<u>Loop 6</u> (Fig. II -6-9)

A continuation of the NW-SE trending detected in Loop 5 is also seen here. Within this loop, a high TEM response seems to take place at intermediate channels (channels 8 to 14) to the south of 1200N with its highest response along the line 3400W. Low TEM responses detected in the north part of the loop are indicative of high resistivity distribution.

Loop 7 (Fig. II -6-10)

Placed to the west of Loop 3, this loop presents a continuous electrical structure but showing high TEM responses in the central-south part of the loop. The intermediate channels (11 to 17) show stronger responses.

6-6 Further Considerations

In order to discover massive sulphide ore, TEM survey was conducted in Rakah Gold Mine area, Quron Al Akhbab area and Hayl as Safil area.

In Rakah Gold Mine area, small-scale TEM anomaly was detected at the deep part, and drilling survey was conducted within this TEM anomaly. Though mineralized zone was intersected, massive sulphide was not detected.

In Quron Al Akhbab area, remarkable high TEM responses were detected at the shallow part. Drilling survey was conducted within this TEM anomaly zone, and promissing stockwork was intersected at the deep part. According to the results of geophysical and drilling survey, it can be concluded that the low resistivity zone is limited to a shallow part, no remarkable mineralization was intersected at the low resistivity zone and the place where high chargeability was detected and the place where stockwork was intersected agrees quite well. As a result, we can understand that stockwork shows high chargeability and medium to high resistivity values in this area(see Fig. II -6-11).

In Hayl as Safil area, 5 loops were set up around the existing ore bodies. Fig. II-6-12 shows compiled geophysical map in Hayl as Safil area and Fig. II-6-13 shows TEM resistivity section together with previous drilling results. Al Ashgar, Bishara and Al Jadeed ore bodies mainly composed of massive sulphide ore are clearly detected as low resistivity and high chargeability zones by the TDIP survey and as high TEM response zones. Hayl as Safil ore body mainly composed of stockwork ore shows high chargeability, high resistivity and generally low TEM response. High TEM response is detected at the station 3700W, 1700N. Massive sulphide ore was intersected by previous drilling survey at this TEM anomaly. As seen in Fig. II-6-13, the place where massive sulphide and brecciated ore were intersected corresponds to low resistivity zone, and the place where stockwork ore were intersected corresponds to high resistivity zone.

Other interesting geophysical anomalies are detected on the north side of the Hayl as Safil ore with high chargeability of 15 mV/V or more. As seen in Fig. II -6-13, low resistivity is distributed in the deep part from station 15 to the north.

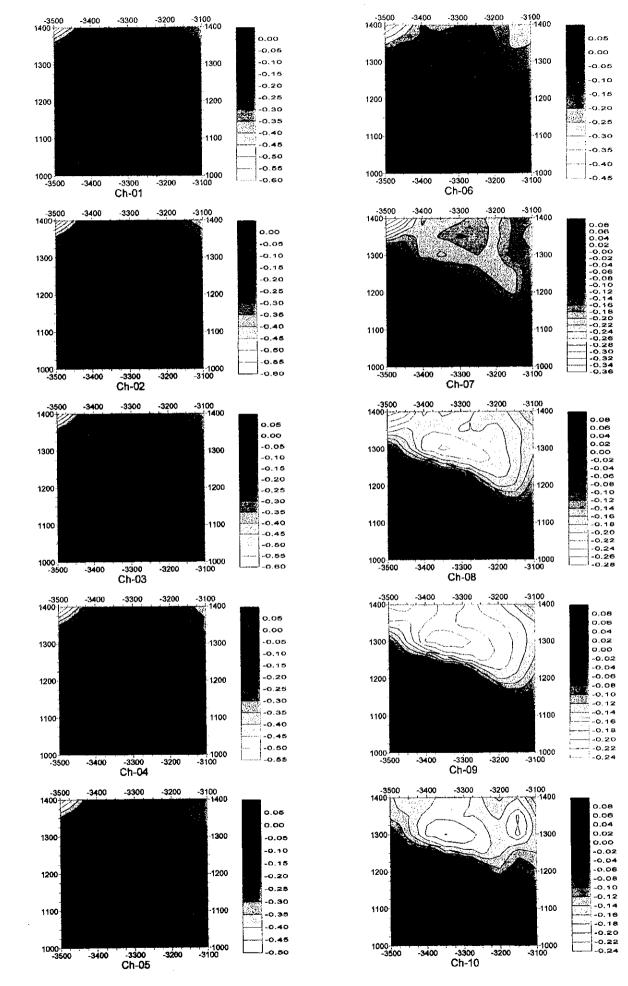
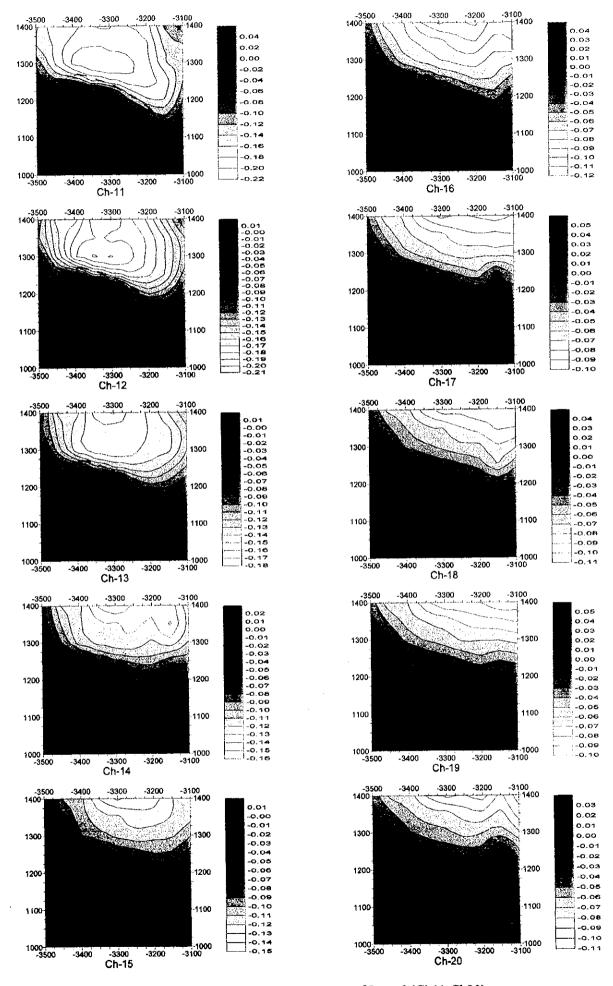



Fig. II -6-9(1) TEM response maps of Loop6 (Ch1-Ch10)

1

-287-

·

H.

Fig. II -6-9(2) TEM response maps of Loop6 (Ch11-Ch20)

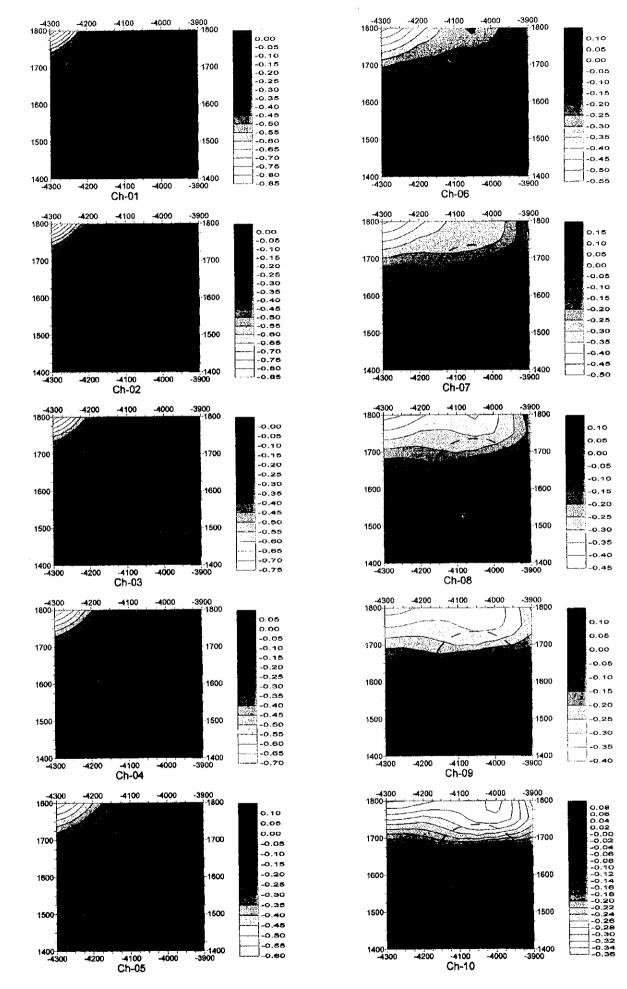
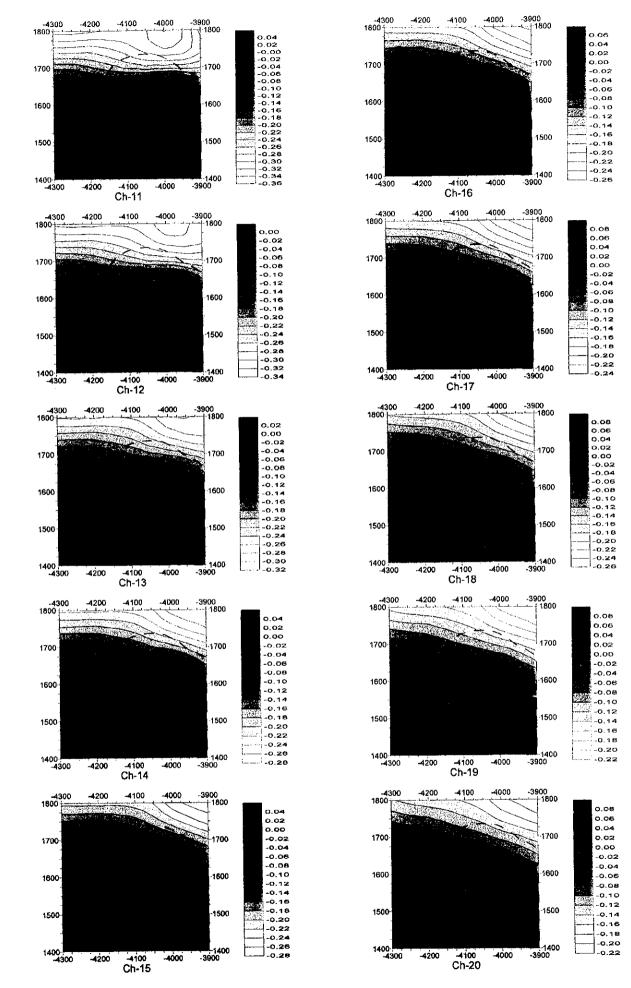



Fig. II-6-10(1) TEM response maps of Loop7 (Ch1-Ch10)

T

-291-

.

T

Fig. II -6-10(2) TEM response maps of Loop7 (Ch11-Ch20)

-293-

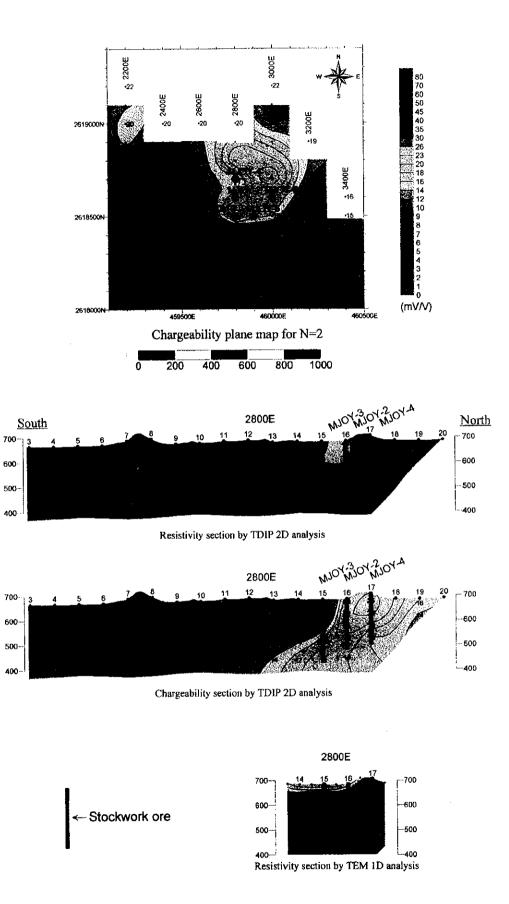


Fig. II -6-11 Results of TDIP & TEM survey in Quron Al-Akhbab area

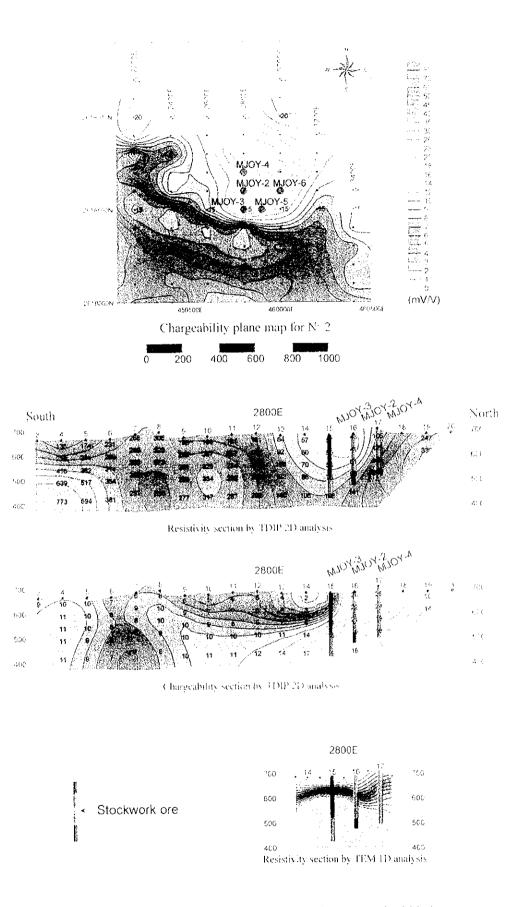


Fig. II -6-11 Results of TDIP & TEM survey in Quron Al-Akhbab area

Hg. IF 6-11 - Results of TDIPA, JENT survey in Quron Al-Akhban area.

.

ب ۲ ۱

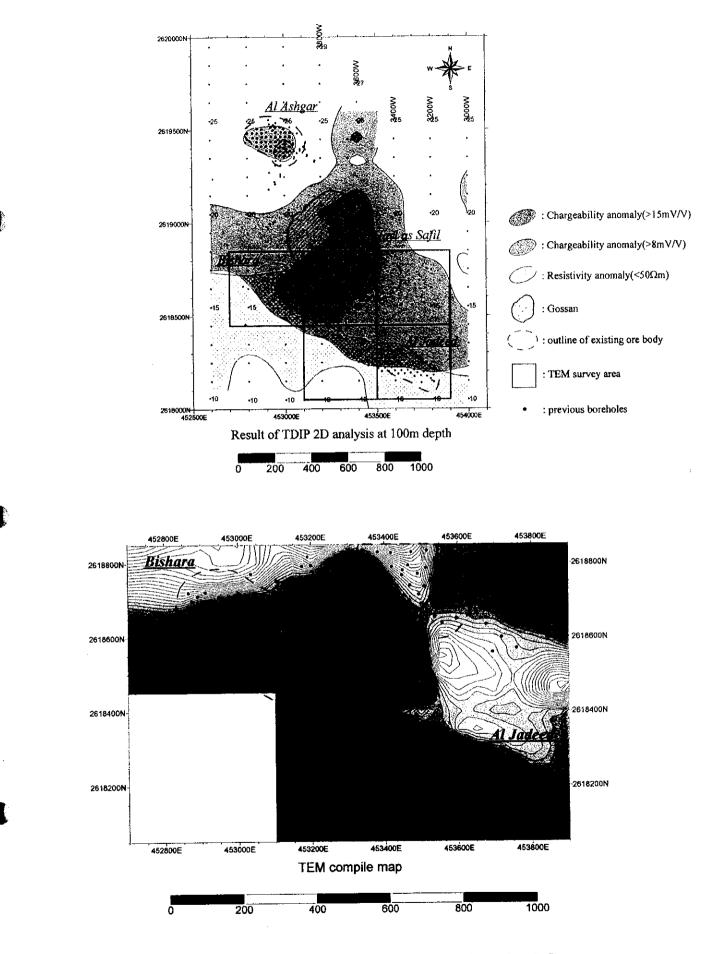


Fig. II -6-12 Results of TDIP & TEM survey in Hayl as Safil area

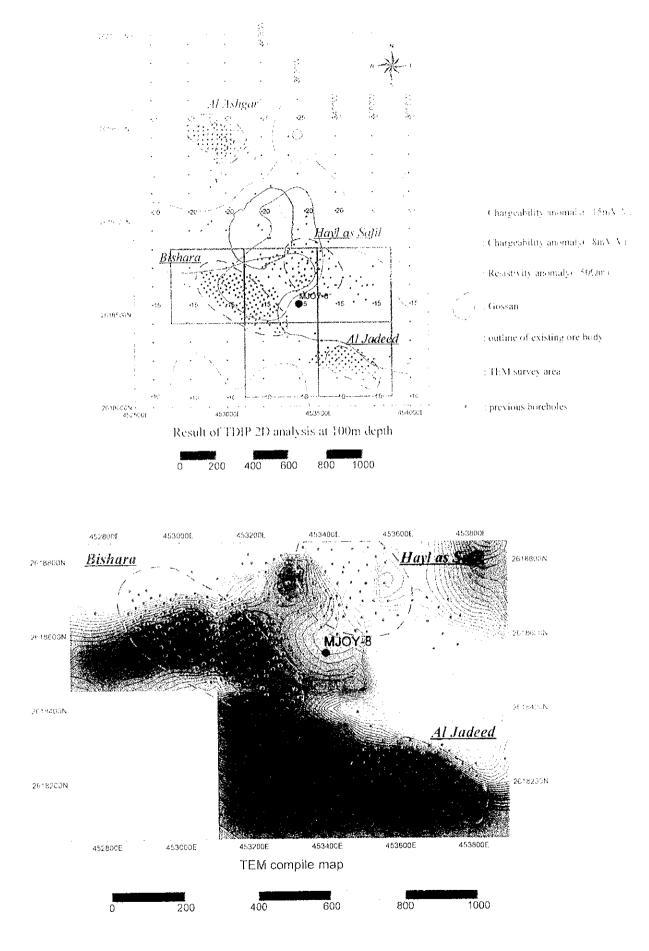
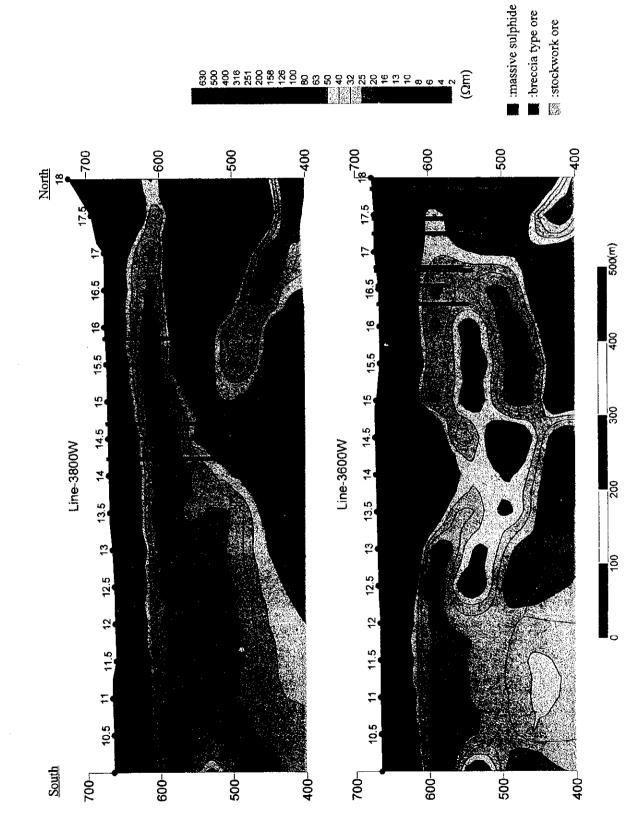



Fig. II -6-12 Results of TDIP & TEM survey in Hayl as Safil area

Fig. II. 6-12 Results of TDIP & HAI survey in Huyl as Satil area.

I

Fig. II -6-13 Resistivity sections by TEM 1D analysis in Hayl as Safil area

CHAPTER 7 DRILLING SURVEY

7-1 Background and Objectives

Drilling survey was carried out in order to clarify the mineralization on geophysical anomaly zones detected by the TDIP and TEM surveys conducted during the Phase I of this project.

7-2 Survey Areas and Amounts

Drilling survey was conducted at Rakah, Quron Al-Akhbab, Tawi Rakah and Hayl as Safil areas. Figs. II -7-1 shows the location of the boreholes. The total amount of survey consists of 8 boreholes with a drilling length of 1,904.25m.

7-3 Survey Method

7-3-1 Drilling operation

The drilling operations were done by using two types of rigs mentioned in Appendix 1. The wire line method was utilized. Table II -7-1 and Appendix 2 shows the progress records of the drillings.

7-3-2 Core logging

Description of the drill cores was conducted at the drilling site during drilling operations and compiled in a 1:200 log sheet. Core sampling was carried out concurrent to core logging activities. Amount of laboratory works are indicated in Table I -1-3.

7-4 Survey Results

Drilling logs are shown in Appendix 3A. The results of chemical analysis are shown in Appendix 4A. The results of drilling survey are described for each area as follows:

7-4-1 Rakah area

In this area, high chargeability and low resistivity anomaly zone was detected to the southeast of Rakah open pit by TDIP survey. TEM survey was also conducted on this anomaly zone. Drilling survey was carried out by drilling one borehole in high TEM response anomaly at the middle to deep part.

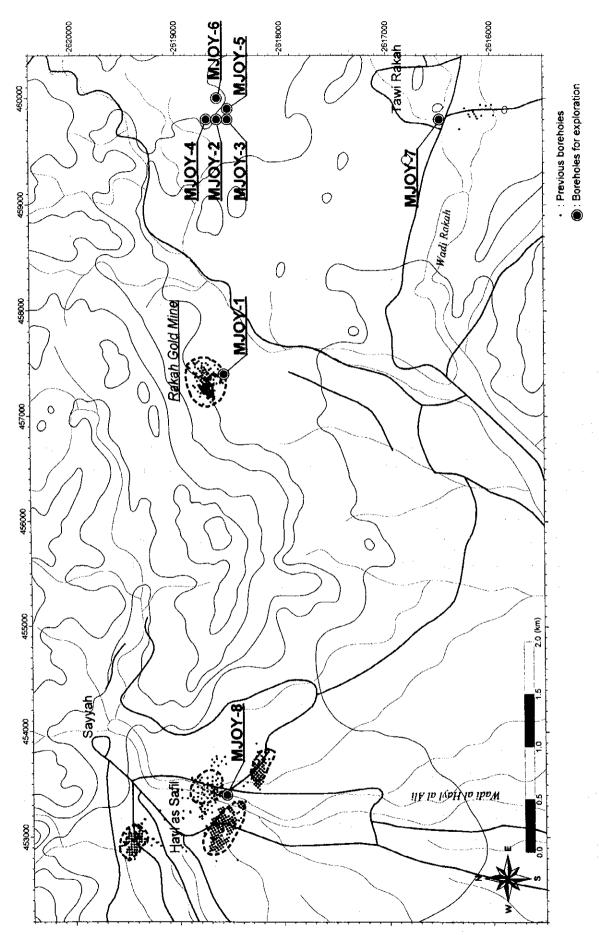


Fig. II -7-1 Location map of boreholes for exploration

Area Name	Holes Coordinate		linate	Length	Length	Inclination	Direction
		N (km)	E (km)	planned (m)	excuted (m)	(deg.)	
(1) Rakah area	MJOY-1	2,618.587	457.422	250	251.10	-90	-
	Total length			250	251.10		
(2) Quron Al-Akhbab area	MJOY-2	2,618.681	459.832	200	200.35	-90	· -
	MJOY-3	2,618.580	459.836	250	251.10	-90	-
	MJOY-4	2,618.797	459.836	200	200.10	-90	-
	MJOY-5	2,618.576	459.939	250	250.10	-90	-
	MJOY-6	2,618.693	460.041	250	250.65	-90	-
	Total length			1,150	1,152.30		
(3) Tawi Rakah area	MJOY-7	2,616.471	459.882	250	250.60	-90	-
	Total length		· · · · · · · · · · · · · · · · · · ·	250	250.60		
(4) Hayl as Safil area	MJOY-8	2,618.558	453.449	250	250.25	-90	-
	Total length			250	250.25		
Grand total length				1,900	1,904.25		· · ·

Table II -7-1 Drilling survey conducted in Phase I

(1) MJOY-1 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -7.15m
 -7.15m ~ -171.35m
 Lasail Unit. Slightly gossanized and weathered part.
 -7.15m ~ -171.35m
 Lasail Unit. Consisting mainly of basaltic massive lava accompanied by basaltic pillow lava and hyaloclastite. Intercalating two sheets of metalliferous sediments of 15-20cm thick between -77.80m and -78.35m.
 -171.35m
 Fault.

-171.35m ~ -251.10m(end of hole) Lasail Unit. Consisting of basaltic pillow lava and massive lava. Many basaltic dikes are intruded.

Mineralization: Only pyrite dissemination and veinlets are recognized at the part above -171.35m. Below -171.35m, pyrite dissemination are well developed at the whole part and quartz veinlets with pyrite are also recognized. Pyrite-quartz veins with chalcopyrite are recognized partly below -191.10m.

Alteration: Silicification is recognized at the whole part. The strength of silicification is relatively weak above -171.35m and intense below -171.35m.

7-4-2 Quron Al-Akhbab area

In this area, TEM survey was also conducted within a remarkable high chargeability and low resistivity anomaly zone detected by TDIP survey. Drilling of the borehole MJOY-3 was carried out in the high TEM response zone, becoming clear that the mineralization zone presents a good correlation with the high chargeability zone. To further confirm these results, 4 more boreholes were carried out in the high chargeability zone.

(1) MJOY-2 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -200.35m (end of hole) Lasail Unit. Consisting mainly of basaltic pillow lava. Accompanied by a few massive lava at the lowest part. Variole texture is recognized partly in pillow lava.

Mineralization: The part between 0.00m and -160.75m forms stockwork ore in which pyrite-quartz veins accompanied by chalcopyrite are well developed. Almost all sulphide is oxidized between 0.00m and -17.70m. Weak pyrite dissemination is recognized at the whole part. Very weak chalcopyrite dissemination is recognized from -17.70m to -130.50m. Below -160.75m, copper mineralization is not recognized. Average grade of copper is 0.83% between -17.70m and -89.70m, indicating a relatively high grade.

Alteration: Silicification is recognized at the whole part. Epidote dissemination is partly recognized below -104.00m.

(2) MJOY-3 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -159.40m Lasail Unit. Consisting mainly of basaltic pillow lava accompanied by basaltic massive lava. Variole texture is partly recognized in pillow lava below -87.15m.

-159.40m

Fault.

-159.40m ~ -251.10m(end of hole) Lasail Unit. Consisting of basaltic pillow lava, and partially accompanied by hyaloclastite. Variole texture is partly recognized in pillow lava.

Mineralization: Above -106.70m, weak pyrite dissemination is recognized partly. Between -106.70m and -159.40m, middle to strong pyrite dissemination accompanied by many pyrite veinlets are recognized all over. Copper mineralization is recognized below -166.00m. Below -170.10m, the formed stockwork ore consists mainly of chalcopyrite and quartz vein with pyrite. Pyrite dissemination and veinlets are also recognized in this part. Chalcopyrite dissemination is recognized partly.

Alteration: Silicification is recognized at the whole part. The strength of silicification is relatively weak above -103.20m but intense below -103.20m

(3) MJOY-4 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -200.10m(end of hole) Lasail Unit. Consisting mainly of basaltic pillow lava, accompanied by basaltic massive lava at the middle to deep part. Basaltic dikes intrude partly.

Mineralization: Weak pyrite dissemination and pyrite-quartz veinlets are recognized at the whole part. Chalcopyrite veinlets with quartz and pyrite are sparsely recognized in the whole part.

Alteration: Silicification is recognized at the whole part. Especially, the interval between -171.00m and -191.75m shows intense silicification.

(4) MJOY-5 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -119.40m Lasail Unit. Consisting mainly of basaltic pillow lava accompanied by basaltic massive lava.

-119.40m ~ -119.80m Fault accompanied by intensely silicificated fracture zone.

-119.80m ~ -250.10m(end of hole) Consisting of basaltic pillow lava. Intercalating doleritic sheetflow accompanied by basaltic dikes between -150.10m and -167.20m.

Mineralization: Mineralization is not recognized above the fault of -119.40m. Below the fault, weak pyrite dissemination with pyrite-quartz veinlets is recognized at the whole part. Chalcopyrite veinlets with a little quartz and pyrite are also observed sparsely in the whole inteval.

Alteration: Alteration is not recognized above the fault. Below the fault, silicification is recognized at the whole part. Epidote veinlets are observed between -122.15m and -142.90m.

(5) MJOY-6 borehole

Geology: Consisting of Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -250.65m(end of hole) Lasail Unit. Consisting mainly of basaltic pillow lava accompanied by basaltic massive lava. Basaltic dikes intrude below -195.95m.

Mineralization: Chalcopyrite-quartz vein with a little pyrite are recognized continuously between -23.35m and -165.05m. Average grade of copper is 0.75% at the part between -114.15m and -165.05m. Below -165.05m, copper mineralization is also recognized, but chalcopyrite-quartz vein are sparsely recognized. Pyrite dissemination and veinlets are observed in the whole interval, but with a very weak intensity.

Alteration: Silicification is recognized at the whole part.

7-4-3 Tawi Rakah area

In this area, remarkable chargeability anomaly is detected around and to the north of the existing mineral showing. Drilling survey was carried out at one borehole in high chargeability zone to the north of the mineral showing.

(1) MJOY-7 borehole

Geology: Consisting of Quaternary sediments and Lasail Unit of the Samail Volcanic Rocks.

0.00m ~ -3.50m Unconsolidated Quaternary sediments.

-3.50m ~ -250.60m(end of hole) Lasail Unit. Consisting of basaltic pillow lava and massive lava. Pillow lava is dominant at the part above -139.20m. Basaltic dikes are intruded sparsely.

Mineralization: Mineralization is observed above -135.85m. Pyrite dissemination and veinlets are continuously recognized between -14.90m and -135.85m. Chalcopyrite-quartz veinlets with epidote and pyrite are partly recognized between -16.35m and -135.85m. Chalcopyrite dissemination is also partly found.

Alteration: Weak silicification is observed at the whole part. Epidote-quartz veins are recognized below -113.95m.

7-4-4 Hayl as Safil area

Drilling survey was carried out at one borehole in high metal factor amonaly zone to the south of gossan.

(1) MJOY-8

Geology: Consisting of Quaternary sediments and Lasail Unit and Geotimes Unit of the Samail Volcanic Rocks.

0.00m ~ -17.40m Unconsolidated Quaternary sediments.

-17.40m ~ -146.30m Lasail Unit. Consisting of basaltic pillow lava and massive lava. Variole texture is partly recognized in pillow lava. Many small cracks and hematite

filling up interpillow are also observed.

- -146.30m ~ -183.60m Lasail Unit. Consisting of reddish brown metalliferous sediments and peperite(consisting of breccia of basaltic lava and metalliferous sediments, and formed by intruding lava into unconsolidated metalliferous sediments)
- -183.60m ~ -225.60m Geotimes Unit. Consisting of basaltic pillow lava accompanied by thick interpillow with hematite.
- -225.60m ~ -250.25m(end of hole) Geotimes Unit. Consisting of slumped sediments in which gray dark gray pyroclastic rocks and reddish brown metalliferous sediments show schistose-like banded structure.

Mineralization: Mineralization is not recognized. Chalcopyrite is recognized in silicificated breccia within slumped sediments.

Alteration: Silicification is thoroughly observed. Quarts veinlets are recognized in many parts.

7-5 Further Considerations

7-5-1 Rakah area

High chargeability zone was detected to the southeast of Rakah open pit by TDIP survey. Drilling survey was carried out on the high TEM response zone detected by the TEM survey conducted on the above mentioned high chargeability zone. As the result of drilling survey, low grade stockwork accompanied partly by chalcopyrite veinlets was intersected below -171.35m. Fig. II -7-2 shows cross section. Though stockwork ore were detected to the northeast of open pit by previous drilling survey, TDIP survey in this phase detected remarkable anomaly to the southeast of open pit. Due to the potential seen for new deposits to the south of the existing ore body, further survey is required to investigate on the possibility of increasing ore reserves.

7-5-2 Quron Al-Akhbab area

Drilling survey was carried out at five boreholes on the remarkable chargeability anomaly zone detected by TDIP survey. Stockwork ore were intersected in all boreholes. At MJOY-2 borehole, stockwork ore is intersected at -17.70m with an average grade of 0.83%Cu between -17.70 and -89.70m (See Table II -7-2). Fig. II -7-3 shows cross sections across the borehole. As the result of drilling and geophysical survey, this mineralized zone extends about 250m in E-W direction and about 150m in N-S direction (See Fig. I -4-2). Further investigation will be required in the next phase to clarify the nature of this mineralized zone.

7-5-3 Tawi Rakah area

Remarkable chargeability anomaly similar to that in Quron Al-Akhbab area was detected around and to the north of existing mineral showing. Drilling survey carried out one borehole in the northern anomaly, and low grade stockwork consisting of chalcopyrite accompanied by intense pyrite dissemination was intersected between -14.90m and -107.00m. Weak copper mineralization is

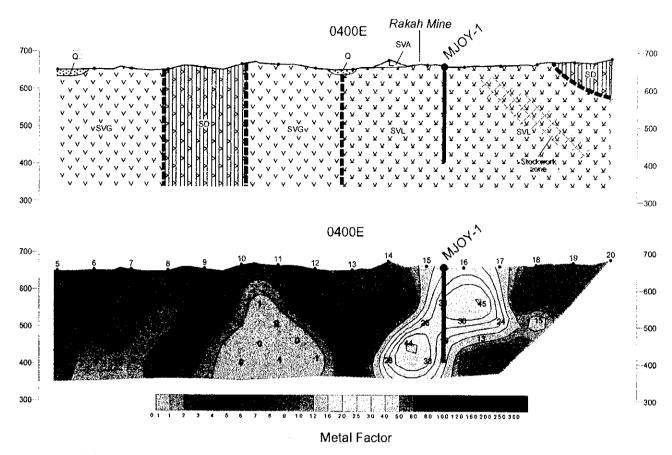


Fig. II-7-2 Cross section of borehole site in Rakah area; comparison with IP pseudo-section.

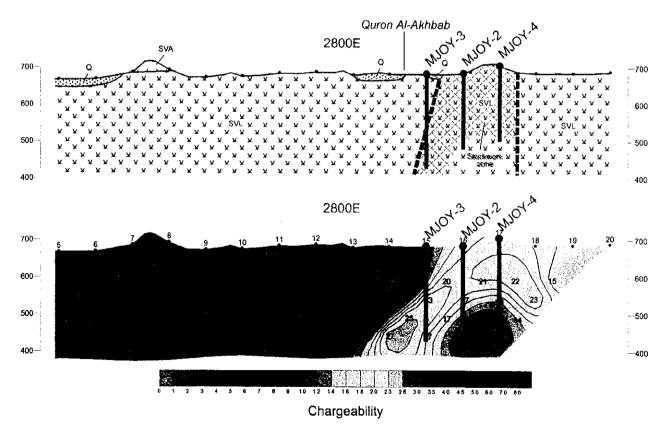
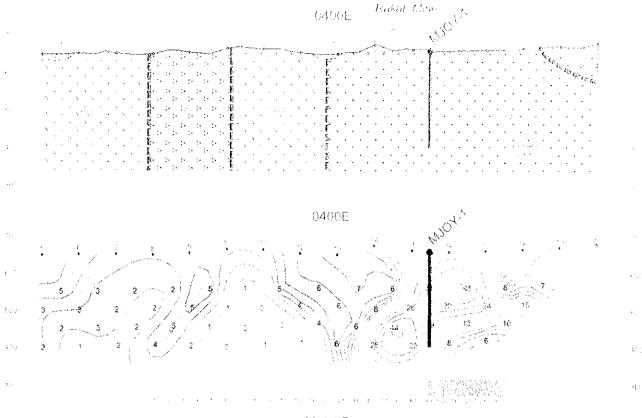



Fig. II-7-3 Cross section of borehole site in Quron Al-Akhbab area; comparison with IP pseudo-section.

Metal Factor

Fig. II 7-2. Cross section of borehole site in Rakah area: comparison with IP pseudo-section

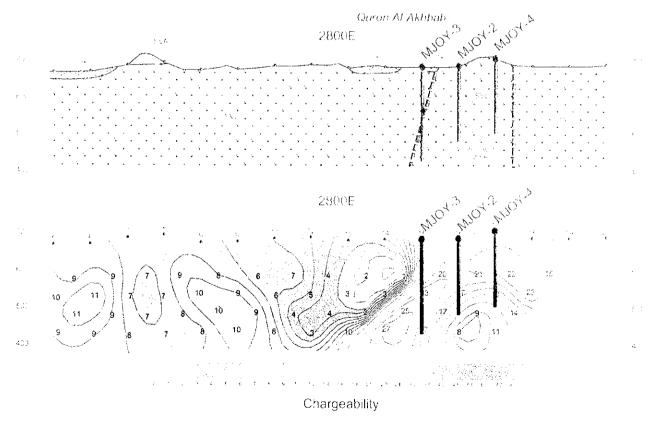


Fig. II-7-3 Cross section of borehole site in Quron Al-Akhbab area: comparison with IP pseudo-section.

Area Name	Bore Hole NO.	Type of Ore	Depth (m)		Thickness	Average Grade	
			from	to	(m)	Cu(%)	Au(g/t)
			1				
Quron Al-Akhbab	MJOY-2	stockwork	17.70	89.70	72.00	0.83	0.35
		stockwork	89.70	127.70	38.00	0.37	0.34
		stockwork	127.70	160.75	33.05	0.29	0.36
	MJOY-3	stockwork	170.10	216.20	46.10	0.50	0.29
		stockwork	221.90	225.90	4.00	0.16	0.11
		stockwork	240.50	245.45	4.95	0.34	0.26
	MJOY-4	stockwork	15.60	41.30	25.70	0.07	0.03
		stockwork	61.00	92.45	31.45	0.11	0.06
		stockwork	131.15	139.50	8.35	. 0.15	0.07
	MJOY-5	stockwork	120.25	149.05	28.80	0.23	0.06
	MJOY-6	stockwork	23.35	71.35	48.00	0.29	0.08
		stockwork	71.35	98.15	26.80	0.32	0.05
		stockwork	98.15	114.15	16.00	0.46	0.07
		stockwork	114.15	165.05	50.90	0.76	0.04
				40.50	25.60	0.14	0.05
Tawi Rakah	MJOY-7	stockwork	14.90				
		stockwork	48.80	ļ	i		
		stockwork	71.00				
		stockwork	90.95		10.03	0.22	0.03

Table II-7-2 Summary of results on drilling survey in Phase I

,

recognized continuously to -140m. Fig. II -7-4 shows cross sections across the borehole. As the result of previous drilling survey and TDIP survey in this Phase, there is a promising place for copper mineralization are seen to the west and south of the existing mineral showing.

7-5-4 Hayl as Safil area

In this area, remarkable chargeability anomaly was detected around the gossan. At the south part of this anomaly zone, the detected low resistivity zone showed also high metal factors. Drilling survey was carried out at one borehole in this high metal factor zone. As a result, intense silicification was recognized but no mineralization was observed. Fig. II -7-5 shows cross sections across the borehole. According to the geophysical survey, high metal factor zone of N=1 seems to correspond to the location of existing ore and high TEM response zone has a good correlation with the location of massive sulphide ore. Interesting place for exploration is seen to the north and surroundings of Hayl as Safil ore body in a part where drilling survey have not been yet carried out.

ľ

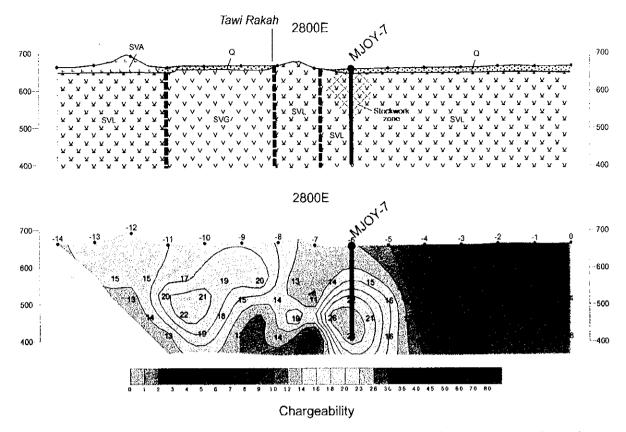


Fig. II-7-4 Cross section of borehole site in Tawi Rakah area; comparison with IP pseudo-section.

i.

Ι

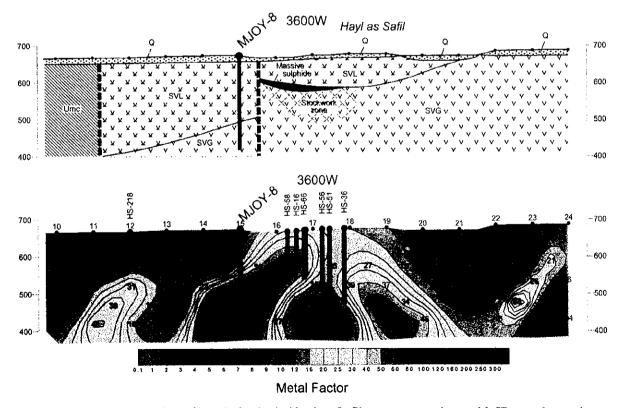


Fig. II-7-5 Cross section of borehole site in Hayl as Safil area; comparison with IP pseudo-section.

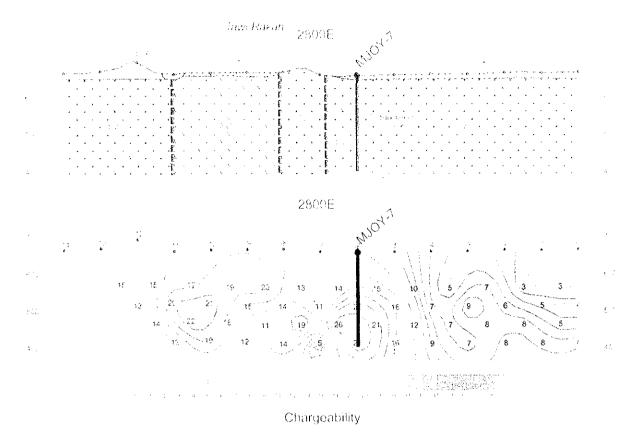


Fig. II-7-4. Cross section of borehole site in Tawi Rakah area: comparison with IP pseudo-section

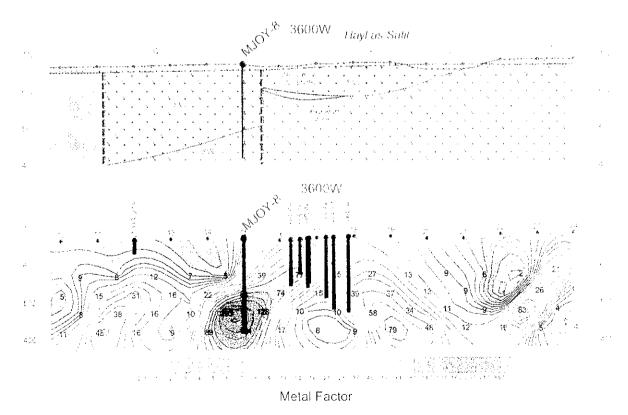


Fig. II-7-5 Cross section of borehole site in Hayl as Safil area: comparison with IP pseudo-section.

PART III CONCLUSIONS AND RECOMMENDATIONS

CHAPTER 1 CONCLUSIONS

The main objectives of this project during this fiscal year in Yanqul areas are:

- 1. Examination of various processing methods to increase the recover of copper and gold together with planning the processing flow.
- 2. Confirmation of minable ore by re-interpretaion of existing data.
- 3. Increase the amount of minable ore by finding new ore bodies.
- 4. Collection of basic environmental data.

The survey results can be summarized as conclusions as follows:

(1) Metallurgical tests

- Copper recoveries form rougher/scavenger flotation varied from 94% to 96% for the stockwork samples and from 80% to 90% for the breccia and massive sulphide samples.
 Concentrate grades also varied, ranging from 42% in the rougher 1 concentrate for Rakah massive sulphide to 22% to 25% for the remaining samples.
- ii) A significant result of the test program is that all samples responded well to the same collectors, with pH being the only main variable between the conditions suitable for the respective ore types.
- iii) As a results of the mineralogical tests, it is found that reground level can be achieved without using ultra fine grinding technology. Therefore, normal tower mill or ball mill are considered to be good enough. Decision for re-grounding level is one of the activities scheduled for the next year's metallurgical tests.
- iv) Cyanid leaching of pyrite concentrates were low at approximately 30%. Re-grinding increased the extraction.

(2) Environmental Survey

- i) In order to study ground water movement, permeability and water quality near Rakah and Hayl as Safil mining areas were studied by measuring water recovery and water quality in 5 drillings made for that purpose.
- ii) All the wells, which were drilled in a wadi, showed a little amount of water due to recent dry weather conditions.
- iii) Water quality results indicate a weak alkalinity with a little higher pH in comparison with the Japanese river waters. Total dissolved solids (TDS) show high values ranging from 200 to 1200 mg/l with high calcium hardness. Compared with previous data, Nitrite Nitrogen values indicate extraordinarily higher values.

(3) Existing Data Analysis

- i) In order to confirm the geological and minable ore reserves, the following items are to be needed to clarify: detailed geological and ore body model, distribution of each ore type, proper method for ore reserve calculations and optimization of the ore reserve parameters.
- ii) Mineralization at Yanqul region is mainly stockwork accompanied by massive and brecciated ore types.

(4) Exploration

- Geophysical anomalies were found in five areas including known mineralized zones:: Quron Al-Akhbab, Tawi Rakah mineral showing, Rakah gold mine, Najaid area, and Hayl as Safil ore deposit.
- ii) Among the above 5 areas, a promising copper mineralization (stockwork mineralization) was detected in Quron Al-Akhbab.
- iii) Geophysical anomalies detected over Hayl as Safil deposit were effective to delineate the location of the deposit, indicating a good coincidence of massive sulphide distribution with high TEM responses.

CHAPTER 2 RECOMMENDATIONS

Since the Phase II will be the last year of this project, final interpretation must be conducted during the phase.

The works for following items are proposed for the next phase.

- 1) Metallurgical aspects
 - a. Decision on the metallurgical method and design of plant
 - b. Additional metallurgical tests
 - 2) Mining aspects
 - a. Minable ore reserve calculation (for each ore type)
 - b. Pit design
 - c. Mining schedule and production plan
- 3) Infrastructure
 - a. Waste dam design
 - b. Environmental countermeasures for the waste dam
 - c. Electricity and water supply
 - d. Diversion of Wadi and roads
 - e. Peripheral facilities
- 4) Environment

Collection of basic environmental data.

- 5) Financial and economic evaluation
- 6) Exploration
 - a. To delineate ore reserve in Quron Al-Akbab a detailed survey shall be conducted.

b. In other areas among various geophysical anomalies, detailed geophysical and drilling surveys should be carried out to evaluate the mineral potential.

7) Comprehensive evaluation.

REFERENCES

- 1) BECHENNEC F., BEURRIER M., RABU D. and HUTIN G.(1986): Geological map of BARKA,-Sheet NF 40-3B, scale 1:100,000: explanatory notes.
- 2) BECHENNEC F., ROGER J., MRTOUR J.L., WYNS R. and CHEVREL S.(1992): Geological map of IBRI,-Sheet NF 40-02, scale 1:250,000: explanatory notes.
- 3) BECHENNEC F., ROGER J., MRTOUR J.L. and WYNS R.(1992): Geological map of SEEB, -Sheet NF 40-03, scale 1:250,000: explanatory notes.
- 4) BEURRIER M., BECHENNEC F., RABU D. and HUTIN G.(1986): Geological map of AS SUWAYQ, -Sheet NF 40-3A, scale 1:100,000: explanatory notes.
- 5) BEURRIER M., BECHENNEC F., RABU D. and HUTIN G.(1986): Geological map of RUSTAQ, -Sheet NF 40-3A, scale 1:100,000: explanatory notes.
- 6) BISHIMETAL EXPLORATION CO LTD.(1987): Report on a copper exploration programme in the northern part of the Oman mountains: Volume I: General
- 7) BISHIMETAL EXPLORATION CO LTD.(1991): Report on geologic and geophysical surveys in the TAWI RAKAH area, Sultanate of Oman
- 8) BISHIMETAL EXPLORATION CO LTD.(1992): Geophysical study in the prospects of Lasail west and Aarja in Sohar area and Hayl As Safil in Rakah area, Sultanate of Oman: Final Report
- 9) BRGM(1994): Mineral occurrences catalogue, BRGM, 119 p.
- 10) COLLEMAN R.G. (1981): Tectonic setting of ophiolite obduction in Oman; J. Geophys. Res., 86,2497-2508.
- 11) Cooper, N. J. and Swift, R.(1994): Application of TEM to Cyprus-type massive sulfide exploration in Cyprus, Geophysics], vol.59, No.2, 202-214 p..
- 12) HADDADIN M.A., SULAIMAN Z.K. and AL-FORI S.S.(1983): The Ghuzayn copper-iron prospect, re-evaluation, Khaburah district, Oman. M.P.M., Department of Minerals, 28 p..
- 13) ISLES D.J. and WITHAM W.J.A.(1993): Explanatory notes on the solid geological interpretation of AS SUWAYQ 1:100,000 sheet NF40-3A, World Geoscience Corporation, 15 p..
- 14) Interpex Limited(1993): TEMIX v3.0 User's Manual, Transient Electromagnetic Data Interpretation Software
- 15) ISLES D.J. and WITHAM W.J.A.(1993): Explanatory notes on the solid geological interpretation of BARKA 1:100,000 sheet NF40-3B, and part of NAKHL 1:100,000 sheet NF40-3E, World Geoscience Corporation, 13 p..
- 16) ISLES D.J. and WITHAM W.J.A.(1993): Explanatory notes on the solid geological interpretation of SIB 1:100,000 sheet NF40-3C, and part of FANJAY 1:100,000 sheet NF40-3F, World Geoscience Corporation, 11 p..
- 17) JEBRAK M., LETALENET J. and LESCUYER(1985): Detailed and semi-detailed exploration for copper and associated gold in the Daris, Mahab, Rakah, Ghuzayn, Wadi Andam, Washihi and Al Ajal Area, Interim report, BRGM, 52-57 p.

- JICA and MMAJ(1990): Report on the mineral exploration in the Rakah area, Sultanate of Oman, Bishimetal Exploration Co. Ltd.
- 19) JICA and MMAJ(1996): Report on the cooperative mineral exploration in the central Batinah coast area, Sultanate of Oman.
- 20) JICA and MMAJ(1998): Report on the cooperative mineral exploration in the south Batinah coast area, Sultanate of Oman.
- 21) LESCUYER J.L. and DEGAY E.(1986): Detailed and semi-detailed exploration for copper and associated gold in the DARIS, MAHAB, RAKAH, SHINAS, GHUZAYN, WADI ANDAM, WASHIHI and AL AJAI areas: Final report, BRGM, 125 p.. 4 appendices.
- 22) LESCUYER J.L., VACHETTE C. and BEURRIER M.(1989): Selection of zones for additional copper reserves between SHINAS and AL KHABURAH, northern Oman mountains: Final report, BRGM, 245 p..
- 23) LIPARD S.J., SHELTON A.W. and GASS I.G. (1986): The ophiolite of northern Oman. Memoir No.11, The Open University, 1-178.
- 24) M.P.M.(1991): Summary of Cu prospects and recommendation for next programme M.P.M. of sultanate of Oman, 19 p..
- 25) M.P.M.(1995): GEOLOGY AMD MINERAL WEALTH OF THE SULTANATE OF OMAN
- 26) O.C.M.C.(1994): Daris-part 5: Geological ore reserves at Daris 3A-5 as on 28 September 1994, Oman Mining Company, 10 p..
- 27) RABU D., BECHENNEC F., BEURRIER M. and HUTIN G.(1986): Geological map of NAKHL, -Sheet NF 40-3E, scale 1:100,000: explanatory notes.
- 28) VILLEY M., BECHENNEC F., BEURRIER M., METOUR J. and RABU D.(1986): Geological map of YANQUL, -Sheet NF 40-2C, scale 1:100,000: explanatory notes.
- 29) World Geoscience Co.(1994): Report on ground geophysical surveys in the Sultanate of Oman, 5.4 Daris 3A-5 prospect, O.M.C.O., 15-21 p..
- 30) Webster, S.(1995):Discussion on The application of TEM to Cyprus-type massive sulfide exploration in Cyprus, Geophysics, vol.60, No.5, 1 p...

LIST OF FIGURES, TABLES AND APPENDICES

List of Figures

Fig.1 Loc	ation map of the surveyed area	
Fig.2 Loc	ation map of Yanqul area	
Fig. I -3-1	Geological map of the Yanqul - Ghuzayn area	- 11
Fig. I -3-2	Schematic model of massive sulphide deposits in Ghuzayn area	- 15
Fig. I -4-1	Results of TDIP survey in Quron Al-Akhbab	- 25
Fig. I -4-2	Results of drilling survey in Quron Al-Akhbab area	- 27
Fig. I -4-3	Results of TDIP and TEM survey in Hayl as Safil deposits	- 29
Fig. II -1-1	Geological map of Yanqul area	- 37
Fig. II -1-2	Geological section of Yanqul area	- 39
Fig. II -1-3	Geological columnar section of Yanqul area	- 40
Fig. II -2-1	Metallurgical test program flowsheet	- 44
Fig. II -2-2	Location map of boreholes for metallurgical tests	- 46
Fig. 🛛 -2-3	Proposed ore processing flowshee	- 66
Fig. 🛛 -3-1	Location map of boreholes for groundwater survey	- 69
Fig. II -3-2	Bore well construction details	- 70
Fig. II -3-3	Geological columnar section	- 74
Fig. II -3-4(1) Geological section(1)	- 75
Fig. II -3-4(2) Geological section(2)	- 76
Fig. II -3-4(3) Geological section(3)	- 77
Fig. II -3-4(4) Geological section(4)	- 78
Fig. II -3-5	Hexa-diagram of groundwater	- 82
Fig. II -3-6	Classification of groundwater	- 83
Fig. II -5-1	Dipole-dipole array and plotting procedure	- 95
Fig. II -5-2	Waveform produced by the transmitter	- 95
Fig. II -5-3	Sampling interval of the TDIP receiver	- 95
Fig. II -5-4	Geophysical survey location in Yanqul area	. 99
Fig. II -5-5(1) Apparent resistivity pseudo-sections (5200W-4400W)	- 101
Fig. II -5-5(2) Chargeability pseudo-sections (5200W-4400W)	- 103
Fig. II -5-5(3) Metal Factor pseudo-sections (5200W-4400W)	- 105
Fig. II -5-6(1) Apparent resistivity pseudo-sections (4200W-3000W)	- 107

	Fig. II -5-6(2)	Chargeability pseudo-sections (4200W-3000W)	109
	Fig. II -5-6(3)	Metal Factor pseudo-sections (4200W-3000W)	
	Fig. II -5-7(1)	Apparent resistivity pseudo-sections (2800W-1600W)	113
	Fig. ll -5-7(2)	Chargeability pseudo-sections (2800W-1600W)	115
	Fig. II -5-7(3)	Metal Factor pseudo-sections (2800W-1600W)	117
	Fig. II -5-8(1)	Apparent resistivity pseudo-sections (1400W-0200W)	119
	Fig. II -5-8(2)	Chargeability pseudo-sections (1400W-0200W)	121
	Fig. II -5-8(3)	Metal Factor pseudo-sections (1400W-0200W)	123
	Fig. II -5-9(1)	Apparent resistivity pseudo-sections (0000E-1400E)	125
	Fig. II -5-9(2)	Chargeability pseudo-sections (0000E-1400E)	127
	Fig. II -5-9(3)	Metal Factor pseudo-sections (0000E-1400E)	129
	Fig. II -5-10(1)	Apparent resistivity pseudo-sections (1600E-2400E)	131
	Fig. II -5-10(2)	Chargeability pseudo-sections (1600E-2400E)	133
	Fig. II -5-10(3)	Metal Factor pseudo-sections (1600E-2400E)	135
	Fig. II -5-11(1)	Apparent resistivity pseudo-sections (2600E-3400E)	137
	Fig. II -5-11(2)	Chargeability pseudo-sections (2600E-3400E)	139
	Fig. II -5-11(3)	Metal Factor pseudo-sections (2600E-3400E)	141
	Fig. II -5-12(1)	Apparent resistivity plane map for N=1	143
	Fig. II -5-12(2)	Chargeability plane map for N=1	145
•	Fig. II -5-12(3)	Metal factor plane map for N=1	147
	Fig. II -5-13(1)	Apparent resistivity plane map for N=2	149
	Fig. II -5-13(2)	Chargeability plane map for N=2	151
	Fig. II -5-13(3)	Metal factor plane map for N=2	153
	Fig. II -5-14(1)	Apparent resistivity plane map for N=3	155
	Fig. II -5-14(2)	Chargeability plane map for N=3	157
	Fig. II -5-14(3)	Metal factor plane map for N=3	159
	Fig. II -5-15(1)	Apparent resistivity plane map for N=4	161
	Fig. II -5-15(2)	Chargeability plane map for N=4	163
	Fig. II -5-15(3)	Metal factor plane map for N=4	165
	Fig. II -5-16(1)	TDIP plane maps in Rakah Mine area for N=1	169
	Fig. II -5-16(2)	TDIP plane maps in Rakah Mine area for N=2	171
•	Fig. II -5-16(3)	TDIP plane maps in Rakah Mine area for N=3	173
	Fig. II -5-16(4)	TDIP plane maps in Rakah Mine area for N=4	175
	Fig. 🛛 -5-17(1)	2D analysis sections for resistivity in Rakah Mine area	177
	Fig. II -5-17(2)	2D analysis sections for chargeability in Rakah Mine area	177
	Fig. II -5-18(1)	2D analysis plane maps in Rakah Mine area at 100m depth	179

ð 6

Fig. II -5-18(2)	2D analysis plane maps in Rakah Mine area at 150m depth	- 181
Fig. II -5-18(3)	2D analysis plane maps in Rakah Mine area at 200m depth	- 183
Fig. II -5-18(4)	2D analysis plane maps in Rakah Mine area at 250m depth	- 185
Fig. II -5-19(1)	TDIP plane maps in Quron Al-Akhbab area for N=1	- 187
Fig. II -5-19(2)	TDIP plane maps in Quron Al-Akhbab area for N=2	- 189
Fig. II -5-19(3)	TDIP plane maps in Quron Al-Akhbab area for N=3	- 191
Fig. II -5-19(4)	TDIP plane maps in Quron Al-Akhbab area for N=4	- 193
Fig. II -5-20(1)	2D analysis sections for resistivity in Quron Al-Akhbab and Tawi Rakah areas	- 195
Fig. II -5-20(2)	2D analysis sections for chargeability in Quron Al-Akhbab and Tawi Rakah areas -	- 197
Fig. II -5-21(1)	2D analysis plane maps in Quron Al-Akhbab area at 100m depth	- 199
Fig. II -5-21(2)	2D analysis plane maps in Quron Al-Akhbab area at 150m depth	- 201
Fig. II -5-21(3)	2D analysis plane maps in Quron Al-Akhbab area at 200m depth	- 203
Fig. II -5-21(4)	2D analysis plane maps in Quron Al-Akhbab area at 250m depth	
Fig. II -5-22(1)	TDIP plane maps in Tawi Rakah area for N=1	- 209
Fig. II -5-22(2)	TDIP plane maps in Tawi Rakah area for N=2	
Fig. II -5-22(3)	TDIP plane maps in Tawi Rakah area for N=3	
Fig. II -5-22(4)	TDIP plane maps in Tawi Rakah area for N=4	215
Fig. II -5-23(1)	2D analysis plane maps in Tawi Rakah area at 100m depth	217
Fig. II -5-23(2)	2D analysis plane maps in Tawi Rakah area at 150m depth	219
Fig. II -5-23(3)	2D analysis plane maps in Tawi Rakah area at 200m depth	221
Fig. II -5-23(4)	2D analysis plane maps in Tawi Rakah area at 250m depth	223
Fig. II -5-24(1)	TDIP plane maps in Hayl as Safil area for N=1	225
Fig. II -5-24(2)	TDIP plane maps in Hayl as Safil area for N=2	
Fig. II -5-24(3)		
Fig. II -5-24(4)	TDIP plane maps in Hayl as Safil area for N=4	231
Fig. II -5-25(1)	2D analysis sections for resistivity in Hayl as Safil area	233
Fig. II -5-25(2)	2D analysis sections for chargeability in Hayl as Safil area	235
Fig. II -5-26(1)	2D analysis plane maps in Hayl as Safil area at 100m depth	237
Fig. II -5-26(2)	2D analysis plane maps in Hayl as Safil area at 150m depth	239
Fig. II -5-26(3)	2D analysis plane maps in Hayl as Safil area at 200m depth	241
Fig. II -5-26(4)		
Fig. II -5-27(1)		
Fig. II -5-27(2)	2D analysis sections for chargeability in Najaid area	247
-	chematic TEM survey configuration	
Fig. II -6-2 E	xample of TEM decay curve	256
Fig. II -6-3 C	Observed and background TEM responses	258

Fig. II -6-4(1) TEM response maps of Loop1 (Ch1-Ch10) 261
Fig. II -6-4(2) TEM response maps of Loop1 (Ch11-Ch20)263
Fig. II -6-5(1) TEM response maps of Loop2 (Ch1-Ch10) 267
Fig. II -6-5(2) TEM response maps of Loop2 (Ch11-Ch20)269
Fig. II -6-6(1) TEM response maps of Loop3 (Ch1-Ch10) 273
Fig. II -6-6(2) TEM response maps of Loop3 (Ch11-Ch20)275
Fig. II -6-7(1) TEM response maps of Loop4 (Ch1-Ch10) 277
Fig. II -6-7(2) TEM response maps of Loop4 (Ch11-Ch20) 279
Fig. II -6-8(1) TEM response maps of Loop5 (Ch1-Ch10) 281
Fig. II -6-8(2) TEM response maps of Loop5 (Ch11-Ch20) 283
Fig. II -6-9(1) TEM response maps of Loop6 (Ch1-Ch10) 287
Fig. II -6-9(2) TEM response maps of Loop6 (Ch11-Ch20) 289
Fig. II -6-10(1) TEM response maps of Loop7 (Ch1-Ch10) 291
Fig. II -6-10(2) TEM response maps of Loop7 (Ch11-Ch20) 293
Fig. II -6-11 Results of TDIP & TEM survey in Quron Al-Akhbab area 295
Fig. II -6-12 Results of TDIP & TEM survey in Hayl as Safil area 297
Fig. II -6-13 Resistivity sections by TEM 1D analysis in Hayl as Safil area 299
Fig. II -7-1 Location map of boreholes for exploration 302
Fig. II -7-2 Cross section of borehole site in Rakah area; comparison with IP pseudo-section 309
Fig. II -7-3 Cross section of borehole site in quron Al-Akhbab area; comparison with IP pseudo-section 309
Fig. II -7-4 Cross section of borehole site in Tawi Rakah area; comparison with IP pseudo-section 313
Fig. II -7-5 Cross section of borehole site in Hayl as Safil area; comparison with IP pseudo-section 313

List of Tables

Tab	le I-1-1	Content and amount of the survey (1)	2
Tab	le I -1-2	Content and amount of the survey (2)	3
Tab	le I-1-3	Content and amount of laboratory work	4
Tab	le I -1-4	Content and amount of metallurgical test	- 5
Tat	le I-4-1	Head assays of major elements	19
Tat	le I-4-2	Occurrence of gold minerals	-19
Tat	le I-4-3	Summry of best rougher/scavenger flotation tests	20
		Cyanide leaching of pyrite concentrates	
Tat	le I-4-5	Overall gold recoveries	-22

Table	II -1-1	Geologic ore reserves of known five bodies	42
Table	II -2-1	Samples used for metallurgical tests	45
Table	II -2-2	Head assays of major elements	45
Table	II -2-3	Occurrence of gold minerals	47
Table	II -2-4	Ball mill work index	47
Table	II -2-5	Grind requirements	48
Table	II -2-6	Gold mineralogy of Rakah stockwork	51
Table	II -2-7	Gold mineralogy of Rakah massive sulphide ore	54
Table	II -2-8	Tailing mineralogy of Test FL20	54
Table	II -2-9	Comparative results of Test FL14 and 20	55
Table	∏-2-10	Summary of best rougher/scavenger flotation tests	57
Table	II -2-11	Flotation of bulk samples	58
Table	II -2-12	Settling tests of copper concentrates(10g/t flocculant)	59
Table	∏-2-13	Settling tests of copper tailings(20g/t flocculant)	60
Table	Ⅱ-2-14	Filtration tests of copper flotation concentrates	61
Table	∏-2-15	Roasting of pyrite concentrates	62
Table	∏-2-16	Cyanide leaching of pyrite concentrates	62
Table	II -2-17	Cyanide leaching of pyrite tailings	63
Table	II -2-18	Gold recovery to copper concentrates	64
Table	II -2-19	Overall gold recoveries	64
Table	II -3-1	Drilling work for groundwater survey	
Table	II -3-2	List of equipments	72
Table	II -3-3	Measurement time interval for the recovery test	
Table	II -3-4	Ground water level (2001/2/16)	80
Table	II -3-5	Pumping test of groundwater	80
Table	II -3-6	Results of water quality analysis	81
Table	II -4-1	List of existing data	87
Table	II -4-2	Comparison of geologic ore reserves of each ore body	89
Table	II -4-3	Parameters for ore resources calculation	93
Table	II -5-1	Specifications of TDIP survey instruments	96
Table	II -5-2(1) Resistivity and chargeability of rock samples(core)	250
Table	II -5-2(2	2) Resistivity and chargeability of rock samples(outcrop)	251
Table	Ⅱ-6-1	Survey amounts of TEM	253
Table	II -6-2	Channel times after switch off	255
Table	II -6-3	Specifications of TEM survey instruments	256

Table	II -6-4	Depth estimation in survey area	259
Table	II -7-1	Drilling survey conducted in Phase I	303
Table	II -7-2	Summary of results on drilling survey in Phase I	311

List of Appendices

Appendix 1 Drilling equipments and consumed materials

Appendix 2 Generalized drilling results and progress record of drilling

Appendix 3 Geologic core logs

Appendix 3A Geologic core logs for the drill holes of exploration work

Appendix 3B Geologic core logs for the drill holes of metallurgical test

Appendix 3C Geologic core logs for the drill holes of groundwater survey

Appendix 4 Assay results of drilling cores

Appendix 5 Assay results of surface samples

Appendix 6 Description of polished sections of ore samples

Appendix 7 Permeability test for the drill holes

Appendix 8 Basic data of metallurgical tests

Appendix 8A Head assays

Appendix 8B Ball mill work index

Appendix 8C Batch flotation tests

Appendix 8D Mineralogy of flotation products

Appendix 8E Assays of flotation concentrates

Appendix 8F Cyanidation of pyrite concentrates

Appendix 8G Cyanidation of pyrite tailings

Appendix 8H X-ray diffraction analyses of samples

Appendix 8I Equipments used for metallurgical tests

Appendix 9 Description of thin sections of surface and borehole samples

Appendix 10 Results of X-ray diffraction analyses of surface and borehole samples

·

.

.

APPENDICES

Appendix 1

Drilling equipments and consumed materials

	Rig-1	Rig-2
Model	RAMROD-II	VOL-180
Maker	Joy Manufacturing Co. USA	Voltas Ltd. India
Mounting	Truck mounted 4WD	Truck mounted 4WD
Drilling capacity with NX size wire line coring	450 m	650 m
Angle hole drilling capacity	Upto 60 deg.	Vertical only
Circulation pump	35 GPM 800 PSI	37 GPM 1000 PSI

Drilling Equipment-(1) Exploration and metallurgical test

Drilling for metallurgical test: Rig-1 Mineral exploration drilling: Rig-1 and Rig-2

.

Drilling Equipment-(2) Environmental survey

No.	DESCRIPTION	SPECIFICATION
1	Model - As per manufacturer's	Ingersoll Rand, T4W HP 900
2	Mast Rating / Max.Static Hook Load	31,750 Kgs
3	Draw Weight / Pull Back	17,000 Kgs
4	Pipe Racking System/Capacity	Swing In / Out Carousel ; 76.0 Mtr
5	Power Pack Engine Type / Capacity	GM 12V 71 TA ; 530 HP
6	Foam Injection Pump Type/Capacity/Pressure	Triplex single acting ; 95.0 Ltr/Min ; 3791.7 kPa
7	Rotary table / Type	Top Head Drive ; Hydraulic
8	Max.Torque /RPM	9763 Nm / 80 RPM
9	Table Opening	20 "
10	Levelling Jack	Two at drilling end & One at front
11	Tank volumes - Fuel	600 Litres
12	Working Clearance - below crown	8.2 Metres
13	Compressor for Air/Foam drilling, Type/Output	Screw Type ; 2412.9 kPa / 425 Lps
14	Power Source	Direct drive from Diesel engine
15	Overall Weight - Tonnes	24 T
16	Overall Length - Metres	10.7 M
17	Overall Width - Metres	2.4 M
18	Overall Height When Travelling - Metres	3.9 M
19	Is Rig Carrier or Trailer or Skid Mounted	Carrier Mounted
20	Carrier Engine - Type / Capacity	Cummins LIOC ; 240 HP @2100 RPM
21	No. of Front Axles	One
22	No. of Front Driving Axles	None
23	No. of Rear Axles	Тwo
24	No. of Rear Driving Axles	Тwo
25	Transport speed on graded roads	50 Km/Hr
26	Drill pipe	4 1/2" dia Internal up set , 25' long

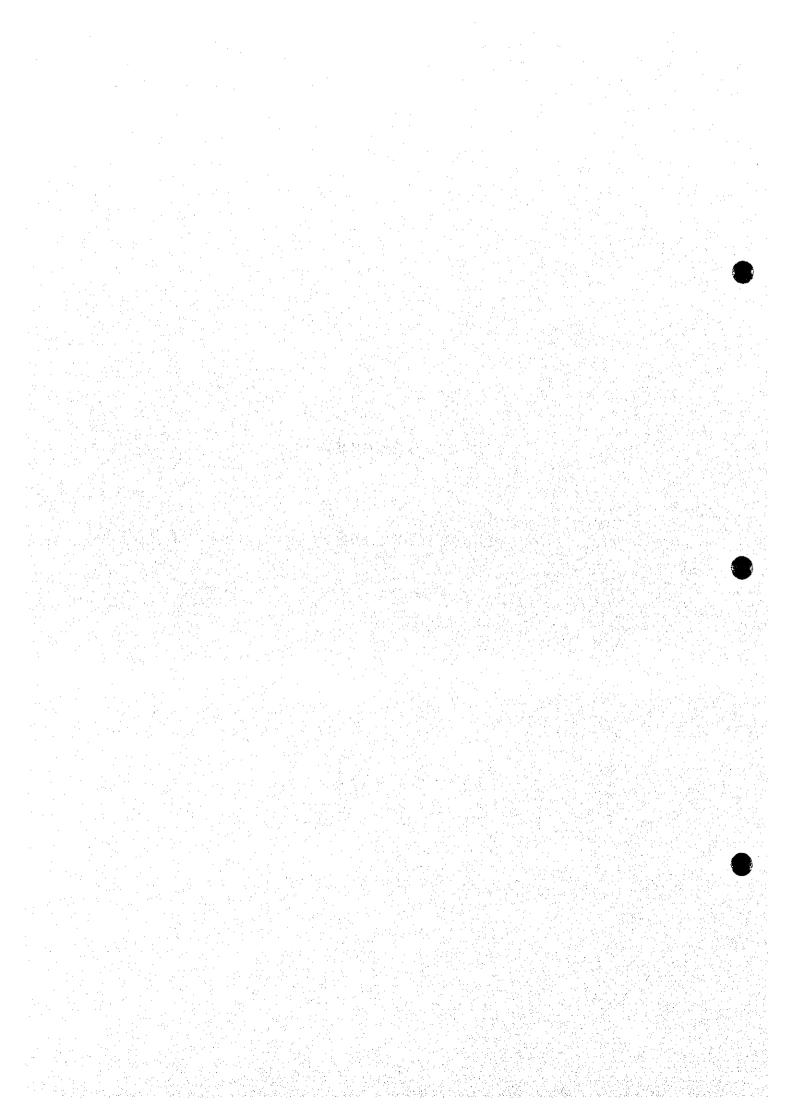
A-2

Consumed material-(1) Exploration

Hole No.	MJOY-1	MJOY-2	MJOY-3	MJOY-4	MJOY-5	MJOY-6
Bit: NW	1	1	1	1	1	1
Bit: NX	1	1	1	1	1	1
Bit: BX	-	-	-	-	-	-
Light Oil (l)	30	25	30	30	35	30
Mud (kg)	240	210	260	200	280	260
Cement (kg)	100	100	150	100	150	150

Hole No.	MJOY-7	MJOY-8	
Bit: NW	1	1	
Bit: NX	1	1	
Bit: BX		-	
Light Oil (l)	30	30	
Mud (kg)	220	260	
Cement (kg)	150	150	

6


Consumed material-(2) Metallurgical test

Hole No.	MJOY-P1	MJOY-P2	MJOY-P3	MJOY-P4	MJOY-P5
Bit: NC	1	1	1	1	1
Bit: NW	1	1	1	1	1
Bit: NX	-	-	-	-	-
Light Oil (l)	20	20	20	20	20
Mud (kg)	120	100	150	150	170
Cement (kg)	150	100	160	200	150

I

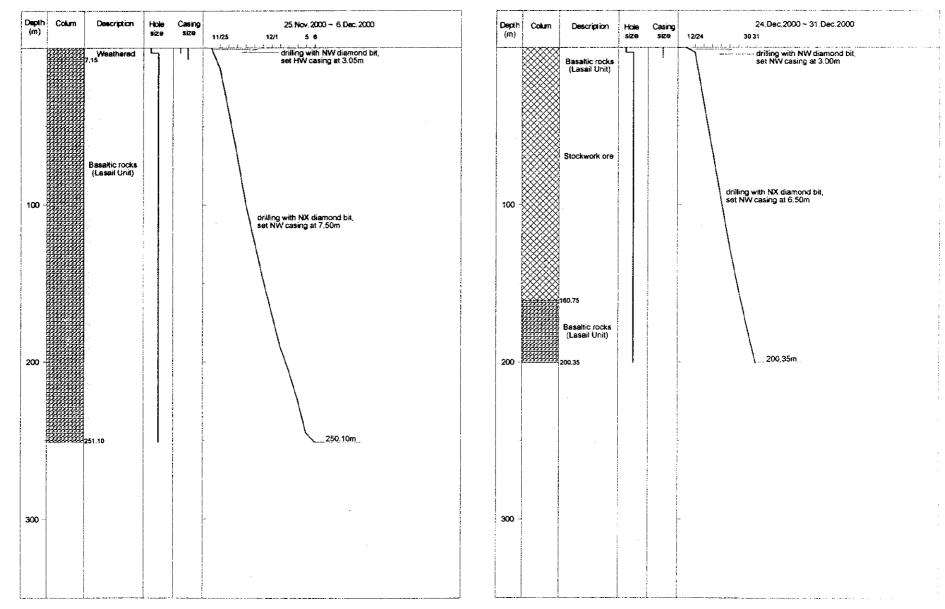
Appendix 2

Generalized drilling results and progress record of drilling

Progress record of drilling-(1) Exploration

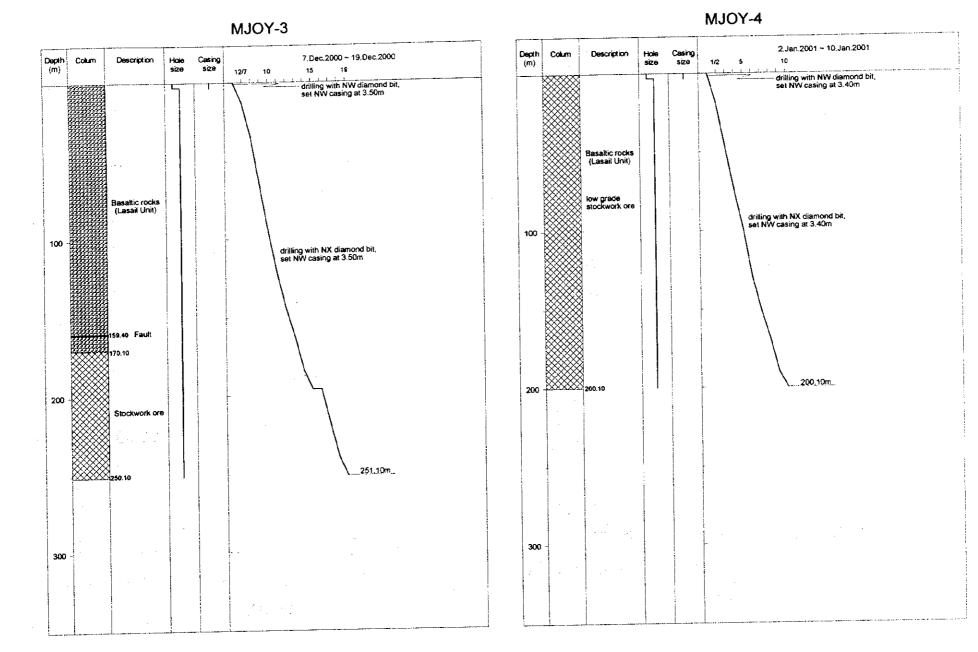
	Hole No.	· .	MJOY-1	MJOY-2	MJOY-3	MJOY-4	MJOY-5
Drilling Priod	Preparation Days	(A)	11/24 1	12/24 0.5	12/7 0.5	1/1 0.5	12/30
	Drilling Days	(B)	11/25 to 12/6 11.5	12/24 to 12/31 7.5	12/7 to 12/19 11	1/2 to 1/10 8.5	12/30 to 1/9 10.5
	Removing Days	(C)	12/6 0.5	1/1 0.5	12/19 0.5	1/10 0.5	1/10 0.5
	Total days	(D)	13	8.5	12	9.5	11.5
Depth	Planned depth Drilled depth	(E) (F)	250m 251.10m	200m 200.35m	250m 251.10m	200m 200.10m	250m 250.10m
Recovery	Overburden Core length Recovery	(G) (H) (H/F)	0.00m 251.10m 100%	0.00m 199.25m 99%	0.00m 251.10m 100%	0.00m 198.90m 99%	2.00m 248.10m 99%
Casing	HW casing NW casing NX casing		3.05m 7.50m	6.50m	3.50m	3.40m	3.40m
Rate	meter /day meter/ total day	(F/B) (F/D)	21.83m 19.32m	26.71m 23.57m	22.83m 20.93m	23.54m 21.06m	23.82m 21.75m

	Hole No.		MJOY-6	MJOY-7	MJOY-8
Drilling Priod	Preparation Days	(A)	1/10 0.5	1/11 0.5	1/23 0.5
	Drilling Days	(B)	1/11 to 1/23 12.5	1/11 to 1/22 11	1/23 to 2/3 11.5
	Removing Days	(C)	1/23 0.5	1/22 0.5	2/3 0.5
	Total days	(D)	13.5	12	12.5
Depth	Planned depth Drilled depth	(E) (F)	250m 250.65m	250m 250.60m	250m 250.25m
Recovery	Overburden Core length Recovery	(G) (H) (H/F)	0.00m 250.45m 100%	2.50m 247.80m 99%	2.00m 243.70m 97%
Casing	HW casing NW casing NX casing		- 11.75m -	12.50m	- 18.50m -
Rate	meter /day meter/ total day	(F/B) (F/D)	20.05m 18.57m	22.78m 20.88m	21.76m 20.02m

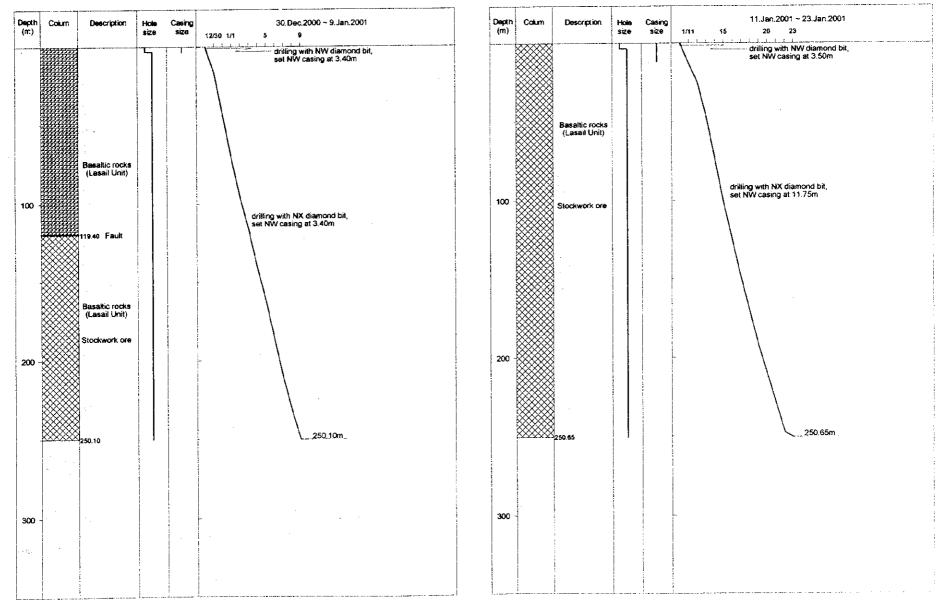

A — 5

	Hole No.		MJOY-PI	MJOY-P2	MJOY-P3	MJOY-P4	MJOY-P5
Drilling Priod	Preparation Days	(A)	9/8 1	9/17 0.5	9/25 0.5	10/8 0.5	10/19 0.5
	Drilling Days	(B)	9/9 to 9/16 8	9/18 to 9/24 7	9/26 to 10/7 11.5	10/8 to 10/18 10.5	10/20 to 10/29 10
	Removing Days	(C)	9/17 0.5	9/25 0.5	10/7 0.5	10/19 0.5	10/30 0.5
	Total days	(D)	9.5	8	12.5	11.5	11
Depth	Planned depth Drilled depth	(E) (F)	125m 125.65m	125m 125.80m	125m 125.65m	125m 137.55m	125m 1 26.00 m
Recovery	Overburden Core length Recovery	(G) (H) (H/F)	0.00m 116.40m 93%	1.00m 123.95m 99%	1.00m 120.25m 96%	1.00m 125.70m 91%	0.75m 122.90m 98%
Casing	HW casing NW casing NX casing		8.25m	4.00m -	3.00m - -	14.25m -	7.10m - -
Rate	meter /day meter/ total day	(F/B) (F/D)	15.71m 13.23m	17.97m 15.73m	10.93m 10.05m	13.10m 11.96m	12.60m 11.45m

Progress record of drilling-(2) Metallurgical test


A – 6

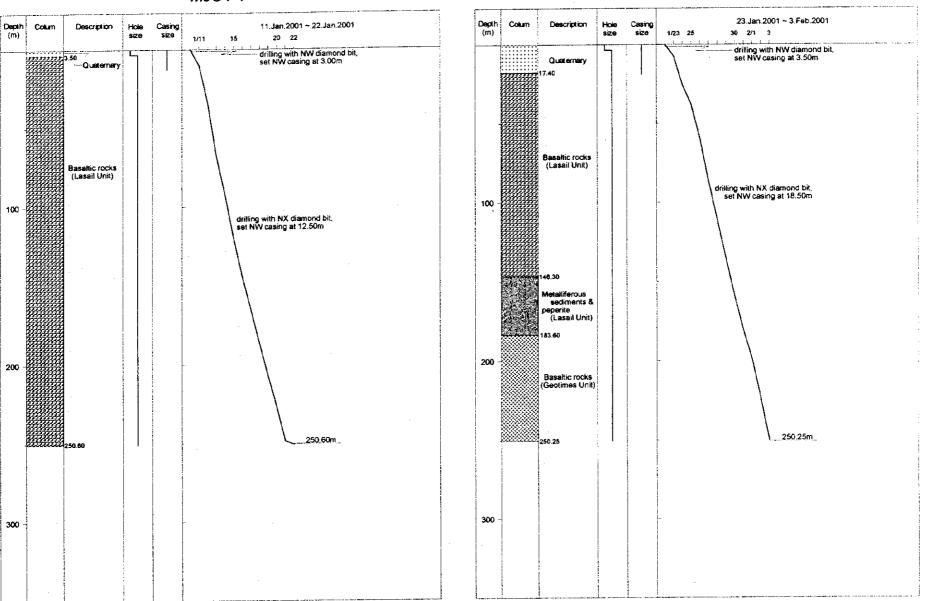
MJOY-2


MJOY-1

A — 7

≥ I

MJOY-6



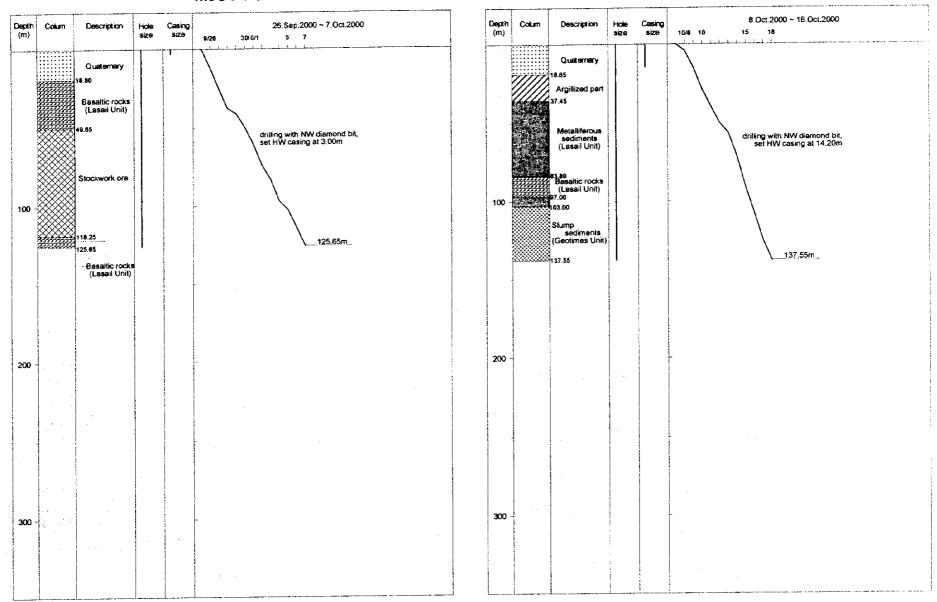
MJOY-5

A — 9

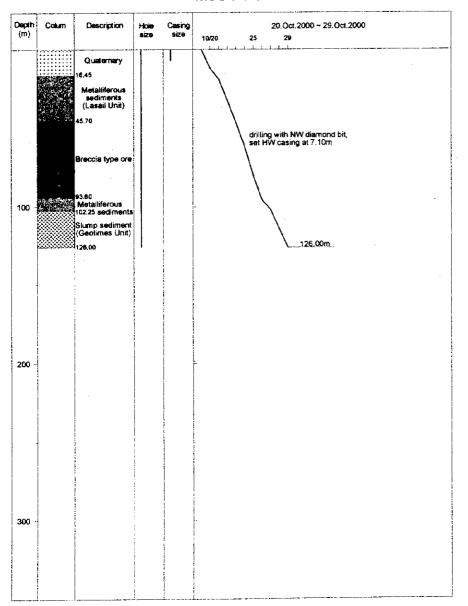
MJOY-7

MJOY-8

A – 10


MJOY-P1

MJOY-P2


A — 11

MJOY-P3

MJOY-P4

A - 12

MJOY-P5

A — 13

. I

Appendix 3

Geologic core logs

·

.

Appendix 3A

Geologic core logs for the drill holes of exploration work

8

Ξ				r		ratio							rali					Samp	ling	(Ore /	Assa	y
Depth (m)	Chart	Lithology	Silicification	Arphization	Ouartz veinleta	Epidole veiniete	Epidole dissemi.	Calcite veinleta	Masaive Sulphide	Skochwork	Pyrite veintets	Pyrite disterri.	Chalcopyride dissemi.	Chalcopyrite variteta	Sphalerite diasem	Sphalerite veirtets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	
0 -		0.00m to 1.60m: Gossenized and weathered part,	<u> </u>			-																	Γ
		1.8m to 2.65m; Argilized part.	-			İ																	
		2.65m to 7.15: Gassenized																					
5 -		and weathersd part.																					
	UvUv]	7.15m to 29.30m; Greenish grey to light grey measive leve - slightly methoded with Dta-				1																	
	1	; slightly weathered, with Otz- Py-Op-Epi veinlets, (oxidized) and fracture filling bematite veinlets, amigdeloidal tex, in																					ļ
10 -		veiniets, amigdaloidal tex, in piaces.																					ł
	(v,v)			ļ																			ļ
	v^vv4			ŀ	а. 11. 11.																		ł
	Ì <u>⊷⊻⊸</u> ⊻₄				11	İ	ļ																
15 -	v v v v v v v v	(14.45m): Fault, 15dag to core ssis, filled by quartz and hemetite with native Gu and			2.5																		
	~~~	gypsum, 4cm width.		ļ	11.1			a tha tha tha							ļ								Į
		(17.35m): Fault, 30deg to core					Ì																ŀ
	<u>`````</u>	sxis, filled by quartz and hematite, 2cm width,		ł	a an an																		
20 -	¥v¥v	·																					
20 -		(18.75m): Fault, 50deg to core			ar a fa																		
	V.V.	axis, filled by quartz and hemetite, Som wieth,			. n. n. j.																		
•	1				1																		
		(19.50m); Fault, Oldeg			1997. 1					:													
25 -		(19.89m): Fault, 45dag			2.1																		
	VVVV.																						
	vvvv	(21.40m); Fault, 80deg			an hai																		
			i	ļ																			ļ
				ŀ																			
30 -		(23.80m): Fault, 20deg	÷	İ .	1																		
	<u>8888</u>																						
	888	(24.40m); Fault, 70deg					Ì																
	6883	(24.85m): Fault, 40dag																-					
35 -	RXXX	(25,00m): Fault, 80deg	ļ																				
	1888																						
	KXX														ļ								
	KXXI	1					-																
	RXXX						ļ																
40 -	<b>1888</b> 3	(29.30m); Fault, 50deg 29.30m to 31.40m; LASAB,																					
	<del></del> , , , , , , , , , , , , , , , , , ,	29.304 to 31.404: LASAR, UNIT: Pillow lava : weathered.																					
	l,`v,`v,	31.40m to 40.85m; LASAL UNIT: Pillow lave; with																					
		abundant fracture filling hemetite.																					Į
		40.85m to 50.90m: Kght gray																					
45 -	lv∛v∛I	measive leve with emygdeloidel texture in places.		l																			
	iv Y v Y d						Ì																
	1			l																			
				<u>ر</u>		. 1			i l								. I						

#### Hole No. MJOY-1 (251.10m; from 0.00 m to 50.00 m)

A - 15

Ho	ie No.	MJOY-1 (251	. I UI	n	; 10	m	5	0.00	ر 	n i	0		<i>i</i> U.U	0 1	n /								
Ê				A	lter	atio	on							zati	on			Samp	ling	(	Ore A	ssay	7
Depth (m)	Chart	Lithology	Silicification	Argilization	Ckuentz voinlets	Epidole veinlets	Epidole dissemi.	Calcite veintets	Sulphide	Slockwork	Pyrite veintets	Pyritie dissemi.	Chalcopyrite dissemi.	Chalcopyrite	Sphalerite dissemi.	Sphaterile veinleis	Megneties	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
50 -		40,85m (Jo 58,80m; light gray matsiwa liwa with umygdaloidal taxtura in places.																					
55 -		58,90m to 85,40m; LASAB, UNIT: previain pror pillow Jeve : breclated in places,							-														
60 -																							
65	12223	· · · · · · · · · · · · · · · · · · ·																			1		
		85.40m to 77.80m; graanist grey massive lave.																					
70																							
75		77.80m to 76.00m: metalliferous sedements						-															
80		78.15m to 78.35m; metalliferous sediments						alter and an the															
85		Autobrecisited massive laws : purplish gray, with abundant hematite.												2									
90																							
95																							
100																	.   .						

No.

**A** 

# Hole No. MJOY-1 ( 251.10m ; from 50.00 m to 100.00 m )

Hole No. MJOY-1 ( 251.10m ; from 100.00 m to 150.00 m )

				_A		rati						ine				,		Samp	ling	(	Dre /	lssa	<b>y</b>
	Chart	Lithology	Silicification	Agilization	Ouenz veiniets	Epidota veinlets	Epidote diseette.	Calcite veinlets	Massive Sulphide	Stackwork	Pyrite veinlets	Pyrite dissemi.	Chelcopyrite dissemi.	Chalcopyrite veinlets	Sphalarite dissemi.	Sphalerite veintets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Z( (%)
-lv		78.35m to 115.55m: Autobraccieted massive lave ; purpliek grey, with abundant hymetite.					-																
								A start															
															ļ								
								and the second															
								2 - E- E- E- E-															
								the substances of															
		115.55m to 115.83m; Sheer zona : 30deg, to core axis. 115.85m to 118.75m;						And Contraction													ļ	ļ	
		Autobroccieted messive lave : purplish gray, with abundant																					
		hysioclastite to sutobreccisted lava.																					
							-											i.					
									ł	-								}					ŀ
    -		129.60m to 131.40m; Shear 2019.																					
		131.40m to 132.00m hysioclastite to sutobreccisted leva.	┢					-97102															
; -		j evtobrecciated in places.																					
		- - -																		-			
- 0	Čv. v	.]		8																		ì	
	\^`v`																						
5 -		III. III. III. III. III. III. III. III						status.															
								تميك كالمحادث المكالي والمحالية المحالية المحالية															
i0 -						·																	

Ē	+			A	lte	_								zat				Samp	ling	(	Ore A	ssa	/
(m) mqeu	Chart	Lithology	Silicification	Archization	Ouartz veintete	Epidote veinlets	Epidote diseemi.	Calcite veniete	Massive Sulphide	Slockwork	Pyrite veinlets	Pyrile disserti.	Chalcopyree dimenti	Chalcopyrite veintets	Sphalorite diasem	Sphakorite Veinleta	Megnetike	Depth (m)	D.L. (m)	Au (g/t)	<b>Ag</b> (g/t)	Cu (%)	Zn (N)
Ϊ	Δ ⁴ Δ ⁴	144.20m to 154.80m: hysioclastite ; greenish grey		<u> </u>													-						
	Δ <u>΄</u> Δ΄	with reddish brown metrix.																					
	Δ. Δ. Υ <u>Δ</u> . 6 Ζ							4. - )															
		154.60m to 154.70m; Fault,			Į			0															
	$\langle V \rangle \langle V \rangle$	50deg., 10cm in width. 154.70m to 155.35m:																					
		hydoclastite ; greenish grey with reddiah brown matrix. 155.35m to 155.39m: Fault,	Í	ļ			ļ																
	**** ****	70dog., 4cm in width.																					
1	~~~~ ~~~~~	155.39m to 171.35m; greenish gray messive leve ; eutobrecciated in places,						2															
	v∵v∵i																						
-	vvv)	· ·				ļ																	
	vvv.		Ł												Į								
	$\langle \rangle \rangle \langle \rangle \rangle \langle \rangle \rangle$										1										· .		ļ
	$\langle \rangle		L			ļ	Ì															1	
															ļ								
)									ĺ														ļ
	<u>ŘŘ</u> Ř	171.35m to 171.40m: Fault, 50deg. to core axis.		ļ		ł		18									1						
	<b>888</b>	171,35m to 183,35m: LASAL, UNIT: Pillow Isva ; Lansil?,				ĺ										ļ							1
- <del>,</del>	1888	UNIT: Silkov lova : Lanni?, light greenish grey, strong Py, diasemi. in interpitores.											ļ	1									
	<u>R</u>																			]			ł
	888						ļ													ļ			
	<u>888</u>	4					Ì											ļ					
0 -	1888				1	ł						1										1	
	888	- 4 1										÷											
	ŔŔ	1 18.35m to 188.35m; Beselt								1			Ì										
5	< < < < < < < < < < < < < < < < < <	dyke.	_											1		ļ							
		< (8.35m to 186.35m; Basait dyku.														ĺ					Ì		
	888	188.35m to 202.60m: LASAL URIT: Pillow lave ; light premish grey, strong Py.							Î														
	1888	disaami, in interpillows.															ł		Ì				
0	-3885	Ś							Ì		I												
	<u>}</u>	Ş											ļ										ļ
	888	ß																					
		Ś						1														<b>.</b> .	
5	888	8								ĺ					ļ								
	888	ß																					
	- <b>XXX</b>	ξ.			:																		
00	<u> 6886</u>	8			Ľ																}		

#### Hole No. MJOY-1 ( 251.10m ; from 150.00 m to 200.00 m )

A – 18

Hole No. MJOY-1 (251.10m; from 200.00 m to 250.00 m)

t	<u>,</u>	1.44	<u> </u>	· · · ·		rati			L	····-				zat				Samp	ling	(	Dre /	Assa	<u>у</u>
	5	Lithology	Silicification	Argitization	Quertz verilets	Epidole vemiets	Epidole dissemi.	Calcite veiniets	Mazaiva Sulphide	Slockwork	Pyrite	Pyrite dissemi.	Chalcopyride	Chalcopyrite veiniete	Sphaterine dissemi	Sphalerite veinlets	Magnetile	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Z1 (%)
	8	186.35m to 202.80m: LASAA UNIT: Pillow leve ; light greenish grey, strong Py, dissemi: in interpillows.																					
		202.60m to 206.20m; Autobroccieted pillow lava ; light greavish grey, finaly bracciated.						an da ta ana															
		208.20m to208.85m; Besait dyke. 206.85m to 210.75m; Autobrecziated pillow lave ;			1																		
					1																		
1 S S	~~~~~~	dyke. 213.70m to 217.85m: Messive			and the second second			5															
	Ŵ	lava ; fight grey.			a the second second																		
22 22 22 22 22 22 22 22 22 22 22 22 22	्री	217.85m to 218.70m; Beselt dyke. 216.70m; to 219.15m; Massive Java.																					
	$\langle \rangle$	1942 219.15m to 220.40m; Basalt dyka. 220.40m to 225.35m; Messiva lava ; light gray to gory.			an and a state of the																		
	Ű,	225.35m to 225.85m; Beasit			alah su mula			zilas Tarif															
22	10000000000000000000000000000000000000	223.85m to 228.20m; Massive lava. 228.20m to 230.20m; Massive			1																		
	[v]	230.20m to 238.45m. Messive lava : light groy, partly finely breuciated.			are an area			ning a genera															
							1.	to a subscription of the															
	V V V													1									
		238.45m La 239.55m: Basait dyke.			i de que entre e									****									
<pre></pre>	×)	239.55m to 240.85m; Beseit dyke. 240.85m to 245.60m; Messive Save ; light gray.						and and and and a															
∨ [∨] ∨ ∨ [∨] ∨ <del>∨</del> [∨] ∨	× ×	Sheared zone,				ĺ		and a second second second															
		Masaive loce : light groy. Besalt dyke. 247.95m to 248.75m; LASAB												•									
XX	Ž)	UNIT Sheared zone, Autobrocciated pillow lava,						: : :															

Ê	+				lte						M	ine	rali:	zati	on			Samp	ling	(	Ore A	\ssay	/
Depth (m)	Chart	Lithology	Silicification	Argilization	Ouartz vemlete	Epidote vembre	Epidole dissemi.	Catcite ventiete	Massive Sulphide	Stockwork	Pyrite veinlet	Pyrite disterni	Chalcopyrite distaerni	Chalcopyrit	Sphalerite dissemi	Sphalerita ventet	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (1)	Z( (%)
50 -	2222	248.85m to 251.10m: LASABL UNIT: Autobreciated pillow Iava : light grey.			140 1			11.25															
255 -																							
260 -																							
-																							
265 -																							
270 -																					N		
275 ·	-																	-					-
280																							
285																							
290									5 45 <b></b>														
295																							
300																			5				

#### Hole No. MJOY~1 ( 251.10m ; from 250.00 m to 251.10 m )

	Hole	No.	M
--	------	-----	---

Hole No. MJOY-2 (200.35m ; from 0.00 m to 50.00 m )

	╷╷		L,			rati	on							zati	ion			Samp	ung	(	Dre A	\ssa}	<u> </u>
	Chart	Lithology	Silicitication	Argilization	Ouartz vervieta	Epidote veiniete	Epidote dissemi.	Calche verviets	Messive Sulphide	Stockwork	Pyrite veinteta	Pyrite disserti.	Chalcopyride diagemi.	Chalcopyrite vaintets	Sphalerita dissemi	Sphalenie veiniets	Megnetite	Depth (m)	D.L (m)	Au (g/t)	Ag (g/t)	Cu (%)	Z. (%)
-72 22 22	<u>88</u>	0.00m to 11.90m; LASAL URET: Wasthered pilow leve ; Lasal, gossenized stockwork zone.																0.00 2.00	2.00	0.22	0.8	0.22	0.0
Š																		4.00	2.00	0.30	1.0	0.29	0.0
											ļ							6.00	2.00	0.19	0.5	0.49	0.0
																		8.00	2.00	0.25	0.5	0.55	0.
								1										10.00					
		11.90m to 84.50m: LASAIL UNIT: Pittom laws; Laswil, light gray, most of veinlets ore found in interpillows, veinlets width.2mm to 50mm; 11.90m			an an an													12.80	2.80	0.13	0.5	0.70	0
<u> </u>		with Zree to Stren; 11.90m to 12.80m; gossenized stockwork zone.									Γ	ſ		Γ				13.00	2.00	0.10	2.3	0.54	0
ary Try					, destruction					1								17.70	1.90	0,13	0.5	0.26	1
					ala ana ar													19.70	2.00	0,40	1.0	0,78	
XXX	ŠČ	4 4 4			A NUT YOUR													21,70	2.00	0.13	1.3	1,40	
<u>t</u>				-	all a mode		ţ											23,70	2,00	0.12	1,0	1.72	
XXX XXX									2									25.70	2.00	0.25	2.0	0.90	
8	XX																	27.70	2.00	Q.15	2.5	0.73	
(XXX)		Ś						-										31.70	2.00	0.12	2.8	1.27	
<b>XXX</b>		8																33,70	2.00	Ì	1.5	1,23	
rek	錢	§																35.70	2.00		2.5	0.67	
<u>zzzz</u>																		37,70	2.00		1.0	0.70	
حجح					1. S													39.70	2.00	0.30	2.3	0,65	
444					and the second the			ł										41.70	2.00	0.14	0.8	0.49	
To a los				.				-										45.70	2.04	2.40	2.5	0.84	
4444	XX																	47.70	2.0			0.65	
	<u>88</u>	<u>S</u>								Ű								49,70	2.0	0 0.10	0.8	0.64	

A – 21

•

t				lte	_	ion						raliza				Samp	ling	(	Ore /	ssa	/
Chart	Lithology	Silicification	Argitization	Ouant2 ventete	Epidole veiniela	Epidole dissemi	Catche veniete	Maasive Sulphide	Stockwork	Pyride veiniete	Pyrite diesemi.	Chalcopyrite dimenti. Chalcopyrite	SHERA A	Sphalecie Vintee	Magnelike	Depth (m)	D.L. (m)	Au (e/t)	Ag (g/t)	Cu (%)	Zn (%)
	11.90m to 86.50m; LASAIL UNIT: Pillow Isva : Lasail, light gray, most of vainlets ors found in interpillows, vainlets width:2mm to 50mm : 11.90m to 12.80m and 13.80m to															\$1.70	2.00	0.50	0.5	0.47	0.01
	17.70m: gossenized stockwork zene,															53.70	2.00 2.00	0.00 0.14	0.5	0.44	0.01 0.01
																55.70	2.00	0.10	1.5	1.31	Q.01
																57.70 58,70	2.00	0.40	1.3	0. <b>36</b>	0.01
	Ś		3	d fradal fare												61. <i>T</i> Q	2.00	0.90	2.8	2.90	0.01
				a bara da tan												63,70	2.00	0.14	1.0 0.8	0.78	0,01 0.01
				and the second second												65.70	2.00	0.10	1.0	0.48	0.01
																67,70 69.70	2,00	0.30	0.8	0.54	0.01
				6.1211.545.04												71 <u>.70</u>	2.00	Q.50 	0.5 0.8	0.42	0.01 . 0.01
				옷은 가 가지 않는												73,70	2.00	0.80	0.5	Q.15	0.01
																75.70	2.00	0,13	0,6	0.51	0.02
																79,70	2.00	0.20	1.0	Q,57	0.01
									1000					-		81.70	2.00	0.45	1.8	0.32	0.01
				1 12 12 13 14												<b>81</b> .70	2,00	0,10	2.0	0,31	0.02
	36,50m to 96,75m: LASAIL UNIT: Pillow lava : light grey. with vericle taxture			na a anna a stàit												85.70 87.70	2.00	0.33	2.0	0.34	0.02
	8															\$9,70	2.00	ļ	2.3	0.95	0.0
	X															91.70	2.00		2.0	0.43	0.05
	X															93.70 95.70	2.00	0.15	2.0	0.40	0.00
	91.75m to 110.80m: LASABL UNIT: P-Now leve : Lasail, light gray to gray.															\$7.70	2.00	0.10	1.5	0.22	0.0
, 188	8																2.00	0.10	1,6	0,45	0.0;

#### Hole No. MJOY-2 ( 200.35m ; from 50.00 m to 100.00 m )

÷				Alte	rati	00				M	<b>n</b> • •	raliz	, at	in-			Samp	ling		200	1000	
Ē	Ę	1.44 4				r			<u> </u>	-				·		r	Sainp	iii ig		Dre /	Assa r	у 1
Depth	Chart	Lithology	Silicification	Arguization Ouentz veinlete	Epidote veiniets	Epidote dissemi	Calcite vemiels	Messive Sulphide	Stockwork	veiniets	Pyrite dissemi	Chalcopyrite dissemi.	Chalcopyride veinlete	Sphalevite dissemi	Sphalente verziet	Magnetie	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	0
مه م	888	96.75m to 110.80m; LASAIL UNIT: Pillow lava : Lasail, light gray to gray.																2.00	0.80	1.8	0.55	0
	<u> </u>			a second													101.70	2.00	0.20	1,8	0.11	0
م م م																	103.70	2.00	0.44	2.3	ú.18	•
																	105.70	2.00	0.05	2.3	0.43	G
لم م در م																	107.70	2.00	0,27	1.8	0.13	¢
, <u> </u>		130.00m to 112.10m; LASAL LNUT: Pillow lave ; Lasail, greenish gray, with variole		dente la de													111,70	2.00	0.19	1.8	0.22	0
444		112,10m to 162,20m; LASAIL UNIT: Pillow leve ; griy ;		an the second													113.70	2.00	0.15	2.5	6.79	•
444		118.85m to 120.05m,with variale texture		1977 (P. 14													1 \$ 5.70	2.00	0.10	2.0	0.34	¢
1444				1. a. 1. a. a.													117.70	2.00	0.21	25	0.66	4
444	XXX			And the second													119.70	2.00	0.12	1.9	0,55	6
and a		•		A Contraction of the													121.70	2.00	0.53	2.0	0.22	6
				an water													123,70	2.00	0.37	13	0.41 ;	1
- <del>2</del> 2				1. 180 - 190 - 19													12 <b>5</b> .70	2.00	0,37	1.3	0.23	•
4444																	127.70	2.00	1.01	f. <b>5</b>	0.45	4
24																	129.70	2.00	0.03	1.4	0, (6	1
4444	XX																131.70	2.00	0.08	1.3	0.27	0
				States in													133.70	2.00	0.21	1.5	0.15	0
- 44																	135.70	2.00	0.13	1.5	0.32	0
																	f37.70	2.00	0.69	1.0	0.10	
<u>م</u> م م				and an													139.70	2.00	0.13	7.2	0.43	0
2000				والمراجع والمراجع													141.70	2.00	021	1.4	0.19	0
4 4 4 7				stati data bada a													143,70	2.00	0.21	1.7	1,64	0
محمح				a shafi e sha													145.70	2.00	0.64	1.2	0.16	0
				and the second		-											147.70	2.00	0.16	1.0	0,10	6

### Hole No. MJOY-2 ( 200.35m ; from 100.00 m to 150.00 m )

ŝ.

1

A — 23

Ho	le No.	MJOY-2 (2	00.35r	n;	; fr	om	1	50.	00	m	to	20	00.3	35	<u>m</u> .	)		·		<b>,</b>			
Ê						rati	on							izat		1	<b></b>	Samp	ling	ļ	Dre /	Assa	/
Depth (m)	Chart	Lithology	Silicification	Acitzation	Quartz veinlete	Epidole vemieta	Epidote diasemi	Calcita	Measive Sulphide	Stockwork	Pyrite Veinteta	Pyrike	Chalcopyrie	Chaicopyrite	Sphalarite	Sphalerite	Magnetie	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
50 -		112.10m to 182.20m; LASAE UNIT: Pillow levs; gray; 118.85m to 120.05m; with variale texture																151.70	2.00	0.11	1.2	0.24	0.03
					s anns anns a'								-					153.70	2.90	0.00	1.3	0.41	0.02
5 -					and a she											Ì		155.70	2.00	0.42	1.3	0.22	0.02
					and the state					New South Construction of the South								157,76	3.05	0.75	1.7	a.40	0.02
60 ·													-					180.75					
		182.20m to 184.90m: Manniva Java ; light gray.											***					1					-
65	Ř	164,90m to 167,60m LASAR, UNIT: Pillow leva ; light gray,																A					
		187.50m to 189.90m; Massive lava : light gray.					1																
70		199,00m to 197,00m LASAL UNIT: Pillow lavs : Lasail, ligh gray, analitistic pillows with thick interpillows, with varial texture in places, pyrite discommention is intenes in	11				1									5				2			
175		interpillows.		ŗ																	3		-
											1								ł				<b>H</b>
180																ł						i.	
											1					ļ			Ì				
18															2					1			
19	• XX	×														5							
		8 S																					
19	s - 888	X	·																				-
		197.80m to 200.35m LAS	AL.																-	5			
20		<ul> <li>△ UNIT: Autobrecciated pille lave ; light grey.</li> <li>△ </li> </ul>	aw I												L								

### Hole No. MJOY-2 ( 200.35m ; from 150.00 m to 200.35 m )

Hole	No	M.
LICIE.	FIU.	

Hole No. MJOY-3 (251.10m; from 0.00 m to 50.00 m)

εl						rati	on					line						Samp	ling	(	Dre A	ssa	/
Depth (m)	Chart	Lithology	Silicification	Agilization	Quent2 veiniets	Epidote vemiets	Epidote distremi.	Calcile veintete	Massive Sulphide	Slockwork	Pyrite veinlets	Pyrite dissemi	Chaicopyrite disterni.	Chalcopyrite veiniete	Sphalerite datemi.	Sphalertie veiniels	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	2 ()
		0.00m to 17.15m: LASAB, UNIT Palon lave : light prenish prov with annydakidel texture.																					
10 -																							
15 -		17.15m to 22.30m Messive		7														5					
20 -		17, Jont (a 22-bit), measure Java : Bary generality growth annygeleicidat testure.											-										
25 -		22.30m to 23.80m; LASAL UNT: Pilow leve : light greatish gray. 23.80m to 28.70m; Messive leve : light greatish gray.						Constraints															
30 -		28,70m to 29,85m; LASAR, UNIT: Pillow lave. 29,85m to 30,10m; Fracture 2009. 30,10m to 30,70m; LASAR, UNIT: Pillow lave.																			an an an an an an an an an an an an an a		
35		30.70m to 34.15m; Messire lova : with anygdaleidal texture. 34.15m to 43.70m; LASAL URT: Phone Ine : anygdaloidal texture in pleces.																					
40																							
45		43.70m to 45.20m; Massive lave : Sight greenish grty, with any gelecide. 45.20m to 82.50m; LASAB. URIT: Pikon lave : Sight greenish gray, with any gelecide lavelwe in places.		44																			
50																							

A — 25

· · · · · · · · · · · · · · · · · · ·			T		 ition		-		 		zati				Samp	ling	(	Ore /	Assa	
Chart	Lithol	ogy	Silicification	<u> </u>	 veinteta Epidote Jieremi.	Calcite veinleta	Maasive Sulphide	Slockwork					Sphalarite veinieta	Magnetia	Depth (m)	D.L. (m)	Au	Ag (g/t)	Cu (%)	Zn (%)
	45.20m to 62.50m to UMIT: Pillow lavs ; li greenist grey, with amygdeloidal textur	ASAD, pht a in places,																		
	Š																			
	62.50m to 71.50m; I UNIT: Pillow lave ; p gray and greenish ;	ASAL urplish rey.																		
												1				-				
															-					
	71.50m to 76.20m; I leva : greenish groy amygdaloidel textur	Anasiva mith 8.																		
	76.20m to 79,70m: ( UNET: Pillow Iava ; ; gray.	ASAQ urplish											-							
	79,70m to 88,65m; I UNET: Prilow lave ; I greenish grey, stror chieritization in Info	S Trillons,		Serie Marchan																
	\$7.15m to 88.65m ; variole texture.	with																		
	88.85m to 103.20m UNIT: Pillow lava : gray pillows and da interpillows, with va	rk preen																		
	texture (88,65m to Strong choritizatio interpillows.	92 40m)																		
								.							- - -					nie v
	77777 777777																			
<u>, 188</u>	3									<u> </u>								]	l	

# Hole No. MJOY-3 ( 251.10m ; from 50.00 m to 100.00 m )

Hole No.	Hole	No.	
----------	------	-----	--

MJOY-3 ( 251.10m ; from 100.00 m to 150.00 m )

Ê	<del>ب</del> ا				lte						~		_	zat				Samp	ling		Dre /	Assa	<b>y</b>
Depth (m)	Chart	Lithology	Silicification	Argilization	Ouertz veiniete	Epidote veinletu	Epidole distretti.	Calcite vemlets	Massive Sulphide	Stockwork	Pyrite veinlets	Pyrite	Chalcopyrite dissemi.	Chalcopyrite veinlats	Sphalerite dissemi.	Sphalarite veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Z. (%)
		88.65m to 103.20m: LASAL UNT: Pillow leve; purplish gray pillows and dark grasn interpillows, with variola texture (88.65m to \$2.40m), Strong chloritization in interpillows.																					
		103.20m to 121.23m: LASAIL, ONET: Philore laws ; greavish gray to light greanish gray, mith variole lastars, with strong chloritization is interpationes, 113.30m to 113.40m ; calcite vain.																					
								- V-14															
and and																							
		121.23m to 123.27m; Fault ; 35deg. to core axis. 121.27m to 123.70m; Brown to gratnish brown measive leve. 123.70m to 126.40m; LASAR. LART: Philom laws, greenist gray.																					
<del>datatata</del> ta		126.40m to 159.40m; LASAR, URIT: Pallow leve ; light gray, calcite prodominant in interpellowa, calcite also falling in minor fractures.																					
Addada.		136 48m to 138.32m; Frecture filled by calcite. 25deg. to core and. 136 52m to 142.80m; LASARL UNIT: Pillowa: light gray.																					
<u>apaaauu</u>		calities prodominant in interpillows, calitie also filling in minor fractures. 142 60m to 143 50m: Fracture Filled by calitie, 25dag, to ove					-	2.2013年1月1日日												<b>G</b> ben digen di la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la serie de la s			
MAAAAAA		axis. 143.30m to 159.38m; LASAE. URIT: Pillow lave : light gray. calcite preferminent in Interpillows, calcite also filling in minor fractures.			2		ł																
, Å	XX							经承属生															

T	Ţ			A	lte	ratio	on	T			М	ine	rali	zati	on			Samp	ling	C	)re A	\ssay	1
	Chart	Lithology	Silicitication	Argitization	Ouariz veinlets			vernleda	Sulphide	Slockwork	Pyrite veinlete	Pyrite disterni	Chalcopyrike distanti.	Chaicopyrile veinlete	Sphalerite diageni.	Sphalente veinlete	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (¢/t)	Cu (\$)	Zn (%)
1 1 1		143.90m to 158.38m; LASAB, UNET; Pillow lave ; light grey, calcite predominent in interpillows, calcite also filling in minor fractures.																					_
4		ari manaya siya ya					1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 -																
								allow Kirster and															
2000								and the second				F											
		159.38m to 159.42m: Fault ; 45deg. to core axis. 159.42m to 199.38m: LASAIL						ili A an a com															
		UNIT: Pillow lave(Geotimes) : greenish grey to light grey.									*****												
; -							1. 100 C																
					ないのが見			والاستعاديات والمرافع				ſ								-			
, -					a Patrice Inc.			STAL										170.10	1.90	0.19	9.7	0.10	9.03
								ĺ										171,10 172,10	1.00 1.00	0.16 0.11	0.7	0.01	0.01
, -					an Maria									P			ļ	173,10 174,10 175,10	1,00 1.00	0.29 0.21	1.3	0.06	0.01 0.01
				3							I			ŀ				176.10 177,19	1,00 1.00 1.00	0.45 0.95 0.61	0.9 0.8 0.9	0.15	0.01
0 -														ſ				178,10 179,10	F,00	0.19	0.7 0.6	0.07 0.02	0.04 0.05
		4 4 4 4																180.10	2.00	0.19	0.7	0,03	0.01
_		1 2 2			10 10 10											-		184.10	2.00	0.56	0.8	0.02	0.01
5 -																		186,10	2.00	0.11	1.0 0.8	0.35	0.01
																		186.10	2.00		0.8	0.73	0.02
0								10,000,000						ſ				190,10	Z.00	1.25	D.6	0.01	0.01
		8													-			192.10	2.00	0.05	lu	6.04	0.01
5		\$						allo ba lo familia dan 2										196.10	2.00	0.08	0,5	0.01	0.01
																		194.35	2.75		0.6	0.10	0.01
00	<u>1888</u>	199.42m to 206.98m; LASAD UNIT: Pillow lave ; light	. ]					2										199,25	1.00	0.27	0.8	0.41	<b>Q</b> ,Q1

#### Hole No. MJOY-3 (251.10m ; from 150.00 m to 200.00 m )

A – 28

	1	No	
н	0	NO	. N

È,

MJOY-3 (251.10m; from 200.00 m to 251.10 m)

			Γ		ltera			Γ		M	ine	raliza	atic	n		Samp	ling	(	Dre A	Assay	y
Depth (m)	Chart	Lithology	Silicitication	Argitization	Ouariz veniete	vainav	Epidote dissemi. Calcite ventiete	Mazero	Stockmork	Pynite veiniete	Pyrite dissemi.	Chakopyrita dissemi. Chakopyrite	riejuen	Sphalente Sphalente	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	Zn (%)
200 ~		199.42m to 206.98m; LASAL UMT: Pillow lave ; light greenish grey to light grey.					and the second second second second second second second second second second second second second second second		-							201.15 202.15 203.10 204.70	1.30 1.00 0.95 1.60	0.16 0.69 0.89 0.32	0.6 2.1 2.2 0.8	0.16 5,43 5.66 0.99	0.01 0.03 0.03 0.03
210 -		208 98m to 207.02m Frecture. 207.02m to 210.05m (ASAB, UMT: Pilow leve ; light grey to gety.	7													208,70 208,70	2.00 2.00 2.00	0.16 0.11 0.08	0.8 0.8 0.5	0.07 0.06 0.07	0.00 0.01 0.01
215 -		210.00m to 211.50m; Hydroclastika, 211.50m to 232.90m; LASAE, UNIT: Prilion fore; gray to light gray, variab testure in 216.85m to 232.80m.			a mining and a second second second second second second second second second second second second second secon											210,70 211,80 212,80 213,80 214,80	1.10 1.00 1.00 1.00	0.19 0.67 0.19 0.43	0.5 0.6 0.5 0.9	0.01 0.64 0.10 2.83 1.07	0.01 0.01 0.01 0.01 0.01
220 ·										- 						218.20	1.40	0.19	0.0	1.97	
225																221.90 223.90 225.90	2.00	0.11	9.5 0.6	0.09	9.02 0.01
230															- and the second second second second second second second second second second second second second second se						
235		232.90m to 237.60m Hysioclositis : kijnt prey. 237.90m to 251.10m: LASAR	-																		
240		237.00m to 251.10m (LASAB, UNIT) Piloto as Light proy- with dark gray interpitors, interme chartization in interme chartization in														240.50 241.50 242.50	1.00 1.00 1.00	0.21 0.24 0.53	2.4 0.6 0.7	0.18 0.43 0.61	0.01 0.01 0.02
245															-	243.50 245.45	1.95	0.16	0.6	0.25	0.02
250																					

A – 29

			A	lte		on					ine	rali	zat	ion			Samp	ling	0	Dre /	Assa	У
Chart	Lithology	Silicitication	Argitization	Ouentz verciets	Epidote veiniels	Epidole diasemi.	Calcite voiniels	Measive Sulphide	Stockwork	Pyrite vemiets	Pyrita diasemi.	Chalcopyrile diesemi.	Chalcopyrite veintets	Sphaterite dissemi.	Sphalerile veinlets	Magnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	2 (X
888	0.00m to 9.05m; LASAL UNIT: Pillow lays; moderately weathered, oxidized part.														[							r
\$ <u>\$</u> \$	Strong silicification in interpillows																					
388																						
8883																						
6666																						
<u>k</u>																						
1888	9.05m to 43.45m; LASAIL																					
1888	UNIT: Pillow lava; light gray, oxidized part till 14,05m.										ĺ											
1888				1.121																		
<u>888</u>				. X.1.1																		
6888				10.0																		
<b>1888</b>	4																15.60					
6666	-			1														2.00	0.03	2.7	0.07	0.0
888																	17,60	2 00	0.08	1.1	0.15	   0.1
<u> 8888</u>	4			3 1													19.00					
888																	21,10	1.50	0.04	0.9	0.06	0,1
BXX																		2.00	0,10	1.0	0.20	0,1
<u> </u>	]																23,10	2.20	0.14	1.0	0.28	0.
1888																	25.30					
<del>3</del> 888	4																	2.00	0.02	0.8	0.05	0.1
6883																	27.30	2.00	<0.01	0.8	0.01	0.
<u> 8888</u>	4 4																29.30					
1888	հ		ļ															2.00	N.D.	0.8	<0.01	0.1
888	4 ਮ ਹ																31.30	2.00	N.D.	0.8	<0.01	0.
888														ŀ			33.30					
1888																	35.30	2.00	N.D,	3.0	<0.01	0.
<b>1665</b>	2 2																	2.00	<0.01	0.8	0.01	۱a
888					ĺ												37,30					
<u>1885</u>	) )															ļ	38,30	2.00	N.O.	0.8	0.01	0.1
1888	н Х												Γ					2.00	0.01	0.8	0.02	0.
888																	41.30					
	43.45m to 45.15m; Baselt																					
< < < \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	~ dyhe. <																					
888	45.15m to 94.05m; LASAL UNIT: Pillow lava; light grey, oxidized part till 14.05m;																					
₿\$\$	Ş									ſ												
888	S									1												
<u>አዳጻ</u>	<u>.</u>		1	l:	<u> </u>	1		L	L	1	1	L	L	1		i	l	L		<u> </u>		

## Hole No. MJOY-4 ( 200.10m ; from 0.00~m to 50.00~m )

A — 30

.

Hole	No.	M
------	-----	---

JOY-4 (200.10m ; from 50.00 m to 100.00 m )

Chart	Lithology 45.13m to 9405m: LASAR UNIT: Palow law; light groy, oxidized part bil 14.05m.	Silicitation	Agitzation	Quartz	Epidote veiniets	Epidole	Calcite Vendeta	Massive Sulphide	Stockwork	Pyrite Vemlets	Pyrite	Chalcopyrate disserts.	Chalcopyrite veiniets	Sphalerite dissemi.	Spharente verniets	Megnetite	Depth (m)	D.L. (m)	Au (g/t)	Ag (g/t)	Cu (%)	
	45.15m to 94.05m; LASAL UNIT: Palow law; light groy, oxidized part bil 14.05m																					T
	vvoorzago para o vir 19,4470.									Ĺ			i	6								
							! ·	i														
													L									
				[									Γ									
XXX4			Ì	3					Ú.								\$1.00					
പ്പപ്പ																	<b>51.00</b>	2.00	0.25	1.0	0.49	0.0
<u> </u>																		2.00	0.18	1,0	0.35	0.
<del>888</del>																	65.00	200	(0.0)	0.8	6.01	0.0
<del>3</del> 88																	67.00			•••		
XXX														İ				2.00	0,03	0.8	0.05	0.0
<u> </u>																	69.00	2.00	0,09	0,9	0.19	0.0
<u> </u>																	71,00					
<u> </u>															ļ		77.00	2.00	0.01	0.8	0.02	0.0
3883																	10.00	2.15	0.01	<b>0.8</b>	0.0Z	0.1
\$ <u>88</u>									<i>.</i>	ľ							75.15					
<u> </u>																		315	0.02	14	0.05	0.0
3883																	78.30	0.13	0.02	1.4		
3333										I								2.00	0.02	1,3	0.08	0.
388																	90.30	2.00	0.03	1.2	0.06	0
<u> </u>																	82.30					
<u> </u>																		2.00	0.01	0.9	0.01	0.
388																	04.30	2.00	0.02	G.9	0.04	0.
5665																	86.30					
3883											ļ						89.30	2.00	0.13	0.8	0.12	0.
333							ĺ		ļ			ĺ						2.00	0.12	1.1	0,17	0,
3882															1	ļ	90.30	216	0.07	0.8	0.04	0
888																	92.45	¢.19			0.00	
<del>3</del> 222	04.05																					
	94.05m to 96.40m; Measive leva: Light grey.																					
ਲੋਲੋਲੋ	96.40m to 99.40m; LASAE.						1														1	
<u> </u>	LIGHT: Pallow leve, 97,25m to 97,85m; with variels texture,																					
<u> </u>	39.40m to 102.60m Mansive																	ł				
	V V		Pit A0m to 99.40m; LASAE,     Pit 40m to 99.40m; LASAE,     SAE,     S	levs: Light grey.     levs: Light grey.     V     levs: Light grey.     V     levs: Light grey.     Solution: Palem levs: 97.25m to     97.85m: with varials texture.     V     98.40m to 102.80m: Massive	Pá độm to 90 độm Là Sốa. Pá độm to 90 độm Là Sôa. Pá độm to 90 độm Là Sôa. Pá độm to 90 độm Là Sôa. Pá độm to 90 độm Là Sôa.	MADE LO SHADIN: Masaive Inve Light gray. MADE Light 2012 ADM: Masaive Inve Light 2019 ADM: LaSSA Bill Think winds tarture.	PROFILE DB ADM: LASAE RATE DB ADM: LASAE DR ADM to DB ADM: LASAE DR ADM to DB ADM: LASAE DR ADM to DB ADM: LASAE DR ADM to DB ADM: LASAE DR ADM to DB ADM: LASAE	94.05m to 98.40m: Massive Investigating pro-	94.05m to 98.40m Maasive Inva Light gray.	94.05m to 394.0m Maasive Inst Light gray.	94.05m to 39.40m Measive Invit Light pray. Bit Adom to 39.40m LASAL UBIT: Falser lists 27.25m to 37.85m with variety Lasture.	94.05m to 39.40m; Masaive Inva Light prey. 94.05m to 39.40m; Masaive Inva Light prey.	94.05m to 98.40m: Massive Investigating pro-	94.05m to 394.40m Maasive       Image: Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second Second S		Addition to 86 Advin Measure Installing gray.	A COm to 86 Adm Maarve MACHINE DB Adm Maarve Installing gray.	75.15         75.15           78.30         90.30           82.30         84.30           84.30         84.30           84.30         84.30           84.30         84.30           90.30         92.45	MOSPIN LINE MARKYYY       MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY         MOSPIN LINE MARKYYY	1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000         1000 <td< td=""><td>MidSon 10 Monutation         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 00000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 00000         100 00000         100 00000         100 00000         100 00000         100 00000         100 00000         100 000000000000         100 0000000000000000000000000000000000</td><td>Model is a statume larger were were were were were were were</td></td<>	MidSon 10 Monutation         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 00000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 0000         100 00000         100 00000         100 00000         100 00000         100 00000         100 00000         100 00000         100 000000000000         100 0000000000000000000000000000000000	Model is a statume larger were were were were were were were

A - 31