Chapter 4 Synthetic interpretation

4-1 Control factors of mineralization

In this survey, existing data analysis, satellite image analysis and a ground truth were carried out over two fiscal years of Phase-1 and Phase-2.

In the existing data analysis, a literature research was done regarding data owned by SEGEMAR, provincial governments and private companies in the Phase-1. In the Phase-2, analysis was done on airborne geophysical exploration data acquired in the Neuquen province, which is owned by SEGEMAR. In addition, 9,242 stream sediments samples, which were taken in the Neuquen province by SEGEMAR in past, were re-analyzed for 48 elements, and the chemical analysis results were interpreted.

In the satellite image analysis, the false color images of 13 scenes were made and geological interpretation was done for them, and alteration zones of total 244 places were extracted by making of ratio composite images. In the phase-2, detailed extraction of alteration zones was done for 6 scenes including promising district, and the alteration zones were divided into neutral alteration and acid alteration.

In the ground truth, survey districts were selected based on the results of the existing data analysis and the satellite image analysis. In the Phase-1, 31 districts were surveyed where the known mineralization and alteration zones are distributed. In the Phase-2, total 16 districts were surveyed. Among them, 9 districts were selected for follow-up survey based on the results of the Phase-1, and 7 districts were newly selected. Interpretation for above-mentioned survey results is as follows.

4-1-1 Interpretation on results of the existing data analysis

In the literature research of the existing data analysis, known deposits in the survey area are classified into vein deposits, porphyry copper deposits, high sulfidation gold deposits, placer gold deposits, sedimentary ore deposits and others. Vein deposits are subdivided into auriferous polymetallic vein deposits and non-auriferous polymetallic vein deposits. Important among these deposits as the subject of the exploration is gold and auriferous polymetallic vein deposits, high sulfidation gold deposits and porphyry copper deposits. Representative ore deposit for auriferous quartz vein is Joya del Sol, auriferous polymetallic vein is Andacollo, high sulfidation gold is Cerro Colorado and porphyry copper is Campana Mahuida.

These ore deposits were formed in connection with hydrothermal activities, and magmatic activities played an important role as the heat source. Therefore, in order to

interpret the promising district regarding mineralization, it is important to understand the distribution of magmatic arcs related to mineralization. Table II-4-1 lists the age of granitic rocks and volcanic rocks, both of which have a possible relationship with mineralization, that were obtained by the K-Ar radiometric dating. Fig. II-4-1 shows the chronological relationship between magmatic activities and mineralization based on the data of Table II-4-1. In Fig. II-4-1, it is separately considered for the Neuquen province in the northern part and the Chubut province in the southern part. Concerning the Neuquen province, although La Voluntad porphyry copper deposit was generated in the Permian or the Triassic, there is a high possibility that the generation of Compana Mahuida porphyry copper deposit and Andacollo, Varvarco and Cerro del Diablo vein deposits is limited to the period between the late Cretaceous and the Paleocene. This period was before the Eocene, when intensive volcanic eruptions started due to Andean orogenic movement, and it is suggested that intrusive rocks without volcanic eruption brought about mineralization.

On the other hand, in Chubut Province, Cerro Gonzalo porphyry copper deposit generated in the late Cretaceous, and there is a high possibility that the Cerro Colorado high sulfidation gold deposit generated in the late Cretaceous based on the ages of granitoids. It is estimated that the mineralization age of Joya del Sol gold vein deposit is in the period between the middle and late Cretaceous because andesite, which is the host rock, was formed in the middle Cretaceous. In Laguna Sunica located about 30 km southeast from the Joya del Sol ore deposit, however, basalt rocks in Ventana formation of the Paleogene had received hydrothermal alteration, and igneous activity of the Neogene did not exist. Therefore, there is also a possibility that the Joya del Sol ore deposit was generated in the Paleogene. As to the Condorcanqui metasomatic copper deposits, it is highly possible that the age of mineralization is the early to middle Cretaceous. This is because the age of the andesite dyke that intrudes into the ore body while cutting it is the middle Cretaceous and the age of granitoid in the vicinity is the very end of the Jurassic. However, as it is considered that the host rock is of the Jurassic, there is also a possibility that the deposits were generated in the Jurassic. In making a summary of these ages of generation of the ore deposits in Chubut province, the late Cretaceous is considered to be important as the time when the age of generation of gold vein deposits, high sulfidation gold deposits and porphyry copper deposits was overlapping. This late Cretaceous is the period when the volcanic eruption was not active, and it is therefore suggested that intrusive rocks without volcanic eruption brought about mineralization similarly to Neuquen province. This is considered to mean that formation of promising ore deposits is difficult in the case that volcanic eruption is active because volatile components contained in magma are discharged, as pointed out by Sillitoe (1980). In addition, that there was no volcanic eruption even though intrusive activity existed suggests that there was a very strong compressive stress field.

Table II-4-1 List of age data to interpret the mineralization periods.

			ו					
Period	Epoch	Data (Ma)	Locality	Province	Measured material	Method	Reference	Inferred mineralization
† •	(M 3	53.8	53.8 Cerro del Diablo	Neuquen	Plagioclase of tonalite	K-Ar	This project (Phase 1)	Cerro del Diablo (Cu vein)
l er tiary	rateocerte (50.5 - 05Ma)	64.7	64.7 Varvarco	Neuquen	Plagioclase of tonalite	K-Ar	This project (Phase 1)	Varvarco (Au-Cu-Pb vein)
		67	Los Maitenes	Neuquen	Tonalite-dacite	K-Ar	Mendez et al. (1995)	Andacollo (Au-Pb vein)
		72	Lago General Vintter	Chubut	Granitoid	K-Ar	Lizuain (1981)	Cerro Colorado (High sulfidation Au)
		74.2	74.2 Campana Mahuida	Neuquen	Biotite of andesite porphyry	K-Ar	Sillitoe (1976)	Campana Mahuida (Porphyry Cu)
	Senonian (65 – 88.5Ma)	77	77 Cerro Gonzalo	Chubut	Granodiorite of hypogene porphyry Cu	K-Ar	This project (Phase 2)	Cerro Gonzalo (Porphyry Cu)
		81	Cordillera Viento	Neuquen	Andesite porphyry	K-Ar	Mendez et al. (1995)	Andacollo (Au-Pb vein)
Oretaceous		85	Lago General Vintter	Chubut	Granitoid	K-Ar	Lizuain (1981)	Cerro Colorado (High sulfidation Au)
	·	85.4	85.4 20km NNW of Tecka	Chubut	Hornblend of granodiorite	K-Ar	JICA/MMAJ (1983)	Cerro Gonzalo (Porphyry Cu)
	Callic (88 5 - 132Ma)	108	Condorcanqui	Chubut	Post mineralization andesite dyke	K-Ar	This project (Phase 2)	Condorcanqui (Metasomatic Cu)
		119	119 Joya del Sol	Chubut	Andesite lava of host rock for Au veins	K-Ar	This project (Phase 1)	Joya del Sol (Au vein)
	Neokomian (132 – 146Ma)							
Jurassic (14	Jurassic (146 – 208Ma)	147	147 20km NE of Condorcangui	Chubut	Biotite of granodiorite	K-Ar	JICA/MMAJ (1983)	Condorcanqui (Metasomatic Cu)
Triassic (208	18 - 245Ma)	225 1	La Voluntad	Neuquen	Tonalite	K-Ar	JICA/MMAJ (1984)	La Voluntad (Porphyry Gu)
Permian (245 –	45 – 290Ма)	281	La Voluntad	Neuquen	Biotite of tonalite porphyry	K-Ar	Sillitoe (1976)	La Voluntad (Porphyry Cu)

(D O	D1/Bt		Neu	Neuquen Province	ince		Ch	Chubut Provinces		
Era/reriou	rerioa/Epocn	1	Volcanism	Intrusion	Mineralization	Volcanism	Intrusion	Mineralization	ation	
	Holocene									
U uaternary	Pleistocene		Basalt lavas etc		· · · · · · · · ·					
	Neogene		Fm. Cajon Negro							
Tertiary	Oligocene Paleogene Eocene	ne	Serie Andesita	Gr.		Pm. Ventana		Au	Au vein ?	
	Paleocene	eue			Au-basemetals vein					
	Senonian	ue		Gr	Porphyry Cu			High sulfidation Au Porphyry Cu	vein	
	Cretaceous Gallic					Fm. Divisadero			Metasomatic	jc
Mesozoic	Neocomian	nian					Gr, Gb		Cu	_
	Jurassic					Fm. Lago la Plata			Metasomatic Cu ?	9
	Triassic									ļ
	Permian		Grupo Choiyoi	Gr	Porphyry Cu	Grupo Choiyoi	Gr			
	Carboniferous									
Paleozoic	Devonian									
	Suurian									
	Ordovician						Gr			
	Cambrian	1			L					
Proterozoic				ņ			Gr			
Abbreviation	Abbreviation: Gr = Granitoids, Gb = Gabbro, Ur = Ultramafic.	Gabbr	o, Ur = Ultramafic							7

Fig. II-4-1 Relation between magmatic activities and mineralization.

Fig. II-4-2 shows a distribution of magmatic arcs and ore deposits prepared based on data of Zappettini ed. (1998) and Zanettini et al. (1999). Magmatic arcs are shown with ages classified into the Cretaceous, the Paleogene and the Neogene. As mentioned above, there is a high possibility that the former two ages are related to mineralization. The Neogene magmatic arcs are shown for reference because El Teniente porphyry copper deposits were generated on the Chilean side north of the survey area in the Neogene. Ore deposits shown on the map are gold and auriferous polymetallic vein deposits, high sulfidation gold deposits and porphyry copper deposits, all of which are highly valuable from the economic point of view as mentioned above. Placer gold deposits are also shown because these deposits suggest the existence of gold deposits that were their source.

According to Fig. II-4-2, promising districts of No.1 to No. 11 are selected as places where the distribution of the Cretaceous and Paleogene magmatic arcs, which are highly possibly related to mineralization, harmonizes with the distribution of selected ore deposits. It is expected that new ore deposits of the same type as gold and auriferous polymetallic vein deposits, high sulfidation gold deposits and porphyry copper deposits exist in these districts. In the area where placer gold deposits are distributed, it is also expected that gold deposits which were their source exist.

Furthermore, in the Alto del Rio Barrancas district shown in Fig. II-4-2, geochemical anomalies of 102 to 133ppb Au is sporadically but widely recognized from the interpretation result for stream sediments geochemical exploration data in the existing data analysis. As there are no known ore deposits, the existence of new ore deposits is expected in this district.

In the Neogene magmatic arcs in the survey area, volcanic rocks are overwhelmingly dominant, with granitoids limited to small-scale bodies along the Chilean border in the northwest and southwest parts of Neuquen province. It is supposed that the Neogene magmatic arcs in the survey area are poor in mineralization capacity because intensive volcanic eruptions discharged volatile components of magma, as mentioned above.

4-1-2 Interpretation on results of the satellite image analysis

In the Phase-1, interpretations of geology and lineament were done for the false color images, and hydrothermal alteration zones were extracted from ratio composite images. In the Phase-2, detailed extraction of alteration zones was done in the unit of a pixel, which forms an image, by means of pattern matching of pseudo-reflectance between observed satellite image data and idealized alteration models. Although the accuracy of extraction of alteration zones was better in the Phase-2 due to nature of the analyzing method, there was not a wide difference for extraction of alteration zones between in the Phase-1 and Phase-2. Fig. II-4-3 shows lineaments and alteration zones extracted by the satellite image analysis in

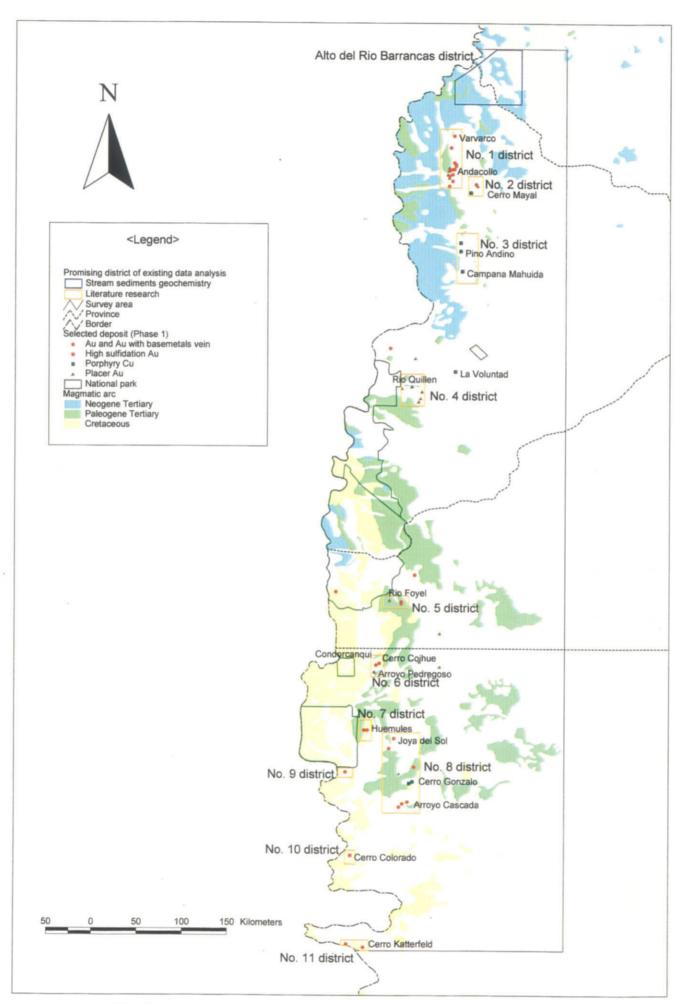


Fig. II-4-2 Interpretation result of the existing data analysis.

the Phase-1 and also shows locations of gold and auriferous polymetallic vein deposits, high sulfidation gold deposits, porphyry copper deposits and placer gold deposits.

Although various lineaments have been interpreted, with regard to the fact that the survey area has been under the influence of Andean orogenic movement since the end of the Cretaceous up to the recent, it is considered that lineaments exist in the compressive stress field in the direction of E-W due to subduction of the plate from the Pacific side. Under such stress, thrusts in the direction of N-S, sheer zones in the direction of NE-SE and NW-SE, and extension fractures in the direction of E-W were generated. As shown in Fig. II-4-3, lineaments in the direction of N-S, NE-SW and NW-SE are dominant on the whole, and lineaments in the direction of E-W exist in the southwestern part of the area although they are minor. This is considered to reflect that lineaments are in the compressive stress field in the direction of E-W.

However, as there were various tectonic movements before Andean orogenic movement, it is considered that various lineaments were also generated by collision of the Patagonia tarrane and Gondowana continent at the end of the Paleozoic, the extension tectonics that existed when the Atlantic Ocean opened in the Jurassic, and other events. In addition, various lineaments were also generated by the vertical movements of blocks. As an example, the ring structure observed in the Neogene volcanic zone can be mentioned. Moreover, lineaments just corresponding to the vein ore deposits were not interpreted, possibly because images were interpreted on a scale of 1 to 250,000. Therefore, systematic analysis for directions of lineaments is considered to be difficult to extract the promising districts.

On the other hand, hydrothermal alteration zones were extracted in a total of 244 places, but not all of them are related to mineralization. But the existence of hydrothermal activities and fractures that were conduits of the hydrothermal water is indispensable for mineralization. Because of this, it is considered that alteration zones existing on or near lineaments are important from the viewpoint of hydrothermal alteration zones along fractures. Alteration zones located within 2 km from each lineament have been selected and are shown in Fig. II·4·3. Reason of 2km is size in diameter of known large porphyry copper deposit is approximately 2km. The area within 2km from the lineaments has high possibility of the existence of ore deposit, if the ore deposit exists along the fault. As shown in Fig. II·4·3, promising district A to F are selected as places where alteration zones within 2 km from a lineament are distributed harmoniously with gold and auriferous polymetallic vein deposits, porphyry copper deposits and placer gold deposits. It is expected that new ore deposits of the same type as the gold and auriferous polymetallic vein deposits and porphyry copper deposits exist in these district. In the area where placer deposits are distributed, the existence of gold deposits, which were the source of these deposits, is also expected.

In the ground truth, total 31 districts were surveyed in the Phase-1. As a result of this, high potential was recognized for five districts of Andacollo, Huemules, Joya del Sol, Cerro Colorado and Cerro Blanco, and decided not to include these in the Phase-2 survey.

In the Andacollo district, auriferous polymetallic vein deposit is already being exploited by Minera Andacollo Gold S.A. Concerning the auriferous polymetallic vein deposit in the Huemules district and the auriferous quartz vein deposit in the Joya del Sol district, Minera el Desquete S.A. is conducting a feasibility study, and the total volume of gold reached 2,451,700 oz according to information on the Internet. Concerning the high sulfidation gold deposit in the Cerro Colorado district and the auriferous polymetallic vein deposit in the Cerro Blanco district, Billiton Argentina B.V. is now ceasing the exploration. However, 7.95 g/t Au was reported for the hydrothermal braccia on ground surface of the Cerro Colorado district, and 1.575 g/t Au was confirmed for quartz veins in the Cerro Blanco district in this survey.

The Phase 2 survey was conducted for nine follow-up districts of Varvarco, Campana Mahuida, Palau Mahuida, Nireco, La Voluntad, Condorcanqui, Epuyen, Cerro Gonzalo and Arroyo Cascada, and seven new districts of Villa Aguas Calientes, Carro Collocho, Cerro Mayal, Cerro de los Bueyes, Rio Foyel, Laguna Sunica and Cerro Cuche. As a result for these, four districts of Varvarco, Cerro Mayal, Epuyen and Cerro Gonzalo are considered to be promising (Table II-4-2). The location map of these four districts is shown in Fig. II-4-4.

Varvarco ore deposit in the Varvarco district actually comprises the Mina Santos ore deposit and Mina Santos West ore deposit, and the host rock is granodiorite. At the old mine of Mina Santos ore deposit, network quartz veins with pyrite dissemination of about 50 cm in the maximum width were observed. The quartz veins with chalcopyrite and malachite revealed the analysis results of 14.04g/t Au, 524g/t Ag, 2.75% Cu and 2.69% Pb. Quartz veins with pyrite dissemination at the Mina Santos West ore deposit revealed analysis results of 15.27g/t Au and 37g/t Ag. In the Cerro Mayal district, there is distribution of andesite porphyry which has altered to white and intrudes into sedimentary rocks of the lower Cretaceous, and limonitized calcite veinlets is distributed in fracture zones. This channel sample revealed analysis results of 59.14 g/t Au and 3.4 g/t Ag. In the Epuyen district, quartz veins of about 20 cm in width are hosted in quartz porphyry intruding into the Cretaceous granite batholith and revealed analysis results of 9.14g/t Au and 12.4g/t Ag. This is described for the first time as a result of this survey, and we have named it the Rio Blanco ore deposit. Several other limonitic outcrops in the vicinity are seen from a distance. The Cerro Gonzalo district consists of Sectors 1 to 6, and Sector 1 is called Arroyo Luque. In Arroyo Luque,

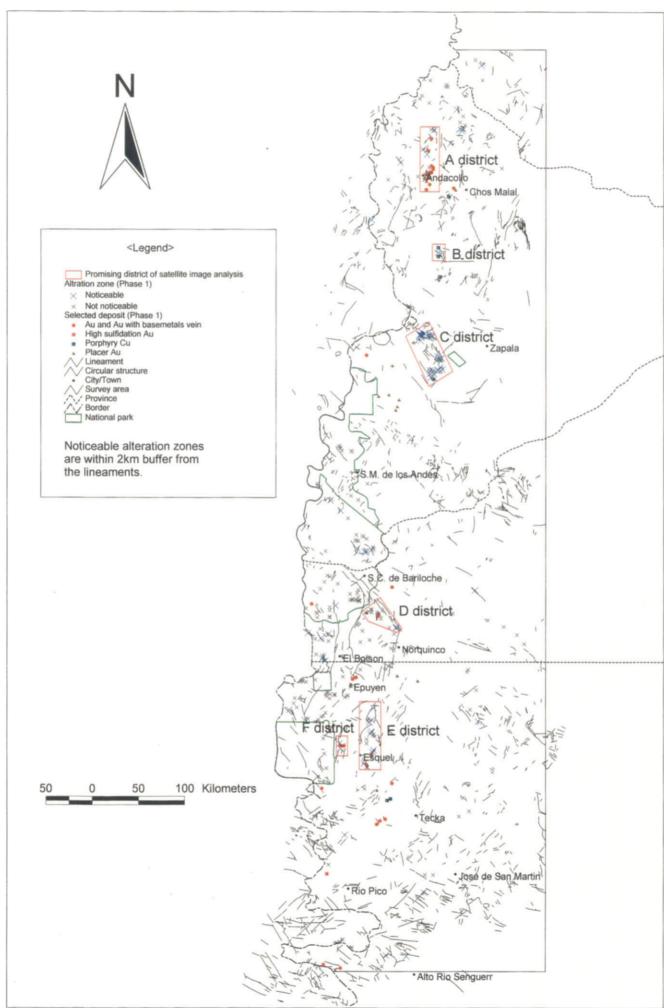


Fig. II-4-3 Interpretation result of the satellite image analysis.

Table II-4-2 Phase 2 ground truth survey conclusions.

No.	Survey district	Survey site	Category	NE corner	SW corner	Reason to be selected	Access	Topography	Vegetation	Unit	Formation	Rock	Intrusive	Fault	Lineament
1	Villa Aguas Calientes	Alteration zones near ML013, Arroyo Ailinco Arroyo Atreuco	New district	S36°30'36", W70°34'12"	S36°43'12", W70°40'12"	Geothermal alteration zones, Au anomalies of stream sediments, alteration zones from satellite image	Car, Walk 3h	Mountains, valleys	Thin	Τα2	Cajón Negro Fm.	Andesite	Andesite porphyry, granite		
2	Varvarco	Alteration zones along Arroyo Auquen, Varvarco (Mina Santos, Mina Santos West)	Follow-up district	S36°44'24", W70°33'36"	,	Known Au mineralization, alteration zones	Car, Horse 2h	Valleys	Thin	PTR	Choiyoi Fm.	Tuff, tuff breccia	Granite, Granodiorite		NE, NW, N·S
3	Cerro Collocho	Cerro Collocho	New district	S36°52'48", W70°23'24"		Alteration zones from satellite image	Car, Walk 2h	Mountains	Thin	JK	Mendoza Gr.	Sandstone, shale	Dacitic andesite		NE
4	Cerro Mayal	Cerro Mayal	New district	S37°17'24", W70°21'00"	S37"22'12", W70"25'48"	Known Au mineralization	Car, Walk 2h	Mountains	Thin	JK	Mendoza Gr.	Sandstone, shale	Andesite porphyry		
5	Cerro de los Bucyes	Cerro de los Bueyes, El Espinal, Cerro los Potreritos	New district	S37°40'48", W70°18'36"	S37°52'48", W70°30'00"	Alteration zones from satellite image	Car, Horse 3h	Mountains	Thin	JК	Mendoza Gr.	Sandstone, shale	Granodiorite, andesite porphyry		NE
6	Campana Mahuida	Campana Mahuida, Pino Andino, alteration zones near Loncopue	Follow-up district	S37°57'36", W70°28'48"	S38°17'24", W70°39'00"	Porphyry Cu productive area, alteration zones from satellite image	Car	Hills	Thin	JK	Mendoza Gr.	Sandstone, shale	Granodiorite		NE, NW, NWW
7	Palau Mahuida	Cerro Cochico, ZA004, ZA007, ZA008	Follow-up district		S38°54'00", W70°51'00"	Alteration zones from satellite image	Car, Horse 8h	Steep mountains	Non - thin	Τα2	Farallones Fm. eq.	Rhyolite, andesite			NE, NW, Circular
8	Nireco	ZA021, ZA022, ZA023	Follow-up district	S39°00'00", W70°29'24"		Alteration zones from satellite image	Car, Horse 2h	Hills	Thin	PTR	Choiyoi Fm.	Rhyolite, andesite			NE, NW
9	La Voluntad	ZA001, ZA032, ZA034	Follow-up district	S39°07'12", W70"32'24"		Alteration zones from satellite image	Car, Horse 6h	Steep mountains	Non		Choiyoi Fm., La Voluntad complex	Rhyolite, andesite, granitoids			NE, NW
10		Quilin Mahuida, Cerro Carrera (SB068), Cerro Carrera east, Rio Foyel west	New district	S41°28'48", W71°06'00"	S41°38'24", W71°22'48"	Placer Au area, alteration zones from satellite image	Car, Horse 7h	Steep mountains	Non - Thic	Ta1, Kg	Ventana Fm., granitoids	Andesite			N·S, NE
11	Condorcanqui	Condorcanqui	Follow-up district	S42°07'48", W71°22'12"		Known Cu mineralization, noticeable S isotope data	Car, Walk 0.5h	Hills	Forrest	Jm	Piltriquitron Fm.	Andesite	Andesite, dacite		NE, NW
12	Epuyen	Cordon de Cholila	Follow-up district			Placer Au area, alteration zones from satellite image	Car, Walk 2h	Steep mountains	Forrest - Non		· ·	Silt · sandstone, dacite · andesite, granite	Quartz porphyry	E-W, N·S, NE·SW	NE, N-S
13	Laguna Sunica	Laguna Sunica	New district	S43°08'24", W70°58'12"	S43°12'36", W71°03'00"	Alteration zones from satellite image	Car, Walk 0.5h	Hills, steep valley	Thin	Ta l	Ventana Fm.	Basalt			NE
14	Cerro Gonzalo	Sector 1 (Arroyo Luque), Sector 2-6	Follow-up district	S43°15'36", W70°57'36"	S43°23'24", W71°08'24"	Porphyry Cu productive area	Car, Walk 2.5h	Hills	Thick grass and few trees	Kg	Granitoids	Granite, granodiorite	Quartz porphyry		
15	Arroyo Cascada	Arroyo Cascada, Princess	Follow-up district	S43"27'00", W71"0148"	S43"31'48", W71°07'48"	Known Au mineralization	Car	Gentle high land	Grass and trees	Јва	Lago la Plata Fm.	Andesite	Micro granodiorite		N·S
16	Cerro Cuche	Cerro Cuche	New district	S43"30'00", W71"07'48"	S43°34'12", W71°11'24"	Alteration zones from satellite image	Car, Walk 1h	Steep slope and lower gentle hills	Grass, trees	Јва	Lago la Plata Fm.	Sandstone, conglomerate	Quartz porphyry		NW

Table II-4-2 Phase 2 ground truth survey conclusions.

No.	Survey district	Alteration (Phase 1, TM image)	Alteration (Phase 2, TM image)	Alteration (X-ray diffraction)	Known mineralization	Results	Conclusion	Recommendation
1	Villa Aguas Calientes	ML013	Neutral, acid	Sericite, montmorillonite		No noticeable chemical analysis results for quartz veinlets	Geothermal alteration without mineraliation	Unpromising
2	Varvarco	CM004-007	Neutral, acid	Sericite, pyrophyllite, jarosite	Vervarco (Au·Cu vein), 16.97g/t Au, 302.25g/t Ag, 2.04% Cu	14.04g/t Au, 524g/t Ag, 2.75% Cu at Mina Santos, 15.27g/t Au, 37g/t Ag at Mina Santos West	Au·Cu mineralization was confirmed for quartz veins	Further exploration is recommended
3	Cerro Collocho	CM008	Neutral, acid	Sericite, kaolin		No noticeable chemical analysis result for quartz- pyrite veinlets, 13.2Ma for dacitic andesite	Weak and small alteration zone without mineralization	Unpromising
4	Cerro Mayal		Acid	Chlorite, calcite, sericite	Cerro Mayal (Au vein), 75.84g/t Au	59.14g/t Au, 3.4g/t Ag, >25% Fe for limonitic calcite veinlets	High grade Au mineralization was confirmed for gossan	Further exploration is recommended
5	Cerro de los Bueyes		Neutral, acid	Sericite	Cerro de los Bueyes (Cu-Barite vein)	281ppm Cu for marcasite chlorite vein	Poor Cu mineralization, weak and small alteration	Unpromising
6	Campana Mahuida	CM015	Neutral, acid	Sericite	Campana Mahuida, Pino Andino (Porphyry Cu)		Campana Mahuida and Pino Andino are drilled areas, and no other alteration zone from satellite image. No room for further exploration	Unpromising
7	Palau Mahuida	ZA004, 007·008	Nuetral, acid	Sericite, kaolin, montmorillonite		No noticeable chemical analysis results for altered rocks	Young age alteration at shallow level without mineralization	Unpromising
8	Nireco	ZA021-023	Nuetral, acid	Sericite, kaolin		No noticeable chemical analysis results for altered rocks	Low sulfidation system without mineralization	Unpromising
9	La Voluntad	ZA001, 032, 034	Nuetral, acid	Sericite, kaolin	La Voluntad (Porphyry Cu)	No noticeable chemical analysis results for altered rocks	Hydrothermal alteration without mineralization	Unpromising
10	Rio Foyel	SB068	Nuetral, acid	Sericite	Cullin Mahuida (Au vein), Rio Foyel (Placer Au)	0.42g/t Au, 1585g/t Ag, 25.4% Cu for oxide Cu vein of Cullin Mahuida	Mineralization is limited to small vein of Cullin Mahuida	Unpromising
11	Condorcanqui			Chlorite, epidote, calcite	Condorcanqui (Manto type Cu)	108Ma for post mineralization andesite dyke. 0.87 to 4.72% Cu for disseminated ore in Jurassic andesite. Dacite dyke with chalcopyrite dissemination was observed	Small scale mineralization at several sites	Unpromising
12	Epuyen	SB081-083	Neutral	Sericite, kaolin	Arroyo Pedregoso (Placer Au)	9.14g/t Au, 12.4g/t Ag for quartz vein in quartz porphyry	Existence of auriferous quartz vein was confirmed	Further exploration is recommended
13	Laguna Sunica		Neutral	Clorite, sericite	Laguna Sunica (Cu ⁻ Au Vein)	No noticeable chemical analysis results for altered rocks	Hydrothermal alteration with zeolite veinlets	Unpromising
14	Cerro Gonzalo			Sericite	Cerro Gonzalo (Porphyry Cu)	Max 0.17% Cu for hypogene porphyry Cu along the streams, and areas on hills are limonitized at Arroyo Luque	Secondary enrichment of Cu is expected below the limonitized hills at Arroyo Luque	Further exploration is recommended
15	Arroyo Cascada			Sericite, chlorite, montmorillonite	Arroyo Cascada (Au vein)	4.07g/t Au for quartz vein, 13.87g/t Au for silicified rock	Au mineralization is limited to a specific site	Unpromising
16	Cerro Cuche		Neutral	Chlorite, sericite	Cerro Cuche (Porphyry Cu)	III 87 a/t Au . 1a/t Aa II 184% Ph tor ougrit vein	No noticeable mineralization of Cu·Au for quartz porphyry	Unpromising

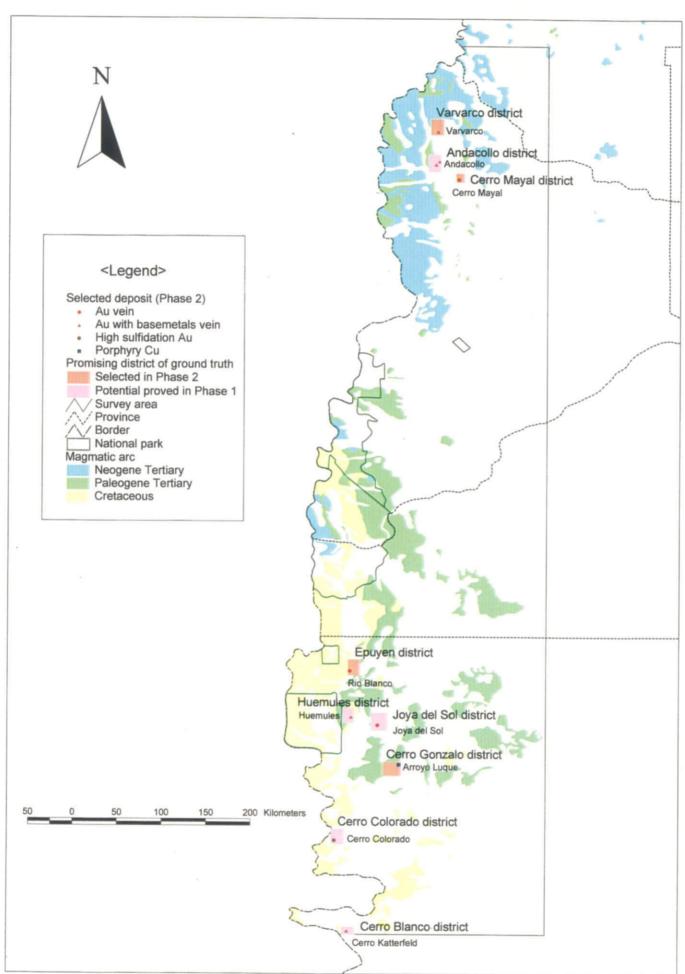


Fig. II-4-4 Interpretation result of the ground truth survey.

hypogene porphyry copper deposit is exposed at the level of the streams and revealed the content of 1295 to 1655ppm Cu. Oxidized leaching zone locally containing malachite is formed on the upper part of hills, and the existence of a secondary enrichment zone is expected beneath the hills. Sector 6 in Cerro Gonzalo is located on the topographically highest area, and alteration zones indicate conditions of supergene oxidized leaching. Therefore, the existence of a secondary enrichment zone is also expected in the lower part.

Meanwhile, the El Bolson and Lago Cholila districts (Fig. II-3-1-1) were selected as objects of follow-up from the results of the Phase-1 but which were not surveyed in the Phase-2 due to problems such as accesses. However, the El Bolson district does not deserve to explore actively because the chemical analysis result of 355ppm Cu was only obtained for the float sample in river running down from alteration zones. On the other hand, in the Lago Chilila district, 2490ppm Cu was obtained for the float sample in river running down from alteration zones where the upstream part of this water system is western adjacent to the Epuyen district. This indicates the possibility that promising places in Epuyen district will expand to the west.

Although Condorcanqui copper deposit was not judged to be promising, important geological information was obtained from this survey. The dissemination ore deposit of chalcopyrite, malachite and so on, whose host rock is andesite lava and pyroclastic rocks, have been considered up to now as ore deposits of the manto-type, whose host rock is Ventana formation of Paleogene. However, the existence of dacite dyke with chalcopyrite dissemination was observed in this survey, and 108 Ma, which means the middle Cretaceous, has been obtained as the age of an andesite dyke that intrudes into a mineralized zone while cutting it. Furthermore, 147 Ma, which means the last period of the Jurassic, has been obtained as the age of granitoid in the vicinity by JICA/MMAJ (1983). Therefore, it is considered that the host rock of ore deposits is Piltriquitron formation of Jurassic, and it is metasomatic copper deposit related to dacite dykes that derived from granitoids of the very end of the Jurassic to the early Cretaceous.

4-2 Selection of promising districts

The result of overlapping of promising districts selected by the existing data analysis, the satellite image analysis and the ground truth is shown in Fig. II-4-5. Fig. II-4-5 also shows alteration zones extracted from satellite image analysis for reference. Nine districts selected from the ground truth conform well to both or either of the promising districts selected from the existing data analysis and/or satellite image analysis, except for the Epuyen district. As to the Epuyen district, there is overlapping with only a part of the promising districts selected from the existing data analysis. This is because, for the

promising district selected from the existing data analysis, consideration was not given to the existence of Rio Blanco gold vein deposits in the Epuyen district, which is described here for the first time.

Among five districts of Andacollo, Huemules, Joya del Sol, Cerro Colorado and Cerro Blanco that the high potential were proved in the Phase 1 ground truth, it is considered regarding three districts of Andacollo, Huemules and Joya del Sol, exploration is sufficient because calculation of ore reserves has been already performed. As to two districts of Cerro Colorado and Cerro Blanco, although promising mineralizations have been known, calculation of ore reserves has not been performed yet. Therefore, exploration such as a drilling survey should be conducted.

Regarding four districts of Varvarco, Cerro Mayal, Epuyen and Cerro Gonzalo that have been selected in the Phase-2 ground truth, outcomes from further exploration hereafter are expected.

As an interpretation result of the stream sediments geochemistry in the existing data analysis, the Alto del Rio Barrancas district which is accompanied by geochemical anomalies of 102 to 133ppb Au has been selected although these are sporadically. In this district, the existence of new gold deposits is expected.

The range extending from south to north including the Varvarco and Andacollo districts is a promising district in satellite image analysis. Because the Butalon Norte district located between the two districts (Fig. II-3-1-1) is not, however, selected as a promising district in the ground truth, promising places in Varvarco and Andacollo districts are limited to each scope. The range including the Joya del Sol district and the northern area of it is also a promising district in satellite image analysis. But as Minera el Desquite S.A. has already acquired northern mining properties such as Leleque, it is considered that exploration has been sufficiently carried out.

Consequently, based on the ground truth results, six districts of Varvarco, Cerro Mayal, Epuyen, Cerro Gonzalo, Cerro Colorado and Cerro Blanco are recommended as promising districts. In addition, based on the stream sediments geochemistry in the existing data analysis, the Alto del Rio Barrancas district is recommended as a promising district.

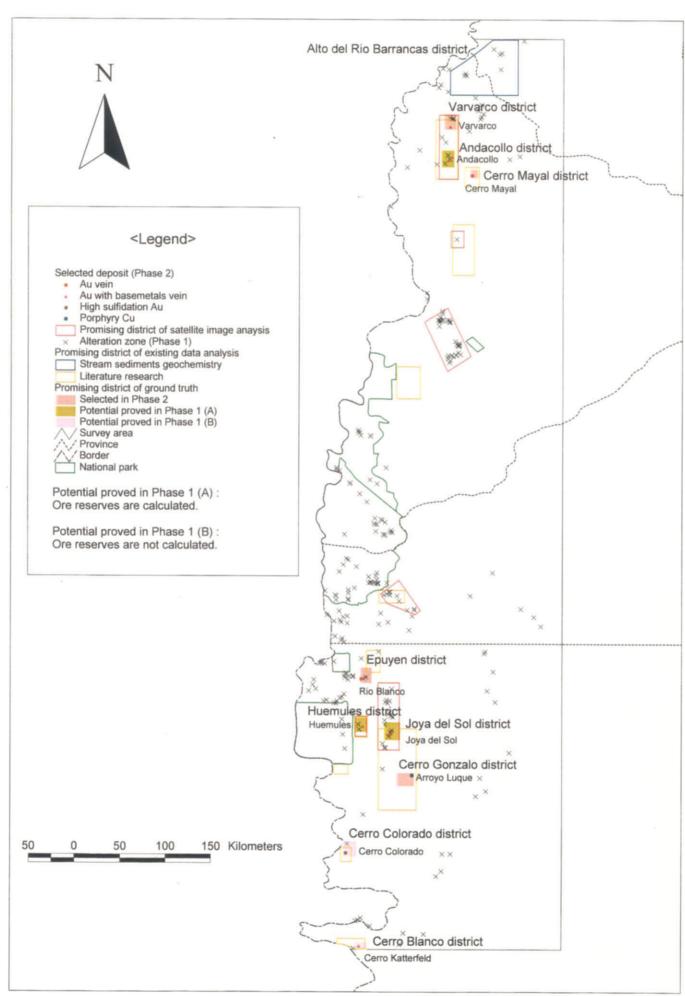


Fig. II-4-5 Synthetical interpretation result for the survey area.

Part III: CONCLUSIONS AND PRPPOSALS

Chapter 1 Conclusions

In this survey, existing data analysis, satellite image analysis and a ground truth were carried out over two fiscal years of Phase-1 and Phase-2.

In the existing data analysis, a literature research was done regarding data owned by SEGEMAR, provincial governments and private companies in the Phase-1. In the Phase-2, analysis was done on airborne geophysical exploration data acquired in the Neuquen province, which is owned by SEGEMAR. In addition, 9,242 stream sediments samples, which were taken in the Neuquen province by SEGEMAR in past, were re-analyzed for 48 elements, and the chemical analysis results were interpreted.

In the satellite image analysis, the false color images of 13 scenes were made and geological interpretation was done for them, and alteration zones of total 244 places were extracted by making of ratio composite images. In the phase-2, detailed extraction of alteration zones was done for 6 scenes including promising district, and the alteration zones were divided into neutral alteration and acid alteration.

In the ground truth, survey districts were selected based on the results of the existing data analysis and the satellite image analysis. In the Phase-1, 31 districts were surveyed where the known mineralization and alteration zones are distributed. In the Phase-2, total 16 districts were surveyed. Among them, 9 districts were selected for follow-up survey based on the results of the Phase-1, and 7 districts were newly selected. Interpretation for above-mentioned survey results is as follows.

Interpretation on results of the existing data analysis is shown in Fig. II-4-2. In the literature research of the existing data analysis, known deposits in the survey area are classified into vein deposits, porphyry copper deposits, high sulfidation gold deposits, placer gold deposits, sedimentary ore deposits and others. Important among these deposits as the subject of the exploration is gold and auriferous polymetallic vein deposits, high sulfidation gold deposits and porphyry copper deposits. These ore deposits were formed in connection with hydrothermal activities, and magmatic activities played an important role as the heat source. Therefore, in order to interpret the promising district regarding mineralization, it is important to understand the distribution of magmatic arcs related to mineralization. As a result of examination on the age of granitic rocks and volcanic rocks, both of which have a possible relationship with mineralization, that were obtained by the K-Ar radiometric dating (Table II-4-1, Fig. II-4-1), in the Neuquen province which is the northern part of the survey area, there is a high possibility that the formation of Compana Mahuida porphyry copper deposit and Andacollo, Varvarco and Cerro del Diablo vein deposits is limited to the period between the late Cretaceous and the Paleocene. This period was before the Eocene, when intensive volcanic eruptions started due to Andean orogenic movement, and it is suggested

that intrusive rocks without volcanic eruption brought about mineralization. In the Chubut province which is the southern part of survey area, there is a high possibility that Cerro Gonzalo porphyry copper deposit and Cerro Colorado high sulfidation gold deposit were formed in the late Cretaceous. Joya del Sol gold vein deposit has a high possibility that it was formed in the period between the middle and late Cretaceous. However, it also has a possibility of paleogene because the Ventana formation of Paleogene has received hydrothermal alteration in proximal Laguna Sunica. The late Cretaceous is considered to be important as the time when the age of formation of gold vein deposits, high sulfidation gold deposits and porphyry copper deposits was overlapping. This late Cretaceous is the period when the volcanic eruption was not active, and it is therefore suggested that intrusive rocks without volcanic eruption brought about mineralization similarly to Neuquen province. This is considered to mean that formation of promising ore deposits is difficult in the case that volcanic eruption is active because volatile components contained in magma are discharged, as pointed out by Sillitoe (1980).

Consequently, promising districts are selected as places where the distribution of the Cretaceous and Paleogene magmatic arcs harmonizes with the distribution of gold and auriferous polymetallic vein deposits, high sulfidation gold deposits, porphyry copper deposits and placer gold deposits.

Furthermore, as a result of interpretation on the stream sediments geochemistry, anomalies of 102 to 133ppb Au are recognized sporadically but widely in the Alto del Rio Barrancas district. As there are no known ore deposits, the existence of new ore deposits is expected in this district.

Interpretation on results of the satellite image analysis is shown in Fig. II-4-3. In the satellite image analysis, various lineaments were interpreted in addition to the geological interpretation. The lineaments in the direction of N-S, NE-SW and NW-SE are dominant on the whole. This is considered to reflect that lineaments are in the compressive stress field in the direction of E-W due to subduction of the plate from the Pacific side. However, as there were various tectonic movements before Andean orogenic movement, in addition, various lineaments were also generated by the vertical movements of blocks. Therefore, systematic analysis for directions of lineaments is considered to be difficult to extract the promising districts. Moreover, any lineaments just corresponding to fractures hosting the vein ore deposits were not interpreted.

On the other hand, hydrothermal alteration zones were extracted in a total of 244 places, but not all of them are related to mineralization. But the existence of hydrothermal activities and fractures that were conduits of the hydrothermal water is indispensable for mineralization. Because of this, it is considered that alteration zones existing on or near lineaments are important from the viewpoint of hydrothermal alteration zones along

fractures. As a result of selection for the alteration zones located within 2 km from each lineament, promising district are selected as places where the objective alteration zones are distributed harmoniously with gold and auriferous polymetallic vein deposits, porphyry copper deposits and placer gold deposits.

Interpretation on results of ground truth is shown in Fig. II-4-4. As a result of Phase-1 ground truth, high potential was recognized for five districts of Andacollo, Huemules, Joya del Sol, Cerro Colorado and Cerro Blanco, and decided not to include these in the Phase-2 survey. In the Andacollo district, auriferous polymetallic vein deposit is already being exploited by Minera Andacollo Gold S.A. Concerning the auriferous polymetallic vein deposit in the Huemules district and the auriferous quartz vein deposit in the Joya del Sol district, Minera el Desquete S.A. is conducting a feasibility study, and the total volume of gold reached 2,451,700 oz according to information on the Internet. Concerning the high sulfidation gold deposit in the Cerro Colorado district and the auriferous polymetallic vein deposit in the Cerro Blanco district, Billiton Argentina B.V. is now ceasing the exploration. However, 7.95 g/t Au was reported for the hydrothermal braccia on ground surface of the Cerro Colorado district, and 1.575 g/t Au was confirmed for quartz veins in the Cerro Blanco district in this survey.

The Phase-2 survey was conducted for nine follow-up districts of Varvarco, Campana Mahuida, Palau Mahuida, Nireco, La Voluntad, Condorcanqui, Epuyen, Cerro Gonzalo and Arroyo Cascada, and seven new districts of Villa Aguas Calientes, Carro Collocho, Cerro Mayal, Cerro de los Bueyes, Rio Foyel, Laguna Sunica and Cerro Cuche. As a result for these, four districts of Varvarco, Cerro Mayal, Epuyen and Cerro Gonzalo are considered to be promising.

Varvarco ore deposit in the Varvarco district actually comprises the Mina Santos ore deposit and Mina Santos West ore deposit, and the host rock is granodiorite. The quartz veins with chalcopyrite and malachite from Mina Santos ore deposit revealed the analysis results of 14.04g/t Au, 524g/t Ag, 2.75% Cu and 2.69% Pb. The quartz veins with pyrite dissemination from Mina Santos West ore deposit revealed analysis results of 15.27g/t Au and 37g/t Ag. In the Cerro Mayal district, there is distribution of andesite porphyry which has altered to white and intrudes into sedimentary rocks of the lower Cretaceous. The limonitized calcite veinlets in fracture zones revealed analysis results of 59.14g/t Au and 3.4g/t Ag. In the Epuyen district, quartz veins of about 20 cm in width are hosted in quartz porphyry intruding into the Cretaceous granite batholith and revealed analysis results of 9.14g/t Au and 12.4g/t Ag. This is described for the first time as a result of this survey, and we have named it the Rio Blanco ore deposit. The Cerro Gonzalo district consists of Sectors 1 to 6, and Sector 1 is called Arroyo Luque. In Arroyo Luque, hypogene porphyry copper deposit is exposed at the level of the streams and revealed the content of 1295 to 1655ppm Cu.

Oxidized leaching zone locally containing malachite is formed on the upper part of hills, and the existence of a secondary enrichment zone is expected beneath the hills. Sector 6 in Cerro Gonzalo is located on the topographically highest area, and alteration zones indicate conditions of supergene oxidized leaching. Therefore, the existence of a secondary enrichment zone is also expected in the lower part.

Although Condorcanqui copper deposit was not judged to be promising, important geological information was obtained from this survey. The dissemination ore deposit of chalcopyrite, malachite and so on, whose host rock is andesite lava and pyroclastic rocks, have been considered up to now as ore deposits of the manto-type, whose host rock is Ventana formation of Paleogene. However, it is considered from this survey results that the host rock of ore deposits is Piltriquitron formation of Jurassic, and it is metasomatic copper deposit related to dacite dykes that derived from granitoids of the very end of the Jurassic to the early Cretaceous.

The result of overlapping of promising districts selected by the existing data analysis, the satellite image analysis and the ground truth is shown in Fig. II-4-5. Nine districts selected from the ground truth conform well to both or either of the promising districts selected from the existing data analysis and/or satellite image analysis, except for the Epuyen district. As to the Epuyen district, there is overlapping with only a part of the promising districts selected from the existing data analysis. This is because, for the promising district selected from the existing data analysis, consideration was not given to the existence of Rio Blanco gold vein deposits in the Epuyen district, which is described here for the first time.

Among five districts of Andacollo, Huemules, Joya del Sol, Cerro Colorado and Cerro Blanco that the high potential were proved in the Phase-1 ground truth, it is considered regarding three districts of Andacollo, Huemules and Joya del Sol, exploration is sufficient because calculation of ore reserves has been already performed. As to two districts of Cerro Colorado and Cerro Blanco, although promising mineralizations have been known, calculation of ore reserves has not been performed yet. Therefore, exploration such as a drilling survey should be conducted.

Regarding four districts of Varvarco, Cerro Mayal, Epuyen and Cerro Gonzalo that have been selected in the Phase-2 ground truth, outcomes from further exploration hereafter are expected.

As an interpretation result of the stream sediments geochemistry in the existing data analysis, the Alto del Rio Barrancas district which is accompanied by geochemical anomalies of 102 to 133ppb Au has been selected although these are sporadically. In this district, the existence of new gold deposits is expected.

The range extending from south to north including the Varvarco and Andacollo districts

is a promising district in satellite image analysis. Because the Butalon Norte district located between the two districts (Fig. II-3-1-1) is not, however, selected as a promising district in the ground truth, promising places in Varvarco and Andacollo districts are limited to each scope. The range including the Joya del Sol district and the northern area of it is also a promising district in satellite image analysis. But as Minera el Desquite S.A. has already acquired northern mining properties such as Leleque, it is considered that exploration has been sufficiently carried out.

Consequently, based on the ground truth results, six districts of Varvarco, Cerro Mayal, Epuyen, Cerro Gonzalo, Cerro Colorado and Cerro Blanco are recommended as promising districts. In addition, based on the stream sediments geochemistry in the existing data analysis, the Alto del Rio Barrancas district is recommended as a promising district.

Chapter 2 Proposals for further exploration

Six districts of Varvarco, Cerro Mayal, Epuyen, Cerro Gonzalo, Cerro Colorado and Cerro Blanco are selected as promising districts based on the results of the ground truth. Besides, Alto del Rio Barrancas district is selected as promising district based on the interpretation on the stream sediments geochemistry in the existing data analysis (Fig. III-1, Table III-1).

Varvarco ore deposit in the Varvarco district actually comprises the Mina Santos ore deposit and Mina Santos West ore deposit, and the host rock is granodiorite. At the old mine of Mina Santos ore deposit, network quartz veins with pyrite dissemination of about 50 cm in the maximum width were observed. The quartz veins with chalcopyrite and malachite from Mina Santos ore deposit revealed the analysis results of 14.04g/t Au, 524g/t Ag, 2.75% Cu and 2.69% Pb. The quartz veins with pyrite dissemination from Mina Santos West ore deposit revealed analysis results of 15.27g/t Au and 37g/t Ag. It is recommended that drilling survey should be planned to unveil the scale of veins after execution of detailed geological survey, geochemical survey and geophysical survey.

In the Cerro Mayal district, there is distribution of andesite porphyry which has altered to white and intrudes into sedimentary rocks of the lower Cretaceous. The limonitized calcite veinlets in fracture zones revealed analysis results of 59.14g/t Au and 3.4g/t Ag. It is recommended to plan drilling survey to unveil the underground conditions of mineralization after careful tracing of limonitic calcite zone by detailed geological survey, geochemical survey and geophysical survey.

In the Epuyen district, quartz veins of about 20 cm in width are hosted in quartz porphyry intruding into the Cretaceous granite batholith and revealed analysis results of 9.14g/t Au and 12.4g/t Ag. This is described for the first time as a result of this survey, and we have named it the Rio Blanco ore deposit. Several other limonitic outcrops were seen from a distance. It is recommended to understand the scale and nature of mineralization more accurately by conducting of systematic geological survey and geochemical survey. Moreover, the Lago Cholila district is located next to the Epuyen district on the west side, and the chemical analysis result of 2490ppm Cu was obtained from float sample in the river running down from alteration zones in the Phase-1. Although it was planned to conduct the follow-up survey in the Phase-2, the survey was not carried out because permission for entry was not obtained from the landowner. Therefore, places requiring exploration in the Epuyen district have the possibility of expansion to the western part.

The Cerro Gonzalo district consists of Sectors 1 to 6, and Sector 1 is called Arroyo Luque. In Arroyo Luque, hypogene porphyry copper deposit is exposed at the level of the streams and revealed the content of 1295 to 1655ppm Cu. Oxidized leaching zone locally containing malachite is formed on the upper part of hills, and the existence of a secondary enrichment zone is expected beneath the hills. Although it is apprehended that a high grade has not been realized even by secondary enrichment because the grade of primary minerization is low, it is desired to confirm underground conditions by drilling survey. To conduct the drilling survey, additional IP method geophysical survey is recommended prior to drilling survey because the previous IP method geophysical survey did not cover the whole mineralized zone. Meanwhile, Sector 6 in Cerro Gonzalo is located on the topographically highest area, and alteration zones indicate conditions of supergene oxidized leaching. The existence of a secondary enrichment zone is also expected in underground. Therefore, it is also recommended to conduct IP method geophysical survey in order to judge the possibility of the existence of secondary enrichment.

In the Cerro Colorado district, the mineralization of 7.95g/t Au was reported for hydrothermal breccia on ground surface where the Jurassic andesite is distributed. From now on, further continuation of the drilling survey is recommended to unveil the ore reserve and the average grade.

In the Cerro Blanco district, quartz porphyry intrudes into the Cretaceous sedimentary rocks. The chemical analysis result of 1.575g/t Au was obtained for the quartz vein hosted in the sedimentary rocks in this survey. The trench survey has been already done for the mineralized area. From now on, drilling survey is recommended after conduction of the geophysical survey, etc.

In the Alto del Rio Barrancas district, geochemical anomalies of 102 to 133ppb Au by means of stream sediments were recognized although they are sporadically. In this district, although magmatic arcs of the Paleogene to the Neogene are distributed and alteration zones were extracted from the satellite image analysis, no known ore deposits exist. Accordingly,

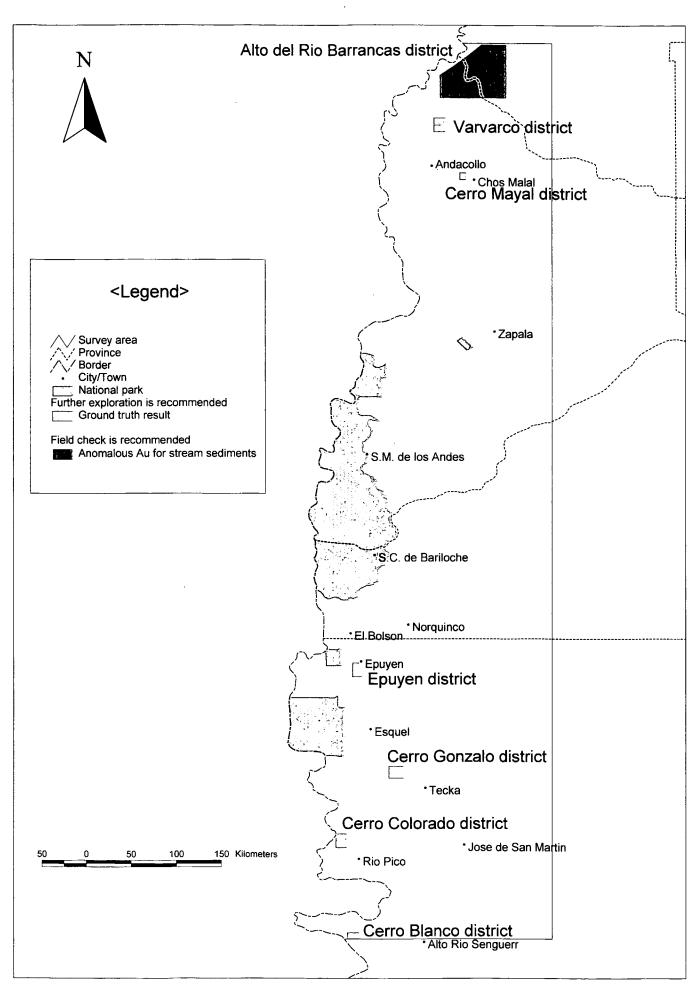


Fig. III-1 Location map of the recommended districts for further exploration in the survey area.

Table III-1 Recommendation for further exploration in the survey area.

No.	Promising district	NE corner	SW corner	Survey for conclusion	Unit	Formation	Rock	Intrusive	Lineament	Alteration (Phase 1, TM image)	Alteration (Phase 2, TM image)	Known mineralization	Survey results	Recommended program
1	Alto del Rio Barrancas	S36"00'00", W69"54'00"	S36"24'00", W70"36'00"	Exiting data analysis for stream sediments geochemistry		Cajón Negro Fm., basalt lavas	Andesite, basalt		NE, NW	ML002-005, 008-010	Neutral, acid		122 to 133ppb Au for stream sediments	Geological survey, geochemical survey by medium of rock and soil, re- interpretation of satellite image in scale of 1/100,000
2	Varvarco	S36°44'24", W70°33'36"		Ground truth (Phase 2)	PTR	Choiyoi Fm.	Tuff, tuff breccia	Granite, Granodiorite	NE, NW, N-S	CM004-007	Neutral, acid	Vervarco (Au-Cu vein), 16.97g/t Au, 302.25g/t Ag, 2.04% Cu	14.04g/t Au, 524g/t Ag, 2.75% Cu at Mina Santos, 15.27g/t Au, 37g/t Ag at Mina Santos West	Detailed geological, geochemical and geophysical survey, then drilling survey
3	Cerro Mayal	S37°17'24", W70"21'00"	S37°22'12", W70°25'48"	Ground truth (Phase 2)	JK	Mendoza Gr.	Sandstone, shale	Andesite porphyry			Acid	Cerro Mayal (Au vein), 75.84g/t Au	59.14g/t Au, 3.4g/t Ag, >25% Fe for limonitic calcite veinlets	Detailed geological, geochemical and geophysical survey, then drilling survey
4	Epuyen	S42°12'54", W71"22'48"	S42°22'12", W71°30'00"	Ground truth (Phase 2)	Jm, Kg	Piltriquitron Fm., granitoids	Silt - sandstone, dacite - andesite, granite	Quartz porphyry	NE, N-S	SB081-083	Neutral	Arroyo Pedregoso (Placer Au)	9.14g/t Au, 12.4g/t Ag for quartz vein in quartz porphyry	Detailed geological, geochemical and geophysical survey, then drilling survey
5	Cerro Gonzalo	S43°15'36", W70°57'36"	S43°23'24", W71°08'24"	Ground truth (Phase 2)	Kg	Granitoids	Granite, granodiorite	Quartz porphyry				Cerro Gonzalo (Porphyry Cu)	Max 0.17% Cu for hypogene porphyry Cu along the streams, and areas on hills are limonitized at Arroyo Luque	IP method geophysical survey and drilling survey
6	Cerro Colorado		S44°05'24", W71°40'12"	Ground truth (Phase 1)	Jba, Kg	Lago la Plata Fm., granitoids	Andesite	Porphyrite		LM033	Neutral, acid	Cerro Colorado (High sulfidation Au)	Average 7.95g/t Au was reported for 66 samples from 2,200km2	Detailed geological, geochemical and geophysical survey, then drilling survey
7	Cerro Blanco	S44"55'48", W71"25'12"	S45°00'00", W71°33'00"	Ground truth (Phase 1)		Apeleg Fm., Divisadero Fm.	Sandstone, Mudstone, Volcanics	Qz porphyry, Andesite		SE006	Not conducted	Cerro Blanco (Au-Pb vein)	1 *	Detailed geological, geochemical and geophysical survey, then drilling survey

the existence of new gold deposits is expected. It is desired to conduct general geological survey and geochemical survey by means of rock and soil samples. In the execution of these surveys, it is recommended to re-interpret the satellite images on scale of 1 to 100,000 or similar scale in detail though it was done on scale of 1 to 250,000 in this survey.

<References for Geology and Mineralization>

- Ametrano, S., Coipa, B., Donnari, E. and Pezzutti, N. (1979) Mineralizacion de cobre asociada al plutonismo Terciario en la zona de la Condorcanqui, Provincia de Chubut. Secretria de Estado de Mineria, Ministerio de Economica.
- Beltramone, C.A. (1978) Informe preliminar ptoyect 04 HA "Lago Epuyen". Plan Patagonia Comahue, Subsede Los Alamos 7-12-78.
- Caminos, R., Cordani, V. y Linares, E. (1979) Geología y geocronología de las rocas metamórficas y eruptivas de la Precordillera y Cordillera Frontal de Mendoza, República Argentina. Actas del 2º Congreso Geológico Chileno, 1(f): 43-61, Santigo.
- Caminos, R., Cingolani, C., Herve, F. y Linares, E. (1982) Geochronology of the pre-andean metamorphism and magmatism in the Andean Cordillera between latitudes 30° and 36°S. Earth Science Review, 18: 333-352, Amsterdam.
- Cayetano, P. and Francisco, B. (1993) Mapeo de Semidetalle y Muestreo de las Zonas de Alteracion del Cerro Bayo (Cordillera de Sakmata) Apeleg; Chubut.
- Cominco (1996) Informe Final Pino Andino.
- CORMINE (1996) Prospectos y Area de Alteracion Hidrothermal Provincia del Neuquen. CORMINE S.E.P., Gobierno de la Provincia del Neuquen.
- CORMINE (1998a) Sector Norte Distrito Minera Andacollo. CORMINE S.E.P., Gobierno de la Provincia del Neuquen.
- CORMINE (1998b) Prospecto Pino Andino. CORMINE S.E.P., Gobierno de la Provincia del Neuquen.
- Danieli, J.C., Ronconi, N., Case, A.N. and Gingins, M. (1979) Estudio Comparativo de los
 Distritos Mineros "Andacollo" y "Cerro Atravesada", Pcia. Del Neuquen, Argentina.
 Segundo Congreso Geologico Chileno 6-11 Agosto 1979, Artca-Chile.
- Emparan, C., Suarez, M. y Muñoz, J. (1992) Carta geologíca de Chile, Hoja Curacautín. Servicio Nacional de Geología y Minería, inédito. Santiago.
- Genini, A. (1976) Reconocimento geologico area Epuyen, Provincia del Chubut. Servicio Nacional Minero, Plan Patagonia Comahue.
- Genini, A. (1988) Proyecto Arroyo Cascada, Provincia de Chubut. SEGEMAR.
- Genini, A. and Grizinic, M., (1999) Informe Preliminar Proyecto 04 HA Epuyen Provincia del Chubut, Area No 8. Cerro Coihue, Delegacion Regional Patagonia, SEGEMAR.
- Giacosa, R.E. (1982) Informe Geológico Minero Proyecto 15 AF-Bariloche, Mosaico
 4172-IV-10a, Zona: Nacientes del Rio Foyel, Prov. De Rio Negro. Servicio Minero Nacional
 Plan Patagonia Comahue, Subsede Los Alamos-Río Negro.

- Giacosa, R., Heredia, N., Cesari, O., Zubia, M. and Gonzalez, R. (1999) Geología y Recursos Minerales del Sector Rionegrino de las Hojas 4172-IV, San Carlos de Bariloche y 4172-II, San Martin de los Andes. Información Geológico Minera de la Provincia de Río Negro. Gobierno de la Provincia Rio Negro y SEGEMAR.
- Gordon, A. y Ort, M. (1993) Edad y correlación del plutonismo subcordillerano en las Provincias de Rio Negro y Chubut. Actas del 12º Congreso Geológico Argentino y 2º Congreso de Exploracion de Hidrocarburos, 4: 120-127, Mendoza.
- Greco, E. A. and Bernabo de Greco, E. (1973) Estudio geologico de la mina de plomo, zinc, plata y cobre "Maria", Dept. Ñorquinco, Pcia. de Rio Negro. Direccion General de Mineria Centro Minero "Los Alamos", Provincia de Rio Negro.
- Hayase, K. (1970) Informe sobre las minas de caolin, alunita, y minerales metaliferos en la Provincia del Chubut. Departament de Geologia, Universidad Nacional del Sur.
- Herrero, J.C. (1977) Informe geológico minero del Mosaico 4172-IV-10a. Proyecto 15 AF Bariloche. Servicio Minero Nacional – Plan Patagonia Comahue (inédito), Comodoro Rivadavia.
- Herrero, J.C. (1981) Informe preliminar sobre la prospeccion regional del Cordon de Esquel. Mosaicos 4372 II, C4, D4. Plan Patagonia Comahue.
- JICA (1984) Report on the geothermal energy development in the north of Neuquen Province. (in Japanese)
- JICA/MMAJ (1981) Report on mineral exploration in the Northern area, Argentine Republic (in Japanese and Spanish).
- JICA/MMAJ (1983) Report on mineral exploration in the Patagonia area, Argentine Republic (in Japanese and Spanish).
- JICA/MMAJ (1984) Report on mineral exploration in the Patagonia area, Argentine Republic.(in Japanese and Spanish)
- Leanza, H.A. (1985) Descripción geológico de la Hoja 36b, Cerro Cachil, Prov. del Neuquén. Serv. Geo. Nac. (Informe inédito).
- Lepeltier, C. (1969) A simple statistical treatment of geochemical data by graphical representation. Econ. Geol. 64, p538-550.
- Lizuain, A. (1981) Caracteristicas y edad del plutonismo en los alrededores del Lago Puelo, Provincia del Chubut. VIII Congreso Geologico Argentino, San Luis. Actas III:607-616.
- Lizuain, A. (1983) Geologia de la Cordillera Patagonia entre las localidades de Lago Puelo y Leleque, Provincia del Chubut. Tema de Tesis, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.
- Llambías, E.J. y Rapela, C.W. (1989) Las volcanitas de Colipilli, Neuquén (37°S) y su relación con otras unidades paleógenas de la Cordillera. Asociación Geológica Argentina, Revista, Vol. 44, No. 1-4, 224-236.

- Maiza, P.J. (1981) Estudio de los yacimiento de caolin del oeste de la Provincia del Chubut, Minas Susana, Gato y Estrella Gaucha. VIII Congreso Geologico Argentina, San Luis, Actas IV: 471-484.
- Marquez, M.J. (1980a) Informe Preliminar, Proyecto 04 HC, Area Cordon Caquel, Sector entre Arroyo Luque y Arroyo el Rapido. Plan Patagonia Comahue. SEGEMAR.
- Marquez, M.J. (1980b) Informe geologico preliminar, proyect: 04 HB Esquel y 04 HC Trevelin. Plan Patagonia Comahue, Servicio Minero Nacional.
- Marquez, M.J. (1989) Informe de avance, exploracion por sondeos de sector Cerro Gonzalo, Proyecto Cordon Caquel – Tecka, Provincia de Chubut. SEGEMAR.
- Marquez, M.J. and Giacosa, R.E. (1989) Mineralizacion asociada a diques Teciarios de dacita —andesita—basalto en la Cordillera Patagonica Septentrional y Central, Provincias de Rio Negro y Chubut. Correlacion Geologica,1989,No.3;83-90.
- Marquez, M.J. and Parisi, C. (1995) Informe de Avance Programa Cordillera Patagonica Area Arroyo Canogas. Secretaria de Mineria de la Nacion Direccion Nacional del Servicio Geologico Delegacion Regional Patagonia.
- Méndez, V., Zanettini, J.C. and Zappettini, E.O. (1995) Geología y Metalogenesis del Orogeno Andino Cenral, República Argentina. Dirección Nacional del Sevicio Geólogico, Secretaría de Minería de la Nación, Buenos Aires.
- Mining Secretary (1993) Directory of Mining Investiment Opportunities in the Argentine Republic (Preliminar Edition-1993). Mining Secretary, Ministry of Economy and Public Services.
- Munizaga, F., Hervé, F., Brook, M., Pankhurst, R. and Snelling, N. (1985) Geochronology of granitioids of the lake region, Chile (39°-42° Lat. S). Universidad de Chile, Departamento de Geología, Comunicaciones, No. 35, 167-170. Santioago.
- Pancetti, N. (1984) Informe geofisico, Area de reserva No. 29 Cordon Caquel, Provincia de Chubut. Servicio Minero Nacional, Secretaria de Mineria.
- Page, R. (1980) La edad del Cautivalitense en su área tipo, Provincia del Chubut. Revista de la Asociación Geológica Argentina, 35 (1): 151-155. Buenos Aires.
- Page, S. (1984) Los gabros bandeados de la sierra de Tepuel, cuerpos del sector suroeste, Provincial del Chubut. In Congreso Geológico Argentino, No. 9, Actas, Vol. 2, 584-595. San Carlos de Bariloche.
- Pages, C. (1951) Inventario minero de la Patagonia para la Defensa Nacional Fabricaciones Militares. Inédito.
- Parica, C.A.(1986) Resultados geocronológicos preliminares de las Formaciones Colohuincul y Huechulafquen, Provincia del Neuquen. Revista de la Asociación Geológica Argentina, 41 (1-2): 201-205, Buenos Aires.

- Perez, H.D and Sureda, R.J. (1999) El Prospect aurifero Cerro Colorado, Cubut. XIV Congreso Geologico Argentino, Actas II, Salta. 323-326.
- Pesce, A.H. (1981) Estratigrafía de las nacientes del río Neuquén y Nahuever, Provincia del Neuquén. In Congreso Geológico Argentino, No. 8, Actas, Vol. 3, 439-455. San Luis.
- Petersen, C.S. and Bonorino, G. (1947) Observacion geologica en el Chubut occidental. Rev. Soc. Arg. II, 177-222.
- Placer Dome Exploration Inc.(1994) Zona de reserva "Quebrada del Bronce". Report.
- Ramos, V. (1983) Evolución tectónica y metalogénesis de la Cordillera Patagónica. Actas del 2º Congereso Nacional de Geología Económica, 1: 108-124, San Juan.
- Ramos, V. (1996) Evolución tectónica de la Plataforma Continental. En V. A. Ramos y M. A. Turic (Eds.). Geología y Recursos Naturales de la Plataforma Continental Argentina. XIII Congreso Geológico Argentino y III Congreso de Exploración de Hidrocarburos, Relatorio 21: 385-404, Buenos Aires.
- SEGEMAR (1997) Mapa Geologico de la Republica Argentina (1:2,500,000).
- Sillitoe, R.H. (1976) Permo-Carboniferous, upper Cretaceous, and Miocene porphyry copper-type mineralization in the Argentinian Andes. Econ. Geol., Vol. 72, 99-103.
- Sillitoe, R.H. (1980) Cauldron subsidence as a possible inhibitor of porphyry copper formation. Mining Geology Special Issue, No. 8, p85-93.
- Sinclair, A.J. (1974) Selection of thresholds in geochemical data using probability graphs. J. Geochem. Explor. 3, p129-149.
- Sinclair, A.J. (1976) "Probability Graphs." Assoc. Exploration Geochemists, Spec. Vol. No. 4, p95.
- Stern, C.R., Mukasa, S.B. and Fuenzalida, R. (1992) Age and petrogenesis of the Sarmiento ophiolite complex of southern Chile. Journal of South American Earth Sciences, Vol. 6, No. 1-2, 97-104.
- Swinden, H.S. (1996) The application of volcanic geochemistry to the metallogeny of volcanic-hosted sulphide deposits in Central Newfoundland. Ed. Wyman, D.A., Short Course Notes, Volume 12, Geological Association of Canada.
- Tabacchi, H. H. (1953) Estudio Geologico-Minerro del yacimiento cuprifero "Condorcanqui", Departamento Chshamen, Chubut. DGFM.
- UNDP (1983) Exploracion minera en la Provincia de Chubut, Argentina. Informe Final:
 Parte I y II. Fondo Rotatorio de las Naciones Unidas.
- Viera, R.L.M. and Hughes, G. (1999) El Prospect Huemules, Cordon Oriental del Futalaufquen, Chubut, Argentina, Recursos Minerales de Argentina.
- Zanettini, J.C.M., Marquez, M.J., Gonzalez, R.A., Vivallo, W.P., Gardeweg, M.C. and Tassara, A.H. et al. (1999) Mapa de Recursos Minerales del Area Fronteriza Argentino-Chilena entre los 34° y 56°S. Publicacion Geologica Multinacional, Escala 1:1,000,000.

- Zappettini, E.O. ed. (1998) Mapa Metalogenético de la República Argentina (Versión Preliminar). Proyecto de Asistencia Técnica para el Desarrollo del Sector Minero Argentino P.A.S.M.A.
- Zubia, M. (1985) Planillas de evaluación previa. FONEM. Proyect Lago Fontana. Dirección de Nacional de Minería y Geología. Inedito.

<Reference for Satellite Image Analysis>

- Hiroi, T. et al. (1985) A method to determine mineral assemblage of asteroidal surfaces by their spectral reference -29 Amphitrite as an example of applications, Proceedings of the 18th ISAS Lunar and Planetary Symposium, p52-53.
- Hiroi, T. and Takeda, H. (1989) A method of converting reflectance spectra into absorption coefficient spectra of mineral mixture for application to asteroidal surface mineralogy, Lunar and Planetary Science.
- Hiroi, T. and Pieters, C. M. (1992) Effects of grain size and shape in modeling reflectance spectra of mineral mixtures, Proceedings of Lunar and Planetary Science, 22, 312-325.
- Saito, M., Murakami, T., Kumagaya, J., Kato, M., Kawakami, T., Tsukada, Y., Matano, Y. and Iida, K. (1998) Development of soil mapping method by the satellite data of ASTER. Society of Remote Sensing, 24th Proceedings, p147-150. (in Japanese)
- Tsuchiya, K. ed. (1993) Outline of the remote sensing. Asakura Book Store. (in Japanese) ERSDAC (1990) Handbook of data application for the earth ovservation, 'LANDSAT, Second edition'. (in Japanese)

<References for Appendix 15>

- Boynton, W.V. (1984) Cosmochemistry of the rare earth elements: meteoric studies. In Rare Earth Element Geochemistry (P. Henderson ed.). Elsevier. Amsterdam, 63-114.
- Christiansen, E.H. and Keith, J.D. (1996) Trace elements systematics in silicic magmas: A metallogic perspective. Trace element geochemistry of volcanic rocks: Applications for massive sulphide exploration. Ed. Wyman, D.A., Short Course Notes, Volume 12, Geological Association of Canada.
- Craig, H. (1963) The isotopic geochemistry of water and carbon in geothermal areas, in Tongiorgi, E., ed., Nuclear geology on geothermal areas: Pisa, Consiglio Nationale delle Ricerche, Labratorie di geologia Nucleare, 17-53.

- Gromet, L.P. and Silver, L.T. (1983): Rare earth element distribution among minerals in a granodiorite and their petorogenetic implications. Geochem. Cosmochem. Acta, 47, 925-939.
- Field, C.W. (1966) Sulfur isotope abundance data, Bingham district, Utah. Econ. Geol., Vol. 61, p850-871.
- Field, C.W. and Fifarek, R.H. (1985) Light stable-isotope systematics in the epithermal environment. Geology and Geochemistry of Epithermal Systems. Berger, B.R. and Bethke, P.M. ed., Reviews in Economic Geology, vol. 2, p99-128.
- Friedman, I. and O'Neil, J.R. (1977) Compilation of stable isotope fractionation factors of geochemical interest. USGS Professional Paper, Data of Geochemistry, Chapter KK, KK1-KK12.
- Hattori, K. and Sakai, H. (1979) D/H ratios, origins, and evolution of the ore-forming fluids for the Neogene veins and Kuroko deposits of Japan. Econ. Geol., Vol. 74, p535-555.
- Hedenquist, J.W., Matsuhisa, Y., Izawa, E., White, N.C., Giggenbach, W.F. and Aoki, M. (1994) Geology, geochemistry, and origin of high sulfidation Cu-Au mineralization in the Nansatsu district, Japan. Econ. Geol., Vol. 89, p1-30.
- JICA/MMAJ (2000) Report on regional survey for mineral resources in the Central North area, Mongolia. Japan International Cooperation Agency and Metal Mining Agency of Japan. (in Japanese and English)
- Kieffer, S.W. (1982) Thermodynamics and lattice vibrations of minerals: 5. applications to phase equilibria, isotopic fractionation, and high-pressure thermodynamic properties. Reviews of Geophysics and Space Physics. Vol. 20, No. 4, p827-849.
- Lang, J.R. and Titley, S.R. (1998) Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits. Econ. Geol., Vol.93, p138-170.
- Matsuhisa, Y., Goldsmith, J.R. and Clayton, R.N. (1979) Oxygen isotopic fractionation in the system quartz-albite-anorthite-water. Geochmica et Cosmochimica Acta, v.43, 1131-1140.
- MITI (1999) Report on the development for geochemical exploration technique. Ministry of International Trade and Industry of Japan. (in Japanese)
- Mizota, C. and Kusakabe, M. (1994) Spatial distribution of δ D- δ ¹⁸O values of surface and shallow groundwaters from Japan, south Korea and east China. Geochemical Journal, Vol. 28, p387-410.
- Ogasawara, M. (1989) Geochemistry of rare-earth elements. Mining geology, 39(2), 166-176. (in Japanese with English abstr.)
- Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace elements discrimination diagram for the tectonic interpretation of granitic rocks. Journal of Petrology, Vol. 25, Part4, p956-983.

- Rye, R.O. and Ohomoto, H. (1974) Sulfur and carbon isotopes and ore genesis: A review, Econ. Geol., 69, 826-842.
- Sakai, H. and Matsubaya, O. (1974) Isotopic geochemistry of the thermal waters of Japan and its bearing on the Kuroko ore solutions. Econ. Geol., Vol. 69, p974-991.
- Sakai. H. and Matsuhisa, Y. (1996) Stable isotope geochemistry. University of Tokyo Press, 1996. (in Japanese).
- Sasaki, A. and Ishihara, S. (1979) Sulfur isotopic composition of the magnetite-seires and ilmenite-series granitioids in Japan. Contrib. Mineral. Petrol. 68, 107-115.
- Taylor, H.P., Jr. (1974): The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ. Geol., 69, 843-883.

Appendix $-1 \sim 14$

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
1	Argentina Mining Sector Review 1993	English		1993	World Bank	Argentina	Mining activities report
2	Directory of Mining Investment Opportunities in the Argentina Republic	English		1993	Mining Secretary, Ministry of Economy and Public Services	Argentina	Deposits in each province, Geological maps, Climate, Topographical sections
3	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish		1994	Secretaria de Mineria de la Nacion	Argentina	Location map of deposits in Chubut, Santa Cruz, Tierra del Fuego
4	Encuentro Intermacional de Mineria, ACTAS	Spanish		1994	Secretaria de Mineria de la Nacion	Argentina	Technical papers
5	Annual Reort 1995, Eldorado Gold Corpration	English		1995	Erdrado Gold Corporation	Argentina	Andes project in Catamarca
6	Environment for mining development in Argentina	Japanese		1995	MERIC, MMAJ	Argentina	Country report
7	Geologia y Matalogenesis del Orogeno Andino Central	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Note on geological map of 32°to 40°Central Andean area (1/400,000).
8	Geologia y Metalogenesis del Orogeno Andino Cenral, Republica Argentino	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Note on geological map of 32°to 40°Central Andean area (1/400,000).
9	Geologia y Metalogenesis del Orogeno Andino Cenral, Republica Argentino	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Geological map of 32°to 40°Central Andean area (1/400,000).
10	Argentina Mining '96, A New Frontier Opportunity	English		1996	Engineering & Mining Journal, Latinomineria	Argentina	Investment promotion
11	Argentina's Mining Sector 1997	English		1997	Ministry of Economy and Public Works and Services	Argentina	Mining ativities
12	Estadistica de la Produccion Minera de la Republica Argentina	Spanish		1997	Subsecretaria de Mineria	Argentina	Mining production statistics
13	Estadistica Minera de la Republica Argentina, 1994-1996	Spanish		1997	Direccion de Evaluacion Minera	Argentina	Mining statistics
14	Sector Minero Argentina 1977	Spanish		1997	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Mining activities
15	Argentina's Mining Sector	Spanish/E nglish		1998	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Outline of mining activities.

No.	Title	Language	Author	Year	Organization	Category	Comments
16	Argentina's Mining Sector 1998	Spanish		1998	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Mining activities
17	Mineria Argentina, La Calidad como Filosofia	Spanish		1998	Subsecretaria de Mineria	Argentina	Mning policy
18	Mining Right Information (La Rioja, Mendoza, San Juan)	English	Lavandario, E.	1998	SEGEMAR	Argentina	Letter, Mining Right Information
19	X Congreso Latinoamericano de geologia, VI Congreso Nacionalde Geologia Ecomica	Spanish		1998	Subsecretaria de Mineria de la Nacion, Sevicio Geologico Minero Argentina, Asociacion Argentina de Geologos Economistas	Argentina	Proceeding of the geological conference
20	Compendio 1999/2000 de las Industrias de Base Mineral y de la Mineria Argentina	Spanish		1999	Panorama Minero	Argentina	Mining magazine for mining activities
21	Panorama Minero	Spanish		1999	Una Organizacion Periodistica al servicio de la Mineria	Argentina	Andacollo project etc.
22	Panorama Minero	Spanish		1999	Panorama Minero	Argentina	Mining magazine in Argentina
23	Geomapa, Republica Argentina	Spanish		?	?	Argentina	Map of Argentina 1/3,500,000
24	Legal and Tax Framework	Spanish		?	?	Argentina	Mining law and Revenue law
25	Marco Juridico Ambient para la Actividad Minera	Spanish		?	Unidad de Gestion Ambient Nacional	Argentina	Environmental law
26	Rutas de la Argentina	Spanish		?	Automapa	Argentina	Road maps
27	Indexof 1:250,000 topography maps	Spanish				Argentina	Index map of 1/250.000
28	Caracteristicas y Edad del Plutonismo en los Alrededores del Lago Puelo, Provincia del Chubut	Spanish	Lizuain, A.	1981	Servicio Geologico Nacional	Chubut	Age of plutonic rocks of Cordillera Patagonia.
29	Investigaciones Detalladas del Cateo Huemules, Informe Final: Parte I	Spanish		1983	United Nations Revolving Fund for Natural Resources Exploration	Chubut	Final report of UNRF project (1977-1982)
	Mineralizacion asociada a diques terciarios de Dacita [.] Andesita [.] Basalto en la Cordillera Patagonica Septentrional y Central, Provincias de Rio Negro y Chubut	Spanish	Genini, A.D., Grizinik, M. and Pezzuchi, H.D.	1989	Dir. Nac. Min. y Geol. Centro Explor. Patag. Sur y Dept. Geologia · Univ. Nac. de la Patagonia San Juan Basco	Chubut	Mineralization model.

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
31	Mapa Geologico de la Provincia del Chubut	Spanish		1995	Direccion Nacional del Servicio geologico	Chubut	Provincial geological map
32	Mapa Geologico Simplificado de la Cordillera de la Provincia del Chubut	Spanish	Marquez, M.J.	1999	Servicio Nacional Minero Geologia	Chubut	Outline geology of cordillera area of Chubut province.
33	Properties map of Chubut Province (4 pc.)	Spanish		1999	Com. Rivadavia, SEGEMAR	Chubut	Properties map of Chubut Province.
34	Mapa de ubicacion de UNRF project	Spanish		?	?	Chubut	Location maps of Gaste, Esquel-Corcovado. Lagos Fontana La Plata areas
35	Provincia Chubut, Geochemica de Rocas/Sedimentos/Suelo	Spanish		?	?	Chubut	Geochemical survey in Chubut province
36	Indexof 1:100,000 topography maps, Provincia del Chubut	Spanish				Chubut	Index map of 1/100,000, Chubut.
37	Metalogenesis de la region Apeleg-Alto Rio Sebguerr, Chubut	Spanish	Lanfranchini, M.E., Etcheverry, R.O. and Schlamuk, I.B.	1999	XIV Congreso Geologico Argentino	Chubut (Apeleg)	Aloteration and mineralization in Apeleg-Alt Rio Senguerr district
38	Informe expeditivo, proyect Arroyo Cascada	Spanish	Genini, A. and Zubia, M.	1989	SEGEMAR	Chubut (Arroyo Cascada)	Mineral exploration report, Au mineralization
39	Estudio de las Alteraciones en el Cerro Coihue. Provincia del Chubut. Republica Argentina	Spanish	Genini, A. and Nillni, A.	1994	Universidad nacional de la Patagonia San Juan Bosco	Chubut (Cerro Coihue)	Investigation on alteration of Cerro Coihue deposits
40	Informe Preliminar Proyect 04 HA. Epuyen. Area No 8. Cerro Coihue	Spanish	Genini, A. and Grizinic, M.	1999	Delegacion Regional Patagonia, SEGEMAR	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits, vein type, pyritization with Cu-Mo mineralization
41	Geologia y Mineralizacion del Sector Suroriental del Cerro Coihue, Provincia del Chubut	Spanish		?	Secretaria de Estado de Mineria y Universidad Nacional de la Patagonia San Juan Basco	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits.
42	Mapa Geologico Minero del Arroyo de los Alevinos · Lago Fontana, Provincia del Chubut.	Spanish	Marquez, M.J. y Parisi, C.	1995	SEGEMAR	Chubut (Cerro Colorado)	Geological map of the area of Cerro Colorado
43	El prospect aurifero Cerro Colorado, Chubut	Spanish	Perez, H.D. and Sureda, R.J.	1999	XIV Congreso Geologico Argentino	Chubut (Cerro Colorado)	Discovery of high sulfidation gold deposit
44	Estudio geologico en la Republica Argentina, Fase IV, Sector Cerro Cuche	Spanish		1981	JICA/MMAJ, Secretaria de Estado de Mineria	Chubut (Cerro Cuche)	Mineral exploration report, porphyry Cu type alteration
45	Informe geofisico, sector Cerro Gonzalo and Arroyo Luque, area reserva No. 29 Cordon Caquel	Spanish	Pancetti, N.	1984	SEGEMAR	Chubut (Cerro Gonzalo)	Mineral exploration report, IP and EM Turam methods

No.	Title .	Language	Author	Year	Organization	Category	Comments
46	Estudio preliminar, sector No. 2 · Cerro Gonzalo, area No. 29 · Cordon Caquel, proyect 04 HC · Tevelin	Spanish	Marquez, M.J.	1985	SEGEMAR	Chubut (Cerro Gonzalo)	Mineral exploration report, geological works
47	Proyect de exploracion, sector 2 · Cerro Gonzalo, area Cordon Caquel, 04 HC · Trevelin Chubut	Spanish	Marquez, M.J.	1988	SEGEMAR	Chubut (Cerro Gonzalo)	Mineral exploration report, drilling survey results
	Proyect 04 HC Area Cordon caquel, Bosquejo Geologico entre Arroyp Luque y Arroyo el Rapid.	Spanish			SEGEMAR	Chubut (Cerro Gonzalo)	Geological map of the area of Arroyo Luque - Cerro Gonzalo
49	Estudio Geologico Minero del Yacimiento Cuprifero "Condorcanqui"	Spanish	Tabacchi, M.H.	1953		Chubut (Condorcanqui)	Outline of Condorcanqui deposit, Low Cu grades.
50	Reconocimient Geologico Area Epuyen, Prov. Del Chubut	Spanish	Genini, A.	1976	S.N.M., P.P.C.	Chubut (Condorcanqui)	Outline of Condorcanqui deposits, 4,400t reserves by FM's drillings.
51	Mineralizacion de Cobre Asociada al Plutonismo Terciario en la Zona de la Mina Condorcanqui, Provincia de Chubut	Spanish	Silva, A., Beatriz, C., Eva, D. and Norra, P.	1979	Secretaria de Estada de Minelia, Ministerio de Economia	Chubut (Condorcanqui)	Geochemical survey for Condorcanqui deposit area.
52	Geologia de la Cordillera Patagonia entre las localizades de Lago Puelo y Leleque, Provincia del Chubut	Spanish	Lizuain, A.	1983	Universidad de Buenos Aires	Chubut (Condorcanqui, Epuyen)	Geological research report
53	Geologia y Area de Alteracion en el Cerro Cororado y Alrededores. Chubut Noroccidental	Spanish	Sepulveda, E.G. and Viera, R.M.	1980	Asociacion Geologica Argentina, Revista XXXV (2) 195- 202	Chubut (Esquel NW)	Technical paper, alteration with possibility of porphyry copper deposit
54	Informe Preliminar sobre la Prospeccion Reginal del Cordon de Esquel, Proyect 04 HB Esquel	Spanish	Herrero, J.C.	1982	Servicio Nacional Minero Geologia	Chubut (Esquel)	Field survay report, inc. 1/100,000 geological map
55	Informe Proyect Cordon Situacion, Centro de Exploracion Patagonia Sur	Spanish	Marquez, M., Parisi, C. and Butron, F.	1987	Direccion Nacional de Mineria y Geologia, Secretaria de Mineria	Chubut (Esquel)	Field survay report, inc. 1/2,000 route map
56	Informe Proyecto 04, HB, Esquel. Plan Patagonia Comaue Geologico Minero	Spanish		1997	Servicio Nacional Minero Geologico	Chubut (Esquel)	Field survey report with mineral occurrences, inc. 1/100,000 maps
57	Annual report and Financil Statements for the year ended 31 December 1998	English		1999	Brancote Holding PLC	Chubut (Hoya del Sol)	Annual report of 1998
58	Geologia Reservas y Modelo Teorico de Estructuras Mineralizadas del Yacimiento de Oro Huemules	Spanish	Viera, R., Herrero, J.C. and Hughes, G.E.	1982	Direccion General de Minas y Geologia Provincia Chubut	Chubut (Huemules)	Hemules deposit, 0.02 to 815g/t Au, guide for galleries.
59	Investigaciones Detalladas del Cateo Humules, Informe Final: Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para la Exploracion de Recursos Naturales	Chubut (Huemules)	Final report of UNRF project (1977-1982) for Huemules deposit.
60	Mapas anexas de Informe Final Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para la Exploracion de Recursos Naturales	Chubut (Huemules)	Plans of final report of UNRF project (1977-1982) for Huemules deposit.

No.	Title	Language	Author	Year	Organization	Category	Comments
61	Proyect Huemules (Provincia de Chubut)	Spanish		1984	Ministrio de Economia, Servicios y Obras Publicas/Subsecretaria de Promocion y Desarollo/Provincia del Chubut	Chubut (Huemules)	Abstract of UNRF project, Huemules deposit, 2,975,000t (10.3g/t Au, <1,000,000t)
62	El Prospecto Huemules, Cordon Oriental del Futalaufquen, Chubut, Argentina	Spanish	Viera, R.L.M. and Hughes, G.	1999	SEGMAR, Direccion de Minas y Geologia del Chubut	Chubut (Huemules)	Huemules deposit, 750,000t, 9g/t Au.
63	Mineralogia del yaimiento polimetarico Huemules, Cordillera Patagonia Septentrional, Chubut	Spanish	Schalamuk, I., Bario, R.E. and Vasconcellos, M.	1999	XIV Congreso Geologico Argentino	Chubut (Huemules)	Mineralogy, fluid inclusion and isotopic data
64	Informe Preliminar Proyecto 04 HA "Lago Epuyen"	Spanish	Beltramone, C.A.	1978	Plan Patagonia Comahue, Subseda los Alamos	Chubut (Lago Epuyen)	Five alteration zones, geochemical survey, Cu max 320ppm.
65	Proyecto Lago Fontana, Chubut	Spanish	Silvia Ametrano	1885	Secretaria de Mineria	Chubut (Lago Fontana)	Detailed survey report, 700,000t reserves. 1.63% Pb, 4.49% Zn, 0.61% Cu
66	No Title (Lago Fontana y otros)	Spanish		1951		Chubut (Lago Fontana)	Survey for mineral occurrences of Chubut and Santa Cruz.
67	Genesis y Geoquimica de la Mineralizacion de los Yacimientos "Los Manantiales y Lago Fontana", Provincia del Chubut	Spanish	Dominguez, E.A.	1981	Asociacion Gelogica Argentina, Revista, XXXVI (2): 123- 142.	Chubut (Lago Fontana)	Study on the genesis of Los Manantiales deposit and Lago Fontana deposit
68	Informe Geologico Preliminar, Lago Fontana Sur	Spanish	Marquez, M.J. and Parisi, C.	1994		Chubut (Lago Fontana)	Survey for mineral occurrences, Arroyo Cangan is thought to be promising.
69	Informe de Avance Programa Cordillea Patagonica Area Arroyo Canogas	Spanish	Marquez, M.J. and Parisi, C.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Arroyo Canogas area.
70	Informe de Avance Programa Cordillea Patagonica Area Katterfeld	Spanish	Marquez, M.J.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Katterfeld area.
71	Yacimientos de Oro y Plata de la Patagonia, Republica Argentina, Principales Posibilidades de Inversion	Spanish		1997	SEGEMAR	Chubut (Lago Fontana)	La Ilision Propiedad(Zn,Pb,Ag,Au), Cerro Colorado propiedad (Au 7.95g/t)
72	Informe Preliminar de la Hoja 45a, Lago General Vinter	Spanish	Pesce, A.H.	1976	Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Field survey report, inc 1/200,000 geological map
73	Estratigrafia de la Cordillera Patagonica entre los de 43º 30′ y 44º de latitud sur y sus areas Mineralizadas	Spanish	Pesce, A.H.	1978	Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Geology, alteration and mineralization
74	Informe Preliminar Hoja Lago General Vintter (Hoja 45A)	Spanish	Pezzuchi, H.D.	1979	9	Chubut (Lago Grl. Vintter)	Geological description
75	Informe Proyecto 04, HB, Cerro Rinon y Cerro Steffen. Plan Patagonia Comaue Geologico Minero	Spanish	Parisi, C.	198	l Servicio Nacional Minero Geologia	Chubut (Lago Vintter)	Field survey report, inc. 1/50,000 maps

No.	Title	Language	Author	Year	Organization	Category	Comments
76	Informe Proyecto 04, HB, Esquel, parque Nacional Los Alerces	Spanish	Viera, R.	1976	Servicio Nacional Minero Geologia	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 geological map
77	Informe Geologico Preliminar, Proyecto 04 HB Esquel y 04 HC Trevelin	Spanish	Marquez, M.J.	1980	Servicio Nacional Minero Geologia	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 alteration map
78	Estudio de los Yacimiento de Caolin del Oeste de la Provincia del Chubut, Minas Susana, Gato y Estrella Gaucha	Spanish	Maiza, P.J.	1981	VIII Congreso Geologico Argentino, San Luis, Atas IV : 471-484.	Chubut (Sakmata)	Acid hydrothermal alteration
79	Mapeo de Semidetalle y Muestreo de las Zonas de Alteracion del Cerro Bayo (Cordillera de Sakmata) Apeleg : Chubut	Spanish	Parisi, C. and Butron, F.	1993		Chubut (Sakmata)	Geochemical exploration by rock samples. No noticeable Au values.
80	Geologia y Mineralizacion de la Cordillera de Sakmata, Aldea Apeleg.	Spanish	Marquez, M. and Pezzuchi, H.	?	Direccion Nacional de Mineria y Geologia	Chubut (Sakmata)	Geology and mineralization of Sakmata (Apeleg), Qz veins with sulfides.
81	Informe sobre las Minas de Caolin, Alunita, y Minerales Metaliferos en la Promincia del Chubut	Spanish	Dr.Hayase, K.	1970	Universidad Nacional del Sur	Chubut (Sakmata, Lago Fontana)	Geological survey for the known deposits. No significant mineralization.
82	Estructura y Mineralizacion en la Cordillera Patagonica, Tesis Doctoral	Spanish	Haller, M.J.	1981	Universidad de Buenos Aires	Chubut (Trevelin~ Lago Grl. Vintter)	Doctoral dissertation, Universidad de Buenos Aires
83	Informe Geologico Preliminar, Proyecto 04 HC Trevelin, Sector Oriental	Spanish	Marquez, M.J.	1979	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/100,000 and 1/50,000 maps
84	Informe Proyect 04, HC, Trevelin. Plan Patagonia Comaue Geologico Minero	Spanish	Marquez, M.	1981	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/50,000 alteration map
85	Informe sobre la Prospeccion Semidetallada del Cerro Riscoso, Proyecto 04, HB, Esquel.	Spanish	Herrero, J.C. and Parisi, C.	1981	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/11,500 and 1/1,000 maps
86	Tehnical Specifications, Airborne Geophysical Survey in Argentina, SEGEMAR PASMA Project 1997·1998	Spanish		1997	SEGEMAR	Geophysics	SEGEMAR's specification for Airbone geophysics
87	Simposio Geofisica Aerea y Geoquimica en la Prospeccion Geologica Minera	Spanish		1998	X Congreso Latinoamaricano de Geologia, VI Congreso Nacional de Geologia Economica	Geophysics	Proceedings of international geophysical conference.
88	Minerals Yearbook Volume III, 1995 International Review	English		1995	U.S. Department of the Interior/U.S. Geological Survey	Latin America	1995 Review, Mineral industries of Latin America and Canada
89	Mapa Metalogenetico de la Republica Arentina (GIS etc)	Spanish/E nglish		1998	SEGEMAR	Maps (CD-ROM)	Metallogenic maps of Argentina inc. GIS.
90	Mapa Geologico de la Provincia de Rio Negro, 1:750,000; Direccion Nacional del Servicio Geologico (1) y (2)	Spanish		1994	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/750,000)

No.	Title	Language	Author	Year	Organization	Category	Comments
91	Geologia y Metalogenesis del Orogeno Andino Central: 1:400,000: Direccion Nacional del Servicio Geologico (1) y (2)	Spanish		1995	SEGEMAR	Maps (Geol. Map)	Geological map (1/400,000)
92	Mapa Geologico de la Provincia del Chubut, 1:750,000: Direccion Nacional del Servicio Geologico	Spanish		1995	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/750,000)
93	Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen, 1:500,000: Direccion Nacional del Servicio Geologico	Spanish		1995	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/500,000)
94	Mapa Geologico de la Republica Argentina, 1:2,500,000: Secretaria de Industria, Comercio y Mineria (1) y (2)	Spanish		1997	SEGEMAR	Maps (Geol. Map)	Geological map (1/2,500,000)
95	Mapa de Recursos Minerales del Area Fronteriza Argentino- Chilena entre los 34 y 56 S, 1:1,000,000: Servicio Geologico MineroAargetino (2 hojas)	Spanish		1998	SEGEMAR/SERNAGEOMIN	Maps (Geol. Map)	Geological map (1/1,000,000)
96	Mineral survey in the Andean Cordillera, Argentina.	English		1968	United Nations Development Programme	Neuquen	Mineral exploration report
97	Investigation of porphyry copper type mineralization in the Provinces of Mendoza, Neuquen and San Juan, Argentina.	English		1970	United Nations Development Programme	Neuquen	Mineral exploration report
98	Informe de evaluacion preliminar, Contrato de exploracion explotacion CORMINE Placer Dome, etapa 1	Spanish		1993	Placer International Exploration Inc.	Neuquen	Compilation of several prospects in Neuquen
99	Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen	Spanish		1995	Servicio Geologico Neuquino	Neuquen	Provincial geological map
100	Prospectos Metaliferos, Provincia del Neuquen	Spanish		1998	CORMIN S.E.P.	Neuquen	Information of CORMIN Properties of Butalon Norte, Cajon de los Chenques, Cerro Caicayen, La Voluntad, Cochico.
101	Airbone and Ground Instrumentation	English		?	?	Neuquen	Neuquen province, airbone mag. spec.
102	Areas de Reservas Minera, Provincia Neuquen	Spanish		?	CORMIN S.E.P.	Neuquen	Information of properties of Neuquen Province
103	Investing for Growth, Neuquen	English		?	Secretaria de Estado del COIPADE y Energia, Provincia del Neuquen	Neuquen	Investiment climate in Neuquen Province.
104	No.2 Campana Mahuida (Cu), No.3 Proyect disrito Aurifero Andacollo (Au)	Spanish .	?	?		Neuquen	Outline of Campana Mahuida, Andacollo deposits etc.
105	Indexof 1:100,000 topography maps, Provincia del Neuquen	Spanish				Neuquen	Index map of 1/100,000, Neuquen.

No.	Title	Language	Author	Year	Organization	Category	Comments
106	Prospectos y Areas de Alteracion Hidrothermal de la Provincia del Neuquen	Spanish		1996	CORMIN S.E.P.	Neuquen	Information of 23 alteration zones in Neuquen Province.
107	Mapa Official de la Provincia del Neuquen	Spanish		1997	Provincia del Neuquen	Neuquen	Information map of 1/500,000 utilizing TM image
108	Prospecto y Areas de Alteracion Hidrotermal, Entre 36°46′ - 38°12′ L.S. y 70°01′ - 71°30′ L.O.	Spanish		•	Provincia del Neuquen	Neuguen	Geological map of 1/200,000 with distribution of hydrothermal alteration zones
	Proyecto Andacollo, Resumen de actividades de exploración periodo sep. 1996 a agosto 1997, Resultados y programa de trabajo	Spanish		1997	CAMECO	Neuquen (Andacollo)	Geological and geochemical map and alteration map
110	Sector Norte Distrito Minero Andacollo	Spanish/E nglish		1998	Gobierno de la Provincia del Neuquen	Neuquen (Andacollo)	Information of CORMIN property at North Andacollo.
111	Exploracion Geologica Proyecto Andacollo, vol.1	Spanish	Fuentes, J.S.	1998	CAMECO Argentina S.A.	Neuquen (Andacollo)	Conceptual geological model
112	Nuevo Contrato de Exploracion para Andacollo	Spanish		1999	Panorama Minero/No232-Enero de 1999	Neuquen (Andacollo)	New contract between CORMIN and Mineral Andacollo Gold S.A.
113	Explotacion del distrito aurifero Andacollo en la Provincia del Neuquen	Spanish		1999	Panorama Minero	Neuquen (Andacollo)	Exploitation at the Andacollo gold mine
114	Longitudinal Mina Sofia	Spanish		2000	Minera Andacollo Gold S.A.	Neuquen (Andacollo)	Section map of the Sofia Mine
115	Estudio Comparativo de los Distritos Mineros "Andacollo" y "Cerro Atravesada", Pcia. Del Neuquen, Argentina.	Spanish	Danieli, J.C. and Ronconi, N.	1979	Direccion General de Mineria de la Pcia. de Neuquen	Neuquen (Andacollo, Carreri)	Geological comparative study for Andacollo and Careri districts. Tertiary age mineralization is supposed for both districts.
116	Geoquimica de los intrusivos hallados entre los arroyos Butalon y Quebrada felix. Departamento Minas, Neuquen	Spanish	Case, A.M., Danieli, J.C. and Schlamuk, I.	1999	XIV Congreso Geologico Argentino	Neuquen (Butalon)	Petrological chemistry of intrusive rocks
117	Reserva Cajón de los Cheques	Spanish		1995	Placer Exploration Inc.	Neuquen (Cajón de los Cheques)	Mineral exploration report, geological and geochemical works
118	Geologia de la Comarca de Campana Mahuida (Provincia del Neuquen)	Spanish	Zanettini, J.C.M.	1979	Asociacion Gelogica Argentina, Revista, XXXVI (1): 61- 68.	Neuquen (Campana Mahuida)	Outline geology of Campana Mahuida deposit, Intrusions of Cretacaous to Ologocene.
119	Summary of 1997 Activities, Campana Mahuida Copper Property, Neuquen Province, Argentina	English		1997	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Summary of drilling, geophysics, hydrogeology and metallurgical test works
120	Campana Mahuida · Porfido Cuprifero Neuquen · Argentina Informe de Exploración Anexo II Logs de Sondeos a Diamantina (NU, CM, FM)	Spanish	Chabert, M.	1998	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Tables

No.	Title	Language	Author	Year	Organization	Category	Comments
121	Campana Mahuida · Porfido Cuprifero Neuquen · Argentina Informe de Exploración Anexo III Plano de secciones, Secciones NW·SE (zonas de Mena), Secciones NW·SE (meds)	Spanish	Chabert, M.	1998	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Plans and sections
	Estudio Minero-Geologico del Yacimiento de Plomo "Carreri", Neuquen, Argentina.	Spanish	Aparicio, E.	1960		Neuquen (Carreri)	Description on the Carreri deposits, including ore grades and reserve (500t).
123	Fax Area de Reserva La Atravesada, Neuquen, Argentina.	Spanish		1993	American Resource Corpration	Neuquen (Carreri)	Memoramdum on the information of La Atravesada area.
124	Area la Atravesada, Neuquen, Argentina.	Spanish		1993	Ingeoma S.A.	Neuquen (Carreri)	Geochimical sampling report in La Atravesada area.
125	Prospecto "La Atravesada", Muestreo Geoquimico, Pcia. del Neuquen, Argentina.	Spanish	Horacio, G.	1993		Neuquen (Carreri)	Stream sediments geochemical survey results with Cu anomalies of 50 to 100ppm.
126	Area de Reserva Carreri.	Spanish		1995	Provincia del Neuquen	Neuquen (Carreri)	Information on Careri properties
127	Area de Reserva Cochico Carreri Cachil, Neuquen, Argentina.	Spanish	Campbell, J.	1996	RTZ Mining and Exploration Limited	Neuquen (Carreri)	Geochemical survey reports. RTZ withdrew to ontract with CORMINE.
128	Area de Reserva Carreri, Neuquen, Argentina.	Spanish		1998	Direccion Pcial. de Mineria	Neuquen (Carreri)	Description for previous works in the Carreri district.
129	La Formacion Chachil (Liasico) y sus Níveles Manganesiferos en el Area del Cerro Atravesada, Neuquen, Argentina.	Spanish	Leanza, H.A., De Brodtkorb, M.K., Brodtkorb, A. and Danieli, J.C.		Tercer Congreso Nacional de Geologia Economica	Neuquen (Carreri)	Description for Mn mineralization in the Cerro Atravesada district (Carreri-Nireco).
130	An Appraisal of the Chañas Project of Cormine SEP Neuquen Province, Argentina	Spanish	Bussandri, D.J.	1998	Billiton Argentina	Neuquen (Chañas)	Mineral exploration report, geological and geochemical works
131	Proyecto El Alamo, Informe Impacto Ambientál	Spanish	Bussandri, D.J.	1996	GATRO Argentina Minera S.A.	Neuquen (El Alamo)	Environmental impact assessment report
132	La Voluntad porphyry copper · gold deposit geological report	English	Farnstrom, H., Figueroa, G. and Rochefort, G.	1993	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, geochemical data
133	La Voluntad cobre porfirico deposito de oro informe geologico	Spanish	Farnstrom, H., Figueroa, G. and Rochefort, G.	1993	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, geochemical data, tanslation
134	Interpretation report on induced polarization and resistivity surveys at La Voluntad Project on behalf of Placer International Exploration Inc.	English	Rideout, M.	1993	Quantec Geofisica Limitada	Neuquen (La Voluntad)	Mineral exploration report, IP and resistivity methods

No.	Title	Language	Author	Year	Organization	Category	Comments
135	Proyect La Voluntad, Provincia del Neuquen, Republica Argentina, Informe de la Campaña de sondajes	Spanish	Acosta, H., Van Treek, G. and Zapatta, F.	1994	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, drilling information
136	Proyect III, Geoquimica del yacimiento La Voluntad, Provincia de Neuquen, Republica Argentina	Spanish	Ugalde, I. and Vivallo, W.	1994	Universidad de Chile, Departamento de Geologia	Neuquen (La Voluntad)	Mineral exploration report, geological works
137	Reconocimiento geologico y muestreo orientativo en la zona norte de Pichi Neuquen	Spanish		1989	Corp. Minera del Neuquen	Neuquen (la zona norte de Pichi Neuquen)	Geological exploration report, geological and geochemical works
138	Reserva Quica	Spanish		1985	Placer Exploration Inc.	Neuquen (Palau Mahuida)	Mineral exploration report, geochemical data (Au-Cu)
139	Prospect Pino Andino	Spanish/E nglish		?	Gobierno de la Provincia del Neuquen	Neuquen (Pino Anino)	Information of CORMIN property at Pino Andino, drillings, weak Cu mineralization.
140	Informe Final, Pino Andino	Spanish	Gonzáles, R.M.	1996	Cominco Argentina	Neuquen (Pino Andino)	Mineral exploration report, geological, geochemical, geophysical and drilling works
141	Target Progress Report	English	Lienhard, W.D.	1996	Minera Andes	Neuquen (Pino Andino)	Mineral exploration report, geological and drilling works
142	Proyecto Tocuyo, Prospección geochimica Informe Final	Spanish	Lopez, S.R.	1996	G.A.M.S.A.	Neuquen (Tocuyo)	Geochemical exploration report
143	Reserva Varvarco Campos	Spanish		1995	Placer Exploration Inc.	Neuquen (Varvarco Campos)	Mineral exploration report
144	Report on the geothermal energy development in the north of Neuquen Province.	Japanese		1984	JICA	Neuquen (Varvarco)	Geothermal energy exploration report
145	Informe de avance, Gira al area de Butalo	Spanish	Sanchez, R.	1995	Minamerica, S.A.	Neuquen (Varvarco)	Geochemical exploration report (brief)
146	Programa Nacional de Cartas Geologicas de la Republica Argentina. Hoja Geologica 4169-I, Piedra del Aguila.	Spanish	Cucchi, R., Espejo, P. and Gonzalez, R.	1998	SEGEMAR	Neuquen y Rio Negro	Geological map of 1/250,000 and note
147	Actualizacion Metalogenica de la Region Patagonica al Sur del Paralelo de 42°00′ sur, Republica Argentina	Spanish	Giacosa, R.E., Marquez, M.M. and Pezzuchi, H.D.		Tercer Congreso Nacional de Geologia Economica Tomo III : A1-20.	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
148	Report of mineral exploration in the Patagonia area (phase 2)	Japanese		1983	JICA/MMAJ	Patagonia	Technical cooperation project
149	Report of mineral exploration in the Patagonia area (consolidated)	Japanese		1984	JICA/MMAJ	Patagonia	Technical cooperation project

No.	Title	Language	Author	Year	Organization	Category	Comments
150	Report of mineral exploration in the Patagonia area (phase 3)	Japanese		1984	JICA/MMAJ	Patagonia	Technical cooperation project
151	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish	Marquez, M.J., Parisi, C., Covaro, M.I.F. and Jones, M.E	1994	Actas del Encuentro Interncional de Mineria, I : 66·83	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
152	Mapa de recursos minerales del area fronteriza Argentino- Chilena entre los 34 y 56 de latitud sur	Spanish		1998	SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,000)
153	Mineral resourves map of the frontier zone between Argentine and Chile, 34-56 south latitude	English		1998	SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,001)
154	Region : Patagonia, Regiones mineras de la Republica Argentina	Spanish		1999	Subsecretaria de Mineria	Patagonia	Data of social, infrastructure and economics
155	Mapa de Recursos Minerales del Area Fronteriza Argentino Chilena entre los 34 y 56S.	Spanish	Zanettini, J.C.M., Marquez, M.J., Gonzalez, R.A., Vivallo, W.P., Gardeweg, M.C. and Tassara, A.H.	1999	SEGEMAR y SERNAGEOMIN	Patagonia	Geological maps of 1/1,000,000 and note for the area along the border
156	Property map of Chubut Province (4 pc.)	Spanish		1999		Properties (Chubut)	Property map
157	Padron Minero, Provincia de Chubut	Spanish		2000	Provincia de Chubut	Properties (Chubut)	Mining properties of Chubut (Auto Cad files) without list
158	Expedientes, Provincia del Nauquen.	Spanish		1999	CORMINE	Properties (CORMINE)	Informations on CORMINE's 11properties
159	Property map of Neuquen Province (A3 size)	Spanish		1998		Properties (Neuquen)	Property map
160	Padron Minero, Provincia de Neuquen	Spanish		2000	Provincia de Neuquen	Properties (Neuquen)	Mining properties of Neuquen (map, floppy)
161	Property map of Rio Negro Province (3 pc.)	Spanish		1999		Properties (Rio Negro)	Property map
162	Padron Minero, Provincia de Rio Negro	Spanish		2000	Provincia de Rio Negro	Properties (Rio Negro)	Mining properties of Rio Negro (map. floppy, list)
163	Informe sobre la Prospeccion Geoquimica Realizada en Areas de la Cordillera de Rio Negro	Spanish	Giacosa, R.E	1981	S.M.N. Plan Patagonia Comahue	Rio Negro	Stream sediments geochemical survey results.

No.	Title	Language	Author	Year	Organization	Category	Comments
164	Mapa Geologico de la Provincia de Rio Negro	Spanish		1994	Direccion Nacional del Servicio geologico	Rio Negro	Provincial geological map
165	Proyecto Rio Negro	Spanish		1996	SEGEMAR	Rio Negro	Project in Rio Negro province
166	THOISS 4172-1V San Carlos de Bartioche V 4172-11 San		Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	1999	Gobierno de la Provincia Rio Negro y SEGEMAR	Rio Negro	Note on geological map (1/250,000) of San Carlos de Baliloche area.
167	San Carlos de Bariloche, Carta Geologica de la Republica Argentina, Escala 1:250,000	Spanish	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	1999	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R. (1999) : Gobierno de la Provincia Rio Negro y SEGEMAR	Rio Negro	Geological map (1/250,001) of San Carlos de Baliloche area.
168	Geologia y Recursos Minerales del sector rionegrino de las Hojas 4172·IV, San Carlos de Bariloche y 4172·II, San Martin de los Andes.		Giacosa, R., Heredia, N.C., Ceari, O., Zubia, M. and Gonzalez, R.	1999	Direccion de Mineria de Rio Negro y SEGEMAR	Rio Negro	Geological maps of 1/250,000 and note
169	Geologia y Recursos Minerales de la Hoja 4169·III, Ingeniero Jarcobacci.	Spanish	Gonzalez, P., Coluccia, A., Franchi, M., Caba, R. and Dalponte, M.	1999	Direccion de Mineria de Rio Negro y SEGEMAR	Rio Negro	Geological map of 1/250,000 and note
170	Indexof 1:100,000 topography maps, Provincia de Rio Negro	Spanish				Rio Negro	Index map of 1/100,000, Rio Negro.
171	Informe Geologico Minero, Proyect 15 AL·Lago Mascardi, Mosaico 4172·IV·B2, Zona del Codon Tres Morros, Provncia de Rio Negro	Spanish	Giacosa, R.E.	1982	S.M.N.·Plan Patagonia Comahue, Saubsede los Alamos· Rio Negro	Rio Negro (Lago Mascardi)	Cordon Tres Morros district, 920ppm Cu, 2,800ppm Zn, stockwork, further survey is required.
172	Prospeccion y Exploracion Minera en el Cordon Tres Morros, Cerro Granito y Cerro del Medio, Cordillera Nord Patagonia, Provincia de Rio Negro, Proyect 15 AL·Lago Mascardi Mosaicos 4172·IV·B1 y B2,	Spanish	Giacosa, R.E.	1986	Dirccion Naional de Mineria y Geologia, Dept. Centro de Exploracion Patagonia Sur	Rio Negro (Lago Mascardi)	Max 88g/t Au in Cerro del medio o Alcorta district, hydrothermal mineralization.
173	Estudio Geologico de la Mina de Plomo, Zinc, Plata y Cobre "MARIA". Dept. Norquinco. Pcia de Rio Negro	Spanish	Greco, E.A. and Bornabo de Greco, E.	1973		Rio Negro (Maria)	Outline of Maria deposits, 11.75% Pb, 12.70% Zn, 1.8% Cu, 45.41g/t Ag.
174	Estudio Geologico de la Mina de Plomo, Zinc, Plata y Cobre "MARIA". Dept. Norquinco. Pcia de Rio Negro	Spanish	Greco E.A. and Bernabo de Greco E.A.	1973		Rio Negro (Maria)	Outline of Maria deposits.
175	No.9 Mina Maria (Pb·Zn·Ag·Au·Cu), Provincia de Rio Negro	Spanish	?	?		Rio Negro (Maria)	Outline of Maria deposits, Vein 250m×1.6m, 12% Pb, 13% Zn, 45g/t Ag, 3g/t Au, 2% Cu.
	Informe Geologico Minero Proyecto 15 AF-Bariloche, Mosaico 4172-IV-10a, Zona: Nacientes del Rio Foyel, Prov. De Rio Negro	Spanish	Giacosa, R.E.	1982	S.M.N. Plan Patagonia Comahue	Rio Negro (Rio Foyel)	Follow up S.S. geochemistry for Rio Foyel, but no noticeable results.
	Ubicacion de areas mineralizados a visitar y reconocer en conjunto con la mission tecnica japonesa, en las provincias de Rio Negro y Chubut, desde Norquinco hasta Lago Fontana La Plata.	Spanish	Viera, R.L.M.	2000	SEGEMAR · Delegacion Regional Patagonia Sur	Rio Negro and Chubut	List of known mineralization to visit in Rio Negro and Chubut Provinces

13/13

N	o. Title	Language	Author	Year	Organization	Category	Comments
1	Hoja Geologica 4969·II: Tres Cerros, Provincia de Santa Cruz		Panza, J.L., Zubia, M., Genini, A. and Godeas, M.	1995	Direccion de Nacional del Servicio Geologico, Secretaria de Mineria da la Nacion	Santa Cruz	Note on geological map (1/250,000) inc. Cerro Vanguardia deposit.
1	79 Emprendimiento Minero Cerro Vanguardia S	Spanish	Lasanta, M.	1998		Santa Cruz (Cerro Vanguardia)	Development of the Cerro Vanguardia mine

	Latitude(S)		District District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
1 A00NK001	37' 14' 51.3'	70' 39' 15.2'	Andacollo	Sur los Maitenez	Intrusive	Andesite	Silicification / sericite /	GC
2 A00NK002	36' 47' 17.3'	70' 36' 33.5'	Varvarco	Varvarco	·	Qz vein		GC
3 A00NK003	36' 47' 26.8'	70' 36' 34.6'	Varvarco	Varvarco		Silicified rock	Silicification //	GC
4 A00NK004	36' 47' 32.3'	70' 36' 34.6'	Varvarco	Varvarco	Intrusive	Granite	/ montmorillonite /	XR
5 A00NK005	36' 47' 04.4'	70' 37' 04.4'	Varvarco	Varvarco	Intrusive	Granite	/ kaolinite /	XR
6 A00NK006	36' 47' 16.6'	70' 36' 31,4'	Varvarco	Varvarco		Rhyolite	/ pyrophyllite /	XR
7 A00NK007	37' 26' 58.3'	70' 26' 10.1'	Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization / /	GC
8 A00NK008	37' 26' 44.4'	70' 26' 03.8'	Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/ sericite /	
9 A00NK009	37' 26' 57.4'	70' 26' 16.6'	Cerro Caycayen	Cerro Caycayen	Gr. Cuyo	Slate	/ sericite /	
10 A00NK010	37' 27' 01.3'	70' 26' 19.7'	Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization / /	GC
11 A00NK011	37' 26' 55.7'	70' 26' 21.5'	Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/sericite /	
12 A00NK012	38' 13' 07.5'	70' 32' 37.4'	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sandstone	Phyllic / sericite /	XR
13 A00NK013	38' 13' 07.5'	70' 32' 34.5'	Campana Mahuida	Campana Mahuida		Qz vein_		FI
14 A00NK014	39' 13' 09,6'	70' 35' 53.1'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Biotite granite	Chloritization / / malachite	TS
15 A00NK015	39' 13' 15.1'	70' 35' 58.8'	La Voluntad	La Voluntad		Qz vein		GC
16 A00NK016	39' 03' 02.0'	70' 31' 49.5'	Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	GC
17 A00NK017	39' 02' 41.9'	70' 31' 58.1'	Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	GC
18 A00NK018	39' 02' 40.1'	70' 32' 11.2'	Nireco	ZA027	Campos basalticos de Zapala	Rhyolite	Phyllic / sericite /	TS
19 A00NK019	41' 40' 02.0'	71' 06' 16.8'	Mina Maria	Mina Maria		Ore	//gn, cp, py	PT,OA
20 A00NK020	41' 40' 02.0'	71' 06' 16.8'	Mina Maria	Mina Maria		Qz Vein		
21 A00NK021	42' 08' 43.5'	71' 19' 18.8'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Tourmalinization, Limonitization // py	GC
22 A00NK022	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Chloritization, Limonitization //	
23 A00NK023	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro		Tourmaline breccia		GC
24 A00NK024	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro		Sulfide vein in granite	Limonitization / /	
25 A00NK025	42' 08' 02.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite		TS
26 A00NK026	42' 09'. 27.5'	70' 30' 28,5'	Cushamen	Cushamen	Intrusive	Pegmatite	/ kaolinite /	XR
27 A00NK027	42' 09'30.0'	70' 30'. 25,1'	Cushamen	Cushamen .	<u> </u>	Qz vein		GC
28 A00NK028	42' 09' 31.2'	70' 30' 25.9'	Cushamen	Cushamen		Qz vein		GC
29 A00NK029	42' 09' 31.2'	70' 30' 25.9'	Cushamen	Cushamen	Intrusive	Rhyolite .	Silicification / /	GC
30 A00NK030	42' 09' .35.0'	70' 30' 31.3'	Cushamen	Cushamen	Cushamen Fms.	Schist	Silicification //	XR
31 A00NK031	42' 09' 47.9'	70' 30' 24.4'	Cushamen	Cushamen	Intrusive	Rhyolite	montmorillonite?//	XR
32 A00NK032	42' 09' 43.2'	70' 30' 19.4'	Cushamen	Cushamen	particle of the second	Flaky qz		GC
33 A00NK033	42' 09' 44.4'	70' 30' 17.8'	Cushamen	Cushamen		Qz vein	Tourmalinization / /	XR,GC

No. Sample No.	Latitude(S) Longitude(W	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
34 A00NK034	43' 17' 00.0' 70' 59' 16.8	Cerro Gonzalo	Cerro Gonzalo	Intrusive	Granodiorite porphyry	K-feld.?//cp,py,bo	XR,GC
35 A00NK035	43' 18' 46.7' 71' 02' 31.0	Cerro Gonzalo	Cerro Gonzalo		Qz vein	qz//	GC
36 A00NK036	43' 18' 46.7' 71' 02' 31.0	Cerro Gonzalo	Cerro Gonzalo		Qz vein	qż//	GC
37 A00NK037	43' 17' 19.7' 70' 59' 28.8	Cerro Gonzalo	Arroyo, Luques	Intrusive (Aleusco Fm.)	Granodiorite	Phyllic / sericite /	XR
38 A00NK038	42' 52' 56.9' 71' 12' 53.2	Joya del Sol	Brancote Antonio		Qz vein		FI
39 A00NK039	42' 52' 56.9' 71' 12' 53.2	Joya del Sol	Brancote-Antonio	Lago La Plata Fm.	Andesite	/ montmorillonite /	XR
40 A00NK039-1	42' 52' 56.9' 71' 12' 53.2	Joya del Sol	Brancote Antonio	Lago La Plata Fm.	Andesite		PT
41 A00NK040	43' 37' 55,5' 71' 25' 26.0	Poncho Moro	Arroyo Pedregoso		Andesite? (Float)	Chloritization, Limonitization // py	GC
42 AÖONKÖ41	43' 41' 45.6' 70' 34' 03.5	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT.PC
43 A00NK042	43' 41' 59.0' 70' 34' 00.0) Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PC
44 A00NK043	43' 42' 34.0' 70' 33' 07.1	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PC
45 A00NK044	44' 50' 20.2' 71' 08' 19.2	Mina Gato	Mina Gato	Divisadero Fm.	Rhyolite?	Silicification / alunite /	XR
46 A00NK045	44' 50' 18.1' 71' 08' 21.5	Mina Gato	Mina Gato	Divisadero Fm.	Andesite	Silicification / /	GC
47 A00NK046	44' 50' 26.9' 71' 08' 01.2	Mina Gato	Mina Gato	Divisadero Fm.	Porphyritic andesite	/ montmorillonite /	XR
48 A00NK047	44' 50' 33.7' 71' 08' 34.3	Mina Gato	Mina Gato	Divisadero Fm.	Andesite	Silicification //	XR,GC
49 A00NK048	44' 50' 38.0' 71' 08' 36.2	Mina Gato	Mina Gato	Divisadero Fm.	Andesite		TS
50 A00NK049	45' 00' 45.8' 71' 27' 22.1	Cerro Blanco	Cerro Blanco	Lago La Plata Fm.	Dacite	Phyllic / sericite /	XR
51 A00NK050	42' 53' 30.0' 71' 12' 40.3	Joya del Sol	Brancote Julia	Lago La Plata Fm.	Andesite		КА
52 A00HH001	37' 15' 03.8' 70' 39' 21.5	5 Andacollo	Sur los Maitenez	Intrusive	Altered rhyolite	Limonitization / sericite /	
53 A00HH002	37' 11' 26.9' 70' 37' 51.0	O'Andacollo*	Mina Sofia		Qz-py-gn ore	// qz with py, gn	PT,OA
54 A00HH003	36' 58' 47.1' 70' 38' 49.6	Butalon Norte	Cerro Panta	Choiyoi Fm.	Tuff breccia	sericite, kaoline?/not identified/	
55 A00HH004	37' 01' 10.8' 70' 39' 49.3	Butalon Norte	См010	Choiyoi Fm.	Altered rock	/ sericite /	XR,GC
56 A00HH005	37' 07' 17.8' 70' 37' 24.8	B' Andacollo	CM011	Choiyoi Fm.	Altered rock	/ sericite /	
57 A00HH006	37' 37' 42.5' 70' 26' 02.6	Cerro del Diablo	Barite mine `	Intrusive	Altered granite	White mineral / kaolinite / barite	
58 A00HH007	37' 37' 43.0' 70' 26' 05.0	O'Cerro del Diablo	Barite mine	, '	Altered rock	/ montmorillonite(A), sericite(C) /	XR
59 A00HH008	37' 37' 57.8' 70' 26' 21.4	4 Cerro del Diablo	Barite mine	Intrusive	Felsic rock	Silicification, qz network //	
60 A00HH009	37' 37' 57.8' 70' 26' 21.4	1 Cerro del Diablo	Barite mine	Intrusive'	Granite	Weak / /	
61 A00HH010	37' 38' 14.5' 70' 25' 59.5	Cerro del Diablo	Cu mine		Cu ore	/ montmorillonite / chrysocolla, iron oxide	
62 A00HH011	37' 38' 19.2' 70' 25' 44.5	Cerro del Diablo	Cu mine		Altered rock	/ kaolinite /	
63 A00HH012	37' 13' 04.9' 70' 40' 32.8	Andacollo	Cerro Colo	Intrusive	Andesitic porphyry	Weak / /	WR
64 A00HH013	37' 13' 04.9' 70' 40' 32.8	Andacollo	Cerro Colo	Intrusive	Dacite		TS,XR,GC
65 A00HH014	38' 13' 09.6' 70' 32' 41.	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Altered rock	qz, sericite / /	
66 A00HH015	38' 12' 47.4' 70' 32' 37.	Campana Mahuida	Campana Mahuida		Cu oxide with diorite (Float)	// Cu oxide	

No. Sample No.	Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
67 A00HH016	38' 12' 37.7' 70' 32' 30.7'	Campana Mahuida	Campana Mahuida		Silicified rock	Silicification //	GC
68 A00HH017	38' 12' 48.1' 70' 35' 28.8'	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Altered sand stone	qz, white mineral //	
69 A00HH018	39' 13' 00.8' 70' 36' 01.4'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granite		
70 A00HH019	39' 04' 56.0' 70' 31' 56.4'	Nireco	ZA028/029	Campos basalticos de Zapala	Silicified rock	Silicification / kaolinite /	XR,GC
71 A00HH020	39' 05' 47.6' 70' 31' 26.7'	Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock	/ chlorite, zeolite, calcite-montmorillonite, sericite /	
72 A00HH021	39' 06' 00.0' 70' 31' 29.8'	Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock		
73 A00HH022	38' 57' 56.3' 70' 36' 47.4'	Carreri Malal	Carreri Malal	Intrusive	Granite	e e e e e e e e e	XR
74 A00HH023	38' 58' 27.5' 70' 35' 03.7'	Carreri Malal	Carreri Malal		Altered rock	Argillization //	XR
75 A00HH024	41' 40' 12.0' 71' 06' 43.1'	Mina Maria	Mina Maria		Qz-py-cp-malachite-ga ore	// qz, py, cp, malachite, gn	PT,OA
76 A00HH025	42' 08' 40.8' 71' 18' 27.0'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Granite with tourmaline	Weakly whitened / /	
77 A00HH026	42' 08' 40.8' 71' 18' 27.0'	Cerro Coihue	Quebrada Baya	Intrusive	Andesite dyke	Almost fresh //	
78 A00HH027	42' 08' 35.3' 71' 18' 35.3'	Cerro Coihue	Quebrada Baya		Altered rock	/laumontite/	XR
79 A00HH028	42' 08' 49.7' 71' 18' 36.0'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Altered granite	/ calcite /	XR,GC
80 A00HH029	42' 08' 49.7' 71' 18' 36.0'	Cerro Coihue	Quebrada Baya		Qz, tourmaline (Float)	·	
81 A00HH030	42' 08' 42.9' 71' 18' 33.0'	Cerro Coihue	Quebrada Baya	Intrusive	Andesite		
82 A00HH031	42' 09' 07.4' 71' 24' 13.4'	Condorcanqui	Condorcanqui		Altered rock	Argillization, white clay mineral / not identified /	
83 A00HH032	42' 09' 07.4' 71' 24' 13.4'	Condorcanqui	Condorcanqui		Altered rock	Argillization, white clay mineral dot //	
84 A00HH033	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui		Malachite-chrysocolla-py-cp ore	// malachite, chrysocolla, py, cp	
85 A00HH034	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Chloritic or fresh (with cp) //	XR,GC
86 A00HH035	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui	,	Altered rock	qz, K-fel., cp, limonite // qz with cp	
87 <u>A00HH036</u>	42' 13' 10.3' 71' 25' 17.9'	Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Zeolite in altered andesite	/ laumontite /	
88 A00HH037	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Granite with py (float)		GC
89 A00HH038	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Silicified rock with py (float)	Silicification //	
90 A00HH039	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Pyroclastics with py (float)		GC
91 A00HH040	41' 55' 33.0' 71' 33' 28.1'	El Bolson	Rio Azul		Andesite with py, chl (float)	Silicification //	
92 A00HH041	42' 47' 31.0' 71' 29' 46.3'	Huemules	Huemules Sur		Ore	// malachite, cp; py	
93 A00HH042	42' 47' 25.7' 71' 29' 50.4'	Huemules	Huemules Sur		Ore	//galena	
94 A00HH043	42' 47' 25.7' 71' 29' 50.4'	Huemules	Huemules Sur	Canadon Huemules Fm.	Andesite	Relatively fresh to argillization / sericite /	XR
95 A00HH044	42' 47' 17.1' 71' 29' 58.7'	Huemules	Huemules Sur		Altered rock	Silicification argillization, py //	XR,GC
96 A00HH045	42' 47' 17.1' 71' 29' 58.7'	Huemules	Huemules Sur	Intrusive	Micro granodiorite	Fresh //.	
97 A00HH046	42' 47' 28.9' 71' 29' 42.0'	Huemules	Hùemules Sur		Оге	Oxidized cp // qz, cp, py	
98 A00HH047	42' 45' 37.5' 71' 06' 29.3'	Joya del Sol	Arroyo Cancha		Altered rock	Silicification, py //	GC
99 A00HH048	42' 53' 46.5' 71' 12' 45.8'	Joya del Sol	Brancote Elena Sur		Qz vein		

	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
				Geological unit, Straugraphy		Therefore, Folker, Famourise	
	42' 52' 22.4' 71' 12' 08.8'		Brancote-Galadriel	,	Qz vein		
101 A00HH050	42' 51' 49.3' 71' 11' 08.1'	Joya del Sol	Near LM024	Lago La Plata Fm.	Altered rock	/ sericite /	XR
102 A00HH051	43' 57' 47.7' 71' 34' 09.4'	Cerro Colorado	Near Cerro Riñon		Silicified rock (Float)	Silicification / pyrophyllite /	
103 A00HH052	43' 30' 23.8' 71' 06' 25.6'	Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Qz with white altered mineral	/ montmorillonite /	
104 A00HH053	43' 30' 19.0' 71' 06' 12.1'	Arroyo Cascada	Arroyo Cascada		Altered rock (Float)	/ montmorillonite /	
105 A00HH054	43' 30' 19.0' 71' 06' 12.1'	Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Altered rock	/ montmorillonite /	XR
106 A00HH055	44' 41' 33,1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
107 A00HH056	44' 41' 33.1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
108 A00HH057	44' 41' 33.1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	XR
	44' 41' 18.8' 71' 07' 13.0'		Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
	44' 41' 23.3' 71' 07' 13.4'		Estrella Gaucha	Apeleg Fm.	Kaoline/dickite/greysh kaoline	/ kaolinite /	
	44' 41' 25.0' 71' 05' 40.1'		Estrella Gaucha	Intrusive	Andesite	Propylitic ? / /	TS,GC
				THE USIVE	Galena ore	//galena	
112 A00HH061	44' 56' 24.0' 71' 35' 16.1		Ferrocarrilera			// galena	VD
113 A00HH062	44' 56' 24.0' 71' 35' 16.1'		Ferrocarrilera	Lago La Plata Fm.	Andesite		XR
114 A00HH063	44' 56' 19.2' 71' 35' 08.3	'Ferrocarrilera	Ferrocarrilera		Galena-sphalerite-qz ore	//galena, sphalerite	PT
115 A00HH064	44' 56' 18.2' 71' 35' 08.4	Ferrocarrilera	Ferrocarrilera		Qz-py-cp-sphalerite ore	//cp, sphalerite	
116 A00HH065	44' 56' 20.3' 71' 35' 11.8	Ferrocarrilera	Ferrocarrilera		Galena-sphalerite ore	// galena, sphalerite	
117 A00MZ001	37' 15' 05.0' 70' 39' 24.2	Andacollo	Sur los Maitenez	Intrusive	Rhyolite	Silicification / sericite /	GC
118 A00MZ002	37' 14' 29.0' 70' 39' 40.7	'Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite-qz network	GC
119 A00MZ003	37' 11' 32.5' 70' 37' 54.6	Andacollo	Mina Sofia	Intrusive	Dacite	Argillization / sericite / pyrite diss.	XR,GC
120 A00MZ004	36' 58' 47.3' 70' 38' 49.5	Butalon Norte	Butalon Norte	Choiyoi Fm.	Pebble dyke	Silicification // magnetite	XR,GC
121 A00MZ005	36' 58' 47.7' 70' 38' 52.7	Butalon Norte	Butalon Norte	Choiyoi Fm.	Volcanic rock	Silicification / / magnetite	GC
122 A00MZ006	37' 01' 08.1' 70' 39' 50.5		CM010	Choiyoi Fm.	Volcanic rock	Silicification / kaolinite / limonite	GC
123 A00MZ007	37' 07' 20.2' 70' 37' 23.4		CM011	Choiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	GC
			Quebrada el Bronce	Cuyo Gr.	Mudstone	Silicification // pyrite diss, network	GC
	37' 26' 39.3' 70' 26' 35.8				Granite	Potassic //	GC
	37' 26' 35.5' 70' 26' 59.9		Quebrada el Bronce	Intrusive (Grupo Molle)		// pylite-limonite	OA
	37' 27' 10.8' 70' 26' 48.1		Mina Hierro	Ore deposit	Massive ore		
127 A00MZ011	37' 11' 30.1' 70' 37' 58.5	i' Andacollo	Mina Sofia	Intrusive	Qz porphyry	Weak //	WR
128 A00MZ012	37' 11' 30.1' 70' 37' 58.5	Andacollo	Mina Sofia, Level1	Ore deposit	Vein ore	//qz-calcite-py-gn	OA,DS,DO,FI
129 A00MZ013	37' 11' 25.3' 70' 37' 51.2	Andacollo	Mina Sofia	Intrusive	Dacite porphyry	Fresh //	TS,WR
130 A00MZ014	37' 11' 25.3' 70' 37' 51.2	Andacollo	Mina Sofia	Huaraco Fm. (Andacollo Gr.)	Mudstone	// pyrite	DS
131 A00MZ015	37' 13' 15.8' 70' 40' 32.7	' Andacollo	Cerro Colo	Intrusive (Cretaceous)	Tonalite	Fresh // py green Cu stain	TS,WR
132 A00MZ016	37' 11' 30.1' 70' 37' 58.5	Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	//qz-calcite-py-gn	PT,OA,FI

No. Sampl	e No. La	titude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
133 A00M	2017 37	11' 30.1'	70' 37' 58.5'	Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	// qz-calcite-py-gn	FI
134 A00M	2018 38	12' 48:6'	70' 32' 18.1'	Campana Mahuida	Campana Mahuida	Intrusive (Tres Puntas)	Granodiorite	Fresh [*] //	TS,WR
135 A00M	Z019 38'	12' 47.2'	70' 35' 24.9'	Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	//barite-Fe oxides	OA
136 A00M	Z020 38'	12' 48.5'	70' 35' 30.5'	Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	//barite-galena-Fe oxides	OA
137 A00M	Z021 39'	12' 50.2'	70' 36' 22:1'	La Voluntad	La Voluntad	Intrusive	Vein ore	// qz·malachite	OA
138 A00M	Z022 39'	12' 52.1'	70' 36' 23.1'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granite	Potassic //	TS,GC
139 A00M	Z023 ¹ 39 ¹	02' 59.8'	70' 32' 02.1'	Nireco	ZA027	Campos basalticos de Zapala	Volcanic rock	Silicification / montmorillonite /	GC
140 A00M	Z024 39'	02' 22.1'	70' 32' 10,7'	Nireco	ZÁ027	Campos basalticos de Zapala	Volcanie rock	Silicification / sericite /	XR,GC
141 A00M	Z025 39 ¹	01' 53.3'	70' 32' 35,4'	Nireco	ZÁ026	Campos basalticos de Zapala	Volcanic rock	Silicification / kaolinite /	GC
142 A00M	Z026 38	57' 50.5'	70' 36' 50.9'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Argillization // Fe-Mn oxides (gossan)	GC
143 A00M	Z027 38'	57' 48.3'	70' 36' 53.9'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Chloritization // Mn oxide	GC
144 A00M	Z028 38'	57' 59.1'	70' 36' 46,3'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	// qz-py-gn-bornite ·	OA
145 A00M	Z029 41'	40' 11:3'	71' 06' 41.0'	Mina Maria	Mina Maria	Ore deposit	Vein ore	//galena	DS
146 A00M	Z030 41'	40' 11.3'	71' 06' 41.0'	Mina Maria	Mina Maria	Ore deposit	Vein ore	//gn·py·cp	PT,OA
147 A00M	Z031 42 ⁱ	08' 39:5'	71' 19' 17.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite (Float)	// limonite	GC
148 A00M	Z032 42'	08' 29.5'	71' 19' 18.8'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	Fresh / /	TS,WR
149 A00M	Z033 42'	08' 05.3'	71' 19' 28.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	// chrysocolla	GC
150 A00M	Z034 42'	09' 09.9'	71' 24' 13.9'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesitic tuff	Propylite // pyrite diss.	GC
151 A00M	Z035 42'	09, 09,9	71' 24' 13.9'	Condorcanqui	Condorcanqui	Zeolite vein	Zeolite	Propylite / laumontite /	GC
152 A00M	Z036 42'	09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite / / cp dissveinlet	OA ·
153 A00M	Z037 42'	09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // malachite	OA
154 A00M	Z038 42	09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // pyrite diss.	PT
155 A00M	Z039 42'	13' 51.9'	71' 25' 17.7'	Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Andesite (Float)	Propylite // pyrite diss.	GC
156 A00M	Z040 42'	28' 03.8'	71' 35' 53.2'	Lago Chilila	A. Pedregoso de Lago Cholila	Granitodes Cordilleranos	Sil., breccia (Float)	Silicification // limonite	GC
157 A00M	Z041 42'	47' 32.1'	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Veinlet	// qz-py-gn	OA
158 A00M	Z042 42'	47 32.1	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Veinlet	// galena mass	PT;OA,DS
159 A00M	Z043 42 ¹	47' 32.1'	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Veinlet	// qz-py ··· ·· ·	DO,FI
160 A00M	Z044 42	47' 18.6'	71' 29' 54.8'	Huemules	Huemules Sur	Intrusive	Microdiorite	Propylite //	TS,WR
161 A00M2	Z045 42'	47' 32.1'	71' 29' 45.9	Huemules	Huemules Sur	Ore deposit	Vein Ore	// galena mass	
162 A00M2	2046 42'	47' 32.6'	71' 29' 43.5'	Huemules	Huemules Sur	Ore deposit	Veinlet	//qz-cp-py-gn	OA,DO,FI
163 A00M2	2047 42	45' 39.1'	71' 06' 33.5'	Joya del Sol	Arroyo Cancha	Alluvium	Qz veinlet (Float)		GC
164 A00M2	Z048 42°	53' 40.9'	71' 12' 32.9'	Joya del Sol	Brancote-Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA,DO,FI
165 A00M2	Z049 42'	53' 40.9'	71' 12' 32.9'	Joya del Sol	Brancote Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA

rippendix	2 Samples tal	zen ioi die s	divey.				-
No. Sample No.	Latitude(S) Longitude(W)	District	- Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
166 A00MZ050	42' 53' 20.7' 71' 12' 45.3'	Joya del Sol	Brancote Julia	Ore deposit	Hydrothermal breccia	// Aurifeous qz vein	
167 A00MZ051	42' 52' 43.0' 71' 12' 19.5'	Joya del Sol	Brancote-Galadriel	Ore deposit	Qz vein	// Aurifeous qz vein	DO,FI
168 A00MZ052	43' 10' 38.2' 71' 40' 51.4'	Poz. de Navarro	Poz. de Navarro	Qz vein	Qz vein	// pyrite diss.	GC
169 A00MZ053	43' 10' 38.2' 71' 40' 51.4'	Poz. de Navarro	Poz. de Navarro	Lágo la Plata Fm.	Andesite	Propylite // qz-cp veinlets	GC
170 A00MZ054	43' 11' 17.8' 71' 39' 56.7'	Poz. de Navarro	Ea. el Triunfo	Intrusive	Qz porphyry	Silicification / sericite / py-cp? diss.	GC
171 A00MZ055	43' 24' 09.3' 71' 32' 33.1'	Las Mentas	Las Mentas	Qz vein	Qz ein	// qz·cp·gn·malachite	OA
172 A00MZ056	43' 37' 55.1' 71' 25' 30.7'	Poncho Moro	Arroyo Pedregoso	Alluvium	Qz vein (Float)	// Slight pyrite diss.	GC
173 A00MZ057	43' 30' 22.9' 71' 06' 24.7'	Arroyo Cascada	Arroyo Cascada	Qz vein	Qz vein	// pyrite diss.	GC
174 A00MZ058	43' 30' 22.9' 71' 06' 24.7'	Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification / montmorillonite /	XR
175 A00MZ059	43' 30' 17.0' 71' 06' 10.1	Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification // pyrite diss.	GC
176 A00MZ060	43' 30' 17.0' 71' 06' 10.1	Arroyo Cascada	Arroyo Cascada	Qz vein (F)	Cubic pyrite	// Cúbic pyrite in qz vein	DS
177 A00MZ061	44' 50' 13.6' 71' 08' 30.6	Mina Gato	Mina Gato	Divisadero Fm.	Soft silky rock	Kaolinitization / kaolinite /	GC
178 A00MZ062	44' 50' 05.0' 71' 08' 43.7	Mina Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / alunite /	GC
179 A00MZ063	44' 50' 10.2' 71' 07' 54.6	Mina Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / sericite montmorillonite / pyrite diss.	GC
180 A00MZ064	44' 54' 11.1' 71' 14' 43.6	Ea. Arroyo Victoria	Arroyo Huemul	Alluvium	Silicified rock	Silicification / alunite / Slight limonitic	GC
181 A00MZ065	44' 56' 21.8' 71' 35' 05.4	· Ferrocarrilera	Ferrocarrilera	Lago la Plata Fm.	Andesite	Propylite // pyrite diss.	TS,GC
182 A00MZ066	44' 56' 21.8' 71' 35' 05.4	' Ferrocarrilera	Ferrocarrilera		Vein ore	// pyrite diss.	DS,DO,FI
183 A00MZ067	44' 56' 21.8' 71' 35' 05.4	Ferrocarrilera	Ferrocarrilera		Vein ore	//gn-sp-py	
184 A00MZ068	44' 56' 21.8' 71' 35' 05.4	' Ferrocarrilera	Ferrocarrilera		Vein ore	//gn-sp-py	OA
185 A00TM001	37' 15' 05.6' 70' 39' 16.8	'Andacollo	Sur los Maitenez	Intrusive	Dacite	Silicification / sericite / limonite	GC
186 A00TM002	37' 11' 27.7' 70' 37' 45.8	Andacollo	Mina Sofia level4	Huaraco Fm. (Andacollo Gr.)	Black shale	Silicification / sericite / gn, sp, cp, py diss.	GC
187 A00TM003			CM005		White altered rock	Weak silicification, argillization / pyrophyllite /	XR,GC
188 A00TM004			CM006	Choiyoi Fm.	Rhyolitic tuff	Fresh //	GC
189 A00TM005			Varvarco	Intrusive	Tonalite	Weak silicification //	GC
	36' 50' 54.5' 70' 39' 54.4		Varvarco	Intrusive	Tonalite	Weak alteration //	тѕ
191 A00TM007			Cerro del Diablo (Colorado)		Qz vein	//qz-barite	GC
192 A00TM008			Cerro del Diablo (Colorado)	Vaca Muerta Fm.	Shale	Argillization //	XR,GC
	37' 37' 59.0' 70' 26' 25.1		Cerro del Diablo (Colorado)	Intrusive	Tonalite	Fresh //	TS,WR,KA
194 A00TM010			Cerro del Diablo	Vaca Muerta Fm.	Shale	Silicification, argillization / sericite / limonite	GC
	37' 38' 10.3' 70' 26' 20.6		Cerro del Diablo	Vaca Muerta Fm.	Shale	Silicitication, argulization / sericite, kaolinite /	XR
1	37' 38' 10.3' 70' 26' 20.6		Cerro del Diablo		Qz vein	//qz-barite	GC
	37' 38' 21.5' 70' 25' 48.5		Cerro del Diablo	Intrusive	Granite?	Silicitication, argillization // malachite, azurite, limonite	GC
	37 38 21.5 70 25 48.5 37' 38' 21.5' 70' 25' 48.5		Cerro del Diablo	Intrusive	Granite?	Silicification, argillization/kaolinite, sericite/malachite, zurite, limonite	a XR
Tao MODIMOT	1 31 30 41.0 10 40 48.0	Cerro dei Dianio	OCITO GEI DIADIO	THUI MOITC	Oranio:		1444

No.	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization Sincincation, arguinzation/kaonnite/maiacnite-ilmonite	Analysis type
199	A00TM016	37' 38' 20.3'	70' 25' 37.6'	Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	Stain	XR,GC
200	A00TM017	36' 47' 19.1'	70' 37' 31.8'	Varvarco	CM004	Intrusive	Tonalite	Tourmalinization, qz+epidote vein //	TS,GC
201	A00TM018	36' 47' 19.1'	70' 37' 31.8'	Varvarco	CM004	Intrusive	Tonalite	Weak alteration / /	TS,WR
202	A00TM019	36' 47' 19.1'	70' 37' 31.8'	Varvarco	CM004	Intrusive	Diorite porphyry	Tourmalinization, qz+epidote vein //	TS,WR
203	A00TM020	36' 49' 51,0'	70' 40' 20.1'	Varvarco	Varvarco	Valvalco granite	Tonalite	Fresh //	TS,WR,KA
204	A00TM021	39' 12' 50.1'	70' 36' 26.6'	La Voluntad	La Voluntad	Intrusive	Qz vein in granitoid	// malachite	GC
205	A00TM022	39' 05' 04.4'	70' 32' 11.5'	Nireco	ZA028	Campos basalticos de Zapala	Lapilli tuff	Silicification //	GC
206	A00TM023	39' 05' 45.5'	70' 31' 21.5'	Nireco	ZA029	Campos basalticos de Zapala	Andesite?	Fresh //	TS
207	A00TM026	39' 06' 00.7'	70' 31' 26.8'	Nireco	ZA029	Campos basalticos de Zapala	Tuff	Argillization, weak silicification // limonite	GC
208	A00TM027	39' 06' 00.7'	70' 31' 26.8'	Nireco	ZA029	Campos basalticos de Zapala	Lapilli tuff	Argillization, weak silicincation montmorillonite limonite	XR,GC
209	A00TM028	41' 40' 05.2'	71' 06' 16.9'	Mina Maria	Mina Maria	Nahuel Huapi Fm.	Tuff	Silicification / / limonite	GC
210	A00TM029	42' 08' 36,0'	71' 18' 09.4'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Porphyritic Tonalite	Propylitic // pyrite diss.	GC
211	A00TM030	42' 08' 35.7'	71' 18' 25.1'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Potassic? // limonite stain	TS,WR
212	A00TM031	42' 08' 38.2'	71' 18' 33.9'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Argillization, weak silicification // limonite	GC
213	A00TM032	42' 08' 38.2'	71' 18' 33.9'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Argillization / zeolite, loumontite / limonite	XR,GC
214	A00TM033	42' 08' 42.5'	71' 18' 30.4'	Cerro Coihue	Quebrada Baya		Argillic vein	Argillization, weak silicification / sericite, montmorillonite /	XR,GC
215	A00TM034	42' 08' 43.2'	71' 18' 30.4'	Cerro Coihue	Quebrada Baya		Qz vein (Float)	// limonite	GC
216	A00TM035	42' 08' 45.6'	71' 18' 27.1'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Granodiorite	Potassic / / pyrite diss, limonite	GC
217	A00TM037	42' 09' 40.7'	70' 30' 33.2'	Cushamen	Cushamen	Intrusive	Rhyolite	Argillization / kaolinite, sericite /	XR
218	A00TM038	42' 09' 40.7'	70' 30' 33.2'	Cushamen	Cushamen		Qz vein	// limonite	GC
219	A00TM039	42' 09' 43.5'	70' 30' 38.4'	Cushamen	Cushamen		Qz vein	//limonite	GC,DO,FI
220	A00TM040	43' 17' 05.5'	70' 59' 06,6'	Cerro Gonzalo	Arroyo Luques	Aleusco Fm.	Granodiorite	Silicification, agillization / /	GC
221	A00TM041	43' 17' 02.2'	70' 59' 17.6'	Cerro Gonzalo	Arroyo Luques	Intrusive	Granodiorite	Potassic, silicification, argillization//cp vein, diss.	GC
222	A00TM042	43' 18' 54.4'	71' 02' 22.8'	Cerro Gonzalo	Cerro Gonzalo		Qz vein	// limonite	DO,FI
223	A00TM043	43' 18' 54,4'	71' 02' 22.8'	Cerro Gonzalo	Cerro Gonzalo	Aleusco Fm.	Granodiorite :	Silicification, argillization // malachite, limonite stain	XR
224	A00TM044	43' 18' 25.0'	71' 01' 29.4'	Cerro Gonzalo	Cerro Gonzalo		Hydrothermal breccia	Weak silicification // malachite stain	GC
225	A00TM045	42' 53' 42.0'	71' 12' 30.6'	Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	Argilization, weak silicincation / sericite, montmorillonite /	
226	A00TM046	42' 53' 42.0'	71' 12' 30.6'	Joya del Sol	Brancote Galadriel	Lago la Plata Fm.	Andesite	Argillization, weak siliclication / sericite, montmorillonite /	XR
227	A00TM047	42' 53' 42.0'	71' 12' 30.6'	Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	Argillization / montmorillonite /	XR
228	A00TM049	42' 53' 12.9'	71' 12' 47.8'	Joya del Sol	Brancote-Galadriel		Qz vein		OA
229	A00TM050	42' 53' 12.9'	71' 12' 47.8'	Joya del Sol	Brancote Galadriel	Lago la Plata Fm.?	Andesite?	Argillization / sericite /	XR
230	A00TM051	42' 53' 12.9'	71' 12' 47.8'	Joya del Sol	Brancote Galadriel	· . ·	Qz vein	Participation of the state of t	OA
231	A00TM053	43' 57' 47.1'	71' 34' 13.6'	Cerro Colorado	Near Cerro Rinon		Granite (Float)	Silicification, argillization 7 montmorillonite, sericite/ py diss.	GC

			Longitude(W)	District	Locality Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
						Geological unit, Stratigraphy			GC
232	A00TM054	43' 57' 52.6'	71' 33' 50.8'	Cerro Colorado	Near Cerro Riñon		Granite? (Float)	Silicification / / pyrite diss.	
233	A00TM055	44' 41' 25.0'	71' 06' 47.2'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification, argillization / kaolinite / limonite	XR,GC
234	A00TM056	44' 41' 26.0'	71' 07' 00.9'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification // limonite stain	GC
235	A00TM057	44' 41' 23.7'	71' 07' 05.9	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite /	XR
236	A00TM058	44' 41' 21.5'	71' 07' 10.9	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite / limonite stain	XR,GC
237	A00TM059	44' 41' 31,1'	71' 05' 47.3	Estrella Gaucha	Estrella Gaucha		Qz vein		GC,DO,FI
238	A00TM060	44' 41' 31.1'	71' 05' 47.3	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification, argillization 7 sericite, montmorillonite 7 limonite stain	XR,GC
239				Estrella Gaucha	Estrella Gaucha		Hydrothurmal breccia	Silicification // limonite stain	GC
240				Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / sericite, montmorillonite/ cubic py(limonite) diss.	XR,GC
1				Cerro Blanco	Cerro Blanco	, , , , , , , , , , , , , , , , , , ,	Qz vein	// limonite	GC
241								// pyrite (limonite)	GC
242				Cerro Blanco	Cerro Blanco		Qz vein	Argillization / sericite, montmorillonite / limonite stair	
243				Cerro Blanco	Cerro Blanco	Lago la Plata Fm.?	Altered rock		1
244	A00TM068	45' 00' 32.7'	71' 27' 25.3	Cerro Blanco	Cerro Blanco		Qz vein	//limonite	GC
245	A00RM001	37' 15' 06.9	70' 39' 18.1	Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite, hematite	
246	A00RM002	37' 14' 30.4	70' 39' 37.5	Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / kaolinite / limonite qz network	
247	A00RM003	37' 11' 27.0	70' 37' 45.4	Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic / / py-cp-gn-sp diss.	
248	A00RM004	37' 11' 27.0	70' 37' 45.4	Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic // py-cp-gn-sp diss.	
249	A00RM005	36' 58' 50.2	70' 38' 45.3	Butalon Norte	Butalon Norte	Coiyoi Fm.	Volcaniclastic rock	Silicification // magnetite	XR
250	A00RM006	36' 58' 49.0	70' 38' 45.0	Butalon Norte	Butalon Norte	Coiyoi Fm.	Pebble dyke	Silicification // magnetite	
251	A00RM007	37' 01' 08.5	70' 39' 48.2	Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification / / limonite	XR
252	A00RM008	37' 01' 03 1	70' 39' 54.8	Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification / sericite / limonite	
253			70' 37' 19.9		CM011	Coiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	GC
		1		'Cerro Caicayen	Cerro Caicayen	Cuyo Gr.	Mudstone	Silicification / montmorillonite, kaolinite / limonite	
254						Intrusive (Grupo Molle)	Dacite porphyry	Phyllic / sericite / pyrite-limonite	GC
255				Cerro Caicayen	Cerro Caicayen	7		Weak //	GC
256			70' 37' 47.0		Mina Sofia nivel4	Intrusive	Dacite porphyry		
257	A00RM013	37' 11' 59.0	70' 35' 59.2	Andacollo	Arroyo Huaraco	Permian Intrusive	Granite	Weak // qz vein py diss	TS,WR
258	A00RM014	37' 13' 08.1	70' 40' 31.2	Andacollo	Cerro Colo	Intrusive	Granite		-
259	A00RM015	37' 13' 08.7	70' 40' 32.0	Andacollo	Cerro Colo	Intrusive	Dacite porphyry	Potassic? // qz vein	
260	A00RM016	38' 12' 59.2	70' 32' 22.8	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic / /	GC
261	A00RM017	38' 12' 46.4	70' 32' 25.6	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic / / limonite	GC
262	A00RM018	38' 12' 49.7	70' 35' 25.2	Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	//barite-gn-sp-mo	
263	A00RM019	38' 11' 50.1	70' 35' 50.2	Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	// barite-Fe oxides	
264				La Voluntad	La Voluntad	Intrusive	Qz. vein in Granodiorite	Potassic // Fe oxides, muscovite	GC
المتحت					· · · · · · · · · · · · · · · · · · ·	······································			

No. Sample No.	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
265 A00RM021	39' 12' 50.8' 70' 36' 24.2'	La Voluntad	La Voluntad	Intrusivė (La Voluntad Complex)	Granodiorite	Potassic // Fe oxide, green Cu	GC
266 A00RM022	39' 03' 01.9' 70' 31' 51.3'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / sericite /	XR
267 A00RM023	39' 02' 51.2' 70' 31' 58.5'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / montmorillonite, sericite /	XR,GC
268 A00RM024	39' 01' 54.5' 70' 32' 28.9'	Nireco	ZA026	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / kaolinite, pyrophyllite /	XR
269 A00RM025	39' 03' 06.5' 70' 32' 07.7'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	/ sericite /	TS
270 A00RM026	38' 57' 58.0' 70' 36' 47.5'	Carreri Malal	Carreri Malal	Intrusive	Granite	Weak / /	
271 A00RM027	38' 58' 37.0' 70' 35' 02.0'	Carreri Malal	Near Carreri Malal	Campos basalticos de Zapala	Basalt		
272 A00RM028	41' 40' 02.3' 71' 06' 15.6'	Mina Maria	Mina Maria	Nahuel Huapi Fm. (Fuapi?)	Andesite?	Propyritic //	XR,GC
273 A00RM029	41' 40' 10.0' 71' 06' 43.0'	Mina Maria	Mina Maria		Qz vein (ore)	Silicification //gn-py-cp-green Cu	PT,OA
274 A00RM030	42' 08' 36.4' 71' 18' 27.6'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Silicification / zeolite /	XR,GC
275 A00RM031	42' 08' 37.7' 71' 18' 29.0'	Cerro Coihue	Quebrada Baya		Tourmaline vein		TS
276 A00RM032	42' 08' 45.4' 71' 18' 33.0'	Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / montmorillonite / K-feldspar,calcite vein	TS
277 A00RM033	42' 08' 44.9' 71' 18' 27.3'	Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / chlorité,epidote,calcite / limonite-pyrite	PT,XR,GC
278 A00RM034	42' 09' 38.7' 70' 30' 32.1'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / sericite, kaolinite /	XR
279 A00RM035	42' 09' 36.1' 70' 30' 30.6'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / gypsum, sericite /	XR
280 A00RM036	42' 09' 43.7' 70' 30' 35.9'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Silicification / sericite /	GC
281 A00RM037	42' 09' 47.2' 70' 30' 31.6'	Cushamen	Cushamen		Qz vein	Silicitication gypsum, sericite, montmorillonite py- limonite	GC
282 A00RM038	42' 09' 42.9' 70' 30' 17.3'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Silicification/sericite,montmorillonite/qz/vein_network, tourmaline veinlet	TS
283 A00RM039	43' 17' 03.0' 70' 59' 11.0'	Cerro Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Silicification, potassic?/ sericite/ qz vein, hematite	
284 A00RM040	43' 17' 01.0' 70' 59' 16.0'	Cerro Gonzalo	Arroyo Luques	Intrusive	Granodiorite/Porphyry	Silicification, potassic?//qz vein, cp-py-limonite Silicification, phyllic 77 qz vein; limonite green Cu,	PT,XR,GC
285 A00RM041	43' 18' 53.2' 71' 02' 24.5'	Cerro Gonzalo	Cerro Gonzalo	Intrusive	Breccia pipe	tourmaline	XR,GC
286 A00RM042	43' 18' 25.2' 71' 01' 26.2'	Cerro Gonzalo	Arroyo Luques	Intrusive	Hydrothermal breccia	Silicification // qz, green Cu, cp, tourmaline	PT,GC
287 A00RM043	43' 17' 35.0' 71' 00' 25.0'	Cerro Gonzalo '	Arroyo Luques	:	Altered rock	Limonitization // limonite, hematite, green Cu	GC
288 A00RM044	43' 17' 06.3' 71' 00' 24.9'	Cerro Gonzalo	Arroyo Luques		Altered rock	Limonitization // limonite, hematite, green Cu	
289 A00RM045	43' 17' 28.7' 70' 59' 37.1'	Cerro Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Phyllic / sericite / py-cp-mo-biotite	GC
290 A00RM046	42' 52' 22.1' 71' 12' 09.6'	Joya del Sol	Brancote-Galadriel Norte		Banded Qz vein	Silicification // qz white chalcedony	OA
291 A00RM047	42' 53' 28.3' 71' 12' 30,4'	Joya del Sol	Brancote Elena Sur		Banded Qz vein	Silicification // qz-black chalcedony	
1 1	42' 53' 38.7' 71' 12' 30.4'		Brancote-Elena Sur	Lago la Plata Fm.	Andesitic rock	Argillization / /	TS
293 A00RM049	42' 53' 24.0' 71' 12' 44.0'	Joya del Sol	Brancote-Julia	Intrusive	Hydrothermal breccia	Silicification / / Vuggy silica	TS
1	42' 51' 51.0' 71' 11' 19.5'	Joya del Sol	Brancote North of Galadriel		Qz vein	Silicification // Massive white qz	
	42' 51' 51.6' 71' 11' 15.5'		Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Silicification, argillization / sericite / py-limonite	
296 A00RM052	42' 51' 50.1' 71' 11' 15.0'	Joya del Sol	Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Argillization / sericite / limonite	
297 A00RM053	43' 57' 42.0' 71' 34' 33.0'	Cerro colorado	Near Cerro Rinon		Float	Silicification / pyrophyllite / py-limonite	

	Latitude(S) Longitude(W	4	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
							PC
	43' 41' 49.0' 70' 33' 58.0		Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		119
299 A00RM055	43' 41' 58.0' 70' 34' 12.0	Gabros de Tecka	Gabros de Tecka	Osta Arena Fm. (Liasic)	Hornfels	Contact metamorphism//clinopyroxene, diopside	
300 A00RM056	43' 42' 33.0' 70' 33' 56.0	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		
301 A00RM057	43' 43' 15.1' 70' 33' 32.8	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT,PC
302 A00RM058	43' 43' 12.1' 70' 37' 12.7	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT
303 A00RM059	44' 41' 23.9' 71' 06' 47.4	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	XR
304 A00RM060	44' 41' 24.0' 71' 06' 49.3	Estrella Gaucha	Estrella Gaucha	Divisadero Fm.	Ignimbrite (welded tuff)	Silicification, argillization / kaolinite /	TS
305 A00RM061	44' 41' 20.7' 71' 07' 06.8	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	
306 A00RM062	44' 41' 21.7' 71' 07' 07.7	' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock (Float)	Argillization //	XR
307 A00RM063	44' 41' 23.0' 71' 07' 12.5	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Argillization / kaolinite / dickite	XR
308 A00RM064	44' 41' 36.5' 71' 05' 45.2	Estrella Gaucha	Estrella Gaucha	in Apeleg Fm.	Brecciated qz vein	Silicification / /	GC
309 A00RM065	44' 41' 19.3' 70' 05' 29.4	l' Estrella Gaucha	Estrella Gaucha	Apeleg Fm.?	white altered rock	Silicification, argillization / montmorillonite sericite /	XR
310 A00RM066	45' 00' 13.7' 71' 27' 25.2	Cerro Blanco	Cerro Blanco	in Lago La Plata Fm.	Brecciated qz vein (Float)	Silicification // py-limonite-hematite	GC
311 A00RM067	45' 00' 12.9' 71' 27' 28.2	Cerro Blanco	Cerro Blanco	Lago la Plata Fm.?	white altered rock	 Silicification, argillization / sericite / Silicification, argillization/ sericite, montmorillonite /qi	XR
312 A00RM068	45' 00' 21.4' 71' 27' 33.6	Cerro Blanco	Cerro Blanco	Lago la Plata Fm.	white altered rock with qz pheno.	phenocrystal	XR
313 A00RM069	45' 00' 24.9' 71' 27' 30.9	Cerro Blanco	Cerro Blanco	in Lago La Plata Fm.	Qz vein (Float)	Silicification // qz-limonite	GC
314 A00RM070	45' 01' 00.2' 71' 27' 06.8	B' Cerro Blanco	Cerro Blanco	Tres Lagunas Fm.?	Laminated Sed, Rock	Silicification // qz-chalcedony-calcite-limonite-sulfide	GC
315 A00NK101	39' 01' 49.4' 70' 32' 06.7	7' Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Quartz	// Limonite	GC
316 A00NK102	39' 00' 56.8' 70' 31' 40.7	Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Rhyolite	Silicification, argillization //	XR, GC
317 A00NK103	39' 00' 53.9' 70' 31' 13.8	3 Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Quartz vein (float)	//Small metallic mineral	GC
318 A00NK104	39' 00' 55.0' 70' 31' 12.4	1' Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Crystal tuff	11	TS
319 A00NK105	39' 12' 41.0' 70' 36' 46.4	4' La Voluntad	La Voluntad North (ZA001)	PKg, Granitoids (La Voluntad complex)	Quartz porphyry	Silicification, potassium feldspar //	TS
	39' 12' 41.0' 70' 36' 46.4		La Voluntad North (ZA001)	PRg, Granitoids (La Voluntad complex)	Quartz porphyry	Silicification, sugary //]
321 A00NK107	39' 12' 38.2' 70' 36' 48.6	6' La Voluntad	La Voluntad North (ZA001)	Pkg, Granitoids (La Voluntad complex)	Quartz porphyry		XR
	39' 12' 25.1' 70' 36' 48.6		La Voluntad North (ZA001)	Pkg, Granitoids (La Voluntad complex)	Grnitoid	Argillization / /	XR
	39' 07' 33.6' 70' 37' 48.		La Voluntad North (ZA034)	PKg, Granitoids (La Voluntad complex)	Granite	//	TS
	39' 07' 33.6' 70' 37' 48.		La Voluntad North (ZA034)	PRg, Granitoids (La Voluntad	Aplite	Tourmaline? / / :	TS
	39' 07' 30.2' 70' 38' 05.3		La Voluntad North (ZA034)	PRg, Granitoids (La Voluntad	Granitoid	// Limonite	XR
	39' 07' 32.2' 70' 38' 07.8		La Voluntad North (ZA034)	PRg. Granitoids (La Voluntad complex)	Granitoid	//·Limonite	XR
	39' 07' 49.0' 70' 38' 14.3		La Voluntad North (ZA034)	PRg, Granitoids (La Voluntad complex)	Ryolite dike	// Limonite, small pyrite	GC
	39' 08' 28.9' 70' 34' 41.5		La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Argillization / / Limonite	XR, GC
			La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic lapili tuff	Argillization / /	XR
	39' 08' 28.9' 70' 34' 41.5					//	XR
330 A00NK116	39' 08' 34.3' 70' 34' 33.9	9' La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesite	111	IAK

No. Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
331 A00NK117	39' 08' 34.3'	70' 34' 33.9'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Argillization / / Limonite	GC
332 A00NK118	39' 08' 30.9'	70' 34' 49.3'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesitic tuff breccia	Chlorite //	XR
333 A00NK119	39' 08' 33.5'	70' 34' 49.9'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Quartz vein & tuff	Silicification //	GC
334 A00NK120	39' 08' 43.2'	70' 34' 47.6'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization / /	XR
335 A00NK121	39' 08' 46.6'	70' 34' 54.2'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesitic tuff	Chlorite / / Hematite	XR
336 A00NK122	39' 08' 46.6'	70' 34' 54.2'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization //	XR
337 A00NK123	39' 10' 08.2'	70' 34' 17.0'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Undefined	Argillization / / Limonite	XR, GC
338 A00NK124	38' 52' 31.0'	70' 47' 33.8'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization / /	XR, GC
339 A00NK125	38' 52' 24.4'	70' 47' 33.2'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization / /	XR
340 A00NK126	38' 52' 09,1'	70' 47' 46.0'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff, quartz vein	Silicification / /	GC
341 A00NK127	38' 52' 08.4'	70' 47' 50.7'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic lapili tuff	Silicification / / Limonite	XR, GC
342 A00NK128	38' 52' 28.5'	70' 47' 58.4'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff breccia	Silicification / / Limonite	XR, GC
343 A00NK129	38' 52' 31.5'	70' 48' 06.9'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolite	Silicification / / Limonite	XR, GC
344 A00NK130	38' 49' 21.7'	70' 39' 12.0'	Palau Mahuida	Palau Mahuida	PC2, Fm. Colohuincul eq.	Biotite-Garnet gneiss, quartz vein	//	GC
345 A00NK131	38' 47' 06.9'	70' 40' 06.0'	Palau Mahuida	Palau Mahuida (ZA007)	To2, Fm. Farallones eq.	Tuff	Argillization / /	XR, GC
346 A00NK132	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Tu2, Fm. Farallones eq.	Undefined	Silicification, kaolin // Pyrite dissemination	PT, XR, GC
347 A00NK133	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	To2, Fm. Farallones eq.	Andesite	Argillization / / Limonite	XR
348 A00NK134	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Quartz pyrite vein	// Pyrite	GC
349 A00NK135	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Kaolin ?//	XR
350 A00NK136	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	//Limonite	GC
351 A00NK137	38' 46' 42.7'	70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Andesite porphyry	//	TS
352 A00NK138	38' 46' 35.1'	70' 40' 26.0'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Andesite porphyry	Silicification, argillization //	GC
353 A00NK139	38' 46' 35.1'	70' 40' 25,3'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Hydrothermal breccia	Silicification / / Pyrite	<u>GC</u>
354 A00NK140	38' 46' 27.4'	70' 40' 23.0'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Alunite ?//	XR
355 A00NK141	38' 46' 25,2'	70' 40' 22.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Alunite ? / /	XR
356 A00NK142	38' 47' 11.2'	70' 41' 07.9'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Alunite?//	XR
357 A00NK143	38' 47' 55.3'	70' 41' 22.3'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Dacite	Jarosite ?// Hematite	XR
358 A00NK144	38' 47' 55.3'	70' 41' 22.3'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Tuff	//	TS
359 A00NK145	38' 48' 06.8'	70' 40' 05.0'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Undefined	Argillization / / Limonite	XR
360 A00NK146	38' 48' 18,8'	70' 40' 06.5'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Bsalt	11	
361 A00NK147	38' 41' 31,4'	70' 41' 29.6'	Palau Mahuida	Plau Mahuida North (ZA004)	PRg, Granitoids	Granite	//	TS
362 A00NK148	38' 41' 19.2'	70' 41' 34.4'	Palau Mahuida	Plau Mahuida North (ZA004)	PTR, Fm. Choiyoi	Andesite	Silicification / /	TS
363 A00NK149	41' 32' 17.6'	71' 08' 50.4'	Rio Foyel	Cerro Carrera east		Oxide copper	<i>II</i>	

No. S	· · · · · · · · · · · · · · · · · · ·		Longitude(W	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
364	A00NK150	41' 30' 15.9'	71' 12' 08.4	Rio Foyel	Cerro Carrera east (SB068)	Jg, Granitoids	Quartz vein	//	GC
365	A00NK151	41' 30' 18.2'	71' 12' 09.0	Río Foyel	Cerro Carrera east (SB068)	Jg, Granitoids	Granitoid		TS
366 A	A00NK152	41' 32' 38.7'	71' 09' 40.4	Rio Foyel	Cerro Carrera east		Quartz vein (float)	//	GC
367 A	A00HH101	43' 18' 53.2'	71' 02' 25.9	'Cerro Gonzalo	Cerro Gonzalo, Sector 2		Massive quartz with limonite	//	
368 A	A00HH102	43' 18' 23.8	71' 01' 32.7	Cerro Gonzalo	Cerro Gonzalo, Sector 5	Kg, Cretaceous granitoids	Altered rock, hydrothermal breccia	Argillization / / Quartz malachite	TS, XR
369	A00HH103	43' 19' 08.3	71' 00' 43.5	' Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Altered rock	Argillization // Quartz-malachite	XR
370	A00HH104	43' 20' 04.6	71' 05' 53.3	'Cerro Gonzalo	Cerro Gonzalo, Sector 3	Jßa, Fm. Lago la Plata	Andesite	Argillization / /	XR, GC
371	A00HH105	43' 20' 07.9	71' 05' 59.6	Cerro Gonzalo	Cerro Gonzalo, Sector 3	J8a, Fm. Lago la Plata	Hydrothermal breccia	Tourmaline / /	TS, XR
372	A00HH106	43' 18' 39.8	71' 04' 59.4	Cerro Gonzalo	Cerro Gonzalo, Sector 6	JBa, Fm. Lago la Plata	Altered rock, hydrothermal breccia	Argillization / /	XR
373	A00HH107	43' 18' 41.4	71' 05' 16.0	Cerro Gonzalo	Cerro Gonzalo, Sector 6	JBa, Fm. Lago la Plata	Altered rock	Argillization // Quartz-limonite	XR
374	A00HH108	43' 16' 53.4	71' 00' 25.4	'Cerro Gonzalo	Cerro Gonzalo, Sector 1	JBa, Fm. Lago la Plata	Altered rock	Argillization / /	XR
375	A00HH109	43' 17' 05.1	71' 00' 29.8	Cerro Gonzalo	Cerro Gonzalo, Sector 1	JBa, Fm. Lago la Plata	Cu oxide ore	Argillization / / Malachite	XR, OA
376	A00HH110	43' 17' 21.7	70' 59' 36.4	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Altered rock	Argillization / / Black limonite	PT
377	A00HH111	43' 31' 01.8	71' 05' 33.9	Arroyo Cascada	Arroyo Cascada		Quartz vein with pyrite-malachite	// Pyrite-malachite	OA
378	A00HH112	43' 30' 34.6	71' 05' 54.5	' Arroyo Cascada	Arroyo Cascada	Kg, Cretaceous granitoids	Altered granite	Silicification // Pyrite	XR, GC
379	A00HH113	43' 10' 13.3	71' 01' 14.8	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Altered rock with clay vein	Argillization / /	XR. GC
380	A00HH114	43' 10' 12.5	71' 01' 20.3	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Andesite	// Pyrite	XR, GC
381	A00HH115	43' 30' 12.0	71' 06' 33.1	Arroyo Cascada	Arroyo Cascada	J8a, Fm. Lago la Plata	Andesite	Silicification, epidote / / Pyrite	GC
382	A00HH116	43' 30' 54,9	71' 09' 43.0	Cerro Cuche	Cerro Cuche		Quartz vein	Black mineral (tourmaline?) //	PT, GC
383	A00HH117	43' 30' 57.0	71' 09' 42.6	Cerro Cuche	Cerro Cuche	Kg, Cretaceous granitoids	Quartz porphyry	// Pyrite, limonite	GC
384	A00HH118	43' 30' 57,9	71' 09' 41.0	Cerro Cuche	Cerro Cuche	JBa, Fm. Lago la Plata	Sandstone	Silicification / / Pyrite	GC_
385	A00HH119	43' 31' 03.2	71' 09' 36.5	Cerro Cuche	Cerro Cuche	J8a, Fm. Lago la Plata	Sandstone	Mica, clay / / Pyrite	GC
386	A00HH120	43' 32' 15.3	71' 08' 47.5	5' Cerro Cuche	Cerro Cuche	J8a, Fm. Lago la Plata	Sandstone	Silicification / / Pyrite	
387	A00HH121	43' 32' 15.2	71' 08' 40.8	3 Cerro Cuche	Cerro Cuche		Metallic mineral vein	Clay mineral // Metallic mineral	PT, XR
388	A00HH122	43' 31' 40.9	71' 09' 58.5	Cerro Cuche	Cerro Cuche	Kg, Cretaceous granitoids	Quartz porphyry	Argillization / / Limonite	XR, GC
389	A00HH123	42' 09' 45,0	71' 24' 01.	Condorcanqui	Condorcanqui		Quartz vein	//	GC
390	A00HH124	42' 09' 41.8	71' 23' 58.3	3 Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	// Malachite, chalcopyrite, pyrite	OA
391	A00HH125	42' 09' 32.5	71' 23' 50:	l'Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	// Cu mineral	
392	A00HH126	42' 09' 35. 6	71' 23' 48.0	O' Condorcanqui	Condorcanqui	Intrusive	Quartz porphyry	// Malachite, chalcopyrite	PT, OA
393	A00HH127	42' 10' 05.3	71' 24' 04.4	4 Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Epidote / / Malachite, chalcopyrite	OA_
394	A00HH128	42' 19' 42.6	71' 29' 19.8	B' Epuyen	Rio Blanco	Kg, Cretaceous granitoids	Quartz porphyry	11.	TS, XR, GC
395	A00HH129	42' 19' 42.6	71' 29' 19.8	B Epuyen	Rio Blanco	Kg, Cretaceous granitoids	Altered rock	// Malachite, chalcopyrite	OA
396	A00HH130	42' 16' 21.3	71' 23' 44.	5 Epuyen	Arroyo Pedregoso	Jm, Fm. Piltriquitron	Silicified tuff	White clay / / Malachite	XR, OA

No.	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
397	A00HH131	42' 15' 55.7'	71' 24' 05.8	Epuyen	Arroyo Pedregoso		Undefined (float)	// Pyrite	GC
398	A00HH132	42' 15' 55.7'	71' 24' 05.8	Epuyen	Arroyo Pedregoso	Intrusive	Aplite or felsite	White clay // Pyrite	TS, XR, GC
399	A00HH133	42' 21' 14.9	71' 26' 30.9'	Epuyen	South of SB083		Andesite (float)	// Quartz pyrite	GC
400	A00HH134	42' 21' 14.9'	71' 26' 30.9'	Epuyen	South of SB083	,	Sandstone (float)	//Quartz-pyrite	GC
401	A00HH135	42' 20' 13.0'	71' 25' 18.5'	Epuyen	Southeast of SB082	Jm, Fm. Piltriquitron	Andesite with quartz vein	// Quartz calcite pyrite	GC
402	A00HH136	42' 20' 13.0'	71' 25' 18.5'	Epuyen	Southeast of SB082		Silicified rock (float)	silicification // Pyrite	GC
403	A00MZ101	43' 18' 24.2'	71' 01' 32.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 5	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite / / Black Cu pitch	XR, GC
404	A00MZ102	43' 19' 07.5'	71' 00' 41.0'	Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite / / Malachite	XE, GC
405	A00MZ103	43' 18' 57.7'	71' 00' 44.6'	Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Granodiorite	11 .	TS, WR
406	A00MZ104	43' 20' 05.2'	71' 05' 53.7'	Cerro Gonzalo	Cerro Gonzalo, Sector 3	J8a, Fm. Lago la Plata	Hydrothermal breccia	Silicification / / Limonite	XR, GC
407	A00MZ105	43' 20' 23.6'	71' 06' 22.1'	Cerro Gonzalo	Cerro Gonzalo, Sector 3	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite // Limonite	XR, GC
408	A00MZ106	43' 18' 43.5'	71' 04' 53.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 6	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite / / Red limonite	XR, GC
409	A00MZ107	43' 16' 50.8'	71' 00' 02.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Leucocratic granitoid	Potassic //	TS
410	A00MZ108	43' 16' 49.5'	71' 00' 01.5'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Granodiorite	Potassic // Hypogene chalcopyrite	PT, WR, KA
411	A00MZ109	43' 16' 58.5'	71' 00' 30.9'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Altered granitoid	Quartz-sericite / / Intensive limonite	XR
412	A00MZ110	43' 17' 27.1'	70' 59' 39.4'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite / / Py-Cp-Mo dissemination	XR, GC
413	A00MZ111	43' 17' 33.9'	71' 00' 29.7'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite // Red limonite etc	XR, GC
414	A00MZ112	43' 17' 00.7'	70' 59' 21.0'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Granite ·	Quartz-sericite / / Hypogene chalcopyrite	
415	A00MZ113	43' 30' 48.0'	71' 05' 26.8'	Arroyo Cascada	Arroyo Cascada	Jßa, Fm. Lago la Plata	Altered volcancs	Silicification / / Limonite	XR, GC
416	A00MZ114	43' 31' 01.9'	71' 05' 33.8'	Arroyo Cascada	Arroyo Cascada	Kg, Cretaceous granitoids	Micro granodiorite	//	TS ·
417	A00MZ115	43' 30' 51.5'	71' 05' 38.6'	Arroyo Cascada	Arroyo Cascada	JBa, Fm. Lago la Plata	Altered volcancs	Silicification / / Limonite	XR, GC
418	A00MZ116	43' 30' 37.1'	71' 05' 50,1'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein	// Large grain pyrite	GC
419	A00MZ117	43' 10' 10.7'	71' 01' 20.7'	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Altered volcancs	Silcification, argillization // Pyrite, limonite	XR, GC
420	A00MZ118	43' 10' 15.6'	71' 01' 14.2'	Laguna Sunica	Laguna Sunica	Zeolite vein	Zeolite vein	11	XR
421	A00MZ119	43' 30' 23.6'	71' 06' 25.8'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein	//	DO, FI
422	A00MZ120	43' 30' 11.9'	71' 06' 33.4'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein (float)	// Limonite	GC
423	A00MZ121	43' 27' 58.5'	71' 03' 31.4'	Arroyo Cascada	Princess	JBa, Fm. Lago la Plata	Altered volcancs (tailing)	Silicification // Pyrite dissemination	XR, GC
424	A00MZ122	43' 27' 42.0'	71' 03' 28.7'	Arroyo Cascada	Princess	Quartz vein	Quartz vein (float)	//	GC _
425	A00MZ123	43' 30' 42.9'	71' 09' 49.7'	Cerro Cuche	Cerro Cuche north	Quartz vein	Quartz vein	// Galena dissemination	OA .
426	A00MZ124	43' 30' 36.0'	71' 10' 01.8'	Cerro Cuche	Cerro Cuche north	J6a, Fm. Lago la Plata	Silt	Silicification / / Pyrite dissemination	XR, GC
427	A00MZ125	43' 32' 14,4'	71' 08' 42.2'	Cerro Cuche	Cerro Cuche south	Quartz sulfide vein	Quartz sulfide vein	// Galena-pyrite-limonite	PT, OA
428	A00MZ126	43' 31' 52.2'	71' 09' 43.6'	Cerro Cuche	Cerro Cuche south	Intrusion	Quartz porphyry	Tourmaline / / Pyrite dissemination	XR, GC
429	A00MZ127	43' 32' 22.6'	71' 10' 25.0'	Cerro Cuche	Cerro Cuche south	Gossan	Gossan	// Massive limonite	OA

Appendix	Z Samples tal	KCH IOI UIC 6					
No. Sample No.	Latitude(S) Longitude(W) District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
430 A00MZ128	42' 09' 43.2' 71' 24' 00.6	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite / / Bornite, malachite	
431 A00MZ129	42' 09' 46.5' 71' 24' 01.5	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite / / Chalcopyrite, quartz calcite veinlets	<u>X</u> R
432 A00MZ130	42' 09' 46.5' 71' 24' 01.5	Condorcanqui	Condorcanqui	Dyke	Andesite	Fresh // Post mineralization	TS, KA
433 A00MZ131	42' 09' 41,9' 71' 23' 58.4	Condorcanqui	Condorcanqui	Jm. Fm. Piltriquitron	Andesite	Silicification // Chalcopyrite dissemination	DS
434 A00MZ132	42' 09' 32,5' 71' 23' 49.9	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesitic tuff breccia	Silicification / / Chalcocite, malachite	XR, OA
435 A00MZ133	42' 09' 36,6' 71' 23' 46,5	Condorcanqui	Condorcanqui	Dyke	Dacite porphyry	// Chalcopyrite dissemination	
436 A00MZ134	42' 10' 12.4' 71' 24' 05.8	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesitic rock	Silicification / / Malachite Amygdate epidote and calcite / / TC halcopyrite in	XR, OA
437 A00MZ135	42' 10' 04.0' 71' 24' 04.1	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	amygdale part	DS
438 A00MZ136	42' 09' 42.5' 71' 24' 07.0	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Epidote / /	DS
439 A00MZ137	42' 12' 08.1' 71' 23' 40.2	Condorcanqui	North of Epuyen town	Intrusion	Granodiorite	//	TS, WR, DS
440 A00MZ138	42' 09' 11.3' 71' 23' 53.9	Condorcanqui	North of Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite / /	GC
441 A00MZ139		1	Condorcangui	Jm, Fm. Piltriquitron	Andesite	11	TS, WR, KA
442 A00MZ140	42' 19' 44.0' 71' 29' 20.9		Rio Blanco	Kg, Cretaceous granitoids	Qz porphyry	Silicification // Quartz vein and pyrite dissemination	GC
443 A00MZ141			Rio Blanco	Kg, Cretaceous granitoids	Granitoids (float)	Silicification // Quartz vein and pyrite dissemination	GC
	42' 15' 54.6' 71' 24' 03.8		Arroyo Pedregoso	Quartz vein	Quartz vein (float)	//	GC.
445 A00MZ143			South of SB083	Quartz vein	Quartz vein (float)	Silicification // Pyrite dissemination	XR, GC
446 A00MZ144			South of SB083	Jm, Fm, Piltriquitron	Silicified rock	Silicification / / Limonite	gc
	42' 20' 14,3' 71' 25' 19.3		Southeast of SB082	Calcite vein	Calcite vein		GC
	42' 20' 14,3' 71' 25' 19.		Southeast of SB082	Jm, Fm. Piltriquitron	Silicified rock	Silicification / /	XR
449 A00MZ147			Southeast of SB082	Quartz vein	Quartz vein (float)	// Pyrite dissemination	GC
450 A00MZ148			Lago Epuyen	Quartz vein	Quartz vein	11	GC, DO, FI
451 A00MZ149			Lago Epuyen	Jm, Fm. Piltriquitron	Silicified rock	Silicification / /	XR
	42' 13' 18.7' 71' 26' 41.0		Lago Epuyen	Quartz vein	Quartz vein	//	GC
	36' 37' 51.8' 70' 36' 59.	Villa Aguas	Arroyo Ailinco	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite, sericite /	XR, GC
	36' 42' 18.7' 70' 38' 00.	Villa Aguas	Arroyo la Totora		Quartz vein	//	GC
	36' 39' 12.9' 70' 36' 53.	Villa Aguas	Arroyo Manchana Covunco		Quartz vein	//	GC, FI
456 A00TM104		Villa Aguas	Alteration zone near ML013	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite / Pyrite dissemination	XR, GC
457 A00TM105		Villa Aguas	Alteration zone near ML013	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite / Pyrite dissemination	XR, GC
	36' 32' 45.5' 70' 37' 12.	Villa Aguas	Alteration zone near ML013	Ta2, Fm. Cajón Negro	Andesite	Propylitic / /	TS
			Mina sin nombre	Intrusive	Granodiorite	Argillization / Sericite / Limonite	XR, GC
			Mina sin nombre	Intrusive	Granodiorite	Silicification / / Limonite	XR, GC
	36' 52' 09.2' 70' 37' 43. 36' 52' 09.3' 70' 37' 43.		Mina sin nombre		Quartz vein	// Pyrite	GC, FI
,			Mina Santos	Intrusive	Granodiorite	//	TS
462 A00TM110	36' 51' 57.1' 70' 36' 21.	o varvarco	Mina Santos	Inci daive	Granoustic	<u></u>	

No.	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
463	A00TM111	36' 51' 57.4'	70' 36' 21.7'	Varvarco	Mina Santos	Intrusive	Granodiorite	Argillization / Sericite / Pyrite dissemination, limonite	
464	A00TM112	36' 51' 57.5'	70' 36' 21.6'	Varvarco	Mina Santos	Ore deposit	Quartz vein	// Chalcopyrite, malachite, azurite, pyrite	OA, FI
465	A00TM113	36' 53' 22.7'	70' 38' 23.7'	Varvarco	Alteration zone near Varvarco village	PTR, Fm. Choiyoi	Rhyólitic tuff	Argillization / Sericite / Limonite along crack	XR, GC
466	A00TM114	36' 47' 53.6'	70' 35' 02.9'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff	Argillization / Sericite / Pyrite dissemination	XR, GC
467	A00TM115	36' 47' 54.4'	70' 35' 05.2'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff	Argillization, silicification? Sericite? Pyrite dissemination	XR, GC
468	A00TM116	36' 48' 00.2'	70' 35' 13.9'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff breccia	Silicification / Sericite / Pyrite dissemination	XR, GC
469	A00TM117	36' 47' 57,0'	70' 35' 17.0'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Altered rock	Silicification // Pyrite dissemination	XR, GC
470	A00TM118	36' 47' 54.7'	70' 35' 28.0'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff breccia	Silicification // Pyrite dissemination	GC
471	A00TM119	36' 47' 53.5'	70' 35' 35.3'	Varvarco	Alteration zone along Arroyo Auque		Quartz vein	//	GC, FI
472	A00TM120	36' 47' 41.6'	70' 36' 29.5'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Altered rock	Argillization / Pyropylite /	XR
473	A00TM121	36' 47' 41.6'	70' 36' 29.5'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm: Choiyoi	Altered rock	Silicification //	XR, GC
474	A00TM122	36' 55' 31.3'	70' 25' 12.7'	Cerro Collocho	Cerro Collocho	Intrusive	Dacitic andesite	Silicification, argillization //	XR, GC
475	A00TM123	36' 55' 20.0'	70' 25' 10.1'	Cerro Collocho	Cerro Collocho		Limonite-quartz vein	// Pyrite, limonite	GC
476	A00TM124	36' 55' 20.0'	70' 25' 10.1'	Cerro Collocho	Cerro Collocho	Intrusive	Dacitic andesite	Argillization / Sericite / Limonite	XR
477	A00TM125	36' 55' 15.9'	70 25 10.9	Cerro Collocho	Cerro Collocho	Intrusive	Dacitic andesite		TS, WR, KA
478	A00TM126	36' 55' 05.1'	70' 25' 20.1'	Cerro Collocho	Cerro Collocho	Intrusive ·	Dacite	Argillization / Sericite /	XR
479	A00TM128	37' 52' 16.4'	70' 27' 06.4'	Cerro de los Bueyes	Cerro los Potreritos	JK, Grupo Mendoza	Shale	Silicification, argillization 7 Montmorillonite 7 Pyrite dissemination	XR, GC
480	A00TM129	37' 52' 15.7'	70' 27' 03.9'	Cerro de los Bueyes	Cerro los Potreritos	JK, Grupo Mendoza	Sandstone	Silicitication, argillization Montmorillonite Pyrite dissemination	XR, GC
481	A00TM130	37' 20' 38.1'	70' 22' 22,1'	Cerro Mayal	Cerro Mayal		Altered rock (gossan)	Silicification / / Pyrite-limonite	GC
482	A00TM131	37' 20' 40.4'	70' 22' 21.3'	Cerro Mayal	Cerro Mayal	JK, Grupo Mendoza	Sandstone	Argillization / /	XR
483	A00TM132	37' 20' 34,0'	70' 22' 26.4'	Cerro Mayal	Cerro Mayal	Intrusive	Andesite	Silicitication, argillization/Sericite/Pyrite, Inmonite, malachite	XR, GC
484	A00TM133	37' 20' 34.0'	70' 22' 26.4'	Cerro Mayal	Cerro Mayal	Intrusive	Andesite	Argillization / Sericite /	PT
485	A00TM134	37' 19' 55.5'	70' 23' 46.4'	Cerro Mayal	Cerro Mayal		Altered rock (gossan)	// Limonite, calcite	GC
486	A00TM135	37' 19' 55.5'	70' 23' 46.4'	Cerro Mayal	Cerro Mayal	Intrusive	Andesite	Argillization / Kaolinite, montmorillonite /	XR
487	A00TM136	37' 20' 13.4'	70' 22' 51.9'	Cerro Mayal	Cerro Mayal	JK, Grupo Mendoza	Tuff breccia	Propylitic / Montmorillonite / Limonite	XR, GC
488	A00TM137	37' 20' 17,5'	70' 22' 49.6'	Cerro Mayal	Cerro Mayal	Intrusive	Andesite	Argillization / Sericite /	XR
489	A00TM138	37' 43' 07.4'	70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Altered rock	Argillization7 Montmorillonite; sericite7 Marcasite dissemination	PT, XR, GC
490	A00TM139	37' 43' 07.4'	70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes		Altered rock(gossan)	// Limonite	GC
491	Α00ΤΜ140	37' 43' 07.4'	70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Sandstone	Silicification, argillization / Sericite, montmorillonite /	XR
492	A00TM141	37' 43' 00.2'	70' 24' 13.8'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Shale	Silicification // Marcasite dissemination	XR, GC
493	A00TM142	37' 43' 00.2'	70' 24' 13.8'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Sandstone	Silicification // Marcasite dissemination and vein	PT, XR, GC
494	A00TM144	37' 59' 29.6'	70' 33' 19.3'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous shale	Argillization / Sericite /	XR
495	A00TM145	37' 59' 29.6'	70' 33' 19.3'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous shale	// Limonite, Cu oxide mineral	GC

No. Sample No.	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
496 A00TM146	37' 59' 55.5' 70' 33' 35.7'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization / Montmorillonite / Limonite	XR
497 A00TM147	37' 59' 55,5' 70' 33' 35.7'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
498 A00TM148	37' 59' 56.6' 70' 33' 35.4'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification, hydrothermal breccia // Limonite	GC
499 A00TM149	37' 59' 48.7' 70' 33' 05.6'	Campana Mahuida	Pino Andino		Barite-Cu oxide vein	// Barite, azurite, malachite	OA
500 A00TM151	38' 12' 35.7' 70' 32' 12.4'	Campana Mahuida	Campana Mahuida	Intrusive	Diorite	// Argillization / Sericite / Malachite, pyrite	TS, KA
501 A00TM154	37' 59' 52.1' 70' 33' 39.4'	Campana Mahuida	Pino Andino	Intrusive	Granodiorite	dissemination	XR, GC
502 A00TM155	37' 59' 46.0' 70' 33' 07.2'	Campana Mahuida	Pino Andino	Intrusive	Granodiorite	Argillization / Sericite /	XR
503 A00TM156	37' 59' 46.1' 70' 33' 04.9'	Campana Mahuida	Pino Andino		Limonite-quartz-barite vein	// Limonite, Cu oxcide mineral	GC
504 A00TM157	37' 59' 28.3' 70' 33' 07.9'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization, silicification / Sericite / Limonite	XR, GC
505 A00TM158	37' 59' 28.3' 70' 33' 07.9'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
506 A00TM159	37' 59' 31.9' 70' 32' 48.9'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization / Sericite /	XR
507 A00TM160	37' 59' 31.9' 70' 32' 48.9'	Campana Mahuida	Pino Andino		Limonite-silicification vein	Silicification / / Limonite	GC
508 A00TM161	37' 59' 28.7' 70' 32' 41.5'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
509 A00TM162	37' 59' 19.1' 70' 32' 14.2'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
510 A00TM163	38' 00' 21.1' 70' 33' 29.6'	Campana Mahuida	Pino Andino	Intrusive	Porphyritic diorite	//	TS
511 A00TM164	37' 59' 54.0' 70' 32' 59.2'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
512 A00TM165	37' 59' 46.0' 70' 32' 58.9'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
513 A00TM166	37' 59' 41.7' 70' 32' 58.7'	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
	37' 59' 45.3' 70' 32' 50.9				Gossan	Silicification / / Limonite, barite	GC
515 A00TM168	37' 59' 44.2' 70' 32' 43.7	'Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
	37' 59' 41.4' 70' 32' 35.5		Pino Andino		Gossan	// Limonite	GC
517 A00TM170	37' 59' 41.6' 70' 32' 35.3	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
518 A00TM171	37' 59' 54.2' 70' 32' 59.0	Campana Mahuida	Pino Andino		Gossan	Silicification // Limonite	GC
	37' 59' 54.6' 70' 33' 41.3		Pino Andino	Intrusive	Porphyritic granodiorite	Argillization // Pyrite, limonite	XR, GC
	37' 59' 51.2' 70' 33' 33.8		Pino Andino	Intrusive	Porphyritic granodiorite	//	TS
521 A00TM174	37' 59' 52.0' 70' 33' 37.9	Campana Mahuida	Pino Andino	Intrusive	Porphyritic granodiorite	// Malachite, limonite	XR, GC
522 A00RM101	39' 01' 49.4' 70' 32' 06.4	Nireco	Nireco NE	PTR, Fm. Choiyoi	Rhyolite	Argillization, silicification / / Limonite	XR, GC
523 A00RM102	39' 00' 51.7' 70' 31' 27.2	' Nireco	Nireco NE	PTR, Fm. Choiyoi	Rhyolite	Argillization / / Limonite	XR
524 A00RM103		<u> </u>	Nireco	PTR, Fm. Choiyoi	Rhyolite	Weak silicification / / Limonite	TS
525 A00RM104	39' 00' 55.2' 70' 31' 07.1	' Nireco	Nireco	PTR, Fm. Choiyoi	Laminated tuff	Silicification, argillization / /	XR
	39' 01' 00.2' 70' 31' 09.1	' Nireco	Nireco	PTR, Fm. Choiyoi	Conglomerate, crystal tuff	Argillization, silicification / /	
527 A00RM106			Nireco	PTR, Fm. Choiyoi	Rhyolite	Argillization, silicification // Limonite	XR, GC
	39' 12' 47.1' 70' 36' 25.5		La Voluntad	CPg, La Voluntad complex	Quartz porphyry	Phyllic // Limonite, malachite	

No. Sample	lo. Latitude(S)	Longitude(W	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
529 A00RM	08 39' 12' 39.3	70' 36' 26.0	La Voluntad	La Voluntad	CPg, La Voluntad complex	Quartz porphyry	Silicification / /	TS
530 A00RM	09 39' 07' 29.5	70' 37' 46.8	La Voluntad	La Voluntad North	Intrusive	Aplite, granite	Tourmalinization / /	XR
531 A00RM	10 39' 07' 46.8	70' 38' 10.8	La Voluntad	La Voluntad North	Intrusive	Aplite	//Limonite, pyrite	XR
532 A00RM	11 39' 08' 29.4	70' 34' 46.8	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff	Silicification, argillization // Limonite network	XR, GC
533 A00RM	12 39 08 31.6	6' <u>70' 34' 39.6</u>	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff	Silicification, argillization / / Limonite	XR
534 A00RM	13 39 08 33.7	70' 34' 46.4	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff with quartz vein	Silicification, argillization // Limonite	XR, GC
535 A00RM	14 39' 08' 33.	70' 34' 46.4	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Hydrothermal breccia (float)	Silicification, argillization // Limonite matrix	GC
536 A00RM1	15 39' 08' 32.4	70' 34' 49.6	' La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Brecciated vein (float)	Silicification, argillization // Limonite	XR, GC
537 A00RM1	16 38' 52' 08.9	70' 47' 45.9	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Tuff breccia	Silicification, argillization, leaching // Limonite	XR, GC
538 A00RM1	17 38' 52' 09.0	70' 47' 47.7	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Alt.rock with quartz veinlet	Silicification, argillization // Limonite	XR, GC
539 A00RM1	18 38' 52' 32.6	70' 48' 09.7	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Altered rock	Silicification, argillization / / Limonite	XR
540 A00RM1	19 38' 48' 31.5	70' 39' 03.7	Palau Mahuida	Palau Mahuida	PC2, Fm. Colohuincul eq.	Quartz vein	//	GC
541 A00RM1	20 38' 46' 42.8	70' 40' 29.1	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Tuff breccia	Argillization, silicification // Limonite, pyrite	XR
542 A00RM1	21 38' 46' 42.7	70' 40' 28.3	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Jarosite network	// Silicification, argulization, leaching 77 Limonite	XR, GC
543 A00RM1	22 38' 46' 38,5	70' 40' 25.3	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock	jarosite, pyrite	GC
544 A00RM1	23 38' 46' 38.2	70' 40' 26.0	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock with quartz veinlet	Silicification, argillization, leaching // Limonite Silicification, argillization, leaching // Limonite,	GC
545 A00RM1	24 38' 46' 26.6	70' 40' 22.0	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock	jarosite January Janua	XR
546 A00RM1	25 38' 47' 07.8	70' 40' 44.0	Palau Mahuida	Palau Mahuida	PTR, Fm. Choiyoi	Altered rock	Argillization, silicification / / Limonite, jarosite	XR
547 A00RM1	26 38' 47' 07.5	70' 41' 09.8	Palau Mahuida	Palau Mahuida	PTR, Fm. Choiyoi	Altered rock with opal vein	Silicification, argillization //	XR,GC
548 A00RM1	27 38' 48' 04.2	70' 40' 07.0	Palau Mahuida	Palau Mahuida	PTR, Fm. Choiyoi	Altered rock	Silicification, argillization // Limonite, jarosite	XR
549 A00RM1	28 41' 32' 17.5	71' 08' 50.4	Rio Foyel	Cerro Carrera east		Oxide Cu ore	// Chrysocolla, galena, U mineral	PT, OA
550 A00RM1	29 41' 32' 17.5	71' 08' 50.4	Rio Foyel	Cerro Carrera east	Intrusive	Andesitic dyke (wall rock of RM128)	Propylitic (chlorite, calcite) //	TS
551 A00RM1	30 41' 31' 55.6	71' 09' 12.6	Rio Foyel	Cerro Carrera east	Fluvial	Earthy limonite mass	//Limonite	GC
552 A00RM1	31 41' 31' 39.7	71' 08' 07.5	Rio Foyel	Cerro Carrera east		Granitoid (float)	Argillization, silicification / / Limonite	GC
553 A00RM1	32 41' 31' 38.5	71' 09' 07.0	Rio Foyel	Cerro Carrera east	Tm4, Fm. Nirihuau	Oxide Mn ore (sedimentary)	Argillization / / wad	OA
554 A00RM1	33 41' 30' 17.2	71' 12' 08.3	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Qz vein	// Limonite	GC
555 A00RM1	34 41' 30' 17.2	71' 12' 08.3	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Granitoid (wall rock of RM133)	Weak alteration / / Limonite	XR
556 A00RM1	35 41' 30' 17.7	71' 12' 04.6	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Brecciated white alt, Rock	Silicification, argillization / / Limonite	XR
557 A00RM1	36 41' 30' 19.2	71' 11' 54.7	Rio Foyel	Cerro Carrera east	Tal, Fm. Ventana	Rhyolite	Argillization, silicification / / Limonite	XR
558 A00RM1	37 41' 30' 30.4	71' 11' 50.5	Rio Foyel	Cerro Carrera east	Tal, Fm. Ventana	Rhyolite	Weak silicification / / Limonite	XR
559 A00RM1	38 41' 30' 29.9	71' 11' 51.3	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Granitoid	Argillization, silicification / / Limonite	XR
560 A00RM1	39 41' 30' 26.7	71' 11' 53.9'	Rio Foyel	Cerro Carrera east	Tal, Fm. Ventana	Rhyolite	Silicification, argillization / / Limonite	GC
561 A00RM1	40 41' 35' 34.9	71' 21' 10.4	Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Silicification, argillization // Limonite	GC

No. Sample No	. Latitude(S) Longitude(W)	District L	ocality Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
562 A00RM14	1 41' 34' 21.3' 71' 21' 28.2' Rio	Foyel Rio Foyel		Altered granitoid (float)	Silicification / / Limonite, pyrite	PT, GC
563 A00RM14	2 41' 37' 34.5' 71' 21' 55.4' Rio	Foyel Rio Foyel		Altered rock (float)	Silicification / / Limonite	GC
564 A00RM14	3 41' 37' 34.5' 71' 21' 55.4' Rio	Foyel Rio Foyel		Altered volcanic rock (float)	Silicification / / Pyrite, limonite	GC _
565 A00RM14	4 41' 37' 34.5' 71' 21' 55.4' Rio	Foyel Rio Foyel		Altered volcanic rock (float)	Argillization, silicification / / Limonite	GC
566 A00RM14	5 41' 37' 34.5' 71' 21' 55.4' Rio	Foyel Rio Foyel		Altered volcanic rock (float)	Silicification / / Pyrite, limonite	gc
567 A00RM14	6 41' 37' 34.5' 71' 21' 55.4' Rio	Foyel Rio Foyel		Altered volcanic rock (float)	Silicification, argillization / / Pyrite, limonite	GC
568 A00PNK10	1 41' 31' 39.7' 71' 08' 07.6' Rio	Foyel Cerro Carrera e	east	Panning concentrated sediments		PCC
569 A00PNK10	2 41' 31' 38.5' 71' 09' 07.0' Rio	Foyel Cerro Carrera e	east	Panning concentrated sediments		PCC
570 A00PNK10	3 41' 31' 42.8' 71' 09' 04.2' Rio	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
571 A00PNK10	14 41' 29' 57.0' 71' 11' 23.6' Rio	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
572 A00PNK10	05 41' 30' 15.4' 71' 08' 13.3' Rio	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
573 A00PNK10	06 41' 30' 16.1' 71' 08' 12.4' Rio	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
574 A00PNK1	07 41' 30' 42.5' 71' 08' 38.3' Rio	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
575 A00PNK10	08 41' 31' 30.1' 71' 09' 00.0' Rig	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
576 A00PNK10	09 41' 31' 53.2' 71' 09' 22.0' Ric	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
577 A00PNK1	0 41' 32' 38.7' 71' 09' 40.4' Ric	Foyel Cerro Carrera	east	Panning concentrated sediments		PCC
578 A00PNK1	1 41' 34' 21.2' 71' 21' 28.5' Ric	Foyel Rio Foyel West	t	Panning concentrated sediments		PCC
579 A00PNK1	2 41' 37' 34.5' 71' 21' 55.4' Ric	Foyel Rio Foyel West	t .	Panning concentrated sediments		PCC

Geological unit, Stratigraphy

Fm. Formation

Gr. : Group

Abbreviations

Analysis type

TS: Observation results of thin sections - Appendix-3

PT: Observation results of polished thin sections → Appendix-4

XR: Powdery X ray diffraction results → Appendix 5 GC: Bulk chemical analysis results for the geochemical survey: 27elements+Au (codeT27+494) → Appendix 6

PC: Bulk chemical analysis results including PGM elements for the geochemical survey: 27elements+PGE (codeT27+G15)

Appendix-7

WR: Bulk chemical analysis results for the petrochemical study: whole rock analyses major & trace elements (codeA413+A390) - Appendix 8

PCC: Chemical analysis results for pan concentrated samples → Appendix 9

OA: Ore grade assay results: 24elements+Au (code A22+999) - Appendix 10

FI: Homogenization temperatures and salinities of fluid inclusions - Appendix-11

DS: Measurement results of sulfer isotope composition → Appendix 12 DO: Measurement results of oxygen isotope composition → Appendix 13

KA: K-Ar radiometric measurement results - Appendix-14

Mineralizations

qz: quartz py: pyrite

cp : chalcopyrite

gn: galena

sp: sphalerite

bo bornite

mo: molybdenite

diss. : dissemination

Appendix-3 Observation results of thin sections

No. Sam	nlo No	Rock Type				pı	rimar	y mi	neral	8				1		8	econ	dary	mi	nera	ls			Note
No. Sam	pie 140.	Nock Type	qz j	ol k	f bt	mu h	ю орх	срх	olga	sp 2	zi ap	ор	gl to	qz	chl	seriserp	tc e	рса	ор	saus	cly a	mph	smec	(others)
1 A00N	JK014	Muscovite bearing biotite granite			0									T	Δ				Δ	Δ				Coarse-grained and heterogeneous
2 A001	VK018	Aphyric rhyolite?		Δ									0	0					Δ		Δ			Strongly silicified
3 A00N	JK025	Biotite hornblende granite(Quartz monzonite or adamellite)	0	o (c							Δ				Δ		1	7		Δ				
4 A001	IK048	Rhyolitic tuff	0	2 0								Δ	0	0	\exists			Δ	Δ	Δ	Δ			Air fall deposit, lithic of rhyolite(△)
5 A001	H013	Granite porphyry	0	<u> </u>	Δ									0	Δ				Δ					Dyke
6 A00I	1H060	Aphyric basalt	0	9 4	7			0			Δ	. 0	Δ		Δ									Small dyke or sill
7 A00N	4Z013	Hornblende dacite	0	<u> </u>			୭				Δ	Δ		0	Ō			Δ	Δ.					Dyke?
8 A00N	4Z015	Biotite hornblende granodiorite porphyry	0	<u> </u>	101		O			Δ	Δ				0			7						Dyke or small intrusion
9 A00N	1Z018	Hornblende granodiorite porphyry	0	<u> </u>	0 2					Δ	Δ				0		1	7						Dyke or small intrusion
10 A00N	4Z022	Biotite granite(quartz monzonite or adamellite)									Δ			Δ	0	Δ			0	0		j		
11 A00N	/IZ032	Biotite hornblende granodiorite	0	9 C		@	<u></u>				Δ	0			0					0				
12 A00N	AZ044	Olivine augite basalt	0	9 4	7			()	Δ		Δ		Δ	Δ	0			0					0	Dyke or sill
13 A00N	1Z065	Basaltic lapilli tuff		2	_ _								0	0	0	0			0				0	lithic of basalt (©)
14 A00T	M006	Granophyre	0	⊘ ©															Δ	Δ				Dyke
15 A00T	M009	Biotite hornblende granodiorite porphyry	0	9 0		0	D			Δ	Δ	0			0									Dyke or small intrusion
16 A00T	M017	Porphyritic andesite	0	9													(D				0		Dyke, strong metasomatic replacement
17 A00T	M018	Hornblende biotite granite (quartz monzonite or adamellite)	0	9 6	0		O .			Δ	Δ			0	0			5 -	0	0				
18 A00T	M019	Hornblende andesite	0	<u> </u>)								0		(D	Δ			0		Highly porphyritic, 30~40% phenocryst
19 A00T	M020	Hyperthene biotite hornblende tonalite(quartz diorite)	0	()			0					0			0									
20 A00T	M023	Olivine basalt		<u> </u>				0				0												
		Hornblende biotite tonalite(quartz diorite)	0		10							<u> </u>			0			2		0				
		Hornblende biotite tonalite(quartz diorite)	0		0	. @	D		_ _		Δ				0				Δ	0				
		Porphyritic andesite		9	_			Δ					\circ		0				0	0	0			
24 A00F	RM031	Thermally metamorphosed sandstone	0		0			1																
25 A00F		Biotite hornblende dacite	0	9 4	10/2		<u> </u>		_ _			0		0	0		@	<u> </u>	0					Dyke or small intrusion
26 A00F	RM038	Granite porphyry	0	0						<u> </u>				0					Δ					Dyke, strong silicification
27 A00F	RM048	Hornblende andesite	(<u> </u>		0	<u> </u>							0					0	0				
28 A00F		Aphyric rhyolite?											<u> </u>	0	_									strong silicification
29 A00F	RM060	Lapilli tuff	Δ]]	0	0										strong silicification, lithic of silicified rock()
30 A00N	JK104	Conglomerate (-coase sandstone)	0									•		0	Δ						0			Andesite fraguments (©)
31 A00N		Quartz porphyry	(O) 2		_							•	_	0		Δ								Highly altered
32 A00N	JK109	Biotite granodiorite				_				•	<u> - </u>				0									allanite(·)
33 A00N		Muscovite tourmaline aplite	0			Δ																		
34 A00N	JK137	Porphyritic andesite	0		<u> </u>	_	_					0	!	0	<u>o</u>	0								
35 A00N	JK144	Dacitic welded tuff	0			_	_						0		_[Andesite fraguments (③)
36 A00N		Augite bearing hornblende biotite granodiorite	0					Δ				0			0								0	
		Hornblende syenite porphyry	(O)				ااد	Δ						0										
38 A00N	JK151	Hornblende biotite quartz monzonite	0	9 (0								0		0	0	0		0						

Appendix-3 Observation results of thin sections

No	Sample No.	Rock Type				p	rima	rỳ m	iner	als				Т			sec	cond	ary r	nineı	rals			Note
140.	Sample 140.	nock Type	qz	pl kí	bt	mu h	оор	срх	ol	ga sp	zi	ар ор	gl	to qz	chl	seris	erp t	сер	ca	p sav	ıs cly	amp	hsme	c (others)
39	A00HH102	Altered rock (Granitic plutonic ?)	0	0	Δ									0	0	0								
40	A00HH105	Tourmaline-quartz-sericite-rock	0			_								0		0							<u> </u>	
41	A00HH128	Quartz porphyry	0									Δ	.	_ ©		0		_			_			
42	A00HH132	Quartz porphyry	0	<u> </u>	Ш			<u> </u>				0		0		0			0					
43	A00MZ103	Granodiorite porphyry	0	<u> </u>											0	0		0						
44	A00MZ107	Muscovite biotite granodiorite porphyry		<u> </u>		Δ		ļ				Δ		@		0								
45	A00MZ114	Biotite granodiorite	0	9 C			_			Δ	4_4	0			0			10	0					
46	A00MZ130	Augite bearing basalt (aphyric basalt)		0	Ш			0			_	0	0		0	0	[_	0						
47	A00MZ137	Biotite hornblende quartz gabbro	Δ			(<u> </u>	<u></u>			1	0	_	_	0	0		0						
48	A00MZ139	Augite and olivine bearing basalt (aphyric basalt)		9				0	Δ			0		_	0				0			<u> </u>		
49	A00TM106	Hypersthene bearing hornblende andesite		9 C	-+		Δ	Δ					0									ļ	0	
50	A00TM110	Biotite hornblende granophyre		<u> </u>			2							0	0			0						
51	A00TM125	Biotite bearing hypersthene hornblende dacite	0		Δ	@	9 0					0	0		0	0		0			_			
52	A00TM151	Augite biotite hornblende quartz diorite	0	0 A			Δ	0			.										_		ļ	very fresh
53	A00TM163	Hornblende dacite	0	0			2	ļ				0		<u>@</u>		0			0		_			
54	A00TM173	Hornblende dacite	0				2					0			0	0		_ _	0					
55	A00RM103	Hornblende rhyolite	0	0			2		<u> </u>			0		0			_					ļ	ļ	
56	A00RM108	Biotite granophyre	0	0		0	_ _						_	_ _								ļ		fresh
57	A00RM129	Olivine basalt		<u>o</u>					0			Δ	0		0				0					

Legend; ©, abundant; ○, common; △, minor; • rare

qz:quartz, pl:plagioclase, kf:k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, opx:ortho pyroxene, cpx:clino pyroxene, ol:olivine, ga:garnet, sp:sphene, zi:zircon, ap:apatite, op:opaque minerals (mainly iron oxide), gl:glass, to:tourmaline chl:chlorite, seri:sericite, serp:serpentine, to:talc, ep:epidote, ca:carbonate mineral (mainly calcite), saus:saussurite, cly:clay minerals, amph:amphibole, smec:smectite

Appendix-4 Observation results of polished-thin sections.

Νſο	Sample No.	D - 1 T				pı	rimar	y mi	nera	ıls					весо	ndary	min	eral	s		0	re n	ine	rals	Note
NO.	Sample No.	Rock Type	qz p	l kf	bt	mu h	оорх	срх	ol g	a sp	zi ar	op g	l to	qz	chls	erise	rp tc	ер	ca op	clysmed	ру	ср	sph	gal m	t (others)
1	A00NK019	Porhyritic andesite(dacite)	0											0	Ĭ			0	0			Δ			gal=sph>py>cp
_2	A00NK039-1	Silicified rock												0					0	Δ	Δ				py>mt
_3	A00NK041	Olivine dolerite	(0	0			Δ									Δ				py>cp
4	A00HH002	Carbonate mineral quartz ore mineral rock												0					△ ⊚		0	Δ	0	0	py>gal>sph>cp
5	A00HH024	Porphyritic andesite(dacite)	0	<u> </u>										0				0	0		0	Δ	0	0	py>gal>sph>cp
6	A00HH063	Chlorite ore minerals quartz rock												0	0				0		Δ		0	0	sph>gal>py
_7	A00MZ016	Carbonate mineral ore minerals quartz rock												0					00		0	Δ		0	py>gal>cp
8	A00MZ030	Ore minerals quartz rock												0 0				Δ	0		0	Δ	0	0	sph>py>gal>cp
9	A00MZ038	Andestic lapilli tuff		<u> </u>								Δ		0	0			0			•				lithic of andesite(©)
10	A00MZ042	Ore minerals quartz rock												0					0		Δ		0	0	sph>gal>py
11	A00RM029	Nearly aphyric andesite	0											0				0	0		Δ		0	0	sph=gal>py
12	A00RM033	Biotite hornblende dacite	0	2	Δ							Δ			0	Δ		0	0		Δ	Δ			Dyke or small intrusion, similar to A00RM032
13	A00RM040	Ore minerals-quartz rock												0	ĺ			Δ	Δ⊚		•	0	Δ		cp>sph
14	A00RM042	Pebble conglomerate												0	0	0			•						intensely altered, clast of tonalite(©)
17		Tonalite	0	<u>Δ</u>	Δ					Δ				0	0	0									Pebble in conglomerate
15	A00RM057	Olivine dolerite	(Δ		-	0	0							0 0)			0				Δ	sill
16	A00RM058	Inverted pigeonite/augite dolerite		<u>Δ</u>	Δ	_		0							Δ				Δ					Δ	sill
17	A00NK132	Hornblende dacite (?)	4	7			<u> </u>							0						0	0				
18	A00HH110	Quartz porphyry (?)						\perp						0		0								- i	
19	A00HH116	Opaque mineral-tourmaline-quartz-rock						_						0											
20	A00HH121	Opaque mineral-quartz-rock (Quartz vein)								_				0		0					0	Δ	i	-	
21	A00HH126	Andesite	$\triangle \angle$	7										0				0			Δ			•	
22	A00MZ108	Biotite granodiorite porphyry	0	<u> </u>	0			ļ							0	Δ								Δ	
23	A00MZ125	Quartz-opaque mineral-rock												0				Δ			0				
24	A00TM133	Hornblende andesite	\triangle	<u></u>								(C		0	0	0			0						
25	A00TM138	Tuffaceous sandstone ? (altered rock)	@ Z	7								(C		0		Δ				<u></u>					
26	A00TM142	Fine sandstone	0 Z	7																0	0				
27	A00RM128	Andesite										0		0	0			0							Bornite(©), Chalcocite(©)
28	A00RM141	Biotite granitic rock	0		0									0	ol	0					0	•			

Legend; ⊚, abundant; ○, common; △, minor; ·rare

qz:quartz, pl:plagioclase, kf:k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, ol:olivine, opx:ortho pyroxene, cpx:clino pyroxene, ga:garnet, sp:sphene, zi:zircon, ap:apatite, op:opaque mineral, gl:glass, to:tourmaline chl:chlorite, seri:sericite, serp:serpentine, tc:talc, ep:epidote, ca:carbonate mineral (mainly calcite), cly:clay minerals, smec:smectite
py:pyrite, cp:chalcopyrite, sph:sphalerite, gal:galena, mt:magnetite

			s	ilica	ıs							ilicat	es							onate		alfid			ulfat		Oth	ers	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
1	A00NK004	Granite	29				33				0.7				0.7														
2	A00NK005	Granite	15					4.7	1		0.7				1.7														
3	A00NK006	Rhyolite	33									16																	
4	A00NK012	Sandstone	48								13																		
5		Pegmatite	38					7			7.3				<u> </u>	1.7							<u></u>	<u> </u>					
6	A00NK030	Schist	25								6.3		<u>L</u>						<u> </u>	<u> </u>			<u> </u>	ļ					
7		Rhyolite	50								3.3	<u> </u>							<u> </u>				<u> </u>		ļ <u>.</u>				
8		Qz vein	28		<u> </u>		19	5		<u> </u>	1		<u> </u>						<u> </u>				<u> </u>						
9	A00NK034	Granodiorite porphyry	22				23	3			5.7	· · · · · · · · · · · · · · · · · · ·				2		<u> </u>	ļ							<u></u>			
10	<u> </u>	Granodiorite	33								20				L				l										
11			26		<u> </u>			4.7			2												<u> </u>						
12			37														13						<u> </u>	<u></u> .					
13		Porphyritic andesite	13				19				< 1				1.3			ļ	ļ								<u> </u>		
14			64					0.7											ļ				ļ				ļ		Anatase 4
15		Dacite	29					5.7			2								ļ	ļ			ļ						,
16			32			ļ	ļ		<u></u>		5									ļ			<u> </u>			ļ			
17		Altered rock	9.5			17	l		<u> </u>	ļ					<u> </u>	ļ		ļ	ļ					[? 1
18		Dacite	27				30	6.3		<u> </u>			1.3		ļ	ļ			ļ						ļ				,
19	<u> </u>	Silicified rock	24		ļ	ļ		10					ļ			0.7		ļ	l		ļ		ļ						,
20	I	Granite	26				26				0.7		3.3		ļ	ļ	ļ	ļ	<u> </u>			-			ļ				
21	i	Altered rock	37				ļ	3.3			ļ	ļ		ļ			ļ		ļ						ļ		ļ		Ser/Mon 2
22		Altered rock	9.5			ļ	31		1	ļ	1.7		1.3		ļ	ļ		ļ					ļ	ļ <u></u>	ļ	ļ			<u> </u>
23		Altered granite	31		ļ		2.3					<u> </u>	< 1				ļ	6	il	ļ				ļ	ļ		ļ <u></u> .		Prehnite 6
24		Andesite	2.9				14				ļ		5			ļ <u>.</u>	ļ		ļ	ļ			ļ <u>-</u>				ļ		,
25		Andesite	34						<u> </u>		2.3		<u> </u>		ļ	<u> </u>			ļ		1]	ļ		<u> </u> _		
26	l ————————	Altered rock	76			 	ļ			ļ	0.7		ļ			ļ	ļ	<u> </u>	ļ		1.3				ļ				
27		Altered rock	4.8			 	12				2.3	·						3.3	ļ	ļ	ļ		ļ						
28		Altered rock	30			ļ				ļ	6	ļ			ļ		ļ. <u></u> .		ļ		l		<u> </u>		<u></u>		ļ		
29		Altered rock	43			ļ			<u></u>	ļ	ļ	ļ	ļ <u>.</u>			17	ļ		ļ				ļ					<u></u>	
30	A00HH062	Andesite	10		<u></u>			7.7			İ		5						<u> </u>				ļ	<u> </u>			<u> </u>	ļ	

			S	Silic	as						S	ilica	tes						Carbo	nate	S	ulfid	les	S	ulfat	es	Oth	ers	
No.	Sample	Rock	·	Cristobalite		Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite		Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite							Barite		Diaspore		Note
31			23								8.3		2.7						4.7		1.3								
32	_A00MZ004		18	4		ļ	10	14			<u> </u>			<u> </u>				ļ											
33		Volcanic rock	28					10		<u></u>			<u> </u>						ļ										
34		Silicified rock	36		ļ						5.3	+		ļ	<u> </u>	ļ		ļ <u>.</u>											
35		White altered rock	28		ļ							12		<u> </u>	<u> </u>									ļ			. <u>. </u>		
36			29				ļ	3.7		ļ				<u> </u>		1.7							<u> </u>	2.3					
37	A00TM011		25					ļ			1			1		13			<u> </u>										
38	A00TM015		24		ļ		6.7	+			1.3					2.3					1			<u> </u>					
39	A00TM016		33				6					ļ.,																	
40			45				6	-											ļ										
41	A00TM032		28				24	<u>. </u>					1.7	1			<u> </u>												
42	A00TM033		21	·			0.7				1.7		1.3				<u> </u>	5	16										
43	A00TM037		50					2.3			6.3					2											l		
44		Granodiorite	60			<u> </u>					3.7										Ī								
45			27					1.3																					Ser/Mon 3
46	A00TM047		12					3.3					1.7																
47	A00TM050	Andesite?	15					5.7			1.3																		
48	A00TM055	Altered rock	40								Ĭ					17								1			·		
49	A00TM057	Altered rock	53													5	1				1								Anatase 1
50	A00TM058		49													10													
51	A00TM060		42					4.3					0.7					ļ .	ļ		1								
52	A00TM062	Altered rock	29				14				2		Ī								·								
53	A00TM067	Altered rock	49								3.3					0.7													
54	A00RM005	Volcaniclastic rock	14				22	6.3		1											1						<u> </u>		
55	A00RM007	Volcanic rock	31					4			3.3		-			0.7			İ				i						
56	A00RM022	Volcaniclastic rock	20					2.7			1.3	1						 	l		1			l					
57	A00RM023	Volcaniclastic rock	32					6			0.7			·					 					ļ					
58	A00RM024	Volcaniclastic rock	20				35	5							i	1	1							ļ					
59	A00RM028	Andesite?	21				16	3.7					1.3	1				ļ ——					 		i				
	A00RM030		10		1	12		İ	2.7				2.7			İ	i				ļi					<u> </u>			

			[5	Silica	as	1					S	ilica	tes						Carbo	nate	Sı	ılfid	es	s	ulfat	tes	Otl	ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
61	A00RM033	Andesitic dyke	25			12							4	Į į							l						<u> </u>		
62	·		32				3.3	4.3			2.3	3	1			1.7													
63	I		31			[6.3			4					1													
64		Granodiorite/Porphyry	43								15					1.3								<u> </u>	<u> </u>	<u> </u>	<u> </u>		
65		Breccia pipe	82	:																				<u> </u>	ļ	1			
66			22	?												19				. <u>.</u>				<u> </u>	<u> </u>		<u> </u>		
67	A00RM062	Sed. Rock (Float)	2.9)												40					<u> </u>						<u> </u>	<u> </u>	
68	· · · · · · · · · · · · · · · · · · ·		8.6	3												68			<u> </u>		<u> </u>		<u> </u>						
69	A00RM065	white altered rock	26			<u> </u>	16				1.3	3					ļ	<u>.l</u>	<u> </u>		ļ		ļ	ļ		ļ			
70	A00RM067	white altered rock	58														ļ <u>. </u>		<u> </u>		ļ		ļ <u>.</u>	<u> </u>			.,		
71	A00RM068	white altered rock with qz pheno.	32								2.3	3	5.3	3					ļ		ļ		ļ	ļ	.]	ļ <u>.</u>	ļ <u>.</u>		,
72	A00NK102	Rhyolite	49		_	ļ	14	6	5				_ļ			< 1		<u> </u>						ļ			.		,
73	A00NK107	Quartz porphyry	30			<u> </u>	10											_						ļ	ļ .		.	ļ	
74	A00NK108	Grnitoid	34	Į			8	1		<u> </u>	12	2	1	L L	ļ				ļ		ļ		. <u> </u>		ļ			ļ	
75	A00NK111	Granitoid	40				39		_					ļ		1	<u> </u>	ļ		ļ	 		ļ	ļ	ļ	ļ	.		,
76			22			ļ	6			_	< 1	L					ļ	ļ	<u> </u>		ļ	<u>-</u>		ļ	ļ	ļ			
77		Rhyolitic tuff	40)			7			ļ			_		-			-	1		ļ						.		
78	A00NK115	Rhyolitic lapili tuff	47				1	7							ļ	2	ļ		ļ <u>.</u>		ļ					ļ <u> </u>			
79	A00NK116	Andesite	30			<u> </u>	8	·		_	< 1	L]]		ļ <u>.</u>	_		ļ			ļ				ļ			.ļ	ļ
80	A00NK118	Andesitic tuff breccia	32			<u> </u>	13				1		2	2			ļ	ļ	2		ļ			.		-	.	.	
81		Rhyolitic tuff	50			<u> </u>	4	6	3		< 1			<u> </u>	_		ļ	ļ	1	ļ	ļ	ļ		ļ					
82			29		_	6		4		_	< 1	<u> </u>					ļ		.			ļ <u>.</u>		.]					
83			36				10		3				<]	1					1 1		ļ		ļ		.				ļ
84			22		_	ļ	11		<u> </u>	4_	_	<u> </u>			:	l	ļ	4	1	<u></u>	ļ					ļ	-		
85		Rhyolitic tuff	42		_	<u> </u>	<u> </u>	1 7		ļ	ļ		ļ	4	-		ļ		-				ļ	ļ				ļ	
86		·	30			ļ	ļ	12	·	_	_	-	-	<u> </u>		_	<u> </u>		l	ļ	ļ	ļ <u> </u>	ļ		ļ			.	
87		Rhyolitic lapili tuff	37			ļ	3			<u> </u>										ļ	ļ	ļ			ļ	-			
88		Rhyolitic tuff breccia	38			 	12				< :	1			-ļ				< 1	ļ	.l			.				·	<u> </u>
89			28		_	ļ	ļ	13			<u> </u>	-		_			 	-	1	ļ	ļ			-	ļ			-	
90	A00NK131	Tuff	34	1		<u> </u>	7	<u> </u>	5		1			<u> </u>		1			<u> </u>		1						Ь.	1	L

			S	Silic	as						S	ilica	tes						Carbo	onate	S	ulfic	les	s	ulfat	tes	Otl	ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite		Barite		Diaspore		Note
91		Undefined	58																		1								
92		Andesite	11			7		2					2		1						Ī								
93		Undefined	79													8													
94	·	Undefined	8	ļ		14		5							1						< 1								
95		Undefined	21			6		6							1				2	Ī	1						li		
96	I	Undefined	87			<u> </u>						<u> </u>															<u> </u>		
97		Dacite		16	<u> </u>									ļ		5													
98		Undefined	31			27		7												İ									
99		Altered rock, hydrothermal breccia	33			ļ	8	ļ			5		8													<u> </u>			
100			25				2	13			2					2												i	
101			31								11															1			
102		Hydrothermal breccia	42								11								I										
		Altered rock, hydrothermal breccia	59		<u> </u>						9									1									
104	A00HH107		66								3										İ								
105			35				28				7															i			
106			34								18		< 1										1						
107		Altered granite	30			14							4							i					ļ		 -		
108	A00HH113	Altered rock with clay vein	4										2					30	5				-						
109			22				6				1		6								1			l	ļ				
110		Quartz-sulfide vein	25								4									i			-						
111		Quartz porphyry	55								7								l										
112		Quartz porphyry	35			<u> </u>	22				6					1			1				i						
113		Silicified tuff	36			·	14				4			<u> </u>		1													
	A00HH132		29				20	4			1					1		i	1				1						
		Silicified rock	44				5				6		2			i		i										·	
116	A00MZ102	Silicified rock	30					11			2		1				İ												
117		Hydrothermal breccia	54			l					.9																		
118	A00MZ105	Quartz porphyry	49				4				16																		
119	A00MZ106	Silicified rock	48				< 1	8		-	1						·							· ·					
120	A00MZ109	Altered granitoid	42								19											-			-				

				Silic	as							ilicat	tes							onate	S	ulfid			ulfa	tes	Otl	ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K·feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
121	A00MZ110	Quartz porphyry	34		İ		9				8		< 1																
122	A00MZ111	Quartz porphyry	31		ĺ		2				11																		
123	A00MZ113	Altered volcancs	26				6				2				1		_												
124		Altered volcancs	16				25				< 1		3																
125	A00MZ117	Altered volcancs					7			_	1		< 1	<u> </u>	1		<u> </u>	<u> </u>	<u> </u>		< 1	<u> </u>			_	<u>.</u>	<u> </u>		
126		Zeolite vein	34								<u> </u>		1	-:		<u> </u>	<u> </u>	11	2		l	<u>!</u>	<u> </u>	ļ	<u> </u>	<u> </u>	J	<u> </u>	
127	A00MZ121	Altered volcancs (tailing)	12		<u> </u>	<u> </u>	13	1	<u> </u>		<u> </u>		3		<u> </u>						1								
128	A00MZ124	Silt	30			4		3		<u> </u>	2	<u> </u>	1	<u> </u>					<u> </u>		l	l		<u>. </u>					
129	A00MZ126	Quartz porphyry	26		<u>.</u>	18		10			1		< 1	<u> </u>			<u> </u>							ļ	<u> </u>	<u> </u>	[
130	A00MZ129	Andesite	15			<u> </u>	_16	·					4	<u> </u>			.		16		l	<u> </u>			<u> </u>		ļ		
131	A00MZ132	Andesitic tuff breccia	35			<u> </u>	1	i	<u> </u>			ļ				<u> </u>			<u> </u>		ļ <u>.</u>				<u> </u>				
132		Andesitic rock	26		ŀ		11	2	<u> </u>	ļ	ļ	ļ	3	ļ			<u> </u>				ļ	<u> </u>]	<u> </u>	· · · · ·
133	A00MZ143	Quartz vein (float)	76				8						1]				
134	A00MZ146	Silicified rock	1			6		3	1	.	<u> </u>		< 1										1						
135	A00MZ149	Silicified rock	38				4				3		2		<u> </u>	<u> </u>	<u> </u>		<u> </u> .		l]		l . <u>.</u>		<u> </u>
136	A00TM101	Altered rock	33			12		4			< 1				1												l .		
137	A00TM104	Altered rock	24				22				1		< 1				_				2						<u> </u>		ĺ
138	A00TM105	Altered rock	31			<u> </u>	13		1		1		ļ		1						<u> </u>					1	l		
139	A00TM107	Granodiorite	36					<u> </u>			4		_ 2					l					l					ļ., i	
140	A00TM108	Granodiorite	35					14			< 1		< 1		<u> </u>]				_	ļ			
141		Granodiorite	40								6		1				<u> </u>	<u> </u>			<u> </u>								
142	A00TM113	Rhyolitic tuff	49			<u> </u>					4						_		Ì	<u> </u>	l			l	1		l		l
143	A00TM114	Tuff	55								4		<u> </u>								l	<u> </u>		l	<u> </u>		ĺ		
144	A00TM115	Tuff	52		l					ı	3																		
145	A00TM116	Tuff breccia	61							1	3.7										<u> </u>			l]			l
146	A00TM117	Altered rock	20				10	3.7					2																l
147	A00TM120	Altered rock	31									23					_												ļ <u>.</u>
148	A00TM121	Altered rock	77					3			1.3										<u> </u>					< 1			i -
149	A00TM122	Dacitic andesite	18				24																			2.3			·
150	A00TM124	Dacitic andesite	38								3.3																		

Appendix-5 Powdery X-ray diffraction results.

			5	Silica	as						Si	licat	es						Carbo	nate	s	ulfic	les	T _s	ulfa	tes	Oth	ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
	A00TM126	Dacite	40				2.3				2.7					1.3									İ				
		Shale	52				5	1.7																					
	A00TM129	I	43	·		9		5.3																					
1	A00TM131		0.7			< 1			ļ		ļ	<u></u>							37										
	A00TM132		10				39			<u> </u>	< 1		0.7						10										
	A00TM135	I — — — — — — — — — — — — — — — — — — —	6.3				33									ļ		<u> </u>			<u> </u>						<u> </u>		
	A00TM136		1.7			l	_19			ļ	< 1						<u></u>	<u> </u>								2			
	A00TM137	l —	43		<u> </u>	<u> </u>					7.3								<u> </u>								.l		
	A00TM138		28				18				1				<u> </u>	<u> </u>			<u> </u>		<u> </u>								
	A00TM140		42					6.3																					
	A00TM141		15			<u> </u>	10						5.7			<u></u>			11								<u> </u>		
	A00TM142	l	9			<u> </u>	3.7			<u> </u>		<u> </u>				<u> </u>	<u> </u>				14								
		Tuffaceous shale	30		<u> </u>					<u> </u>	2.3				1.7	1.7													
		Tuffaceous sandstone	47								2.7	·	0.7						<u> </u>										
		Granodiorite	26								5					1.3								<u></u>	_				
		Granodiorite	36								3.7			<u> </u>		<u> </u>											<u> </u>		
		Tuffaceous sandstone	48			ļ <u>.</u>					2.3					2.3					<u> </u>								
		Tuffaceous sandstone	43					1.3			8	<u> </u>							<u> </u>										
		Porphyritic granodiorite	42			<u></u>				<u> </u>	9.3	ļ	İ			ļ					ļ		<u> </u>						
		Porphyritic granodiorite	27		ļ	7.3					2	<u></u>	2.3	ļ	ļ	ļ	<u> </u>		<u> </u>		<u> </u>		<u> </u>	<u> </u>					
	A00RM101		36			<u> </u>		11	·		1				ļ	< 1	<u> </u>		1		<u> </u>								
	A00RM102	I	33			l		5.7							<u> </u>	< 1		<u> </u>						<u> </u>	_				
		Laminated tuff	31		ļ			4.3		<u> </u>	ļ	ļ				ļ		ļ	< 1						_	<u> </u>			
	A00RM106		43			ļ		4.5		ļ								<u> </u>	< 1		<u> </u>		<u> </u>						
		Aplite, granite	34		.	ļ	22				1				<u> </u>				1.7					1	<u> </u>		1		
	A00RM110		50			ļ	20		ļ		1		ļ						0.7									<u> </u>	
	A00RM111		37			ļ	11	4	·		ļ				ļ	ļ		ļ	< 1		ļ		ļ		ļ				
		Tuff	44			 	6.3		·	ļ						ļ		<u> </u>	0.7					1					
		Tuff with quartz vein	19					5.3		<u> </u>	< 1					1.3		<u> </u>	<u> </u>				_	<u>L</u>			l		
180	A00RM115	Brecciated vein (float)	35			<u> </u>	4.7	2.3	<u> </u>		< 1		<u>.</u>		ļ				<u> </u>		<u> </u>						<u> </u>		

Appendix-5 Powdery X-ray diffraction results.

			S	Silic	as						s	ilicat	es						Carbo	nate	S	ulfid	es	s	ulfat	es	Oth	ers	
No.	Sample	Rock	Quartz	Cristobalite		Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
181	A00RM116	Tuff breccia	33				12	4.3			< 1				<u> </u>				< 1										
182	A00RM117	Alt.rock with quartz veinlet	41				13	2							ļ <u>.</u>		<u> </u>	ļ							ļ. <u>.</u>				
183	A00RM118	Altered rock	33					12	2					ļ	<u> </u>			ļ			ļ					.ļ	ļ. <u></u>		
184	A00RM120	Tuff breccia	58					3.3	3		<u> </u>		<u></u>	<u> </u>		1	<u> </u>	.	ļ	<u></u>									
185	A00RM121	Jarosite network							<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>			ļ			<u> </u>					11			
186	A00RM124	Altered rock	18			8.3		7.7	<u> </u>		< 1									ļ	ļ				ļ	< 1			
187	A00RM125	Altered rock	31				6.7	5	<u> </u>						1.3	3			 		L			ļ		< 1			
188	A00RM126	Altered rock with opal vein	66							<u> </u>			ļ						l		L	ļ		ļ	ļ			ļ l	
189	A00RM127	Altered rock	10		_		27	11			< 1				0.7	<u>' </u>			ļ <u>.</u>						ļ <u>.</u>	< 1			
190	A00RM134	Granitoid (wall rock of RM133)	40				3.3		<u> </u>		3.3	·	4		<u> </u>	<u> </u>		ļ	<u> </u>	<u> </u>	<u> </u>		<u> </u>		ļ	ļ <u>.</u>			
191	A00RM135	Brecciated white alt. Rock	37				10				1	<u>. </u>	<u></u>					ļ		<u> </u>	<u> </u>								
192	A00RM136	Rhyolite	37	'		<u> </u>	11	5.3	3		1	.				ļ	ļ	ļ			ļ			ļ			L		·
193	A00RM137	Rhyolite	34			ļ	11	4.3	3	<u> </u>	0.7							<u> </u>	L		ļ	ļ	ļ	ļ					
194	A00RM138	Granitoid	35				22	12	2		2	:							<u> </u>					<u> </u>					

numerical data is quartz index which is relative strength against the standard quartz sample.

No. Sample Rock	Г			1 4	A -	1 (0)	77		T 10	D-	D. I	-	~ .																	
AMNONICO AMNONICO	No.	Sample	Rock	Au	As	Sp			Ba	Be					Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sr		V	W	Zn
2 AMNOSCO GLAVAN	J			<u> </u>										om) (j				(%)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%) (.ppm) ((ppm)	(ppm)
Section Control Cont	1			0.035	6	4.4	50 <	0.2 8.9	630	0.5	<2 (0.08	<0.5	3	22	270	4.47	3.19	0.38	20	8	0.4	6	120	14	32	0.08	106	30	50
3 ANNONE Silicified rock	2	A00NK002	Qz vein	< 0.005	<]	0.2	<10 <	0.54	130	< 0.5	<2 (0.03	<0.5	1	13	6	0.25	0.09	0.04	665	1	0.03								
4 AMONKOVI (roo ene 9,056 27 B4 60 62 151 306 63 52 01) 6 65 42 03 11 77 1250 028 044 350 1 02 25 60 78 07 12 10 10 15 10 10 10 10 10 10 10 10 10 10 10 10 10	3	A00NK003	Silicified rock	< 0.005	<1	0.2	<10 <			< 0.5				<1																10
S ANNINO Dealer O. 10 10 10 10 10 10 10 1	4	A00NK007	Iron ore	<0.005																										1000
6 ARNINGS Lywern	5																										i			
7 AMONESIA Duest	- 6			1																			·		·	i ——i —				
8 ANN-KOST) Dieter																												3	<10	12
6 AON/SCO2 Geven	1 2													<1	16	18	0.96	0.64	0.04	60	48	0.04	<1	80	6	15	0.02	7	<10	14
In ADNIXOS Granite Control C	8						<10 <	0.2 5.27	640	0.5	<2 (0.03	<0.5	1	9	5	0.26	6	0.01	15	<1	0.18	<1	80	8	54	0.04	3	<10	8
10 ANN-KCO Grames -0.005 13	9	A00NK020	Qz Vein	0.075	<1	<0.2	10	.4 0.82	70	<0.5	<2 (0.28	2.5	5	17	83	0.4	0.26	0.12	1495	<1	0.04	3	50	508	31	0.01	16	<10	224
11 A0NNKOS Termanise bresses 40,000 5 02 40 02 832 210 15 02 135 036 4 9 21 13 038 7.88 7.88 7.88 7.89 0.00 2.01 0.01	10	A00NK021	Granite	< 0.005	13	0.6	<10	0.2 7.53	70	0.5	<2	4.52		19													 i			
12 ABNKKOZ Gevenn	11	A00NK023	Tourmaline breccia	< 0.005		0.2	<10			1.5																				
18 AON/KOGS Seven	12																								1					- 44
14 AON-KNOS Rlyysite	13													-1															ter i vener en in	8
15 AONKKOS Flaky or	14																													. 8
16 MONKWASS Qavenin	17																												10	32
17 A00NKN36 Graendente perphyry	15		l													37		0.77	0.16	145	54	0.06	<1	250	2	47	0.01	50	<10	8
18 MONKROS Queen	16			1						0.5		0.02	<0.5	<1	15	<1	0.06	0.17	0.03	15	194	0.19	<1	<10	<2	15	< 0.01	1	<10	4
18 A0NONSAS Qx verin								0.8 8.02	490	1.5	<2 (0.66	<0.5	8	15	1635	1.46	2.86	0.34	300	13	2.32	10	560	16	187	0.09	46	<10	28
19 AONNKOSO Q. even				<0.005	1	< 0.2	<10	2 0.17	30	< 0.5	<2 (0.01	<0.5	<1	10	15	0.09	0.1												2
20 A00NK040 Andessite (*Ploat)	19	A00NK036	Qz vein	< 0.005	18		<10																		!				n - w m nie	- 5
22 AOONNO45 Andesiste	20			< 0.005			-																			i i -				ارُہ
22 AOMNHOY Andesite	21																												;	14
224 AOOHHOV Allered rock	22																													2
224 A00HH016 Slicified rock				A CHARLES CHARLES A PROPERTY						~0.5																	war and a			2
28 AOOHHOG Silicified rock				·						- 1					i_														10	22
28 A00HH09 Slitefed greats																							1			76	0.09		<10	16
28 AODHHO28 Altered grantse															15	1	0.46	1.7	0.16	130	<1	2.94	<1	320	16	91	0.15	50	<10	74
27] AOHHO28 Alered grante				<0.005	203	3.4	<10	0.2 6.49	810	0.5	<2 (0.03	<0.5	2	8	3	1.51	6.73	0.02	35	<1	0.17	<1	160	10	68	0.15	17	<10	10
28] AOOHHO34] Andeste	27	A00HH028	Altered granite	< 0.005	6	<0.2	<10 <	.2 7.68	10	2	<2	4.4	<0.5	3	17	1	0.63	0.29	0.49	215	<1			·					:	
293 A00HH047 Grante with py (float) 0.005 7	28	A00HH034	Andesite	< 0.005	10	<0.2	<10 <	0.2 8.34	480	0.5															·					
30 A00H039 Pyroclastics with py (flost) 30 A00H040 Alfered rock	29	A00HH037	Granite with py (float)	0.005																				·	·	1	i-			
31 A00HI044 Altered rock	30																								·	t				
32 A00HH047 Altered rock																														
33 AOMH060 Andesite																										i—				
34 A00M2001 Rhyolite 0.02 23 1 190 02 6.56 450 0.5 0.2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 2 0.34 0.55 0.55 0.34 0.55 0.																													!	
St A00M2002 Oleanic rock O.01 35 O.4 120 O.2 102 900 O.5 C.2 O.2 O.5 S.3 3 117 4.17 3.4 0.34 3.0 O.5 0.39 C.1 310 14 160 O.2 182 101 2 310 32 0.34 30 O.5																							<1	2830	6	786	0.96	319	<10	82
36 A00MZ003 Dacite																									4	31	0.12	88	20	2
37 A00MZ004 Pebble dyke												0.22	<0.5	3	3	117	4.17	3.4	0.34	30	<1	0.39	<1	310	14	160	0.2	182	10	2
37 A00MZ004 Pebble dyke				0.52			<10	1.8 8.06	360	0.5	<2 3	3.21	< 0.5	5	1	1	1.5	3.4	0.65	4190	<1	0.22	<1	510	52	56	0.13	42	<10	30
38 A00MZ006 Volcanic rock	37	A00MZ004	Pebble dyke	<0.005	18	0.2	10 (0.2 6.68	890	2	<2 (0.48	< 0.5	4	7	83	1.91	4.33	0.07	235	<1									
39 A00MZ006 Volcanic rock	38	A00MZ005	Volcanic rock	< 0.005	119	1.2	30 (0.4 6.23	370	0.5	2 3	3.35	< 0.5	7	6	110			0.07					i						
A00MZ007 Volcanic rock O.165 44 4.4 4480 71.8 4.25 480 0.5 < 2 0.01 <0.5 2 6 23 3.53 2.55 0.15 20 1 0.12 <1 20 88 20 0.03 3 <10 6 6 44 4.4 4480 71.8 4.25 480 0.5 < 2 0.01 <0.5 2 6 23 3.53 2.55 0.15 20 1 0.12 <1 20 88 20 0.03 3 <10 6 6 44 4.4 4480 71.8 4.25 480 0.5 < 2 0.01 <0.5 1 5 5 5 4 0.45 <0.5 18 26 362 5.21 0.48 0.49 85 1 3.2 35 1030 8 294 0.31 76 <10 14 4 400MZ009 Granite C.0005 8 0.2 10 0.4 7.05 40 0.9 120 1 <2 2.56 1.5 5 5 5 4 0.56 1.99 0.18 235 <1 3.7 5 <1 620 32 307 0.07 41 <10 14 <0.00000 44 4.4	39	A00MZ006	Volcanic rock	< 0.005																										
Alia AdoMZ009 Mulstone	40	A00MZ007	Volcanic rock	0.165	44																									
A00MZ009 Granite																														
43 A00MZ022 Granite																													1	
44 A00MZ023 Volcanic rock																														
45 A00MZ024 Volcanic rock																											0.23	28		128
45 A00MZ024 Volcanic rock																					<1	1.46	<1	370	36	41	0.34	53	<10	12
46 A00MZ025 Volcanic rock C0.005 3 C0.2 C10 0.2 C2 C3.8 C3.0 C3.5 C3.0 C3.5 C3.0 C3.5 C3.0 C3.5 C3.0 C3.5 C														1	5		0.22	6.63	0.03		<1	0.7	<1	180	34	56	0.07	9	<10	21
47 A00MZ026 Vein ore								1.2 7.8	690	0.5	<2	0.08	<0.5	2	4	<1	0.18	4.62	<0.01	75	<1	2.12	<1	310				17		$\bar{2}$
48 A00MZ027 Vein ore	47	A00MZ026	Vein ore	<0.005	55	8.6	<10	.6 5.77	100					4	7															652
49 A00MZ031 Grante (Float) Co.005 14 < 0.2 < 10 0.2 10 110 1 < 2 3.9 < 0.5 13 11 1 < 2.75 0.62 1.84 325 < 1 4.13 9 1060 16 434 0.49 153 10 18 50 A00MZ033 Granodiorite (Float) <0.005	48	A00MZ027	Vein ore	<0.005											2											i management and a second	: -			
50 A00MZ033 Granodiorite (Float) Co. 0.05 4 Co. 2 Co. 0.1 1 8.05 270 1 Co. 0.1 1 8.05 35 27 2620 1.69 1.4 1.08 810 Co. 1 8.15 5 6 530 162 122 0.29 80 Co. 0.1 142 0.20 142 0.20 144 1.08 10 Co. 0.1 1.08 1.08 10 Co. 0.1 1.08																														
51 A00MZ034 Andesitic tuff 0.015 16 0.2 <10 1 6.85 10 <0.5 <2 9.5 <0.5 75 38 1125 7.69 0.13 0.82 1010 <1 0.18 22 530 14 1115 0.39 197 <10 28 <10 0.015 10 0.015 0.005																										: : : <u>-</u>				
52 A00MZ035 Zeolite									****																				:	
53 A00MZ039 Andesite (Float) 0.01 48 3.2 <10 0.4 8.4 610 0.5 <2 3.4 <0.5 21 73 54 4.85 <20 1.49 1005 1 1.67 19 590 32 221 0.13 59 32 21 0.13 59 32 24 0.01 18 3.2 <10 0.4 8.4 610 0.5 <2 3.4 <0.5 21 73 54 4.85 202 1.49 1005 1 1.67 19 590 32 241 0.13 59 32 241 0.13 59 32 241 0.14 1.85 40 40 8.4 610 0.5 <2 3.4 <0.5 21 73 54 4.85 202 1.49 1005 1 1.67 19 590 32 241 0.13 18 54 A00MZ047 Qu veinlet (Float)																													_ :	
54 A00MZ040 Sil, breccia (Float) 0.005 2 0.8 <10 <0.2 8.38 2700 7 <2 0.64 <8.5 62 58 2490 7.89 3.45 3.69 1200 <1 2.75 38 390 10 1180 10 0.88 613 30 182 55 A00MZ047 Qz veinlet (Float) <0.005																								·		iI.				
55 A00MZ047 Qz veinlet (Float)																541	4.85	2.02	1.49	1005	1	1.67	19	590	32	254	0.41	128	<10	118
55 A00MZ047 Qz veinlet (Float)										7		1.64	8.5	62	58	2490	7.89	3.45	3.69	1200	<1	2.75	38	3290	10			:		
56 A00MZ052 Qz vein 0.17 6 <0.2 <10 0.8 1.35 190 <0.5 6 0.03 <0.5 120 10 76 2.99 0.58 0.05 15 <1 0.04 5 10 10 7 0.03 21 <10 2 57 A00MZ053 Andesite 0.43 6 <0.2			Qz veinlet (Float)				<10	.2 2.17	160	< 0.5	<2 (0.07	<0.5	1	13	5	0.41	0.67	0.06	50	1	0.71								
57 A00MZ053 Andesite 0.43 6 <0.2 <10 5.6 6.41 390 0.5 Intf* 0.85 <0.5 15 9 16800 5.46 2.2 0.65 720 <1 0.64 6 Intf* 74 51 0.23 78 <10 14				0.17	6	<0.2	<10 (.8 1.35	190	<0.5				120												I			1	- 5
EQ A00M70F4 (0	57	A00MZ053	Andesite	0.43	6	<0.2	<10	.6 6.41																		la 1				14
1 200 1 20 10 10 10 10 10 10 10 10 10 10 10 10 10																						i							:	14
													3.0	-	-	02	1.20	2 .00	3.20	210		4.43		2-10		100	0.101	401	-10	10

			Au	As	Sb	Hg	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Ph	Sr	Ti	V	w	Zn
No.	Sample	Rock	(g/t)	(ppm)			(g/t)	(%)	[(ppm)		(%)		1.	(ppm)	(ppm)	(%)	(%)	(%)		(ppm)	(%)	1	(ppm)	(ppm)		. 1	(ppm)	(maga)	(ppm)
59	A00MZ056	Qz vein (Float)	0.02	84			0.2	4.18		<0.5		1.64	<0.5			7	1.54	1.56	0.19	630	<1	0.29	1	290	12		0.14	44		26
60	A00MZ057		4.07	6640		10				<0.5		0.02				34	7.6	0.42	0.03	15	<1	0.04	3	1	10		0.02	5	<10	2
61		Silicified rock	13.87	>10000		30	5.8	2.69		<0.5		0.02				1525	8.94	0.95	0.05	15	<1	0.08	2	4	10		0.09	36	<10	6
62		Soft silky rock	0.045	7′		·				<0.5	·	0.06		·		14	0.88	0.05	< 0.01	5	19	0.13	2	1 1.	20	1040	0.16	141	<10	8
63		Silicified rock	0.015	2'			0.2	8.01		<0.5		0.09	<0.5	·		6	0.2	1.62	< 0.01	<5	<1	0.82	<1	1130	56	617	0.41	174	<10	<2
64		Silicified rock	0.01	23		·	<0.2		i - i -	1	i	0.98	<0.5	·		5	2.09	2.54	0.68	370	<1	3.92	<1		6		0.46	76		14
65		Silicified rock	<0.005		5 <0.2	i =		4.72	:	<0.5	i	0.09				<1	0.07	1.32		10	<1	0.23	<1	l l-	16	569	0.32	88		<2
66		Andesite	0.045	1′		<u>:</u>	1		2160	<0.5		0.21				4	8.66	4.73		2500	<1	0.09	~	L	62	37	0.42	110		186
67		Dacite	0.005	13						<0.5		0.02			÷	12	0.81	2.14	0.13	60	2	0.13	<1	i serve s min	4	7	0.05	20		6
68		Black shale	1.18	356		·	19.6			<0.5	l	19.35	14.5	·	3	137	4.63	0.32	3	>10000	<1	< 0.01	9		736	223	0.04	16	<10	1870
69		White altered rock	0.02		1 <0.2			2,52		<0.5		0,3	<0.5			4	0.24	0.04	0.03	185	1	0.03	<1	110	8		0.08	6	<10	12
70		Rhyolitic tuff	0.005		7 <0.2			6.45		<0.5		0.17				ĩ i	0.47	8.1		65	1		<1		4		0.07	4	<10	10
71	A00TM005		< 0.005		5 < 0.2	20	0.6			1	<2	0.47	<0.5	2	8	4	0.95	0.64	0.04	390	i	2.44	<1	70	2	68	0.07	3	<10	io
72	A00TM007	Qz vein	<0.005	14	4 0.2	10	< 0.2	2.09	5030	<0.5	<2	0.08	<0.5	3	6	8	0.55	1.77	0.02	25	<1	0.06	3	300	<2	636	0.07	17	<10	6
73	A00TM008		0.01		2 1.8		0.8			0.5	<2	0.59			24	17	3.06	3.12	0.69	55	4	1.54	1	700	4		0.28	72	<10	2
74	A00TM010	Shale	0.545			20600	46	1.43	590	<0.5	30	0.08	118	15	13	1010	12.75	0.31	0.05	90	71	0.05	5	840	71400	46	0.02	30	<10	3170
75	A00TM012	Qz vein	0.005	273	3 21	7270	9.8	0.09	1860	<0.5	<2	0.04			11	32	0.86	0.01	0.01	90	2	0.03	1	30	916	34	< 0.01	5	<10	1430
76	A00TM014		0.11	50	0 1.6	240	3.8	5.42	110	0.5	Intf*	0.22	2	40	19	32400	1.27	0.38	0.1	240	14	3.2	6	Intf*	40	112	0.06	50	<10	150
77	A00TM016	Granite?	0.035	5	1 2.2	81200	22.2	7.86	160	0.5	Intf*	0.15	<0.5	3	8	25400	0.21	0.33	0.07	15	<1	1.09	2	Intf*	176	59	0.04	25	<10	168
78	A00TM017	Tonalite	< 0.005	1	0.2	540	0.2	10.3	1630	1	<2	5	< 0.5	10	9	262	4.38	5.75	1.19	1590	<1	1.34	3	630	36	261	0.48	174	<10	116
79	A00TM021	Qz vein in granitoid	1.95	48	8 1.2	6820	15.2	1	60	2	Intf*	0.05	<0.5	<1	7	24400	11.85	0.43	0.03	55	60	0.03	1	Intf*	28	15	0.02	33	50	30
80	A00TM022	Lapilli tuff	0.01	<	1 <0.2	30	<0.2	4.7	600	0.5	<2	0.05	<0.5	1	13	95	0.12	4.53	0.04	10	<1	0.45	<1	190	8	26	0.07	21	<10	2
81	A00TM026		< 0.005	<		<10	<0.2	7.55	1020	2	i	0.09	<0.5	3		7	0.93	4.13	0.48	25	<1	1.76	<1		6	219	0.05	6	<10	18
82	A00TM027		< 0.005		1 <0.2	<10	<0.2	5.01	1560	0.5		0.04	<0.5		L	10	0.61	3.63	0.02	20	<1	1.16	<1		8	145	0.03	3	<10	18
83	A00TM028		0.005		1 0.2		13.4			<0.5	l L	0.16	0.5	.1		333	1.22	1.88	0.09	440	<1	0.19	<1		6420	67	0.06	12	_	120
84	A00TM029	Porphyritic Tonalite	< 0.005		7 <0.2	<10	< 0.2	7.32	50	1.5	i	8.47	<0.5	· i ———————		80	2.85	0.27	0.55	660	<1	0.43	_ 9	0_0	52		0.39	103		64
85			0.005	10						0.5		1.37	<0.5			6	4.63	0.22	1.29	440	2	3.41	12		20		0.42	118		42
86	A00TM032		< 0.005		5 <0.2					0.5		1.5				5	3.7	0.26	1.58	585	<1	3.62	12		16		0.42	123		50
87		Argillic vein	< 0.005		6 <0.2					1		9.28	<0.5			40	1.29	2.1	0.63	440	<1	0.56	4	_230	14	128	0.15	42		32
88		Qz vein (Float)	<0.005	<				11		3		14.8				13	0.61	0.05	0.16	515	<1	0.13			10	:	0.06	78		10
89		Granodiorite	<0.005	3:				8,34		0,5		4.25	<0.5			235	3.55	0.53		690	<1	3.18	15		24	275	0.58	169		52
90	A00TM038		0.01	1						0.5	·	0.05		· · · · · · · · · · · · · · · · · · ·		3	0.68	0.13		25 40	209	0.03	3	80	2		<0.01	9		12
91	A00TM039		0,01 0,005	<				0.06		<0.5		0.01		·		83	0.75	3.9	<0.01	40	562 20	0.04	<1 <1	l	1	99	<0.01 0.08	20		18
93		Granodiorite Granodiorite	< 0.005							1.5		0.13			Luciana and		1.13			280	20 1	$2.3 \\ 2.21$	6		14	7.71			<10	10 24
93		Hydrothermal breccia	<0.005	<	4 <0.2					1.5	Intf*	0.24				15400	1.41 2.48	2.4		525	1		10	600 Intf*	14	116 66	0.1	51 61	:	168
95		Granite (Float)	< 0.005			·				<u>1</u>	i i	0.18		· -	·		2.08	2.26	i	595	9	0.22	<1	ii-	36		0.19	26		110
96		Granite (Float)	<0.005		6 <0.2			*** ******	·	i		4.22		· · ·		21	1.59	1.6		490	1	2.83	- `		16		0.00	32		
97		Altered rock	<0.005						1100	<0.5	i	0.04	<0.5	·		8	0.04		< 0.01	<5	<1	0.13	<1		10		0.15	44		
98		Altered rock	0.075		5 1.6	<u> </u>				1.5	·	0.1	<0.5			147	6.01	0.08		15	5	0.05	7	2340	18	540	0.27	243	:	7.1
99	a v=cv -n =========	Altered rock	<0.005	1				700 FT - 1000 - 1-	·	<0.5		0.04	<0.5			8	0.21	0.07		5	21	0.17	<1	600	· 16	997	0.45	260	30	18
100	A00TM059		0.01		8 0.6				i	<0.5		0.04	<0.5			3	0.14	0.56		105	<1	0.03	<1		18		< 0.01	6	<10	12
101		Altered rock	0.005	29					i	0.5		0.22				4	1.72	3.29		700	1	0.51	î	520	8	61		31	<10	30
102		Hydrothurmal breccia	0.06	20						<0.5		0.04	<0.5			33	0.43	1.38	0.13	195	<1	0.11	<1		98		0.04	8		
103		Altered rock	0.01	110	6 0.6	<10				1.5		0.07	<0.5		2	v	1.47	1.39	0.06	260	<1	3.42	<1	70	14	97	0.1	2	<10	38
104	A00TM065		1.575	3660			26		·	< 0.5		0.03	20	4	16	243	2.66	0.16	0.02	35	6	0.03	ī	250	1485	23)	0.01	12	<10	596
105	A00TM066	Qz vein	0.795	5710	0 64	950	40	1.58	140	<0.5	16	0.04	1.5	2	14	244	2.51	0.49	0.04	35	1	0.04	<1	140	1230	27	0.06	22	<10	50
106	A00TM068	Qz vein	0.02	18	5 16.5	130	3.8	1.4	80	<0.5	2	0.08	<0.5	6	28	115	4.89	0.26	0.12	55	1	0.35	4	370	1685	26	0.12	84	<10	344
107	A00RM009	Volcanic rock	0.02	6	1 1.8	80	2.4	6.47	870	0.5	<2	0.12	<0.5	1	10	6	0.31	6.05	0.08	140	<1	0.23	<1	40	42	84	0.04	1	<10	16
108		Dacite porphyry	<0.005	10	0.2	<10	<0.2	12.1	250	1	<2	0.33	<0.5	8	4	35	1.55	1.27	1.75	530	<1	5.93	<1	570	26	214	0.11	43	<10	144
109		Dacite porphyry	<0.005		8 0.4	<10	1	9,19		0.5		2.83	<0.5			9	3.15	1.51	1.92	945	<1	3.12	2	600	_ 14		0.3	110		46
110	A00RM016		< 0.005		6 <0.2				+	2		0.13				31	0.55	2.53		20	1	1.31	<1		10		0.11	60		8
111	A00RM017		0.025		3 1.6					0.5		0.07	<0.5			64	4.52	1.89	0.27	15	20	0.23	<1	1 1	56	301	0.09	288		2
112		Qz. vein in Granodiorite	0.025	3'						1.5		0.11	<0.5	·	ii	68	2.29	1.7	0.1	145	22	0.09	i	: -:	8	10	0.07	12		50
113		Granodiorite	0.01		9 0.4	····				3	i	0.18			4	3090	2.73	2.21	0.33	530	13	1.23	2	770	_ 10	- 1	0.16	26		152
114		Volcaniclastic rock	<0.005	3						0.5		0.04				12	0.3	6.29	0.07	15	<1	0.15	< <u>1</u>	40	8		0.07	11		4
	A00RM028		< 0.005		7 <0.2					1.5		1.53				18	1.48	1.8	0.5	990	<1	3.8	1	300	36		0.2	33	1	
116	A00RM030	Tonante	<0.005	4:	2 0.2	<10	<0.2	8.57	400	0.5	<2	3.3	<0.5	14	68	44	3.85	0.78	2.61	755	<1	2.72	18	410	10	310	0.43	166	<10	58

No	o.	Sample	Rock	Au (g/t)	As (ppm)	Sb (ppm)	Hg (ppb)	Ag (g/t)	Al (%)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)		Mo opm)	Na (%)	Ni (ppm)	P P (ppm) (pp				W opm)	Zn (ppm)
11	17 A	00RM033	Andesitic dyke	< 0.005	34		<10		8.12	300	1						43	2.19	0.3	0.77	315	<1	2.85	1		24 40			<10	40
11		00RM036		< 0.005	4		<10	2.2	7.26	80	3.5		0.03	<0.5	1		<1	0.53	3.56	0.39	40	<1	0.21	<1	80	2	13 0.04	16	110	4
11		00RM037		< 0.005	28		<10	0.4		110	0.5		0.05	<0.5		17	30	1.86	0.14	0.03	100	164	0.05	2	100	10 3	33 < 0.01	19	70	32
12			Granodiorite/Porphyry	0.02	6	·	<10		5.52	460	0.5		0.44	<0.5			1655	1.6		0.44	485	11	0.48	- 5	400		27 0.06	29	<10	32
12			Breccia pipe	0.01	57		<10	9.2	0.65	90	<0.5	Intf*	0.01	< 0.5			17200	1.98	0.24		10	14	0.03	5	Intf*	8	7 < 0.01	21	90	<2
12	22 A	00RM042	Hydrothermal breccia	< 0.005	<1	<0.2	<10	1.2	8.42	330	1	<2	0.22	<0.5	15	28	666	3.51	2.8	1.05	640	25	1.83	12	710	6 7	75 0.27	72	10	142
12	23 A	00RM043	Altered rock	0.29	18	0.2	130	2	2.26	160	0.5	Intf*	0.04	< 0.5	20	26	25700	10.9	0,62	0.09	80	28	0.05	12	Intf*	88	17 0.05	127	10	30
12	24 A	00RM045	Granodiorite	0.005	1	0.8	<10	0.6	9.37	550	0.5	<2	0.04	<0.5	2	8	75	1.91	4.01	0.36	30	44	0.52	<1	120	50	16 0.12	124	<10	6
12	25 A	00RM064	Brecciated qz vein	0.015	43	0.2	<10	0.8	0.67	70	<0.5	<2	0.01	<0.5	1	14	86	0.15	0.49	0.04	165	<1	0.05	<1	20	56	10 0.01	3	<10	8
12	26 A	00RM066	Brecciated qz vein (Float)	0.135	3880	18	520	39.2	0.66	30	<0.5	42	0.04	43.5	216	13	775	20.3	0.09	0.03	30	18	0.02	10	780 2	770	16 0.01	18	<10	2170
12			Qz vein (Float)	0.17	2150	19	670	56.2	0.66	60	<0.5	52	0.03	0.5	1	17	102	0.94	0.14	0.01	85	5	0.03	<1	70 1	740	15 0.01	10	<10	74
12			Laminated Sed, Rock	0.03	192	9	460	8.8	0.27	70	<0.5	<2	0.12	0.5	2	33	9	0.68	0.04	<0.01	650	9	0.02	1	60	158	15 0.01	6	<10	164
12	29 A	00NK101	Quartz	< 0.005	25	0.6	<10	0.2	1.67	380	1	<2	0.05	<0.5	<1	7	10	0.24	0.64	0.02	50	<1	0.33	<1	30	10	55 0.02	3	<10	14
18	30 A	00NK102	Rhyolite	<0.005	6	< 0.2	10	< 0.2	5.86	720	1.5	<2	0.07	<0.5	<1	7	6	0.41	3.43	0.04	35	<1	1.59	<1	50	14	76 0.05	20	<10	14
18	31 A	00NK103	Quartz vein (float)	< 0.005	<1	<0.2	<10	<0.2	0.31	60	<0.5	<2	0.03	<0.5	<1	18	6	0.06	0.06	< 0.01	20	<1	0.04	<1	<10	2	16 < 0.01	1	<10	6
13	32 A	00NK113	Ryolite dike	< 0.005	<1	< 0.2	10	0.2	6.89	890	1.5	<2	0.12	<0.5	5	9	7	0.7	2.92	0.08		<1	3.08	<1	160		66 0.1	16	<10	8
13	33 A	00NK114	Rhyolitic tuff	<0.005		<0.2	<10			810	. 2			<0.5			10				250	<1	1.88	<1			79 0.06		<10	54
18			Rhyolitic tuff	< 0.005	28		90		0.93	180	3	<2	0.04			9	5	1.34				<1	0.06	<1			17 0.01		<10	$\frac{32}{10}$
13	35 A	00NK119	Quartz vein & tuff	<0.005	<1					140	0.5					!		0.44				<1	0.18	<1		6	21 0.03		<10	
			Undefined	<0.005	10		120		7.86	400	1					38		2.31				10		<1			46 0.32		<10	14
			Rhyolitic tuff	<0.005	<1		30		9.57	530	1.5		0.06	<0.5		5	22				40	<1	5.96	<1			26 0.04		<10	28
18			Rhyolitic tuff, quartz vein	< 0.005	4		<10			320	1.5		0.06	<0.5			6					<1		<1			41 0.05		<10	50
18			Rhyolitic lapili tuff	< 0.005	<1		<10		5.95	850	5.5		0.03	<0.5		6	3	0.71	3.86	0.11		<1	0.97	<1			29 0.04		<10	86
14			Rhyolitic tuff breccia	<0.005	<1		<10			640	2	_	0.05	<0.5	1			1.42		·		<1	3.1	<1		~	25 0.05		<10	52
14		00NK129		< 0.005	25		<10		6.75	3470	0.5	<2		<0.5				0.48		<0.01	40	9	0.25	<1		40	16 0.06		<10	42
14	42 A	00NK130	Biotite-Garnet gneiss, quartz vein	<0.005	<1		<10		0.2	10	<0.5		0.05	<0.5			4		0.05	<0.01		<1	0.11	<1		4	5 < 0.01	1	<10	6
14	43 A	00NK131	Tuff	< 0.005	8		<10			370	4.5			<0.5			10					8		20			00 0.16		<10	64
14	44 A	00NK132	Undefined	<0.005	27		<10			130	0.5			<0.5			4			0.04		1	<0.01	<1			42 0.98		<10	6
14	45 A	00NK134	Quartz pyrite vein	< 0.005	76					20	0.5		0.25	<0.5				17.35		0.69		2	0.28	50			93 0.23		<10	4
			Undefined	<0.005			<10			30	<0.5		0.01	0.5		1		>25.0				<1	0.22	<1			44 0.08		<10	<2
			Andesite porphyry	<0.005			<10		0.6	100	0.5			<0.5			4				15			<1			46 0.52		<10	6
			Hydrothermal breccia	<0.005	26		220			100	2			<0.5			10				20	3		<1			39 0.35		<10	4
			Quartz vein	<0.005	<1			<0.2		50	<0.5			<0.5		10	3			l		<1		<1		6	6 0.05		<10	18
				0.085	<1		<10		0.74	10	<0.5			<0.5			28				25	<1		3		16	9 0.01		<10	14
		00HH104	Andesite	0.02	<1			<0.2		130	1.5		0.07	<0.5			7					<1		<1			11 0.77	293	10	
			Altered granite	0.045	7			<0.2		70	<0.5	<2	2.07	<0.5		+		3.23				43		2			63 0.3	121	<10	24
			Altered rock with zeolite vein	< 0.005	1	<0.2	~~		10.8	90	< 0.5		6.8	< 0.5				2.39				<1		<u><1</u>			77 0.36	96	<10	32
		00HH114	1	0.01	10			<0.2		400	0.5			<0.5				4.93	i	2.42		<1		6			58 0.53	205	<10	94
		00HH115		< 0.005	<1			<0.2		130	0.5		3.76	<0.5		13	21				660	<1	3.59	3			36 0.43	92	<10	30
1			Quartz vein	0.025	188		30		2.91	80	0.5	·	0.03	<0.5		9		3.32			155	21	0.1	<1			0.06	12	<10	92
			Quartz porphyry	0.015	1295		30		3.64	430	<0.5			<0.5		-1	166		1 11		·	192	0.29	<1			$\frac{25}{18} - \frac{0.07}{0.1}$		<10	
			Sandstone	0.01	334				3.24	210	0.5			<0.5		<1	147					21	0.97	<u> <1</u>	<u> </u>		18 0.1		<10	1
			Quartz porphyry Quartz porphyry	<0.005 <0.005	$\frac{ }{ }$ 37		<10 <10		7.39	700 410	2	<2		<0.5		·i	171 15					33	2.12 0.29	< <u>1</u>			09 0.19 17 0.11	23 43	<10 10	
				<0.005						10	-0.5	-										<1	0.29			!		9		- 10
			Quartz vein	<0.005			<10 <10		6.82	210	<0.5 0.5	·		<0.5			55 6			·		$-\frac{1}{<1}$	3.2	$\frac{-1}{2}$		8	4 0.01 78 0.29		<10 <10	6
			Quartz porphyry Undefined (float)	0.015				<0.2		610	2.5			<0.5			97			·		<1 <1	1.11	56	·		11 0.52		<10	96
			Acidic tuff	0.005	47			<0.2		1180	1.5		2.69	<0.5		· • · · · · · · · · · · · · · · · · · ·	3					<1	2.37	<1			65 0.03		<10	12
			Andesite (float)	0.005	41		<10		7.48	230	0.5			<0.5			78				945	<1	1.64	9			60 0.8	1	<10	84
			Sandstone (float)	< 0.005	12			<0.2		250	1.5			<0.5			32			1.07	340	<1		$\frac{9}{34}$			88 0.48	$-\frac{257}{92}$	<10	
			Andesite with quartz vein	<0.005	101	-1		<0.2		40	<0.5						13			2.21	 	<1		8			39 0.1	52	<10	
			Silicified rock (float)	0.43	23			<0.2		490	0.5						147		·		1020	<1	0.02	13			61 0.56		<10	$-\frac{24}{42}$
			Silicified rock	< 0.005	<1		<10		9.51	520	1.5						808	3.51				4	1.21	12			70 0.16		<10	
			Silicified rock	< 0.005				li-	8.56	1130	1.0						14400					20	0.9	$-\frac{12}{27}$			67 0.15		<10	
			Hydrothermal breccia	<0.005			<10			320	<0.5			<0.5			72	3.59				16	0.15	<1			11 0.18	89	30	
			Quartz porphyry	0.005					5.56	130	0.5						322					<1	0.13	14			10 0.18	39	<10	
			Silicified rock	0.003						490	0.5						35					1	0.12	< l			37 0.05	28	<10	14
			Quartz porphyry	< 0.005		0.2		<0.2														167		6	· I		57 0.11		<10	
							<u>.</u>											· · · · ·			·						,			

[]	2 1	o Baix chemical a	Au	As	Sb	Hg	Ag Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn		Na	Ni	P	Pb	Sr	Ti	V	W	Zn
No.	Sample	Rock	(g/t)	(ppm)	(ppm)	(ppb)	(g/t) (%)		(ppm)		-			(ppm)	(ppm)	(%)		(%)											(ppm)
175		Quartz porphyry	0.02	2			<0.2 7.58		1.5	·	0.06	<0.5	·	14	28	5.91		0.27	60	10	0.27	2	350	50 12		0.15	153 129	<10 <10	14
176		Altered volcancs	0.1	<1			<0.2 7.88		<0.5		0.11	<0.5		14		9.49	2.33	0.7	275 120		0.89 5.26	<1 4	980 600	12		0.34	131	<10	22
177		Altered volcancs	0.02	<1	1		<0.2 9.96		0.5		0.49	<0.5		17	27	i-	-	0.14	120		0.22	<1	10	10		0.05	34	<10	<2
178		Quartz vein	0.48	240	·	<10		-1	<0.5		0.04	<0.5 <0.5		12	28			0.14	270		3.93	<1		18		0.65	229	<10	18
179		Altered volcancs	<0.005	11			<0.2 9.57		<0.5 <0.5		0.83	<0.5	·	<u>2</u>				0.46	55		0.08	<1		12		0.01	15	<10	14
180		Quartz vein (float)	0.19	278 21		20 <10	0.4 2.26 <0.2 8.05		0.5		2,49	<0.5		102	8	3.43		2.54	405		3.22	22		8	239	0.5	202	<10	
181		Altered volcancs (tailing) Quartz vein (float)	0,015 0,55	18		<10	0.2 0.43		0.5		0.02	<0.5		12	2	0.2	0.07		5		0.04	<1		4		<0.01	4	<10	
183	A00MZ124		<0.005	38		10	0.2 8.53		2		1.18	4	10	32		2.31	4,15		1255		0.85	11		64		0.34	81	<10	694
184		Quartz porphyry	< 0.005	14		<10	0.2 7.77		1.5		0.55	<0.5		11		1.37		0.22	255	7	2.34	<1	430	32	248	0.11	14	<10	18
185	A00MZ138		< 0.005	4	·		<0.2 7.3		0.5	-1	3.83	<0.5		309	24	7.17		3.42	930	<1	2.27	145	1020	14	147	0.81	235	<10	132
186		Qz porphyry	9.14	12		i — — — — — — — — — — — — — — — — — — —	12.4 1.9	-1	0.5	<2	3.5	- 5	45	28	606	4.27	0.84	0.79	2660	6	0.03	17	160	502	73	0.08	85	<10	
187		Granitoids (float)	0.03	23		10	2,4 4.5	140	<0.5	30	0.2	<0.5	44	8	44	4.8	1.33	0.55	110	<1	0.8	3	300	72	31	0.07	55	<10	18
188		Quartz vein (float)	0.08	1	0.2	<10	< 0.2 2.24	100	<0.5	<2	3.14	<0.5	9	41	21	1.67	0.43	0.73	650	1	0.18	15		8		0.09	53	<10	38
189		Quartz vein (float)	< 0.005	<1	0.2	<10	0.2 1.63	30	0.5	<2	2.61	<0.5		13		0.32	0.1	0.08	140	1	0.3	1	30	46		0.04	17	<10	6
190	A00MZ144	Silicified rock	< 0.005	11	0.6	<10	0.6 5.38	250	1	<2	6.79	<0.5	13	68	74	4.49	1.55	1.16	1785	<1	0.67	28		172		0.27	95	<10	86
191	A00MZ145	Calcite vein	< 0.005	919	12	<10	< 0.2 1.43	30	<0.5	2	>25.0	<0.5	6	8	111	1.4	0.5	0.29	2850		<0.01	1		18		0.05	26	<10	38
192	A00MZ147	Quartz vein (float)	0.02	5	5.6	<10	<0.2		0.5		11.45	<0.5				2.8	0.58	0.97	940	<1	0.42	1	390	36		0.24	82	<10	40
193	A00MZ148	Quartz vein	0.025	1050		<10	0.2 1.4		<0.5	1	0.08	<0.5		9	7		0.19	0.12	75	<1	0.58	<1		452		0.02	9	<10	10
194	A00MZ150	Quartz vein	0.01	37		<10			<0.5		0.24	<0.5	·	41		1	0.03	0.3	175	<1	0.05	3	10	4		0.03	17	<10	22
195		Altered rock	< 0.005	1	0.4		<0.2 8.0		1.5		1.02	<0.5		3	(0.89	2.12	0.21	130	<1	3.31	<1		20		0.08	15	<10 <10	46 10
196		Quartz vein	<0.005	l1	0.8	<10	0.2 7.13		1	<2	0.69	<0.5		10	3		5.8	0.08	60 40	<1	$\frac{1.71}{0.17}$	<1 <1	20	22 10		0.03	6	<10	- 50
197		Quartz vein	< 0.005	2			<0.2 0.75		0.5		0.04	<0.5		$\frac{11}{7}$	5		0.28	0.07	115	<1 <1	3,77	<u> </u>		12		0.23	44	<10	-30 20
198		Altered rock	<0.005	10			<0.2 9.5		1.5		0.31	<0.5 <0.5		- 8	4	3.49	1.13	0.94	90	<1	3.45	<1		16		0.23	49	<10	10
199		Altered rock	< 0.005	10			<0.2 9.8		1		0.22		·		7		3.41	0.44	1995	<1	0.19	<1		74		0.25	19	10	64
200		Granodiorite	0.055 <0.005	<1 3		20 <10	0.2 8.00 <0.2 6.40		0.5	-1	0.04		+	8	l	0.54	7.74	0.04	55	<1	0.13	<1		8		0.08	6	<10	16
201		Granodiorite	15.27	99		50	37 0.49				0.01	<0.5	- (15.85	0.25	0.05	35	<1	0.02	<u></u>		176		0.01	32	<10	14
202		Quartz vein Granodiorite	0.17	<1	·	50			2		0.01	<0.5	<u> </u>	3	:		3.26	0.27	370	<1	0.24	<1		368	i.	0.31	20	<10	212
203		Rhyolitic tuff	0.01	<1		80		-1	1		0.04			5	26	3.07	3.28	0.32	45	<1	0.31	<1		8		0.13	19	<10	18
204	A00TM113		0.04	7							0.02		_1	<u>-</u>	1	0.85	2.41	0.23	125	<1	0.22	<1	80	62	29	0.03	1	<10	22
206	A00TM115		0.015	9		i			1		0.03		-1		28	1.26	2.82	0.22	80	<1	0.33	<1	240	40	27	0.06	6	<10	52
207		Tuff breccia	0.03	5					1.5	5 2	0.01	<0.5	<1	3	13	0.58	2.44	0.15	60	<1	0.26	<1	110	18		0.04	2	<10	10
208		Altered rock	< 0.005	5	1	<10	0.2 6.2	630	0.5	<2	0.83	< 0.5	5	5		2.84	2.88	0.61	1915	<1	2.32	<1	1770	20		0.57	63	<10	236
209	A00TM118	Tuff breccia	< 0.005	7	1	<10	< 0.2 6.1	500	2.5	5 2	3.4	2.5	3	3	38	2.33	2.34	0.3	1325	<1	0.16	<1	<10	150			1	<10	72
210	A00TM119	Quartz vein	0.01	9	0.8	<10	2 1.6	7 360	<0.5	5 4	0.27	<0.5	6	7			0.85	0.23	310	1	0.05	1	10	6		0.01	5	<10	
211	A00TM121	Altered rock	< 0.005	<1	< 0.2	<10	< 0.2 3.0	1 160	<0.5		0,03	<0.5			1	- -		<0.01	10	<1	0.19	<1		6	- 	0.08	16	<10	
212	A00TM122	Dacitic andesite	0.015	911	0.6	<10	0.2 8.7			1 2	5.64	1.5					1.35	0.38	305	1	3.69	19		10	268	0.25	184	<10	
213	A00TM123	Limonite quartz vein	<0.005	13		I		-1	0.8		0.1	1			·		0.92	0.25	165	1	0.16	<1		204	39	0.1	31	<10	
214	A00TM128	Shale	0.06	44										15		10.8	1.05	0.58	70	<1	1.37	<1		8	45	0.14	38	<10	
215	A00TM129		0.005	1		l										1.1	5.11	0.3	45	<1	1.43	<u> </u>	360	20		$0.11 \\ 0.07$	49 52	<10 <10	
216		Altered rock (gossan)	0.24												146		0.32	0.12	310	16	0.89	4	430 940	6		0.07		<10	
217	A00TM132		0.005						1.8					6		2.19	0.75	0.52	920		5.68 1.09	38	li-	$-\frac{6}{230}$		0.15	70	<10	
218		Altered rock (gossan)	59.14							60				<1	14	>25.0 4.22	0.26	$\frac{0.1}{0.15}$	210	14 <1	5.46	38 <1	i	10		0.03	114	10	
219		Tuff breccia	0.045	. la ===::::::::								4		$\frac{1}{24}$			1.24	0.15	5	<1	3.54	9	160	6		0.15	109	<10	
220		Altered rock	<0.005													>25.0	0.13	0.02	105	-\\\-\\\-\\\	0.2	28		6	1	<0.15	9		2140
221		Altered rock(gossan)	0.025									·					0.13	1.9	1270	<1	2.29	6		- 8	114	0.29	84	<10	
222 223	A00TM141 A00TM142		< 0.025											i	·		1.09	0.07	45	<1	1.58	<1		8	39	0.08	14	<10	
223		Tuffaceous shale	0.005												1!	10.65	0.7	0.23	140	4	0.18	18	I	10	87	0.09	266	<10	
225		Tuffaceous sandstone	0.005														1.56	0.2	30	1	0.56	<1	i	6		0.05	55	<10	
$\frac{225}{226}$		Tuffaceous sandstone	2.33										-1		1		0.74	0.09	30	<1	0.39	<1		28	412	0.06	41	<10	
227		Granodiorite	0.315						0.						38600		3.79	0.19	6010	21	0.5	8		436	314	0.08	96	<10	
228		Limonite quartz-barite vein	0.485														0.43	0.08	115	171	0.07	<1	1260	1705	793	0.01	25	<10	
229		Tuffaceous sandstone	0.01		+					1 2	0.11	1	<1					0.28	15	3	0.64	<1	840	10	132	0.09			6
230		Tuffaceous sandstone	0.035						0.		0.07	<0.5		28	29		2.59	0.2	15	22	0.52	<1	1220	34	224	0.08	123		
231		Limonite silicification vein	0.515								0.11			8	84	12.55	2.54	0.11	35	9	0.44	<1	4770	3820	388	0.03		<10	
232		Tuffaceous sandstone	1.765				20.2 2.1				0.08	<0.5	5 <1	10	25	2.15	0.9	0.06	25	2	0.13	<1	610	846	242	0.03	31	<10	26
-34		1																											_

No.	Sample	Rock	Au	As	Sb	Hg	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	Vi	WT	Zn
	•		(g/t)		(ppm)	(ppb)	(g/t)	(%)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%) (%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm) (ppm)	(mgg
233		Tuffaceous sandstone	0.065	782	41	260	4.8	6.36	480	<0.5	<2	0.13	4.5		36	120 1		0.9 0.0			0.15	1	1630	834	333	0.22	287	<10	516
234		Tuffaceous sandstone	0.035	16		840	1	5.1	3850	<0.5	4	0.05	1	<1	22		1.83	1.95 0.1			0.25	<1	240	132	67	0.08	99	<10	6
235		Tuffaceous sandstone	0.89		>1000			2.71	40	<0.5	4	0.07	3.5		13		12.4	1.78 0.1	30	36	0.25	<1	1780	37300	469	0.01	114	<10	112
236	A00TM166		0,185	1500	33	80		6.91	920	<0.5	4	0.18	14		14		8.15	2.37 0.2	100	6	0.21	1	1680	140	44	0.09	281	<10	456
237		Gossan	0.015	27	20			3.22	1290	<0.5	2	0.05	<0.5		15		7.85	1.17 0.0		3	0.14	<1	460	266	321	0.04	92	<10	4
238	A00TM168		0.6	99			8.4		850	<0.5	2	0.07	<0.5	2	6		7.58	0.15 0.0	3 45			<1	1110	398	642	0.08	30	<10	18
239	A00TM169		0.505	943		40	4.2		50	0.5	<2	0.09	2.5	2	<1	82 >	25.0	1.64 0.0	175	16	0.13	<1	2230	3100	210	0.04	172	<10	936
240	A00TM170		0.965	1335				1.75	50	1	20		9	11	1	116	22.3	1 0.0	1530	6	0.18	<1	3010	2370	316	0.02	86	<10	552
241	A00TM171		0.02	14		60		5.46	850	< 0.5	2	0.04	<0.5	<1	14	14	1.95	1.98 0.0	15	7	0.24	<1	260	94	35	0.09	60	<10	6
242		Porphyritic granodiorite	0.08	16		80		9.34	380	1.5	<2	0.09	<0.5	<1	7	32	0.56	3.71 0.2	45	<1	0.32	<1	80	20	59	0.15	62	<10	8
243		Porphyritic granodiorite	0.095	15		60		7.89	320	1.5	8	0.76	<0.5	17	40	3950	2.64	1.62 1.5	1230	5	1.46	16	1320	30	127	0.12	94	<10	244
244	A00RM101		<0.005	6			<0.2	6.6	1650	0.5	2	0.04	<0.5	<1	3	23	0.1	6.79 0.0	20	<1	0.33	<1	90	10	57	0.06	7	<10	6
245	A00RM106		<0.005	9				5.48	860	1		0.06	1	<1	7	43	0.19	2.28 0.0	25	<1	2.68	<1	90	32	77	0.03	3	<10	6
			<0.005	2				6.83	1080	2	2	0.06	<0.5	1	<1	8	1.82	5 0.0	735	<1	1.15	<1	30	16	89	0.05	9	<10	34
247		Tuff with quartz vein	<0.005	1	0.2			6.58	1060	2.5	6	0.06	<0.5	3	1	15	4.75	4.07 0.	365	<1	1.48	<1	50	24	81	0.05	9	<10	34 76
248		Hydrothermal breccia (float)	<0.005	11		<10	<0,2	4.9	840	1.5	<2	0.05	<0.5	<1	8	5	1.51	2.7 0.0	125	<1	1.28	<1	110	66	120	0.05	- 5	<10	26
249		Brecciated vein (float)	<0.005	3			<0.2	5.19	1790	2	<2	0.15	<0.5	<1	18	8	0.8	3.47 0.2	95	<1	1,18	<1	60	18	220	0.07	4	<10	36
250		Tuff breccia	<0.005	1	0.2	<10	<0.2	5.61	980	3.5	2	0.05	0.5	<1	8	5	1.48	4.6 0.0	175	<1	1.1	<1	<10	72	32	0.05		<10	156
251		Alt.rock with quartz veinlet	<0.005	2	<0.2	<10	<0.2	5.75	220	2	2	0.03	<0.5	<1	10	6	0.42	1.08 0.0				<1		6	22	0.04	3	<10	30
252		Quartz vein	<0.005	<1	<0.2	<10	<0.2	1.02	50	<0.5	<2	0.08	0.5	<1	9	5	0.09	0.22 0.0				<1	1 1	2	23	0.01	1	<10	6
253		Jarosite network	< 0.005	161	<0.2	<10	<0.2	0.15	10	<0.5	<2	0.06	< 0.5	<1	<1	9 >	25.0	2.86 < 0.0	<5	<1	1.34		10000	4		< 0.01	32	<10	<2
254		Altered rock	<0.005	29	0.6	20	<0.2	0.3	40	2	<2	0.01	< 0.5	7	12	8	3.09	0.07 < 0.0	15		< 0.01	10	i i	6	27	0.31		<10	<2
255		Altered rock with quartz veinlet	< 0.005	14	0.6	<10	<0.2	2.62	150	2.5	4	0.06	<0.5	<1	8	8	0.84	0.64 0.0	15	3	0.08	<1	i	2	83	0.31	18	<10	<2
256		Altered rock with opal vein	< 0.005	7	0.4	10	< 0.2	0.15	70	<0.5	8	0.01	< 0.5	10	18	16	0.36	0.03 < 0.0		4		5	·	6		0.78	- ·- • G -	<10	<2
257		Earthy limonite mass	< 0.005	23	<0.2	<10	<0.2	0.39	60	<0.5	<2	0.51	1.5	13	<1	10 >	25.0	0.08 0.	6750		****	<1		2		0.03	15	<10	<2
258		Granitoid (float)	< 0.005	9	<0.2	<10	<0.2	7.98	660	2.5	<2	0.13	<0.5	2	8	3	1.14	3.69 0.1	140	<1	2.07	2		32		0.07	îsi -	<10	28
259	A00RM133		< 0.005	1	<0.2	<10	0.2	1.28	60	0.5	4	0.2	<0.5	1	15	9	0.68	0.43 0.	255	<1		<u>-</u>	30	8	13	0.04	14	<10	14
260	A00RM139		< 0.005	6	<0.2	<10	<0.2	6.9	690	2	<2	0.08	< 0.5	<1	5	3	0.61	2.92 0.0	60		2.87	<1	i i	12	101	0.08	6	<10	24
261		Altered volcanic rock (float)	< 0.005	4	< 0.2	10	<0.2	8.57	410	0.5	2	0.07	0.5	3	56	15	2.02	1.35 0.0	. 5	1	0.59	4	790	16	518	0.33	165	<10	<2
262	A00RM141	Altered granitoid (float)	<0.005	<1	<0.2	<10	<0.2	6.8	710	2	10	0.03	< 0.5	2	14	51	3.71	2.97 0.2			0.25	6				0.04		<10	6
263		Altered rock (float)	< 0.005	ì	< 0.2	<10	<0.2	0.13	30	<0.5	2	0.01	<0.5	<1	13	8	0.3	0.02 < 0.0			< 0.01	<1	i — — — — — — — — — — — — — — — — — — —	<2		0.11		<10	<2 <2
264		Altered volcanic rock (float)	< 0.005	7	3.2	20	<0.2	8.92	120	0.5	6		<0.5	19	28	39		0.46 2.3				$-\frac{1}{23}$		10		0.48	174	<10	102
265		Altered volcanic rock (float)	< 0.005	8	0.2	70	0.4	6.07	240	<0.5	6	0.06	<0.5	<1	15		2.27	0.06 0.0	45		0.17		i	8	598	0.21	i	<10	
266		Altered volcanic rock (float)	< 0.005	2	<0.2	<10		9.39	260	0.5	2	1.52	<0.5	3	76			0.57 2.38		1	4.32	21	960	68		$\frac{0.21}{0.37}$		<10	102
267	A00RM146	Altered volcanic rock (float)	< 0.005	5	0.6	40	<0.2	8.36	360	<0.5	4	0.04	<0.5	19	15		4.39	0.09 0.0	50	<1		10	360	22	593	0.21		<10	25
														0							0.20	10	000		000	0.21	107	-101	

"Intf*" stands for interference. When a sample has high Cu, their is often interference on the Bi and P. The instrument can't get a good reading of the Bi and P because the Cu "interferes" with the reading.

Appendix-7 Bulk chemical analysis results including PGM elements for the geochemical survey (only Phase I survey).

No.	Cample	Rock	Au	Pt	Pd	Rh	As	Sb	Hg	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr
110.	Sample	ROCK	(g/t)	(g/t)	(g/t)	(g/t)	(ppm)	(ppm)	(ppb)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)
1	A00NK041	Gabbro	0.03	< 0.07	< 0.07	<0.03	2	<0.2	<10	0.2	10.35	80	<0.5	<2	7.18	6.5	43	271
2	A00NK042	Gabbro	<0.03	< 0.07	< 0.07	< 0.03	3	<0.2	<10	< 0.2	10.55	60	<0.5	<2	7.25	<0.5	45	278
3	A00NK043	Gabbro	<0.03	< 0.07	< 0.07	< 0.03	2	<0.2	<10	<0.2	8.25	400	1.5	<2	4.22	<0.5	24	21
4	A00RM054	Gabbro	<0.03	< 0.07	< 0.07	<0.03	6	<0.2	<10	0.2	10.7	70	<0.5	<2	7.38	<0.5	47	239
5	A00RM057	Gabbro	<0.03	< 0.07	< 0.07	<0.03	7	<0.2	10	<0.2	10.3	80	<0.5	<2	7.27	<0.5	47	215

No	Cample	Rock	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	V	W	Zn
No.	Sample	ROCK	(ppm)	(%)	(%)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)
1	A00NK041	Gabbro	79	3.67	0.23	8.26	715	<1	1.05	403	100	318	87	0.12	102	<10	1615
2	A00NK042	Gabbro	40	3.65	0.37	8.57	715	<1	1.09	398	80	54	91	0.11	97	<10	94
3	A00NK043	Gabbro	21	5.69	1.89	1.23	885	<1	2.05	6	640	70	132	0.57	117	<10	102
4	A00RM054	Gabbro	34	3.86	0.39	8.62	760	<1	1.18	417	120	8	94	0.13	101	<10	48
5	A00RM057	Gabbro	39	4.09	0.48	7.99	800	<1	1.16	376	130	6	98	0.16	124	<10	44

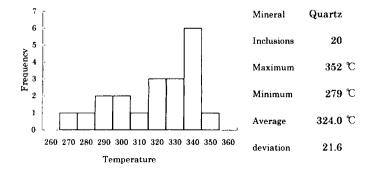
			T	SiO ₂	TiŌ,	Al ₂ O ₃	Fa.O.	MnO	MgO	CaO	Na ₂ O	K ₂ O	PA	Cr ₂ O ₃	LOI	Total
No.	Sample	Rock	Alteration	(%)	(%)	(%)	(%)	(%)	(%)	(%)	l . ~.	J		l "		
1	ACCITITOTO	A . 1				17.77	*****		47	(17	(%)	(%)	(%)	(%)	(%)	(%)
1					0.45	17.69	5.14	0.06	1.87	4.22	3.79	1.29	0.15	< 0.01	1.64	99.38
2		Qz porphyry	Weak	63.22	0.31	16.54	2.89	0.15	1.71	4.11	3.14	1.90	0.15	< 0.01	4.61	98.73
3	A00MZ013	Dacite porphyry	Fresh	57.44	0.52	17.16	5.16	0.14	3.32	4.61	3.76	1.62	0.16	< 0.01	4.66	98.55
4	A00MZ015	Tonalite	Fresh with green Cu stain	62.62	0.46	17.73	4.01	0.11	2.02	5.44	3.52	1.53	0.12	<0.01	1.46	99.02
5	A00MZ018	Granodiorite	Fresh	61.59	0.62	16.01	4.96	0.10	2.41	4.51	3.30	3.26	0.17	< 0.01	1.68	98.61
6	A00MZ032	Granodiorite (Float	Fresh	67.27	0.47	15.27	3.80	0.06	1.46	3.51	3.44	2.73	0.11	<0.01	1.16	99.28
7	A00MZ044	Microdiorite	Propylite	51.44	0.90	17.38	8.58	0.18	3.79	8.03	2.53	1.74	0.25	< 0.01	4.19	99.01
- 8	A00TM009	Tonalite	Fresh	63.71	0.34	18.57	3.23	0.04	1.51	5.09	4.19	1.24	0.22	<0.01	0.98	99.12
9	A00TM018	Tonalite	Weak	62.49	0.69	16.07	4.92	0.14	2.52	4.75	2.69	2.81	0.17	< 0.01	1.33	98.58
10	A00TM019	Diorite porphyry	Tourmalinization with qz-epidote vein	52.68	0.92	20.80	6.31	0.21	2.45	5.57	3.33	5.17	0.19	< 0.01	1.14	98.77
11	A00TM020	Tonalite	Fresh	61.05	0.55	17.46	5.59	0.14	2.39	6.45	3.17	1.56	0.13	< 0.01	0.34	98.83
12	A00TM030	Tonalite	Potassic? with limonite stain	59.18	0.97	15.71	5.96	0.14	4.16	6.35	3.78	1.02	0.19	< 0.01	1.77	99.23
13	A00RM013	Granite	Weak, qz vein with py diss.	63.67	0.64	15.43	4.84	0.09	2.78	2.43	2.29	3.87	0.12	< 0.01	3.11	99,27
14	A00MZ103	Granodiorite		68.42	0.36	15.55	2.87	0.04	1.37	2.47	3.75	2.41	0.10	<0.01	1.51	98.85
15	A00MZ108	Granodiorite	Potassic	68.45	0.49	15.44	3.42	0.04	1.73	2.35	3.15	2.06	0.13	< 0.01	1.77	99.03
16	A00MZ137	Granodiorite		51.21	0.99	19.97	8.37	0.15	3.17	9.10	2.81	0.88	0.12	< 0.01	2.15	98,92
17	A00MZ139	Andesite		56.06	1.79	15.82	8.95	0.14	2.32	6.18	4.11	1.18	0.40	< 0.01	1.93	98.88
18	A00TM125	Dacitic andesite		62.00	0.68	16.87	6.42	0.11	1.98	4.75	3.34	1.36	0.20	<0.01	1.34	99.05

No	Τ	Sample	Ag	Cu	Pb	Zn	Co	Ni	Ba	Rb	Sr	Sn	W	U	Th	Cs	Ga	Hf	Nb	Ta	Tl	V	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Zr
110	_	Dample	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	ppm)(ppm)(ppm)	(ppm)	(mgg	ppm)(ppm) ((mag	ppm)	(mag)
1	L A	A00HH012	<1	12	75	225	5	<5	250	53.4	392	1	1	i	5	3.7	18	5	5	< 0.5	<0.5	75	13	26	3.1	12.5	2.7	0.7	2.6	0.4	2.7	0.6	1.8	0.3	2	0.4		191.5
2	? A	A00MZ011	<1	10	80	135	4	<5	727	77.2	432	<1	3	0.5	4	10.6	16	5	5	<0.5	<0.5	50	18	35.5	4.2	16	3.5	0.9	3	0.5	2.7	0.5	1.6	0.2	1.9	0.3		174.5
3	3 A	A00MZ013	<1	20	10	50	11	<5	735	62.8	414	<1	<1	1	3	19.1	18	4	3	1	< 0.5	115	14	30	3.9	15	3	0.9	3	0.5	2.8	0.6	2	0.3	2.1	0.3		126.5
4	I A	A00MZ015	<1	485	90	165	6	<5	489	55.8	431	1	3	1.5	4	5.5	18	5	3	<0.5	< 0.5	80	15	31.5	3.8	15	2.8	0.9	3	0.5	2.3	0.6	1.9	0.3	1.9	0.3		171.5
5	j A	A00MZ018	<1	70	10	45	9	5	524	93.6	404	1	<1	5	16	2.2	18	10	6	<0.5	< 0.5	95	33.5	71	8.3	33.5	5.7	1.2	5.5	0.8	4.2	0.8	2.4	0.4	2.3	0.4	21.5	324
6	3 A	A00MZ032	<1	5	5	25	5.5	<5	528	85.4	193	4	1	2.5	12	3.4	18	8	4	<0.5	<0.5	65	26.5	50	5.5	20.5	3.6	1.1	3.6	0.6	3.8	0.7	2.1	0.3	2		18.5	277
7	/ A	400MZ044	<1	40	5	65	23.5	10	500	50.2	471	<1	<1	1.5	6	2	18	4	1	<0.5	<0.5	230	17.5	37	4.7	20	4.2	1.3	4.4	0.7	3.9	0.8	2.5	0.3	2.3		20.5	116
8	3 A	400TM009	<1	10	10	20	3.5	<5	1295	38	737	1	<1	2	10	5.5	20	6	4	0.5	<0.5	45	25.5	48	5.3	17	3.4	1	2.6	0.4	1.8	0.4	11	0.1	1.3	0.2	:	199.5
9) A	A00TM018	<1	5	50	130	11	5	330	148	306	2	1	5.5	18	7	21	- 8	5	0.5	< 0.5	110	25.5	52	6.1	24	4.6	1.2	3.9	0.5	2.7	0.5	1.6	0.2	1.3	0.3	14	260
10) <i>A</i>	400TM019	<1	10	25	140	18	10	694	267	165	1	6	0.5	4	10.1	23	5	4	1	1	190	19.5	41	5.4	23.5	5.3	1.6	5.3	0.8	4.7	0.9	2.8	0.4	2.4	0.3	24	172
11	I A	A00TM020	<1	30	15	70	10.5	<5	367	53.2	393	1	1	1.5	4	4.7	19	7	3	< 0.5	<0.5	110	14.5	30	3.7	15	3.3	1	3.3	0.6	3.5	0.6	2.1	0.3	1.9		17.5	229
12	2 A	A00TM030	<1	45	15	85	14.5	35	299	32.8	305	4	1	2	8	4.5	18	8	4	< 0.5	<0.5	160	23	51	6.2	24.5	6	1.5	6.2	1	6.7	1.4	4	0.5	3.5	0.5	33	276
13	A	400RM013	<1	40	15	65	13	15	545	181	196	4	6	6	22	6.3	18	9	6	0.5	0.5	115	33	66	7.7	30.5	5.9	1.2	5.7	0.9	4.9	1.1	3.1	0.4	2.3	0.4	26.5	307
14	1 A	A00MZ103	1	70	55	80	4	15	394	76.4	357	1	3	1	4	3	17	7	2	0.5	<0.5	35	16.5	32.5	3.9	14	3	0.9	2.7	0.5	2.3	0.5	1.4	0.2	1.4		12.5	286
15	5 A	400MZ108	1	1295	35	35	7	15	1440	95	367	<1	3	2.5	16	3.1	17	9	4	< 0.5	0.5	65	25	46	5.3	17.5	2.9	0.9	2.8	0.4	2.1	0.4	1.2	0.1	1.3		10.5	359
16	3 _ A	A00MZ137	<1	60	5	85	20	10	212	26.4	331	<1	1	0.5	11	2.3	20	3	2	1.5	<0.5	230	26	62	7.8	30	5.8	1.7	5.2	0.7	3.5	0.7	2	0.3	1.7	0.2	17	108.5
17	/ A	A00MZ139	<1	20	<5	95	18.5	5	267	37.4	304	1	1	0.5	4	0.8	19	6	6	< 0.5	<0.5	185	16	38	5.1	22	4.9	1.7	5.4	0.9	5,4	1,1	3.2	0.5	3.1	0.5	29	261
18	3 A	A00TM125	<1	5	<5	55	7.5	5	583	51	474	<1	1	1.5	5	0.9	14	5	4	7	<0.5	65	15	31	3.8	15	3.2	1.1	3,3	0.5	2.6	0.5	1.5	0.2	1.5	0.2	14	204

Appendix-9 Chemical analysis results for pan concentrated samples (only Phase II survey).

No.	Sample No.	Pt (g/t)	Pd (g/t)	Au (ppb)	Sb (ppm)	As (ppm)	Ba (ppm)	Br (ppm)	Ce (ppm)	Cr (ppm)	Co (ppm)	La (ppm)
1	A00PNK101	< 0.14	< 0.14	<5	<1	3	240	<1	29	170	56	21
2	A00PNK102	< 0.35	< 0.35	18	<1	7	230	11	47	290	39	22
3	A00PNK103	< 0.35	< 0.35	<5	<1	5	230	1	54	190	37	28
4	A00PNK104	< 0.14	< 0.14	<5	<1	7	390	<1	65	110	25	29
5	A00PNK105	< 0.35	< 0.35	<5	<1	5	140	1	31	210	50	23
6	A00PNK106	< 0.07	< 0.07	<5	<1	4	330	<1	35	80	28	19
7	A00PNK107	not/ss	not/ss	<5	<1	3	280	2	36	210	24	25
8	A00PNK108	< 0.21	< 0.21	<5	<1	5	260	<1	85	93	28	44
9	A00PNK109	< 0.35	< 0.35	<5	<1	9	360	<1	110	180	31_	59
10	A00PNK110	< 0.35	< 0.35	<5	<1	3	270	1	18	170	36	13
11	A00PNK111	< 0.35	< 0.35	<5	<1	2	590	1	53	140	11	28
12	A00PNK112	< 0.35	< 0.35	<5	<1	4	360	<1	73	200	27	41

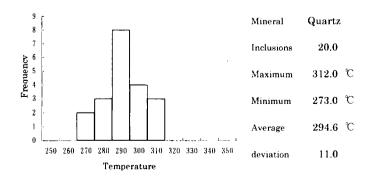
No.	Sample No.	Mo (ppm)	Sc (ppm)	Ag (ppm)	Ta (ppm)	Th (ppm)	W (ppm)	U (ppm)	Cu (%)	Pb (%)	Zn (%)
1	A00PNK101	<2	47	<5	<1	4	<2	1	< 0.01	< 0.01	<0.01
2	A00PNK102	<2	31	<5	<1	5	<2	1	< 0.01	<0.01	<0.01
3	A00PNK103	<2	36	<5	3	6	<2	2	< 0.01	<0.01	0.01
4	A00PNK104	<2	19	<5	1	8	<2	2	<0.01	<0.01	<0.01
5	A00PNK105	<2	44	<5	4	4	<2	2	<0.01	<0.01	0.01
6	A00PNK106	<2	25	<5	2	4	<2	1	<0.01	< 0.01	<0.01
7	A00PNK107	<2	20	<5	4	5	<2	2	< 0.01	<0.01	<0.01
8	A00PNK108	3	21	<5	4	7	<2	4	<0.01	0.01	0.01
9	A00PNK109	3	22	<5	3	14	7	3	< 0.01	<0.01	0.01
10	A00PNK110	<2	31	<5	<1	4	<2	1	< 0.01	<0.01	<0.01
11	A00PNK111	<2	9	<5	1	11	<2	2	<0.01	<0.01	<0.01
12	A00PNK112	<2	19	<5	1	28	<2	7	<0.01	<0.01	<0.01


Appendix-10 Ore grade assey result.

No.	Sample	Mineralization	Au	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	Pb	Sr	Ti	Vi	Zn
-	A00NK019	gn-cp-py vein	(g/t)	(g/t)	(%)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)	(%)	(ppm)	(ppm)		(ppm)	(%)	(ppm)	(%)	(ppm)	(ppm)
2	A00HH002	qz-py-gn vein	$\frac{0.24}{1.71}$	118	0.9	100	<10	<20	0.25	880	30	<10	8080	5.55	0.4	0.05	670		0.15	<10	4.29		< 0.05	<10	148500
3		qz-py-cp-malachite-gn vein	·		0.45	<100	<10	20		10	30	<10	150	7.55	0.1	0.15	1720	<10	< 0.05	<10	0.7	20	<0.05	10	1900
1 4		massive pyrite-limonite	0.24	123	2.5	400	<10	<20	0.45	750	30	<10	15720	6.7	1.6	0.2	1840	<10	0.35	<10	5.91	90	<0.05	10	142000
		†	<0.03	11	0.05	<100	<10	40	0.35	<10	10	<10	1420	>30.0	<0.1	<0.05	80	<10	<0.05	<10	0.044	20	< 0.05	<10	1240
0		qz-cal-py-gn vein	152.9	91	1.1	<100	<10	<20	2.35	10	10	<10	1660	13.4	0.5	0.8	750	<10	<0.05	<10	2.18	50	0.05	40	3900
b		qz-cal-py-gn vein	5.49	14	1.8	<100	<10	<20	5.6	70	10	10	320	6.95	0.7	1.75	5200	<10	< 0.05	<10	1.15	80	0.05	40	9120
1_7	A00MZ019	barite·Fe oxides vein	0.03	31	1.05	7400	<10	<20	0.65	100	10	<10	220	8.55	0.4	0.05	36400	10	< 0.05	<10	2.01	2480	<0.05	750	7200
8	A00MZ020	barite-galena-Fe oxides vein	<0.03	912	<0.05	2100	<10	<20	< 0.05	30	<10	<10	700	0.2	<0.1	<0.05	1710	<10	< 0.05	<10	15.1	910	<0.05	1440	540
9	A00MZ021	qz-malachite veinlet	0.45	15	5	2000	<10	80	0.15	<10	<10	<10	9000	4.2	2.5	0.15	230	140	0.6		0.054	80	0.1	40	100
10	A00MZ028	qz-py-gn-bornite vein	0.18	321	0.9	200	<10	<20	< 0.05	90	<10	10		15.35		<0.05	360		<0.05	<10	9.92		<0.05	<10	24300
11	A00MZ030	gn-py-cp vein	0.09	74	1.35	400	<10	<20	0.15	1650	50	<10	7270	5.4	1.3	0.05	1360		<0.05	<10	15.4	80	<0.05		
12	A00MZ036	cp veinlets and cp diss. in andesite	< 0.03	13	8.4	500	<10	20	4.4	<10	50	50	36900	6.3	1.3	2.9	1070	<10	2		:			<10	263000
13	A00MZ037	malachite with brecciated andesite	< 0.03	22	8.6	100	<10	<20	9.95	<10	20	50	47200	6.95	0.2	1.25	1040	<10	<u>-</u> - -	i-	0.059	290	0.65	270	640
14	A00MZ041	qz·py·gn vein	0.12	3	0.9	300	<10	<20	24.2	30	<10	<10	310	1.55	0.1	0.15					0.021	620	0.7	330	120
15	A00MZ042	galena vein	3.09	17	0.85	300	<10	<20	0.05	930							25900		<0.05	 -	0.398		<0.05	40	6500
16		qz-cp-py-gn vein	4.11	6	1.25	200	<10	20	0.55		<10	<10	7390	2.65	0.1	0.3	1470		<0.05	<10	3.82		<0.05	20	199500
17		white and massive qz vein	2.94	5	0.4	200	<10	<20	0.05	<10 <10	<10 <10	<10 20	4070	3.9	0.4	0.2	750		<0.05	<10			0.05	30	1060
18		black and white banding qz vein	14.4	3	0.5	<100	<10	<20	0.05	<10	<10	20	30 40	0.05		<0.05 <0.05	40		<0.05		0.012		<0.05	<10	120
19		qz-cp-gn-malachite vein	0.54	18	1.75	<100	<10		<0.05	160	<10	<10	6330	0.03	0.1	0.05	20 70		<0.05 <0.05	<10			<0.05	<10	60
20	A00MZ068	gn-sp-py vein	0.93	14	0.65	<100	<10		< 0.05	1310	<10	<10	1150	3.65	<0.1	0.05	370		<0.05	<10 <10	$\frac{10.9}{3.56}$:	<0.05	10	12940
21		black qz vein	0.12	<1	3.3	100	<10	<20	0.35	<10	<10	10	100	0.85	2.6	0.05	80		<0.05		0.014	50	$\frac{<0.05}{0.2}$	<10 70	134000
22		black and white qz vein	0.12	<1	0.45	<100	<10	<20	0.05	<10	<10	10	<10	0.35		< 0.05	10		< 0.05	<10			<0.05	<10	280
23		gn-py-cp-green Cu vein	0.06	27	0.6	100	<10	<20	0.05	880	40	<10	3510	6.75	0.4	0.05	1000		<0.05	<10	6.3		<0.05	<10	130000
24 25	A00RM046	white chalcedonic qz vein	42.72	41	0.55	<100	<10	<20	0.05	<10	<10	20	10	0.05	0.1	<0.05	30		<0.05	<10			< 0.05	<10	300
26		Malachite	0.12	6	5.7	900	<10	60	0.05	<10	10	<10	132500	5.65	2.5	0.25	20	<10	0.05	<10	0.001	<10	0.05	40	<20
27		Pyrite malachite Malachite, chalcopyrite, pyrite	0.18 <0.03	4	0.3	<100	<10		<0.05	<10	10	10	3440	3.55		<0.05	70		<0.05	<10<	0.001	50	< 0.05	60	40
28	A00HH126	Malachite, chalcopyrite, pyrite Malachite, chalcopyrite	<0.03		8.55 7.15	100	<10 <10	<20 <20	4.6	<10	50	80	14250	7.4	0.7	3.45	1440	<10	2.25		0.003	330	0.7	290	180
29		Malachite, chalcopyrite	< 0.03		7.45	<100	<10		5.75 10.35	<10 <10	50 10	150 120	10720	3.35	0.5	1.6	740	<10	2.7		0.003	240	0.7	230	80
30		Malachite, chalcopyrite	<0.03	3	4.35	400	<10	<20		<10	150	<10	990	7.1 3.05	<0.1 2.1	0.25	870		<0.05		0.004	780	0.55	290	20
31	~	Malachite	<0.03	2	7.2	300	<10	<20	0.05	<10	10	<10	2100	1.5	2.1	1.1 0.2	1910 430	<10	<0.05 2		0.001	120	0.1	_90	100
32	A00MZ123	Galena dissemination	0.87	4	0.5	<100	<10		<0.05	<10	<10	10	80	0.55		<0.05	30		< 0.05	<10	0.001		<0.05 <0.05	10 <10	60
33		Galena-pyrite-limonite	0.42	6	1.1	<100	<10		< 0.05	10	60	<10	340	9.1		<0.05	10		<0.05	<10			<0.05	<10	20 <20
34		Massive limonite	<0.03	1	0.6	<100	<10	40	0.15	<10	60	<10		>30.0		<0.05	4540		<0.05	<10			<0.05	<10	560
35		Chalcocite, malachite	0.06	32	5.65	<100	<10	<20	7.2	<10	<10	40	43900	4.65	<0.1	0.05	780		<0.05	<10		690	0.3	240	<20
36	A00MZ134	Malachite	<0.03	4	8.3	500	<10	<20	0.3	<10	30	30	8720	3.25	2.1	1.5	1540	<10	2.85		0.004	140	0.35	140	$-\frac{1}{2}\frac{2}{2}$
$\frac{37}{38}$	AOOTM112	Chalcopyrite, malachite, azurite, pyri	14.04	524	3.65	100	<10	220	0.05	20	<10	<10	27500	0.85	1.7	0.1	40	340	0.05	<10		30	0.15	20	800
	A001M149 A00RM128	Barite, azurite, malachite	<0.03	45	0.15	11100	<10	20	0.05	30	<10	<10	17400	0.3		<0.05	20		<0.05	<10	0.604	770	<0.05	280	2140
		Wad	0.42 <0.03	1585	6.4	300 700	<10	80	6.45	<10	<10		254000	6.05	<0.1	0.45	530	<10	0.6	<10		1640	0.1	200	<20
_ 19]	.1001011102	11144	~0.03	4		700	<10	60	0.75	<10	40	<10	130	>30.0	0.2	0.3	54200	<10	0.15	<10	0.007	100	0.05	10	60

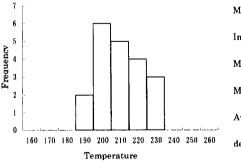
Appendix 11
Homogenization temperature and salinity of fluid inclusions of quartz samples (1/19)

Sample A00NK013


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%)
1	Quartz	37.5	17	tu	341	183.0	30.9
2	Quartz	12.5	15	ро	347	192.0	31.4
3	Quartz	10.0	15	po	296	234.0	33,5
4	Quartz	10.0	15	po	288	211.0	32.4
5	Quartz	17.5	13	po	306	243.0	34.1
6	Quartz	30.0	13	ро	352	225.0	32.9
7	Quartz	17.5	13	ро	279	195.0	31.4
8	Quartz	22.5	15	tu	337	201.0	31.9
9	Quartz	15.0	15	po	327	214.0	32.4
10	Quartz	7.5	13	ро	343	222.0	32.9
11	Quartz	7.5	13	po	313	225.0	32.9
12	Quartz	22.5	17	tu	325	194.0	31.4
13	Quartz	17.5	17	wg	344	199.0	31.4
14	Quartz	5.0	15	ро	335	228.0	32.9
15	Quartz	10.0	15	ро	341	204.0	31.9
16	Quartz	7.5	13	ро	327	221.0	32.9
17	Quartz	17.5	17	ро	338	235.0	33.5
18	Quartz	17.5	15	tu	343	195.0	31.4
19	Quartz	10.0	13	ро	303	223.0	32.9
20	Quartz	7.5	13	ро	295	201.0	31.9

Homogenization temperature and salinity of fluid inclusions of quartz samples (2/19)

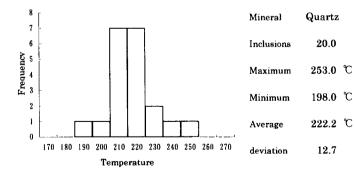
Sample A00NK038


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%
11	Quartz	7.5	15	wg	291	0.4	0.71
2	Quartz	5.0	15	po	305	0.4	0.71
3	Quartz	2.5	13	po	282		-
4	Quartz	< 2.5	12	po	273		<u>.</u>
5	Quartz	< 2.5	10	eg	275		
6	Quartz	10.0	17	po	311	-0.3	0.53
7	Quartz	5.0	15	po	302	-0.4	0.71
8	Quartz	5.0	17	sq	295	-0.2	0.35
9	Quartz	5.0	17	sq	297	-0.2	0.35
10	Quartz	5.0	15	po	303	-0.4	0.71
11	Quartz	2.5	12	po	292	-	-
12_	Quartz	< 2.5	10	po	296		
13	Quartz	< 2.5	10	eg	280		
14	Quartz	<2.5	10	eg	291	- <u></u>	
15	Quartz	7.5	15	po	303	0.2	0.35
16	Quartz	7.5	13	po	312	0.5	0.88
17	Quartz	5.0	12	po	292	0.4	0.71
18	Quartz	5.0	15	sq	310	-0.2	0.35
19	Quartz	< 2.5	12	eg	295		
20	Quartz	< 2.5	10	eg	287	- 1	
	<u> </u>						
						·	

Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (3/19)

Sample A00MZ012

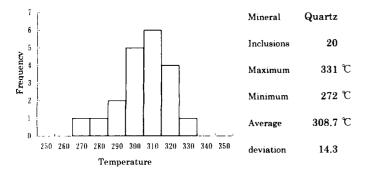
		Size	Volume ·	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%)
1	Quartz	25.0	15	irr	225	-2.1	3.55
2	Quartz	10.0	13	irr	193	-2.1	3.55
3	Quartz	7.5	13	irr	206	-1.9	3.23
4	Quartz	22.5	15	irr	219	·2.4	4.03
5	Quartz	20.0	17	ро	223	-2.1	3.55
6	Quartz	10.0	13	irr	208	-2.2	3.71
7	Quartz	15.0	13	irr	214	·2.1	3.55
8	Quartz	17.5	15	irr	231	-2.4	4.03
9	Quartz	5.0	13	po	223	-	•
10	Quartz	5.0	12	ро	214	•	•
11	Quartz	22.5	15	irr	204	2.2	3.71
12	Quartz	17.5	15	irr	197	-2.1	3.55
13	Quartz	17.5	13	irr	202	·2.1	3.55
14	Quartz	10.0	12	ро	201	·2.1	3.55
15	Quartz	7.5	15	ро	235	•	
16	Quartz	5.0	13	po	215	-	
17	Quartz	5.0	13	ро	223	-	•
18	Quartz	12.5	15	wg	232	-2.2	3.71
19	Quartz	5.0	13	ро	219	-	•
20	Quartz	5.0	12	po	205	•	•
	<u> </u>						



Mineral	Quartz
Inclusions	20
Maximum	235 ℃
Minimum	193 ℃
Average	214.5 ℃
deviation	11.8

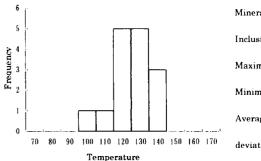
Homogenization temperature and salinity of fluid inclusions of quartz samples (4/19)

Sample A00MZ016


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%
1	Quartz	27.5	15	irr	223	·3.1	5.11
2	Quartz	10.0	10	po	215	-3.2	5.26
3	Quartz	17.5	10	po	213	-2.7	4.49
4	Quartz	7.5	10	po	216	-3.2	5.26
5	Quartz	7.5	12	po	227	-3.3	5.41
6	Quartz	20.0	13	po	233	-2.6	4.34
7	Quartz	25.0	20	po	253	-3.0	4.96
8	Quartz	12.5	12	irr	221	·2.2	3.71
9	Quartz	10.0	10	irr	208	-1.8	3.06
10	Quartz	7.5	10	po	220		
11	Quartz	7.5	17	po	245	•	
12	Quartz	17.5	13	irr	226	·2.2	3.71
13	Quartz	25.0	12	irr	228	-3.4	5.56
14	Quartz	10.0	10	tu	198	·2.5	4.18
15	Quartz	7.5	10	ро	213	-	-
16	Quartz	7.5	10	ро	212	-	
17	Quartz	10.0	12	ро	228	-2.8	4.65
18	Quartz	32.5	13	irr	215	·3.3	5.41
19	Quartz	17.5	15	po	237	-3.2	5.26
20	Quartz	12.5	13	po	213	-2.7	4.49

Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (5/19)

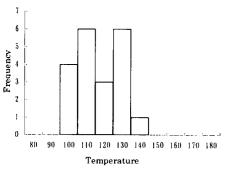
Sample A00MZ017


(mµ) 37.5 55.0 7.5 7.5 7.5 12.5 2.5 12.5 5.0	ratio (%) 15 13 15 13 17 17 13 13 13 13	po irr po po po po po po	(°C) 313 272 308 295 331 311 283 315 326 314	Temperature (°C) -3.0 -2.1 -0.3 -2.6 -2.6 -3.01.9	Wt (%) 4.96 3.55 5.26 4.34 4.34 4.96 . 3.23
37.5 55.0 7.5 7.5 7.5 12.5 2.5 12.5 5.0 5.0	15 13 15 13 13 13 17 17 17 13	irr po po po po po po po po	313 272 308 295 331 311 283 315 326	-3.0 -2.1 -0.3 -2.6 -2.6 -3.0 -1.9	4.96 3.55 5.26 4.34 4.34 4.96
55.0 7.5 7.5 7.5 12.5 2.5 12.5 5.0 5.0	13 15 13 13 17 17 17 13 13	irr po po po po po po po po	272 308 295 331 311 283 315 326	-0.3 -2.6 -2.6 -3.0 	3.55 5.26 4.34 4.34 4.96
7.5 7.5 7.5 12.5 2.5 12.5 5.0	15 13 13 17 17 17 13 13	po po po po po po	295 331 311 283 315 326	-0.3 -2.6 -2.6 -3.0 	4.34 4.34 4.96
7.5 7.5 12.5 2.5 12.5 5.0 5.0	13 17 17 17 13 13	po po po po po	331 311 283 315 326	-2.6 -3.0 - -1.9	4.34
12.5 2.5 12.5 5.0 5.0	17 17 13 13	po po po	311 283 315 326	-3.0 -1.9	4.96
2.5 12.5 5.0 5.0	17 13 13	po po	283 315 326	·1.9	• .
12.5 5.0 5.0	13 13	po po	315 326	-	3.23
5.0 5.0	13	po	326	-	3.23
5.0					•
	13	po	214		
15.0			014	l	•
15.0	15	irr	301	-2.0	3.39
12.5	17	sq	328	-2.5	4.18
7.5	15	sq	304	-2.8	4.65
5.0	13	po	313	·	
32.5	13	irr	320	3.1	5,11
20.0	13	irr	321	-1.8	3.06
12.5	13	po	295	2.5	4.18
10.0	12	po	304	2.7	4.49
7.5	12	po	307	-	
10.0	13	<u>po</u>	313	2.8	4.65
	32.5 20.0 12.5 10.0 7.5	32.5 13 20.0 13 12.5 13 10.0 12 7.5 12	32.5 13 irr 20.0 13 irr 12.5 13 po 10.0 12 po 7.5 12 po	32.5 13 irr 320 20.0 13 irr 321 12.5 13 po 295 10.0 12 po 304 7.5 12 po 307	32.5 13 irr 320 3.1 20.0 13 irr 321 1.8 12.5 13 po 295 2.5 10.0 12 po 304 -2.7 7.5 12 po 307 -

 $Homogenization \ temperatura \ and \ salinity \ of \ fluid \ inclusions \ of \ quartz \ samples \ (6/19)$

Sample A00MZ043

		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%
1	Quartz	12.5	10	irr	128	-0.9	1.57
2	Quartz	5.0	10	irr	109	·1.0	1.74
3	Quartz	< 2.5	7	po	127		
4	Quartz	< 2.5	7	eg_	134	-	
5	Quartz	< 2.5	10	eg	141	-	
6	Quartz	7.5	12	po	144	1.2	2.07
7	Quartz	5.0	10	po	136	•1.3	2.24
8	Quartz	5.0	10	irr	122	-0.9	1.57
9	Quartz	2.5	7	po	121	· .	
10	Quartz	< 2.5	7	po	133	·	
11	Quartz	5.0	10	irr	140	-0.8	1.40
12	Quartz	5.0	7	irr	133	1.4	2.41
13	Quartz	5.0	7	irr	136	0.9	1.57
14	Quartz	< 2.5	7	po	129		<u> </u>
15	Quartz	< 2.5	5	eg	117		
	<u> </u>		<u> </u>				
					1		

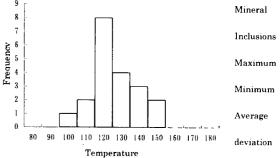


Mineral	Quartz
Inclusions	15.0
Maximum	144.0 ℃
Minimum	109.0 ℃
Average	130.0 ℃
deviation	9.3

Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (7/19)

Sample A00MZ046

		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	12.5	10	ро	106	1.6	2.74
2	Quartz	10.0	12	ро	112	-1.8	3.06
3	Quartz	5.0	10	ро	130	-	-
4	Quartz	5.0	7	ро	105	•	-
5	Quartz	7.5	12	ро	141	-1.2	2.07
_6	Quartz	10.0	12	wg	136	-0.7	1.23
7	Quartz	12.5	12	wg	132	·1.4	2.41
8	Quartz	5.0	10	ро	124		•
9	Quartz	5.0	10	ро	117		•
10	Quartz	7.5	12	ро	132	-1.5	2.57
11	Quartz	10.0	10	wg	135	-1.2	2.07
12	Quartz	7.5	7	ро	109	-1.2	2.07
13	Quartz	17.5	10	irr	115	·1.0	1.74
14	Quartz	12.5	12	irr	121	-0.8	1.40
15	Quartz	5.0	10	ро	114	•	•
16	Quartz	5.0	7	po	113	-	
17	Quartz	10.0	12	ро	138	1.3	2.24
18	Quartz	7.5	10	po	122	·1.7	2.90
19	Quartz	5.0	10	ро	112	-1.4	2.41
20	Quartz	5.0	7	po	107	•	•
						i	

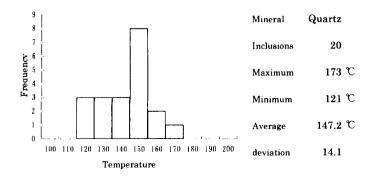

Mineral	Quartz
Inclusions	20
Maximum	141 ℃
Minimum	105 ℃
Average	121.1 ℃
deviation	11.4

Homogenization temperatura and salinity of fluid inclusions of quartz samples (8/19)

4/10

Sample A00MZ048

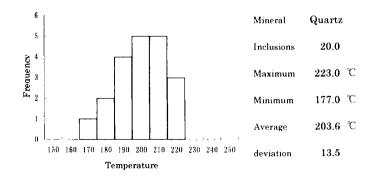
		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	10.0	12	po	135	-0.8	1.40
2	Quartz	5.0	10	po	127	1.1	1.91
3	Quartz	5.0	13	sq	145	·0.2	0.35
4	Quartz	2.5	10	po	119		
5	Quartz	< 2.5	10	po	123		
6	Quartz	< 2.5	7	eg	108		
7	Quartz	12.5	12	po	137	∙0.9	1.57
8	Quartz	7.5	12	po	152	0.8	1.40
9	Quartz	7.5	10	po	137	-0.6	1.05
10	Quartz	5.0	10	sq	142	0.8	1.40
11	Quartz	2.5	7	po	125	•	
12	Quartz	< 2.5	10	eg	153		
13	Quartz	< 2.5	7	eg	129		
14	Quartz	12.5	15	irr	117	·0.8	1.40
15	Quartz	10.0	10	sq	143	·1.0	1.74
16	Quartz	5.0	12	ро	125	0.8	1,40
17	Quartz	5.0	10	ро	121	-	
18	Quartz	5.0	10	po	123	.0.8	1.40
19	Quartz	< 2.5	10	po	135		
20	Quartz	< 2.5	7	eg	122		
	<u> </u>						
	<u> </u>						



Mineral	Quartz
Inclusions	20.0
Maximum	153.0 ℃
Minimum	108.0 ℃
Average	130,9 ℃
deviation	11.7

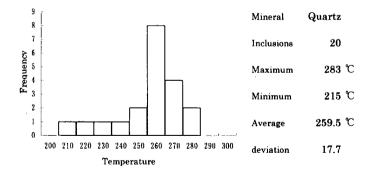
Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (9/19)

Sample A00MZ051


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(m µ)	(%)		(℃)	(C)	Wt (%)
_ 1	Quartz	12.5	12	irr	142	-0.4	0.71
2	Quartz	10.0	10	irr	121	·0.1	0.18
3	Quartz	5.0	13	po	155	∙0.6	1.05
4	Quartz	5.0	12	po	132		
5	Quartz	5.0	10	po	124	-	-
6	Quartz	7.5	12	irr	127	.0.6	1.05
7	Quartz	5.0	12	po	157	.0.5	0.88
8	Quartz	< 2.5	10	po	143	-	
9	Quartz	5.0	15	sq	167	.0.3	0.53
10	Quartz	5.0	13	ро	157	0.2	0.35
11	Quartz	5.0	12	po	138	0.2	0.35
12	Quartz	10.0	12	wg	155	·0.3	0.53
13	Quartz	7.5	13	po	152	-0.6	1.05
14	Quartz	5.0	12	po	145	-0.8	1.40
15	Quartz	5.0	12	ро	161	.0.3	0.53
16	Quartz	5.0	17	sq	173	-0.2	0.35
17	Quartz	5.0	12	ро	155	· - 1	
18	Quartz	2.5	10	ро	132		
19	Quartz	< 2.5	7	eg	150	- 1	-
20	Quartz	5.0	12	po	158	-0.3	0.53
	ļ — .						

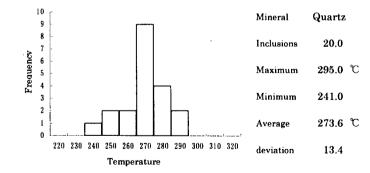
 $Homogenization \ temperatura \ and \ salinity \ of \ fluid \ inclusions \ of \ quartz \ samples \ (10/19)$

Sample A00MZ066


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%
1	Quartz	10.0	15	po	195	1.4	2.41
2	Quartz	7.5	15	po	203	1.6	2.74
3	Quartz	7.5	13	po	211	·1 <u>.3</u>	2.24
4	Quartz	5.0	12	sq	209	1.3	2.24
5	Quartz	5.0	13_	sq	223		
6	Quartz	10.0	15	irr	180	1.5	2.57
7	Quartz	5.0	15	po	203	-1.7	2.90
8	Quartz	2.5	10	po	191	-	
9	Quartz	< 2.5	10	po	194	-	•
10	Quartz	< 2.5	7	eg	177	-	
11	Quartz	12.5	13	po	221	•1.3	2.24
12	Quartz	10.0	12	po	215	1.2	2.07
13	Quartz	5.0	10	sq	201		
14	Quartz	5.0	13	sq	215	-	
15	Quartz	7.5	12	po	213	-1.5	2.57
16	Quartz	12.5	12	po	195	1.9	3,23
17	Quartz	10.0	13	sq	222	-1.4	2.41
18	Quartz	5.0	12	po	213	.	
19	Quartz	5.0	12	po	207	-	•
20	Quartz	7.5	10	po	183	-1.2	2.07
					1	[]	
			1		Ï	1 1	

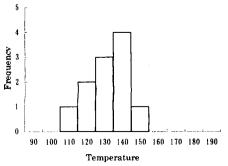
Appendix-11 Homogenization temperatura and salinity of fluid inclusions of quartz samples (11/19)

Sample A00TM039


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral	•	ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	12.5	17	ро	224	161.0	30.1
2	Quartz	12.5	15	ро	265	125.0	28.6
3	Quartz	10.0	20	po	275	166.0	30.1
4	Quartz	10.0	17	po	253	131.0	28.9
5	Quartz	10.0	20	po	277	165.0	30.1
6	Quartz	5.0	20	sq	283	172.0	30.5
7	Quartz	5.0	17	sq	275	177.0	30.5
8	Quartz	7.5	20	po	281	135.0	28.9
9	Quartz	7.5	17	po	263	125.0	28.6
10	Quartz	5.0	13	po	242	117.0	28.3
11	Quartz	12.5	13	irr	215	182.0	30.9
12	Quartz	10.0	17	po	261	131.0	28.9
13	Quartz	7.5	15	irr	237	177.0	30.5
14	Quartz	5.0	15	po	262	- [•
15	Quartz	5.0	13	ро	251	125.0	28.6
16	Quartz	10.0	15	po	262	163.0	30.1
17	Quartz	7.5	20	sq	266	152.0	29.7
18	Quartz	10.0	17	wg	263	164.0	30.1
19	Quartz	7.5	17	ро	261	162.0	30.1
20	Quartz	7.5	20	ро	273		•
			-		<u> </u>		
			-		 		

Homogenization temperatura and salinity of fluid inclusions of quartz samples (12/19)

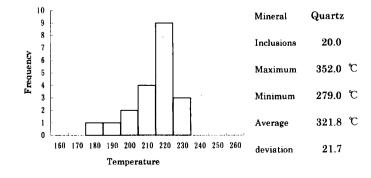
Sample A00TM042


		Size	Volume	Form	Temperature	Melting	NaC.
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (9
1	Quartz	27.5	13	irr	276	·2.5	4.18
2	Quartz	7.5	13	po	241	-1.2	2.07
3	Quartz	32.5	15	irr	279	-2.0	3.39
4	Quartz	20.0	13	ро	251	·3.4	5.56
5	Quartz	22.5	17	irr	270	·3.2	5.26
6	Quartz	17.5	17	irr	271	-2.2	3.71
7	Quartz	12.5	20	ро	288	-1.5	2.57
8	Quartz	10.0	17	ро	267	-1.7	2.90
9	Quartz	10.0	20	po	282	·2.0	3.39
10	Quartz	5.0	13	po	255	-	
11	Quartz	17.5	20	irr	289	-2.7	4.49
12	Quartz	10.0	17	po	274	-2.8	4.65
13	Quartz	7.5	20	po	295	-	
14	Quartz	7.5	17	po	275	•	•
15	Quartz	12.5	17	po	291	-3.0	4.96
16	Quartz	40.0	20	irr	283	-1.3	2.24
17	Quartz	22.5	17	irr	275	-1.5	2.57
18	Quartz	10.0	17	po	279	·2.2	3.71
19	Quartz	5.0	15	po	260	-	-
20	Quartz	12.5	17	po	271	-2.1	3.55
	.				<u> </u>	<u></u>	
	<u> </u>				ļ		

Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (13/19)

Sample A00TM059

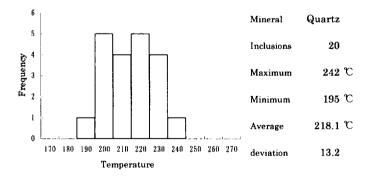
No.	Mineral	Size	Volume ratio	Form	Temperature	Temperature	NaCl
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	5.0	13	po	145	-0.8	1.40
2	Quartz	5.0	12	po	132	·0.9	1.57
3	Quartz	2.5	10	po	147	-	
4	Quartz	< 2.5	7	po	124	·	•
5	Quartz	< 2.5	10	eg	143	•	
6	Quartz	< 2.5	7	eg	121	-	-
7	Quartz	< 2.5	7	eg	119	-	•
8	Quartz	5.0	12	po	135	.0.4	0.71
9	Quartz	< 2.5	10	eg	151		•
10	Quartz	< 2.5	7	eg	144	-	•
11	Quartz	< 2.5	7	eg	132	-	•
. —	1						
	1					· · · · · · · · · · · · · · · · · · ·	
	1						
							
						ii	
	 					tt	
							
						ļ	
			ļ				
		- -					
					1		



Mineral	Quartz
Inclusions	11
Maximum	151 ℃
Minimum	119 ℃
Average	135.7 ℃
deviation	10.6

Homogenization temperature and salinity of fluid inclusions of quartz samples (14/19)

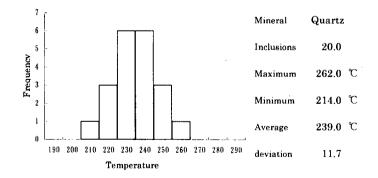
Sample A00MZ119


Mineral Quartz Quartz	(mµ)	ratio (%)			Temperature	
		(%)				
	7.5			(℃)	(℃)	Wt (%
Quartz	1.0	10	ро	227	·0.3	0.53
Quartz	5.0	12	ро	231	-0.8	1.40
Quartz	5.0	10	po	217	·1.3	2.24
Quartz	2.5	10	po	221	- !	
Quartz	2.5	7	po	189		
Quartz	5.0	10	po	222	•1.0	1.74
Quartz	10.0	12	wg	235	-1.5	2.57
Quartz	5.0	10	po	228	-0.1	0.18
Quartz	7.5	12	po	225	-1.7	2.90
Quartz	5.0	10	po	210	∙0.3	0.53
Quartz	2.5	10	eg	221	-	-
Quartz	2.5	7	po	194	- !	
Quartz	< 2.5	10	eg	207		
Quartz	< 2.5	10	eg	225		
Quartz	5.0	13	sq	238	∙0.6	1.05
Quartz	7.5	12	po	224	·0.5	0.88
Quartz	7.5	10	po	208	0.0	0.00
Quartz	5.0	10	po	212	·1.4	2.41
Quartz	2.5	10	po	226		
Quartz	< 2.5	7	po	215		
				ļ		
	Quartz Quartz	Quartz 2.5 Quartz 2.5 Quartz 10.0 Quartz 5.0 Quartz 5.0 Quartz 5.0 Quartz 2.5 Quartz 2.5 Quartz 2.5 Quartz 2.5 Quartz 5.0 Quartz 7.5 Quartz 7.5 Quartz 5.0 Quartz 5.0 Quartz 5.0 Quartz 5.0 Quartz 2.5	Quartz 2.5 10 Quartz 2.5 7 Quartz 5.0 10 Quartz 10.0 12 Quartz 5.0 10 Quartz 7.5 12 Quartz 5.0 10 Quartz 2.5 10 Quartz 2.5 7 Quartz 2.5 10 Quartz 2.5 10 Quartz 5.0 13 Quartz 7.5 12 Quartz 7.5 10 Quartz 5.0 10 Quartz 5.0 10 Quartz 2.5 10	Quartz 2.5 10 po Quartz 2.5 7 po Quartz 5.0 10 po Quartz 10.0 12 wg Quartz 5.0 10 po Quartz 7.5 12 po Quartz 5.0 10 po Quartz 2.5 10 eg Quartz 2.5 7 po Quartz < 2.5	Quartz 2.5 10 po 221 Quartz 2.5 7 po 189 Quartz 5.0 10 po 222 Quartz 10.0 12 wg 235 Quartz 5.0 10 po 228 Quartz 7.5 12 po 225 Quartz 5.0 10 po 210 Quartz 2.5 10 eg 221 Quartz 2.5 7 po 194 Quartz 2.5 10 eg 207 Quartz 2.5 10 eg 225 Quartz 5.0 13 sq 238 Quartz 7.5 12 po 224 Quartz 7.5 12 po 208 Quartz 5.0 10 po 208 Quartz 5.0 10 po 212 Quartz	Quartz 2.5 10 po 221 . Quartz 2.5 7 po 189 . Quartz 5.0 10 po 222 -1.0 Quartz 10.0 12 wg 235 -1.5 Quartz 5.0 10 po 228 -0.1 Quartz 7.5 12 po 225 -1.7 Quartz 5.0 10 po 210 -0.3 Quartz 2.5 10 eg 221 . Quartz 2.5 7 po 194 . Quartz 2.5 10 eg 207 . Quartz 2.5 10 eg 225 . Quartz 5.0 13 sq 238 -0.6 Quartz 7.5 12 po 224 -0.5 Quartz 7.5 10 po 208 0.0 <t< td=""></t<>

Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (15/19)

Sample A00MZ148

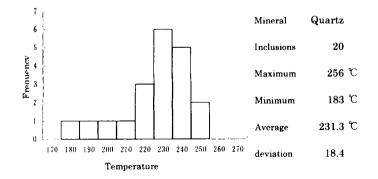
No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
		(mµ)	(%)		(℃)	(°C)	Wt (%)
1	Quartz	17.5	17	irr	235	∙0.7	1.23
2	Quartz	10.0	15	ро	223	-0.2	0.35
3	Quartz	12.5	15	sq	207	-0.4	0.71
4	Quartz	15.0	15	ро	236	-0.3	0.53
5	Quartz	25.0	17	ро	221	-0.3	0.53
6	Quartz	27.5	15	irr	202	·0.5	0.88
7	Quartz	25.0	13	irr	206	-0.8	1.40
8	Quartz	12.5	15	ро	217	·1.0	1.74
9	Quartz	10.0	20	tr	242	-0.4	0.71
10	Quartz	7.5	17	ро	213		•
11	Quartz	15.0	17	wg	235	-0.3	0.53
12	Quartz	20.0	13	irr	202	-0.7	1.23
13	Quartz	22.5	15	irr	210	-0.7	1.23
14	Quartz	15.0	17	ро	222	-0.8	1.40
15	Quartz	10.0	13	ро	195	-0.6	1.05
16	Quartz	10.0	15	irr	212	-0.7	1.23
17	Quartz	7.5	15	ро	233	•	•
18	Quartz	12.5	13	irr	203	·0.7	1.23
19	Quartz	10.0	12	ро	220	-0.7	1.23
20	Quartz	7.5	13	ро	227	- 1	_



Homogenization temperature and salinity of fluid inclusions of quartz samples (16/19)

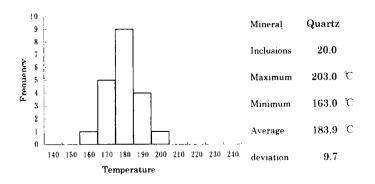
8/10

Sample A00TM103


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%
1	Quartz	15.0	17	po	246	⋅8.3	12.05
2	Quartz	12.5	12	po	223	11.2	15.17
3	Quartz	5.0	13	po	235	-	
4	Quartz	10.0	13	po	241	10.5	14.46
5	Quartz	12.5	15	irr	247	-8.6	12.39
6	Quartz	10.0	15	wg	255	·11.3	15.27
7	Quartz	5.0	17	ро	239	-	
8	Quartz	5.0	15	po	214	· · ·	
9	Quartz	17.5	15	irr	221	-10.6	14.57
10	Quartz	12.5	13	irr	232	-9.8	13.72
11	Quartz	12.5	13	ро	238	·10.9	14.87
12	Quartz	5.0	17	8q	252	-	
13	Quartz	5.0	13	ро	241	-	
14	Quartz	17.5	15	irr	250	·12.3	16.24
15	Quartz	15.0	13	ро	244	-11.6	15.57
16	Quartz	7.5	12	po	235	-	_
17	Quartz	7.5	17	sq	262	-8.2	11.93
18	Quartz	10.0	15	irr	232	-10.3	14.25
19	Quartz	5.0	12	po	227	- 1	
20	Quartz	12.5	13	irr	245	-10.5	14.46
						i	
			1		· · · · · · · · · · · · · · · · · · ·		

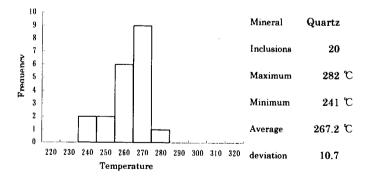
Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (17/19)

Sample A00TM109


No.	Mineral	Size	Volume	Form	Temperature		NaCl
NO.	Winerai	(mµ)	ratio (%)		(℃)	Temperature (°C)	Wt (%)
1	Quartz	17.5	15	po	183	-4.2	6.74
2	Quartz	32.5	17	po	256	·4.3	6.88
3	Quartz	30.0	15	irr	247	.5.1	8.00
4	Quartz	10.0	13	ро	218	4.6	7.31
5	Quartz	10.0	15	po	233	-	-
6	Quartz	5.0	12	ро	244	-	-
7	Quartz	27.5	15	irr	245	·4.0	6.45
8	Quartz	12.5	13	ро	225	-4.5	7.17
9	Quartz	7.5	12	ро	198	-	•
10	Quartz	10.0	13	wg	238	-4.6	7.31
11	Quartz	17.5	17	irr	220	-5.5	8.55
12	Quartz	12.5	15	po	235	•4.3	6.88
13	Quartz	7.5	13	ро	204	-	
14	Quartz	30.0	20	irr	233	-4.5	7.17
15	Quartz	15.0	17	irr	248	-4.2	6.74
16	Quartz	7.5	20	sq	255	-	-
17	Quartz	12.5	17	irr	229	-3.8	6.16
18	Quartz	10.0	13	ро	235	4.5	7.17
19	Quartz	7.5	15	ро	241	-4.0	6.45
20	Quartz	12.5	15	irr	238	-4.1	6.59

Homogenization temperatura and salinity of fluid inclusions of quartz samples (18/19)

Sample A00TM112


	Quartz		· - · · · · · ·	. Po.	.	- :	
20	Quartz	7.5	10	po	172		-
19	Quartz	10.0	12	wg	185	-4.2	6.74
18	Quartz	12.5	10	irr	163	-7.1	10.61
17	Quartz	7.5	10	po	185		
16	Quartz	10.0	10	ро	171	4.6	7.31
$\frac{17}{15}$	Quartz	15.0	13	po	193	6.8	10.24
14	Quartz	22.5	12	irr	188	-4.4	7.02
13	Quartz	20.0	10	irr	188	•4.3	6.88
12	Quartz	10.0	10	irr	181	5.8	8.95
11	Quartz	10.0	10	po	173	4.3	6.88
10	Quartz	7.5	12	po po	203		
9	Quartz	12.5	13	wg	195	-4.7	7.45
8	Quartz Quartz	25.0	12	irr	188	-6.6	9.98
7	Quartz	$\frac{17.5}{32.5}$	10	irr	172	-6.2	9.47
<u>-5</u>	Quartz	$\frac{22.5}{17.5}$	10	_ irr	177	4.2	6.74
4	Quartz	7.5	10	po	185	6.5	9.86
3	Quartz	15.0	10	<u>irr</u>	188	6.8	10.24
2	Quartz	10.0	12	po	195	4.5	7.17
. 1	Quartz	22.5	12	irr	186	6.4	9.73
		(mµ)	(%)		(°C)	(C)	Wt (%
No.	Mineral		ratio		1	Temperature	*** /0.
	1	Size	Volume	Form	Temperature	Melting	NaCl

Appendix-11 Homogenization temperatura and salinity of fluid inclusions of quartz samples (19/19)

Sample	A00TM119	

M.	1,	Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	25.0	17	irr	273	-3.6	5.86
22	Quartz	12.5	15	po	275	·3.4	5.56
3	Quartz	7.5	13	sq	265	-3.6	5.86
4	Quartz	25.0	15	irr	261	-4.8	7.59
5	Quartz	17.5	15	po	274	-3.6	5.86
6	Quartz	7.5	12	sq	273	-	•
7	Quartz	20.0	13	irr	243	-3.7	6.01
8	Quartz	17.5	13	ро	264	·4.0	6.45
9	Quartz	7.5	15	ро	278	-	-
10	Quartz	22.5	15	irr	258	-3.5	5. 71
_11	Quartz	12.5	13	ро	257	·3.6	5.86
12	Quartz	10.0	17	wg	282	-3.6	5.86
13	Quartz	10.0	13	ро	268	·3.8	6.16
14	Quartz	7.5	12	po	265	-	
15	Quartz	32.5	15	irr	272	-3. 2	5. 26
16	Quartz	17.5	13	irr	275	·3.6	5.86
17	Quartz	5.0	12	ро	241		•
18	Quartz	12.5	15	po	278	-3.8	6.16
19	Quartz	7.5	15	po	275	·4.0	6.45
20	Quartz	12.5	12	irr	266	·3.5	5.71
					-		

Legend of Form eg:egg shape; irr:irregular; po:polygon; sq:square; tr:triangle; tu:tube; wg:wedge-shape

Appendix-12 Measurement results of sulfur isotopic composition.

No.	Sample No.	District	Locality	Туре	δ ³⁴ S (‰)
1	A00MZ012	Andacollo	Mina Sofia, Level1	Pyrite in quartz vein	+3.5
2	A00MZ014	Andacollo	Mina Sofia	Pyrite in black mudstone	-14.9
3	A00MZ029	Mina Maria	Mina Maria	Galena vein	-0.3
4	A00MZ036	Condorcanqui	Condorcanqui	Chalcopyrite in andesite	-26.7
5	A00MZ042	Huemules	Huemules Sur	Galena vein	-1.8
6	A00MZ060	Arroyo Cascada	Arroyo Cascada	Pyrite in quartz vein	+6.6
7	A00MZ066	Ferrocarrilera	Ferrocarrilera	Pyrite in quartz vein	-0.4
8	A00MZ131	Condorcanqui	Condorcanqui	Chalcopyrite dissemination	+1.9
9	A00MZ135	Condorcanqui	Condorcanqui	Chalcopyrite in amygdale part	+4.1
10	A00MZ136	Condorcanqui	Condorcanqui	Andesite	+11.4
11	A00MZ137	Condorcanqui	North of Epuyen town	Granodiorite	+11.1

Appendix-13 Measurement results of oxygen isotopic composition.

\		D: 4 : 4	T1:4	Thema	T(°C)	T(°C)	T(°C)	NaCl(%)	δ18Ο (‰)	δ18Ο (‰)	δ18Ο (‰)
No.	Sample	District	Locality	Type	Max	Min	Average	Average	qz	qz-water	water
1	A00MZ012	Andacollo	Mina Sofia, Level1	Quartz-sulfides vein	235	193	214	3.6	11.2	10.8	0.4
2	A00MZ043	Huemules	Huemules Sur	Quartz-sulfides veinlet	144	109	130	1.8	9.2	17.3	-8.1
3	A00MZ046	Huemules	Huemules Sur	Quartz-sulfides veinlet	141	105	121	2.2	8.5	18.2	-9.7
4	A00MZ048	Joya del Sol	Brancote-Elena Sur	Qz vein	153	108	131	1.4	7.5	17.2	-9.7
5	A00MZ051	Joya del Sol	Brancote-Galadriel	Qz vein	173	121	147	0.7	4.1	15.6	-11.5
6	A00MZ066	Ferrocarrilera	Ferrocarrilera	Quartz-sulfides vein	223	177	204	2.5	10.3	11.4	-1.1
7	A00TM039	Cushamen	Cushamen	Qz vein	283	215	259	29.6	9.7	8.5	1.2
8	A00TM042	Cerro Gonzalo	Cerro Gonzalo	Qz vein	295	241	274	3.7	10.7	7.9	2.8
9	A00TM059	Estrella Gaucha	Estrella Gaucha	Qz vein	151	119	136	1.2	7.3	16.7	-9.4
10	A00MZ119	Arroyo Cascada	Arroyo Cascada	Qz vein	238	189	219	1.4	11.3	10.5	0.8
11	A00MZ148	Epuyen	Epuyen lake side	Qz vein	242	195	218	1	11.7	10.5	1.2

Appendix-14 K-Ar radiometric measurement results.

No.	sample No.	material	Isotopic Age(Ma)	Ar ⁴⁰ scc/g×10 ⁻⁵	%Ar ⁴⁰	%K
1	A00NK050	Whole rock	119.0±6.0			
				0.743	84.5	1.58
<u> </u>	 			0.768	86.2	1.58
2	A00TM009	Plagioclase	53.8±3.0			
				0.145	37.3	0.66
				0.135	36.3	0.66
3	A00TM020	Plagioclase	64.7±3.2			
				0.185	54.2	0.74
				0.194	47.3	0.74
4	A00MZ108	Whole Rock	77.0±3.9			
				0.611	93.3	2.01
				0.619	93.8	2.01
5	A00MZ130	Whole Rock	108±5			
				0.741	94.2	1.71
				0.743	93.5	1.72
6	A00MZ139	Whole Rock	28.1±1.4			
				0.110	71.4	0.98
				0.106	76.5	0.98
7	A00TM125	Hornblende	13.2±0.7			
				0.077	62.4	1.51
				0.079	65.1	1.52
8	A00TM151	Biotite	65.0±3.3			
				0.478	85.9	1.79
				0.446	89.1	1.80

by Teledyne environmental service

Appendix - 15

Basic knowledge on stable isotopes and rare earth elements

1. Sulfur isotope

Sulfur isotopic composition concerning ³⁴S/³²S is defined as following formula, and standard material is troilite of Canyon Diablo meteorite (CDT).

$$\delta^{34} S(\%) = \left(\frac{Rx}{Rs} - 1\right) \times 1000$$
 $R = {}^{34} S/{}^{32} S, x = sample, s = s \tan dard.$

It is known that the sulfur isotopic compositions of igneous rocks are relatively close to 0% of the standard and show a narrow variation range. Sasaki and Ishihara (1979) clarified that Japanese granite of the magnetite series range from 0 to +9%. On the other hand, it is known that the sulfur isotopic compositions in sedimentary rocks show a wide variation range due to the isotopic fractionation effect by bacteria. Based on the knowledge, origin of sulfur for mineralization can be interpreted by measured isotopic compositions. For example, sulfides of the Bingham porphyry Cu deposit in USA indicate -3.11% to +3.87%, and it means that sulfur originated from deep seated source within mantle (Field, 1966). Concerning the Shakanai kuroko deposit in Japan, sulfides indicate +5% to +8% coincident with magnetite series granitoids, and sulfates indicate +22% to +24% coincident with Tertiary evaporates (Sakai and Matsuhisa, 1996).

However, sulfur isotopic geochemistry is not simple in case that different sulfur species are coexisting, such as H₂S and SO₄². As shown in Fig. 1, isotopic composition is variable, and isotopic fractionation that is difference of isotopic compositions between different sulfur species is depending on the temperature (Rye and Ohomoto, 1974). Therefore, it must be understood that the measured isotopic composition of sulfur compound is not always same as the isotopic composition of ore forming fluid.

For example of the isotopic fractionation, a case study for the Nansatsu high sulfidation Au deposits in Japan (Hedenquist et al., 1994) is quoted as follows.

In these deposits, hypogene alunite samples have values ranging from +24.5% to +34%, and between differences hypogene alunite and sulfides are 28% to 25%. In this case, 200°C to 240℃ is estimated based the isotopic on fractionation shown in Fig. 1. Moreover, assuming the total Sulfur isotopic composition +5‰ from fresh magnetite series intrusives. the sulfide/sulfate ratio of the original fluid can calculated. X as the sulfur isotopic composition of sulfide and Y as that of

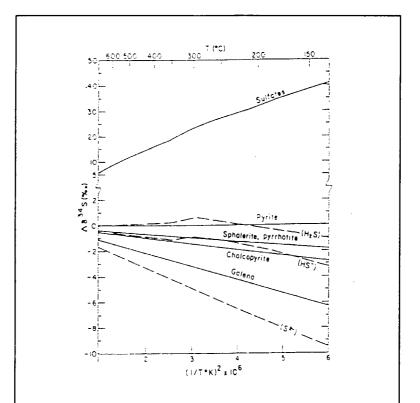


Fig. 1 Sulfur isotopic fractionation among sulfur species and hydrothermal minerals plotted with respect to pyrite. Dashed lines indicate species in solution. Solid lines indicate minerals (Rye and Ohomoto, 1974).

sulfate, the relation of "aY + (1 - a) X = 5%" is established. Then 0.25 is calculated for "a" from Y = +26% and X = -2%, and it means that sulfide/sulfate ration is $0.75 \div 0.25$ (Hedenquist et al., 1994).

2. Oxygen isotope

Oxygen isotopic composition concerning ¹⁸O/¹⁶O is defined as following formula, and standard material is Standard Mean Oceanic Water (SMOW).

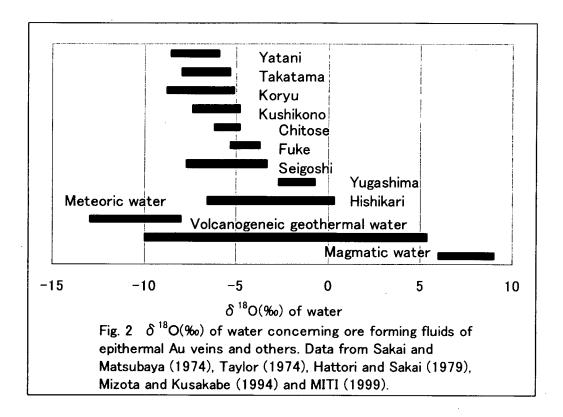
$$\delta^{18}O(\%) = \left(\frac{Rx}{Rs} - 1\right) \times 1000$$
 $R = {}^{18}O/{}^{16}O, x = sample, s = s \tan dard.$

Oxygen isotopic composition of hydrothermal water can be calculated based on the measured oxygen isotopic composition and homogenization temperature of fluid inclusions for the hydrothermal product, such as quartz and calcite, according to the following formulas. The isotopic fractionation factors for other minerals are reported by Kieffer (1982) and Field and Fifarek (1985) etc.

$$10^{3} \ln \alpha = \delta^{-18} O_{quartz} - \delta^{-18} O_{water} = \frac{3.34 \times 10^{6}}{T^{2}} - 3.31 \quad (Matsuhisa \ et \ al., 1979)$$

 $10^3 \ln \alpha = isotopic fractionation factor$

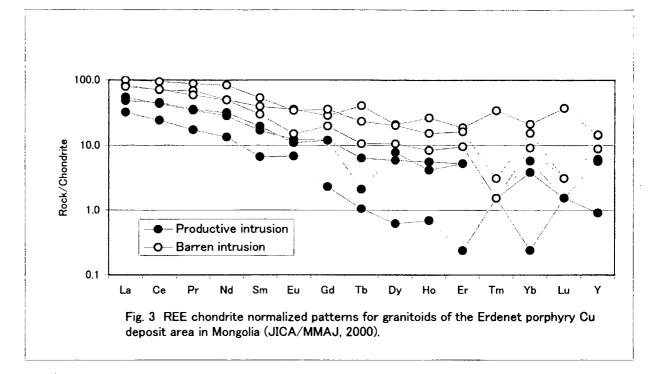
T = abosolute temperature, Range = 250 to 500 $^{\circ}$ C

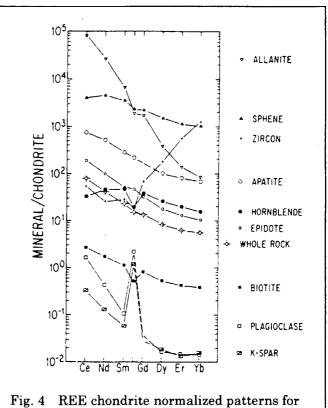

$$10^{3} \ln \alpha = \delta^{-18} O_{calcite} - \delta^{-18} O_{water} = \frac{2.78 \times 10^{6}}{T^{2}} - 2.89 \quad (Friedman \ and \ O' \ Neil, 1977)$$

 $10^3 \ln \alpha$ = isotopic fractionation factor

T = abosolute temperature, Range = 0 to 500 $^{\circ}$ C

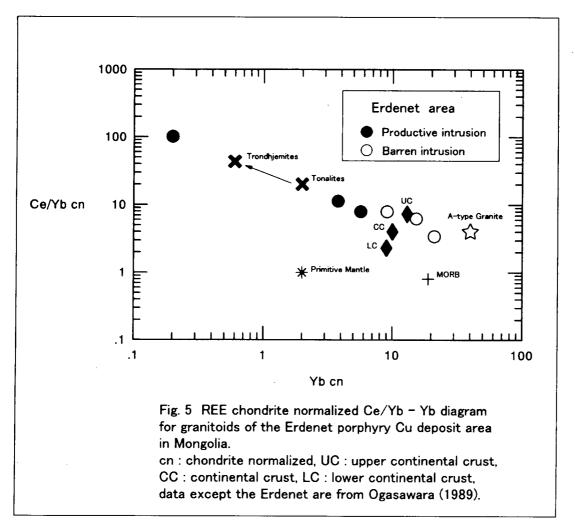
Nature of the hydrothermal water can be interpreted by the calculated oxygen isotopic composition of hydrothermal water, whether it is magmatic water origin, meteoric water origin, or seawater origin. Because it is known that the oxygen isotopic composition of magmatic water is +6% to +9% (Taylor, 1974), meteoric water is generally -4% to -14% with relation of δ D = 8δ 18 O + 10 (Craig, 1963), and oceanic water is generally 0%.


The oxygen isotopic compositions of hydrothermal water of epithermal Au veins in Japan, meteoric water, volcanogenic geothermal water and magmatic water are shown in Fig. 2 (MITI, 1999). It is understood that the volcanogenic geothermal water is formed by mixing of magmatic water and meteoric water, and hydrothermal water of epithermal Au veins are within a range of the volcanogenic geothermal water. Concerning the hydrothermal water of the Hishikari deposit that is famous for high grades of about 80g/t Au, shows the most wide range meaning the drastic mixing of magmatic water and meteoric water.


3. Rare earth elements (REE)

The spiderdiagram that is normalized pattern by the chondrite, primitive mantle, or MORB, are utilized to display the REE contents. REE are arranged on abscissa from left to right in increasing order of partition coefficient between ultramafic rock and basaltic magma.

Concerning granitiods, REE chondrite normalized pattern is generally utilized based on the recommended values for chondrite by Boynton (1984). Fig. 3 is a example of REE chondrite normalized patterns for granitoids of the Erdenet porphyry copper deposit area in Mongolia (JICA/MMAJ, 2000). In this case, La to Sm are called LREE (Light rare earth elements) and Gd to Lu are called HREE (Heavy rare earth elements). As shown in Fig. 3, the productive intrusions are depleted in REE than the barren intrusions, and significant depletions in HREE cause the productive intrusions steep right down profiles. Besides, the productive intrusions indicate the less negative or positive Eu anomalies. These characteristics are just concordant with the report of Lang and Titley (1998) concerning the REE chondrite normalized patterns to distinguish between productive and barren intrusions of the porphyry Cu deposits.


REE chondrite normalized patterns for minerals forming the granitoids are shown in Fig. 4. It is understood that REEis mainly contained in the minerals of allanite, sphene, zircon, apatite, hornblend and epidote, while plagioclase and K-feldspar HREE intensively and contain Eu selectively. Therefore, it is interpreted that early stage undifferentiated intrusion is enriched with REE because of the abundance of minerals

minerals forming the granitoids
(Gromet and Silver, 1983).

rich in REE, while late stage differentiated intrusion is depleted with REE. Especially, if the differentiated intrusion is feldspathic, it may show intensive depletion of HREE and positive anomaly of Eu, same as the patterns of productive intrusions in the Erdenet area (Fig. 3).

Characteristics of the productive intrusions are simply displayed in chondrite normalized Ce/Yb vs Yb diagram, as Fig. 5 for case of the Erdenet area, because Ce/Yb cn (cn: chondrite normalized) represents the right down inclination of REE pattern in Fig. 3, and Yb cn represents the concentration of HREE. In Fig. 5, values of primitive mantle, MORB, continental crusts, A-type granite and tonalite – trondhjemite trend are also plotted with data of the Erdenet area. The productive intrusions are concordant with the differentiation of the tonalite – trondhjemite trend, and the barren intrusions are concordant with the undifferentiated continental crusts.

Meanwhile, Rb · Nb+Y diagram was developed by Pearce et al. (1984) for the tectonic setting discrimination (Fig. 6). Christiansen and Keith (1996) plotted the compositions of selected igneous rocks that are related to mineralization on diagram of Pearce (1984), after change of the field names to emphasize the granitoid types (Fig. 7A), and effect of various processes and source compositions are also shown on the diagram (Fig. 7B). Therefore, potentiality of mineralization can be implied by the plots of compositions on Rb – Nb+Y diagram.

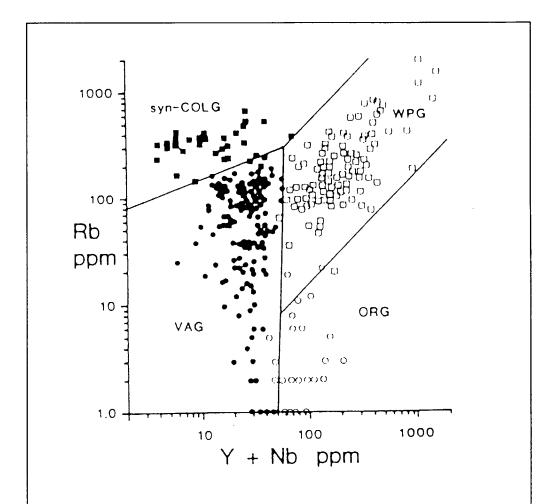


Fig. 6 Rb·(Y+Nb) discrimination diagram for syn-collision (syn-COL), volcanoc arc (VA), within plate (WP) and anomalous ocean ridge (OR) granites. (Pearce et al., 1984)

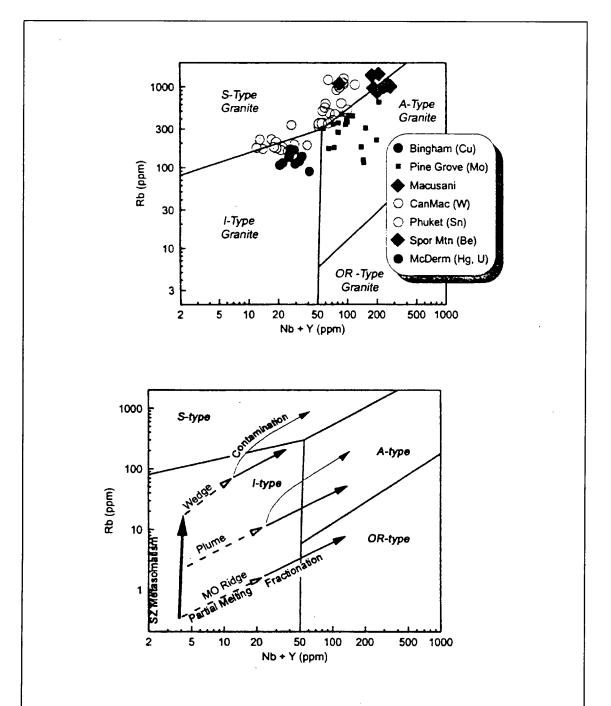


Fig. 7 (A) Upper: compositions of selected igneous rock suites that are related to mineralization plotted on Pearce et al. (1984) tectonic discrimination diagram. The field names have been changed to emphasize compositional, rather than, tectonic characteristics. (B) Lower: the effect processes and source compositions on trace element trends and positions on this diagram.

(Christiansen and Keith, 1996)