	2.0	0.35	0.01	<0.01	1.06
	241.20	242.05	0.85	<0.05	<0.5	0.05	0.01	<0.01	0.75
	242.05	242.80	0.75	<0.05	0.7	0.05	0.03	<0.01	0.80
ſ	263.50	263.75	0.25	<0.05	0.8	0.09	0.06	<0.01	2.62
ſ	263.75	265.10	1.35	<0.05	<0.5	0.09	0.01	<0.01	0.78
ſ	265.10	267.05	1.95	<0.05	<0.5	0.17	0.01	<0.01	0.92
	272.70	273.25	0.55	0.07	1.1	1.11	0.01	<0.01	1.42
	278.95	279.35	0.40	<0.05	6.9	2.72	0.03	<0.01	4.63
	285.70	286.75	1.05	<0.05	0.7	0.04	0.01	<0.01	4.40
	292.30	292.60	0.30	<0.05	<0.5	<0.01	0.01	<0.01	4.60
	292.60	293.00	0.40	<0.05	<0.5	0.01	0.02	<0.01	17.34
	293.00	294.25	1.25	<0.05	<0.5	0.01	0.01	<0.01	2.20
	294.25 77.70	295.30 79.40	1.05	<0.05 0.05	<0.5 2.8	0.01	0.01	<0.01 <0.01	5.67
MICH		/3.40	+						3.71
MJSU-5		70.00	0 50	20.05	110	1 1 8 10			
MJSU-5	79.40	79.90	0.50	<0.05	11.0	1.86	0.03	<0.01	
MJSU-5		79.90 80.55 80.95	0.50 0.65 0.40	<0.05 <0.05 0.13	11.0 5.4 35.9	0.83 4.62	0.03	<0.01 <0.01 <0.01	2.90

Appendix 5 Results of Ore Assay (6)

Second Phase Drilling Exploration

Drill									
Hole No.		pth n)	Width (m)	Au (g∕t)	Ag (g∕t)	Cu (%)	Zn (%)	Pb (%)	S (%)
MJSU-5	81.70	82.55	0.85	0.12	27.8	4.28	0.07	<0.01	11.07
	82.55	84.00	1.45	<0.05	2.2	0.36	0.02	<0.01	16.03
	84.00	85.50	1.50	<0.05	0.8	0.09	0.01	<0.01	7.29
	85.50	87.00	1.50	<0.05	2.2	0.19	0.01	<0.01	9.61
	87.00	88.90	1.90	<0.05	1.9	0.15	0.01	<0.01	7.42
	88.90 89.90	89.90 90.90	1.00	<0.05 0.11	10.5 12.0	1.42 0.95	0.04	<0.01 <0.01	3.45 8.83
	90.90	90.90 91.90	1.00	0.08	15.8	1.59	0.03	<0.01	8.39
	91.90	93.20	1.30	<0.05	15.7	3.33	0.03	<0.01	4.90
	93.20	94.70	1.50	<0.05	1.4	0.17	0.01	<0.01	0.70
	94.70	95.50	0.80	<0.05	1.5	0.41	0.02	<0.01	1.15
	95.50	96.50	1.00	0.10	15.3	4.25	0.01	<0.01	6.44
	96.50	97.50	1.00	<0.05	12.4	4.21	0.01	<0.01	4.79
	97.50	98.50	1.00	<0.05	12.1	4.10	0.02	<0.01	3.86
	98.50 99.50	99.50 99.90	1.00 0.40	<0.05 0.36	12.9 5.8	2.85	0.02	<0.01 <0.01	2.45 2.58
	99.90	101.00	1.10	<0.05	2.6	0.35	0.02	<0.01	1.50
	109.65	111.00	1.35	0.05	<0.5	0.13	0.01	<0.01	0.08
	111.00	112.50	1.50	0.10	0.6	0.13	0.01	<0.01	0.15
	112.50	114.00	1.50	<0.05	0.9	0.49	0.01	<0.01	1.20
	114.00	114.50	0.50	<0.05	3.8	1.38	0.01	<0.01	1.15
	151.30	151.65	0.35	<0.05	0.6	0.29	0.02	<0.01	3.20
	229.80	231.30 232.80	1.50	<0.05 0.05	0.6 <0.5	0.20	<0.01 <0.01	<0.01 <0.01	0.75
	231.30 232.80	232.80	1.10	<0.05	<0.5	0.29	<0.01	<0.01	0.63
	233.90	233.50	0.60	<0.05	0.5	0.10	0.01	<0.01	3.82
	234.50	235.30	0.80	<0.05	0.5	0.41	0.01	<0.01	14.11
	235.30	235.65	0.35	<0.05	2.9	3.24	0.01	<0.01	6.56
	235.65	236.05	0.40	<0.05	<0.5	0.44	0.01	<0.01	1.42
	236.05	236.20	0.15	<0.05	3.0	1.06	0.01	<0.01	4.88
	236.20	237.30	1.10	<0.05	<0.5	0.05	0.02	<0.01	1.06
	237.30 238.55	238.55 239.20	1.25 0.65	0.10	6.6 1.5	0.66	0.02	<0.01 <0.01	11.64 6.37
	238.33	239.35	0.05	<0.05	2.1	0.93	0.01	<0.01	6.11
	239.35	239.55	0.20	<0.05	0.7	0.51	0.02	<0.01	6.91
	239.55	239.75	0.20	0.06	0.9	0.51	0.02	<0.01	20.50
	239.75	239.95	0.20	0.60	<0.5	0.18	0.01	<0.01	5.93
	239.95	240.45	0.50	0.13	3.5	0.54	0.02	<0.01	17.26
	240.45	241.80	1.35	<0.05	<0.5	0.03	<0.01	<0.01	1.00
	241.80	242.60 243.90	0.80	0.08	<0.5 <0.5	0.07	0.01	<0.01 <0.01	<u>2.90</u> 1.60
	242.60 243.90	245.65	1.30	<0.05	<0.5	0.07	0.01	<0.01	0.70
	245.65	247.70	2.05	<0.05	2.0	1.02	0.02	<0.01	6.34
	247.70	249.80	2.10	<0.05	<0.5	0.05		<0.01	1.05
	249.80	250.20	0.40	<0.05	1.0	0.21	0.03	<0.01	4.50
	250.35	251.70	1.35	<0.05	2.2	0.62	0.02	<0.01	3.90
	252.15	253.80	1.65	0.09	1.0	0.34	0.01	<0.01	1.91
	253.90	255.45	1.55	<0.05	1.4	0.81	0.01	<0.01	5.13
	255.45 268.90	256.30 269.75	0.85	0.12	21.9 1.8	2.58 0.95	0.02	<0.01 <0.01	9.30 9.20
	268.90	270.20	0.85	<0.05	<0.5	0.95	0.01	<0.01	0.99
	270.20	271.10	0.90	<0.05	0.9	0.23	0.01	<0.01	16.30
	271.10	271.55	0.45	<0.05	2.0	1.06	0.01	<0.01	32.30
	271.55	271.85	0.30	0.09	8.6	2.49	0.02	<0.01	6.32
	271.85	273.45	1.60	<0.05	3.3	1.48	0.01	<0.01	1.95
	273.45	274.20	0.75	0.10	2.1	2.01	0.01	<0.01	5.20
	274.20	275.40	1.20	<0.05	1.0	0.27	1.01	<0.01	8.73
	275.40 276.35	276.35	0.95	0.06	<0.5 2.6	0.11	0.02	<0.01 <0.01	0.80 2.16
	270.35	277.80	0.65	<0.27	<0.5	0.70	0.01	<0.01	0.45
	277.80	278.15	0.35	<0.05	1.7	1.06	0.01	<0.01	3.36
	278.15	28<0.01	1.85	<0.05	1.1	0.34	0.01	<0.01	1.40
	28<0.01	280.35	0.35	<0.05	<0.5	0.28	0.01	<0.01	1.54

Appendix 5 Results of Ore Assay(7)

Second Phase Drilling Exploration

Drill No. Depth (m) Width (g/t) Au (g/t) Cu (y) Zn (y) Pb (y) S (y) MJSU-5 285.50 225 205.50 0.25 0.05 6.4 1.96 0.01 0.01 4.33 283.55 229.90 0.95 0.18 0.05 0.24 0.01 4.01 2.83 299.90 301.65 1.03 0.05 0.13 0.01 (0.01 0.01	e Dr	niiin	ig Explor	ation							
MJSU-5 285.50 285.50 2025 (0.05) 6.4 1.86 0.01 (0.01) 4.33 289.85 299.90 0.96 0.18 0.05 0.05 0.01 0.01 2.00 299.90 301.60 1.70 0.05 0.13 0.01 (0.01 2.00 299.90 306.85 1.45 (0.05 0.05 0.04 (0.01 (0.01 1.36 306.90 308.35 10.00 (0.05 0.05 0.01 (0.01 0.05 314.95 318.05 0.10 (0.05 0.46 0.01 (0.01 5.00 329.90 330.40 0.50 (0.33 5.2 7.32 0.01 (0.01 5.00 331.20 331.65 0.45 0.05 0.47 1.002 (0.01 1.26 42.20 342.50 0.30 0.05 0.03 0.03 0.01 2.00 1.15 65.20 1.05 0.05 0.03	Hole	,									
285.50 287.40 1.90 0.005 0.03 0.02 0.01 2.80 289.80 301.60 1.70 0.05 1.3 0.31 0.01 0.01 2.00 303.85 303.85 0.30 0.05 0.5 0.17 0.01 0.001 <			285.25	285.50	0.25	<0.05	6.4	1.96	0.01	<0.01	4.33
299.90 301.60 1.70 0.005 1.3 0.31 0.01 (0.01) 1.36 303.55 303.85 0.30 (0.05 (0.5 0.17 0.01 (0.01) 1.36 306.35 316.30 1.95 (0.05 (0.5 0.04 0.01 (0.01) 0.00 314.95 315.05 (0.10 (0.05 (0.5 0.36 (0.02 (0.01) 0.00 328.90 329.04 (0.05 (0.3 5.2 7.32 (0.01) (0.01) 3.30 331.00 31.65 (0.45 (0.5 (0.30) (0.01) 3.30 (0.01) 3.30 331.00 31.65 (0.5 (0.5 (0.30) (0.01) 3.30 (0.01) 3.30 331.00 31.85 (0.55 (0.5) (0.01) (0.01) 1.15 342.00 1.42.50 (0.05 (0.05) (0.01) (0.01) 1.10 66.15 0.95 (0.05 (0.01)				287.40	1.90	<0.05	<0.5	0.03	0.02	<0.01	2.83
303.55 303.85 0.30 0.005 0.05 0.01 0.01 1.25 308.35 310.30 1.95 0.05 0.05 0.01 0.01 0.01 1.25 308.35 310.30 1.95 0.05 0.05 0.02 0.01			298.95	299.90	0.95		<0.5	0.24	0.01		
306.90 308.35 145 0.005 0.05 0.04 0.01 0.01 1.201 314.95 316.05 0.15 0.05 0.5 0.12 0.01 0.01 0.03 314.95 316.05 0.15 0.05 0.5 0.36 0.02 0.01 0.01 0.01 3.01 328.90 329.90 1.00 0.055 8.6 7.04 0.02 0.01 5.00 331.65 0.45 0.05 0.7 4.6 0.02 0.001 2.510 331.20 331.65 0.45 0.05 0.7 0.02 0.001 2.25 342.20 342.50 0.30 0.09 0.8 0.47 0.02 0.001 1.15 331.85 0.85 0.05 0.05 0.05 0.01 0.02 0.001 1.15 342.20 343.35 0.85 0.05 0.05 0.01 0.03 0.01 1.22 313.85 1.35.5		[299.90	301.60	1.70	<0.05	1.3	0.31	0.01	<0.01	0.90
308.35 310.30 1.95 (0.05) (0.5) 0.12 0.01 (0.01) 1.00 314.95 315.05 0.10 (0.05) (0.5) 0.18 0.01 1.00 328.90 319.05 0.10 (0.05) 8.6 7.04 0.02 (0.01) 5.00 330.50 331.20 0.70 (0.05) 7.32 0.01 (0.01) 3.30 331.20 331.65 0.45 (0.5) 0.5 0.33 0.02 (0.01) 2.26 331.20 331.65 0.45 (0.5) 0.01 0.02 (0.01) 2.26 331.20 331.65 0.45 (0.05 0.01 0.02 (0.01) 1.16 65.20 66.15 0.95 (0.05 0.01 0.02 (0.01) 1.16 65.20 66.90 0.75 (0.05 0.01 0.02 (0.01) 1.16 133.20 133.20 0.45 (0.05 5.001 0.00 1.1			303.55								
314.95 315.05 0.10 <0.05											
318.90 319.05 0.05 0.05 0.19 0.01 0.01 5.00 329.90 330.40 0.50 0.33 5.2 7.32 0.01 0.001 5.00 330.50 331.20 0.31 6.50 0.53 5.2 7.32 0.01 0.01 2.510 331.20 331.65 0.45 0.05 0.05 0.03 0.02 0.01 2.510 342.20 342.50 0.30 0.09 0.8 0.47 0.02 0.01 1.15 65.20 66.15 0.55 0.05 0.01 0.02 0.01 1.15 83.05 85.00 1.95 0.05 0.01 0.01 0.01 1.15 98.70 99.01 1.20 0.05 0.05 1.01 0.03 0.01 1.15 133.25 134.75 0.30 0.05 7.16 1.71 16.20 0.36 1.001 135.75 138.20 0.45 0.055											
328.90 329.90 1.00		-									
329.90 330.40 0.50 0.33 5.2 7.32 0.01 0.01 3.30 330.50 331.20 0.70 0.05 7.4 6.10 0.02 0.01 2.51 331.20 331.65 0.45 0.05 0.33 0.02 0.001 2.260 MJSU-6 64.15 65.20 1.05 0.05 0.01 0.02 0.001 1.15 65.20 66.15 0.95 0.05 0.01 0.02 0.001 1.15 83.05 85.00 1.95 0.05 0.01 0.01 0.01 1.15 98.70 99.90 1.20 0.05 0.01 0.03 0.01 2.25 133.25 134.75 0.90 0.05 1.1 0.06 0.47 0.02 1.10 135.75 136.20 0.45 0.05 1.1 1.06 0.47 0.02 1.10 136.52 137.50 0.30 0.02 0.01 1.24											
330.50 331.20 0.70 (0.05) 7.4 6.10 0.02 (0.01) 5.10 331.20 331.65 0.45 0.05 (0.5 0.33 0.02 (0.01) 2.25 342.20 342.50 0.30 0.98 0.47 0.02 (0.01) 2.25 305.00 64.15 65.20 1.05 (0.05 (0.01) 0.01 1.15 66.15 66.90 0.75 (0.05 (0.01) 0.01 0.01 1.15 98.70 99.90 1.20 (0.05 (0.05) (0.01) 0.03 (0.02) 1.16 133.20 133.85 0.65 (0.05) 1.1 0.06 0.47 (0.02) 1.16 135.25 136.20 0.45 (0.05) 1.1 0.06 0.47 (0.02) 1.10 135.25 136.00 0.38 (0.05) 3.7 0.25 0.02 0.01 1.24 136.20 138.85 (0.85) 3.2 </td <td></td>											
331.20 331.65 0.45 0.05 <0.5 0.33 0.02 0.01 2.25 MJSU-6 64.15 65.20 1.05 0.05 0.07 0.02 0.001 1.16 65.20 66.15 0.95 0.05 0.05 0.01 0.02 0.001 1.15 65.20 66.15 0.95 0.05 0.03 0.03 0.01 2.25 83.05 85.00 1.35 0.05 0.05 0.01 0.03 0.01 2.20 132.20 133.85 0.65 0.05 1.9 0.16 0.48 0.02 1.75 134.75 135.35 136.40 0.05 1.1 0.06 0.47 0.02 1.00 135.35 136.40 0.25 0.02 0.01 1.24 136.45 138.40 0.30 0.02 0.01 0.24 4.60 136.45 138.40 0.45 0.05 1.0 0.04 0.01 0.02 0.01		ł									
342.20 342.50 0.30 0.09 0.8 0.47 0.02 0.01 2.60 MJSU-6 64.15 65.20 66.15 0.05 0.05 0.03 0.03 0.01 1.15 65.20 66.15 0.55 0.05 0.05 0.03 0.03 0.01 2.25 83.05 85.00 1.35 0.05 0.05 0.01 0.01 2.25 133.20 133.35 0.65 0.05 4.6 0.28 0.24 0.01 6.001 6.001 6.01 2.24 0.01 6.50 133.85 134.75 0.90 0.05 1.1 0.06 0.47 0.02 4.61 135.75 136.20 0.45 0.05 1.50 0.17 0.04 0.02 4.60 135.25 136.20 0.45 0.05 1.50 0.01 0.02 4.01 135.35 0.40 0.30 0.02 4.01 0.02 4.01 0.02		ł									
MJSU-6 64.15 65.20 1.05 0.05 0.7 0.02 0.02 0.01 1.15 66.15 66.90 0.75 0.05 0.05 0.01 0.02 0.01 1.10 66.15 66.90 0.75 0.05 0.05 0.03 0.03 0.03 0.01 2.25 83.05 85.00 1.95 0.05 0.5 0.01 0.03 0.01 2.20 133.20 133.35 0.65 0.05 4.6 0.28 0.24 0.01 6.02 133.25 135.35 0.60 0.05 1.1 0.06 0.47 0.02 1.01 135.35 136.40 0.05 1.5 0.61 0.44 0.02 1.01 136.45 136.40 0.45 0.05 1.5 0.61 0.44 0.01 3.70 136.45 138.50 0.45 0.05 0.22 0.01 0.71 1.24 136.45 138.50 <t< td=""><td></td><td>ł</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		ł									
66.15 66.90 0.75 0.05 0.05 0.03 0.03 0.01 2.25 83.05 85.00 1.95 0.05 0.01 0.01 2.001 1.15 98.70 99.90 1.32 0.055 0.05 0.01 0.03 0.01 2.20 133.20 133.85 0.65 0.05 1.1 0.16 0.48 0.02 1.175 134.75 135.35 0.60 0.05 1.1 0.06 0.47 0.02 1.10 135.25 136.45 0.25 0.06 1.70 1.22 0.01 1.24 136.45 136.45 0.25 0.06 3.7 0.25 0.02 0.01 1.24 136.45 136.40 0.30 0.05 2.03 0.04 0.01 3.70 138.00 138.00 0.05 0.5 0.03 0.01 2.46 137.20 138.00 0.05 0.25 0.02 0.03 0.01	MJSU	-6									
83.05 85.00 1.95 <0.05 <0.05 <0.01 <0.011 <0.015 133.20 133.85 133.75 0.90 0.005 1.9 0.16 0.48 0.02 1.75 133.85 133.75 0.90 0.005 1.9 0.16 0.48 0.02 1.75 134.75 135.75 0.40 0.005 1.1 0.06 0.47 0.02 1.10 135.75 136.20 0.45 0.005 1.50 0.17 0.04 0.02 4.60 136.40 136.45 0.25 0.06 3.7 0.25 0.02 0.01 1.24 136.90 137.20 0.30 0.05 2.7 0.03 0.02 4.00 1.40 138.85 138.30 0.45 0.005 3.2 0.23 0.06 0.01 2.90 138.80 138.85 0.85 0.05 0.02 0.03 0.01 2.80 140.10 140.40 0.	1		65.20	66.15	0.95	<0.05	<0.5	0.01	0.02	<0.01	1.10
98.70 99.90 1.20 0.005 <0.5 <0.01 0.03 <0.01 2.20 133.85 133.85 0.65 <0.05		I	66.15	66.90	0.75	<0.05	<0.5		0.03	<0.01	2.25
133.20 133.85 0.65 <0.05 4.6 0.28 0.24 0.01 6.50 133.85 134.75 0.90 <0.05		[85.00							
133.85 134.75 0.90 <0.05 1.9 0.16 0.48 0.02 1.75 134.75 135.35 0.60 <0.05		ļ									
134.75 135.35 0.60 <0.05 71.6 1.71 16.20 0.36 1<0.01 135.75 136.75 0.40 <0.05											
135.35 135.75 0.40 <0.05 1.1 0.06 0.47 0.02 1.10 135.75 136.20 0.45 <0.05											
135.75 136.20 0.45 <0.05 15.0 0.17 0.04 0.02 4.60 136.20 136.45 0.25 0.06 3.7 0.25 0.02 0.01 1.24 136.45 136.90 0.45 <0.05											
136.20 136.45 0.25 0.06 3.7 0.25 0.02 0.01 1.24 136.45 138.90 0.45 <0.05											
136.45 136.90 0.45 <0.05 15.4 0.61 0.04 0.01 3.70 136.90 137.20 0.30 0.05 2.7 0.03 0.02 <0.01											
136.90 137.20 0.30 <0.05 2.7 0.03 0.02 <0.01 0.64 137.20 138.00 0.80 <0.05											
137.20 138.00 0.80 <0.05 40.3 0.97 3.17 0.06 10.70 138.00 138.85 0.85 <0.05											
138.00 138.85 0.85 <0.05 <0.5 0.03 0.04 <0.01 0.47 138.85 139.30 0.45 <0.05											
138.85 139.30 0.45 <0.05 3.2 0.23 0.06 0.01 2.90 139.30 140.10 0.80 <0.05											
139.30 140.10 0.80 <0.05 <0.5 0.02 0.03 <0.01 2.85 140.10 140.40 0.30 <0.05	1										
140.40 141.50 1.10 <0.05 <0.5 0.04 0.03 <0.01 2.60 154.05 154.25 0.20 <0.05	1										2.85
I54.05 154.25 0.20 <0.05 1.5 0.05 0.22 <0.01 5.40 154.25 154.60 0.35 <0.05			140.10	140.40	0.30	<0.05	<0.5	0.03	0.03	<0.01	
I54.25 I54.60 0.35 <0.05 0.7 0.01 0.02 <0.01 10.60 154.60 154.85 0.25 <0.05		[140.40	141.50			<0.5				
154.60 154.85 0.25 <0.05 3.2 0.12 0.03 <0.01 2.14 166.80 167.05 0.25 <0.05			154.05								
166.80 167.05 0.25 <0.05 <0.01 0.01 <0.01 2.68 174.20 174.35 0.15 <0.05											
174.20 174.35 0.15 <0.05 1.4 <0.01 <0.01 <0.01 3.10 182.15 182.90 0.75 <0.05											
182.15 182.90 0.75 <0.05 2.1 0.10 0.01 <0.01 5.57 213.55 214.30 0.75 <0.05											
213.55 214.30 0.75 <0.05 <0.01 <0.01 8.36 214.30 215.10 0.80 0.05 <0.5											
214.30 215.10 0.80 0.05 <0.5 <0.01 0.01 <0.01 1.30 215.10 215.95 0.85 <0.05											
215.10 215.95 0.85 <0.05 <0.01 0.01 <0.01 2.70 215.95 218.00 2.05 <0.05											
215.95 218.00 2.05 <0.05 <0.01 0.01 <0.01 0.80 218.00 219.90 1.90 <0.05											
218.00 219.90 1.90 <0.05 0.5 <0.01 0.01 <0.01 6.16 219.90 220.70 0.80 0.07 <0.5											
219.90 220.70 0.80 0.07 <0.5 <0.01 0.01 <0.01 2.00 220.70 220.90 0.20 <0.05											
220.90 223.00 2.10 <0.05 <0.5 0.01 <0.01 7.35 223.00 225.65 2.65 <0.05			219.90	220.70			<0.5	<0.01			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$											
241.55 243.65 2.10 <0.05 1.2 0.01 0.02 <0.01 2.30 243.65 244.95 1.30 <0.05											
243.65 244.95 1.30 <0.05 1.4 0.06 0.01 <0.01 1.75 MJSU-7 18.25 20.50 2.25 <0.05											
MJSU-7 18.25 20.50 2.25 <0.05 <0.5 0.02 0.01 <0.01 0.62 25.10 26.75 1.65 <0.05											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MICH	-7									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	IVIJOU	' '									
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								• · · · · · · · · · · · · · · · · · · ·			
6<0.01 60.20 0.20 <0.05 9.1 0.91 0.03 <0.01 4.88 62.85 63.50 0.65 <0.05											
62.85 63.50 0.65 <0.05 29.0 2.05 0.08 <0.01 6.60 63.50 64.85 1.35 <0.05											
63.50 64.85 1.35 <0.05 3.8 0.33 0.04 <0.01 2.75 70.15 72.65 2.50 <0.05						<0.05				<0.01	6.60
72.65 73.45 0.80 <0.05 1.8 0.09 0.03 <0.01 2.64						<0.05		0.33	0.04	<0.01	2.75
73.45 74.30 0.85 <0.05 1.3 0.08 0.02 <0.01 4.50											
			73.45	74.30	0.85	<0.05	1.3	0.08	0.02	<0.01	4.50

•

Appendix 5 Results of Ore Assay (8)

Second Phase Drilling Exploration

•

e Drillir	ng Explor	ation							
Drill Hole No.		pth n)	Width (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)	Pb (%)	S (%)
MJSU-7	74.30	76.55	2.25	<0.05	1.9	0.07	0.05	<0.01	10.80
	76.55	76.70	0.15	<0.05	4.3	0.38	0.45	<0.01	20.32
	76.70	78.05	1.35	<0.05	0.6	0.05	0.03	<0.01	5.38
	79.90	80.15	0.25	<0.05	< 0.5	0.05	0.02	<0.01	2.60
	87.20	87.40	0.20	<0.05	1.0	0.04	0.04	<0.01	2.84 2.28
	108.25 173.85	108.75 174.55	0.50	<0.05 <0.05	3.6 1.1	0.10	0.01	<0.01 0.01	3.00
	174.55	176.00	1.45	<0.05	2.2	0.07	0.00	0.03	2.95
	176.00	178.00	2.00	<0.05	0.9	0.02	0.11	0.01	2.50
	192.65	193.55	0.90	<0.05	3.4	0.04	0.09	0.05	3.20
	193.55	194.55	1.00	<0.05	1.5	0.01	0.33	0.03	3.00
	197.90	198.30	0.40	<0.05	1.0	0.08	0.21	<0.01	2.65
	227.85	228.80	0.95	<0.05	<0.5	0.03	0.18	<0.01	2.80
MJSU-8	14.20	15.00	0.80	<0.05	<0.5	<0.01	0.01	<0.01	0.33
	30.30 30.70	30.70 31.25	0.40	<0.05 0.07	1.2 1.2	0.01	0.01	<0.01 <0.01	0.60
	31.25	33.30	2.05	<0.07	<0.5	0.01	0.02	<0.01	4.00
	33.70	35.70	2.00	0.06	0.6	0.01	0.01	<0.01	4.50
	35.70	37.70	2.00	<0.05	0.6	0.02	0.01	<0.01	4.10
	37.70	39.70	2.00	<0.05	0.7	0.03	0.01	<0.01	4.35
	39.70	41.70	2.00	<0.05	0.7	0.02	0.01	<0.01	4.42
	41.70	43.70	2.00	0.09	1.2	0.01	0.03	<0.01	4.30
÷	43.70 69.55	45.65 71.95	1.95 2.40	0.08	<0.5 <0.5	0.01	0.02	<0.01 <0.01	3.69
	71.95	73.25	1.30	0.06	0.9	0.01	0.05	0.01	5.37
	73.25	73.55	0.30	<0.05	3.9	0.90	12.74	0.01	14.00
	73.55	75.50	1.95	0.06	0.8	0.03	0.06	0.01	10.66
	75.50	77.20	1.70	0.14	1.0	0.02	0.01	0.01	11.35
	77.20	77.40	0.20	2.52	6.1	0.08	0.02	0.03	28.90
	77.40	79.20	1.80	0.07	0.8	0.02	0.01	0.01	12.10
	79.20 81.00	81.00 82.65	1.80 1.65	0.08	0.9	0.02	0.01	0.01	12.64 11.48
	82.65	83.35	0.70	0.08	19.5	1.57	0.01	0.01	25.00
	83.35	85.10	1.75	0.10	6.2	0.11	0.25	0.01	7.00
	85.10	85.85	0.75	0.51	35.3	0.15	0.24	0.02	13.36
	85.85	87.85	2.00	0.05	4.0	0.01	0.02	0.03	5.62
	87.85	90.75	2.90	<0.05	0.5	0.01	0.01	<0.01	5.55
	90.75	91.95	1.20	<0.05	0.8	0.02	0.02	<0.01	9.00
	91.95 95.00	95.00 96.95	3.05 1.95	<0.05 <0.05	0.6 0.9	0.01	0.01	<0.01 <0.01	4.07
	97.90	101.10	3.20	0.17	2.0	0.01	0.01	<0.01	8.79
	101.80	104.65	2.85	<0.05	1.0	0.01	0.03	<0.01	6.70
	104.65	107.55	2.90	<0.05	1.3	0.02	0.01	<0.01	9.60
	107.55	11<0.01	2.45	<0.05	1.5	0.04	0.02	0.01	<0.01
	11<0.01	113.00	3.00	<0.05	<0.5	0.01	0.01	<0.01	5.60
	113.00 114.05	114.05 117.00	1.05 2.95	<0.05 <0.05	0.8 <0.5	0.02	0.10	<0.01 <0.01	7.95 4.75
	117.00	12<0.01	3.00	<0.05	0.8	0.01	0.01	<0.01	6.10
	12<0.01	123.00	3.00	0.07	0.9	0.01	0.01	<0.01	5.15
	123.00	124.45	1.45	<0.05	0.5	0.01	0.01	<0.01	5.75
	124.45	125.80	1.35	<0.05	0.5	0.01	0.01	<0.01	4.00
	125.80	128.05	2.25	<0.05	0.7	0.01	0.01	<0.01	6.80
	128.05	129.55	1.50	<0.05	1.0	0.04	0.01	0.01	10.40
	129.55 132.15	132.15 133.00	2.60 0.85	<0.05 <0.05	1.0 1.0	0.02	0.03	<0.01 <0.01	6.00 9.73
	132.15	133.00	1.75	0.05	1.0	0.03	0.01	<0.01	5.15
	134.75	137.70	2.95	<0.07	<0.5	0.02	0.01	<0.01	3.70
	137.70	138.85	1.15	<0.05	0.5	0.01	<0.01	<0.01	4.80
	138.85	139.35	0.50	<0.05	<0.5	<0.01	0.01	<0.01	3.55
	139.35	142.00	2.65	<0.05	<0.5	0.01	0.02	<0.01	5.55
	142.00	143.40	1.40	<0.05	<0.5	0.01	<0.01	<0.01	5.20
	143.40 144.35	144.35 146.00	0.95	<0.05 <0.05	<0.5 <0.5	0.01	<0.01 <0.01	<0.01 <0.01	4.60 6.10
L	144.00	140.00	1.00	L \0.03	1 10.0	0.01		10.01	0.10

Appendix 5 Results of Ore Assay(9)

Second Phase Drilling Exploration

Drill							_		
Hole		pth	Width	Au	Ag	Cu	Zn	Pb	S
No.	(r	n)	(m)	(g/t)	(g/t)	(%)	(%)	(%)	(%)
MJSU-8	146.00	147.50	1.50	<0.05	0.7	0.01	0.02	<0.01	4.30
	147.50	149.00	1.50	<0.05	0.6	0.01	0.01	<0.01	4.55
	149.00	150.50	1.50	<0.05	<0.5	0.01	<0.01	<0.01	4.14
	150.50	152.00	1.50	<0.05	0.7	0.01	0.01	<0.01	5.50
	152.00	153.50	1.50	<0.05	0.6	0.01	0.01	<0.01	4.00
	153.50	154.20	0.70	<0.05	0.6	0.01	0.03	0.01	5.10
	154.20	155.45	1.25	<0.05	0.6	0.02	0.04	<0.01	8.80
	155.45	157.00	1.55	<0.05	<0.5	0.01	0.03	0.01	4.02
	157.00	158.75	1.75	<0.05	0.8	0.01	0.01	<0.01	5.52
	158.75	159.95	1.20	<0.05	1.0	0.01	0.04	<0.01	6.45
	159.95	161.50	1.55	<0.05	1.8	0.02	0.04	0.01	7.26
	161.50	163.00	1.50	<0.05	2.5	0.01	0.02	0.01	6.90
	163.00	164.50	1.50	<0.05	2.6	0.01	0.02	0.01	10.12
	164.50	166.00	1.50	<0.05	1.0	0.02	0.04	0.01	6.18
	166.00	167.50	1.50	<0.05	0.7	0.01	0.02	<0.01	4.27
	167.50	169.00	1.50	<0.05	0.5	0.01	0.03	<0.01	4.06
	169.00	170.50	1.50	<0.05	0.6	0.01	0.01	<0.01	5.35
	170.50	172.00	1.50	<0.05	0.7	<0.01	0.02	<0.01	3.90
	172.00	173.50	1.50	<0.05	<0.5	0.01	0.03	<0.01	3.12
	173.50	175.00	1.50	<0.05	1.0	0.01	0.02	<0.01	4.25
	175.00	176.50	1.50	<0.05	0.8	0.01	0.01	<0.01	3.90
	176.50	178.00	1.50	<0.05	1.0	0.01	0.01	<0.01	3.95
	178.00	179.50	1.50	<0.05	0.6	<0.01	0.01	<0.01	3.00
	179.50	181.00	1.50	<0.05	0.6	0.01	0.01	<0.01	3.78
	181.00	182.60	1.60	<0.05	<0.5	0.01	0.01	<0.01	3.39
	183.50	185.00	1.50	<0.05	1.0	0.01	0.01	<0.01	4.22
	185.00	186.05	1.05	<0.05	1.5	<0.01	0.01	<0.01	5.66
	199.00	200.50	1.50	<0.05	<0.5	<0.01	<0.01	<0.01	2.25
	200.50	202.00	1.50	<0.05	<0.5	<0.01	<0.01	<0.01	2.50
	202.00	203.50	1.50	<0.05	<0.5	0.01	<0.01	<0.01	2.42
	203.50	205.00	1.50	<0.05	<0.5	0.01	<0.01	<0.01	1.85
	205.00	206.50	1.50	<0.05	<0.5	0.01	<0.01	<0.01	3.35
	206.50	208.00	1.50	<0.05	<0.5	<0.01	<0.01	<0.01	1.65
	208.00	209.50	1.50	<0.05	<0.5	0.01	<0.01	<0.01	2.25
	209.50	211.15	1.65	<0.05	<0.5	0.01	0.01	<0.01	2.90
	228.45	230.00	1.55	<0.05	<0.5	0.01	<0.01	<0.01	1.15
	230.00	231.45	1.45	<0.05	<0.5	0.01	0.01	<0.01	3.00
	231.45	232.95	1.50	<0.05	0.9	0.01	<0.01	<0.01	1.00
	232.95	233.85	0.90	<0.05	<0.5	0.01	<0.01	<0.01	0.85
	233.85	235.35	1.50	<0.05	<0.5	<0.01	<0.01	<0.01	3.10
	235.35	236.70	1.35	<0.05	0.7	0.01	<0.01	<0.01	4.45

Appendix 5 Results of Ore Assay (10)

Drilling Exploration Third Phase

Drill Hole	Depth from	n (m) to	Width (m)	Au (g/t)	Ag (g/t)	Cu ppm	Zn ppm	Pb ppm	S (%)
No.									
MJSU-9	2.70	4. 20	1.50	<0.05	<1.0	192	77	13	<0.0
	5.70	7.20	1.50	<0.05	<1.0	113	14	11	<0.0
	8.70	10.20	1.50	<0.05	<1.0	100	66	17	0.2
	11.70	13.20	1.50	<0.05	<1.0	104 34	44	16	0.4
	14.70 17.70	16.20 19.20	1.50 1.50	<0.05 <0.05	<u> </u>	86	8	20	
	20.70	22. 20	1. 50	<0.05	5.5	140	23	67	
	23.70	25. 20	1. 50	<0.05	3.0	283	23	25	<0.0
	26.70	28.20	1.50	<0.05	1.7	132	60	18	<u> <0. 0</u>
	29.70	31. 20	1.50	<0.05	<1.0	92	12	11	<0.0
	32.40	33.90	1.50	0. 07	1.4	114	7	27	0. 9
	33.90	35.40	1.50	0.06	1. 6	73	7	21	0. 3
	35.40	36.90	1.50	<0.05	1. 4	156	8	22	1. 0
	36.90	38.40	1.50	<0.05	1.6	39	7	15	0.4
	38.40	39.90	1.50	<0.05	1.6	19	6	20	0.9
	39.90	41.50	1.60	<0.05	1.7	33	14	21	1.0
	41.50	43.00 44.50	1.50 1.50	<0.05 <0.05	1. 8 1. 7	<u>645</u> 76	<u>10</u> 8	17 30	<u>5. 1</u> 2. 0
	43.00 44.50	44.50	1. 50	<pre><0.05</pre>	1.7	328	15	29	4.8
	46.00	40.00	1. 50	<0.05	1.1	249	20	32	2. 9
	47.50	49.00	1. 50	<0.05	2.3	1, 205	1, 050	43	3.1
	49.00	50.50	1. 50	<0.05	<1.0	83	44	8	2.9
	50.50	52.00	1.50	<0.05	<1.0	83	44	6	2. 7
	52.00	53.50	1. 50	<0.05	2.3	394	5, 505	24	4.3
	53.50	55.00	1. 50	<0. 05	<1. 0	153	64	12	3. 2
	55.00	56.50	1.50	<0.05	<1. 0	166	44	11	3.6
	56.50	58.00	1.50	<0.05	<1.0	393	60	16	5.2
	58.00	59.50 C1.00	1.50	<0.05	<1.0	201	55	16	5.1
	59.50 61.00	61.00 62.50	1.50 1.50	<0.05 <0.05	< <u>1.0</u> 1.2	317 459	<u>83</u> 42	<u>13</u> 15	4. 7 5. 2
	62.50	64.00	1. 50	<0.05	1. 2	194	42	16	4.6
	64.00	65.50	1. 50	<0.05	<1.0	214	44	20	5.0
	65.50	67.00	1. 50	<0.05	1.0	168	114	13	4. 5
	67.00	68.50	1.50	<0.05	<1.0	124	72	12	3. 7
	68.50	70.00	1. 50	<0.05	<1.0	179	26	14	4. 6
	70.00	71.50	1.50	0.06	1. 0	456	149	14	3. 9
	71.50	73.00	1.50	0.06	15	321	29	16	5. 8
	73.00	74.50	1.50	0. 08	<1.0	259	67	9	3. 0
	74.50	76.00	1.50	0.06	1.0	249	29	12	3. 5
	76.00	77.50	1.50	0.09	1.0	241	14	13 12	6. 3 3. 8
	77.50 79.00	79.00 80.50	1.50 1.50	0. 07 0. 05	<1.0 <1.0	185 199	36	12	<u> </u>
	80.50	82.00	1. 50	0.05	1.0	189	26	13	5. 3
	82.00	83. 50	1. 50	<0.05	<1.0	154	15	13	4. 9
	83. 50	85.00	1. 50	<0.05	<1.0	109	22	9	3. 5
	85.00	86.50	1.50	<0.05	<1.0	139	12	9	2. 8
	86.50	88.00	1.50	<0.05	<1. 0	114	14	10	4. 2
	88.00	89.50	1. 50	<0.05	<1.0	65	14	10	5. (
	89.50	91.00	1.50	0.06	<1.0	66	10	11	5. 0
	91.00	92.50	1.50		<1.0	62	9 17	9 7	4.1
	92.50 94.00	94.00	1.50 1.50	<0.05 <0.05	<1. 0 <1. 0	64 72	17	10	2. 3 2. 6
	94.00	95.50 97.00	1. 50		< <u>1.</u> 0	51	52	7	0. 3
	95. 50	98.50	1. 50	<0.05	< <u>1.0</u> (1.0)	55	158	10	1.1
	98. 50	100.00	1. 50	<0.05	<1.0	53	28	10	2. 7
	100.00	101.50	1. 50	<0.05	<1.0	62	28	10	4, 4
	101.50	103.00	1. 50	<0.05	<1.0	52	14	10	2. 6
	103.00	103.70	0.70	<0.05	<1.0	72	21	13	4. 6
	107.80	109.30	1.50	0. 05	1.2	116	61	17	3. 6
	109.30	109.90	0.60	<0. 05	1. 1	128	18	14	1. 4
	109.90	111.00	1.10	<0.05	1. 2	97	68	13	3. 1
	127.40	128.90	1.50	<0.05	<1. 0	115	36	7	1.9
	128.90	130.40	1.50	<0.05	<1. 0	124	70	8	2. 2

Appendix 5 R

Results of Ore Assay(11)

Third Phase Drilling Exploration

Drill Hole	Depth from	to	Width (m)	Au (g/t)	Ag (g∕t)	Cu ppm	Zn ppm	Pb ppm	S (%)
No.								7	3. 0
MJSU-9	130. 40 133. 00	131.30 134.50	0.90 1.50	<0.05 <0.05	<u><1.</u> 0 1. 1	91 73	49	12	<u> </u>
	133.00	134. 50	1. 50	<0.05	1.6	76	26	10	5.3
	136.00	137.50	1. 50	<0.05	1.0	193	44	9	4.4
	137.50	139.00	1.50	<0.05	1.6	233	69	27	7. 2
	139.00	140.50	1. 50	<0. 05	1. 3	232	45	16	7.3
	140.50	142.00	1. 50	<0. 05	<1.0	96	64	9	5. 2
	142.00	143.50	1.50	<0.05	<1.0	99	32	13	6.5
	143.50 145.00	145.00 146.50	1.50 1.50	<0.05 <0.05	<1. 0 1. 1	89 195	43	17 32	4. 3
	145.00	148.00	1.50	<0.05	<1.0	83	20	10	4. (
	148.00	148.70	0.70	<0.05	<1.0	71	44	13	4 1
	166.00	167.50	1.50	<0.05	<1.0	72	42	16	4. 7
	167.50	169.00	1.50	<0. 05	1.0	128	81	23	6. 7
	169.00	170.50	1.50	<0.05	<1.0	79	80	29	4.1
	170 50	172.00	1.50		<1.0	57	304	16	2.9
	172.00 173.50	<u>173.50</u> 175.00	1.50 1.50	<0.05 <0.05	<1.0 <1.0	<u>92</u> 81	285 134	<u>28</u> 35	<u>5. (</u> 5. 1
	175.00	176.50	1. 50	<0.05	<1.0	68	252	84	4.5
	176 50	178.00	1. 50	<0.05	<1.0	62	409	71	4. 5
	178.00	179.50	1.50	<0.05	1.6	217	410	85	8. 6
	179.50	181.00	1.50	<0.05	1.5	189	511	78	5. 5
	181.00	182.50	1.50	<0.05	1.8	377	533	118	9. 9
	182.50	184.00	1.50		1.8 1.2	401 250	532 297	128 70	<u>10. (</u> 7. (
	184.00 185.50	185.50 187.00	1.50 1.50	<0.05 <0.05	1. 2	395	257	99	13. 6
	187.00	188.50	1. 50	<0.05	1.0	295	189	62	9. 1
	188.50	190.00	1. 50	<0.05	1.0	427	98	75	12. 4
	190.00	191.50	1. 50	<0.05	1.1	468	68	68	14. (
	191.50	193.00	1.50	<0. 05	1.4	376	289	81	11. 9
	193.00	194.50	1.50		<1.0	297	187	58	8.5
	194.50 196.00	196.00 197.50	1.50 1.50	<0.05 <0.05	1.6	246 479	125 291	<u>67</u> 101	<u>7.</u> 8. 6
	197.50	199.00	1. 50	<0.05	3.9	591	492	115	11. 5
	199.00	200. 50	1.50	<0.05	4.0	644	390	107	13. 9
	200. 50	202.00	1. 50	<0.05	3.4	648	150	92	12. 7
	202.00	203. 50	1.50	<0.05	1.5	206	247	54	6. 8
	203.50	205.00	1.50	<0.05	<1.0	66	92	31	6. 9
	205.00 206.50	206.50 208.00	<u>1.50</u> 1.50	<0.05 <0.05	<1.0 <1.0	78 164	274 960	35 49	<u>5. 4</u> 7. 9
	208.00	208.00	1. 50	<pre><0.05</pre>	1.6	266	616	76	9. 8
	209.50	211.00	1. 50	<0.05	1.0	425	79	62	13. 8
	211.00	212.50	1.50	<0.05	<1.0	459	37	53	13.
	212.50	214.00	1.50	<0.05	<1.0	451	42	48	12. 9
	214.00	215.50	1.50	<0.05	<1.0	410	39	49	13. (
	215.50	217.00 218.50	<u>1.50</u> 1.50	<0.05 <0.05	<u> </u>	400 260	<u>151</u> 333	56 45	<u>11. 8</u> 8. (
	217.00	218. 50	1. 50	<0.05	1. 3	176	582	45	5. 7
	220.00	221 50	1.50	<0.05	1.3	185	448	36	6. 2
	221.50	223.00	1.50	<0.05	2. 2	283	353	86	10. 2
	223.00	224.50	1.50	<0.05	1.3	219	592	61	11.
	224.50	226.00	1.50	<0.05	1.3	218	589	59	7.8
	226.00	228.00	2.00	<0.05 <0.05	1. 0 <1. 0	188 215	145 78	38 40	6. (6. 2
	228.00 230.00	230.00 232.00	<u>2.00</u> 2.00	<pre><0.05</pre>	<1.0	194	145	40	5. 5
	230.00	234.00	2.00	<0.05	1.0	243	173	41	2. 9
	234.00	236.00	2.00	<0.05	<1.0	100	346	21	6. 5
	236.00	238.00	2.00	<0.05	<1. O	131	159	21	5. 5
	238.00	240.00	2.00	<0.05	<1. 0	111	550	19	3. 9
	240.00	242.00	2.00	<0.05	<1.0	107	474	21	5.6
	242.00 244.00	244.00 246.00	2.00 2.00	<0.05 <0.05	<u><1.0</u> <1.0	77	140	19	<u>4.</u> 1 3. 5
	1 744 (III	246 111	2 00	ւ «ՈՍԻՈ	51.01	90	174	17	J. 1

Appendix 5 Results of Ore Assay(12)

Drilling Exploration Third Phase

Drill Hole	Depth		Width	Au	Ag	Cu	Zn	Pb	S (W)
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-9	248.00	250.00	2.00	<0.05	1.0	148	60	22	4.3
	250.00 252.00	252.00 254.00	2.00 2.00	<0.05 <0.05	<u> </u>	224	<u>115</u> 129	31 20	<u> </u>
	252.00	254.00	2.00	0.05		266	136	41	8.7
	256.00	258.00	2.00	0.06	2.0	212	218	39	11.9
	258.00	260.00	2.00	<0.05	2. 2	266	197	53	11.6
	260.00	262.00	2. 00	<0.05	1.4	338	276	52	12.0
	262.00	264.00	2.00	<0. 05	1.5	302	138	48	9.9
	264.00	266.00	2.00	<0.05	2.1	330	343	56	11.0
	266.00 268.00	268.00 270.00	2.00 2.00	<0.05 <0.05	2.1	305 143	212 248	45 38	<u> </u>
	270.00	270.00	2.00	<0.05	2.2	175	278	107	6.0
	272.00	274.00	2.00	0. 05	1.9	184	210	47	9. 2
	274.00	276.00	2.00	<0.05	1.9	270	183	80	9. 1
	276.00	278.00	2.00	<0.05	1.3	114	209	38	3. 8
	278.00	280.00	2.00	<0.05	3. 3	119	306	119	8. 0
	280.00	282.00	2.00	<0.05	3.6	127	432	304	7.3
	282.00	284.00	2.00 2.00		3.3	<u>149</u> 120	<u>608</u> 430	137 110	5. 7 6. 2
	284.00 286.00	286.00 288.00	2.00	<0.05 <0.05	2.1	172	542	181	7.2
	288.00	290.00	2.00	<0.05	1.2	158	319	86	3.9
	290.00	292.00	2.00	<0.05	4.7	301	843	626	7.7
	292.00	294.00	2.00	<0.05	2.9	206	608	63	8.3
	294.00	296.00	2.00	<0.05	2.6	215	360	56	9.3
	296.00	297.55	1. 55	<0.05	3.8	281	245	54	8.2
	297.55	299.55	2.00	<0.05	2.3	252	113	46	7.5
	299.55	301.55 303.55	2.00	<0.05	2.0	342 286	189 593	51 42	<u>9. 2</u> 8. 2
	301.55 303.55	303. 55 305. 55	2.00 2.00	<0.05 <0.05	2.3	305	269	42	7.9
	305.55	307.55	2.00	0. 25	3.8	300	315	46	9.7
	307.55	310.00	2.45	<0.05	2.3	179	184	40	9. 1
	310.00	312.00	2.00	<0.05	1.8	144	163	27	8. 4
	312.00	314.00	2.00	0.08	5.8	797	451	70	13. 4
	314.00	315.70	1.70	0.05	14.5	3, 260	582	148	16.9 14.5
	315.70 317.70	317.70 318.50	2.00 0.80	0.06 <0.05	<u>10. 1</u> 9. 2	329 150	835 1, 590	<u>82</u> 77	26.7
	321.60	323.60	2.00	0.07	8.2	516	724	161	18.1
	323.60	324.90	1. 30	0. 10	8.2	660	676	108	13.7
	326.90	328.10	1. 20	0. 22	10.6	347	471	106	16.0
	334.60	336.70	2.10	0. 09	4. 0	389	690	69	8. 4
	336.70	337.40	0.70	<0.05	52. 1	295	774	98	28. 1
	337.50	339.90	2.40	0.06	42.5	238	649	<u>111</u> 175	<u>16.0</u> 13.5
	339.90 341.25	341.25 343.40	1.35 2.15	0. 17 0. 33	22. 5 86. 6	505 885	<u>1, 700</u> 4, 540	490	23.6
	343.40	343. 90	0.50	 0. 33 <0. 05 	17.5	192	1, 280	166	7.7
	343. 90	345.00	1. 10	0. 47	32.9	2, 850	1, 090	540	9. 5
	345.00	347.30	2.30	0. 23	34. 1	1, 630	1, 120	218	16. 7
	347.30	349.00	1.70	0.33	31.6	574	1, 760	386	18.3
	349.50	350.30	0.80	0. 07	16.0	354	1, 480	125	14.0
	350.80	351.80	1.00	0.24	20.7	562	996	230	14.9
	351.80 352.55	352.55 353.40	0.75 0.85	<0.05 0.25	<u>27.7</u> 19.6	184 746	1, 530 2, 200	200 450	<u>7.6</u> 10.0
	353. 40	353.40	1. 20	0. 25	3. 6	175	335	92	12. 7
	354.60	355.10	0.50	0. 03	5.8	239	309	106	14.8
	355.10	355.50	0.40	0.16	8.7	551	708	97	17. 9
	355.50	356.90	1. 40	0. 12	7.5	397	216	95	13. 5
	356.90	357.70	0.80	0.16	9. 0	805	343	112	21. 8
	357.70	359.70	2.00	0.08	3.8	211	437	50	12. 3
	359.70	361.70	2.00	0.08	1.2	193	2, 380	74	9.3
	361.70	363.70	2.00	0.15	2. 9 1. 6	93 80	2, 910 336	<u>144</u> 45	<u>9.</u> 7 6.6
MJSU-10	363.70 5.10	365.70 6.10	2.00	<0.07	<1.0	35	20	45 <5	2. 2
nt.1.317 - 11	J J. IU	0.10	1 1.00	<0.05	<1.0	- 15	15	<5	<0. (

Appendix 5

Results of Ore Assay(13)

Third Phase Drilling Exploration

Drill Hole No	Depth from	n (m) to	Width (m)	Au (g/t)	Ag (g/t)	Cu ppm	Zn ppm	Pb ppm	S (%)
No. MJSU-10	9. 40	9.80	0. 40	<0.05	<1.0	50	50	<5	0. 4
M000 10	9.80	10.80	1.00	<0.05	<1.0	30	50	<u> </u>	0.5
	12.80	13.80	1.00	<0.05	<1.0	30	60	<5	<0.0
	14.80	15.80	1.00	<0.05	<1.0	20	30	<5	0.3
	15.80	16.30	0.50	<0.05	<1.0	35	40	<5	0.5
	16.30	17.30	1.00	<0.05	<1. O	20	60	15	0. 3
	18.70	19.70	1.00	<0. 05	<1. 0	15	40	60	0.5
	19.70	21. 10	1.40	<0. 05	<1.0	30	110	20	0.3
	21. 10	22.10	1.00	<0.05	<1.0	25	140	<5	<u> <0. 0</u>
	22.75	23.75	1.00	<0.05	<1.0	30	190	<5	<u> <0. 0</u>
	23.75	23.85	0.10		<1.0	50	620 700	20 <5	0. 2 <0. (
	23.85	24.85	<u>1.00</u> 2.00	<0.05 <0.05	<u><1.0</u> <1.0	35 700	300	<5	4. 5
	67.50 69.50	69.50 71.50	2.00	<0.05 <0.05	<1.0	470	1440	15	3.6
	71.50	73. 50	2.00	<0.05 <0.05	<1.0	175	370	<5	0. 7
	73. 50	75.50	2.00	<0.05	<1.0	360	440	<5	2. 5
	75.50	77.50	2.00	<0.05	<1.0	170	820	<5	2. 0
	77.50	79.50	2.00	<0.05	<1.0	65	490	<5	1.7
	79.50	81.50	2.00	0.12	<1.0	70	760	50	2. 3
	81.50	82.50	1.00	<0.05	<1.0	65	1600	70	2. 4
	83.60	85.10	1.50	<0.05	<1.0	225	4760	420	3. 4
	136.60	137.60	1.00	<0. 05	<1.0	45	140	<5	6. (
	137.60	138 60	1.00	<0. 05	<1.0	20	80	<5	4. 2
	138.60	139.60	1.00	<0. 05	<1.0	15	40	<5	4. 8
	139.60	140.60	1.00	<0.05	<1.0	25	60	<5	10.
	140.60	141.60	1.00	<0.05	<1.0	10	60	<5	4.7
	141.60	142.60	1.00	<0.05	<1.0	20	70	<5	6. 8
	142.60	143.60	1.00	<0.05	<1.0	25 15	70 70	<5 <5	5.3
	143.60 144.60	144.60 145.60	1.00 1.00	<0.05 <0.05	<1. 0 <1. 0	15	60	<5	10.5
	144.00	145.00	1.00	<0.05	<pre><1.0</pre>	15	60	<5	13. 9
	146.60	140.00	1.00	<0.05	<1.0	10	40	<5	13. 6
	147.60	148.60	1.00	<0.05	<1.0	10	40	<5	5. 9
	148.60	149.60	1.00	<0.05	<1.0	10	40	<5	6. 2
	149.60	150.60	1.00	<0.05	<1.0	15	40	<5	9. 3
	150.60	151.60	1.00	<0.05	<1. O	25	20	<5	8. 7
	151.60	152.60	1.00	<0.05	<1. O	45	15	<5	14. (
	152.60	153.60	1.00	<0. 05	<1. 0	20	15	<5	8.
	153.60	154.60	1.00	<0.05	<1. O	75	60	<5	8.
	154.60	155.60	1.00	<0.05	<1. O	75	300	<5	10.
	155.60	156.60	1.00	<0.05	<1.0	35	30	<5	7.4
	156.60	157.60	1.00		<1.0	25	20	<5	7.4
	157.60 158.60	158.60	1.00	<0.05	<1.0	25 150	20 110	<5 <5	13. 1 18. 1
		159.60 160.90	1.00 1.30	<0.05 <0.05	< <u>1.0</u> <1.0	40	20	25	15. 2
	159.60 160.90	161.90	1. 00	<0.05	< <u>1.0</u> (1.0)	35	10	15	16.
	161.90	162.90	1.00	<0.05	<1.0	70	15	15	18. 4
	162.90	164.50	1.60	<0.05	<1.0	26	420	<5	5.
	164.50	165.40	0. 90	<0.05	<1.0	25	15	<5	13. 8
	200.00	201.00	1.00	<0.05	<1.0	35	50	<5	4. 4
	201.00	202.00	1.00	<0.05	<1.0	65	30	<5	4. 9
	202.00	202.70	0.70	<0.05	<1. O	95	20	<5	4. 9
MJSU-11	2.50	4.00	1. 50	<0.05	<1.0	32	47	5	0. (
	5.50	7.00	1. 50	<0.05	<1. 0	26	40	3	0. (
	8.50	10.00	1.50	<0. 05	<1.0	26	38	4	0. (
	11.50	13.00	1.50	<0.05	<1.0	6	26	4	0. 1
	14.50	16.00	1.50	<0.05	<1.0	10	37	3	<0.
	17.50	19.00	1.50	<0.05	<1.0	110	80	4	<0.
	20.50	21.00	0.50		<1.0	14	29	5	<0. (
	23.50	25.00	1.50		< <u>1.0</u>	12	38	2	<u> </u>
	26.50	27.00	0.50	<0.05	<u><1.0</u>	10	48	2	
	130.90	132.40	1.50 1.50	<0.05 <0.05	<1. 0 <1. 0	10	<u> </u>	3 4	<u>3. 8</u> 11. 7

Appendix 5 Results of Ore Assay(14)

Third Phase Drilling Exploration

Drill Hole	Depth	n (m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-12	133.90	135.40	1.50	<0. 05	<1. 0	48	16	2	8.5
	135.40	136.90	1. 50	<0. 05	<1.0	172	17	2	10.7
	136.90	138.40	1. 50	<0.05	<1.0	20	35	5	8.5
	138.40	140.00	1.60	<0.05	<1.0	14	54	4	8.6
	140.00	141.50	1.50		<u><1.0</u> <1.0	12	<u>50</u> 31	3	<u>4.5</u> 2.7
	150.90 152.40	152.40 155.70	1.50 3.30	<0.05 <0.05	<1.0	8	28	3	4.8
	155.70	157 20	1. 50	<0.05	<1.0	6	25	2	5.8
	157.20	158.70	1. 50	<0.05	<1.0	10	26	2	3.6
	158.70	160.20	1.50	<0.05	<1.0	8	26	2	2.5
	160.20	161.70	1. 50	<0. 05	<1.0	8	23	3	7.6
	161.70	162.40	0.70	<0.05	<1.0	8	19	3	8.4
	162.40	163.60	1. 20	<0.05	<1.0	8	24	3	7.8
	163.60	165.80	2.20	<0.05	<1.0	10	21	2	10.3
	165.80	167.30	1.50	<0.05 <0.05	<u>(1. 0</u> (1. 0	<u>10</u> 10	24 30	2	4.5 5.7
	167.30 168.80	168.80 169.50	1.50 0.70	<0.05	<1. 0 <1. 0	16	46	- 2	<u> </u>
	169.50	171.00	1. 50	<0.05		12	40	3	9.0
	182.00	182.40	0.40	<0.05	<1.0	14	91	2	4.7
	131.10	133.10	2.00	<0.05	<1.0	394	72	12	4.6
	133.10	135 10	2.00	<0.05	<1. 0	125	63	13	3. 2
	135.10	137.10	2.00	<0.05	<1.0	38	29	6	2.3
	137.10	139.10	2.00		<1.0	197	41	6	2.9
	139. 10 140. 10	140. 10 142. 10	1.00 2.00	<0.05 <0.05	<u> </u>	139 931	47	<u>6</u> 8	<u> </u>
	140. 10	143. 10	1. 00	<0.05		1, 280	119	8	5. 2
	163. 30	165.90	2.60	<0.05	<1. 0 <1. 0	63	41	8	7.6
	211.00	212.80	1.80	<0.05	<1.0	53	78	8	1.6
	227.75	227.95	0. 20	<0.05	<1.0	223	39	18	28.3
	231.60	232.00	0.40	<0.05	<1.0	144	58	8	6.1
MJSU-13	89.50	91.00	1.50	<0.05	<1.0	161	117	7	3.7
	91.00 92.50	92.50 94.00	1.50	<0.05	< <u>1.0</u> <1.0	23	93	8	<u>10. 1</u> 1. 9
	92. 50	94.00	1.50 1.50	<0.05 <0.05	<1. 0 <1. 0	15	81	6	3.7
	95. 50	97.00	1. 50	<0.05	<1.0	24	95	10	12.8
	97.00	98.10	1. 10	<0.05	<1.0	88	163	6	4.8
	122. 10	123.70	1.60	<0.05	<1.0	335	462	8	4. 0
	129.00	130.90	1. 90	<0.05	<1. 0	1112	334	5	4. 7
	132.40	133.90	1.50	<0.05	<1.0	906	291	7	3. 1
	133.90	135.40	1.50	<0.05	<1.0	540	472	7	4.1
	135.40 142.20	137.20 143.70	1.80 1.50	<0.05 <0.05	<u><1.0</u> <1.0	1486 883	<u>244</u> 199	8	5. 2 4. 3
	142. 20	145. 20	1. 50	<0.05	<1.0	1345	193		2.4
	148.70	149.70	1.00	<0.05	< <u>1.0</u>	193	230	8	5.9
	153.70	155.10	1.40	<0.05	<1.0	174	211	9	6. 9
	159.30	160.60	1.30	<0.05	<1.0	215	191	5	6. 1
	184.60	186.40	1.80	<0.05	<1.0	305	399	7	4.7
	186. 40	188.40	2.00	<0.05		139	659	10	2.7
MJSU-14	<u>69.00</u> 97.90	69.50 98.30	0.50 0.40	<0.05 0.09	< <u>1.0</u> (1.0)	<5 <5	80	<5 <5	<u>0.8</u> 1.8
	109.40	96. 30 111. 40	2.00	0.09		<5	80	<5	0. 4
	111. 40	113.40	2.00	<0.05	<1.0	<5	110	<5	0.7
	113.40	115.40	2.00	<0.05	<1.0	50	100	<5	0.6
	115.40	117.40	2.00	0.69	<1. O	<5	90	<5	0.5
	117.40	119.40	2.00	0. 49	<1. O	110	35	<5	0. 9
	119.40	121.40	2.00	<0.05	<1.0	40	30	<5	0.6
	140.20	141.10	0.90	<0.05	<1.0	90	250	<5	8.0
	150.50	152.50	2.00		<1.0	50	300	<5 <5	2. 1 3. 4
	152.50 165.70	154.50 166.30	2.00 0.60	<0.05 <0.05	<1. 0 <1. 0	160	<u>190</u> 135	<5	3.9
	166.30	167.30	1.00	<pre><0.05</pre> <pre><0.05</pre>		20	250	<5	2. 2
	167.30	168.30	1.00	0.03	<1. 0 <1. 0	530	250	<5	1.8
	170.80	171.70	0.90	<0.00	< <u>1.0</u>	40	300	<5	2.8

Appendix 5 Results of Ore Assay (15)

Drilling Exploration Third Phase

Drill Hole No.									
	Depth	(m)	Width	Au	Ag	Cu	Zn	Pb	S
No.	from	to	(m)	(g/t)	$\left(\frac{ns}{g/t}\right)$	ppm	ppm	ppm	(%)
MJSU-14	171.70	172.30	0.60	<0.05	4.0	40	250	<5	6.66
-	194.70	195.70	1.00	<0.05	<1.0	40	350 410	<5 <5	<u>2. 27</u> 3. 44
-	195.70	196.30	0.60	0. 08 <0. 05	<u>5.0</u> 2.0	5, 300 2, 770	335	<5	3. 44
	196. 30 197. 30	197.30 198.90	1.00 1.60	<0.05	<1.0	480	370	<5	1. 43
-	198.90	199.20	0.30	<0.05	3. 5	300	465	<5	1. 43
-	201. 90	202.90	1. 00	<0.05	<1.0	260	3, 600	<5	2.36
-	202. 90	203. 20	0.30	<0.05	1.5	120	250	<5	17.60
-	203. 20	204.10	0.90	<0.05	2.5	500	1, 300	<5	1.66
, -	204.10	204.45	0.35	0.19	12.5	31, 000	750	<5	20. 30
	204. 45	205. 45	1.00	<0.05	<1. O	80	75	<5	0.36
	219. 15	219.80	0.65	0.16	3. 0	2, 130	475	<5	5. 12
	219.80	220.10	0.30	0.27	7.5	890	500	<5	26.60
, F	220.10	220. 20	0.10	<0.05	<1.0	340	205	<5 <5	<u>1. 20</u> 25. 90
	220. 20 220. 90	220.90 221.00	0.70 0.10	0. 24	34. 0 25. 0	<u>11, 300</u> 5, 100	350, 000 150, 000	<5	10.48
, F	220.90	221.00	0. 10	<0. 25	23. 0 <1. 0	3, 100	2, 760	<5	1. 19
, ł	221. 20	221. 20	0. 20	0. 17	51.0	22, 800	110,000	<5	30.00
_ F	221.75	222.35	0.60	<0.05	1.5	760	3,000	<5	4. 78
, F	222.35	223. 35	1.00	<0.05	<1.0	100	165	<5	1. 41
, F	234.50	234.90	0.40	<0.05	<1.0	50	750	<5	0.48
MJSU-15	43.60	45.40	1.80	<0. 05	<1.0	172	425	33	0.46
	45.40	47.40	2.00	<0. 05	1. 9	378	459	57	9.35
	47.40	49.40	2.00	0.06	2.0	431	123	42	11.60
-	49.40	51.40	2.00		1.5	653	106	63	13.89
-	51.40	53.40	2.00		<u> </u>	345 156	105 65	28 27	<u>7. 43</u> 5. 01
-	53. 40 55. 40	55.40 57.40	2.00 2.00	<0.05 <0.05	1.3	133	84		6.54
	57.40	59.40	2.00	<0.05 <0.05	<1.0	102	75	24	4. 42
-	59.40	61.40	2.00	<0.05	1.4	130	113	29	4. 52
	61.40	63.40	2.00	<0.05	1.4	116	184	32	5.87
	63.40	65.40	2.00	<0.05	1.1	82	272	22	4.74
[65.40	67.40	2.00	<0. 05	1.4	88	329	27	7. 07
	67.40	69.40	2.00	<0. 05	1.8	72	120	32	5. 71
	69.40	71.40	2.00	<0.05	2.4	75	168	39	6.84
	71.40	73.40	2.00	<0.05	1.6	118	71	<u>33</u> 27	6.48 6.65
	73. 40 75. 40	75.40 77.40	2.00 2.00	<0.05 <0.05	<u> </u>	94 213	<u>84</u> 331	30	6. 35
I F	77.40	79.40	2.00	<0.05	1.5	334	165	30	7.88
	79.40	81.40	2.00	<0.05	<1.0	86	167	24	4. 46
l t	81.40	83.40	2.00	<0.05	1.7	98	181	29	5. 67
	83.40	85.40	2.00	<0.05	1.6	117	147	33	6.10
[85.40	87.40	2.00	<0.05	1. 1	102	146	28	5. 74
	87.40	89.40	2.00	<0.05	1. 3	74	90	28	4. 74
	89.40	91.40	2.00	<0.05	1.8	134	130	55	6. 21
	91.40	93. 40	2.00	<0.05	1.3	98	110	26	5.79
	93. 40	95. 40 97. 40	2.00 2.00	<0.05 <0.05	<u>1. 2</u> 1. 3	165 162	146 155	27 25	<u>5. 02</u> 4. 42
	<u>95. 40</u> 97. 40	<u>97.40</u> 99.40	2.00	<0.05	1.3	128	66	30	4. 42
	99. 40	101. 40	2.00	<0.05	1.0	137	106	27	4.63
	101.40	103.40	2.00	<0.05	1.1	114	129	28	5. 29
	103.40	105.40	2.00	<0.05	1.0	85	78	27	4.85
	105.40	107.40	2.00	<0.05	<1. O	66	52	26	5. 13
	107.40	109.40	2.00	<0.05	<1. O	76	58	24	4. 75
		100.40			<1.0	71	283	36	5.30
	109.40	111.40	2.00	<0.05					
	109.40 111.40	111. 40 113. 40	2.00 2.00	<0.05	<1. O	- 74	163	30	4.69
	109.40 111.40 113.40	111. 40 113. 40 115. 40	2.00 2.00 2.00	<0.05 <0.05	< <u>1.0</u> 1.4	74 68	163 186	30 67	4.69 4.50
	109. 40 111. 40 113. 40 115. 40	111. 40 113. 40 115. 40 117. 40	2.00 2.00 2.00 2.00 2.00	<0.05 <0.05 <0.05	<1. 0 1. 4 1. 3	74 68 65	163 186 635	30 67 54	4.69 4.50 5.04
	109. 40 111. 40 113. 40 115. 40 117. 40	111. 40 113. 40 115. 40 117. 40 119. 40	2. 00 2. 00 2. 00 2. 00 2. 00 2. 00	<0.05 <0.05 <0.05 <0.05 <0.05	<1.0 1.4 1.3 1.3	74 68 65 85	163 186 635 113	30 67 54 40	4.69 4.50 5.04 6.30
	109.40 111.40 113.40 115.40 117.40 119.40	111. 40 113. 40 115. 40 117. 40 119. 40 121. 40	2.00 2.00 2.00 2.00 2.00 2.00 2.00	<0. 05 <0. 05 <0. 05 <0. 05 <0. 05 <0. 05	<1.0 1.4 1.3 1.3 1.5	74 68 65 85 128	163 186 635 113 347	30 67 54 40 39	4. 69 4. 50 5. 04 6. 30 6. 49
	109. 40 111. 40 113. 40 115. 40 117. 40	111. 40 113. 40 115. 40 117. 40 119. 40	2. 00 2. 00 2. 00 2. 00 2. 00 2. 00	<0.05 <0.05 <0.05 <0.05 <0.05	<1.0 1.4 1.3 1.3	74 68 65 85	163 186 635 113	30 67 54 40	4. 69 4. 50 5. 04 6. 30 6. 49 12. 24 15. 83

Appendix 5 Results of Ore Assay(16)

Third Phase Drilling Exploration

Drill Hole No.	Depth from	to	Width (m)	Au (g/t)	Ag (g/t)	Cu ppm	Zn ppm	Pb ppm	S (%)
MJSU-15	127.40	129.40	2. 00	<0.05	1.8	264	92	44	10.4
	129.40	131.40	2. 00	<0.05	2.0	181	320	35	7.4
	131.40	133.40	2.00	<0.05	1. 8	192	132	40	7.8
	133. 40	135.40	2.00	0. 08	2.8	141	205	53	9. 2
	135.40	137.40	2.00	<0.05	1.8	210	143	57	9. 0
	137.40	139.40	2.00	<0.05	2. 2	291	292	82	10.2
	139.40	142.00	2.60	<0.05	1.3	146	319	50	8.2
	145.40	147.40	2.00	<0.05	1.4	217	212	55	<u> </u>
	147.40	149.40	2.00	<0.05	1.4	128	1170 327	52	<u>8.8</u> 6.4
	149.40	151.40	2.00 2.00	<0.05 <0.05	<u>1.6</u> 1.3	108 111	378	<u>45</u> 61	<u> </u>
	151.40 153.40	<u>153.40</u> 155.40	2.00	<0.05	2.0	126	1300	105	9.1
	155.40	157.40	2.00	<0.05	1.5	98	409	30	5.9
	157.40	159.40	2.00	<0.05	1.0	144	407	53	6. 7
	159.40	161.40	2.00	<0.05	1.3	80	253	35	6.2
	161.40	163.40	2.00	<0.05	2.3	75	511	40	5. 2
	163.40	165.40	2.00	<0.05	1.4	106	484	57	7.8
	165.40	167.40	2.00	<0.05	2.1	144	319	70	8.4
	167.40	169.40	2. 00	<0.05	1.5	177	199	43	5. 1
	169.40	171.40	2.00	<0.05	1.1	139	199	32	5. 1
	171.40	173. 40	2. 00	<0. 05	1. 7	261	203	42	7. 9
	173. 40	175.40	2.00	0.05	2.3	343	392	57	11. 5
	175.40	177.40	2.00	0. 08	2.3	312	353	45	12.0
	177.40	179.40	2.00	<0.05	1.9	302	238	31	7.1
	179.40	181.40	2.00	<0.05	1.5	210	317	33	5. 2
	181.40	183.40	2.00	<0.05	1.2	83	239	40	6. 9 8. 0
	183.40	185.40	2.00 2.00	<0.05 <0.05	1.3	<u>71</u> 98	419 418	51	<u> </u>
	<u>185. 40</u> 187. 40	187.40 189.40	2.00	<0.05	1.1	107	237	32	<u> </u>
	189. 40	191.40	2.00	<0.05	2.5	84	592	37	3. 7
	191. 40	193.40	2.00	<0.05	1.2	61	69	21	3. 1
	193.40	195.40	2.00	<0.05	1.2	63	58	19	3. 3
	195.40	197.40	2.00	<0.05	1.3	82	140	25	4. 0
	197.40	199.40	2.00	0.05	1.7	160	259	50	9. 0
	199.40	201.40	2.00	<0.05	1.4	128	201	23	6.9
	201.40	203.40	2.00	<0. 05	2.5	174	311	34	<u> </u>
	203.40	205.40	2.00	<0. 05	1. 2	106	191	34	6. 2
	205.40	207.40	2.00	0.06	1.3	124	393	34	5. 9
	207.40	209.40	2.00	<0.05	1.6	94	254	35	5. 2
	209.40	211.40	2.00	<0.05	1.5	81	251	48	5. 2
	211.40	213.40	2.00	<0.05	1.4	68	102	17	2.6
	213.40	215.40	2.00	<0.05 <0.05	1.4	79 111	<u>159</u> 253	39 48	<u>5. 7</u> 7. 1
	215.40	217.40	2.00	/		68	417	31	3. 6
	217.40 219.40	219.40 221.40	<u>2.00</u> 2.00	<0.05 <0.05	1. 2	78	172	33	4.8
	221.40	223. 40	2.00	<0.05	1.0	61	48	22	2. 6
	223.40	225. 40	2.00	<0.05	1.7	70	437	28	5. 9
	225. 40	227.40	2.00	<0.05	1.5	79	466	29	5. 4
	227.40	229.40	2.00	<0.05	2.8	110	273	35	5. 5
	229.40	231.40	2.00	<0.05	3. 1	176	216	39	6. 1
	231.40	233. 40	2.00	<0.05	1.2	100	209	20	2. 3
	233. 40	235.40	2.00	<0. 05	1. 9	330	92	43	7. 5
	235.40	237.40	2.00	<0. 05	1.6	230	125	37	4. 9
	237.40	239. 40	2.00	<0.05	2.1	113	115	22	4. 1
	239.40	241.40	2.00	<0.05	<1.0	98	271	18	3. 6
	241.40	243.40	2.00	<0.05	1.8	95	187	17	3. 5
	243. 40	245.40	2.00	<0.05	<1.0	47	49	8	2. 7
	245. 40	247.40	2.00	<0.05	<1.0	44	34	11	3. 7
	247.40	249.40	2.00	<0.05	1.6	61	24	12	3. 8
	249.40	251.40	2.00		1.3	91	20	10	4.6
	251.40	253.40	2.00	<0.05	1. 9	128	24 16	13	<u>4.3</u> 3.0
	253.40	255.40	2.00	<0.05	2.4	55		7	

Appendix 5 Results of Ore Assay (17)

· -----

Third Phase Drilling Exploration

Drill	Deptl	n (m)	Width	Au	Ag	Cu	Zn	Pb	S
Hole No.	from	to	(m)	(g/t)	(g/t)	ppm	ppm	ppm	(%)
MJSU-15	303.65	305.65	2.00	<0.05	1.9	95	29	13	6.98
	305.65	307.65	2.00	<0.05	1.0	84	107	5	2.36
	307.65	309.65	2.00	<0.05	1. 9	137	1220	17	7.28
	309.65	311.65	2.00	<0.05	1. 1	182	572	10	3.07
	311.65	313.80	2.15	<0.05	<1.0	87	485	8	3. 03
	332.10	334.10	2.00	<0.05	<1.0	82	133	15	3. 23
	334.10	336.10	2. 00	<0.05	<1.0	76	194	16	4.65
	336.10	338.10	2.00	<0.05	<1. O	106	105	16	2.58
	348.60	350.40	1.80	<0.05	<1.0	191	31	15	4.74
	350.40	351.40	1.00	<0.05	<1. O	128	115	20	2.56
MJSU-16	133.90	135.90	2.00	<0.05	<1. O	<0. 01	<0. 01	<0.01	0. 91
	135.90	137.90	2.00	<0. 05	<1. O	<0. 01	0. 01	<0.01	1.13
	193.80	194.30	0.50	<0.05	3. 2	0. 02	<0. 01	<0.01	9.76
	198.20	199.20	1.00	<0.05	1. 1	<0.01	<0. 01	<0.01	8.87

Hole No.	Prospect	Coordinates (UTM)		Elevation	Azimuth	Inclination	Drilled Length
MJSU-1	4/6 Gossan	N 2,617.501	E 708.478	955m	245°	−55°	251.60m
MJSU-2	4/6 Gossan	N 2,617.686	E 708.524	958m	245°	-55°	250.00m
MJSU-3	UAD North	N 2,619.288	E 709.596	957m	225°	−55°	250.00m
MJSU-4	UAD North	N 2,619.582	E 709.167	958m	260°	-55°	304.25m
MJSU-5	UAD North	N 2,619.738	E 709.148	963m	260°	−55°	346.20m
MJSU-6	4/6 Gossan	N 2,617.812	E 708.555	964m	245°	−55°	250.00m
MJSU-7	4/6 Gossan	N 2,618.171	E 708.792	956m	245°	−55°	250.00m
MJSU-8	Jabal Sujarah	N 2,620.623	E 707.196	955m	25°	-70°	250.00m
MJSU-9	Jabal Sujarah	N 2,620.800	E 707.175	966m	155°	-55°	380.00m
MJSU-10	UAD N-S	N 2,618.813	E 709.022	954m	300°	-55°	350.40m
MJSU-11	UAD N-S	N 2,618.582	E 710.015	963m	150°	−55°	250.10m
MJSU-12	UAD N-S	N 2,617.557	E 709.947	965m	270°	−55°	250.00m
MJSU-13	UAD N-S	N 2,617.122	E 709.841	965m	330°	-55°	250.00m
MJSU-14	4/6 Gossan	N 2,617.723	E 708.560	964m	245°	-55°	274.60m
MJSU-15	Jabal Sujarah	N 2,620.601	E 707.371	944m	335°	-70°	375.65m
MJSU-16	4/6 Gossan	N 2617.598	E 708.566	960m	245°	−55°	210.00m

Appendix 6 Location of Drill Holes

Abbrev. UAD:Umm ad Damar

UAD N-S:Area between Umm ad Damar North and South