Appendix $-1 \sim 14$

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
1	Argentina Mining Sector Review 1993	English		1993	World Bank	Argentina	Mining activities report
	Directory of Mining Investment Opportunities in the Argentina Republic	English		1993	Mining Secretary, Ministry of Economy and Public Services	Argentina	Deposits in each province, Geological maps, Climate, Topographical sections
	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish		1994	Secretaria de Mineria de la Nacion	Argentina	Location map of deposits in Chubut, Santa Cruz, Tierra del Fuego
4	Encuentro Intermacional de Mineria, ACTAS	Spanish		1994	Secretaria de Mineria de la Nacion	Argentina	Technical papers
5	Annual Reort 1995, Eldorado Gold Corpration	English		1995	Erdrado Gold Corporation	Argentina	Andes project in Catamarca
6	Environment for mining development in Argentina	Japanese		1995	MERIC, MMAJ	Argentina	Country report
7	Geologia y Matalogenesis del Orogeno Andino Central	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Note on geological map of 32°to 40°Central Andean area (1/400,000).
8	Geologia y Metalogenesis del Orogeno Andino Cenral, Republica Argentino	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Note on geological map of 32°to 40°Central Andean area (1/400,000).
9	Geologia y Metalogenesis del Orogeno Andino Cenral, Republica Argentino	Spanish	Mendez, V., Zanettini, J.C. and Zappettini, E.O.	1995	SEGEMAR	Argentina	Geological map of 32°to 40°Central Andean area (1/400,000).
10	Argentina Mining '96, A New Frontier Opportunity	English		1996	Engineering & Mining Journal, Latinomineria	Argentina	Investment promotion
11	Argentina's Mining Sector 1997	English		1997	Ministry of Economy and Public Works and Services	Argentina .	Mining ativities
12	Estadistica de la Produccion Minera de la Republica Argentina	Spanish		1997	Subsecretaria de Mineria	Argentina	Mining production statistics
13	Estadistica Minera de la Republica Argentina, 1994-1996	Spanish		1997	Direccion de Evaluacion Minera	Argentina	Mining statistics
14	Sector Minero Argentina 1977	Spanish		1997	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Mining activities
15	Argentina's Mining Sector	Spanish/E nglish		1998	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Outline of mining activities.

No.	Title	Language	Author	Year	Organization	Category	Comments
16	Argentina's Mining Sector 1998	Spanish		1998	Ministrerio de Economia y Obras y Servicios Publicos	Argentina	Mining activities
17	Mineria Argentina, La Calidad como Filosofia	Spanish		1998	Subsecretaria de Mineria	Argentina	Mning policy
18	Mining Right Information (La Rioja, Mendoza, San Juan)	English	Lavandario, E.	1998	SEGEMAR	Argentina	Letter, Mining Right Information
19	X Congreso Latinoamericano de geologia, VI Congreso Nacionalde Geologia Ecomica	Spanish		1998	Subsecretaria de Mineria de la Nacion, Sevicio Geologico Minero Argentina, Asociacion Argentina de Geologos Economistas	Argentina	Proceeding of the geological conference
20	Compendio 1999/2000 de las Industrias de Base Mineral y de la Mineria Argentina	Spanish		1999	Panorama Minero	Argentina	Mining magazine for mining activities
21	Panorama Minero	Spanish		1999	Una Organizacion Periodistica al servicio de la Mineria	Argentina	Andacollo project etc.
22	Panorama Minero	Spanish		1999	Panorama Minero	Argentina	Mining magazine in Argentina
23	Geomapa, Republica Argentina	Spanish		?	?	Argentina	Map of Argentina 1/3,500,000
24	Legal and Tax Framework	Spanish		?	?	Argentina	Mining law and Revenue law
25	Marco Juridico Ambient para la Actividad Minera	Spanish		?	Unidad de Gestion Ambient Nacional	Argentina	Environmental law
26	Rutas de la Argentina	Spanish		?	Automapa	Argentina	Road maps
27	Indexof 1:250,000 topography maps	Spanish				Argentina	Index map of 1/250,000
28	Caracteristicas y Edad del Plutonismo en los Alrededores del Lago Puelo, Provincia del Chubut	Spanish	Lizuain, A.	1981	Servicio Geologico Nacional	Chubut	Age of plutonic rocks of Cordillera Patagonia.
29	Investigaciones Detalladas del Cateo Huemules, Informe Final: Parte I	Spanish		1983	United Nations Revolving Fund for Natural Resources Exploration	Chubut	Final report of UNRF project (1977-1982)
30	Mineralizacion asociada a diques terciarios de Dacita· Andesita·Basalto en la Cordillera Patagonica Septentrional y Central, Provincias de Rio Negro y Chubut	Spanish	Genini, A.D., Grizinik, M. and Pezzuchi, H.D.	1989	Dir. Nac. Min. y Geol. Centro Explor. Patag. Sur y Dept. Geologia · Univ. Nac. de la Patagonia San Juan Basco	Chubut	Mineralization model.

Appendix 1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
31	Mapa Geologico de la Provincia del Chubut	Spanish		1995	Direccion Nacional del Servicio geologico	Chubut	Provincial geological map
	Mapa Geologico Simplificado de la Cordillera de la Provincia del Chubut	Spanish	Marquez, M.J.	1999	Servicio Nacional Minero Geologia	Chubut	Outline geology of cordillera area of Chubut province.
33	Properties map of Chubut Province (4 pc.)	Spanish		1999	Com. Rivadavia, SEGEMAR	Chubut	Properties map of Chubut Province.
34	Mapa de ubicacion de UNRF project	Spanish		?	?	Chubut	Location maps of Gaste. Esquel·Corcovado. Lagos Fontana·La Plata areas
35	Provincia Chubut, Geochemica de Rocas/Sedimentos/Suelo	Spanish		?	?	Chubut	Geochemical survey in Chubut province
36	Indexof 1:100,000 topography maps, Provincia del Chubut	Spanish				Chubut	Index map of 1/100,000, Chubut.
37	Metalogenesis de la region Apeleg Alto Rio Sebguerr, Chubut	Spanish	Lanfranchini, M.E., Etcheverry, R.O. and Schlamuk, I.B.	1999	XIV Congreso Geologico Argentino	Chubut (Apeleg)	Aloteration and mineralization in Apeleg-Alt Rio Senguerr district
38	Informe expeditivo, proyect Arroyo Cascada	Spanish	Genini, A. and Zubia, M.	1989	SEGEMAR	Chubut (Arroyo Cascada)	Mineral exploration report, Au mineralization
39	Estudio de las Alteraciones en el Cerro Coihue. Provincia del Chubut, Republica Argentina	Spanish	Genini, A. and Nillni, A.	1994	Universidad nacional de la Patagonia San Juan Bosco	Chubut (Cerro Coihue)	Investigation on alteration of Cerro Coihue deposits
40	Informe Preliminar Proyect 04 HA. Epuyen. Area No 8. Cerro Coihue	Spanish	Genini, A. and Grizinic, M.	1999	Delegacion Regional Patagonia, SEGEMAR	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits, vein type, pyritization with Cu-Mo mineralization
41	Geologia y Mineralizacion del Sector Suroriental del Cerro Coihue, Provincia del Chubut	Spanish		?	Secretaria de Estado de Mineria y Universidad Nacional de la Patagonia San Juan Basco	Chubut (Cerro Coihue)	Outline of Cerro Coihue deposits.
42	Mapa Geologico Minero del Arroyo de los Alevinos · Lago Fontana, Provincia del Chubut.	Spanish	Marquez, M.J. y Parisi, C.	1995	SEGEMAR	Chubut (Cerro Colorado)	Geological map of the area of Cerro Colorado
43	El prospect aurifero Cerro Colorado, Chubut	Spanish	Perez, H.D. and Sureda, R.J.	1999	XIV Congreso Geologico Argentino	Chubut (Cerro Colorado)	Discovery of high sulfidation gold deposit
44	Estudio geologico en la Republica Argentina, Fase IV, Sector Cerro Cuche	Spanish	·	1981	JICA/MMAJ, Secretaria de Estado de Mineria	Chubut (Cerro Cuche)	Mineral exploration report, porphyry Cu type alteration
45	Informe geofisico, sector Cerro Gonzalo and Arroyo Luque, area reserva No. 29 Cordon Caquel	Spanish	Pancetti, N.	1984	SEGEMAR	Chubut (Cerro Gonzalo)	Mineral exploration report. IP and EM Turam methods

No.	Title	Language	Author	Year	Organization	Category	Comments
46	Estudio preliminar, sector No. 2 · Cerro Gonzalo, area No. 29 · Cordon Caquel, proyect 04 HC · Tevelin	Spanish	Marquez, M.J.	1985	SEGEMAR	Chubut (Cerro Gonzalo)	Mineral exploration report, geological works
47	Proyect de exploracion, sector 2 · Cerro Gonzalo, area Cordon Caquel, 04 HC · Trevelin Chubut	Spanish	Marquez, M.J.	1988	SEGEMAR		Mineral exploration report, drilling survey results
48	Proyect 04 HC Area Cordon caquel, Bosquejo Geologico entre Arroyp Luque y Arroyo el Rapid.	Spanish			SEGEMAR	Chubut (Cerro Gonzalo)	Geological map of the area of Arroyo Luque - Cerro Gonzalo
49	Estudio Geologico Minero del Yacimiento Cuprifero "Condorcanqui"	Spanish	Tabacchi, M.H.	1953		Chubut (Condorcanqui)	Outline of Condorcanqui deposit, Low Cu grades.
50	Reconocimient Geologico Area Epuyen, Prov. Del Chubut	Spanish	Genini, A.	1976	S.N.M., P.P.C.	Chubut (Condorcanqui)	Outline of Condorcanqui deposits, 4,400t reserves by FM's drillings.
51	Mineralizacion de Cobre Asociada al Plutonismo Terciario en la Zona de la Mina Condorcanqui, Provincia de Chubut	Spanish	Silva, A., Beatriz, C., Eva, D. and Norra, P.	1979	Secretaria de Estada de Minelia, Ministerio de Economia	Chubut (Condorcanqui)	Geochemical survey for Condorcanqui deposit area.
52	Geologia de la Cordillera Patagonia entre las localizades de Lago Puelo y Leleque, Provincia del Chubut	Spanish	Lizuain, A.	1983	Universidad de Buenos Aires	Chubut (Condorcanqui, Epuyen)	Geological research report
53	Geologia y Area de Alteracion en el Cerro Cororado y Alrededores. Chubut Noroccidental	Spanish	Sepulveda, E.G. and Viera, R.M.	1980	Asociacion Geologica Argentina, Revista XXXV (2) 195- 202	Chubut (Esquel NW)	Technical paper, alteration with possibility of porphyry copper deposit
54	Informe Preliminar sobre la Prospeccion Reginal del Cordon de Esquel, Proyect 04 HB Esquel	Spanish	Herrero, J.C.	1982	Servicio Nacional Minero Geologia	Chubut (Esquel)	Field survay report, inc. 1/100,000 geological map
55	Informe Proyect Cordon Situacion, Centro de Exploracion Patagonia Sur		Marquez, M., Parisi, C. and Butron, F.	1987	Direccion Nacional de Mineria y Geologia, Secretaria de Mineria	Chubut (Esquel)	Field survay report, inc. 1/2,000 route map
56	Informe Proyecto 04, HB, Esquel. Plan Patagonia Comaue Geologico Minero	Spanish		1997	Servicio Nacional Minero Geologico	Chubut (Esquel)	Field survey report with mineral occurrences, inc. 1/100,000 maps
57	Annual report and Financil Statements for the year ended 31 December 1998	English		1999	Brancote Holding PLC	Chubut (Hoya del Sol)	Annual report of 1998
58	Geologia ⁻ Reservas y Modelo Teorico de Estructuras Mineralizadas del Yacimiento de Oro Huemules	Spanish	Viera, R., Herrero, J.C. and Hughes, G.E.	1982	Direccion General de Minas y Geologia Provincia Chubut	Chubut (Huemules)	Hemules deposit, 0.02 to 815g/t Au, guide for galleries.
59	Investigaciones Detalladas del Cateo Humules, Informe Final: Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para la Exploracion de Recursos Naturales	Chubut (Huemules)	Final report of UNRF project (1977-1982) for Huemules deposit.
60	Mapas anexas de Informe Final Parte II	Spanish		1983	Fond Rotatorio de las Naciones Unidas para la Exploracion de Recursos Naturales	Chubut (Huemules)	Plans of final report of UNRF project (1977-1982) for Huemules deposit.

Appendix 1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
61	Proyect Huemules (Provincia de Chubut)	Spanish			Ministrio de Economia, Servicios y Obras Publicas/Subsecretaria de Promocion y Desarollo/Provincia del Chubut	Chubut (Huemules)	Abstract of UNRF project. Huemules deposit, 2,975,000t (10.3g/t Au, <1,000,000t)
62	El Prospecto Huemules, Cordon Oriental del Futalaufquen, Chubut, Argentina	Spanish	Viera, R.L.M. and Hughes, G.	1999	SEGMAR, Direccion de Minas y Geologia del Chubut	Chubut (Huemules)	Huemules deposit, 750,000t, 9g/t Au.
63	Mineralogia del yaimiento polimetarico Huemules, Cordillera Patagonia Septentrional, Chubut	Spanish	Schalamuk, I., Bario, R.E. and Vasconcellos, M.	1999	XIV Congreso Geologico Argentino	Chubut (Huemules)	Mineralogy, fluid inclusion and isotopic data
64	Informe Preliminar Proyecto 04 HA "Lago Epuyen"	Spanish	Beltramone, C.A.	1978	Plan Patagonia Comahue, Subseda los Alamos	Chubut (Lago Epuyen)	Five alteration zones, geochemical survey, Cumax 320ppm.
65	Proyecto Lago Fontana, Chubut	Spanish	Silvia Ametrano	1885	Secretaria de Mineria	Chubut (Lago Fontana)	Detailed survey report, 700,000t reserves, 1.63% Pb, 4.49% Zn, 0.61% Cu
66	No Title (Lago Fontana y otros)	Spanish		1951		Chubut (Lago Fontana)	Survey for mineral occurrences of Chubut and Santa Cruz.
67	Genesis y Geoquimica de la Mineralizacion de los Yacimientos "Los Manantiales y Lago Fontana", Provincia del Chubut	Spanish	Dominguez, E.A.	1981	Asociacion Gelogica Argentina, Revista, XXXVI (2): 123-142.	Chubut (Lago Fontana)	Study on the genesis of Los Manantiales deposit and Lago Fontana deposit
68	Informe Geologico Preliminar, Lago Fontana Sur	Spanish	Marquez, M.J. and Parisi, C.	1994		Chubut (Lago Fontana)	Survey for mineral occurrences, Arroyo Cangan is thought to be promising.
69	Informe de Avance Programa Cordillea Patagonica Area Arroyo Canogas	Spanish	Marquez, M.J. and Parisi, C.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Arroyo Canogas area.
70	Informe de Avance Programa Cordillea Patagonica Area Katterfeld	Spanish	Marquez, M.J.	1995	Delegacion Regional Patagonia, Direccion Nacional del Servicio Geologico	Chubut (Lago Fontana)	Geology and mineraliztion of Katterfeld area.
71	Yacimientos de Oro y Plata de la Patagonia, Republica Argentina, Principales Posibilidades de Inversion	Spanish		1997	SEGEMAR	Chubut (Lago Fontana)	La Ilision Propiedad(Zn,Pb,Ag,Au). Cerro Colorado propiedad (Au 7.95g/t)
72	Informe Preliminar de la Hoja 45a, Lago General Vinter	Spanish	Pesce, A.H.	1976	Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Field survey report, inc 1/200,000 geological map
73	Estratigrafia de la Cordillera Patagonica entre los de 43° 30′ y 44° de latitud sur y sus areas Mineralizadas	Spanish	Pesce, A.H.	1978	Servicio Nacional Minero Geologia	Chubut (Lago Grl. Vintter)	Geology, alteration and mineralization
74	Informe Preliminar Hoja Lago General Vintter (Hoja 45A)	Spanish	Pezzuchi, H.D.	1979		Chubut (Lago Grl. Vintter)	Geological description
75	Informe Proyecto 04, HB, Cerro Rinon y Cerro Steffen. Plan Patagonia Comaue Geologico Minero	Spanish	Parisi, C.	1981	Servicio Nacional Minero Geologia	Chubut (Lago Vintter)	Field survey report, inc. 1/50,000 maps

No.	Title	Language	Author	Year	Organization	Category	Comments
76	Informe Proyecto 04, HB, Esquel, parque Nacional Los Alerces	Spanish	Viera, R.	1976	Servicio Nacional Minero Geología	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 geological map
	Informe Geologico Preliminar, Proyecto 04 HB Esquel y 04 HC Trevelin	Spanish	Marquez, M.J.	1980	Servicio Nacional Minero Geologia	Chubut (Los Alerces)	Field survey report, inc. 1/150,000 alteration map
78	Estudio de los Yacimiento de Caolin del Oeste de la Provincia del Chubut, Minas Susana, Gato y Estrella Gaucha	Spanish	Maiza, P.J.	1981	VIII Congreso Geologico Argentino, San Luis, Atas IV: 471-484.	Chubut (Sakmata)	Acid hydrothermal alteration
79	Mapeo de Semidetalle y Muestreo de las Zonas de Alteracion del Cerro Bayo (Cordillera de Sakmata) Apeleg : Chubut	Spanish	Parisi, C. and Butron, F.	1993		Chubut (Sakmata)	Geochemical exploration by rock samples. No noticeable Au values.
80	Geologia y Mineralizacion de la Cordillera de Sakmata, Aldea Apeleg.	Spanish	Marquez, M. and Pezzuchi, H.	?	Direccion Nacional de Mineria y Geologia	Chubut (Sakmata)	Geology and mineralization of Sakmata (Apeleg), Qz veins with sulfides.
81	Informe sobre las Minas de Caolin, Alunita, y Minerales Metaliferos en la Promincia del Chubut	Spanish	Dr.Hayase, K.	1970	Universidad Nacional del Sur	Chubut (Sakmata, Lago Fontana)	Geological survey for the known deposits. No significant mineralization.
82	Estructura y Mineralizacion en la Cordillera Patagonica, Tesis Doctoral	Spanish	Haller, M.J.	1981	Universidad de Buenos Aires	Chubut (Trevelin∼ Lago Grl. Vintter)	Doctoral dissertation, Universidad de Buenos Aires
83	Informe Geologico Preliminar, Proyecto 04 HC Trevelin, Sector Oriental	Spanish	Marquez, M.J.	1979	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/100,000 and 1/50,000 maps
84	Informe Proyect 04, HC, Trevelin. Plan Patagonia Comaue Geologico Minero	Spanish	Marquez, M.	1981	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/50,000 alteration map
85	Informe sobre la Prospeccion Semidetallada del Cerro Riscoso, Proyecto 04, HB, Esquel.	Spanish	Herrero, J.C. and Parisi, C.	1981	Servicio Nacional Minero Geologia	Chubut (Trvelin)	Field survey report, inc. 1/11,500 and 1/1,000 maps
86	Tehnical Specifications, Airborne Geophysical Survey in Argentina, SEGEMAR PASMA Project 1997-1998	Spanish		1997	SEGEMAR	Geophysics	SEGEMAR's specification for Airbone geophysics
87	Simposio Geofisica Aerea y Geoquimica en la Prospeccion Geologica Minera	Spanish		1998	X Congreso Latinoamaricano de Geologia, VI Congreso Nacional de Geologia Economica	Geophysics	Proceedings of international geophysical conference.
88	Minerals Yearbook Volume III, 1995 International Review	English	-	1995	U.S. Department of the Interior/U.S. Geological Survey	Latin America	1995 Review, Mineral industries of Latin America and Canada
89	Mapa Metalogenetico de la Republica Arentina (GIS etc)	Spanish/E nglish		1998	SEGEMAR	Maps (CD-ROM)	Metallogenic maps of Argentina inc. GIS.
90	Mapa Geologico de la Provincia de Rio Negro, 1:750,000: Direccion Nacional del Servicio Geologico (1) y (2)	Spanish		1994	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/750,000)

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
91	Geologia y Metalogenesis del Orogeno Andino Central: 1:400,000: Direccion Nacional del Servicio Geologico (1) y (2)	Spanish		1995	SEGEMAR	Maps (Geol. Map)	Geological map (1/400,000)
92	Mapa Geologico de la Provincia del Chubut, 1:750,000 Direccion Nacional del Servicio Geologico	Spanish		1995	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/750,000)
93	Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen, 1:500,000: Direccion Nacional del Servicio Geologico	Spanish		1995	Direccion Nacional del Servicio geologico, Secretaria de Mineria.	Maps (Geol. Map)	Geological map (1/500,000)
94	Mapa Geologico de la Republica Argentina, 1:2,500,000: Secretaria de Industria, Comercio y Mineria (1) y (2)	Spanish		1997	SEGEMAR	Maps (Geol, Map)	Geological map (1/2,500,000)
	Mapa de Recursos Minerales del Area Fronteriza Argentino- Chilena entre los 34 y 56 S, 1:1,000,000: Servicio Geologico MineroAargetino (2 hojas)	Spanish		1998	SEGEMAR/SERNAGEOMIN	Maps (Geol, Map)	Geological map (1/1,000,000)
96	Mineral survey in the Andean Cordillera, Argentina.	English		1968	United Nations Development Programme	Neuquen	Mineral exploration report
97	Investigation of porphyry copper type mineralization in the Provinces of Mendoza, Neuquen and San Juan, Argentina.	English		1970	United Nations Development Programme	Neuquen	Mineral exploration report
98	Informe de evaluacion preliminar, Contrato de exploracion explotacion CORMINE Placer Dome, etapa1	Spanish		1993	Placer International Exploration Inc.	Neuquen	Compilation of several prospects in Neuquen
99	Mapa Geologico y de Recursos Minerales de la Provincia del Neuquen	Spanish		1995	Servicio Geologico Neuquino	Neuquen	Provincial geological map
100	Prospectos Metaliferos, Provincia del Neuquen	Spanish		1998	CORMIN S.E.P.	Neuquen	Information of CORMIN Properties of Butalon Norte, Cajon de los Chenques, Cerro Caicayen. La Voluntad, Cochico.
101	Airbone and Ground Instrumentation	English		?	?	Neuquen	Neuquen province, airbone mag. spec.
102	Areas de Reservas Minera, Provincia Neuquen	Spanish		?	CORMIN S.E.P.	Neuquen	Information of properties of Neuquen Province
103	Investing for Growth, Neuquen	English		?	Secretaria de Estado del COIPADE y Energia, Provincia del Neuquen	Neuquen	Investiment climate in Neuquen Province.
104	No.2 Campana Mahuida (Cu), No.3 Proyect disrito Aurifero Andacollo (Au)	Spanish	?	?		Neuquen	Outline of Campana Mahuida, Andacollo deposits etc.
105	Indexof 1:100,000 topography maps, Provincia del Neuquen	Spanish				Neuquen	Index map of 1/100,000, Neuquen.

No.	Title	Language	Author	Year	Organization	Category	Comments
106	Prospectos y Areas de Alteracion Hidrothermal de la Provincia del Neuquen	Spanish		1996	CORMIN S.E.P.	Neuquen	Information of 23 alteration zones in Neuquen Province
107	Mapa Official de la Provincia del Neuquen	Spanish		1997	Provincia del Neuquen	Neuquen	Information map of 1/500,000 utilizing TM image
108	Prospecto y Areas de Alteracion Hidrotermal, Entre 36°46′ · 38°12′ L.S. y 70°01′ · 71°30′ L.O.	Spanish			Provincia del Neuquen	Neuquen	Geological map of 1/200,000 with distribution of hydrothermal alteration zones
109	Proyecto Andacollo, Resumen de actividades de exploración periodo sep. 1996 a agosto 1997, Resultados y programa de trabajo	Spanish		1997	CAMECO	Neuquen (Andacollo)	Geological and geochemical map and alteration map
110	Sector Norte Distrito Minero Andacollo	Spanish/E nglish		1998	Gobierno de la Provincia del Neuquen	Neuquen (Andacollo)	Information of CORMIN property at North Andacollo.
111	Exploracion Geologica Proyecto Andacollo, vol.1	Spanish	Fuentes, J.S.	1998	CAMECO Argentina S.A.	Neuquen (Andacollo)	Conceptual geological model
112	Nuevo Contrato de Exploracion para Andacollo	Spanish		1999	Panorama Minero/No232-Enero de 1999	Neuquen (Andacollo)	New contract between CORMIN and Mineral Andacollo Gold S.A.
113	Explotacion del distrito aurifero Andacollo en la Provincia del Neuquen	Spanish		1999	Panorama Minero	Neuquen (Andacollo)	Exploitation at the Andacollo gold mine
114	Longitudinal Mina Sofia	Spanish		2000	Minera Andacollo Gold S.A.	Neuquen (Andacollo)	Section map of the Sofia Mine
115	Estudio Comparativo de los Distritos Mineros "Andacollo" y "Cerro Atravesada", Pcia. Del Neuquen, Argentina.	Spanish	Danieli, J.C. and Ronconi, N.	1979	Direccion General de Mineria de la Pcia. de Neuquen	Neuquen (Andacollo, Carreri)	Geological comparative study for Andacollo and Careri districts. Tertiary age mineralization is supposed for both districts.
116	Geoquimica de los intrusivos hallados entre los arroyos Butalon y Quebrada felix. Departamento Minas, Neuquen	Spanish	Case, A.M., Danieli, J.C. and Schlamuk, I.	1999	XIV Congreso Geologico Argentino	Neuquen (Butalon)	Petrological chemistry of intrusive rocks
117	Reserva Cajón de los Cheques	Spanish		1995	Placer Exploration Inc.	Neuquen (Cajón de los Cheques)	Mineral exploration report, geological and geochemical works
118	Geologia de la Comarca de Campana Mahuida (Provincia del Neuquen)	Spanish	Zanettini, J.C.M.	1979	Asociacion Gelogica Argentina, Revista, XXXVI (1): 61- 68.	Neuquen (Campana Mahuida)	Outline geology of Campana Mahuida deposit. Intrusions of Cretacaous to Ologocene.
119	Summary of 1997 Activities, Campana Mahuida Copper Property, Neuquen Province, Argentina	English		1997	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Summary of drilling, geophysics, hydrogeology and metallurgical test works
120	Campana Mahuida · Porfido Cuprifero Neuquen · Argentina Informe de Exploración Anexo II Logs de Sondeos a Diamantina (NU, CM, FM)	Spanish	Chabert, M.	1998	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Tables

Appendix 1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
	Campana Mahuida · Porfido Cuprifero Neuquen · Argentina Informe de Exploración Anexo III Plano de secciones, Secciones NW·SE (zonas de Mena), Secciones NW·SE (meds)	Spanish	Chabert, M.	1998	Grupo Minero Aconcagua, S.A.	Neuquen (Campana Mahuida)	Plans and sections
	Estudio Minero-Geologico del Yacimiento de Plomo "Carreri", Neuquen, Argentina.	Spanish	Aparicio, E.	1960		Neuquen (Carreri)	Description on the Carreri deposits, including ore grades and reserve (500t).
123	Fax [.] Area de Reserva La Atravesada, Neuquen, Argentina.	Spanish		1993	American Resource Corpration	Neuquen (Carreri)	Memoramdum on the information of La Atravesada area.
124	Area la Atravesada, Neuquen, Argentina.	Spanish		1993	Ingeoma S.A.	Neuquen (Carreri)	Geochimical sampling report in La Atravesada area.
	Prospecto "La Atravesada", Muestreo Geoquimico, Pcia. del Neuquen, Argentina.	Spanish	Horacio, G.	1993		Neuquen (Carreri)	Stream-sediments geochemical survey results with Cu anomalies of 50 to 100ppm.
126	Area de Reserva Carreri.	Spanish		1995	Provincia del Neuquen	Neuquen (Carreri)	Information on Careri properties
127	Area de Reserva Cochico Carreri Cachil, Neuquen, Argentina.	Spanish	Campbell, J.	1996	RTZ Mining and Exploration Limited	Neuquen (Carreri)	Geochemical survey reports. RTZ withdrew to ontract with CORMINE.
128	Area de Reserva Carreri, Neuquen, Argentina.	Spanish		1998	Direccion Pcial. de Mineria	Neuquen (Carreri)	Description for previous works in the Carreri district.
	La Formacion Chachil (Liasico) y sus Niveles Manganesiferos en el Area del Cerro Atravesada, Neuquen, Argentina.	Spanish	Leanza, H.A., De Brodtkorb, M.K., Brodtkorb, A. and Danieli, J.C.		Tercer Congreso Nacional de Geologia Economica	Neuquen (Carreri)	Description for Mn mineralization in the Cerro Atravesada district (Carreri Nireco).
130	An Appraisal of the Chañas Project of Cormine SEP Neuquen Province, Argentina	Spanish	Bussandri, D.J.	1998	Billiton Argentina	Neuquen (Chañas)	Mineral exploration report, geological and geochemical works
131	Proyecto El Alamo, Informe Impacto Ambientál	Spanish	Bussandri, D.J.	1996	GATRO Argentina Minera S.A.	Neuquen (El Alamo)	Environmental impact assessment report
132	La Voluntad porphyry copper · gold deposit geological report	English	Farnstrom, H., Figueroa, G. and Rochefort, G.	1993	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, geochemical data
133	La Voluntad cobre porfirico deposito de oro informe geologico	Spanish	Farnstrom, H., Figueroa, G. and Rochefort, G.	1993	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, geochemical data, tanslation
134	Interpretation report on induced polarization and resistivity surveys at La Voluntad Project on behalf of Placer International Exploration Inc.	English	Rideout, M.	1993	Quantec Geofísica Limitada	Neuquen (La Voluntad)	Mineral exploration report, IP and resistivity methods

No.	Title	Language	Author	Year	Organization	Category	Comments
135	Proyect La Voluntad, Provincia del Neuquen, Republica Argentina, Informe de la Campaña de sondajes	Spanish	Acosta, H., Van Treek, G. and Zapatta, F.	1994	Placer International Exploration Inc.	Neuquen (La Voluntad)	Mineral exploration report, drilling information
136	Proyect III, Geoquimica del yacimiento La Voluntad, Provincia de Neuquen Republica Argentina	Spanish	Ugalde, I. and Vivallo, W.	1994 ?	Universidad de Chile, Departamento de Geologia	Neuquen (La Voluntad)	Mineral exploration report, geological works
137	Reconocimiento geologico y muestreo orientativo en la zona norte de Pichi Neuquen	Spanish		1989	Corp. Minera del Neuquen	Neuquen (la zona norte de Pichi Neuquen)	Geological exploration report, geological and geochemical works
138	Reserva Quica	Spanish		1985	Placer Exploration Inc.	Neuquen (Palau Mahuida)	Mineral exploration report, geochemical data (Au·Cu)
139	Prospect Pino Andino	Spanish/E nglish		?	Gobierno de la Provincia del Neuquen	Neuquen (Pino Anino)	Information of CORMIN property at Pino Andino, drillings, weak Cu mineralization.
140	Informe Final, Pino Andino	Spanish	Gonzáles, R.M.	1996	Cominco Argentina	Neuquen (Pino Andino)	Mineral exploration report, geological, geochemical, geophysical and drilling works
141	Target Progress Report	English	Lienhard, W.D.	1996	Minera Andes	Neuquen (Pino Andino)	Mineral exploration report, geological and drilling works
142	Proyecto Tocuyo, Prospección geochimica Informe Final	Spanish	Lopez, S.R.	1996	G.A.M.S.A.	Neuquen (Tocuyo)	Geochemical exploration report
143	Reserva Varvarco Campos	Spanish		1995	Placer Exploration Inc.	Neuquen (Varvarco Campos)	Mineral exploration report
144	Report on the geothermal energy development in the north of Neuquen Province.	Japanese		1984	JICA	Neuquen (Varvarco)	Geothermal energy exploration report
145	Informe de avance, Gira al area de Butalo	Spanish	Sanchez, R.	1995	Minamerica, S.A.	Neuquen (Varvarco)	Geochemical exploration report (brief)
146	Programa Nacional de Cartas Geologicas de la Republica Argentina. Hoja Geologica 4169 I, Piedra del Aguila.	Spanish	Cucchi, R., Espejo, P. and Gonzalez, R.	1998	SEGEMAR	Neuquen y Rio Negro	Geological map of 1/250,000 and note
147	Actualizacion Metalogenica de la Region Patagonica al Sur del Paralelo de 42°00′ sur, Republica Argentina	Spanish	Giacosa, R.E., Marquez, M.M. and Pezzuchi, H.D.	1980	Tercer Congreso Nacional de Geologia Economica Tomo III : A1-20.	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
148	Report of mineral exploration in the Patagonia area (phase 2)	Japanese		1983	JICA/MMAJ	Patagonia	Technical cooperation project
149	Report of mineral exploration in the Patagonia area (consolidated)	Japanese		1984	JICA/MMAJ	Patagonia	Technical cooperation project

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
150	Report of mineral exploration in the Patagonia area (phase 3)	Japanese		1984	JICA/MMAJ	Patagonia	Technical cooperation project
151	Depositos y Manifestaciones Minerales de la Cordillera Patagonica y Fueguina, Republica Argentina	Spanish	Marquez, M.J., Parisi, C., Covaro, M.I.F. and Jones, M.E	1994	Actas del Encuentro Interncional de Mineria, I : 66·83	Patagonia	Mineral deposits of Chubut to Tierra del Fuego
152	Mapa de recursos minerales del area fronteriza Argentino- Chilena entre los 34 y 56 de latitud sur	Spanish		1998	SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,000)
153	Mineral resourves map of the frontier zone between Argentine and Chile, 34·56 south latitude	English		1998	SEGEMAR and SERNAGEOMIN	Patagonia	Note on geological map (1/1,000,001)
154	Region : Patagonia, Regiones mineras de la Republica Argentina	Spanish		1999	Subsecretaria de Mineria	Patagonia	Data of social, infrastructure and economics
155	Mapa de Recursos Minerales del Area Fronteriza Argentino Chilena entre los 34 y 56S.	Spanish	Zanettini, J.C.M., Marquez, M.J., Gonzalez, R.A., Vivallo, W.P., Gardeweg, M.C. and Tassara, A.H.	1999	SEGEMAR y SERNAGEOMIN	Patagonia	Geological maps of 1/1,000,000 and note for the area along the border
156	Property map of Chubut Province (4 pc.)	Spanish		1999		Properties (Chubut)	Property map
157	Padron Minero, Provincia de Chubut	Spanish		2000	Provincia de Chubut	Properties (Chubut)	Mining properties of Chubut (Auto Cad files) without list
158	Expedientes, Provincia del Nauquen.	Spanish		1999	CORMINE	Properties (CORMINE)	Informations on CORMINE's 11properties
159	Property map of Neuquen Province (A3 size)	Spanish		1998		Properties (Neuquen)	Property map
160	Padron Minero, Provincia de Neuquen	Spanish		2000	Provincia de Neuquen	Properties (Neuquen)	Mining properties of Neuquen (map, floppy)
161	Property map of Rio Negro Province (3 pc.)	Spanish		1999		Properties (Rio Negro)	Property map
162	Padron Minero, Provincia de Rio Negro	Spanish		2000	Provincia de Río Negro	Properties (Rio Negro)	Mining properties of Rio Negro (map, floppy, list)
163	Informe sobre la Prospeccion Geoquimica Realizada en Areas de la Cordillera de Río Negro	Spanish	Giacosa, R.E	1981	S.M.N. Plan Patagonia Comahue	Rio Negro	Stream sediments geochemical survey results.

No.	Title	Language	Author	Year	Organization	Category	Comments
164	Mapa Geologico de la Provincia de Rio Negro	Spanish		1994	Direccion Nacional del Servicio geologico	Rio Negro	Provincial geological map
165	Proyecto Rio Negro	Spanish		1996	SEGEMAR	Rio Negro	Project in Rio Negro province
166	Geologia y Recursos Minerales del Sector Rionegrino de las Hojas 4172-IV, San Carlos de Bariloche y 4172-II, San Martin de los Andes. Informacion Geologico Minera de la Provincia de Rio Negro	Spanish	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	1999	Gobierno de la Provincia Rio Negro y SEGEMAR	Rio Negro	Note on geological map (1/250,000) of San Carlos de Baliloche area.
	San Carlos de Bariloche, Carta Geologica de la Republica Argentina, Escala 1:250,000	Spanish	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R.	1999	Giacosa R., Heredia N., Cesari O., Zubia M. y Gonzalez R. (1999) : Gobierno de la Provincia Rio Negro y SEGEMAR	Rio Negro	Geological map (1/250,001) of San Carlos de Baliloche area.
168	Geologia y Recursos Minerales del sector rionegrino de las Hojas 4172·IV, San Carlos de Bariloche y 4172·II, San Martin de los Andes.	Spanish	Giacosa, R., Heredia, N.C., Ceari, O., Zubia, M. and Gonzalez, R.	1999	Direccion de Mineria de Rio Negro y SEGEMAR	Rio Negro	Geological maps of 1/250,000 and note
169	Geologia y Recursos Minerales de la Hoja 4169·III, Ingeniero Jarcobacci.	Spanish	Gonzalez, P., Coluccia, A., Franchi, M., Caba, R. and Dalponte, M.	1999	Direccion de Mineria de Rio Negro y SEGEMAR	Rio Negro	Geological map of 1/250,000 and note
170	Indexof 1:100,000 topography maps, Provincia de Rio Negro	Spanish	·			Rio Negro	Index map of 1/100,000, Rio Negro.
171	Informe Geologico Minero, Proyect 15 AL·Lago Mascardi, Mosaico 4172·IV·B2, Zona del Codon Tres Morros, Provncia de Rio Negro	Spanish	Giacosa, R.E.	1982	S.M.N.·Plan Patagonia Comahue, Saubsede los Alamos· Rio Negro	Rio Negro (Lago Mascardi)	Cordon Tres Morros district, 920ppm Cu, 2,800ppm Zn, stockwork, further survey is required.
172	Prospeccion y Exploracion Minera en el Cordon Tres Morros, Cerro Granito y Cerro del Medio, Cordillera Nord Patagonia, Provincia de Rio Negro, Proyect 15 AL·Lago Mascardi Mosaicos 4172·IV·B1 y B2,	Spanish	Giacosa, R.E.	1986	Dirccion Naional de Mineria y Geologia, Dept. Centro de Exploracion Patagonia Sur	Rio Negro (Lago Mascardi)	Max 88g/t Au in Cerro del medio o Alcorta district, hydrothermal mineralization.
173	Estudio Geologico de la Mina de Plomo, Zinc, Plata y Cobre "MARIA". Dept. Norquinco. Pcia de Rio Negro	Spanish	Greco, E.A. and Bornabo de Greco, E.	1973		Rio Negro (Maria)	Outline of Maria deposits, 11.75% Pb, 12.70% Zn, 1.8% Cu, 45.41g/t Ag.
	Estudio Geologico de la Mina de Plomo, Zinc, Plata y Cobre "MARIA". Dept. Norquinco. Pcia de Rio Negro	Spanish	Greco E.A. and Bernabo de Greco E.A.	1973		Rio Negro (Maria)	Outline of Maria deposits.
175	No.9 Mina Maria (Pb·Zn·Ag·Au·Cu), Provincia de Rio Negro	Spanish	?	?		Rio Negro (Maria)	Outline of Maria deposits, Vein 250m×1.6m, 12% Pb, 13% Zn, 45g/t Ag, 3g/t Au, 2% Cu.
176	Informe Geologico Minero Proyecto 15 AF-Bariloche, Mosaico 4172-IV-10a, Zona: Nacientes del Rio Foyel, Prov. De Rio Negro	Spanish	Giacosa, R.E.	1982	S.M.N. Plan Patagonia Comahue	Rio Negro (Rio Foyel)	Follow-up S.S. geochemistry for Rio Foyel, but no noticeable results.
177	Ubicacion de areas mineralizados a visitar y reconocer en conjunto con la mission tecnica japonesa, en las provincias de Rio Negro y Chubut, desde Norquinco hasta Lago Fontana La Plata.	Spanish	Viera, R.L.M.	2000	SEGEMAR · Delegacion Regional Patagonia Sur	Rio Negro and Chubut	List of known mineralization to visit in Rio Negro and Chubut Provinces

13/13

Appendix-1 Collected literatures for the existing data analysis, sorted in order of category and year.

No.	Title	Language	Author	Year	Organization	Category	Comments
178	Hoja Geologica 4969·II: Tres Cerros, Provincia de Santa Cruz	Spanish	Panza, J.L., Zubia, M., Genini, A. and Godeas, M.	1995	Direccion de Nacional del Servicio Geologico, Secretaria de Mineria da la Nacion	Santa Cruz	Note on geological map (1/250,000) inc. Cerro Vanguardia deposit.
179	Emprendimiento Minero Cerro Vanguardia	Spanish	Lasanta, M.	1998		Santa Cruz (Cerro Vanguardia)	Development of the Cerro Vanguardia mine

No.	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
1	A00NK001	37' 14' 51.3'	70' 39' 15.2'	Andacollo	Sur los Maitenez	Intrusive	Andesite	Silicification / sericite /	GC
2	A00NK002	36' 47' 17.3'	70' 36' 33.5'	Varvarco	Varvarco		Qz vein		GC
3	A00NK003	36' 47' 26.8'	70' 36' 34.6'	Varvarco	Varvarco		Silicified rock	Silicification //	GC
4	A00NK004	36' 47' 32.3'	70' 36' 34.6'	Varvarco	Varvarco	Intrusive	Granite	/ montmorillonite /	XR
5	A00NK005	36' 47' 04.4'	70' 37' 04.4'	Varvarco	Varvarco	Intrusive	Granite	/ kaolinite /	XR
6	A00NK006	36' 47' 16.6'	70' 36' 31.4'	Varvarco	Varvarco		Rhyolite	/ pyrophyllite /	XR
7	A00NK007	37' 26' 58.3'	70' 26' 10.1'	Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization //	GC
8	A00NK008	37' 26' 44.4'	70' 26' 03.8'	Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/ sericite /	
9	A00NK009	37' 26' 57.4'	70' 26' 16.6'	Cerro Caycayen	Cerro Caycayen	Gr. Cuyo	Slate	/ sericite /	
10	A00NK010	37' 27' 01.3'	70' 26' 19.7'	Cerro Caycayen	Cerro Caycayen		Iron ore	Limonitization / /	GC
11	A00NK011	37' 26' 55.7'	70' 26' 21.5'	Cerro Caycayen	Cerro Caycayen	Gr. Lotena?	Sandstone	/ sericite /	
12	A00NK012	38' 13' 07.5'	70' 32' 37.4'	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sandstone	Phyllic / sericite /	XR
13	A00NK013	38' 13' 07.5'	70' 32' 34.5'	Campana Mahuida	Campana Mahuida		Qz vein		FI
14	A00NK014	39' 13' 09.6'	70' 35' 53.1'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Biotite granite	Chloritization / / malachite	TS
15	A00NK015	39' 13' 15.1'	70' 35' 58.8'	La Voluntad	La Voluntad		Qz vein		GC
16	A00NK016	39' 03' 02.0'	70' 31' 49,5'	Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	GC
17	A00NK017	39' 02' 41.9'	70' 31' 58.1'	Nireco	ZA027	Campos basalticos de Zapala	Dacite	Silicification, Limonitization / montmorillonite /	GC
18	A00NK018	39' 02' 40.1'	70' 32' 11.2'	Nireco	ZA027	Campos basalticos de Zapala	Rhyolite	Phyllic / sericite /	TS
19	A00NK019	41' 40' 02.0'	71' 06' 16.8'	Mina Maria	Mina Maria		Ore	//gn, cp, py	PT,OA
20	A00NK020	41' 40' 02.0'	71' 06' 16.8'	Mina Maria	Mina Maria		Qz Vein		
21	A00NK021	42' 08' 43.5'	71' 19' 18.8'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Tourmalinization, Limonitization // py	GC
22	A00NK022	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite	Chloritization, Limonitization //	
23	A00NK023	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro		Tourmaline breccia		GC
24	A00NK024	42' 08' 00.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro		Sulfide vein in granite	Limonitization //	
25	. A00NK025	42' 08' 02.2'	71' 19' 10.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite		TS
26	A00NK026	42' 09'. 27.5'	70' 30' 28.5'	Cushamen	Cushamen	Intrusive	Pegmatite	/ kaolinite /	XR
27	A00NK027	.42'. 09'30.0'	70' 30' 25.1'	Cushamen	Cushamen		Qz vein		GC
28	A00NK028	42' 09' 31.2'	70' 30' 25.9'	Cushamen	Cushamen	<u> </u>	Qz vein		GC
29	A00NK029	42' 09' 31.2'	70' 30' 25.9'	Cushamen	Cushamen	Intrusive	Rhyolite	Silicification / /	GC
30	A00NK030	42' 09' 35.0'	70' 30' 31,3'	Cushamen.	Cushamen	Cushamen Fms.	Schist	Silicification //	XR
31	A00NK031	42' 09' 47.9'	70' 30' 24.4'	Cushamen	Cushamen	Intrusive	Rhyolite	montmorillonite?//	XR
32	A00NK032	42' 09' 43.2'	70' 30' 19.4'	Cushamen	Cushamen : 1 112 4144.	A STATE OF THE STA	Flaky qz	,	GC
33	A00NK033	42' 09' 44.4'	70' 30' 17.8'	Cushamen	Cushamen		Qz vein	Tourmalinization / /	XR,GC

Monthe		Sample No.	Latitude(S)	•	District	Locality Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
Marke								Granodiorite porphyry	K-feld.?//cp,py,bo	XR,GC
March Marc	1									
No.										
38 AMONNOS 47 57 660 17 12 512 1974 and 551 Princeto Anthonio Lago La Pitas Pr. Andrewise Princeto Anthonio Anthonio Anthonio Anthonio Princeto Anthonio Anthonio Anthonio Princeto Anthonio							Intrusive (Aleusco Fm.)			· · · ·
39 ADDINION 12 12 May 17 17 18 32 Joya del Sol Senzote Astonio Lago La Pata Fm. Andeside Montenorial minister May Montenorial minister Montenorial										
40 AONIKOSP 67 17 17 63 Joya 46 Sci 77 17 63 Joya 46 Sci 91 Apacte Antonio Lago La Plata F.m. Andeside (Plus) Chimother Chimot							Lago La Plata Fm.		/ montmorillonite /	· · · · · · · · · · · · · · · · · · ·
1										
24 AONNOVA 47 17 48 70 36 70 37 50 50 Gebres de Tecks Cabros de Tecks Cabr									Chloritization, Limonitization / / py	
48 AGONNO-14 47 50 20 77 58 19 8 AGONNO-15 AGO							Intrusive (Tecka Fm.)			
A ADDINION A ADDINION A A A A A A A A A	1									1
48						and the second s				1
46 AOONKO45 4f 5g 18,1 71 0g 21,5 Mina Gato Mina Gato Divisadero Fm. Andesite Silicification // RR. 48 AOONKO47 4f 5g 38,7 71 0g 34,7 Mina Gato Mina Gato Divisadero Fm. Andesite Silicification // RR. 48 AOONKO48 4f 5g 38,0 71 0g 34,7 Mina Gato Mina Gato Divisadero Fm. Andesite Silicification // RR. 48 AOONKO48 4f 5g 38,0 71 0g 34,7 Mina Gato Mina Gato Divisadero Fm. Andesite Silicification // RR. 48 AOONKO48 4f 5g 38,0 71 0g 34,7 Mina Gato Mina Gato Divisadero Fm. Andesite Silicification // RR. 48 AOONKO48 4f 5g 38,0 71 1g 35,0 71 0g 34,7 Mina Gato Mina Gato Aoonko49 Are seed as a see							4 A MARIA IN 19 A AM MARIA WATER TO A MA		Silicification / alunite /	
47									Silicification / /	1
48 AOONKO47 44 59 33,7 71 08 34.9 Mina Gato Mina Gato Divisadero Fm Andesite Slicification // 75 36.7 Mina Gato Mina Gato Divisadero Fm Andesite TS AOONKO49 46 50 71 08 36.2 Mina Gato Mina Gato Divisadero Fm Andesite TS AOONKO49 46 50 71 12 40.7 Syn del Sol Brancot Julia Lago La Plata Fm Andesite KA Andesite Limonitization / sericite / KA AOONKO40 47 50 30.0 71 12 40.7 Syn del Sol Brancot Julia Lago La Plata Fm Andesite Limonitization / sericite / KA AOONKO40 37 10 30.8 70 37 51.0 Andecollo Sur los Maitener Intrusive Altered rock / Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener / Sur los Maitener Mina Solia Choiyoi Fm Altered rock / sericite / Sur los Maitener /						V 01 00 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				1
48 A00NCMA 47 50 38.0 71 08 36.2 Mina Gato Mina Gato Divisadero Fm. Andesite Phyllic / sericite / XR 50 A00NCMA 47 50 38.0 71 12 40.7 Joya del Sol Banco Cerro Blanco Lago La Plata Fm. Dacite Phyllic / sericite / XR 51 A00NCMA 37 11 26.9 70 37 51.0 Andecollo Sur los Maitenez Intrusive Altered rhyolite Limonitization / sericite / XR 52 A00HH001 37 10 10.8 70 38 49.6 Butlain Norte Cerro Panta Choiyoi Fm. Altered rock / sericite / XR 53 A00HH002 37 10 10.8 70 38 49.6 Butlain Norte Cerro Panta Choiyoi Fm. Altered rock / sericite / XR 54 A00HH003 37 57 10 10.8 70 38 49.6 Butlain Norte CM010 Choiyoi Fm. Altered rock / sericite / XR 55 A00HH006 37 37 13 49.7 02 52 52 Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite/A) sericite / XR 56 A00H006 37 37 57 58 70 26 21.4 Cerro del Diablo Barite mine Intrusive Grante Curve / montmorillonite/A) sericite/ XR 56 A00H006 37 37 57 58 70 26 21.4 Cerro del Diablo Barite mine Intrusive Grante Weak!/ 57 A00H006 37 37 57 58 70 26 21.4 Cerro del Diablo Barite mine Intrusive Grante Weak!/ 58 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Intrusive Grante Weak!/ 59 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Intrusive Grante Weak!/ 50 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Intrusive Grante Weak!/ 50 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Intrusive Grante Curve / montmorillonite/A) sericite/ Weak!/ 50 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Curve / montmorillonite/A) sericite/ Weak!/ 50 A00H001 37 38 19.2 70 28 445 Cerro del Diablo Curvine Curve / montmorillonite/A sericite/ Weak!/ 50 A00H001 37 38 19.2 70 49 39 30 40 39 30 40 40 32 8 Andaeollo Curve Curve / Montmorillonite/A sericite/ /								2 A 2 A 2 A 2 A 3 A 3 A 3 A 3 A 3 A 3 A	Silicification //	1
50 AOONKO49 45 07 45.87 71 27 22 1 Cerro Blanco Cerro Blanco Lago La Plata Fm. Dacite Phyllic / sericite / KA. 51 AOONKO50 42 53 30 07 11 12 40 7 Joya del Sol Brancote Julia Lago La Plata Fm. Andesite Limonitization / sericite / KA. 52 AOOHHO01 37 15 03.8 70 39 21.5 Andacollo Sur los Maitenez Intrusive Altered rhyolite Limonitization / sericite / Cerro Hollando Mina Sofia PT.O.A. 53 AOOHHO02 37 11 26 97 30 43 8 45 Butalon Norte Cerro Panta Choiyoi Fm. Tuff breccia sericite, kaoline? / not identified / ST.O.A. 53 AOOHHO03 37 07 17 18 70 37 42.8 Andacollo CM010 Choiyoi Fm. Altered rock / sericite / ST.O.A. 54 AOOHHO04 37 07 17 18 70 37 42.8 Andacollo CM011 Choiyoi Fm. Altered rock / sericite / ST.O.A. 55 AOOHHO04 37 07 17 18 70 37 42.8 Andacollo CM011 Choiyoi Fm. Altered rock / sericite / ST.O.A. 56 AOOHHO05 37 37 42.5 70 26 02.6 Cerro del Diablo Barite mine Intrusive Altered rock / sericite / ST.O.A. 57 AOOHHO08 37 37 57 87 02 67 12.4 Cerro del Diablo Barite mine Intrusive Altered rock Stilicification, qu network / Cerro del Diablo Barite mine Intrusive Felsic rock Stilicification, qu network / Cerro del Diablo Barite mine Intrusive Granite Weak / Andacollo Cu mine Altered rock / Andesitic prophyry Weak / Aldered rock / Kaolinite / ST.O.A. 64 AOOHHO12 37 13 04.9 70 40 32.8 Andacollo Cu mine Intrusive Andesitic prophyry Weak / Andacollo Cu mine Trusive Andesitic prophyry Weak / Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Andesitic prophyry Weak / Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cerro del Diablo Cu mine Trusive Andesitic prophyry Weak / Cer						The same of the sa				
51 AONKOSO 42 53 30 0 71 12 40 7 30 4el Sol Branche Julia Lago La Plata Fm. Andesite Limonitization / sericite / 52 AONHHOOL 37 16 03 8 70 37 21 25 7 Adacollo Sur los Maitenez Intrusive Altered rhyolite Limonitization / sericite / 53 AONHHOOZ 37 11 28 9 70 37 31 0 39 49 5 Butalon Norte Cerro Panta Choiyo Fm. Tuff breccia sericite, kaoline? / not identified / 54 AONHHOOZ 37 01 10 8 70 39 49 3 Butalon Norte CM010 Choiyo Fm. Altered rock / sericite / 55 AONHHOOZ 37 07 17 8 70 37 24 5 70 26 02 5 Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite(A), sericite(C) XR. 56 AONHHOOZ 37 37 42 5 70 26 02 5 Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite(A), sericite(C) XR. 57 AONHHOOZ 37 37 57 8 70 26 02 5 Cerro del Diablo Barite mine Intrusive Granite Weak / montmorillonite(A), sericite(C) XR. 58 AONHHOOZ 37 37 57 8 70 26 02 5 Cerro del Diablo Barite mine Intrusive Granite Weak / montmorillonite(A), sericite(C) XR. 58 AONHHOOZ 37 37 57 8 70 26 02 5 Cerro del Diablo Barite mine Intrusive Granite Weak // 59 AONHHOOZ 37 37 57 8 70 26 02 5 Cerro del Diablo Cu mine Intrusive Granite Weak // 59 AONHHOOZ 37 37 57 8 70 26 02 5 Cerro del Diablo Cu mine Cu cu ore //montmorillonite / chrysocolla, iron oxide //montmorillonite //montmorill									Phyllic / sericite /	
52 AOOHHOOL 37 12 603 8 70 39 21.5 Andeollo Sur los Matenez Intrusive Altered rhyolite Limonitization / sericite / 53 AOOHHOOZ 37 11 26 9 70 37 51.0 Andeollo Mina Sofia Qz py gn ore // qz with py, gn PT.OA 54 AOOHHOOZ 37 12 12 80 70 37 42.5 Andeollo Mina Sofia Cerro Panta Choiyoi Fm. Tuff breccia sericite, kaoline? / not identified / 55 AOOHHOOZ 37 01 10.8 70 37 24.8 Andeollo CMO10 Choiyoi Fm. Altered rock / sericite / 56 AOOHHOOZ 37 37 42.5 70 26 26 Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite(A). sericite(C) / XR.OC 57 AOOHHOOZ 37 37 42.5 70 26 26 Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite(A). sericite(C) / XR.OC 58 AOOHHOOZ 37 37 57.8 70 26 21 4 Cerro del Diablo Barite mine Intrusive Felsic rock Stlictification, qz network // 58 AOOHHOOZ 37 37 57.8 70 26 21 4 Cerro del Diablo Barite mine Intrusive Granite Weak // 59 AOOHHOOZ 37 37 57.8 70 26 21 4 Cerro del Diablo Barite mine Intrusive Granite Weak // 50 AOOHHOOZ 37 37 57.8 70 26 21 4 Cerro del Diablo Barite mine Intrusive Granite Weak // 50 AOOHHOOZ 37 37 57.8 70 26 21 4 Cerro del Diablo Cu mine Cu nice Co Cu nice Adecade Adecade Altered rock // Montmorillonite / Chrysocolla, iron oxide // Acolinite / 50 AOOHHOOZ 37 37 57.8 70 26 32 4 5 Cerro del Diablo Cu mine Altered rock Altered rock // Montmorillonite / Chrysocolla, iron oxide // Raolinite // Acolinite // Raolinite										1
Mina Sofia Montholog Mon								Altered rhyolite	Limonitization / sericite /	
54 AOHHOUS 36 58 47.1 70 38 49.6 Butalon Norte Cerro Panta Choiyoi Fm. Tuff breecia sericite, kaoline?/not identified/ 55 AOHHOUS 37 07 17.8 70 37 24.8 Andaeollo CM010 Choiyoi Fm. Altered rock /sericite/ 56 AOHHOUS 37 17.8 70 37 24.8 Andaeollo CM011 Choiyoi Fm. Altered rock /sericite/ 57 AOHHOUS 37 37 43.0 70 26 02.6 Cerro del Diablo Barite mine Intrusive Altered rock /montmorillonite/A), sericite(C)/ 58 AOHHOUS 37 37 57.8 70 26 02.0 Cerro del Diablo Barite mine Intrusive Altered rock /montmorillonite/A), sericite(C)/ 59 AOHHOUS 37 37 57.8 70 26 02.0 Cerro del Diablo Barite mine Intrusive Felsic rock Stlicification, q2 network// 60 AOHHOUS 37 38 14.5 70 25 59.2 Cerro del Diablo Barite mine Intrusive Granite Weak// 61 AOHHOUS 37 38 14.5 70 25 59.2 Cerro del Diablo Cu mine Cu mine Altered rock /montmorillonite/chryscolla, iron oxide /mo										PT,OA
55 A00HH004 37 ' 01' 10.8 ' 70' 39' 49.3 Butalon Norte CM010 Choiyoi Fm. Altered rock / sericite / XR,GC 56 A00HH005 37 ' 07' 17.8 ' 70' 37' 24.8 Andacollo CM011 Choiyoi Fm. Altered rock / sericite / / sericite / / sericite / 57 A00HH006 37' 37' 42.5 ' 70' 26' 02.6 ' Cerro del Diablo Barite mine Intrusive Altered rock / montmorillonite(A), sericite(C) / XR 58 A00HH008 37' 37' 43.0 ' 70' 26' 05.0 ' Cerro del Diablo Barite mine Intrusive Felsic rock Silicification, qz network // XR 69 A00HH009 37' 37' 57.8 ' 70' 26' 21.4 ' Cerro del Diablo Barite mine Intrusive Granite Weak // Weak //							Choivoi Fm.			
56 A00HH005 37' 07' 17.8						-		Altered rock	/ sericite /	XR,GC
57 A00HH006 37 37 42.5 70 26 02.6 Cerro del Diablo Barite mine Intrusive Altered granite White mineral/kaolinite/barite XR 58 A00HH007 37 37 43.0 70 26 05.0 Cerro del Diablo Barite mine Altered rock /montmorillonite(A), sericite(C) / XR 59 A00HH008 37 37 57.8 70 26 21.4 Cerro del Diablo Barite mine Intrusive Felsic rock Silicification, qz network // XR 60 A00HH001 37 38 14.5 70 25 59.2 Cerro del Diablo Barite mine Intrusive Granite Weak // Weak // Intrusive Cu ore /montmorillonite / chrysocolla, iron oxide Intrusive Altered rock /kaolinite / Weak // Weak // Weak // Intrusive Altered rock /kaolinite / Weak // We									/ sericite /	
58 A00HH007 37' 37' 43.0' 70' 26' 05.0' Cerro del Diablo Barite mine Altered rock /montmorillonite(A), sericite(C) / XR 59 A00HH008 37' 37' 57.8' 70' 26' 21.4' Cerro del Diablo Barite mine Intrusive Felsic rock Silicification, qz network // 60 A00HH010 37' 38' 14.5' 70' 25' 59.2' Cerro del Diablo Barite mine Intrusive Granite Weak // 61 A00HH010 37' 38' 14.5' 70' 25' 59.2' Cerro del Diablo Cu mine Cu ore / montmorillonite / chrysocolla, iron oxide 62 A00HH011 37' 38' 19.2' 70' 25' 44.5' Cerro del Diablo Cu mine Altered rock / kaolinite / 63 A00HH012 37' 13' 04.9' 70' 40' 32.8' Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // Weak // TS,XR.GC 65 A00HH014 38' 13' 09.6' 70' 32' 41.3' Campana Mahuida Tordillo Fm. Altered rock qz, sericite //	11								White mineral / kaolinite / barite	
59 A00HH008 37' 37' 57.8' 70' 26' 21.4' Cerro del Diablo Barite mine Intrusive Felsic rock Silicification, qz network // 60 A00HH009 37' 37' 57.8' 70' 26' 21.4' Cerro del Diablo Barite mine Intrusive Granite Weak // 61 A00HH010 37' 38' 14.5' 70' 25' 59.2' Cerro del Diablo Cu mine Cu ore /montmorillonite / chrysocolla, iron oxide 62 A00HH011 37' 38' 19.2' 70' 25' 44.5' Cerro del Diablo Cu mine Altered rock /kaolinite / 63 A00HH012 37' 13' 04.9' 70' 40' 32.8' Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // 64 A00HH013 37' 13' 04.9' 70' 40' 32.8' Andacollo Cerro Colo Intrusive Dacite TS.XR.GC 65 A00HH014 38' 13' 09.6' 70' 32' 41.3' Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //							A.		/ montmorillonite(A), sericite(C) /	XR
60 A00HH009 37 37 57.8 70 26 21.4 Cerro del Diablo Barite mine Intrusive Granite Weak // 61 A00HH010 37 38 14.5 70 25 59.2 Cerro del Diablo Cu mine Cu ore /montmorillonite / chrysocolla, iron oxide // 62 A00HH011 37 38 19.2 70 25 44.5 Cerro del Diablo Cu mine Altered rock // kaolinite // 63 A00HH012 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // 64 A00HH013 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Dacite TS,XR,GC 65 A00HH014 38 13 09.6 70 32 41.3 Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //	i i						Intrusive	The state of the s	Silicification, qz network //	
61 A00HH010 37 38 14.5 70 25 59.2 Cerro del Diablo Cu mine Cu ore /montmorillonite / chrysocolla, iron oxide / 62 A00HH011 37 38 19.2 70 25 44.5 Cerro del Diablo Cu mine Altered rock /kaolinite / 63 A00HH012 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // 64 A00HH013 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Dacite TS,XR,GC 65 A00HH014 38 13 09.6 70 32 41.3 Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //									Weak //	
62 A00HH011 37 38 19.2 70 25 44.5 Cerro del Diablo Cu mine Altered rock /kaolinite / 63 A00HH012 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // 64 A00HH013 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Dacite TS,XR,GC 65 A00HH014 38 13 09.6 70 32 41.3 Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //									/ montmorillonite / chrysocolla, iron oxide	
63 A00HH012 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Andesitic porphyry Weak // 64 A00HH013 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Dacite TS,XR,GC 65 A00HH014 38 13 09.6 70 32 41.3 Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //							*		/ kaolinite /	
64 A00HH013 37 13 04.9 70 40 32.8 Andacollo Cerro Colo Intrusive Dacite TS.XR.GC 65 A00HH014 38 13 09.6 70 32 41.3 Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite //							Intrusive		Weak //	wR
65 A00HH014 38' 13' 09.6' 70' 32' 41.3' Campana Mahuida Campana Mahuida Tordillo Fm. Altered rock qz, sericite / /										
									qz, sericite / /	
	66							Cu oxide with diorite (Float)	// Cu oxide	

No. Sample No.	Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
67 A00HH016	38' 12' 37.7' 70' 32' 30.7	Campana Mahuida	Campana Mahuida		Silicified rock	Silicification / /	GC
68 A00HH017	38' 12' 48.1' 70' 35' 28.8'	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Altered sand stone	qz, white mineral //	
69 A00HH018	39' 13' 00.8' 70' 36' 01.4'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granite		
70 A00HH019	39' 04' 56.0' 70' 31' 56.4'	Nireco	ZA028/029	Campos basalticos de Zapala	Silicified rock	Silicification / kaolinite /	XR,GC
71 A00HH020	39' 05' 47.6' 70' 31' 26.7'	Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock	/ chlorite, zeolite, calcite montmorillonite, sericite /	
72 A00HH021	39' 06' 00.0' 70' 31' 29.8'	Nireco	ZA028/029	Campos basalticos de Zapala	Green tuff/altered rock		
73 A00HH022	38' 57' 56,3' 70' 36' 47,4'	Carreri Malal	Carreri Malal	Intrusive	Granite	A Committee of the Comm	XR
74 A00HH023	38' 58' 27.5' 70' 35' 03.7'	Carreri Malal	Carreri Malal		Altered rock	Argillization /'/	XR
75 A00HH024	41' 40' 12.0' 71' 06' 43.1'	Mina Maria	Mina Maria		Qz-py-cp-malachite-ga ore	//qz, py, cp, malachite, gn	PT,OA
76 A00HH025	42' 08' 40.8' 71' 18' 27.0'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Granite with tourmaline	Weakly whitened //	
77 A00HH026	42' 08' 40.8' 71' 18' 27.0'	Cerro Coihue	Quebrada Baya	Intrusive	Andesite dyke	Almost fresh //	
78 A00HH027	42' 08' 35.3' 71' 18' 35.3'	Cerro Coihue	Quebrada Baya		Altered rock	/ laumontite /	XR
79 A00HH028	42' 08' 49.7' 71' 18' 36.0'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Altered granite	/ calcite /	XR,GC
80 A00HH029	42' 08' 49.7' 71' 18' 36.0'	Cerro Coihue	Quebrada Baya		Qz, tourmaline (Float)		
81 A00HH030	42' 08' 42.9' 71' 18' 33.0'	Cerro Coihue	Quebrada Baya	Intrusive	Andesite		
82 A00HH031	42' 09' 07.4' 71' 24' 13.4'	Condorcanqui	Condorcanqui		Altered rock	Argillization, white clay mineral / not identified /	
83 A00HH032	42' 09' 07.4' 71' 24' 13.4'	Condorcanqui	Condorcanqui		Altered rock	Argillization, white clay mineral dot //	
84 A00HH033	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui		Malachite-chrysocolla-py-cp ore	// malachite, chrysocolla, py, cp	
85 A00HH034	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Chloritic or fresh (with cp) //	XR.GC
86 A00HH035	42' 09' 48.0' 71' 24' 03.2'	Condorcanqui	Condorcanqui		Altered rock	qz, K-fel., cp, limonite // qz with cp	
87 A00HH036	42' 13' 10.3' 71' 25' 17.9'	Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Zeolite in altered andesite	/ laumontite /	
88 A00HH037	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Granite with py (float)		GC
89 A00HH038	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Silicified rock with py (float)	Silicification / /	
90 A00HH039	41' 58' 05.9' 71' 34' 30.0'	El Bolson	Rio Lindo		Pyroclastics with py (float)		GC
91 A00HH040	41' 55' 33.0' 71' 33' 28.1'	El Bolson	Rio Azul		Andesite with py, chl (float)	Silicification / /	ļ
92 A00HH041	42' 47' 31.0' 71' 29' 46.3'	Huemules	Huemules Sur		Ore	// malachite, cp, py	
93 A00HH042	42' 47' 25.7' 71' 29' 50.4'	Huemules	Huemules Sur		Ore	//galena	
94 A00HH043	42' 47' 25.7' 71' 29' 50.4'	Huemules	Huemules Sur	Canadon Huemules Fm.	Andesite	Relatively fresh to argillization / sericite /	XR
95 A00HH044	42' 47' 17.1' 71' 29' 58.7'	Huemules	Huemules Sur		Altered rock	Silicification argillization, py / /	XR,GC
96 A00HH045	42' 47' 17.1' 71' 29' 58.7'	Huemules	Huemules Sur	Intrusive	Micro granodiorite	Fresh //	
97 A00HH046	42' 47' 28.9' 71' 29' 42.0'	Huemules	Hüemules Sur		Ore	Oxidized cp // qz, cp, py	
98 A00HH047	42' 45' 37.5' 71' 06' 29.3'	Joya del Sol	Arroyo Cancha	-	Altered rock	Silicification, py //	GC
99 A00HH048	42' 53' 46.5' 71' 12' 45.8'	Joya del Sol	Brancote Elena Sur		Qz vein		

No. Sample No.	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
100 A00HH049	42' 52' 22.4' 71' 12' 08.8'	Joya del Sol	Brancote-Galadriel		Qz vein		
101 A00HH050	42' 51' 49,3' 71' 11' 08.1'	Joya del Sol	Near LM024	Lago La Plata Fm.	Altered rock	/ sericite /	XR
102 A00HH051	43' 57' 47,7' 71' 34' 09.4'	Cerro Colorado	Near Cerro Riñon		Silicified rock (Float)	Silicification / pyrophyllite /	
103 A00HH052	43' 30' 23.8' 71' 06' 25.6'	Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Qz with white altered mineral	/ montmorillonite /	
104 A00HH053	43' 30' 19.0' 71' 06' 12.1'	Arroyo Cascada	Arroyo Cascada		Altered rock (Float)	/ montmorillonite /	
105 A00HH054	43' 30' 19.0' 71' 06' 12.1'	Arroyo Cascada	Arroyo Cascada	Lago La Plata Fm.	Altered rock	/ montmorillonite /	XR
106 A00HH055	44' 41' 33.1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
107 A00HH056	44' 41' 33,1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
108 A00HH057	44' 41' 33.1' 71' 07' 07.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	XR
109 A00HH058	44' 41' 18.8' 71' 07' 13.0'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	/ kaolinite /	
110 A00HH059	44' 41' 23.3' 71' 07' 13.4'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Kaoline/dickite/greysh kaoline	/ kaolinite /	
111 А00НН060	44' 41' 25.0' 71' 05' 40.1	Estrella Gaucha	Estrella Gaucha	Intrusive	Andesite	Propylitic ?//	TS,GC
112 A00HH061	44' 56' 24.0' 71' 35' 16.1	Ferrocarrilera	Ferrocarrilera		Galena ore	//galena	
113 A00HH062	44' 56' 24.0' 71' 35' 16.1	Ferrocarrilera	Ferrocarrilera	Lago La Plata Fm.	Andesite		XR
114 A00HH063	44' 56' 19.2' 71' 35' 08.3	Ferrocarrilera	Ferrocarrilera		Galena-sphalerite-qz ore	// galena, sphalerite	PT
115 A00HH064	44' 56' 18.2' 71' 35' 08.4	Ferrocarrilera	Ferrocarrilera		Qz-py-cp-sphalerite ore	//cp, sphalerite	
116 A00HH065	44' 56' 20.3' 71' 35' 11.8	Ferrocarrilera	Ferrocarrilera		Galena-sphalerite ore	// galena, sphalerite	
117 A00MZ001	37' 15' 05.0' 70' 39' 24.2	Andacollo	Sur los Maitenez	Intrusive	Rhyolite	Silicification / sericite /	GC
118 A00MZ002	37' 14' 29.0' 70' 39' 40.7	Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite qz network	GC
119 A00MZ003	37' 11' 32.5' 70' 37' 54.6	Andacollo	Mina Sofia	Intrusive	Dacite	Argillization / sericite / pyrite diss.	XR,GC
120 A00MZ004	36' 58' 47.3' 70' 38' 49.5	Butalon Norte	Butalon Norte	Choiyoi Fm.	Pebble dyke	Silicification / / magnetite	XR,GC
121 A00MZ005	36' 58' 47.7' 70' 38' 52.7	Butalon Norte	Butalon Norte	Choiyoi Fm.	Volcanic rock	Silicification / / magnetite	GC
122 A00MZ006	37' 01' 08.1' 70' 39' 50.5	Butalon Norte	CM010	Choiyoi Fm.	Volcanic rock	Silicification / kaolinite / limonite	GC
123 A00MZ007	37' 07' 20.2' 70' 37' 23.4	Andacollo	CM011	Choiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	GC
124 A00MZ008	37' 26' 39.3' 70' 26' 35.8	Cerro Caicayen	Quebrada el Bronce	Cuyo Gr.	Mudstone	Silicification // pyrite diss. network	GC
125 A00MZ009	37' 26' 35.5' 70' 26' 59.9	Cerro Caicayen	Quebrada el Bronce	Intrusive (Grupo Molle)	Granite	Potassic //	GC
126 A00MZ010	37' 27' 10.8' 70' 26' 48.1	Cerro Caicayen	Mina Hierro	Ore deposit	Massive ore	// pylite-limonite	OA
127 A00MZ011	37' 11' 30.1' 70' 37' 58.5	Andacollo	Mina Sofia	Intrusive	Qz porphyry	Weak //	wr
128 A00MZ012	37' 11' 30.1' 70' 37' 58.5	Andacollo	Mina Sofia, Level1	Ore deposit	Vein ore	//qz-calcite-py-gn	OA,DS,DO,FI
129 A00MZ013	37' 11' 25.3' 70' 37' 51.2	Andacollo	Mina Sofia	Intrusive	Dacite porphyry	Fresh //	TS,WR
130 A00MZ014	37' 11' 25.3' 70' 37' 51.2	Andacollo	Mina Sofia	Huaraco Fm. (Andacollo Gr.)	Mudstone	// pyrite	DS
131 A00MZ015	37' 13' 15.8' 70' 40' 32.7	Andacollo	Cerro Colo	Intrusive (Cretaceous)	Tonalite	Fresh // py green Cu stain	TS,WR
132 A00MZ016	37' 11' 30.1' 70' 37' 58.5	Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	//qz-calcite-py-gn	PT,OA,FI

No	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Géological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
133	A00MZ017	37' 11' 30.1'	70' 37' 58.5'	Andacollo	Mina Sofia, Level4	Ore deposit	Vein ore	// qz-calcite-py-gn	FI
134	A00MZ018	38' 12' 48:6'	70' 32' 18.1'	Campana Mahuida	Campana Mahuida	Intrusive (Tres Puntas)	Granodiorite	Fresh///	TS,WR
138	A00MZ019	38' 12' 47.2'	70' 35' 24.9'	Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	// barite Fe oxides	OA
136	A00MZ020	38' 12' 48.5'	70' 35' 30,5'	Campana Mahuida	Mina Angelica	Ore deposit	Vein ore	//barite-galena-Fe oxides	OA
137	A00MZ021	39' 12' 50.2'	70' 36' 22.1'	La Völuntad	La Voluntad	Intrusive	Vein ore	// qz malachite	OA
138	A00MZ022	39' 12' 52.1'	70' 36' 23.1'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granite	Potassic / /	TS,GC
139	A00MZ023	39' 02' 59.8'	70' 32' 02.1'	Nireco	ZA027	Campos basalticos de Zapala	Volcanic rock	Silicification / montmorillonite /	GC
140	A00MZ024	39' 02' 22.1'	70' 32' 10.7'	Nireco	ZA027	Campos basalticos de Zapala	Volcanic rock	Silicification / sericite /	XR,GC
141	A00MZ025	39' 01' 53.3'	70' 32' 35.4'	Nireco	ZA026	Campos basalticos de Zapala	Volcanic rock	Silicification / kaolinite /	GC
142	A00MZ026	38' 57' 50.5'	70' 36' 50.9'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Argillization // Fe-Mn oxides (gossan)	GC
143	A00MZ027	38' 57' 48.3	70' 36' 53,9'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	Chloritization // Mn oxide	GC
144	A00MZ028	38' 57' 59.1'	70' 36' 46,3'	Carreri Malal	Carreri Malal	Ore deposit	Vein ore	// qz·py·gn·bornite	OA
145	A00MZ029	41' 40' 11.3'	71' 06' 41.0'	Mina Maria	Mina Maria	Ore deposit	Vein ore	//galena	DS
146	Á00MZ030	41' 40' 11,3'	71' 06' 41.0'	Mina Maria	Mina Maria	Ore deposit	Vein ore	//gn-py-cp	PT,OA
147	A00MZ031	42' 08' 39.5'	71' 19' 17.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granite (Float)	// limonite	GC
148	A00MZ032	42' 08' 29.5'	71' 19' 18.8'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	Fresh //	TS,WR
149	A00MZ033	42' 08' 05.3'	71' 19' 28.3'	Cerro Coihue	Quebrada Ferreyro	Lago Puelo granitic complex	Granodiorite (Float)	// chrysocolla	GC
150	A00MZ034	42' 09' 09.9'	71' 24' 13.9'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesitic tuff	Propylite // pyrite diss.	GC
151	A00MZ035	42' 09' 09.9'	71' 24' 13.9'	Condorcanqui	Condorcanqui	Zeolite vein	Zeolite	Propylite / laumontite /	GC
152	A00MZ036	42' 09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // cp dissveinlet	OA ·
153	A00MZ037	42' 09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // malachite	OA
154	A00MZ038	42' 09' 46.1'	71' 24' 03.8'	Condorcanqui	Condorcanqui	Ventana Fm.	Andesite	Propylite // pyrite diss.	PT
155	A00MZ039	42' 13' 51.9'	71' 25' 17.7'	Epuyen	Arroyo Pedregoso de Epuyen	Ventana Fm.	Andesite (Float)	Propylite // pyrite diss.	GC
156	A00MZ040	42' 28' 03.8'	71' 35' 53.2'	Lago Chilila	A. Pedregoso de Lago Cholila	Granitodes Cordilleranos	Sil., breccia (Float)	Silicification / / limonite	GC
157	A00MZ041	42' 47' 32.1'	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Veinlet	//qz-py-gn	OA
158	A00MZ042	42' 47' 32.1'	71' 29' 45,9'	Huemules	Huemules Sur	Ore deposit	Veinlet	//galena mass	PT,OA,DS
159	A00MZ043	42' 47' 32.1'	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Veinlet "	// qz·py ··· ··	DO,FI
160	A00MZ044	42' 47' 18.6'	71' 29' 54.8'	Huemules	Huemules Sur	Intrusive	Microdiorite	Propylite //	TS,WR
161	A00MZ045	42' 47' 32.1'	71' 29' 45.9'	Huemules	Huemules Sur	Ore deposit	Vein Ore	//galena mass	
162	A00MZ046	42' 47' 32.6'	71' 29' 43.5'	Huemules	Huemules Sur	Ore deposit	Veinlet	// qz-cp-py-gn	OA,DO,FI
163	A00MZ047	42' 45' 39.1'	71' 06' 33.5'	Joya del Sol	Arroyo Cancha	Alluvium	Qz veinlet (Float)		GC
164	A00MZ048	42' 53' 40.9'	71' 12' 32.9'	Joya del Sol	Brancote Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA,DO,FI
165	A00MZ049	42' 53' 40.9'	71' 12' 32.9'	Joya del Sol	Brancote Elena Sur	Ore deposit	Qz vein	// Aurifeous qz vein	OA

No.	Sample No.	Latitude(S) Longitude(V	V) District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
166		42' 53' 20.7' 71' 12' 45		Brancote-Julia	Ore deposit	Hydrothermal breccia	// Aurifeous qz vein	
167		42' 52' 43.0' 71' 12' 19		Brancote-Galadriel	Ore deposit	Qz vein	// Aurifeous qz vein	DO,FI
168		43' 10' 38.2' 71' 40' 51		Poz. de Navarro	Qz vein	Qz vein	// pyrite diss.	GC
169	A00MZ053	43' 10' 38.2' 71' 40' 51	4' Poz. de Navarro	Poz. de Navarro	Lago la Plata Fm.	Andesite	Propylite // qz·cp veinlets	GC
170	A00MZ054	43' 11' 17.8' 71' 39' 56	7' Poz. de Navarro	Ea. el Triunfo	Intrusive	Qz porphyry	Silicification / sericite / py-cp? diss.	GC
171	A00MZ055	43' 24' 09.3' 71' 32' 33	1' Las Mentas	Las Mentas	Qz vein	Qz ein	//qz-cp-gn-malachite	OA
172	A00MZ056	43' 37' 55.1' 71' 25' 30	7' Poncho Moro	Arroyo Pedregoso	Alluvium	Qz vein (Float)	// Slight pyrite diss.	GC
173	A00MZ057	43' 30' 22.9' 71' 06' 24	7' Arroyo Cascada	Arroyo Cascada	Qz vein	Qz vein	// pyrite diss.	GC
174	A00MZ058	43' 30' 22.9' 71' 06' 24	7' Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification / montmorillonite /	XR
175	A00MZ059	43' 30' 17.0' 71' 06' 10	1' Arroyo Cascada	Arroyo Cascada	Lago la Plata Fm.	Silicified rock	Silicification // pyrite diss.	GC
176	A00MZ060	43' 30' 17.0' 71' 06' 10	1' Arroyo Cascada	Arroyo Cascada	Qz vein (F)	Cubic pyrite	// Cúbic pyrite in qz vein	DS
177	A00MZ061	44' 50' 13.6' 71' 08' 30	6' Mina Gato	Mina Gato	Divisadero Fm.	Soft silky rock	Kaolinitization / kaolinite /	GC
178	A00MZ062	44' 50' 05.0' 71' 08' 43	7' Mina Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / alunite /	GC
179	A00MZ063	44' 50' 10.2' 71' 07' 54	6' Mina Gato	Mina Gato	Divisadero Fm.	Silicified rock	Silicification / sericite-montmorillonite / pyrite diss.	GC
180	A00MZ064	44' 54' 11.1' 71' 14' 43	6 Ea. Arroyo Victoria	Arroyo Huemul	Alluvium	Silicified rock	Silicification / alunite / Slight limonitic	GC
181	A00MZ065	44' 56' 21.8' 71' 35' 05	4 Ferrocarrilera	Ferrocarrilera	Lago la Plata Fm.	Andesite	Propylite // pyrite diss.	TS,GC
182	A00MZ066	44' 56' 21.8' 71' 35' 05	4 Ferrocarrilera	Ferrocarrilera		Vein ore	// pyrite diss.	DS,DO,FI
183	A00MZ067	44' 56' 21.8' 71' 35' 05	4' Ferrocarrilera	Ferrocarrilera		Vein ore	//gn-sp-py	
184	A00MZ068	44' 56' 21.8' 71' 35' 05	4' Ferrocarrilera	Ferrocarrilera		Vein ore	//gn·sp·py	OA
185	A00TM001	37' 15' 05,6' 70' 39' 16	8' Andacollo	Sur los Maitenez	Intrusive	Dacite	Silicification / séricite / limonite	GC
186	A00TM002	37' 11' 27.7' 70' 37' 45	8' Andacollo	Mina Sofia level4	Huaraco Fm. (Andacollo Gr.)	Black shale	Silicification / sericite / gn, sp, cp, py diss.	GC
187	A00TM003	36' 47' 16.0' 70' 36' 27	4 Varvarco	CM005		White altered rock	Weak silicification, argillization / pyrophyllite /	XR,GC
188	A00TM004	36' 47' 08.1' 70' 35' 32	4 Varvarco	CM006	Choiyoi Fm.	Rhyolitic tuff	Fresh //	GC
189	A00TM005	36' 50' 54.5' 70' 39' 54	4' Varvarco	Varvarco	Intrusive	Tonalite	Weak silicification / /	GC
190	A00TM006	36' 50' 54.5' 70' 39' 54	.4' Varvarco	Varvarco	Intrusive	Tonalite	Weak alteration //	TS
191	A00TM007	37' 37' 43.4' 70' 25' 58	.8' Cerro del Diablo	Cerro del Diablo (Colorado)		Qz vein	//qz-barite	GÇ
192	A00TM008	37' 37' 43.4' 70' 25' 58	.8' Cerro del Diablo	Cerro del Diablo (Colorado)	Vaca Muerta Fm.	Shale	Argillization / /	XR,GC
193	A00TM009	37' 37' 59.0' 70' 26' 25	.1' Cerro del Diablo	Cerro del Diablo (Colorado)	Intrusive	Tonalite	Fresh //	TS,WR,KA
194	A00TM010	37' 38' 10.3' 70' 26' 20	.6' Cerro del Diablo	Cerro del Diablo	Vaca Muerta Fm.	Shale	Silicification, argillization / sericite / limonite Silicitication, argillization / sericite, kaolinite /	GC
195	A00TM011	37' 38' 10.3' 70' 26' 20	.6' Cerro del Diablo	Cerro del Diablo	Vaca Muerta Fm.	Shale	limonite	XR
196	A00TM012	37' 38' 10.3' 70' 26' 20	6 Cerro del Diablo	Cerro del Diablo		Qz vein	// qz-barite Silicitication, argillization // malachite, azurite,	GC
197	A00TM014	37' 38' 21.5' 70' 25' 48	.5' Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	limonite Silicitication, argillization/kaolinite, sericite/malachite,	GC
198	A00TM015	37' 38' 21.5' 70' 25' 48	5 Cerro del Diablo	Cerro del Diablo	Intrusive	Granite?	zurite, limonite	XR

No. Sample No.	Latitude(S) Longitude(W) Distri	ict Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization Sincincation, arguinzation/kaounite/maiacnite-ilmonite	Analysis type
199 A00TM016	37' 38' 20.3' 70' 25' 37.6' Cerro del Di	iablo Cerro del Diablo	Intrusive	Granite?	Stain Stain	XR,GC
200 A00TM017	36' 47' 19.1' 70' 37' 31.8' Varvarco	CM004	Intrusive	Tonalite	Tourmalinization, qz+epidote vein / /	TS,GC
201 A00TM018	36' 47' 19.1' 70' 37' 31.8' Varvarco	CM004	Intrusive	Tonalite	Weak alteration //	TS,WR
202 A00TM019	36' 47' 19.1' 70' 37' 31.8' Varvarco	CM004	Intrusive	Diorite porphyry	Tourmalinization, qz+epidote vein //	TS,WR
203 A00TM020	36' 49' 51.0' 70' 40' 20.1' Varvarco	Varvarco	Valvalco granite	Tonalite	Fresh //	TS,WR,KA
204 A00TM021	39' 12' 50.1' 70' 36' 26.6' La Voluntad	La Voluntad	Intrusive	Qz vein in granitoid	// malachite	GC
205 A00TM022	39' 05' 04.4' 70' 32' 11.5' Nireco	ZA028	Campos basalticos de Zapala	Lapilli tuff	Silicification //	GC
206 A00TM023	39' 05' 45.5' 70' 31' 21.5' Nireco	ZA029	Campos basalticos de Zapala	Andesite?	Fresh //	TS
207 А00ТМ026	39' 06' 00.7' 70' 31' 26.8' Nireco	ZA029	Campos basalticos de Zapala	Tuff	Argillization, weak silicification // limonite	GC
208 A00TM027	39' 06' 00.7' 70' 31' 26.8' Nireco	ZA029	Campos basalticos de Zapala	Lapilli tuff	Argillization, weak silicitication / montmorillonite / limonite	XR,GC
209 A00TM028	41' 40' 05.2' 71' 06' 16.9' Mina Maria	Mina Maria	Nahuel Huapi Fm.	Tuff	Silicification // limonite	GC
210 A00TM029	42' 08' 36.0' 71' 18' 09.4' Cerro Coihu	e Quebrada Baya	Lago Puelo granitic complex	Porphyritic Tonalite	Propylitic // pyrite diss.	GC
211 A00TM030	42' 08' 35.7' 71' 18' 25.1' Cerro Coihu	e Quebrada Baya	Lago Puelo granitic complex	Tonalite	Potassic? // limonite stain	TS,WR
212 A00TM031	42' 08' 38.2' 71' 18' 33.9' Cerro Coihu	e Quebrada Baya	Lago Puelo granitic complex	Tonalite	Argillization, weak silicification // limonite	GC
213 A00TM032	42' 08' 38.2' 71' 18' 33.9' Cerro Coihu	e Quebrada Baya	Lago Puelo granitic complex	Tonalite	Argillization / zeolite, loumontite / limonite Argillization, weak silicitication / sericite.	XR,GC
214 A00TM033	42' 08' 42.5' 71' 18' 30.4' Cerro Coihu	e Quebrada Baya		Argillic vein	montmorillonite /	XR,GC
215 A00TM034	42' 08' 43.2' 71' 18' 30.4' Cerro Coihu	e Quebrada Baya		Qz vein (Float)	// limonite	GC
216 A00TM035	42' 08' 45,6' 71' 18' 27,1' Cerro Coihu	e Quebrada Baya	Lago Puelo granitic complex	Granodiorite	Potassic // pyrite diss, limonite	GC
217 A00TM037	42' 09' 40.7' 70' 30' 33.2' Cushamen	Cushamen	Intrusive	Rhyolite	Argillization / kaolinite, sericite /	XR
218 A00TM038	42' 09' 40.7' 70' 30' 33.2' Cushamen	Cushamen		Qz vein	// limonite	GC
219 A00TM039	42' 09' 43.5' 70' 30' 38.4' Cushamen	Cushamen		Qz vein	// limonite	GC,DO,FI
220 A00TM040	43' 17' 05.5' 70' 59' 06.6' Cerro Gonza	alo Arroyo Luques	Aleusco Fm.	Granodiorite	Silicification, agillization //	GC
221 A00TM041	43' 17' 02.2' 70' 59' 17.6' Cerro Gonza	alo Arroyo Luques	Intrusive	Granodiorite	Potassic, silicification, argillization//cp vein, diss.	GC
222 A00TM042	43' 18' 54.4' 71' 02' 22.8' Cerro Gonza	alo Cerro Gonzalo		Qz vein	// limonite	DO,FI
223 A00TM043	43' 18' 54.4' 71' 02' 22.8' Cerro Gonza	alo Cerro Gonzalo	Aleusco Fm.	Granodiorite :	Silicification, argillization // malachite, limonite stain	XR
224 A00TM044	43' 18' 25.0' 71' 01' 29.4' Cerro Gonza	alo Cerro Gonzalo		Hydrothermal breccia	Weak silicification // malachite stain Argulization, weak silicitication / sericite.	GC
225 A00TM045	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote Galadriel	Lago la Plata Fm.	Andesite	montmorillonite /- Argillization, weak silicitication / sericite,	
226 A00TM046	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote-Galadriel	Lago la Plata Fm.	Andesite	montmorillonite /	XR
227 A00TM047	42' 53' 42.0' 71' 12' 30.6' Joya del Sol	Brancote Galadriel	Lago la Plata Fm.	Andesite	Argillization / montmorillonite /	XR
228 A00TM049	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote-Galadriel		Qz vein		OA
229 A00TM050	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote Galadriel	Lago la Plata Fm.?	Andesite?	Argillization / sericite /	XR
230 A00TM051	42' 53' 12.9' 71' 12' 47.8' Joya del Sol	Brancote-Galadriel		Qz vein	Silicification, argulization / montmorillonite, sericite/	OA
231 A00TM053	43' 57' 47.1' 71' 34' 13.6' Cerro Colora	ado Near Cerro Riñon		Granite (Float)	py diss.	GC

No. Sample No.	Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
232 A00TM054	43' 57' 52.6' 71' 33' 50.8'	Cerro Colorado	Near Cerro Riñon		Granite? (Float)	Silicification / / pyrite diss.	GC
233 A00TM055	44' 41' 25.0' 71' 06' 47.2'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification, argillization / kaolinite / limonite	XR,GC
234 A00TM056	44' 41' 26.0' 71' 07' 00.9'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Silicification // limonite stain	GC
235 A00TM057	44' 41' 23.7' 71' 07' 05.9'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite /	XR
236 A00TM058	44' 41' 21.5' 71' 07' 10.9'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	Argillization / kaolinite / limonite stain	XR,GC
237 A00TM059	44' 41' 31.1' 71' 05' 47.3'	Estrella Gaucha	Estrella Gaucha		Qz vein	Silicilication, argillization/sericite, montmorillonite/	GC,DO,FI
238 A00TM060	44' 41' 31.1' 71' 05' 47.3'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	limonite stain	XR,GC
239 A00TM061	44' 41' 36.8' 71' 05' 44.5'	Estrella Gaucha	Estrella Gaucha		Hydrothurmal breccia	Silicification // limonite stain Argilization/sericite, montmorillonite/cubic	GC
240 A00TM062	44' 41' 20.9' 71' 05' 32.2'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Altered rock	py(limonite) diss.	XR,GC
241 A00TM065	45' 00' 13.7' 71' 27' 28.2'	Cerro Blanco	Cerro Blanco		Qz vein	// limonite	GC
242 A00TM066	45' 00' 24.7' 71' 27' 31.8'	Cerro Blanco	Cerro Blanco		Qz vein	// pyrite (limonite)	GC
243 A00TM067	45' 00' 24.7' 71' 27' 31.8	Cerro Blanco	Cerro Blanco	Lago la Plata Fm.?	Altered rock	Argillization / sericite, montmorillonite / limonite stain	XR
244 A00TM068	45' 00' 32.7' 71' 27' 25.3	Cerro Blanco	Cerro Blanco		Qz vein	// limonite	GC
245 A00RM001	37' 15' 06.9' 70' 39' 18.1	Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / sericite / limonite, hematite	
246 A00RM002	37' 14' 30.4' 70' 39' 37.5	Andacollo	Sur los Maitenez	Intrusive	Volcanic rock	Silicification / kaolinite / limonite-qz network	
247 A00RM003	37' 11' 27.0' 70' 37' 45.4	Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic / / py-cp-gn-sp diss.	
248 A00RM004	37' 11' 27.0' 70' 37' 45.4	Andacollo	Mina Sofia nivel4	Huaraco Fm. (Andacollo Gr.)	Mudstone(ore)	Phyllic / / py-cp-gn-sp diss.	
249 A00RM005	36' 58' 50.2' 70' 38' 45.3	Butalon Norte	Butalon Norte	Coiyoi Fm.	Volcaniclastic rock	Silicification / / magnetite	XR
250 A00RM006	36' 58' 49.0' 70' 38' 45.0	Butalon Norte	Butalon Norte	Coiyoi Fm.	Pebble dyke	Silicification / / magnetite	
251 A00RM007	37' 01' 08.5' 70' 39' 48.2	Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification // limonite	XR
252 A00RM008	37' 01' 03.1' 70' 39' 54.8	Butalon Norte	CM010	Coiyoi Fm.	Volcanic rock	Silicification / sericite / limonite	
253 A00RM009	37' 07' 21,2' 70' 37' 19.9	'Andacollo	CM011	Coiyoi Fm.	Volcanic rock	Silicification / sericite / pyrite diss.	GC
254 A00RM010	37' 26' 41.3' 70' 26' 45.1	Cerro Caicayen	Cerro Caicayen	Cuyo Gr.	Mudstone	Silicification / montmorillonite, kaolinite / limonite	
255 A00RM011	37' 27' 11.8' 70' 26' 44.1	' Cerro Caicayen	Cerro Caicayen	Intrusive (Grupo Molle)	Dacite porphyry	Phyllic / sericite / pyrite limonite	GC
256 A00RM012	37' 11' 29.8' 70' 37' 47.0	' Andacollo	Mina Sofia nivel4	Intrusive	Dacite porphyry	Weak / /	GC
257 A00RM013	37' 11' 59.0' 70' 35' 59.2	' Andacollo	Arroyo Huaraco	Permian Intrusive	Granite	Weak://qzvein-pydiss.	TS,WR
258 A00RM014	37' 13' 08.1' 70' 40' 31.2	Andacollo	Cerro Colo	Intrusive	Granite		
259 A00RM015	37' 13' 08.7' 70' 40' 32.0	Andacollo	Cerro Colo	Intrusive	Dacite porphyry	Potassic? // qz vein	
260 A00RM016	38' 12' 59.2' 70' 32' 22.8	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic //	GC
261 A00RM017	38' 12' 46.4' 70' 32' 25.6	Campana Mahuida	Campana Mahuida	Tordillo Fm.	Sed. Rock	Phyllic / / limonite	GC
262 A00RM018	38' 12' 49.7' 70' 35' 25.2	Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	//barite-gn-sp-mo	
263 A00RM019	38' 11' 50.1' 70' 35' 50.2	Campana Mahuida	Mina Angelica	Ore deposit	Barite vein	//barite-Fe oxides	
264 A00RM020	39' 12' 49.5' 70' 36' 25.3	La Voluntad	La Voluntad	Intrusive	Qz, vein in Granodiorite	Potassic // Fe oxides, muscovite	GC

No. Sa	ample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
265 A	00RM021	39' 12' 50.8'	70' 36' 24.2'	La Voluntad	La Voluntad	Intrusive (La Voluntad Complex)	Granodiorite	Potassic / / Fe oxide, green Cu	GC
266 A	00RM022	39' 03' 01.9'	70' 31' 51.3'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / sericite /	XR
267 A	00RM023	39' 02' 51.2'	70' 31' 58.5'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / montmorillonite, sericite /	XR,GC
268 A	00RM024	39' 01' 54.5'	70' 32' 28.9'	Nireco	ZA026	Campos basalticos de Zapala	Volcaniclastic rock	Silicification / kaolinite, pyrophyllite /	XR
269 A	00RM025	39' 03' 06.5'	70' 32' 07.7'	Nireco	Near ZA027	Campos basalticos de Zapala	Volcaniclastic rock	/sericite /	TS
270 A	00RM026	38' 57' 58.0'	70' 36' 47.5'	Carreri Malal	Carreri Malal	Intrusive	Granite	Weak //	
271 A	00RM027	38' 58' 37.0'	70' 35' 02.0'	Carreri Malal	Near Carreri Malal	Campos basalticos de Zapala	Basalt		
272 A	00RM028	41' 40' 02.3'	71' 06' 15.6'	Mina Maria	Mina Maria	Nahuel Huapi Fm. (Fuapi?)	Andesite?	Propyritic / /	XR,GC
273 A	00RM029	41' 40' 10.0'	71' 06' 43.0'	Mina Maria	Mina Maria		Qz vein (ore)	Silicification / / gn-py-cp-green Cu	PT,OA
274 A	00RM030	42' 08' 36.4'	71' 18' 27.6'	Cerro Coihue	Quebrada Baya	Lago Puelo granitic complex	Tonalite	Silicification / zeolite /	XR,GC
275 A	00RM031	42' 08' 37.7'	71' 18' 29.0'	Cerro Coihue	Quebrada Baya	4.	Tourmaline vein		TS
276 A	00RM032	42' 08' 45.4'	71' 18' 33.0'	Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / montmorillonite / K-feldspar,calcite vein	TS
277 A	00RM033	42' 08' 44.9'	71' 18' 27.3'	Cerro Coihue	Quebrada Baya	Intrusive (Tertiary?)	Andesitic dyke	Propyritic / chlorite,epidote,calcite / limonite pyrite	PT,XR,GC
278 A	00RM034	42' 09' 38.7'	70' 30' 32.1'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / sericite, kaolinite /	XR
279 A	00RM035	42' 09' 36.1'	70' 30' 30.6'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	Argillization / gypsum, sericite /	XR
280 A	00RM036	42' 09' 43,7'	70' 30' 35.9'	Cushamen	Cüshamen	Intrusive (Tertiary?)	Rhyolite	Silicification / sericite / Silicification / gypsum, sericite, montmorillonite / py	GC
281 A	00RM037	42' 09' 47.2'	70' 30' 31.6'	Cushamen	Cushamen		Qz vein	limonite Silicification/sericite;montmorillonite/qz'vein'network;	GC
282 A	00RM038	42' 09' 42.9'	70' 30' 17.3'	Cushamen	Cushamen	Intrusive (Tertiary?)	Rhyolite	tourmaline veinlet	TS
283 A	00RM039	43' 17' 03.0'	70' 59' 11.0'	Cerro Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Silicification, potassic?/ sericite/ qz vein, hematite	
284 A	00RM040	43' 17' 01.0'	70' 59' 16.0'	Cerro Gonzalo	Arroyo Luques	Intrusive	Granodiorite/Porphyry	Silicification, potassic?//qz vein, cp-py-limonite Silicification, phyllic77 qz vein, limonite green Cu,	PT,XR,GC
285 A	00RM041	43' 18' 53.2'	71' 02' 24.5'	Cerro Gonzalo	Cerro Gonzalo	Intrusive	Breccia pipe	tourmaline	XR,GC
286 A	00RM042	43' 18' 25.2'	71' 01' 26.2'	Cerro Gonzalo	Arroyo Luques	Intrusive	Hydrothermal breccia	Silicification / / qz, green Cu, cp, tourmaline	PT,GC
287 A	00RM043	43' 17' 35.0'	71' 00' 25,0'	Cerro Gonzalo	Arroyo Luques		Altered rock	Limonitization // limonite, hematite, green Cu	GC
288 A	00RM044	43' 17' 06.3'	71' 00' 24.9'	Cerro Gonzalo	Arroyo Luques		Altered rock	Limonitization // limonite, hematite, green Cu	
289 A	00RM045	43' 17' 28.7'	70' 59' 37.1'	Cerro Gonzalo	Arroyo Luques	Intrusive (Aleusco Fm.)	Granodiorite	Phyllic / sericite / py-cp-mo-biotite	GC
				Joya del Sol	Brancote-Galadriel Norte		Banded Qz vein	Silicification / / qz-white chalcedony	OA
1	i	42' 53' 28.3'			Brancote Elena Sur		Banded Qz vein	Silicification / / qz·black chalcedony	-
i i		42' 53' 38.7'			Brancote-Elena Sur	Lago la Plata Fm.	Andesitic rock	Argillization / /	TS
		42' 53' 24.0'			Brancote-Julia	Intrusive	Hydrothermal breccia	Silicification / / Vuggy silica	TS
		42' 51' 51.0'			Brancote North of Galadriel	,	Qz vein	Silicification // Massive white qz	
		42' 51' 51.6'			Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Silicification, argillization / sericite / py-limonite	
		42' 51' 50.1'			Brancote North of Galadriel	Lago la Plata Fm.	Altered rock	Argillization / sericite / limonite	
297 AC	00RM053	43' 57' 42.0'	71' 34' 33.0'	Cerro colorado	Near Cerro Riñon		Float	Silicification / pyrophyllite / py-limonite	

	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
298 A00RM054	43' 41' 49.0' 70' 33' 58.0'	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PC
299 A00RM055	43' 41' 58.0' 70' 34' 12.0'	Gabros de Tecka	Gabros de Tecka	Osta Arena Fm. (Liasic)	Hornfels	Contact metamorphism//clinopyroxene, diopside	
300 A00RM056	43' 42' 33.0' 70' 33' 56.0'	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		
301 A00RM057	43' 43' 15.1' 70' 33' 32.8'	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		РТ,РС
302 A00RM058	43' 43' 12.1' 70' 37' 12.7'	Gabros de Tecka	Gabros de Tecka	Intrusive (Tecka Fm.)	Gabbro		PT .
303 A00RM059	44' 41' 23.9' 71' 06' 47.4'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	XR
304 A00RM060	44' 41' 24.0' 71' 06' 49.3'	Estrella Gaucha	Estrella Gaucha	Divisadero Fm.	Ignimbrite (welded tuff)	Silicification, argillization / kaolinite /	TS
305 A00RM061	44' 41' 20.7' 71' 07' 06.8'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Silicification, argillization / kaolinite /	
306 A00RM062	44' 41' 21.7' 71' 07' 07.7'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock (Float)	Argillization / /	XR
307 A00RM063	44' 41' 23.0' 71' 07' 12.5'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.	Sed. Rock	Argillization / kaolinite / dickite	XR
308 A00RM064	44' 41' 36.5' 71' 05' 45.2'	Estrella Gaucha	Estrella Gaucha	in Apeleg Fm.	Brecciated qz vein	Silicification //	GC
309 A00RM065	44' 41' 19.3' 70' 05' 29.4'	Estrella Gaucha	Estrella Gaucha	Apeleg Fm.?	white altered rock	Silicification, argillization / montmorillonite sericite /	XR
310 A00RM066	45' 00' 13.7' 71' 27' 25.2'	Cerro Blanco	Cerro Blanco	in Lago La Plata Fm.	Brecciated qz vein (Float)	Silicification // py-limonite-hematite	GC
311 A00RM067	45' 00' 12.9' 71' 27' 28.2'	Cerro Blanco	Cerro Blanco	Lago la Plata Fm.?	white altered rock		XR
312 A00RM068	45' 00' 21.4' 71' 27' 33.6'	Cerro Blanco	Cerro Blanco	Lago la Plata Fm.	white altered rock with qz pheno.	phenocrystal	XR
313 A00RM069	45' 00' 24.9' 71' 27' 30.9'	Cerro Blanco	Cerro Blanco	in Lago La Plata Fm.	Qz vein (Float)	Silicification // qz·limonite	GC
314 A00RM070	45' 01' 00.2' 71' 27' 06.8'	Cerro Blanco	Cerro Blanco	Tres Lagunas Fm.?	Laminated Sed. Rock	Silicification // qz-chalcedony-calcite-limonite-sulfide	GC
315 A00NK101	39' 01' 49.4' 70' 32' 06.7'	Nireco	Nireco (ZA021)	PTR, Fm, Choiyoi	Quartz	// Limonite	GC
316 A00NK102	39' 00' 56.8' 70' 31' 40.7	Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Rhyolite	Silicification, argillization //	XR, GC
317 A00NK103	39' 00' 53.9' 70' 31' 13.8	'Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi	Quartz vein (float)	// Small metallic mineral	GC
318 A00NK104	39' 00' 55.0' 70' 31' 12.4	Nireco	Nireco (ZA021)	PTR, Fm. Choiyoi PRg, Granitoids (La Voluntad	Crystal tuff	// · · · · · · · · · · · · · · · · · ·	TS
319 A00NK105	39' 12' 41.0' 70' 36' 46.4	La Voluntad	La Voluntad North (ZA001)	complex) PKg, Granitoids (La Voluntad	Quartz porphyry	Silicification, potassium feldspar //	rs
320 A00NK106	39' 12' 41.0' 70' 36' 46.4	La Voluntad	La Voluntad North (ZA001)	complex) PKg, Granitoids (La Voluntad	Quartz porphyry	Silicification, sugary //	
321 A00NK107	39' 12' 38.2' 70' 36' 48.6	La Voluntad	La Voluntad North (ZA001)	complex) PKg, Granitoids (La Voluntad	Quartz porphyry	Silicification, argillization //	XR
322 A00NK108	39' 12' 25.1' 70' 36' 48.6	La Voluntad	La Voluntad North (ZA001)	complex) PKg, Granitoids (La Voluntad	Grnitoid	Argillization //	XR
323 A00NK109	39' 07' 33.6' 70' 37' 48.1	La Voluntad	La Voluntad North (ZA034)	complex) PKg, Granitoids (La Voluntad	Granite	11	TS
324 A00NK110	39' 07' 33.6' 70' 37' 48.1	La Voluntad	La Voluntad North (ZA034)	complex) PRg, Granitoids (La Voluntad	Aplite	Tourmaline? //	TS
325 A00NK111	39' 07' 30.2' 70' 38' 05.2	La Voluntad	La Voluntad North (ZA034)	complex) PRg, Granitoids (La Voluntad	Granitoid	// Limonite	XR
326 A00NK112	39' 07' 32.2' 70' 38' 07.8	La Voluntad	La Voluntad North (ZA034)	complex) Complex PRg, Granitoids (La Voluntad	Granitoid	//·Limonite	XR _
327 A00NK113	39' 07' 49.0' 70' 38' 14.2	La Voluntad	La Voluntad North (ZA034)	complex)	Ryolite dike	// Limonite, small pyrite	GC
328 A00NK114	39' 08' 28.9' 70' 34' 41.5	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Argillization / / Limonite	XR, GC
329 A00NK115	39' 08' 28.9' 70' 34' 41.5	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic lapili tuff	Argillization / /	XR
330 A00NK116	39' 08' 34.3' 70' 34' 33.9	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesite	//	XR

No.		Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
331	A00NK117	39' 08' 34.3' 70' 34' 33.9'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Argillization / / Limonite	GC
332	A00NK118	39' 08' 30.9' 70' 34' 49.3'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesitic tuff breccia	Chlorite //	XR
333	A00NK119	39' 08' 33.5' 70' 34' 49.9'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Quartz vein & tuff	Silicification / /	GC
334	A00NK120	39' 08' 43.2' 70' 34' 47.6'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization //	XR
335	A00NK121	39' 08' 46.6' 70' 34' 54.2'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Andesitic tuff	Chlorite / / Hematite	XR
336	A00NK122	39' 08' 46.6' 70' 34' 54.2'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization //	XR
337	A00NK123	39' 10' 08.2' 70' 34' 17.0'	La Voluntad	La Voluntad North (ZA032)	PTR, Fm. Choiyoi	Undefined	Argillization / / Limonite	XR, GC
338	A00NK124	38' 52' 31.0' 70' 47' 33.8'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization //	XR, GC
339	A00NK125	38' 52' 24.4' 70' 47' 33.2'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff	Silicification, argillization //	XR
340	A00NK126	38' 52' 09.1' 70' 47' 46.0'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff, quartz vein	Silicification / /	GC
341	A00NK127	38' 52' 08.4' 70' 47' 50.7'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic lapili tuff	Silicification / / Limonite	XR, GC
342	A00NK128	38' 52' 28.5' 70' 47' 58.4'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolitic tuff breccia	Silicification / / Limonite	XR, GC
343	A00NK129	38' 52' 31.5' 70' 48' 06.9'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Rhyolite	Silicification / / Limonite	XR, GC
344	A00NK130	38' 49' 21.7' 70' 39' 12.0'	Palau Mahuida	Palau Mahuida	PC2, Fm. Colohuincul eq.	Biotite Garnet gneiss, quartz vein	11	GC
345	A00NK131	38' 47' 06.9' 70' 40' 06.0'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Tuff	Argillization / /	XR, GC
346	A00NK132	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Silicification, kaolin // Pyrite dissemination	PT, XR, GC
347	A00NK133	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Tα2, Fm. Farallones eq.	Andesite	Argillization / / Limonite	XR
348	A00NK134	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Quartz-pyrite vein	// Pyrite	GC
349	A00NK135	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Kaolin ?//	XR
350	A00NK136	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	// Limonite	GC
351	A00NK137	38' 46' 42.7' 70' 40' 29.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Andesite porphyry	//	TS
352	A00NK138	38' 46' 35.1' 70' 40' 26.0'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Andesite porphyry	Silicification, argillization //	GC
353	A00NK139	38' 46' 35.1' 70' 40' 25.3'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Hydrothermal breccia	Silicification / / Pyrite	GC
354	A00NK140	38' 46' 27.4' 70' 40' 23.0'	Palau Mahuida	Palau Mahuida (ZA007)	Tα2, Fm. Farallones eq.	Undefined	Alunite ?//	XR
355	A00NK141	38' 46' 25.2' 70' 40' 22.2'	Palau Mahuida	Palau Mahuida (ZA007)	Ta2, Fm. Farallones eq.	Undefined	Alunite ?//	XR
356	A00NK142	38' 47' 11.2' 70' 41' 07.9'	Palau Mahuida	Palau Mahuida (ZA007)	Tα2, Fm. Farallones eq.	Undefined	Alunite ?//	XR
357	A00NK143	38' 47' 55.3' 70' 41' 22.3'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Dacite	Jarosite ? / / Hematite	XR
358	A00NK144	38' 47' 55.3' 70' 41' 22.3'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Tuff	11	TS
359	A00NK145	38' 48' 06.8' 70' 40' 05.0'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Undefined	Argillization / / Limonite	XR
360	A00NK146	38' 48' 18.8' 70' 40' 06.5'	Palau Mahuida	Palau Mahuida	Ta2, Fm. Farallones eq.	Bsalt	//	
361	A00NK147	38' 41' 31.4' 70' 41' 29.6'	Palau Mahuida	Plau Mahuida North (ZA004)	PRg, Granitoids	Granite	//	TS
362	A00NK148	38' 41' 19.2' 70' 41' 34.4'	Palau Mahuida	Plau Mahuida North (ZA004)	PTR, Fm. Choiyoi	Andesite	Silicification //	TS
363	*A00NK149	41' 32' 17.6' 71' 08' 50.4'	Rio Foyel	Cerro Carrera east		Oxide copper	11	

	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
364 A00NK150	41' 30' 15.9' 71' 12' 08.4'	Rio Foyel	Cerro Carrera east (SB068)	Jg, Granitoids	Quartz vein	<i>II</i>	GC
365 A00NK151	41' 30' 18.2' 71' 12' 09.0'	Rio Foyel	Cerro Carrera east (SB068)	Jg, Granitoids	Granitoid	//	тs
366 A00NK152	41' 32' 38.7' 71' 09' 40.4'	Rio Foyel	Cerro Carrera east		Quartz vein (float)	<i>H</i> .	GC
367 A00HH101	43' 18' 53.2' 71' 02' 25.9'	Cerro Gonzalo	Cerro Gonzalo, Sector 2		Massive quartz with limonite	//	
368 A00HH102	43' 18' 23.8' 71' 01' 32.7	Cerro Gonzalo	Cerro Gonzalo, Sector 5	Kg, Cretaceous granitoids	Altered rock, hydrothermal breccia	Argillization // Quartz-malachite	TS, XR
369 A00HH103	43' 19' 08.3' 71' 00' 43.5	Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Altered rock	Argillization // Quartz-malachite	XR
370 A00HH104	43' 20' 04.6' 71' 05' 53.3	Cerro Gonzalo	Cerro Gonzalo, Sector 3	JBa, Fm. Lago la Plata	Andesite	Argillization / /	XR, GC
371 A00HH105	43' 20' 07.9' 71' 05' 59.6	Cerro Gonzalo	Cerro Gonzalo, Sector 3	JBa, Fm. Lago la Plata	Hydrothermal breccia	Tourmaline //	TS, XR
372 A00HH106	43' 18' 39.8' 71' 04' 59.4	Cerro Gonzalo	Cerro Gonzalo, Sector 6	JBa, Fm. Lago la Plata	Altered rock, hydrothermal breccia	Argillization / /	XR
373 A00HH107	43' 18' 41.4' 71' 05' 16.0	Cerro Gonzalo	Cerro Gonzalo, Sector 6	J8a, Fm. Lago la Plata	Altered rock	Argillization / / Quartz-limonite	XR
374 A00HH108	43' 16' 53.4' 71' 00' 25.4		Cerro Gonzalo, Sector 1	JBa, Fm. Lago la Plata	Altered rock	Argillization //	XR .
375 A00HH109	43' 17' 05.1' 71' 00' 29.8	Cerro Gonzalo	Cerro Gonzalo, Sector 1	JBa, Fm. Lago la Plata	Cu oxide ore	Argillization / / Malachite	XR, OA
376 A00HH110	43' 17' 21.7' 70' 59' 36.4	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Altered rock	Argillization / / Black limonite	PT
377 A00HH111	43' 31' 01.8' 71' 05' 33.9	' Arroyo Cascada	Arroyo Cascada		Quartz vein with pyrite malachite	// Pyrite-malachite	OA
378 A00HH112	43' 30' 34.6' 71' 05' 54.5	' Arroyo Cascada	Arroyo Cascada	Kg, Cretaceous granitoids	Altered granite	Silicification // Pyrite	XR, GC
379 A00HH113	43' 10' 13.3' 71' 01' 14.8	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Altered rock with clay vein	Argillization / /	XR, GC
380 A00HH114	43' 10' 12.5' 71' 01' 20.3	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Andesite	// Pyrite	XR, GC
381 A00HH115	43' 30' 12.0' 71' 06' 33.1	' Arroyo Cascada	Arroyo Cascada	JBa, Fm. Lago la Plata	Andesite	Silicification, epidote / / Pyrite	GC
382 A00HH116	43' 30' 54.9' 71' 09' 43.0	Cerro Cuche	Cerro Cuche		Quartz vein	Black mineral (tourmaline?) //	PT, GC
383 A00HH117	43' 30' 57.0' 71' 09' 42.6	Cerro Cuche	Cerro Cuche	Kg, Cretaceous granitoids	Quartz porphyry	// Pyrite, limonite	GC
384 A00HH118	43' 30' 57.9' 71' 09' 41.0	Cerro Cuche	Cerro Cuche	JBa, Fm. Lago la Plata	Sandstone	Silicification / / Pyrite	GC
385 A00HH119	43' 31' 03.2' 71' 09' 36.5	Cerro Cuche	Cerro Cuche	JBa, Fm. Lago la Plata	Sandstone	Mica, clay // Pyrite	GC
386 A00HH120	43' 32' 15.3' 71' 08' 47.5	Cerro Cuche	Cerro Cuche	JBa, Fm. Lago la Plata	Sandstone	Silicification / / Pyrite	
387 A00HH121	43' 32' 15.2' 71' 08' 40.8	Cerro Cuche	Cerro Cuche		Metallic mineral vein	Clay mineral / / Metallic mineral	PT, XR
388 A00HH122	43' 31' 40.9' 71' 09' 58.5	Cerro Cuche	Cerro Cuche	Kg, Cretaceous granitoids	Quartz porphyry	Argillization / / Limonite	XR, GC
389 A00HH123	42' 09' 45.0' 71' 24' 01.7	Condorcanqui	Condorcanqui		Quartz vein	11	GC
390 A00HH124	42' 09' 41.8' 71' 23' 58.3	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	// Malachite, chalcopyrite, pyrite	OA
391 A00HH125	42' 09' 32.5' 71' 23' 50.1	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	// Cu mineral	
392 A00HH126	42' 09' 35.6' 71' 23' 48.0	Condorcanqui	Condorcanqui	Intrusive	Quartz porphyry	// Malachite, chalcopyrite	PT, OA
393 A00HH127	42' 10' 05.3' 71' 24' 04.4	l' Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Epidote // Malachite, chalcopyrite	OA
394 A00HH128	42' 19' 42.6' 71' 29' 19.8	B Epuyen	Rio Blanco	Kg, Cretaceous granitoids	Quartz porphyry	//	TS, XR, GC
395 A00HH129			Rio Blanco	Kg, Cretaceous granitoids	Altered rock	// Malachite, chalcopyrite	OA
	42' 16' 21.3' 71' 23' 44.5		Arroyo Pedregoso	Jm, Fm. Piltriquitron	Silicified tuff	White clay // Malachite	XR, OA

No.	Sample No.	Latitude(S)	Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
397	A00HH131	42' 15' 55.7'	71' 24' 05.8'	Epuyen	Arroyo Pedregoso		Undefined (float)	// Pyrite	GC
398	A00HH132	42' 15' 55.7'	71' 24' 05.8'	Epuyen	Arroyo Pedregoso	Intrusive	Aplite or felsite	White clay / / Pyrite :	TS, XR, GC
399	A00HH133	42' 21' 14.9'	71' 26' 30.9'	Epuyen	South of SB083		Andesite (float)	// Quartz-pyrite	GC
400	A00HH134	42' 21' 14.9'	71' 26' 30.9'	Epuyen	South of SB083		Sandstone (float)	//Quartz-pyrite	GC
401	A00HH135	42' 20' 13.0'	71' 25' 18.5'	Epuyen	Southeast of SB082	Jm, Fm. Piltriquitron	Andesite with quartz vein	//Quartz-calcite-pyrite	GC
402	A00HH136	42' 20' 13.0'	71' 25' 18.5'	Epuyen	Southeast of SB082		Silicified rock (float)	silicification / / Pyrite	GC
403	A00MZ101	43' 18' 24.2'	71' 01' 32.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 5	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite // Black Cu pitch	XR, GC
404	A00MZ102	43' 19' 07.5'	71' 00' 41.0'	Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite / / Malachite	XE, GC
405	A00MZ103	43' 18' 57.7'	71' 00' 44.6'	Cerro Gonzalo	Cerro Gonzalo, Sector 4	Kg, Cretaceous granitoids	Granodiorite	11	TS, WR
406	A00MZ104	43' 20' 05,2'	71' 05' 53.7'	Cerro Gonzalo	Cerro Gonzalo, Sector 3	Jßa, Fm. Lago la Plata	Hydrothermal breccia	Silicification // Limonite	XR, GC
407	A00MZ105	43' 20' 23.6'	71' 06' 22.1'	Cerro Gonzalo	Cerro Gonzalo, Sector 3	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite / / Limonite	XR, GC
408	A00MZ106	43' 18' 43.5'	71' 04' 53.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 6	Kg, Cretaceous granitoids	Silicified rock	Quartz-sericite // Red limonite	XR, GC
409	A00MZ107	43' 16' 50.8'	71' 00' 02.8'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Leucocratic granitoid	Potassic / /	TS
410	A00MZ108	43' 16' 49.5'	71' 00' 01.5'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Granodiorite	Potassic / / Hypogene chalcopyrite	PT, WR, KA
411	A00MZ109	43' 16' 58.5'	71' 00' 30.9'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Altered granitoid	Quartz-sericite // Intensive limonite	XR
412	A00MZ110	43' 17' 27.1'	70' 59' 39.4'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite // Py-Cp-Mo dissemination	XR, GC
413	A00MZ111	43' 17' 33.9'	71' 00' 29.7'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Quartz porphyry	Quartz-sericite // Red limonite etc	XR, GC
414	A00MZ112	43' 17' 00.7'	70' 59' 21.0'	Cerro Gonzalo	Cerro Gonzalo, Sector 1	Kg, Cretaceous granitoids	Granite	Quartz-sericite // Hypogene chalcopyrite	
415	A00MZ113	43' 30' 48.0'	71' 05' 26.8'	Arroyo Cascada	Arroyo Cascada	JBa, Fm. Lago la Plata	Altered volcancs	Silicification / / Limonite	XR, GC
416	A00MZ114	43' 31' 01.9'	71' 05' 33.8'	Arroyo Cascada	Arroyo Cascada	Kg, Cretaceous granitoids	Micro granodiorite	11:	TS
417	A00MZ115	43' 30' 51.5'	71' 05' 38.6'	Arroyo Cascada	Arroyo Cascada	JBa, Fm. Lago la Plata	Altered volcancs	Silicification // Limonite	XR, GC
418	A00MZ116	43' 30' 37.1'	71' 05' 50.1'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein	// Large grain pyrite	GC
419	A00MZ117	43' 10' 10.7'	71' 01' 20.7'	Laguna Sunica	Laguna Sunica	Tal, Fm. Ventana	Altered volcancs	Silcification, argillization // Pyrite, limonite	XR, GC
420	A00MZ118	43' 10' 15.6'	71' 01' 14.2'	Laguna Sunica	Laguna Sunica	Zeolite vein	Zeolite vein	//	XR
421	A00MZ119	43' 30' 23.6'	71' 06' 25.8'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein	//	DO, FI
422	A00MZ120	43' 30' 11.9'	71' 06' 33.4'	Arroyo Cascada	Arroyo Cascada	Quartz vein	Quartz vein (float)	// Limonite	GC
423	A00MZ121	43' 27' 58.5'	71' 03' 31.4'	Arroyo Cascada	Princess	J8a, Fm. Lago la Plata	Altered volcancs (tailing)	Silicification / / Pyrite dissemination	XR, GC
424	A00MZ122	43' 27' 42.0'	71' 03' 28.7'	Arroyo Cascada	Princess	Quartz vein	Quartz vein (float)	//	GC
425	A00MZ123	43' 30' 42.9'	71' 09' 49.7'	Cerro Cuche	Cerro Cuche north	Quartz vein	Quartz vein	// Galena dissemination	OA
426	A00MZ124	43' 30' 36.0'	71' 10' 01.8'	Cerro Cuche	Cerro Cuche north	JBa, Fm. Lago la Plata	Silt	Silicification / / Pyrite dissemination	XR, GC
427	A00MZ125	43' 32' 14.4'	71' 08' 42.2'	Cerro Cuche	Cerro Cuche south	Quartz-sulfide vein	Quartz sulfide vein	// Galena-pyrite-limonite	PT, OA
428	A00MZ126	43' 31' 52.2'	71' 09' 43.6'	Cerro Cuche	Cerro Cuche south	Intrusion	Quartz porphyry	Tourmaline // Pyrite dissemination	XR, GC
429	A00MZ127	43' 32' 22.6'	71' 10' 25.0	Cerro Cuche	Cerro Cuche south	Gossan	Gossan	// Massive limonite	OA

	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
430 A00MZ128	42' 09' 43.2' 71' 24' 00.6'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite / / Bornite, malachite	
431 A00MZ129	42' 09' 46.5' 71' 24' 01.5'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite // Chalcopyrite, quartz-calcite veinlets	XR
432 A00MZ130	42' 09' 46.5' 71' 24' 01.5'	Condorcanqui	Condorcanqui	Dyke	Andesite	Fresh // Post mineralization	TS, KA
433 A00MZ131	42' 09' 41.9' 71' 23' 58.4'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Silicification // Chalcopyrite dissemination	DS
434 A00MZ132	42' 09' 32.5' 71' 23' 49.9'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesitic tuff breccia	Silicification // Chalcocite, malachite	XR, OA
435 A00MZ133	42' 09' 36.6' 71' 23' 46.5'	Condorcanqui	Condorcanqui	Dyke	Dacite porphyry	// Chalcopyrite dissemination	ļ .
436 A00MZ134	42' 10' 12,4' 71' 24' 05.8'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesitic rock	 Silicification / / Malachite Amygdale epidote and calcite / // Chalcopyrite in	XR, OA
437 A00MZ135	42' 10' 04.0' 71' 24' 04.1'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	amygdale part	DS
438 A00MZ136	42' 09' 42.5' 71' 24' 07.0'	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Epidote / /	DS
439 A00MZ137	42' 12' 08.1' 71' 23' 40.2'	Condorcanqui	North of Epuyen town	Intrusion	Granodiorite	//	TS, WR, DS
440 A00MZ138	42' 09' 11.3' 71' 23' 53.9'	Condorcanqui	North of Condorcanqui	Jm, Fm. Piltriquitron	Andesite	Propylite //	GC _
441 A00MZ139	42' 09' 55.4' 71' 23' 19.9	Condorcanqui	Condorcanqui	Jm, Fm. Piltriquitron	Andesite	//	TS, WR, KA
442 A00MZ140	42' 19' 44.0' 71' 29' 20.9	Epuyen	Rio Blanco	Kg, Cretaceous granitoids	Qz porphyry	Silicification // Quartz vein and pyrite dissemination	GC
443 A00MZ141	42' 19' 53.6' 71' 29' 08.0	Epuyen	Rio Blanco	Kg, Cretaceous granitoids	Granitoids (float)	Silicification // Quartz vein and pyrite dissemination	GC
444 A00MZ142	42' 15' 54.6' 71' 24' 03.8	Epuyen	Arroyo Pedregoso	Quartz vein	Quartz vein (float)	//	GC
445 A00MZ143	42' 21' 14.7' 71' 26' 30.7	'Epuyen	South of SB083	Quartz vein	Quartz vein (float)	Silicification // Pyrite dissemination	XR, GC
446 A00MZ144	42' 21' 14.7' 71' 26' 30.7	Epuyen	South of SB083	Jm, Fm. Piltriquitron	Silicified rock	Silicification / / Limonite	GC
447 A00MZ145	42' 20' 14.3' 71' 25' 19.3	Epuyen	Southeast of SB082	Calcite vein	Calcite vein	<u>/// </u>	GC
448 A00MZ146	42' 20' 14.3' 71' 25' 19.3	' Epuyen	Southeast of SB082	Jm, Fm. Piltriquitron	Silicified rock	Silicification / /	XR
449 A00MZ147	42' 20' 14.3' 71' 25' 19.3	Epuyen	Southeast of SB082	Quartz vein	Quartz vein (float)	// Pyrite dissemination	GC
450 A00MZ148	42' 13' 19.0' 71' 27' 20.1	Epuyen	Lago Epuyen	Quartz vein	Quartz vein	11	GC, DO, FI
451 A00MZ149	42' 13' 19.0' 71' 27' 20.1	Epuyen	Lago Epuyen	Jm, Fm. Piltriquitron	Silicified rock	Silicification / /	XR
452 A00MZ150	42' 13' 18.7' 71' 26' 41.6		Lago Epuyen	Quartz vein	Quartz vein	//	GC
453 A00TM101	36' 37' 51.8' 70' 36' 59.6		Arroyo Ailinco	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite, sericite /	XR, GC
454 A00TM102	36' 42' 18.7' 70' 38' 00.0	Villa Aguas Calientes Villa Aguas	Arroyo la Totora		Quartz vein	//	GC
455 A00TM103	36' 39' 12.9' 70' 36' 53.7	"Calientes	Arroyo Manchana Covunco		Quartz vein	//	GC, FI
456 A00TM104	36' 32' 42.9' 70' 37' 15.1	Villa Aguas 'Calientes Villa Aguas	Alteration zone near ML013	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite / Pyrite dissemination	XR, GC
457 A00TM105	36' 32' 42.9' 70' 37' 15.0		Alteration zone near ML013	Ta2, Fm. Cajón Negro	Altered rock	Argillization / Montmorillonite / Pyrite dissemination	XR, GC
458 A00TM106	36' 32' 45.5' 70' 37' 12.4	1	Alteration zone near ML013	Ta2, Fm. Cajón Negro	Andesite	Propylitic / /	TS
459 A00TM107	36' 52' 06.9' 70' 37' 43.6	Varvarco	Mina sin nombre	Intrusive	Granodiorite	Argillization / Sericite / Limonite	XR, GC
460 A00TM108	36' 52' 09.2' 70' 37' 43.4	Varvarco	Mina sin nombre	Intrusive	Granodiorite	Silicification / /. Limonite	XR, GC
461 A00TM109	36' 52' 09.3' 70' 37' 43.5	Varvarco	Mina sin nombre		Quartz vein	// Pyrite	GC, FI
462 A00TM110	36' 51' 57.1' 70' 36' 21.5	Varvarco	Mina Santos	Intrusive	Granodiorite	11	TS

No. Sample No.	Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
463 A00TM111	36' 51' 57,4' 70' 36' 21.7'	Varvarco	Mina Santos	Intrusive	Granodiorite	Argillization / Sericite / Pyrite dissemination, limonite	XR, GC
464 A00TM112	36' 51' 57.5' 70' 36' 21.6'	Varvarco	Mina Santos	Ore deposit	Quartz vein	// Chalcopyrite, malachite, azurite, pyrite	OA, FI
465 A00TM113	36' 53' 22.7' 70' 38' 23.7'	Varvarco	Alteration zone near Varvarco village	PTR, Fm. Choiyoi	Rhyolitic tuff	Argillization / Sericite / Limonite along crack	XR, GC
466 A00TM114	36' 47' 53.6' 70' 35' 02.9'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff	Argillization / Sericite / Pyrite dissemination	XR, GC
467 A00TM115	36' 47' 54.4' 70' 35' 05.2'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff	Argillization, silicilication Sericite Pyrite dissemination	XR, GC
468 A00TM116	36' 48' 00,2' 70' 35' 13.9'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff breccia	Silicification / Sericite / Pyrite dissemination	XR, GC
469 A00TM117	36' 47' 57.0' 70' 35' 17.0'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Altered rock	Silicification // Pyrite dissemination	XR, GC
470 A00TM118	36' 47' 54.7' 70' 35' 28.0'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Tuff breccia	Silicification / / Pyrite dissemination	GC
471 A00TM119	36' 47' 53.5' 70' 35' 35.3'	Varvarco	Alteration zone along Arroyo Auque		Quartz vein	11	GC, FI
472 A00TM120	36' 47' 41.6' 70' 36' 29.5'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm. Choiyoi	Altered rock	Argillization / Pyropylite /	XR
473 A00TM121	36' 47' 41.6' 70' 36' 29.5'	Varvarco	Alteration zone along Arroyo Auque	PTR, Fm; Choivoi	Altered rock	Silicification //	XR, GC
	36' 55' 31.3' 70' 25' 12.7'		Cerro Collocho	Intrusive	Dacitic andesite	Silicification, argillization //	XR, GC
	36' 55' 20.0' 70' 25' 10.1'		Cerro Collocho		Limonite-quartz vein	// Pyrite, limonite	GC GC
	36' 55' 20.0' 70' 25' 10.1'		Cerro Collocho	Intrusive	Dacitic andesite	Argillization / Sericite / Limonite	XR
	36' 55' 15.9' 70' 25' 10.9'		Cerro Collocho	Intrusive	Dacitic andesite	//	TS, WR, KA
	36' 55' 05.1' 70' 25' 20.1'		Cerro Collocho	Intrusive	Dacite	Argillization / Sericite /	
	37' 52' 16.4' 70' 27' 06.4'			JK, Grupo Mendoza	Shale	Silicultation, argillization? Montmorillonite? Pyrite dissemination	XR
	37' 52' 15.7' 70' 27' 03.9'		<u> </u>			Silicitication, argillization 7 Montmorillonite 7 Pyrite	XR, GC
	37' 20' 38.1' 70' 22' 22.1'		Cerro Mayal	JK, Grupo Mendoza	Sandstone	dissemination	XR, GC
				IV Comments	Altered rock (gossan)	Silicification // Pyrite-limonite	GC
	37' 20' 40.4' 70' 22' 21.3'		Cerro Mayal	JK, Grupo Mendoza	Sandstone	Argillization / / Silicitication / Sericite / Pyrite, Inmonite,	XR
	37' 20' 34.0' 70' 22' 26.4'		Cerro Mayal	Intrusive	Andesite	malachite	XR, GC
	37' 20' 34.0' 70' 22' 26.4'		Cerro Mayal	Intrusive	Andesite	Argillization / Sericite /	PT
	37' 19' 55.5' 70' 23' 46.4'		Cerro Mayal		Altered rock (gossan)	// Limonite, calcite	IGC
	37' 19' 55.5' 70' 23' 46.4'		Cerro Mayal	Intrusive	Andesite	Argillization / Kaolinite, montmorillonite /	XR
487 A00TM136	37' 20' 13.4' 70' 22' 51.9'	Cerro Mayal	Cerro Mayal	JK, Grupo Mendoza	Tuff breccia	Propylitic / Montmorillonite / Limonite	XR, GC
488 A00TM137	37' 20' 17.5' 70' 22' 49.6'	Cerro Mayal	Cerro Mayal	Intrusive	Andesite	Argillization / Sericite / Argillization / Montmorillonite, Sericite / Marcasite	XR
489 A00TM138	37' 43' 07.4' 70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Altered rock	dissemination	PT, XR, GC
490 A00TM139	37' 43' 07.4' 70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes		Altered rock(gossan)	// Limonite	GC
491 A00TM140	37' 43' 07.4' 70' 25' 11.1'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Sandstone	Silicificaton, argillization / Sericite, montmorillonite /	XR
492 A00TM141	37' 43' 00.2' 70' 24' 13.8'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Shale	Silicification / / Marcasite dissemination	XR, GC
493 A00TM142	37' 43' 00.2' 70' 24' 13.8'	Cerro de los Bueyes	Cerro de los Bueyes	JK, Grupo Mendoza	Sandstone	Silicification // Marcasite dissemination and vein	PT, XR, GC
494 A00TM144	37' 59' 29.6' 70' 33' 19.3'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous shale	Argillization / Sericite /	XR
495 A00TM145	37' 59' 29.6' 70' 33' 19.3'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous shale	// Limonite, Cu oxide mineral	GC

	Latitude(S) Longitude(W)		Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
496 A00TM146	37' 59' 55.5' 70' 33' 35.7'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization / Montmorillonite / Limonite	XR
497 A00TM147	37' 59' 55.5' 70' 33' 35.7'	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
498 A00TM148	37' 59' 56.6' 70' 33' 35.4'	'Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification, hydrothermal breccia // Limonite	GC
499 A00TM149	37' 59' 48.7' 70' 33' 05.6'	Campana Mahuida	Pino Andino		Barite-Cu oxide vein	// Barite, azurite, malachite	OA
	38' 12' 35.7' 70' 32' 12.4'		Campana Mahuida	Intrusive	Diorite	// Argillization / Sericite / Malachite, pyrite	TS, KA
501 A00TM154	37' 59' 52.1' 70' 33' 39.4	'Campana Mahuida	Pino Andino	Intrusive	Granodiorite	dissemination	XR, GC
502 A00TM155	37' 59' 46.0' 70' 33' 07.2	'Campana Mahuida	Pino Andino	Intrusive	Granodiorite	Argillization / Sericite /	XR
503 A00TM156	37' 59' 46.1' 70' 33' 04.9	'Campana Mahuida	Pino Andino		Limonite-quartz-barite vein	// Limonite, Cu oxcide mineral	GC
504 A00TM157	37' 59' 28.3' 70' 33' 07.9	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization, silicification / Sericite / Limonite	XR, GC
505 A00TM158	37' 59' 28.3' 70' 33' 07.9	' Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
506 A00TM159	37' 59' 31.9' 70' 32' 48.9	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Argillization / Sericite /	XR
507 A00TM160	37' 59' 31.9' 70' 32' 48.9	Campana Mahuida	Pino Andino		Limonite-silicification vein	Silicification / / Limonite	GC
508 A00TM161	37' 59' 28.7' 70' 32' 41.5	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
509 A00TM162	37' 59' 19.1' 70' 32' 14.2	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
510 A00TM163	38' 00' 21.1' 70' 33' 29.6	Campana Mahuida	Pino Andino	Intrusive	Porphyritic diorite	//	TS
511 A00TM164	37' 59' 54.0' 70' 32' 59.2	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
512 A00TM165	37' 59' 46.0' 70' 32' 58.9	Campana Mahuida	Pino Andino	JK, Grupo Mendoza	Tuffaceous sandstone	Silicification / / Limonite	GC
513 A00TM166	37' 59' 41.7' 70' 32' 58.7	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
514 A00TM167	37' 59' 45.3' 70' 32' 50.9	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite, barite	GC
515 A00TM168	37' 59' 44.2' 70' 32' 43.7	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
516 A00TM169	37' 59' 41.4' 70' 32' 35.5	o Campana Mahuida	Pino Andino		Gossan	// Limonite	GC
517 A00TM170	37' 59' 41.6' 70' 32' 35.3	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
518 A00TM171	37' 59' 54.2' 70' 32' 59.0	Campana Mahuida	Pino Andino		Gossan	Silicification / / Limonite	GC
519 A00TM172	37' 59' 54.6' 70' 33' 41.3	Campana Mahuida	Pino Andino	Intrusive	Porphyritic granodiorite	Argillization / / Pyrite, limonite	XR, GC
520 A00TM173	37' 59' 51.2' 70' 33' 33.8	Campana Mahuida	Pino Andino	Intrusive	Porphyritic granodiorite		TS
521 A00TM174	37' 59' 52.0' 70' 33' 37.9	Campana Mahuida	Pino Andino	Intrusive	Porphyritic granodiorite	// Malachite, limonite	XR, GC
522 A00RM101	39' 01' 49.4' 70' 32' 06.4	i' Nireco	Nireco NE	PTR, Fm. Choiyoi	Rhyolite	Argillization, silicification / / Limonite	XR, GC
523 A00RM102	39' 00' 51.7' 70' 31' 27.2	2' Nireco	Nireco NE	PTR, Fm. Choiyoi	Rhyolite	Argillization / / Limonite	XR
524 A00RM103	39' 00' 48.8' 70' 31' 25.2	2' Nireco	Nireco	PTR, Fm. Choiyoi	Rhyolite	Weak silicification / / Limonite	TS
525 A00RM104	39' 00' 55.2' 70' 31' 07,1	1' Nireco	Nireco	PTR, Fm. Choiyoi	Laminated tuff	Silicification, argillization //	XR
526 A00RM105	39' 01' 00.2' 70' 31' 09.	1' Nireco	Nireco	PTR, Fm. Choiyoi	Conglomerate, crystal tuff	Argillization, silicification //	
527 A00RM106	39' 01' 20.7' 70' 31' 41.5	5' Nireco	Nireco	PTR, Fm. Choiyoi	Rhyolite	Argillization, silicification / / Limonite	XR, GC
528 A00RM107	39' 12' 47.1' 70' 36' 25.5	5' La Voluntad	La Voluntad	CPg, La Voluntad complex	Quartz porphyry	Phyllic / / Limonite, malachite	

No. Sample No.	Latitude(S) Longitude(W)	District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
529 A00RM108	39' 12' 39.3' 70' 36' 26.0'	La Voluntad	La Voluntad	CPg, La Voluntad complex	Quartz porphyry	Silicification //	TS
530 A00RM109	39' 07' 29.5' 70' 37' 46.8'	La Voluntad	La Voluntad North	Intrusive	Aplite, granite	Tourmalinization / /	XR
531 A00RM110	39' 07' 46.8' 70' 38' 10.8'	La Voluntad	La Voluntad North	Intrusive	Aplite	// Limonite, pyrite	XR
532 A00RM111	39' 08' 29.4' 70' 34' 46.8'	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff	Silicification, argillization // Limonite network	XR, GC
533 A00RM112	39' 08' 31.6' 70' 34' 39.6'	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff	Silicification, argillization / / Limonite	XR
534 A00RM113	39' 08' 33.7' 70' 34' 46.4'	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Tuff with quartz vein	Silicification, argillization // Limonite	XR, GC
535 A00RM114	39' 08' 33.7' 70' 34' 46.4'	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Hydrothermal breccia (float)	Silicification, argillization // Limonite matrix	GC
536 A00RM115	39' 08' 32.4' 70' 34' 49.6'	La Voluntad	La Voluntad North	PTR, Fm. Choiyoi	Brecciated vein (float)	Silicification, argillization // Limonite	XR, GC
537 A00RM116	38' 52' 08.9' 70' 47' 45.9'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Tuff breccia	Silicification, argillization, leaching // Limonite	XR, GC
538 A00RM117	38' 52' 09.0' 70' 47' 47.7'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Alt.rock with quartz veinlet	Silicification, argillization // Limonite	XR, GC
539 A00RM118	38' 52' 32.6' 70' 48' 09.7'	Palau Mahuida	Cerro Cochico	PTR, Fm. Choiyoi	Altered rock	Silicification, argillization / / Limonite	XR
540 A00RM119	38' 48' 31.5' 70' 39' 03.7'	Palau Mahuida	Palau Mahuida	PC2, Fm. Colohuincul eq.	Quartz vein	//	GC
541 A00RM120	38' 46' 42.8' 70' 40' 29.1'	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Tuff breccia	Argillization, silicification / / Limonite, pyrite	XR
542 A00RM121	38' 46' 42.7' 70' 40' 28.3'	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Jarosite network	// Silicification, argillization, leaching 77 Limonite.	XR, GC
543 A00RM122	38' 46' 38.5' 70' 40' 25.3'	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock	jarosite, pyrite	GC
544 A00RM123	38' 46' 38.2' 70' 40' 26.0'	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock with quartz veinlet	Silicification, argillization, leaching // Limonite Silicification, argillization, leaching // Limonite,	cc
545 A00RM124	38' 46' 26.6' 70' 40' 22.0'	Palau Mahuida	Palau Mahuida (ZA007)	PTR, Fm. Choiyoi	Altered rock	jarosite	XR
546 A00RM125	38' 47' 07.8' 70' 40' 44.0'	Palau Mahuida	Palau Mahuida	PTR, Fm. Choiyoi	Altered rock	Argillization, silicification / / Limonite, jarosite	XR
547 A00RM126	38' 47' 07.9' 70' 41' 09.8'	Palau Mahuida	Palau Mahuida	PTR, Fm. Choiyoi	Altered rock with opal vein	Silicification, argillization //	XR,GC
548 A00RM127	38' 48' 04.2' 70' 40' 07.0'	Palau Mahuida	Palau Mahuida	PTR, Fm, Choiyoi	Altered rock	Silicification, argillization // Limonite, jarosite	XR
549 A00RM128	41' 32' 17.5' 71' 08' 50.4'	Rio Foyel	Cerro Carrera east		Oxide Cu ore	//Chrysocolla, galena, U mineral	PT, OA
550 A00RM129	41' 32' 17.5' 71' 08' 50.4'	Rio Foyel	Cerro Carrera east	Intrusive	Andesitic dyke (wall rock of RM128)	Propylitic (chlorite, calcite) / /	TS
551 A00RM130	41' 31' 55.6' 71' 09' 12.6'	Rio Foyel	Cerro Carrera east	Fluvial	Earthy limonite mass	// Limonite	GC
552 A00RM131	41' 31' 39.7' 71' 08' 07.5'	Rio Foyel	Cerro Carrera east		Granitoid (float)	Argillization, silicification / / Limonite	GC
553 A00RM132	41' 31' 38.5' 71' 09' 07.0'	Rio Foyel	Cerro Carrera east	Tm4, Fm. Nirihuau	Oxidè Mn ore (sedimentary)	Argillization / / wad	OA
554 A00RM133	41' 30' 17.2' 71' 12' 08.3'	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Qz vein	// Limonite	GC
555 A00RM134	41' 30' 17.2' 71' 12' 08.3'	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Granitoid (wall rock of RM133)	Weak alteration // Limonite	XR
556 A00RM135	41' 30' 17.7' 71' 12' 04.6'	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Brecciated white alt. Rock	Silicification, argillization / / Limonite	XR _
557 A00RM136	41' 30' 19.2' 71' 11' 54.7'	Rio Foyel	Cerro Carrera east	Tol, Fm. Ventana	Rhyolite	Argillization, silicification // Limonite	XR
558 A00RM137	41' 30' 30.4' 71' 11' 50.5'	Rio Foyel	Cerro Carrera east	Tα1, Fm. Ventana	Rhyolite	Weak silicification / / Limonite	XR
559 A00RM138	41' 30' 29.9' 71' 11' 51.3'	Rio Foyel	Cerro Carrera east	Kg, Fm. Mamil	Granitoid	Argillization, silicification // Limonite	XR
560 A00RM139	41' 30' 26.7' 71' 11' 53.9'	Rio Foyel	Cerro Carrera east	Tal, Fm. Ventana	Rhyolite	Silicification, argillization // Limonite	GC
561 A00RM140	41' 35' 34.9' 71' 21' 10.4'	Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Silicification, argillization // Limonite	GC

No. Sample No	Latitude(S) Longitude(W) District	Locality	Geological unit, Stratigraphy	Rock type	Alteration / POSAM / Mineralization	Analysis type
562 A00RM141	41' 34' 21.3' 71' 21' 28.2' Rio Foyel	Rio Foyel		Altered granitoid (float)	Silicification / / Limonite, pyrite	PT, GC
563 A00RM142	41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel		Altered rock (float)	Silicification / / Limonite	GC
564 A00RM143	41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Silicification / / Pyrite, limonite	GC
565 A00RM144	41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Argillization, silicification / / Limonite	GC
566 A00RM145	41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Silicification / / Pyrite, limonite	GC
567 A00RM146	41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel		Altered volcanic rock (float)	Silicification, argillization / / Pyrite, limonite	gc
568 A00PNK10	1 41' 31' 39.7' 71' 08' 07.6' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
569 A00PNK10	2 41' 31' 38.5' 71' 09' 07.0' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
570 A00PNK10	3 41' 31' 42.8' 71' 09' 04.2' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
571 A00PNK10	4 41' 29' 57.0' 71' 11' 23.6' Rio Foyel	Cerro Carrera east	way may always with the control of t	Panning concentrated sediments		PCC
572 A00PNK10	5 41' 30' 15.4' 71' 08' 13.3' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
573 A00PNK10	6 41' 30' 16.1' 71' 08' 12.4' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
574 A00PNK10	7 41' 30' 42.5' 71' 08' 38.3' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
575 A00PNK10	8 41' 31' 30.1' 71' 09' 00.0' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
576 A00PNK10	9 41' 31' 53.2' 71' 09' 22.0' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
577 A00PNK11	0 41' 32' 38.7' 71' 09' 40.4' Rio Foyel	Cerro Carrera east		Panning concentrated sediments		PCC
578 A00PNK11	1 41' 34' 21.2' 71' 21' 28.5' Rio Foyel	Rio Foyel West		Panning concentrated sediments		PCC
579 A00PNK11	2 41' 37' 34.5' 71' 21' 55.4' Rio Foyel	Rio Foyel West		Panning concentrated sediments		PCC

Abbreviations

Analysis type

Geological unit, Stratigraphy

TS: Observation results of thin sections - Appendix 3 Fm.: Formation PT: Observation results of polished thin sections - Appendix 4 Gr. : Group

XR: Powdery X-ray diffraction results → Appendix-5

GC: Bulk chemical analysis results for the geochemical survey: 27elements+Au (codeT27+494) - Appendix-6

PC: Bulk chemical analysis results including PGM elements for the geochemical survey: 27elements+PGE (codeT27+G15) - Appendix-7 WR: Bulk chemical analysis results for the petrochemical study; whole rock analyses major & trace elements (codeA413+A390) 💛 Appendix 8

PCC: Chemical analysis results for pan concentrated samples → Appendix-9

OA: Ore grade assay results: 24elements+Au (code A22+999) - Appendix:10

FI: Homogenization temperatures and salinities of fluid inclusions - Appendix 11

DS: Measurement results of sulfer isotope composition → Appendix 12

DO: Measurement results of oxygen isotope composition → Appendix 13

KA: K·Ar radiometric measurement results → Appendix-14

Mineralizations

qz: quartz pyrite cp : chalcopyrite gn : galena sphalerite sp: bo: bornite

mo: molybdenite diss. : dissemination

Appendix-3 Observation results of thin sections

No	Sample No.	Rock Type	I	•		pri	mary	min	erals				Т			sec	onda	ıry n	iner	als			Note
	Sample No.	NOCK Type	qz j	pl kf	bt	nu ho	орхс	px o	l ga s	p z	i ap c	p g	l to c	ız ch	seri	serp to	ер	ca o	sau	s cly	amph	smed	(others)
_1	A00NK014	Muscovite bearing biotite granite	0	90	0	Δ								Δ	7			Δ	Δ				Coarse grained and heterogeneous
2	A00NK018	Aphyric rhyolite?		Δ								@) (_	7	Δ			Strongly silicified
3	A00NK025	Biotite hornblende granite(Quartz monzonite or adamellite)	0	<u></u>	0	0						Δ		Δ	7		Δ		Δ				
4	A00NK048	Rhyolitic tuff	0		Δ							∆ @						ΔΔ	Δ	Δ			Air fall deposit, lithic of rhyolite(△)
5	A00HH013	Granite porphyry	0	Δ								Δ		ΔС				Δ	7				Dyke
6	A00HH060	Aphyric basalt	0	<u> </u>			(9			\triangle	9 4	7	Δ	7								Small dyke or sill
7	A00MZ013	Hornblende dacite	0	<u> </u>		0						Δ						ΔΔ	7				Dyke?
_ 8	A00MZ015	Biotite hornblende granodiorite porphyry	0		0	0			2	7		Δ		С			Δ						Dyke or small intrusion
9	A00MZ018	Hornblende granodiorite porphyry	0	<u> </u>	0	0				7	Δ	0		С			Δ						Dyke or small intrusion
10	A00MZ022	Biotite granite(quartz monzonite or adamellite)	0	9 0	0							Δ		Δ (©					0				
11	A00MZ032	Biotite hornblende granodiorite	0	90		0						ο[]					0		0			Ĭ	
12	A00MZ044	Olivine augite basalt	0	Δ			(9 4	7		Δ	2 C		Δ C Δ @				0				0	Dyke or sill
13	A00MZ065	Basaltic lapilli tuff										@			0			C				0	lithic of basalt (③)
14	A00TM006	Granophyre	0									Δ						Δ	Δ				Dyke
15	A00TM009	Biotite hornblende granodiorite porphyry	0	<u> </u>	0	0				Δ				С									Dyke or small intrusion
16	A00TM017	Porphyritic andesite	0	9													0				0		Dyke, strong metasomatic replacement
17	A00TM018	Hornblende biotite granite (quartz monzonite or adamellite)	0	9 0	0	0			4	Δ	Δ	Δ		0 @)		0		0				
18	A00TM019	Hornblende andesite	0			0								0			0		7		0		Highly porphyritic, 30-40% phenocryst
19	A00TM020	Hyperthene biotite hornblende tonalite(quartz diorite)	0	<u> </u>	0		0			Δ				С								1	
20	A00TM023	Olivine basalt		<u> </u>				9 C				<u> </u>											
21	A00TM030	Hornblende biotite tonalite(quartz diorite)	0	<u>0</u>	0	0				۵		2		0			Δ		0				
22	A00RM013	Hornblende biotite tonalite(quartz diorite)	0	<u> </u>	0	0				<u> </u>	، کاد	Δ		0			0	Δ					
23	A00RM025	Porphyritic andesite		9								ΔC		0 @					0	0			
24	A00RM031	Thermally metamorphosed sandstone	0		0																		
25	A00RM032	Biotite hornblende dacite	0	0 0	0	O						c		00			0	[@					Dyke or small intrusion
26	A00RM038	Granite porphyry	0	0		_								0					7				Dyke, strong silicification
27	A00RM048	Hornblende andesite		<u> </u>		0								<u> </u>				<u> </u> @) (0				
28	A00RM049	Aphyric rhyolite?										(9									strong silicification
29	A00RM060	Lapilli tuff										(strong silicification, lithic of silicified rock(O)
30	A00NK104	Conglomerate (-coase sandstone)		9 4					_ _			<u>. </u>		0 4	2					0			Andesite fraguments (©)
31	A00NK105	Quartz porphyry	(O)									•		0	Δ								Highly altered
32		Biotite granodiorite		<u> </u>				_		<u>. .</u>		Δ		0			0	Δ					allanite(·)
33	A00NK110	Muscovite tourmaline aplite		<u> </u>									0										
34	A00NK137	Porphyritic andesite	0		<u> </u>				_ _			0 @		<u> </u>	0								
35	A00NK144	Dacitic welded tuff	0					_				△ (€	D										Andesite fraguments (©)
36		Augite bearing hornblende biotite granodiorite		90		0								0								0	
37		Hornblende syenite porphyry		△ (©								△		9					_				
38	A00NK151	Hornblende biotite quartz monzonite	0	<u> </u>	10	0						0		0 @	0			0					

Appendix-3 Observation results of thin sections

No Sampl	lo No	Rock Type				prima	ırỳ m	inera	ls			T		sec	onda	ry min	erals			Note
No. Sampi	le No.	nock Type	qz pl	kf	ot mu	ho op	хсрх	ol ga	sp	zi ap op	glto	qzch	seri	serp to	ер	ca op s	aus cly	amph	smec	(others)
39 A00HH	H102	Altered rock (Granitic plutonic ?)	00						<u> </u>			00	0	_						
40 A00HH	H105	Fourmaline-quartz-sericite-rock	0								@) .	0			_				
41 A00HF	H128	Quartz porphyry	00									00	0						<u> </u>	
42 A00HH	H132	Quartz porphyry	00					_		0		0	0			0		. <u>_</u>		
43 A00M2	Z103	Granodiorite porphyry	00	0 2	△							0	0		0				<u> </u>	
44 A00M2	Z107 1	Muscovite biotite granodiorite porphyry	00	0	Δ				<u> </u>			00	0		<u> </u>					
45 A00M2	Z114	Biotite granodiorite	00	0 2								00		_	0					
46 A00M2	Z130	Augite bearing basalt (aphyric basalt)	0				0				0	00	0		0				<u> </u>	
47 A00M2	Z137	Biotite hornblende quartz gabbro	△ ⊚			0				_ 0		0	0		0				ļ	
48 A00M2	Z139	Augite and olivine bearing basalt (aphyric basalt)	0	- 			0	Δ		_						<u> </u>				
49 A00TM	M106	Hypersthene bearing hornblende andesite	00				Δ				0	00				_ _			0	
50 A00TM	M110	Biotite hornblende granophyre	00		<u> </u>	0						00			0	_ _ _		ļ	ļ	
51 A00TN	M125	Biotite bearing hypersthene hornblende dacite	00)	<u> </u>	@ C)			0	<u></u>	00	0		0	_			ļ	
52 A00TM	M151	Augite biotite hornblende quartz diorite	00		<u> </u>	0 4	0 2		.		<u> </u>		ļ	_	_	_ _ _		ļ	<u> </u>	very fresh
53 A00TM	M163	Hornblende dacite	00			0				0		00			1!	<u> </u>				CHAIL MARKET PERCENCE TO THE REPORT OF THE LABOR AND
54 A00TN	M173	Hornblende dacite	<u> </u>		_	0			<u> </u>	0		00		_		<u> </u>			ļ	
55 A00RN	M103	Hornblende rhyolite	<u> </u>			Δ				0		00	ļ		_			ļ	ļ	
56 A00RN	M108	Biotite granophyre	00	0	0			_	. .				<u> </u>					ļ		fresh
57 A00RM	M129	Olivine basalt	0					0			0]]	9	0		l	

Legend; ©, abundant; ○, common; △, minor; · rare

qz:quartz, pl:plagioclase, kf.k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, opx:ortho pyroxene, cpx:clino pyroxene, ol:olivine, ga:garnet, sp:sphene, zi:zircon, ap:apatite, op:opaque minerals (mainly iron oxide), gl:glass, to:tourmaline chl:chlorite, seri:sericite, serp:serpentine, to:talc, ep:epidote, ca:carbonate mineral (mainly calcite), saus:saussurite, cly:clay minerals, amph:amphibole, smec:smectite

Appendix-4 Observation results of polished-thin sections.

No.	C1- N-	D. J. M.	П				pri	mary	min	erals				Т	sec	conda	ary mi	inerals			Π	ore n	nine	rals	Note
INO.	Sample No.	Rock Type	qz	pl l	kf l	ot m	u ho	орхсі	рх о	l ga	sp zi	ap o	p gl	to q				tc ep c	a op cl	ysmed	ру	ср	sph	gal m	(others)
1	A00NK019	Porhyritic andesite(dacite)	0	(O)										(0	0	1		Δ			gal=sph>py>cp
2	A00NK039-1	Silicified rock												(6					0/2	7	Δ				py>mt
3	A00NK041	Olivine dolerite		(a)	$\Delta \Delta $	Δ		(() C			1	7								Δ				py>cp
4	A00HH002	Carbonate mineral quartz ore mineral rock												(2 0 2		△ ⊚ ⊚	Δ	0	0	py>gal>sph>cp
5	A00HH024	Porphyritic andesite(dacite)	0	0										()			0	0		0	Δ	0	0	py>gal>sph>cp
_6		Chlorite-ore minerals-quartz rock									_		_	(0				0		<u>△</u> ⊚		0	0	sph>gal>py
7	A00MZ016	Carbonate mineral-ore minerals-quartz rock)									0	py>gal>cp
8		Ore minerals quartz rock	ļ		_ _				_ _					(0		0	Δ	0	0	sph>py>gal>cp
9		Andestic lapilli tuff	Δ	0	_	_ _			_				7		0			0) •		<u> ·</u>				lithic of andesite(⊚)
10		Ore minerals quartz rock	<u> </u>		_	<u> </u>		_			_ _		ļ	(ŀ	<u> </u>	_ _ _	0		Δ		0		sph>gal>py
11		Nearly aphyric andesite	0			_		_						(@)			0	0				0	0	sph=gal>py
12		Biotite hornblende dacite	0	0			0	_	_ _				7		0	Δ		0	0	<u></u>	0				Dyke or small intrusion, similar to A00RM032
13		Ore minerals-quartz rock	.		_ _		_			1)				7 @		Ŀ	0	Δ		cp>sph
14	A00RM042	Pebble conglomerate	ļ		-		_	_		_					0				1.		<u> </u>			<u>.</u>	intensely altered, clast of tonalite(©)
		Tonalite		(O) 4			_			1	Δ				0	0			_ _ _		_				Pebble in conglomerate
15		Olivine dolerite							C				7		ļ.,	0	0		0	0	<u> </u>	•			sill
16		Inverted pigeonite/augite dolerite	Δ	0 4	$\Delta _{\Delta}$			@	<u> </u>	11		_ _	_		Δ						<u> </u>				sill
17		Hornblende dacite (?)	.		_ _	_	Δ	_					_	(@					(<u> </u>	0				
18		Quartz porphyry (?)			$\triangle \angle$		7		_ _				_ _			0					ļ			·	
19		Opaque mineral-tourmaline-quartz-rock	<u> </u>		_ _		_	-	_ _	-	-	_ _		0		ļ		_ _ _			<u> :</u>				
20		Opaque mineral quartz rock (Quartz vein)	<u> </u>		_			_ _	_	1						0	. _			-	0	Δ		<u> </u>	
21		Andesite			_ _	-	_	_	_		_ _	_	_)	ļ	<u> </u>	0		_	\triangle			<u> </u>	
22		Biotite granodiorite porphyry	0	0		<u> </u>		_	_ -		_		-	<u> </u>	0	Δ	<u> </u>				ļ				
23		Quartz-opaque mineral-rock	1	<u> </u>		_			_ _	-		<u></u> -	ļ.,		<u> </u>						0				
24		Hornblende andesite	Δ		_ -	_	0	_ _		-		!	0		0	-1		@	_		<u> :</u>				
25		Tuffaceous sandstone ? (altered rock)	0		_ _		_		_				0	(C)		Δ			(<u> </u>				
26		Fine sandstone	0		_ _	4	-		_	$\perp \mid$		_ _	_		ļ	<u> </u>		_ _ _	(0	0	$ \cdot $			`
27	A00RM128		Δ		_ _	_ _	_	_	_ _	1			0		0			0	_ _		<u> </u>				Bornite(@), Chalcocite(@)
28	A00RM141	Biotite granitic rock	0	0										(0	0					0	•			

Legend; ⊚, abundant; ○, common; △, minor; •rare

qz:quartz, pl:plagioclase, kf:k-feldspar, bt:biotite, mu:muscovite, ho:hornblende, ol:olivine, opx:ortho pyroxene, cpx:clino pyroxene, ga:garnet, sp:sphene, zi:zircon, ap:apatite, op:opaque mineral, gl:glass, to:tourmaline chl:chlorite, seri:sericite, serp:serpentine, tc:talc, ep:epidote, ca:carbonate mineral (mainly calcite), cly:clay minerals, smec:smectite
py:pyrite, cp:chalcopyrite, sph:sphalerite, gal:galena, mt:magnetite

Appendix-5 Powdery X-ray diffraction results.

			s	ilica	as							ilicat								onate	L	ulfid	les	1	Sulfa			ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
1	A00NK004	Granite	29				33				0.7				0.7														
2		Granite	15					4.7	1		0.7	·			1.7		<u> </u>				ļ		<u> </u>			<u>.</u>			(
3			33			<u> </u>			ļ		<u></u>	16									<u> </u>			ļ				ļ <u>.</u>	, ,
4		Sandstone	48								13			<u> </u>					<u> </u>	<u> </u>			<u> </u>					! !	
5	A00NK026		38					7			7.3			<u> </u>		1.7										ļ			
6	A00NK030		25						<u> </u>		6.3		<u></u>						<u> </u>		ļ <u>.</u>		ļ	<u> </u>			L		
7		Rhyolite	50								3.3	ļ				ļ			ļ		İ		<u> </u>			ļ	<u> </u>		
8	A00NK033		28				19	5			1								<u> </u>	<u> </u>			L			<u> </u>	ļ		
9		Granodiorite porphyry	22				23	3	<u> </u>		5.7					2			ļ				<u> </u>						
10		Granodiorite	33								20								ļ				ļ	ļ					
11	A00NK039		26					4.7			2						1		<u> </u>]								·
12			37							<u> </u>		ļ	ļ			2	13		L	<u> </u>		ļ		ļ		ļ			
13		Porphyritic andesite	13			ļ	19				< 1	ļ			1.3				<u> </u>	<u></u>	ļ				_				
14			64					0.7				L								ļ <u></u>	<u> </u>		<u> </u>			<u> </u>	<u> </u>		Anatase 4
15			29					5.7			2	4									ļ		ļ			ļ			
16	A00HH004		32								5	ļ		ļ		<u></u>			<u> </u>	ļ <u>.</u>	l		ļ	ļ			<u></u>		
17			9.5			17					. <u>.</u>	<u> </u>									<u> </u>		ļ			<u> </u>			? 1
18			27				30	6.3					1.3											<u> </u>		<u> </u>	<u> </u>		
19		Silicified rock	24			ļ		10					<u> </u>			0.7	l		<u> </u>		ļ		<u> </u>				l		
20	A00HH022		26				26				0.7		3.3				<u></u>				ļ			l				<u> </u>	
21	A00HH023		37					3.3				l	ļ	ļ			<u> </u>		ļ	<u> </u>				<u> </u>		<u> </u>			Ser/Mon 2
22			9.5				31		1	<u> </u>	1.7		1.3							ļ						<u> </u>	ļ		
23		Altered granite	31			<u> </u>	2.3						< 1		<u></u>			6	L	<u>.</u>				<u> </u>		<u> </u>	l		Prehnite 6
24	A00HH034		2.9				14		<u></u>	<u> </u>			5			1			<u> </u>	<u> </u>	l		ļ			ļ <u>.</u>			
25	A00HH043		34								2.3								<u> </u>		1		ļ			ļ			,
26			76								0.7		ļ	ļ <u>.</u>			<u></u>				1.3			<u> </u>			ļ		
27		Altered rock	4.8				12		ļ	ļ	2.3	L	L			ļ		3.3	ļ		ļ						l		r
28			30								6				<u></u>		<u></u>	ļ					<u> </u>	<u> </u>			<u> </u>	l	
29	·	Altered rock	43			<u> </u>										17	<u> </u>			ļ	l						<u> </u>		
30	A00HH062	Andesite	10					7.7					5										<u> </u>						

			Sil	icas					-	S	ilica	tes						Carb	onate	s	ulfid	les	s	ulfa	tes	Oth	ners	
No.	Sample	Rock	Quartz	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
31	A00MZ003		23							8.3		2.7						4.7		1.3	ĺ							
32	A00MZ004		18			10	14																					
33		Volcanic rock	28				10									Ì												
34		Silicified rock	36							5.3																		
35		White altered rock	28		_						12																	
36	A00TM008		29		_		3.7						<u> </u>		1.7								2.3					
37	A00TM011		25		_					1	-	<u> </u>			13													
38	A00TM015		24		_ _	6.7				1.3					2.3	3				1								
39	A00TM016		33		_ _	6																				1		
40	A00TM027		45			6																						
41	A00TM032		28			24						1.7																
42	A00TM033		21			0.7				1.7		1.3					5	16										
43	A00TM037		50				2.3			6.3					2	2												
44		Granodiorite	60							3.7								Ĭ										
45	A00TM046		27				1.3							ĺ										ļ				Ser/Mon 3
46	A00TM047	Andesite	12				3.3					1.7											1			<u> </u>		
47	A00TM050	Andesite?	15				5.7			1.3							1						İ					
48	A00TM055	Altered rock	40												17	'												
49	A00TM057	Altered rock	53		1							1		Ī	5	1				ļ				İ	İ			Anatase 1
50	A00TM058	Altered rock	49									1			10							-1						***************************************
51	A00TM060	Altered rock	42		1		4.3					0.7			Ī		1	1		l					i			
52	A00TM062	Altered rock	29			14				2											ļ					l		
53	A00TM067	Altered rock	49		_[3.3					0.7	-												
54		Volcaniclastic rock	14			22	6.3]								l						1		
55		Volcanic rock	31				4			3.3					0.7	'		<u> </u>		ļ								
56	A00RM022	Volcaniclastic rock	20				2.7			1.3										Ī				<u> </u>				
57	A00RM023	Volcaniclastic rock	32				6			0.7															1			
58	A00RM024	Volcaniclastic rock	20			35	5								1													
59	A00RM028	Andesite?	21			16	3.7					1.3										1						~ · · · · · · · · · · · · · · · ·
60	A00RM030	Tonalite	10		12	2		2.7				2.7					T	1									I	

			5	Silica	ıs						S	ilica	tes						Carb	onate	S	ulfic	les	S	ulfa		Oth	iers	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
61	A00RM033	Andesitic dyke	25			12							4	<u> </u>	ļ									ļ					ļ · · -
62	A00RM034	Rhyolite	32				3.3	4.3			2.8	3				1.7	7		<u> </u>					<u> </u>	ļ	ļ		ļ	
63	A00RM035	Rhyolite	31	4				6.3			_!	1		<u> </u>		1			ļ		ļ	ļ	ļ	ļ	ļ				
64		Granodiorite/Porphyry	43								15	5				1.3	3		ļ	<u> </u>					ļ	ļ		ļ	
65		Breccia pipe	82																ļ			ļ							
66	A00RM059	Sed. Rock	22					ļ	ļ. <u>.</u> .		_					19								.	J				ļ
67	A00RM062	Sed. Rock (Float)	2.9		<u> </u>											40			 		<u> </u>	ļ					ļ		
68	A00RM063	Sed. Rock	8.6			l					_			_	ļ	68	3	ļ		ļ. <u></u>				ļ	ļ		ļ	ļ <u></u>	
69	A00RM065	white altered rock	26				16			ļ	1.5	3	_	_				.	ļ			ļ	<u> </u>						
70	A00RM067	white altered rock	58		<u> </u>				ļ							ļ	ļ		ļ		ļ	ļ		_	ļ	ļ	-,		
71	A00RM068	white altered rock with qz pheno.	32			, <u>.</u>		<u> </u>	ļ	ļ	2.3	3	5.3	3		-	ļ <u>.</u>	_	ļ	.l		<u> </u>			ļ	ļ			
72		Rhyolite	49				14	·	<u> </u>	<u> </u>	_	_				< 1	<u> </u>	_	-			ļ	· 		-			.l	ļ
73	A00NK107	Quartz porphyry	30		<u> </u>	ļ	10	-i	ļ <u>-</u>			9					-	_			ļ	ļ					- - ·		
74		Grnitoid	34		.		8			<u> </u>	12	2	1	<u>ا</u> ا					<u> </u>			ļ	<u> </u>		ļ				
75		Granitoid	40				39			<u> </u>				ļ		1	L	_	<u> </u>			ļ		.		ļ			
76		Granitoid	22		ļ	ļ	6				_ < :	1			.ļ				-	ļ		ļ		·		ļ	ļ. —		
77	A00NK114	Rhyolitic tuff	40	-1			7						_		-			ļ	1 1	L		ļ	<u>. </u>	1		-			
78		Rhyolitic lapili tuff	47			<u> </u>	1			ļ		_				_ 2	2		ļ		ļ	ļ	-	_			- - 		
79		Andesite	30		_		8		3		<				_	_			.	_		ļ							
80		Andesitic tuff breccia	32				13							2	-	-			1 2		ļ								
81		Rhyolitic tuff	50			ļ	4			ļ	<				-				-	l	ļ						·		<u> </u>
82		Andesitic tuff	29		<u> </u>	6	+	4	4	ļ	<	1	ļ			_			- 		l	ļ	_	ļ		-			
83		Rhyolitic tuff	36			ļ	10		3	-l			< :	<u> </u>				-											
84	-, l·	Undefined	22				11			ļ <u>-</u>] 1	L		4	1	<u> </u>	-	ļ							
85		Rhyolitic tuff	42		_	<u> </u>	ļ	7		 			-	ļ	-	-							-	ļ				ļ <u>-</u> .	
- 86		Rhyolitic tuff	30		<u> </u>		-	12		<u> </u>	-	_					-ļ		-		ļ	ļ							
87		Rhyolitic lapili tuff	37		<u> </u>]	3		+			1									-	ļ							
88		Rhyolitic tuff breccia	35				12				_ <	1			-				<	L						<u> </u>		-	
89		Rhyolite	28			ļ	ļ	13			_				<u></u>	<u>.</u>					ļ	-			+-				
90	A00NK131	Tuff	34	!			7	' E	5							1					Ц.,	1					1		

			S	Silica	as				-			ilica	tes			-			Carbo	onate	S	ulfic	les	s	ulfat	tes	Otl	ners	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
91	A00NK132		58								1				İ					İ	1					 			-
92		Andesite	11			7		2					2		1					İ				1			i		
93		Undefined	79											Ì		8				İ				l					
94		Undefined	8			14		5							1				i		< 1								
95		Undefined	21			6		6						İ	1				2		1					 -			
96		Undefined	87												i					i				l					
97	A00NK143	Dacite		16	ļ		Ì					i——	i	İ	i —	5		1					1	··	! 				
98	A00NK145	Undefined	31	i — -		27		7								-		1	t					ļ		 -			
99	A00HH102	Altered rock, hydrothermal breccia	33			-	8				5		- 8							_			1						
100	A00HH103	Altered rock	25				2	13			2			i		2	 		 		 		1						
101	A00HH104	Andesite	31							İ	11			i									<u> </u>			ī	<u> </u>		
102	A00HH105	Hydrothermal breccia	42								11				İ					i		i	 -						
103	A00HH106	Altered rock, hydrothermal breccia	59						ļ		9				ļ			1				İ	i	l		i			
104	A00HH107	Altered rock	66								3	 -										ļ	·						
105	A00HH108	Altered rock	35				28				7			i					 -										
106	A00HH109	Cu oxide ore	34						i	ļ	18		< 1	i		i	i	 	l			l	i —	<u> </u>					
107	A00HH112	Altered granite	30		i	14							4			-	İ	i					 -						
108	A00HH113	Altered rock with clay vein	4										2		i			30	5				1						
109	A00HH114	Andesite	22		i		6				1		6								1								
110	A00HH121	Quartz-sulfide vein	25		i						4			<u> </u>		<u> </u>			ļ 										
111	A00HH122	Quartz porphyry	55							i	7			<u> </u>	ļ	 	i —												
112		Quartz porphyry	35				22				6					1			1				<u> </u>						· - · · · ·
113		Silicified tuff	36				14				4					1													
114	A00HH132	Acidic tuff	29			i	20	4			1					1			1										
115	A00MZ101	Silicified rock	44				5				6		2	 -		<u>-</u> -				-									
116		Silicified rock	30					11			2		1																
117	A00MZ104	Hydrothermal breccia	54								9																		* * * ***
118		Quartz porphyry	49				4				16																		MAA
119		Silicified rock	48				< 1	8			1	·																	
120		Altered granitoid	42							i	19	!																	

			S	Silica	as						S	ilica	tes						Carbo	onate	S	ulfid	les	S	ulfat			hers		
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K·feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note	;
121	A00MZ110	Quartz porphyry	34				9				8	3	< 1										İ							
122		Quartz porphyry	31				2				11			1			1				1		<u> </u>					-		İ
123	A00MZ113	Altered volcancs	26		Ī	· · · · · · · ·	6				2	2			1		1						<u> </u>			ľ.			_	-
124	A00MZ115	Altered volcancs	16				25				< 1	.	3	3												1				, -
125	A00MZ117	Altered volcancs	Ī				7				1		< 1	.	1				1		< 1					i				-
126		Zeolite vein	34										1					11	2		Ī				Γ -					
127	A00MZ121	Altered volcancs (tailing)	12			·	13	1				Ţ	3	3					-		1		1			1		1		
128	A00MZ124	Silt	30			4		3			2		1						1											
129	A00MZ126	Quartz porphyry	26			18		10			1		< 1																	
130	A00MZ129	Andesite	15				16	2					4						16											
131	A00MZ132	Andesitic tuff breccia	35				1							ĺ																
132		Andesitic rock	26				11	2					3													L				
133	A00MZ143	Quartz vein (float)	76				8						1																	- ' -
134	A00MZ146	Silicified rock	1			6		3	1				< 1																l	
135	A00MZ149	Silicified rock	38				4				3	1	2	2																
136	A00TM101	Altered rock	33			12		4			< 1				1															
137	A00TM104	Altered rock	24				22				1		< 1								2			l						
138	A00TM105	Altered rock	31				13				1		<u>.</u>		1	1									ļ	1			İ	
139	A00TM107	Granodiorite	36						<u></u>		4		2	:				<u> </u>											İ	
140	A00TM108	Granodiorite	35		i	l		14			< 1	.	< 1	.]		.					l		<u> </u>	l					_	
141	A00TM111	Granodiorite	40								6	3	1							ļ			İ							
142		Rhyolitic tuff	49								4			<u> </u>	<u> </u>	1			l											
143		Tuff	55								4																		l	
144		Tuff	52								3			<u> </u>								<u> </u>		l						
145		Tuff breccia	61						l		3.7	'	<u> </u>				<u></u>			ļ	ļ <u>.</u>			ļ				_		
146	***************************************	Altered rock	20	·			10	3.7					2	2									<u></u>						. =	
147		Altered rock	31									23											L.							
148	A00TM121	Altered rock	77					3			1.3															< 1				
149	A00TM122	Dacitic andesite	18	·			24																			2.3			ĺ	
150	A00TM124	Dacitic andesite	38								3.3	8			1				1						1	[

			S	Silica	as	<u> </u>					S	ilica	es						Carbo	onate	S	ulfic	les	S	ulfa		Oth	ers	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
151	A00TM126	Dacite	40				2.3		İ		2.7				<u> </u>	1.3	İ									İ			
		Shale	52			<u> </u>	5	1.7																					
		Sandstone	43			9		5.3						<u> </u>															
	A00TM131		0.7			< 1	!		<u> </u>										37		<u> </u>								
	A00TM132		10				39		ļ		< 1		0.7		<u> </u>		ļ		10		<u> </u>				<u> </u>				
	A00TM135		6.3	·			33			ļ									ļ	ļ							<u> </u>		
	A00TM136	l	1.7				19				< 1													<u> </u>		2			
	A00TM137		43								7.3			ļ <u>.</u>					ļ										
	A00TM138		28	· · ·			18			<u> </u>	1					<u> </u>		<u> </u>	<u> </u>										
***		Sandstone	42			<u> </u>		6.3			ļ.,	<u> </u>				<u> </u>			<u> </u>										
161		Shale	15				10						5.7						11										
162	A00TM142	Sandstone	9				3.7														14								
163	A00TM144	Tuffaceous shale	30								2.3				1.7	1.7													
164	A00TM146	Tuffaceous sandstone	47								2.7		0.7																
		Granodiorite	26				ļ				5					1.3													
166	A00TM155	Granodiorite	36								3.7																		
167	A00TM157	Tuffaceous sandstone	_48			<u></u>			<u></u>		2.3					2.3													
168	A00TM159	Tuffaceous sandstone	43		i	<u></u>		1.3			8																		
		Porphyritic granodiorite	42								9.3																		
		Porphyritic granodiorite	27			7.3					2		2.3																
171	A00RM101		36					11								< 1			1										
172	l	1 7	33			<u> </u>	14	5.7								< 1													
173	A00RM104	Laminated tuff	31				12	4.3											< 1						1	Ĭ			
	A00RM106		43				12	4.5											< 1								1		
		Aplite, granite	34				22	21	+		1								1.7										
176	A00RM110	Aplite	50				20	18			1								0.7								I		
177	A00RM111	Tuff	37				11	4											< 1										
178		Tuff	44				6.3	6											0.7								l		
179		Tuff with quartz vein	19				4.3	5.3			< 1					1.3					Ī			_			1		
180	A00RM115	Brecciated vein (float)	35				4.7	2.3			< 1													<u> </u>			1		

			S	Silic	as	T					S	ilica	tes						Carbo	nate	S	ulfic	les	S	ulfa	tes	Oth	ers	
No.	Sample	Rock	Quartz	Cristobalite	Tridymite	Plagioclase	Albite	K-feldspar	Hornblende	Biotite	Sericite	Pyrophylite	Chlorite	Chlorite/Montmorironite	Montmorironite	Kaoline	Alunite	Laumontite	Calcite	Dolomite	Pyrite	Galena	Sphalerite	Gypsum	Barite	Jarosite	Diaspore		Note
181	A00RM116		33					4.3			< 1						<u> </u>		< 1						ļ				
182	A00RM117	Alt.rock with quartz veinlet	41				13	·÷			ļ	ļ	ļ	<u> </u>		ļ	ļ <u>.</u>				ļ		ļ						
183	A00RM118	Altered rock	33					12	}	<u> </u>	ļ									,									
184	A00RM120	Tuff breccia	58					3.3	3			.	<u> </u>		ļ	1	.		ļ		.		ļ						
185	A00RM121	Jarosite network				1	<u> </u>			ļ									<u> </u>	<u> </u>	<u> </u>	ļ	ļ		ļ	11			
186	A00RM124	Altered rock	18	L		8.3	3	7.7	'		< 1	.								ļ	<u> </u>					< 1			
187	A00RM125	Altered rock	31	ļ. <u>.</u>		ļ	6.7	5	5				ļ		1.3	3	J		<u> </u>	ļ			ļ			<u>< 1</u>			
188	A00RM126	Altered rock with opal vein	66			<u> </u>										_			ļ		<u> </u>					ļ	ļ		
	A00RM127		10				27				< 1		ļ		0.7	7	ļ	_			ļ		ļ			< 1	ļ		
		Granitoid (wall rock of RM133)	40			_	3.3		_		3.3	3	4	<u> </u>	<u> </u>				.		ļ		ļ		ļ	ļ <u>.</u>	ļ		
191	A00RM135	Brecciated white alt. Rock	37			_	10				1		ļ		ļ		ļ		<u>.</u>		ļ	ļ		ļ					
192	A00RM136	Rhyolite	37		_		11	5.3	3		1	<u> </u>	ļ		ļ		ļ		.		.		<u> </u>			1	ļ		
193	A00RM137	Rhyolite	34		<u> </u>	<u> </u>	11	4.3	3		0.7	7	<u> </u>		<u> </u>		-		<u> </u>		ļ	ļ	ļ	ļ					
194	A00RM138	Granitoid	35	<u> </u>			22	12	2		2	3									<u> </u>								

numerical data is quartz index which is relative strength against the standard quartz sample.

T	1		Au	As	Sb	Hg	Ag Al	Ba I	3e 1	Bi Ca	a Cd	Co	Cr	Cu	E ₀ T	72	Ma	Mn	Мо	Nto I	NT:	D.	DL	C- 1	Tr:	- 	137 (7
No.	Sample	Rock	(g/t)	(ppm)	(ppm)		g/t) (%)	(ppm) (p		pm) (%			(ppm)	(ppm)	Fe (%)	(%)	Mg (%)			Na %)	Ni (nnm)	(ppm)	Pb (ppm)	Sr (ppm)	Ti (%)	(ppm)	(ppm)	Zn (ppm)
ī	A00NK001	Andesite	0.035	6			<0.2 8.9		0.5	_	08 < 0.5			270	4.47	3.19	0.38	20	8	0.4	6		(ppiii)		0.08	106	30	
2	A00NK002	Qz vein	< 0.005	<1			<0.2 0.54		0.5		03 <0.5			6		0.09	0.04	665		0.03	1	50	2		0.03	100	<10	
3	A00NK003	Silicified rock	< 0.005				<0.2 0.54		0.5	<2 0.		1	1	1		0.15	0.01	10		0.03	<1	·	- 2		0.08	3		10 8
4	A00NK007	Iron ore	< 0.005	27	0.8	60	<0.2 1.51	200 <	0.5	<2 0.		-	·		>25.0	0.26	0.44	3350		0.23	25		26	27	0.04	51		1670
5	A00NK010	Iron ore	0.01	42	0.4	30	<0.2 0.79	50 <	0.5	<2 0.	19 < 0.5				>25.0	0.08	0.09	150		0.05	7		6		0.01	88	<10	94
6		Qz vein	< 0.005	6	0.2	10	0.2 0.27	10 <	0.5	<2 0.	02 <0.5	<1	18	11	0.27	0.12	0.01	15		0.03	<1	40	2		< 0.01	3		12
7	A00NK016		< 0.005	12	1.4	<10	<0.2 1.45	70 <	0.5	2 0.	03 < 0.5	<1	16	18	0.96	0.64	0.04	60	48	0.04	<1	80	6			7		-14
8	A00NK017		<0.005	10			<0.2 5.27		0.5	<2 0.	03 <0.5	1	9	5	0.26	6	0.01	15	<1	0.18	<1	80	8	54	0.04	3	<10	8
9	A00NK020		0.075	<1		10	1.4 0.82		0.5	<2 0.			17	83	0.4	0.26	0.12	1495	<1	0.04	3	50	508	31	0.01	16	<10	224
	A00NK021	Granite	<0.005	13		<10	0.2 7.53		0.5	<2 4.		19		3			1.48	540		2.21	6	850	16	364	0.36	150	<10	$4\overline{0}$
	A00NK023	Tourmaline breccia	< 0.005	5		<10	0.2 8.32		1.5	<2 1.		4	9	21			0.38	280		3.93	<1		20	246	0.16	13	<10	44
1	A00NK027	Qz vein	< 0.005	8			<0.2 0.15		0.5	<2 0.				5		i_	0.01	55		0.04	<1	30	2		<0.01	8		8
13		Qz vein	<0.005	2			<0.2 0.44		0.5	<2 0.		-		<1			0.03	40		0.03	3	60	2		<0.01	9		8
14		Rhyolite	<0.005	<1			<0.2 < 0.01		1.5	<2 4.				364	9.59	3.51	0.8	<5		0.01	9	730	<2		0.36	153	10	32
	A00NK032 A00NK033	Flaky qz	<0.005 <0.005	22		<10			1.5		04 < 0.5			37	2.99	0.77	0.16	145		0.06	<1		2		0.01	50	<10	8
		Granodiorite porphyry	0.005	<1 <1		<10 <10	0.2 0.61 0.8 8.02		0.5	<2 0.		<1		<1		0.17	0.03	15		0.19	<1		<2		<0.01	1	<10	. 4
18			< 0.015			<10	2 0.17		1.5	<2 0.0 <2 0.0	66 <0.5			1635		2.86	0.34	300		2.32	10		16		0.09	46		28
19			<0.005	·		<10	1.2 0.17		0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		<1 1		15			<0.01	10		0.03	<1				<0.01	1	<10	. 2
20		Andesite? (Float)	<0.005			<10	0.2 9.36		0.5	<2 0.				115 149		$\frac{0.04}{0.67}$	<0.01 3.45	805		0.03	<1				< 0.01	24	10	2
$\frac{20}{21}$		Andesite	<0.005	<1			0.2 0.09		0.5	<2 <0.		19	-	4		0.03	0.01	5	4 <1 <	4.54	32 <1		10		0.13	220		74
22		Andesite	<0.005	3			<0.2 0.34		0.5	<2 0.0		1	22	5		0.03	0.01	<5	<1 <		<1		<2 2		0.48	14		2
23		Altered rock	0.01	13		10	0.2 5.87	450	1	<2 0.		3		38	2.7	2.68	0.01	150		0.23	<1				0.71	$-\frac{3}{17}$	- <10 10	$\frac{2}{22}$
24	A00HH013		0.015	3		40	0.2 7.02		1.5	<2 0.				239	0.9	2.38	0.39	110		3.84	$-\frac{1}{1}$		10		0.09	$-\frac{17}{29}$	<10	16
25		Silicified rock	< 0.005	13			< 0.2 6.84		0.5	<2 0.		5	1		0.46	1.7	0.16	130	i	2.94	<1		16		0.05	50	<10	74
26	A00HH019	Silicified rock	<0.005	203			0.2 6.49		0.5	<2 0.0		2	II-	3			0.02	35		0.17	<u><1</u>		10		0.15	17	<10	10
27	A00HH028	Altered granite	< 0.005	6			<0.2 7.68	10	2		.4 <0.5	3		<u>i</u>		0.29	0.49	215		3.38	1	530	8		0.31	58	<10	22
28	A00HH034	Andesite	< 0.005	10	<0.2	<10	<0.2 8.34	480	0.5	<2 2.	71 <0.5	23		1175	5.36	1.33	2.48	1075		3.69	5		$\frac{}{2}$		0.67	235	<10	86
29		Granite with py (float)	0.005	7	<0.2	<10	0.2 8.53	440	0.5	<2 3.	14 <0.5	20	7	355	2.77	1.09	1.05	285		2.88	<1		2		0.27	76	<10	
30		Pyroclastics with py (float)	< 0.005			<10	0.2 9.33		1.5	<2 2.	56 <0.5	9	20	41	3.25	0.63	0.19	250	<1	5.03	3	670	18		0.49	128		22 38
31		Altered rock	0.59	9		<10	2.6 3.49		0.5	8 0.0		28	11	594	5.85	1.44	0.18	150	13	0.07	2	320	78	16	0.13	67	70	26
32		Altered rock	< 0.005	20	1		<0.2 7.8		0.5	<2 0.3		6	16	13	2.87	0.63	0.14	95	<1	1.61	<1	990	10	488	0.52	128	<10	16
33	A00HH060		< 0.005	19			<0.2 8.02		0.5	2 4.		23		35	6.44	1.06	2.17	1195	<1	2.67	<1	2830	6	786	0.96	319	<10	82
34	A00MZ001		0.02	23		190	0.2 6.56		0.5	<2 0.				74	3.48	2.87	0,49	35	1	0.18	<1	360	4	31	0.12	88	20	2
35		Volcanic rock	0.01	35			<0.2 10.2	900	1	<2 0.3				117	4.17	3.4	0.34	30	<1	0.39	<1	310	14	160	0.2	182	10	2
36	A00MZ003		0.52	82		<10	0.8 8.06		0.5	<2 3.			:	1	1.5	3.4	0.65	4190		0.22	<1			56	0.13	42	<10	30
37		Pebble dyke	<0.005	18		10	0.2 6.68	890	2	<2 0.				83	1.91	4.33	0.07	235	<1	1.8	<1		20		0.14	34	<10	30
38		Volcanic rock	<0.005	119		30	0.4 6.23		0.5	2 3.				110	4.05	2.16	0.07	630		2.73		1550	10		0.95	105	<10	28
$-\frac{39}{40}$		Volcanic rock Volcanic rock	<0.005	;	 :	<10	0.4 7.71		1.5	<2 0.0		·		29	0.82	4.98	0.43	125		0.34	<1		32		0.05	12	<10	20
41		Mudstone	0.165 <0.005	44			71.8 4.25		0.5	<2 0.0		2		23	3.53	2.56	0.15	20		0.12	<1		88		0.03	3	<10	6
42		Granite	< 0.005	3		<10 10	0.8 7.03 0.4 10.9	$\begin{array}{c c} 70 \\ \hline 120 \end{array}$	1	6 1.5 <2 2.5		·	1	362	5.21		0.49	85	1	3.2	35		8		0.31	76	<10	14
43		Granite	<0.005	30		<10	1.8 7.24		3.5		$\begin{array}{c c} 56 & 1.5 \\ 0.5 & < 0.5 \end{array}$	5 6	i	41 210	0.56	1.99	0.18	235	<1		<u><1</u>		32		0.07	41	<10	100
44		Volcanic rock	<0.005	26		10	0.4 7.05		0.5	<2 0.		3		7	1.96	3.16	0.38	500 70		2.32	1		52		0.23	28	<10	128
45		Volcanic rock	<0.005	1030			0.4 7.03	1460	1	<2 0.0		1			0.22		0.03	5		0.7	<1 <1		36		0.34	53	<10	12
46		Volcanic rock	<0.005	3		<10	$\frac{0.2}{0.2}$ $\frac{7.8}{7.8}$		0.5	<2 0.0		2			0.18	4.62		75		2.12	<1 <1		34 12		0.07	9 17	<10	2
47		Vein ore	< 0.005	55		<10	7.6 5.77		1.5	<2 0.0			I	4		2.26	0.25	4250		0.12	<1		1795		0.16	20	<10	· C# Ö
48		Vein ore	< 0.005	<1		<10	0.2 7.41		1.5	<2 0.		4		<1	1.12	3.04	0.24	2010		2.54	<1		52	$-\frac{4}{67}$	0.15	:	<10 <10	652
49		Granite (Float)	< 0.005	14		<10	0.2 1.41	110	1		10 < 0.5	13			$\frac{1.12}{2.75}$	0.62	1.84	325			9		16		0.15	153	<10	52 18
50	A00MZ033	Granodiorite (Float)	< 0.005	4		<10	1 8.05	270	-i		.8 <0.5	35		2620	1.69	1.4	1.08	810		3.55	6		162		0.29	80	<10	142
51		Andesitic tuff	0.015	16		<10	1 6.85		0.5		0.5 < 0.5	75		1125	7.69		0.82	1010		0.18	22			1115	0.39	197	-<10	28
52	A00MZ035	Zeolite	<0.005	<1			0.2 9.2		0.5	<2 9.8		9		11	1.76	1.33	0.7	345		0.48	3		10		0.33	59	<10	30
53	A00MZ039	Andesite (Float)	0.01	48	3.2	<10	0.4 8.4		0.5		.4 <0.5			54	4.85	2.02	1.49	1005		1.67	19		32		0.13	128	<10	118
54		Sil., breccia (Float)	0.005	2			0.2 8.38		7	<2 4.0				2490	7.89	3.45	3.69	1200		2.75	38			1410	0.38	613	30	182
55	A00MZ047	Qz veinlet (Float)	< 0.005	6	0.2	<10	0.2 2.17	160 <	0.5	<2 0.0	07 <0.5	1		5	0.41	0.67	0.06	50		0.71	1		4		0.06	11	- <10	8
56	A00MZ052		0.17	6	CONTRACTOR STATE	<10	0.8 1.35	190 <	0.5	6 0.0	03 < 0.5	120	10	76	2.99	0.58	0.05	15		0.04	5		10		0.03	21	<10	2
57		Andesite	0.43	6		<10	5.6 6.41		0.5 Ir	ntf* 0.8	85 < 0.5	15	9	16800	5.46	2.2	0.65	720	<1	0.64	6	Intf*	74	51	0.23	78	<10	14
58	A00MZ054	Qz porphyry	<0.005	5	<0.2	<10	0.2 7.31	1260	1	<2 1.4	41 < 0.5	4	5	92	1.29	2.56	0.29	210	i :	2.491	<1	240	8	I-	0.13	28	<10	10
-																					-							

Searche Model (print) Searche Model Search Mode				Au	As	Sb	Hg	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	$\overline{\mathbf{v}}$	W	Zn
Separate Separate	No.	Sample	Rock			1				1														1	ppm) (ppm) (. '' .!.	ppm)
Georgia Company Comp	59	A00MZ056	Qz vein (Float)	0.02					4.18										1.56	0.19	630	<1	0.29					0.14	44	<10	26
Section Sect	60	A00MZ057	Qz vein	4.07	6640	6.4	10	0.8	1.22	60	<0.5	14	0.02	<0.5	21	23	34	7.6	0.42	0.03	15	<1	0.04	3	160	10	6 6	0.02	5		2]
64 AMONTANG Silicified rock	61	A00MZ059	Silicified rock	13.87	>10000	25	30	5.8	2.69	90 •	<0.5	20	0.02	0.5	10	15	1525	8.94	0.95	0.05	15	<1	0.08	2	130	10	9 ($0.0\bar{9}$	36	<10	6
64 ADMINISTAL SILEMENT MISS. 65 ADMINISTAL SILEMENT MISS. 65 ADMINISTAL SILEMENT MISS. 66 ADMINISTAL SILEMENT MISS. 67 ADMINISTAL SILEMENT MISS. 68 ADMINISTAL SILEMENT MISS. 68 ADMINISTAL SILEMENT MISS. 69 ADMINISTAL SILEMENT MISS. 69 ADMINISTAL SILEMENT MISS. 60 ADM	62	A00MZ061	Soft silky rock	0.045	77	0.8	280	1.6	9.53	410	<0.5	<2	0.06	<0.5	3	25	14	0.88	0.05	< 0.01	5	19	0.13	2	1110	20	1040	0.16	141	<10	8
65 AOMTMOS Andestace	63	A00MZ062	Silicified rock	0.015	27	0.2	40	0.2	8.01	510	<0.5	<2	0.09	<0.5	2	41	6	0.2	1.62	< 0.01		<1	0.82	<1	1130	56	617	0.41	174		<2
GO ADOLYMOOD Description	64							< 0.2	8.63	810	1	<2	0.98	<0.5	6		5	2.09	2.54	0.68	370	<1	3.92			6				- :	14
67 AO/TMOOF Decise	65						10	<0.2	4.72	430	<0.5		0.09	<0.5	1	35	<1	0.07				i-		d l				* * · · ·			<2
See Normonia Black shale 11.8 3.6 3.8 270 10.6 0.60 70 0.5 0.2 9.35 1.5 1.8 3.8 1.7 1.0 0.5 0.5 0.2 1.0 0.5 0.				40 T (Married D. M.) (Married Married D. M.)									0.21		8	5										62			1		186
66) AOPTMOSE White statement ext. 100	67								4.86	320	<0.5	<2	0.02	<0.5	1	8			2.14	0.13				<1							6
To AOTIMOS Rayunite tuff	68						Company or Company									3													i -		1870
77 A00TMOS Tonalist	69									i					<1	5	4												6	1.	12
72 AO/TMOS Shale							1								11		1					1		+,= ;			1 1		4		10
721 AO/TMO19 State						•	1			i												1				= = ; _		TO 100 TO 1 1 1		:	10
74 AOPTMODI Shale																													1		6
To Approximation Control Con				I	i					·		— i												ii-							2
To ADOTMOIS Granter* O.11 50 16 240 3.8 5.42 130 0.5 Intr 0.52 2.7 46 193 2400 1.27 0.38 0.1 5.20 114 2.2 6 Intr 176 0.00 4.2 5 107 78 ADOTMOIS Granter* To ADOTMOIS Granter* O.035 51 2.2 1200 2.2 7.86 160 0.5 Intr 0.15 0.5 Intr 0.15 0.5 1.0 9 282 4.8 5.75 1.19 1500 0.1 13 3 60 36 261 0.48 174 4.0 12 0.5 1.0 12 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0															l l		i	-							i :				:		3170
77 AOOTMORIG Granute** 0.035 51 22 81200 222 7.86 60 0.5 Int** 0.15 0.05 10 9 92 1.88 5.75 1.9 1500 2 1nt** 176 69 0.04 124 0.79 AOOTMORI Qr. was in grantood 1.95 48 1.2 6820 15.2 1 60 22 Int** 1.02 5.04 0.05 0.5 0.5 0.05 0.05 0.05 0.05 0										·														1		1-					1430
78 AODTMOIT Tonalite																						+-		i	i .					:	150
79 AOPTMOSI Qr. view in granitoid								i -																		_					168
80 AOOTMOG2 Lapliturf									10.3				<u>-</u>											A 7 I							116
81 AOFTMOZE Tuff					I tours the man and				1					A					and the same of the same									1 -	- +	- :	30
82 AOOTMO27 Laphillutff								maria maria a con-		·														i i -							2
84 AOOTMOSP Porphyritic Tonalite					i											2														1	18
84 A00TM032 Forphyrutic Tonalite			·^		1					l						7		THE OWNER OF THE OWNER OWN											1.		18
86 A00TM032 Tonalite					1																		****								120
86 AOOTMO32 Tonalite 0.0005 5 0.2 0.10 0.2 7.75 40 0.5 0.2 1.5 0.5 0.5 1.2 46 5 3.7 0.26 1.58 585 5 3.62 1.2 60 16 191 0.42 1.23 1.0 1	A THE SAME SAME SAME AND ASSESSMENT				<u> </u>																			1							64
87 AOOTMO33 Aguelle vein															i																42
88 AOOTMO34 (2x ven (Float)																								l		i -		- 1-			50
89 AOOTMO38 Grandiorite					i										i			i-						4							32
99 AOOTMO38 Q2 vein 0.01 11 0.6 <10 <0.2 0.36 80 0.5 2 0.05 <0.5 8 0.1 <0.5 2 24 <0.7 7.075 0.03 <0.03 <0.01 <0.5 <0.001 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.01 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <	1																									***	- : .		1		10
91 AOOTMO39 G2 veim 0.01 9 0.2 <10 0.4 0.6 230 <0.5 8 0.01 <0.5 2 24 7 0.75 0.03 <0.01 40 652 0.04 <1 10 2 8 <0.01 6 <10 20 AOOTMO40 Granodiorite 0.005 <1 <0.2 <10 0.4 0.5 2 7 0.8 <0.01 5 <2 0.13 <0.5 3 8 8 3 1.13 <1.39 0.1 50 50 2.3 <1 160 14 99 0.08 2.0 <10 0.4							:			i					i	i								4	1 -				3		52
92 AODTMO40 Granodiorite							·				- -						3														12
93 AOOTMO41 Hydrothermal breecia													i				7								!						18
94 A00TM054 Hydrothermal breecia																															10
95 AOOTMO55 Granite (Float)	1						·					-			·	:						1		l I						!	. 24
Performance Performance	1				large water to the										i							1		·							168
97 A00TM055 Återed rock	11				l										·																110
98 AOOTMO56 Altered rock	1						I			·					·							www.rea	MIT							1	40
99 AOOTMOSS Altered rock					i																			I	-						<2
100 A00TM059 Qz vein										ii														· · · · · · · · · · · · · · · · · · ·							138
101 A00TM060 Altered rock 0.005 292 3.6 <10 0.2 4.6 650 0.5 <2 0.22 <0.5 3 14 4 1.72 3.29 0.74 <700 1 0.51 1 520 8 61 0.21 31 <10 <10 102 A00TM061 Hydrothurmal breccia 0.06 204 1 <10 3.8 1.58 200 0.5 <2 0.04 <0.5 1 16 33 0.43 1.38 0.13 195 <1 0.11 <1 80 98 23 0.04 8 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	W. Y. B. 100 March 1									·							8														18
102 A00TM061 Hydrothurmal breccia 0.06 204 1 <10 3.8 1.58 200 <0.5 <2 0.04 <0.5 1 16 33 0.43 1.38 0.13 1.95 <1 0.11 <1 80 98 23 0.04 8 <10 <10 A00TM062 Altered rock 0.01 116 0.6 <10 <0.2 7.5 280 1.5 <2 0.07 <0.5 1 2 <1 1.47 1.39 0.06 260 <0 <3 3.2 <1 70 14 97 0.1 2 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1																	3							·							12
103 A00TM062 Altered rock 0.01 116 0.6 <10 <0.2 7.5 280 1.5 <2 0.07 <0.5 1 2 <1 1.47 1.39 0.06 260 <1 3.42 <1 70 14 97 0.1 2 <10 104 A00TM065 Qz vein 1.575 3660 76 2670 26 0.86 90 <0.5 46 0.03 20 4 16 243 2.66 0.16 0.02 35 6 0.03 1 250 1485 23 0.01 12 <10 105 A00TM066 Qz vein 0.075 5710 64 950 40 1.58 140 <0.5 16 0.04 1.5 2 14 244 2.51 0.49 0.04 3.5 1 0.04 4 1.68 243 0.04 1.08 140 <0.5 16 0.00 4 1.58 140 <0.5 16 0.00 4 1.58 140 <0.5 16 0.04 1.5 2 14 244 2.51 0.49 0.04 3.5 1 0.04 4 1.08 2.7 0.06 2.7 0.07 0																	4									! .	1				30
104 A00TM065 Qz vein	1																														28
105 A00TM066 Qz vein	1														1												1				38
106 A00TM068 Qz vein						-1	i				:						PR 17 WHEN THE PARTY		i									7			596
Total Tota	105														·									· · · · · · · · · · · · · · · · · · ·					2.1		50
108 A00RM011 Dacite porphyry <0.005 10 0.2 <10 <0.2 12.1 250 1 <2 0.33 <0.5 8 4 35 1.55 1.27 1.75 530 <1 5.93 <1 5.70 26 214 0.11 43 <10 <10 A00RM012 Dacite porphyry <0.005 8 0.4 <10 1 9.19 680 0.5 <2 2.83 <0.5 11 9 9 3.15 1.51 1.92 945 <1 3.12 2 600 14 404 0.3 110 <10 <10 A00RM016 Sed. Rock <0.005 6 <0.2 <10 <0.2 <10 <0.2 <1.7 520 2 <2 0.13 <0.5 2 18 31 0.55 2.53 0.51 20 1 1.31 <1 310 10 62 0.11 60 <10 <11 A00RM017 Sed. Rock <0.025 23 1.6 <10 0.6 4.73 160 0.5 <2 0.07 <0.5 1 20 64 4.52 1.89 0.27 15 20 0.23 <1 420 56 30 0.09 288 <10 <11 A00RM020 Qz. vein in Granodiorite 0.025 37 0.8 150 0.8 3.89 180 1.5 10 0.11 <0.5 3 9 68 2.29 1.7 0.11 45 22 0.09 <1 50 3 50 13 1.23 2 770 10 69 0.16 <10 <11 A00RM023 Volcaniclastic rock <0.005 35 3 10 <0.2 5.85 920 0.5 <2 0.04 <0.5 1 6 1 18 1.48 1.8 0.5 990 <1 3.8 1 300 36 297 0.2 33 <10 <10 <10 A00RM028 Andesite? <0.005 7 <0.2 <10 0.2 7.83 600 1.5 <2 1.53 4.5 6 1 18 1.48 1.8 0.5 990 <1 3.8 1 300 36 297 0.2 33 <10 <10 <10 A00RM028 A00RM028 Andesite? <0.005 7 <0.2 <0.005 7 <0.2 <0.005 7 <0.2 5.05 5	106				f 1																		·	induced the sites.							344
109 A00RM012 Dacite porphyry <0.005 8 0.4 <10 1 9.19 680 0.5 <2 2.83 <0.5 11 9 9 3.15 1.51 1.92 945 <1 3.12 2 600 14 404 0.3 110 <10 <10 A00RM016 Sed. Rock <0.005 6 <0.2 <10 <0.2 7.7 520 2 <2 0.13 <0.5 2 18 31 0.55 2.53 0.51 20 1 1.31 <1 310 10 62 0.11 60 <10 <11 A00RM017 Sed. Rock <0.025 23 1.6 <10 0.6 4.73 160 0.5 <2 0.07 <0.5 1 20 64 4.52 1.89 0.27 15 20 0.23 <1 420 56 30 0.09 288 <10 <11 A00RM020 Qz. vein in Granodiorite 0.025 37 0.8 150 0.8 3.89 180 1.5 10 0.11 <0.5 8 9 68 2.29 1.7 0.1 145 2.2 0.09 <1 580 8 10 0.07 12 10 <11 A00RM020 Granodiorite 0.01 9 0.4 2830 1.2 6.68 200 3 4 0.18 <0.5 8 9 3090 2.73 2.21 0.33 530 13 1.2 2 600 14 404 0.3 110 <10 <10 A00RM020	107																										_ : - (_				16
110 A00RM016 Sed. Rock <0.005 6 <0.2 <10 <0.2 <7.7 520 2 <2 0.13 <0.5 2 18 31 0.55 2.53 0.51 20 1 1.31 <1 310 10 62 0.11 60 <10 <111 A00RM017 Sed. Rock 0.025 23 1.6 <10 0.6 4.73 160 0.5 <2 0.07 <0.5 1 20 64 4.52 1.89 0.27 15 20 0.23 <1 420 56 30 0.09 288 <10 <112 A00RM020 Qz. vein in Granodiorite 0.025 37 0.8 150 0.8 3.89 180 1.5 10 0.11 <0.5 3 9 68 2.29 1.7 0.1 145 22 0.09 <1 580 8 10 0.07 12 10 <113 A00RM021 Granodiorite 0.01 9 0.4 2830 1.2 6.68 200 3 4 0.18 <0.5 8 9 68 2.29 1.7 0.1 145 22 0.09 <1 580 8 10 0.07 12 10 <114 A00RM022 Volcaniclastic rock 0.005 35 3 10 <0.2 5.85 920 0.5 <2 0.04 <0.5 1 6 1 18 1.48 1.8 0.5 990 <1 3.8 1 300 36 297 0.2 33 <10 <0.2 33 <0.2 33 <0.2 <0.2 33 <0.2 33 <0.2 <0.2 33 <0.2 <0.2 33 <0.2 <0.2 <0.2 33 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.	108														1																144
111 A00RM017 Sed. Rock																															46
112 A00RM020 Qz. vein in Granodiorite 0.025 37 0.8 150 0.8 3.89 180 1.5 10 0.11 <0.5 3 9 68 2.29 1.7 0.1 145 22 0.09 <1 580 8 10 0.07 12 10 113 A00RM021 Granodiorite 113 A00RM021 Granodiorite 0.01 9 0.4 2830 1.2 6.68 200 3 4 0.18 <0.5 8 9 3090 2.73 2.21 0.33 530 13 1.23 2 770 10 69 0.16 26 <10 114 A00RM023 Volcaniclastic rock															1															:	8
113 A00RM021 Granodiorite 0.01 9 0.4 2830 1.2 6.68 200 3 4 0.18 <0.5 8 9 3090 2.73 2.21 0.33 530 13 1.23 2 770 10 69 0.16 26 <10																														- 1	2
114 A00RM023 Volcaniclastic rock							d			ł					I												- 1		,		50
115 A00RM028 Andesite? <0.005 7 <0.2 <10 0.2 7.83 600 1.5 <2 1.53 4.5 6 1 18 1.48 1.8 0.5 990 <1 3.8 1 300 36 297 0.2 33 <10															I											1			- 1		152
					·					t						6						i-		4	5 - 1 .	-!.	. :	- 1			4
1 116 A00RM030 Tonalite <0.005 42 0.2 <10 <0.2 8.57 400 0.5 <2 3.3 <0.5 14 68 44 3.85 0.78 2.61 755 <1 2.72 18 410 10 310 0.43 166 <10					1											1									· · · · — i ·						1410
	116	A00RM030	Tonalite	< 0.005	42	0.2	<10	<0.2	8.57	400	0.5	<2	3.3	<0.5	14	68	44	3.85	0.78	2.61	755	<1	2.72	18	410	10	310	0.43	166	<10	58

								<u> </u>																					
No.	Sample	Rock	Au	As	Sb	Hg	Ag A		Ba Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	V		Zn
140.	Dample	ROCK	(g/t)	(ppm)	(ppm)	(ppb)	(g/t) (9	6) (pp	m) (ppm) (ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(%)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	$(\mathbf{ppm}) $	(ppm) (ppm)
117	A00RM033	Andesitic dyke	< 0.005	34	0.2	<10	0.6 8	12	300	1 <2	3.07	< 0.5	10	10	43	2.19	0.3	0.77	315	<1	2.85	1	370	24	403	0.24	54	<10	40
118	A00RM036	Rhyolite	< 0.005	4	<0.2	<10	2.2 7	26	80 3.5	5 <2	0.03	<0.5	1	2	<1	0.53	3.56	0.39	40	<1	0.21	<1	80	2	13	0.04	16	110	4
119			< 0.005	28		<10			110 0.5			<0.5	1	17	30	1.86	0.14	0.03	100			2		10		<0.01	19	70	$\tilde{32}$
120		Granodiorite/Porphyry	0.02		<0.2	<10	1.8 5		460 0.5			<0.5	8	13		1.6	2.38	0.44	485	11		5		2		0.06	29	<10	32
121		Breccia pipe	0.02	57		<10		65		Intf*		<0.5	4		17200	1.98	0.24	0.02	10	14			Intf*	8		<0.01	21	90	<2
																								6			$-\frac{21}{72}$	10	142
122		Hydrothermal breccia	<0.005	<1		<10				1 <2		<0.5		28		3.51	2.8	1.05	640	25		12				0.27			
123		Altered rock	0.29	18		130			160 0.5			<0.5		26		10.9	0.62	0.09	80	28			Intf*	88	17	0.05	127	10	30
124		Granodiorite	0.005	1		<10			550 0.5			<0.5		8	75	1.91	4.01	0.36	30					50	46	0.12	124	<10	6
125		Brecciated qz vein	0.015	43		<10		.67	70 <0.5			<0.5		14	86	0.15	0.49	0.04	165	<1				56	10	0.01	3	<10	8
126	A00RM066	Brecciated qz vein (Float)	0.135	3880	18	520	39.2 0	66	30 <0.5	5 42	0.04	43.5	216	13	775	20.3	0.09	0.03	30	18	0.02	10	780	2770	16	0.01	18	<10	$2\overline{170}$
127	A00RM069	Qz vein (Float)	0.17	2150	19	670	56.2 0	.66	60 <0.5	5 52	0.03	0.5	1	17	102	0.94	0.14	0.01	85	5	0.03	<1	70	1740	15	0.01	10	<10	74
128	A00RM070	Laminated Sed. Rock	0.03	192	9	460	8.8 0	.27	70 <0.5	5 <2	0.12	0.5	2	33	9	0.68	0.04	< 0.01	650	9	0.02	1	60	158	15	0.01	6	<10	164
129			< 0.005	25		<10			380	1 <2	0.05	<0.5	<1	7	10	0.24	0.64	0.02	50	<1	0.33	<1	30	10		0.02	3	<10	14
130	A00NK102		< 0.005						720 1.5			<0.5	<1	7		0.41	3.43	0.04	35	<1			50	14		0.05	20	<10	14
131		Quartz vein (float)	< 0.005	<1		<10		31	60 <0.5			<0.5	<1	18	6			<0.01	20	<1		<1				<0.01	1	<10	12
																			55										
132		Ryolite dike	<0.005	<1		10			890 1.5		0.12	<0.5	5	9	7	0.7	2.92	0.08		<u> <1</u>		<1	160	8		0.1	16	<10	
133		Rhyolitic tuff	<0.005	3					810		0.07	<0.5	1	10	10	3.49	3.3	0.03	250	<1		<1	60	40		0.06	5	<10	54
134		Rhyolitic tuff	<0.005	28		90			180		0.04	<0.5	3	9	5	1.34	0.12	0.18	9300	<1	0.06	<1	40	6		0.01	20	<10	32
135	A00NK119	Quartz vein & tuff	< 0.005	<1			<0.2 1	.42	140 0.8			<0.5	1		14	0.44	1.02	0.12	75	<1		<1	190	6		0.03	6	<10	10
136	A00NK123	Undefined	< 0.005	10	<0.2	120	0.6 7	.86	400	1 <2	0.99	< 0.5	1	38	11	2.31	1.94	0.4	75	10	2.76	<1	540	16	246	0.32	174	<10	14
137	A00NK124	Rhyolitic tuff	< 0.005	<1	<0.2	30	0.4 9	57	530 1.8	5 <2	0.06	< 0.5	1	5	22	0.15	2.22	0.01	40	<1	5.96	<1	80	16	26	0.04	1	<10	28
138	A00NK126	Rhyolitic tuff, quartz vein	< 0.005	4	0.2	<10	<0.2 4	18	320 1.5	5 <2	0.06	< 0.5	<1	23	6	0.4	0.79	0.03	105	<1	2.57	<1	20			0.05	5	<10	50
139		Rhyolitic lapili tuff	< 0.005			<10	0.2 5		850 5.5	_;					3	0.71	3.86	0.11	55	<1		<1				0.04	2	<10	86
140		Rhyolitic tuff breccia	< 0.005							2 <2			<1				3.12	0.1	160	<1		<1		12		0.05	4		52
141	A00NK129		< 0.005	!		<10			470 0.3			<0.5				0.48	7,96	<0.01	40	9			20			0.06	4	<10	42
141		Biotite Garnet gneiss, quartz vein	< 0.005	!				0.2	10 <0.			<0.5	<1		4	0.06	0.05	< 0.01	15	*****		<1	190	4		<0.01		<10	- 6
			<0.005	1 8					370 4.3			<0.5	3	24	10	0.00	2,86	0.23	610			20		44		0.16	28	<10	-64
143			< 0.005	27								<0.5							15										6
144		Undefined				<10			130 0.				<1	42		1.21	0.21	0.04			< 0.01	<1	160	8		0.98	131	<10	
145		Quartz pyrite vein	< 0.005	76				.71	20 0.3			<0.5		6		17.35	0.63	0.69	35			50		12		0.23	78	<10	4
146		Undefined	<0.005	71		:		.24	30 <0.			0.5		<1		>25.0	1.03	0.04	<u><5</u>	<1		<1	4500	12		0.08	78	<10	<2
147		Andesite porphyry	<0.005	<]					100 0.			<0.5		9		0.19		< 0.01	15		<0.01	<1	340	2		0.52	11	<10	6
148		Hydrothermal breccia	<0.005	26					100			<0.5	7	16		2.65	0.22	0.01	20	3		<1	190	10		0.35	15	<10	4 18
149	A00NK150	Quartz vein	< 0.005	</td <td><0.2</td> <td><10</td> <td>< 0.2 1</td> <td>.31</td> <td>50 <0.</td> <td></td> <td>0.06</td> <td><0.5</td> <td>1</td> <td>10</td> <td>3</td> <td>0.78</td> <td>0.47</td> <td>0.19</td> <td>250</td> <td><1</td> <td>0.02</td> <td><1</td> <td>70</td> <td>6</td> <td>6</td> <td>0.05</td> <td>16</td> <td><10</td> <td>18</td>	<0.2	<10	< 0.2 1	.31	50 <0.		0.06	<0.5	1	10	3	0.78	0.47	0.19	250	<1	0.02	<1	70	6	6	0.05	16	<10	18
150	A00NK152	Quartz vein (float)	0.085	< 1	l <0.2	<10	1 0	.74	10 <0.	5 <2	0.03	<0.5	<1	22	28	0.32	0.2	0.01	25	<1	0.01	3	10	16	9	0.01	14	<10	14
151	A00HH104	Andesite	0.02	< 1		<10	< 0.2 6	.88	130 1.	5 <2	0.07	<0.5	<1	23	7	5.29	3.04	0.51	250	<1	0.12	<1	40	24	11	0.77	293	10	$2\overline{2}$
152	A00HH112	Altered granite	0.045	7	7 <0.2	<10	< 0.2 9	.14	70 <0.		2.07	<0.5	12	22	377	3.23	0.3	1.66	215	43	3.38	2	450	8	263	0.3	121	<10	24
153		Altered rock with zeolite vein	<0,005		1 <0.2	<10	< 0.2 1	0.8	90 <0.	5 <2	6.8	<0.5	2	2	10	2.39	0.2	0.66	465	<1	0.21	<1	210	14	277	0.36	96	<10	32
154	A00HH114	Andesite	0.01	10	< 0.2	10	<0.2 8	.63	400 0.	5 <2	1.29	<0.5	16	21	25	4.93	1.8	2.42	1280	<1	1.89	6	760	22	258	0.53	205	<10	94
155			< 0.005	<	0.2	<10	<0.2 9		130 0.	5 <2	3.76	<0.5	11			4.5	0.43	1.57	660	<1	3.59	3	840	10	336	0.43	92	<10	30
156		Quartz vein	0.025			30		.91	80 0.							3.32	1.19	0.07	155					478	11	0.06	12	<10	92
157		Quartz porphyry	0.015						430 <0.							1.71	2	0.13	405						25	0.07	16	<10	46
158		Sandstone	0.01	÷					210 0.	_:						1.05		0.26	995					94		0.1	13	<10	24
159		Quartz porphyry	<0.005							2 <2		<0.5							430	33				62		0.19	$-\frac{13}{23}$	<10	$-\frac{24}{22}$
			<0.005		_i	<10			410	1 2		<0.5	<1	5	i — — — i –	1.92	3.08	0.38	85	1		1:							10
160		Quartz porphyry	< 0.005	L								<0.5	l	11					50			:		16		0.11	43	10	$-\frac{18}{6}$
161		Quartz vein						.32					<1		1	0.16	0.07	0.05				·		2		0.01	9	<10	
162		Quartz porphyry	<0.005	<		<10	0.4 6		210 0.			<0.5	4	17	6	1.47	1.13	0.24	325	<1				8	78	0.29	55	<10	22
163		Undefined (float)	0.015				<0.2 9		610 2.			<0.5	21	105	97	·	-		1260		1.11			24		0.52	202	<10	96
164			0.005						180 1.			<0.5	<1	7	3	0.8			335	<1			************			0.03	5	<10	12
165	A00HH133	Andesite (float)	0.035		0.2	<10		OCCUPATION OF THE PARTY OF	230 0.				18	21	78	5.43			945			9				0.8	257	<10	84
166	A00HH134	Sandstone (float)	<0.005	12	2 <0.2				250 1.			<0.5	16	74	32	4.86	1.76	1.07	340	<1	1.05	34				0.48	92	<10	88
167	A00HH135	Andesite with quartz vein	<0.005	10	1.6	<10	< 0.2	.39	40 <0.	5 8	23.5	<0.5	12	21	13	3.68	0.86	2.21	1705	<1	0.02	8	90	10	339	0.1	52	<10	$-\frac{24}{42}$
168		Silicified rock (float)	0,43	23	3 1.8	<10	<0.2 9	.22	490 0.	5 <2	4.92	<0.5	26	45	147	5.06	3.73	0.67	1020	<1	0.74	13	460	16	161	0.56	268	<10	42
169		Silicified rock	<0.005			<10			520 1.			<0.5	23	23	808	3.51	3.55	0.99	1105	4				6		0.16	67	<10	168
170		Silicified rock	< 0.005		0.4	<10	1.8 8			1 Intf*		0.5		12		1.51	7.26	0.92	595					14		0.15	67	<10	278
171		Hydrothermal breccia	<0.005			<10	2,2 5		320 <0.			<0.5					,	0.35	70					6	· i-	0.18	89	30	10
172		Quartz porphyry	0.005	44		<10	0.2 5		130 0.			<0.5		8		12.65	$-\frac{2.53}{2.54}$	0.28	280			1		22		$-\frac{0.13}{0.07}$	39	<10	146
173	A00MZ106		0.003	i					490 0.			<0.5	3	7	35	4.53	3.49	0.16	55	1	0.12	1		$-\frac{22}{32}$		0.07	28	<10	140
			< 0.02				$\frac{0.2}{<0.2}$ 7		340 1.		0.07	i		·—-	:		2.97	0.10	140	107		1			l				- 24
174	I WOOMETIO	Quartz porphyry	_ <u> </u>	! .	1 0.2	<u> _10</u>	~0.2 /	1	34U 1.	<u> </u>	0.47	· ~0.0	5	12	93	1.00	4.91	0.59	140	167	1.31	6	000	18	57	0.11	43	<10	24

	C	D	Au	As	Sb	Hg	Ag Al	Ba	Ве	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	W	Zn
No.	Sample	Rock	(g/t)			(ppb)	g/t) (%)			(ppm)			(ppm) (j			(%)	(%)	(%)	(ppm)	(ppm)	(%)		(ppm)		(ppm)	(%)			(ppm)
175		Quartz porphyry	0.02		0.4		<0.2 7.58		1.5	6		<0.5	16	14	28	5.91	3.32	0.27	60	10	0.27	2	350	50	41	0.15		<10 <10	14 10
176		Altered volcancs	0,1	<1		<10			<0.5	<2		<0.5	3_	14		9.49	2.33	0.7	275	<1	0.89	<1	980	12 12	53 255	$0.38 \\ 0.24$		<10 ₁	22
177		Altered volcancs	0.02	<]			<0.2 9.96		0.5	<2		<0.5	3	17		3.48	0.36	1.87	120	73	$\frac{5.26}{0.22}$	4	600	10	17	0.24	$-\frac{131}{34}$	<10	- <2
178	A00MZ116		0.48	240		<10	0.2 1.72	-i	<0.5	<2		<0.5	4	12	28	7.7 5.11	0.51 1.27	0.14	270	<1	3.93	<1	460	18	298	0.65		<10	18
179		Altered volcancs	< 0.005	11		100	$ \begin{array}{c cc} <0.2 & 9.57 \\ \hline 0.4 & 2.26 \end{array} $		<0.5 <0.5	<2 10		<0.5 <0.5	6 4	8	17	6.18	0.74	0.46	55	4	0.08	<1	430	12	14	0.00	15	<10	14
180	,,	Quartz vein (float)	0.19	278 2			<0.2 8.05		0.5	<2		<0.5	17	102	8	3.43	0.53	2.54	405	<1	3.22	22	940	8	239	0.5	202	<10	34
181 182		Altered volcancs (tailing)	0.015	18		<10	0.2 0.43		0.5	<2		<0.5		102	9	0.2	0.07	0.01	5	<1	0.04	<1	<10			< 0.01	4	<10	12
183	A00MZ122 A00MZ124	Quartz vein (float)	< 0.005	38		10	0.2 8.53		2		1.18	4		32	165	2.31	4.15	1.05	1255	200	0.85	i	680	64	110	0.34	81	<10	694
184		Quartz porphyry	< 0.005	14	-i	<10	0.2 7.77		1.5			<0.5	3	11	80	1.37	3.77	0.22	255	7	2.34	<1	430	32	248	0.11	14	<10	18
185		Andesite	<0.005				<0.2 7.7		0.5			<0.5		309	24	7.17	2.65	3.42	930	<1	2.27	145	1020	14	147	0.81	235	<10	132
186		Qz porphyry	9.14	15			12.4 1.91	-i	0.5	<2	3.5	5		28	606	4.27	0.84	0.79	2660	6	0.03	17	160	502	73	0.08	85	<10	284
187		Granitoids (float)	0.03	23		10	2.4 4.5		<0.5			<0.5		8	44	4.8	1.33	0.55	110	<1	0.8	3	300	72	31	0.07	55	<10	18
188		Quartz vein (float)	0.08	i		<10	< 0.2 2.24	100	<0.5	<2	3.14	<0.5	9	41	21	1.67	0.43	0.73	650	1	0.18	15	140	8	66	0.09	53	<10	38
189		Quartz vein (float)	<0.005	<	0.2	<10	0.2 1.63	30	0.5	<2	2.61	<0.5	<1	13	247	0.32	0.1	0.08	140	1	0.3	1	30	46	32	0.04	17		6
190	A00MZ144	Silicified rock	< 0.005	1	0.6	<10	0.6 5.38	250	1	<2	6.79	<0.5	13	68	74	4.49	1.55	1.16	1785	<1	0.67	28	490	172	146	0.27	95		86
191	A00MZ145	Calcite vein	<0.005	919	12		<0.2 1.43		<0.5			< 0.5	6	8	11	1.4	0.5	0.29	2850		<0.01	1	<10	18	206	0.05	26	<10	38
192		Quartz vein (float)	0.02				<0.2 10		0.5			<0.5		11	6	2.8	0.58	0.97	940	<1	0.42		390	36	17	0.24	82	<10	40
193		Quartz vein	0.025	1050		<10	0.2 1.4		<0.5	<2		<0.5	1	9	7	0.61	0.19	0.12	75	<1	0.58	<1	50	452		0.02	9	<10	10
194		Quartz vein	0.01	3'			<0.2 0.82		<0.5	<2		<0.5		41	4	1	0.03	0.3	175	<1	0.05	3	10	4		0.03	17	<10 <10	22 46
195		Altered rock	<0.005		0.4		<0.2 8.0		1.5			<0.5		31			2.12	0.21	130	<1	3.31	<1 <1	450	20	210	0.08	15	<10	10
196	~	Quartz vein	<0.005		0.8	<10		1050	- 1	<2		<0.5		10		0.79	5.8	0.08	60 40	<1 <1	$\frac{1.71}{0.17}$	- <1		10		0.03	6	<10	- 10 50
197		Quartz vein	<0.005		0.4		<0.2 0.75		0.5			<0.5 <0.5		7	5 6	0.23 3.49	0.28	0.07	115	<1	3.77	<1	l t-	12		0.01	44		20
198		Altered rock	< 0.005	10		NAME AND ADDRESS OF THE OWNER, AND	$ \begin{array}{c cc} <0.2 & 9.53 \\ <0.2 & 9.8 \end{array} $		1.5			<0.5		8	4		1.13	0.94	90	<1	3.45	<1		16	414	0.23	49	<10	10
199		Altered rock	<0.005 0.055	10		<10 20	$ \begin{array}{c cc} <0.2 & 9.8 \\ \hline 0.2 & 8.06 \end{array} $		$\frac{1}{2}$		0.22	<0.5		1	7	1.12	3.41	0.44	1995	<1	0.19	<1	460	74	20	0.25	19	10	
200	~	Granodiorite	< 0.005		1.6		<0.2 6.46		0.5			<0.5		8	8	0.54	7,74	0.04	55	<1	0.23	L	80	8	26	0.08	6	<10	16
$\frac{201}{202}$		Granodiorite Quartz vein	15.27	99		50	37 0.49		0.5			<0.5		6		15.85	0.25	0.05	35	<1	0.02			176	10	0.01	32	<10	14
202		Granodiorite	0.17	<		50	1.8 7.2		2			<0.5		3	33	1.89	3.26	0.27	370	<1	0.24			368	10	0.31	20	<10	$2\overline{12}$
204		Rhyolitic tuff	0.01				<0.2 7.70		$-\tilde{1}$			<0.5		5	26	3.07	3.28	0.32	45	<1	0.31	<1		8	7	0.13	19	<10	18
205	A00TM113		0.04		0.6	<10	0.2 6.89		1.5			<0.5		1	12	0.85	2.41		125	<1	0.22	<1	80	62	29	0.03	1	<10	22
206	A00TM115		0.015		0.6		<0.2 7.33		1	<2	0.03	<0.5	<1	4	28	1.26	2.82	0.22	80	<1	0.33	<1	240	40	27	0.06	6		52
207		Tuff breccia	0.03		5 2		<0.2 6.5		1.5		0.01	< 0.5	<1	3	13	0.58	2.44	0.15	60	<1	0.26	<1	110	18	8	0.04	2	<10	10
208	****	Altered rock	< 0.005		5 1	<10	0.2 6.2	630	0.5	<2	0.83	< 0.5	5	5	1	2.84	2.88	0.61	1915	<1	2.32	<1	1770	20	51	0.57	63	<10	236
209	A00TM118	Tuff breccia	<0.005	ļ	7 1	<10	<0.2 6.18	500	2.5	2	3.4	2.5	3	3	38	2.33	2.34		1325	<1	0.16		i	150	250	0.06	1	<10	72
210	A00TM119	Quartz vein	0.01	!	0.8	<10	2 1.6	360	<0.5	4	0.27	<0.5	6	7	13	1.57	0.85		310	1	0.05	·		6	32	0.01	5	<10	28
211	A00TM121	Altered rock	<0.005				<0.2 3.0		<0.5		0.03	< 0.5		16	4	0.16	0.84		10					6	29	0.08		<10	. 2
212		Dacitic andesite	0.015				0.2 8.7		1	2	5.64	1.5		30	34	0.93	1.35	0.38	305	1				10	268	0.25			34
213		Limonite quartz vein	<0.005		3 1.2	<10	0.2 3.3		0.5		0.1	<0.5		10	10	3.63	0.92	0.25	165		0.16			204	39	0.1	31	<10 <10	16
214	A00TM128		0.06	4			<0.2 3.8		0.5		0.25	< 0.5		15	143	10.8		0.58	70		1.37		640 360	8	45 166	$0.14 \\ 0.11$	49	<10	°
215	A00TM129		0.005	AND RESIDENCE PROPERTY.	(0.2	<10	<0.2 6.0		0.5		0.13	1.5		15	15	1.1	$\frac{5.11}{0.32}$		45 310	<1 16		· · · · · · · · · · · · · · · · · · ·	430	20	24	0.11	52	<10	116
216		Altered rock (gossan)	0.24			<10 20	0.6 2.0 <0.2 9.0		<0.5 1.5	44	0.15 4.26	<0.5 <0.5	·	6		8.67 2.19			920	2	5.68		940	6	213	0.15	142		34
217	A00TM132		0.005 59.14				$\frac{<0.2}{3.4}$ $\frac{9.0}{2.68}$		1.0	60	2.13	9	28	<1		>25.0			210	14	1.09			230	91	0.03	70		1485
218 219		Altered rock (gossan) Tuff breccia	0,045		4 0.6		0.2 9.4		0.5			<0.5	i	1	14	4.22	1.48		25					10		0.17	114		12
220		Altered rock	0.043		0.0		<0.2 8.0		0.5		0.11	<0.5		24	10	0.28	1.24	0.1	5	:			i	6		0.15	109		12
221		Altered rock(gossan)	< 0.005				<0.2 2.0		9.5		0.07	27	<1	<1	5700		0.13		105	<1				6		< 0.01	9		2140
222	A00TM141	Shale	0.025	4	0.2		<0.2 6.1		1	4		<0.5	·	25	62	3.22	0.81	1.9	1270	<1	2.29	·	850	8	114	0.29	84	<10	36
223	A00TM142	Sandstone	< 0.005				0.6 3.0		<0.5	<2	0.05	<0.5	· · · · · · · · · · · · · · · · · · ·	<1	281	21.3	1.09		45	<1	1.58		110	8	39	0.08	14	<10	6
224		Tuffaceous shale	0.035			20	<0.2 4.6		1.5		0.34	0.5		44		10.65	0.7	0.23	140	4	0.18	18	3060	10	87	0.09	266	<10	40
225		Tuffaceous sandstone	0.005			10	0.2 6.3		0.5		0.15	<0.5		10	88	2.72	1.56	0.2	30	1	0.56	<1	510	6	398	0.05	55		6
226		Tuffaceous sandstone	2.33				<0.2 3.8		0.5	<2	0.12	<0.5	<1	10	15	0.71	0.74	0.09	30	<1	0.39	<1	1410	28	412	0.06	41		2
227		Granodiorite	0.315	35	5.8		2.4 11.	4 400	2		0.17	7.5			38600	7.01	3.79		6010		0.5	· i — · · · · · · · · · · · · · · · · ·		436	314	0.08			1
228	A00TM156	Limonite quartz barite vein	0.485	231	810	3480			1.5		0.06	15.5		<1		11.1	0.43		115		0.07		1260	1705		0.01			
229		Tuffaceous sandstone	0.01		9 5		0.2 9.1		1		0.11	1	<1	28	104	1.51	2.86		15		0.64			10		0.09		1 1	6
230		Tuffaceous sandstone	0.035				0.6 7.1		0.5		0.07	<0.5		28	29	1.7	2.59	0.2	15		0.52		1220	34	_ 224	0.08	1 1		. ,8
231		Limonite silicification vein	0.515				18.8 4.2		0.5			<0.5		8		12.55	2.54	0.11	35		0.44		4770			0.03	4 +	<10 <10	
232	A00TM161	Tuffaceous sandstone	1.765	25	7 42	18610	20.2 2.1	1 170	<0.5	22	0.08	<0.5	<1	10	25	2.15	0.9	0.06	25	2	0.13	<1	610	846	242	0.03	- 31	<u> \10</u>	

No.	Sample	Rock	Au	As	Sb	Hg		Al	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	Mg	Mn	Мо	Na	Ni	P	Pb	Sr	Ti	V	W	Zn
233	ADOTMICS	Tuffaceous sandstone	(g/t) 0.065	(ppm)	(ppm)	(ppb)				ppm)		(%)	(ppm)		- F F	(ppm)	(%)	(%)		7 7 7 7	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)				(ppm)
234		Tuffaceous sandstone	0.005	782 16		260 840		3.36		<0.5	<2	0.13	4.5				16.45	0.9	0.07	215	5	0.15	1	1630	834	333	0.22	287	_<10	516
235		Tuffaceous sandstone	0.033		>1000			5.1		<0.5	4	0.05	0.5	<1		20	1.83	1.95	0.11	10	1	0.25	<1		132	67	0.08	99	<10	6
236	A00TM166		0.185	1500				2.71 3.91		<0.5 <0.5	4	0.07	3.5				12.4	1.78	0.11	30	36	0.25	<1	1780		469	0.01	114	<10	112
237	A00TM167		0.185	27				3.22		<0.5	4	0.18	14				18.15	2.37	0.27	100	6	0.21	1	1680		44	0.09	281	<10	456
238	A00TM168		0.013	99).68		<0.5	- 2	0.05	<0.5	·——		53	7.85	1.17	0.06	10	3	0.14	<1		266	321	0.04	92	<10	4
239	A00TM169		0.505	943	86	40	4.2		50	0.5	<2	0.07	<0.5		!		7.58	0.15	0.03	45 175	- 6	0.04	<1		398	642	0.08			18
240	A00TM170		0.965	1335				1.75	50	- 0.5	20		2.5	·	!		>25.0	1.64	0.08		16	0.13	<u> <1</u>				0.04		<10	936
241	A00TM171		0.02	14			3 8		850	-0 E		0.14	<0.5			116	22.3	1.00	0.06	1530	- 6	0.18	<1				0.02	86		552
242		Porphyritic granodiorite	0.02	16		80		3.34	380	1.5	<2		<0.5				1.95	1.98	0.08	15		0.24	<1		94		0.09	60	<10	. 6
243		Porphyritic granodiorite	0.095	15		60	2	-	320	1.5	8			í	i		0.56	3.71	0.27	45	<1	0.32	<u><1</u>				0.15	62	<10	8
244	A00RM101		< 0.005		0.6			6.6	1650	0.5				! <u>-</u> -		23	2.64	1.62	0.01	1230	5	1.46	16				0.12	94	<10	244
245	A00RM106		< 0.005		2			5.48	860	1	2	0.04	1 1	<1		43	0.19	6.79 2.28		20	<1	0.33	<1		10		0.06	7	<10	- 6
246	A00RM111		< 0.005		0.2			3.83	1080		2	0.06	<0.5	L	<1	8	1.82	2.20	0.02	25 735	<1	2.68	<1	90	32		0.03	3	<10	- 6
247		Tuff with quartz vein	< 0.005		0.2			3.58	1060	2.5	6		<0.5	1			4.75	4.07	0.05	365	<1 <1	1.15	<u> </u>	30	16		0.05	9	<10	34
248		Hydrothermal breccia (float)	< 0.005	11				4.9	840	1.5	<2		<0.5	<1	- 1	5	1.51	2,7	0.03	125	<1 <1	1.48	<u> </u>	50 110	24		0.05	9	<10	76
249		Brecciated vein (float)	< 0.005	3					1790	2	<2			<1	18	8	0.8	3.47	0.03	95	<1	1.18	<u> </u>		66		0.05	5	<10	26
250			< 0.005	- i	$\frac{0.0}{0.2}$			5.61	980	3.5				!			1.48	4.6	0.26	175	<1	1.10	<1 <1	60 <10	18 72		0.07	4	<10	36
251		Alt.rock with quartz veinlet	< 0.005					.75	220	2							0.42	1.08	0.07	25	-\frac{\frac{1}{1}}{\frac{1}{1}}	3.63	<u><1</u>					10	<10	156
252		Quartz vein	< 0.005			<10		.02		<0.5			0.5				0.09	0.22	0.03	10	<1	0.44	<1		6		$\frac{0.04}{0.01}$	3	<10 <10	30
253		Jarosite network	< 0.005	161		<10).15		<0.5	<2		<0.5	I	<1		>25.0		<0.01		<1	1.34		10000	4	3490			<10	<2
254	A00RM122	Altered rock	< 0.005	29				0.3	40	2	<2		<0.5		12		3.09		<0.01	15		< 0.01	10				0.31	11	<10	<2
255	A00RM123	Altered rock with quartz veinlet	< 0.005	14			<0.2		150	2.5	4		<0.5		8		0.84	0.64	0.07	15		0.08	<1						<10	<2 <2
256		Altered rock with opal vein	< 0.005	7	0.4		<0.2			<0.5	8		<0.5		18		0.36		<0.01	5	4	< 0.00	5	110	6			10	<10	- \(\frac{2}{2}\)
257	A00RM130	Earthy limonite mass	< 0.005	23	<0.2		<0.2			<0.5	<2		1.5				>25.0	0.08	0.1	6750	39	0.09	<u> </u>		9		0.03	15	<10	<2
258	A00RM131	Granitoid (float)	<0.005		<0.2			.98	660	2.5	·		<0.5		8		1.14	3.69	0.11	140	<1	2.07	2	210	32			18	<10	28
259	A00RM133	Qz vein	<0.005	1	< 0.2	<10	0.2	.28	60	0.5	4		<0.5		15		0.68	0.43	0.1	255	<1	0.03		30	8			14	<10	14
260	A00RM139	Rhyolite	< 0.005	6	<0.2	<10		6.9	690	2	<2	0.08	<0.5		5		0.61	2.92	0.07	60	<1	2.87	<1	80	12		0.04	14	<10	24
261	A00RM140	Altered volcanic rock (float)	< 0.005	4	<0.2	10	<0.2 8	3.57	410	0.5			0.5	3	56		2.02	1.35	0.01	5		0.59		790	$\frac{12}{16}$		0.33	165	<10	<2
262	A00RM141	Altered granitoid (float)	<0.005	<1	<0.2	<10		6.8	710	2		0.03	<0.5	2	14		3.71	2.97	0.24	55		0.25	6	<10	4		0.04	21	<10	-2
263	A00RM142	Altered rock (float)	<0.005	<u>1</u>	< 0.2	<10	<0.2).13	30	<0.5	2	0.01	<0.5	<1	13	8	0.3		<0.01	5	30	< 0.01	<1		<2		0.11		<10	<2
264	A00RM143	Altered volcanic rock (float)	<0.005	7	3.2	20	<0.2 8	3.92	120	0.5	6	1.92	<0.5	19	I		4.47	0.46	2.33	570		2.58	$-\frac{1}{23}$		10		0.48	174	<10	102
265	A00RM144	Altered volcanic rock (float)	< 0.005	8	0.2	70	0.4	3,07		<0.5		0.06	<0.5	<1	15		2.27	0.06	0.01	45		0.17	<u> </u>	730	8		0.21	79	<10	102
266	A00RM145	Altered volcanic rock (float)	<0.005	2	<0.2	<10	<0.2	.39	260	0.5	2		<0.5	3	76		3.82	0.57	2.38	670	1	4.32	21	960	68		$\frac{0.21}{0.37}$	165	< 1 0	102
267	A00RM146	Altered volcanic rock (float)	< 0.005	5	0.6		<0.2 8			<0.5	4	0.04	<0.5	19	15		4.39	0.09	0.01	50	<1	0.23	10		22		0.37		<10	- 102
								-	-									2.001	2.01	- 00!		5.20	10	300		0001	0.21	1011	-101	

"Intf*" stands for interference. When a sample has high Cu, their is often interference on the Bi and P. The instrument can't get a good reading of the Bi and P because the Cu "interferes" with the reading.

Appendix-7 Bulk chemical analysis results including PGM elements for the geochemical survey (only Phase I survey).

No.	Commis	Rock	Au	Pt	Pd	Rh	As	Sb	Hg	Ag	Al	Ba	Be	Bi	Ca	Cd	Co	Cr
INO.	Sample	ROCK	(g/t)	(g/t)	(g/t)	(g/t)	(ppm)	(ppm)	(ppb)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)
1	A00NK041	Gabbro	0.03	< 0.07	< 0.07	<0.03	2	<0.2	<10	0.2	10.35	80	<0.5	<2	7.18	6.5	43	271
2	A00NK042	Gabbro	<0.03	< 0.07	< 0.07	< 0.03	3	<0.2	<10	< 0.2	10.55	60	<0.5	<2	7.25	< 0.5	45	278
3	A00NK043	Gabbro	<0.03	< 0.07	< 0.07	< 0.03	2	<0.2	<10	< 0.2	8.25	400	1.5	<2	4.22	< 0.5	24	21
4	A00RM054	Gabbro	<0.03	< 0.07	< 0.07	< 0.03	6	< 0.2	<10	0.2	10.7	70	<0.5	<2	7.38	< 0.5	47	239
5	A00RM057	Gabbro	<0.03	< 0.07	< 0.07	<0.03	7	<0.2	10	<0.2	10.3	80	<0.5	<2	7.27	< 0.5	47	215

No.	Sample	Rock	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sr	Ti	V	W	Zn
100.	Sample	ROCK	(ppm)	(%)	(%)	(%)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)	(ppm)	(%)	(ppm)	(ppm)	(ppm)
1	A00NK041	Gabbro	79	3.67	0.23	8.26	715	<1	1.05	403	100	318	87	0.12	102	<10	1615
2	A00NK042	Gabbro	40	3.65	0.37	8.57	715	<1	1.09	398	80	54	91	0.11	97	<10	94
3	A00NK043	Gabbro	21	5.69	1.89	1.23	885	<1	2.05	6	640	70	132	0.57	117	<10	102
4	A00RM054	Gabbro	34	3.86	0.39	8.62	760	<1	1.18	417	120	8	94	0.13	101	<10	48
5	A00RM057	Gabbro	39	4.09	0.48	7.99	800	<1	1.16	376	130	6	98	0.16	124	<10	44

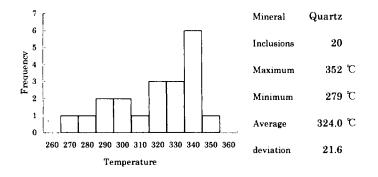
No.	Sample	Rock		SiO ₂	TiO ₂	Al_2O_3	Fe_2O_3	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	Cr_2O_3	LOI	Total
140.	Sample	NOCK	Alteration	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)
_1	A00HH012	Andesitic porphyry	Weak	63.08	0.45	17.69	5.14	0.06	1.87	4.22	3.79	1.29	0.15	< 0.01	1.64	99.38
2	A00MZ011	Qz porphyry	Weak	63.22	0.31	16.54	2.89	0.15	1.71	4.11	3.14	1.90	0.15	< 0.01	4.61	98.73
3	A00MZ013	Dacite porphyry	Fresh	57.44	0.52	17.16	5.16	0.14	3.32	4.61	3.76	1.62	0.16	<0.01	4.66	98.55
4	A00MZ015	Tonalite	Fresh with green Cu stain	62.62	0.46	17.73	4.01	0.11	2.02	5.44	3.52	1.53	0.12	< 0.01	1.46	99.02
5	A00MZ018	Granodiorite	Fresh	61.59	0.62	16.01	4.96	0.10	2.41	4.51	3.30	3.26	0.17	< 0.01	1.68	98.61
6	A00MZ032	Granodiorite (Float	Fresh	67.27	0.47	15.27	3.80	0.06	1.46	3.51	3.44	2.73	0.11	< 0.01	1.16	99.28
7	A00MZ044	Microdiorite	Propylite	51.44	0.90	17.38	8.58	0.18	3.79	8.03	2.53	1.74	0.25	< 0.01	4.19	99.01
8	A00TM009	Tonalite	Fresh	63.71	0.34	18.57	3.23	0.04	1.51	5.09	4.19	1.24	0.22	<0.01	0.98	99.12
9	A00TM018	Tonalite	Weak	62.49	0.69	16.07	4.92	0.14	2.52	4.75	2.69	2.81	0.17	< 0.01	1.33	98.58
10	A00TM019	Diorite porphyry	Tourmalinization with qz-epidote vein	52.68	0.92	20.80	6.31	0.21	2.45	5.57	3.33	5.17	0.19	< 0.01	1.14	98.77
11	A00TM020	Tonalite	Fresh	61.05	0.55	17.46	5.59	0.14	2.39	6.45	3.17	1.56	0.13	< 0.01	0.34	98.83
12	A00TM030	Tonalite	Potassic? with limonite stain	59.18	0.97	15.71	5.96	0.14	4.16	6.35	3.78	1.02	0.19	< 0.01	1.77	99.23
13	A00RM013	Granite	Weak, qz vein with py diss.	63.67	0.64	15.43	4.84	0.09	2.78	2.43	2.29	3.87	0.12	<0.01	3.11	99.27
14	A00MZ103	Granodiorite		68.42	0.36	15.55	2.87	0.04	1.37	2.47	3.75	2.41	0.10	< 0.01	1,51	98.85
15	A00MZ108	Granodiorite	Potassic	68.45	0.49	15,44	3.42	0.04	1.73	2.35	3.15	2.06	0.13	< 0.01	1.77	99.03
16	A00MZ137	Granodiorite		51.21	0.99	19.97	8.37	0.15	3.17	9.10	2.81	0.88	0.12	<0.01	2.15	98.92
17	A00MZ139	Andesite		56.06	1.79	15.82	8.95	0.14	2.32	6.18	4.11	1.18	0.40	< 0.01	1.93	98.88
18	A00TM125	Dacitic andesite		62.00	0.68	16.87	6.42	0.11	1.98	4.75	3.34	1.36	0.20	< 0.01	1,34	99.05

No.	Sample	Ag	Cu	Pb	Zn	Со	Ni	Ba	Rb	Sr	Sn	W	U	Th	Cs	Ga	Hf	Nb	Ta	Tl	V	La	Се	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Y	Zr
		(ppm)	(ppm)	(ppm)		(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	(ppm)	ppm)(ppm)	(ppm)	ppm)(ppm)(ppm)(ppm)(ppm)	(ppm)
1	A00HH012	<1	12	75	225	5	<5	250	53.4	392	1	1	1	5	3.7	18	5	5	<0.5	<0.5	75	13	26	3.1	12.5	2.7	0.7	2.6	0.4	2.7	0.6	1.8	0.3	2	0.4	16	191.5
2	A00MZ011	<1	10	80	135	4	<5	727	77.2	432	<1	3	0.5	4	10,6	16	5	5	<0.5	<0.5	50	18	35.5	4.2	16	3.5	0.9	3	0.5	2.7	0.5	1.6	0.2	1.9	0.3	14	174.5
3	A00MZ013	<1	20	10	50	11	<5	735	62.8	414	<1	<1	1	3	19,1	18	4	3	1	< 0.5	115	14	30	3.9	15	3	0.9	3	0.5	2.8	0.6	2	0.3	2.1	0.3	16	126.5
4	A00MZ015	<1	485	90	165	6	<5	489	55.8	431	1	3	1.5	4	5.5	18	5	3	< 0.5	<0.5	80	15	31.5	3.8	15	2.8	0.9	3	0.5	2.3	0.6	1.9	0.3	1.9	0.3	14.5	171.5
5	A00MZ018	<1	70	10	45	9	5	524	93.6	404	1	<1	5	16	2.2	18	10	6	<0.5	<0.5	95	33.5	71	8.3	33.5	5.7	1.2	5.5	0.8	4.2	0.8	2.4	0.4	2.3	0.4	21.5	324
6	A00MZ032	<1	5	5	25	5.5	<5	528	85.4	193	4	1	2.5	12	3.4	18	8	4	<0.5	<0.5	65	26.5	50	5.5	20.5	3.6	1.1	3.6	0.6	3.8	0.7	2.1	0.3	2	0.4	18.5	277
7	A00MZ044	<1	40	5	65	23.5	10	500	50.2	471	<1	<1	1.5	6	2	18	4	1	<0.5	<0.5	230	17.5	37	4.7	20	4.2	1.3	4.4	0.7	3.9	0.8	2.5	0.3	2.3	0.4	20.5	116
8	A00TM009	<1	10	10	20	3.5	<5	1295	38	737	1	<1	2	10	5,5	20	6	4	0.5	<0.5	45	25.5	48	5.3	17	3.4	1	2.6	0.4	1.8	0.4	1	0.1	1.3	0.2	10.5	199.5
9	A00TM018	<1	5	50	130	11	5	330	148	306	2	1	5.5	18	7	21	8	5	0.5	< 0.5	110	25.5	52	6.1	24	4.6	1.2	3.9	0.5	2.7	0.5	1.6	0.2	1.3	0.3	14	260
10	A00TM019	<1	10	25	140	18	10	694	267	165	1	6	0.5	4	10.1	23	5	4	1	1	190	19.5	41	5.4	23.5	5.3	1.6	5.3	0.8	4.7	0.9	2.8	0.4	2.4	0.3	24	172
11	A00TM020	<1	30	15	70	10.5	<5	367	53.2	393	1	1	1.5	4	4.7	19	7	3	< 0.5	<0.5	110	14.5	30	3.7	15	3.3	1	3.3	0.6	3.5	0.6	2.1	0.3	1.9	0.3	17.5	229
12	A00TM030	<1	45	15	85	14.5	35	299	32.8	305	4	1	2	8	4.5	18	8	4	<0.5	<0.5	160	23	51	6.2	24.5	6	1.5	6.2	1	6.7	1.4	4	0.5	3.5	0.5	33	276
13	A00RM013	<1	40	15	65	13	15	545	181	196	4	6	6	22	6.3	18	9	6	0.5	0.5	115	33	66	7.7	30.5	5.9	1.2	5.7	0.9	4.9	1,1	3.1	0.4	2.3	0.4	26.5	307
14	A00MZ103	1	70	55	80	4	15	394	76.4	357	1	3	1	4	3	17	7	2	0.5	<0.5	35	16.5	32.5	3.9	14	3	0.9	2.7	0.5	2.3	0.5	1.4	0.2	1.4	0.2	12.5	286
15	A00MZ108	1	1295	35	35	7	15	1440	95	367	<1		2.5	16	3.1	17	9	4	< 0.5	0.5	65	25	46	5.3	17.5	2.9	0.9	2.8	0.4	2.1	0.4	1.2	0.1	1.3	0.1	10.5	359
16	A00MZ137	<1	60	5	85	20	10	212	26.4	331	<1		0.5	11	2.3	20	3	2	1.5	<0.5	230	26	62	7.8	30	5.8	1.7	5.2	0.7	3.5	0.7	2	0.3	1.7	0.2	17	108.5
17	A00MZ139	<1	20	<5	95	18.5	5	267	37.4	304	1	1	0.5	4	0.8	19	6	6	<0.5	<0.5	185	16	38	5.1	22	4.9	1.7	5.4	0.9	5.4	1.1	3.2	0.5	3.1	0.5	29	261
18	A00TM125	<1	5	<5	55	7.5	5	583	51	474	<1	1	1.5	5	0.9	14	5	4	7	<0.5	65	15	31	3.8	15	3.2	1.1	3.3	0.5	2.6	0.5	1.5	0.2	1.5	0.2	14	204
						-					-																										لنتتب

Appendix-9 Chemical analysis results for pan concentrated samples (only Phase II survey).

No.	Sample No.	Pt (g/t)	Pd (g/t)	Au (ppb)	Sb (ppm)	As (ppm)	Ba (ppm)	Br (ppm)	Ce (ppm)	Cr (ppm)	Co (ppm)	La (ppm)
1	A00PNK101	<0.14	<0.14	<5	<1	3	240	<1	29	170	56	21
2	A00PNK102	< 0.35	< 0.35	18	<1	7	230	11	47	290	39	22
3	A00PNK103	< 0.35	< 0.35	<5	<1	5	230	1	54	190	37	28
4	A00PNK104	<0.14	<0.14	<5	<1	7	390	<1	65	110	25	29
5	A00PNK105	< 0.35	< 0.35	<5	<1	5	140	1	31	210	50	23
6	A00PNK106	< 0.07	< 0.07	<5	<1	4	330	<1	35	80	28	19
7	A00PNK107	not/ss	not/ss	<5	<1	3	280	2	36	210	24	25
8	A00PNK108	<0.21	< 0.21	<5	<1	5	260	<1	85	93	28	44
9	A00PNK109	< 0.35	< 0.35	<5	<1	9	360	<1	110	180	31	59
10	A00PNK110	< 0.35	< 0.35	<5	<1	3	270	1	18	170	36	13
11	A00PNK111	< 0.35	< 0.35	<5	<1	2	590	1	53	140	11	28
12	A00PNK112	< 0.35	< 0.35	<5	<1	4	360	<1	73	200	27	41

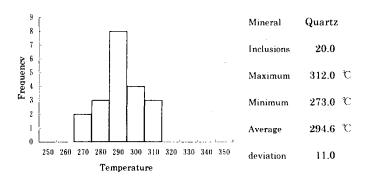
No.	Sample No.	Mo (ppm	Sc (ppm)	Ag (ppm)	Ta (ppm)	Th (ppm)	W (ppm)	U (ppm)	Cu (%)	Pb (%)	Zn (%)
1	A00PNK101	<2	47	<5	<1	4	<2	1	< 0.01	<0.01	<0.01
2	A00PNK102	<2	31	<5	<1	5	<2	1	< 0.01	<0.01	<0.01
3	A00PNK103	<2	36	<5	3	6	<2	2	< 0.01	<0.01	0.01
4	A00PNK104	<2	19	<5	1	8	<2	2	< 0.01	<0.01	<0.01
5	A00PNK105	<2	44	<5	4	4	<2	2	< 0.01	<0.01	0.01
6	A00PNK106	<2	25	<5	2	4	<2	11	< 0.01	<0.01	<0.01
7	A00PNK107	<2	20	<5	4	5	<2	2	< 0.01	<0.01	<0.01
8	A00PNK108	3	21	<5	4	7	<2	4	< 0.01	0.01	0.01
9	A00PNK109	3	22	<5	3	14	7	3	<0.01	<0.01	0.01
10	A00PNK110	<2	31	<5	<1	4	<2	1	< 0.01	<0.01	<0.01
11	A00PNK111	<2	9	<5	1	11	<2	2	<0.01	<0.01	<0.01
12	A00PNK112	<2	19	<5	1	28	<2	7	<0.01	<0.01	<0.01


Appendix-10 Ore grade assey result.

No.	Sample	Mineralization	Au (g/t)	Ag (g/t)	Al (%)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)	Mo (ppm)	Na (%)	Ni (nnm)	Pb (%)	Sr	Ti (%)		Zn
1	A00NK019	gn-cp-py vein	0.24	118	0.9	100	<10	<20	0.25	880	30	<10	8080	5.55	0.4	0.05	670	<10	0.15	(ppm) <10		(ppm)	<0.05	(ppm)	(ppm)
2	A00HH002	qz-py-gn vein	1.71	18	0.45	<100	<10	20	3.05	10	30	<10	150	7.55	0.1	0.05	1720		<0.05						
3	A00HH024	qz-py-cp-malachite-gn vein	0.24	123	2.5	400	<10	<20	0.45	750	30	<10	15720	6.7	1.6	0.13	1840			<10	0.7		<0.05	10	1900
4		massive pyrite-limonite	<0.03		0.05	<100	<10	40	0.35	<10	10	<10	1420	>30.0				<10	0.35	<10	5.91		<0.05		142000
5		qz·cal·py·gn vein	152.9	91	1.1	<100	<10	<20	2.35	10	10	<10				<0.05	80		<0.05	<10	0.044		<0.05	<10	1240
6		qz-cal-py-gn vein	5.49	14	1.8	<100	<10	<20	5.6	70			1660	13.4	0.5	0.8	750		<0.05	<10	2.18	50		40	3900
7		barite-Fe oxides vein	0.03		1.05	7400	<10				10	10	320	6.95	0.7	1.75	5200		<0.05	<10	1.15	80		40	9120
- 8		barite-galena-Fe oxides vein		:_				<20	0.65	100	10	<10	220	8.55	0.4	0.05	36400		<0.05	<10	2.01	2480	<0.05	750	7200
100			<0.03	912 <		2100	<10		<0.05	30	<10	<10	700	0.2		<0.05	1710	<10	<0.05	<10	15.1	910	<0.05	1440	540
1 9		qz malachite veinlet	0.45	15	5	2000	<10	80	0.15	<10	<10	<10	9000	4.2	2.5	0.15	230	140	0.6	<10	0.054	80	0.1	40	100
10		qz py gn bornite vein	0.18	321	0.9	200	<10		<0.05	90	<10	10	50	15.35	0.3	<0.05	360	<10	<0.05	<10	9.92	10	<0.05	<10	24300
11		gn·py·cp vein	0.09		1.35	400	<10	<20	0.15	1650	50	<10	7270	5.4	1.3	0.05	1360	<10	<0.05	<10	15.4	80	< 0.05	<10	263000
12		cp veinlets and cp diss. in andesite	<0.03	13	8.4	500	<10	20	4.4	<10	50	50	36900	6.3	1.3	2.9	1070	<10	2	60	0.059	290	0.65	270	640
13		malachite with brecciated andesite	<0.03	22	8.6	100	<10	<20	9.95	<10	20	50	47200	6.95	0.2	1.25	1040	<10	1.1	20	0.021	620		330	120
14	A00MZ041	qz·py·gn vein	0.12	3	0.9	300	<10	<20	24.2	30	<10	<10	310	1.55	0.1	0.15	25900		<0.05		0.398		<0.05	40	6500
15	A00MZ042	galena vein	3.09	17	0.85	300	<10	<20	0.05	930	<10	<10	7390	2.65	0.1	0.3	1470	i-	<0.05	<10	3.82		<0.05	20	199500
16	A00MZ046	qz-cp-py-gn vein	4.11	6	1.25	200	<10	20	0.55	<10	<10	<10	4070	3.9	0.4	0.2	750		<0.05		0.059				
17		white and massive qz vein	2.94	5	0.4	200	<10	<20	0.05	<10	<10	20	30	0.05		<0.05	40		<0.05		0.039		0.05 <0.05	30 <10	1060
18		black and white banding qz vein	14.4	3	0.5	<100	<10	<20	0.05	<10	<10	20	40	0.05		< 0.05	20		<0.05				<0.05	<10	120 60
19		qz-cp-gn-malachite vein	0.54	18	1.75	<100	<10	<20	<0.05	160	<10	<10	6330	0.5	0.7	0.05	70		< 0.05	<10	10.9		<0.05	$\frac{10}{10}$	$\frac{60}{12940}$
20		gn-sp-py vein	0.93		0.65	<100	<10	20	< 0.05	1310	<10	<10	1150	3.65	<0.1	0.25	370		< 0.05	<10			<0.05		134000
21		black qz vein	0.12	<1	3.3	100	<10	<20	0.35	<10	<10	10	10	0.85	2.6	0.05	80		<0.05		0.014	50	0.2	70	280
22	A00TM051	black and white qz vein	0.12		0.45	<100	<10	<20	0.05	<10	<10	10	<10	0.35	0.1	<0.05	10	<10	<0.05	<10	0.004		< 0.05	<10	60
23 24	AOORM029	gn py cp green Cu vein	0.06	27	0.6	100	<10	<20	0.05	880	40	<10	3510	6.75	0.4	0.05	1000	<10	<0.05	<10	6.3		< 0.05		130000
25	A00HH109	white chalcedonic qz vein	42.72 0.12	41	0.55	<100	<10	<20	0.05	<10	<10	20	10	0.05		<0.05	30	<10	<0.05		0.023	20	<0.05	<10	300
26		Pyrite malachite	0.12	· 6	5.7 0.3	900 <100	<10 <10	60	0.05	<10	10	<10	132500	5.65	2.5	0.25	20	<10	0.05		0.001		0.05	40	<20
27		Malachite, chalcopyrite, pyrite	<0.03	6	8.55	100	<10	<20 <20	<0.05 4.6	<10 <10	10 50	10	3440	3.55		<0.05	70		<0.05		<0.001		<0.05	60	40
28		Malachite, chalcopyrite	<0.03		7.15	100	<10	<20	5.75	<10	50	80 150	14250 10720	7.4 3.35	0.7	3.45	1440	<10	2.25		0.003	330	0.7	290	180
29	A00HH127	Malachite, chalcopyrite	< 0.03		7.45	<100	<10		10.35	<10	10	120	13640	7.1	<0.1	0.25	740 870	<10 40	2.7 <0.05	:	0.003	240	0.7	230	80
30	A00HH129	Malachite, chalcopyrite	< 0.03		4.35	400	<10	<20	4.55	<10	150	<10	990	3.05	2.1	1.1	1910	<10			0.004	780 120	0.55	290 90	20
31	A00HH130	Malachite	<0.03	2	7.2	300	<10	<20	0.05	<10	10	<10	2100	1.5	2.1	0.2	430	<10	2		0.001		<0.05	10	100
32		Galena dissemination	0.87	4	0.5	<100	<10	<20	<0.05	<10	<10	10	80	0.55		< 0.05	30		< 0.05		0.001		<0.05 <0.05	<10 <10	60 20
33		Galena-pyrite-limonite	0.42	6	1.1	<100	<10	1120	<0.05	10	60	<10	340	9.1		<0.05	10	<10			0.104		<0.05	<10	
34		Massive limonite	<0.03	1	0.6	<100	<10	40	0.15	<10	60	<10	<10	>30.0		< 0.05	4540	<10			0.007		< 0.05	<10	560
35		Chalcocite, malachite	0.06		5.65	<100	<10	<20	7.2	<10	<10	40	43900	4.65		0.05	780	<10	< 0.05		0.007	690	0.3	240	<20
36		Malachite	<0.03	4	8.3	500	<10	<20	0.3	<10	30	30	8720	3.25	2.1	1.5	1540	<10	2.85		0.004	140	0.35	140	220
38		Chalcopyrite, malachite, azurite, pyri	14.04		3.65	100	<10	220	0.05	20	<10	<10	27500	0.85	1.7	0.1	40	340	0.05	<10	2.69		0.15	20	800
30		Barite, azurite, malachite Oxide Cu	<0.03 0.42			11100	<10	20	0.05	30	<10	<10	17400	0.3		<0.05	20		<0.05	<10	0.604	770	<0.05	280	2140
40		Wad	<0.03	1585	$\frac{6.4}{2}$	300	<10	80	6.45	<10	<10	50	254000	6.05	<0.1	0.45	530	<10	0.6		0.012	1640	0.1	200	<20
_ 10	11001011102	mau	\U.U3	2	Z	700	<10	60	0.75	<10	40	<10	130	>30.0	0.2	0.3	54200	<10	0.15	<10	0.007	100	0.05	10	60

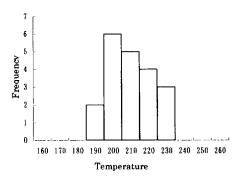
Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (1/19)

Sample A00NK013


		Size	Volume	Form	Temperature		NaCl
No.	Mineral		ratio			Temperature	
	1	(mµ)	(%)		(℃)	(C)	Wt (%)
1	Quartz	37.5	17	tu	341	183.0	30.9
2	Quartz	12.5	15	po	347	192.0	31.4
3	Quartz	10.0	15	po	296	234.0	33.5
4	Quartz	10.0	15	po	288	211.0	32.4
5	Quartz	17.5	13	po	306	243.0	34.1
6	Quartz	30.0	13	po	352	225.0	32.9
7	Quartz	17.5	13	po	279	195.0	31.4
8	Quartz	22.5	15	tu	337	201.0	31.9
9	Quartz	15.0	15	po	327	214.0	32.4
10	Quartz	7.5	13	po	343	222.0	32.9
11	Quartz	7.5	13	ро	313	225.0	32.9
12	Quartz	22.5	17	tu	325	194.0	31.4
13	Quartz	17.5	17	wg	344	199.0	31.4
14	Quartz	5.0	15	ро	335	228.0	32.9
15	Quartz	10.0	15	ро	341	204.0	31.9
16	Quartz	7.5	13	ро	327	221.0	32.9
17	Quartz	17.5	17	ро	338	235.0	33.5
18	Quartz	17.5	15	tu	343	195.0	31.4
19	Quartz	10.0	13	ро	303	223.0	32.9
20	Quartz	7.5	13	po	295	201.0	31.9

Homogenization temperature and salinity of fluid inclusions of quartz samples (2/19)

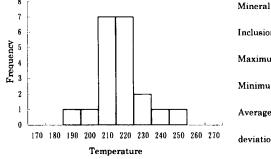
Sample A00NK038


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
_1	Quartz	7.5	15	wg	291	-0.4	0.71
2	Quartz	5.0	15	p o	305	∙0.4	0.71
3	Quartz	2.5	13	po	282		-
4	Quartz	< 2.5	12	po	273		
5	Quartz	< 2.5	10	eg	275		-
6	Quartz	10.0	17	po	311	.0.3	0.53
7	Quartz	5.0	15	po	302	-0.4	0.71
8	Quartz	5.0	17	sq	295	-0.2	0.35
9	Quartz	5.0	17	sq	297	∙0.2	0.35
10	Quartz	5.0	15	po	303	-0.4	0.71
11	Quartz	2.5	12	ро	292	-	•
12	Quartz	< 2.5	10	po	296		
13	Quartz	< 2.5	10	eg	280		
14	Quartz	< 2.5	10	eg	291		•
15	Quartz	7.5	15	po	303	∙0.2	0.35
16	Quartz	7.5	13	po	312	∙0.5	0.88
17	Quartz	5.0	12	ро	292	0.4	0.71
18	Quartz	5.0	15	sq	310	0.2	0.35
19	Quartz	< 2.5	12	eg	295	•	•
20	Quartz	< 2.5	10	eg	287		• •

Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (3/19)

Sample A00MZ012

No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
		(mµ)	(%)		(℃)	(C)	Wt (%)
1	Quartz	25.0	15	irr	225	-2.1	3.55
2	Quartz	10.0	13	irr	193	·2.1	3.55
3	Quartz	7.5	13	irr	206	-1.9	3.23
4	Quartz	22.5	15	irr	219	-2.4	4.03
5	Quartz	20.0	17	ро	223	·2.1	3.55
6	Quartz	10.0	13	irr	208	-2.2	3.71
7	Quartz	15.0	13	irr	214	·2.1	3.55
8	Quartz	17.5	15	irr	231	-2.4	4.03
9	Quartz	5.0	13	po	223		-
10	Quartz	5.0	12	ро	214	•	•
11	Quartz	22.5	15	irr	204	-2.2	3.71
12	Quartz	17.5	15	irr	197	·2.1	3.55
13	Quartz	17.5	13	irr	202	·2.1	3.55
14	Quartz	10.0	12	ро	201	-2.1	3.55
15	Quartz	7.5	15	ро	235		-
16	Quartz	5.0	13	ро	215	-	-
17	Quartz	5.0	13	ро	223	-	•
18	Quartz	12.5	15	wg	232	-2.2	3.71
19	Quartz	5.0	13	po	219	-	•
20	Quartz	5.0	12	po	205	•	•

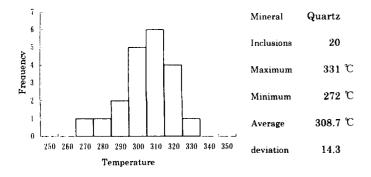


Mineral	Quartz
Inclusions	20
Maximum	235 ℃
Minimum	193 ℃
Average	214.5 ℃
deviation	11.8

Homogenization temperature and salinity of fluid inclusions of quartz samples (4/19)

Sample A00MZ016

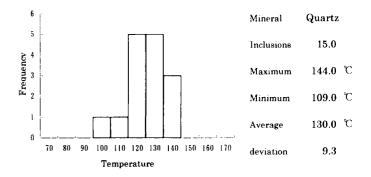
1 Quartz 27.5 15 irr 223 -3.1 5.11 2 Quartz 10.0 10 po 215 -3.2 5.26 3 Quartz 17.5 10 po 213 -2.7 4.49 4 Quartz 7.5 10 po 216 -3.2 5.26 5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 -		(mu)	ratio				
1 Quartz 27.5 15 irr 223 -3.1 5.11 2 Quartz 10.0 10 po 215 -3.2 5.26 3 Quartz 17.5 10 po 213 -2.7 4.49 4 Quartz 7.5 10 po 216 -3.2 5.26 5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 -	0 .	(mu)				Temperature	
2 Quartz 10.0 10 po 215 -3.2 5.26 3 Quartz 17.5 10 po 213 -2.7 4.49 4 Quartz 7.5 10 po 216 -3.2 5.26 5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2	A .	(πημ)	(%)		(℃)	(C)	Wt (%
3 Quartz 17.5 10 po 213 -2.7 4.49 4 Quartz 7.5 10 po 216 -3.2 5.26 5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 17.5 13 irr 228 -3.4	Quartz	27.5	15	irr	223	-3.1	5,11
4 Quartz 7.5 10 po 216 -3.2 5.26 5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5	Quartz	10.0	10	po	215	-3.2	5.26
5 Quartz 7.5 12 po 227 -3.3 5.41 6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 -	Quartz	17.5	10	ро	213	-2.7	4.49
6 Quartz 20.0 13 po 233 -2.6 4.34 7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - <td< td=""><td>Quartz</td><td>7.5</td><td>10</td><td>po</td><td>216</td><td>-3.2</td><td>5.26</td></td<>	Quartz	7.5	10	po	216	-3.2	5.26
7 Quartz 25.0 20 po 253 -3.0 4.96 8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - - 17 Quartz 10.0 12 po 228 -2.8 4	Quartz	7.5	12	ро	227	-3.3	5.41
8 Quartz 12.5 12 irr 221 -2.2 3.71 9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - - 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 <td< td=""><td>Quartz</td><td>20.0</td><td>13</td><td>po</td><td>233</td><td>-2.6</td><td>4.34</td></td<>	Quartz	20.0	13	po	233	-2.6	4.34
9 Quartz 10.0 10 irr 208 -1.8 3.06 10 Quartz 7.5 10 po 220 - - 11 Quartz 7.5 17 po 245 - - 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - - 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 <td< td=""><td>Quartz</td><td>25.0</td><td>20</td><td>po</td><td>253</td><td>-3.0</td><td>4.96</td></td<>	Quartz	25.0	20	po	253	-3.0	4.96
10 Quartz 7.5 10 po 220 . . 11 Quartz 7.5 17 po 245 . . 12 Quartz 17.5 13 irr 226 .2.2 3.71 13 Quartz 25.0 12 irr 228 .3.4 5.56 14 Quartz 10.0 10 tu 198 .2.5 4.18 15 Quartz 7.5 10 po 213 . 16 Quartz 7.5 10 po 212 . . 17 Quartz 10.0 12 po 228 .2.8 4.65 18 Quartz 32.5 13 irr 215 .3.3 5.41 19 Quartz 17.5 15 po 237 .3.2 5.26	Quartz	12.5	12	irr	221	-2.2	3.71
11 Quartz 7.5 17 po 245 . . 12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 . . 16 Quartz 7.5 10 po 212 . . 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	10.0	10	irr	208	-1.8	3.06
12 Quartz 17.5 13 irr 226 -2.2 3.71 13 Quartz 25.0 12 irr 228 -3.4 5.56 14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - - 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	7.5	10	ро	220		
13 Quartz 25.0 12 irr 228 ·3.4 5.56 14 Quartz 10.0 10 tu 198 ·2.5 4.18 15 Quartz 7.5 10 po 213 · · 16 Quartz 7.5 10 po 212 · · 17 Quartz 10.0 12 po 228 ·2.8 4.65 18 Quartz 32.5 13 irr 215 ·3.3 5.41 19 Quartz 17.5 15 po 237 ·3.2 5.26	Quartz	7.5	17	ро	245	-	
14 Quartz 10.0 10 tu 198 -2.5 4.18 15 Quartz 7.5 10 po 213 - - 16 Quartz 7.5 10 po 212 - - 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	17.5	13	irr	226	·2.2	3.71
15 Quartz 7.5 10 po 213 . . 16 Quartz 7.5 10 po 212 . . 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	25.0	12	irr	228	•3.4	5.56
16 Quartz 7.5 10 po 212 . . 17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	10.0	10	tu	198	-2.5	4.18
17 Quartz 10.0 12 po 228 -2.8 4.65 18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	7.5	10	ро	213		
18 Quartz 32.5 13 irr 215 -3.3 5.41 19 Quartz 17.5 15 po 237 -3.2 5.26	Quartz	7.5	10	ро	212	•	•
19 Quartz 17.5 15 po 237 ·3.2 5.26	Quartz	10.0	12	po	228	-2.8	4.65
	Quartz	32.5	13	irr	215	-3.3	5.41
20 Quartz 12.5 13 po 213 ·2.7 4.49	Quartz	17.5	15	ро	237	·3.2	5.26
	Quartz	12.5	13	ро	213	-2.7	4.49
			ļ				
		Quartz Quartz	Quartz 17.5 Quartz 7.5 Quartz 20.0 Quartz 25.0 Quartz 12.5 Quartz 10.0 Quartz 7.5 Quartz 7.5 Quartz 17.5 Quartz 25.0 Quartz 10.0 Quartz 7.5 Quartz 7.5 Quartz 7.5 Quartz 10.0 Quartz 10.0 Quartz 32.5 Quartz 17.5	Quartz 17.5 10 Quartz 7.5 10 Quartz 7.5 12 Quartz 20.0 13 Quartz 25.0 20 Quartz 12.5 12 Quartz 10.0 10 Quartz 7.5 10 Quartz 7.5 17 Quartz 17.5 13 Quartz 25.0 12 Quartz 10.0 10 Quartz 7.5 10 Quartz 7.5 10 Quartz 10.0 12 Quartz 32.5 13 Quartz 17.5 15	Quartz 17.5 10 po Quartz 7.5 10 po Quartz 7.5 12 po Quartz 20.0 13 po Quartz 25.0 20 po Quartz 12.5 12 irr Quartz 10.0 10 irr Quartz 7.5 10 po Quartz 7.5 17 po Quartz 17.5 13 irr Quartz 25.0 12 irr Quartz 10.0 10 tu Quartz 7.5 10 po Quartz 7.5 10 po Quartz 7.5 10 po Quartz 10.0 12 po Quartz 32.5 13 irr Quartz 17.5 15 po	Quartz 17.5 10 po 213 Quartz 7.5 10 po 216 Quartz 7.5 12 po 227 Quartz 20.0 13 po 233 Quartz 25.0 20 po 253 Quartz 12.5 12 irr 221 Quartz 10.0 10 irr 208 Quartz 7.5 10 po 220 Quartz 7.5 17 po 245 Quartz 17.5 13 irr 226 Quartz 25.0 12 irr 228 Quartz 10.0 10 tu 198 Quartz 7.5 10 po 213 Quartz 7.5 10 po 212 Quartz 7.5 10 po 228 Quartz 10.0 12 po 228 Quartz <td>Quartz 17.5 10 po 213 -2.7 Quartz 7.5 10 po 216 -3.2 Quartz 7.5 12 po 227 -3.3 Quartz 20.0 13 po 233 -2.6 Quartz 25.0 20 po 253 -3.0 Quartz 12.5 12 irr 221 -2.2 Quartz 10.0 10 irr 208 -1.8 Quartz 7.5 10 po 220 - Quartz 7.5 17 po 245 - Quartz 7.5 13 irr 226 -2.2 Quartz 25.0 12 irr 228 -3.4 Quartz 25.0 12 irr 228 -3.4 Quartz 10.0 10 tu 198 -2.5 Quartz 7.5 10 po 213 <td< td=""></td<></td>	Quartz 17.5 10 po 213 -2.7 Quartz 7.5 10 po 216 -3.2 Quartz 7.5 12 po 227 -3.3 Quartz 20.0 13 po 233 -2.6 Quartz 25.0 20 po 253 -3.0 Quartz 12.5 12 irr 221 -2.2 Quartz 10.0 10 irr 208 -1.8 Quartz 7.5 10 po 220 - Quartz 7.5 17 po 245 - Quartz 7.5 13 irr 226 -2.2 Quartz 25.0 12 irr 228 -3.4 Quartz 25.0 12 irr 228 -3.4 Quartz 10.0 10 tu 198 -2.5 Quartz 7.5 10 po 213 <td< td=""></td<>



Mineral	Quartz
Inclusions	20.0
Maximum	253.0 ℃
Minimum	198.0 ℃
Average	222.2 ℃
deviation	12.7

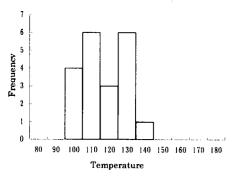
Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (5/19)

Sample A00MZ017


No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
140.	, mineral	(m _µ)	(%)		(°C)	(℃)	Wt (%)
1	Quartz	37.5	15	po	313	·3.0	4.96
	Quartz	55.0	13	irr	272	-2.1	3.55
3	Quartz	7.5	15	po	308	-0.3	5.26
4	Quartz	7.5	13	<u>po</u> _	295	-2.6	4.34
5	Quartz	7.5	13		331	2.6	4.34
6		12.5	17	<u>po</u>	311	-3.0	4.96
	Quartz			po		-3.0	4.90
7	Quartz	2.5	17	po	283		0.00
8	Quartz	12.5	13	po	315	-1.9	3.23
9	Quartz	5.0	13	po	326	-	···
10	Quartz	5.0	13	po	314		
11	Quartz	15.0	15	irr	301	·2.0	3.39
12	Quartz	12.5	17	sq	328	2.5	4.18
13	Quartz	7.5	15	sq	304	2.8	4.65
14	Quartz	5.0	13	po	313	-	
15	Quartz	32.5	13	irr	320	·3.1	5.11
16	Quartz	20.0	13	irr	321	-1.8	3.06
17	Quartz	12.5	13	ро	295	-2.5	4.18
18	Quartz	10.0	12	po	304	-2.7	4.49
19	Quartz	7.5	12	po	307		•
20	Quartz	10.0	13	po	313	-2.8	4.65
L			<u> </u>				

 $Homogenization \ temperatura \ and \ salinity \ of fluid \ inclusions \ of \ quartz \ samples \ (6/19)$

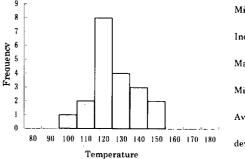
Sample A00MZ043


No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
140.	Willieral	(m µ)	(%)		(C)	(C)	Wt (%)
1	Ouenta	12.5	10	irr	128	-0.9	1.57
	Quartz				109	1.0	$\frac{1.97}{1.74}$
2	Quartz	5.0	$\begin{vmatrix} 10 \\ 7 \end{vmatrix}$	irr		-1.0	1.14
3	Quartz	< 2.5		bo	127	<u> </u>	··
4	Quartz	< 2.5	7	eg	134		
5	Quartz	< 2.5	10	eg	141		
6	Quartz	7.5	12	po	144	1.2	2.07
7	Quartz	<u>5.0</u>	10	<u>po</u>	136	1.3	2.24
8	Quartz	5.0	10	irr	122	.0.9	1.57
9	Quartz	2.5	7	po	121	·	<u>.</u>
10	Quartz	< 2.5	7	po	133		-
11	Quartz	5.0	10	irr	140	∙0.8	1.40
12	Quartz	5.0	7	irr	133	1.4	2.41
13	Quartz	5.0	7	irr	136	0.9	1.57
14	Quartz	< 2.5	7	po	129		
15	Quartz	< 2.5	5	eg	117		
							

Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (7/19)

Sample A00MZ046

No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
		(m_{μ})	(%)		(%)	(C)	Wt (%)
1	Quartz	12.5	10	po	106	-1.6	2.74
2	Quartz	10.0	12	ро	112	·1.8	3.06
3	Quartz	5.0	10	ро	130	-	•
4	Quartz	5.0	7	ро	105	•	•
5	Quartz	7.5	12	ро	141	·1.2	2.07
6	Quartz	10.0	12	wg	136	-0.7	1.23
7	Quartz	12.5	12	wg	132	-1.4	2.41
8	Quartz	5.0	10	ро	124	-	
9	Quartz	5.0	10	ро	117	•	•
10	Quartz	7.5	12	ро	132	-1.5	2.57
11	Quartz	10.0	10	wg	135	-1.2	2.07
12	Quartz	7.5	7	ро	109	-1.2	2.07
13	Quartz	17.5	10	irr	115	-1.0	1.74
14	Quartz	12.5	12	irr	121	·0.8	1.40
15	Quartz	5.0	10	ро	114	.	•
16	Quartz	5.0	7	po	113	•	•
17	Quartz	10.0	12	ро	138	·1.3	2.24
18	Quartz	7.5	10	po	122	•1.7	2.90
19	Quartz	5.0	10	ро	112	-1.4	2.41
20	Quartz	5.0	7	po	107	-	
	-						
			 				

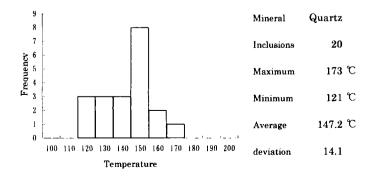


Mineral	Quartz
Inclusions	20
Maximum	141 ℃
Minimum	105 ℃
Average	121.1 ℃
deviation	11.4

Homogenization temperatura and salinity of fluid inclusions of quartz samples (8/19)

Sample A00MZ048

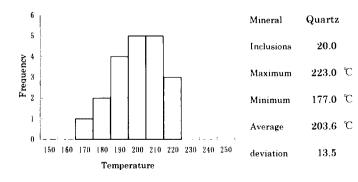
		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	10.0	12	po	135	-0.8	1.40
2	Quartz	5.0	10	po	127	·1.1	1.91
3	Quartz	5.0	13	sq	145	∙0.2	0.35
4	Quartz	2.5	10	po	119		
5	Quartz	< 2.5	10	po	123		
6	Quartz	< 2.5	7	eg_	108		
7	Quartz	12.5	12	po	137	∙0.9	1.57
8	Quartz	7.5	12	po	152	-0.8	1.40
9	Quartz	7.5	10	po	137	-0.6	1.05
10	Quartz	5.0	10	sq	142	-0.8	1.40
11	Quartz	2.5	7	ро	125	-	
12	Quartz	< 2.5	10	eg	153		•
13	Quartz	< 2.5	7	eg	129		
14	Quartz	12.5	15	irr	117	-0.8	1.40
15	Quartz	10.0	10	sq	143	-1.0	1.74
16	Quartz	5.0	12	ро	125	-0.8	1.40
17	Quartz	5.0	10	ро	121		•
18	Quartz	5.0	10	po	123	∙0.8	1.40
19	Quartz	< 2.5	10	po	135		
20	Quartz	< 2.5	7	eg	122		•
	ļ						



Mineral	Quartz
Inclusions	20.0
Maximum	153.0 ℃
Minimum	108.0 ℃
Average	130.9 ℃
deviation	11.7

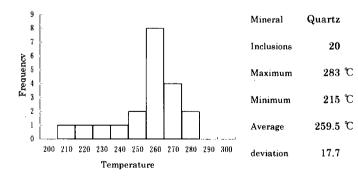
Appendix-11 Homogenization temperatura and salinity of fluid inclusions of quartz samples (9/19)

Sample A00MZ051


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio		1	Temperature	
		(mµ)	(%)		(℃)	(C)	Wt (%)
1	Quartz	12.5	12	irr	142	∙0.4	0.71
2	Quartz	10.0	10	irr	121	-0.1	0.18
3	Quartz	5.0	13	po	155	-0.6	1.05
4	Quartz	5.0	12	po	132	<u> </u>	
5	Quartz	5.0	10	po	124	-	
6	Quartz	7.5	12	irr	127	∙0.6	1.05
7	Quartz	5.0	12	po	157	-0.5	0.88
8	Quartz	< 2.5	10	po	143	.	
9	Quartz	5.0	15	sq	167	-0.3	0.53
10	Quartz	5.0	13	po	157	·0.2	0.35
11	Quartz	5.0	12	po	138	-0.2	0.35
12	Quartz	10.0	12	wg	155	-0.3	0.53
13	Quartz	7.5	13	po	152	-0.6	1.05
14	Quartz	5.0	12	ро	145	-0.8	1.40
15	Quartz	5.0	12	po	161	-0.3	0.53
16	Quartz	5.0	17	sq	173	-0.2	0.35
17	Quartz	5.0	12	ро	155	-	-
18	Quartz	2.5	10	ро	132		-
19	Quartz	< 2.5	7	eg	150	•	-
20	Quartz	5.0	12	ро	158	0.3	0.53

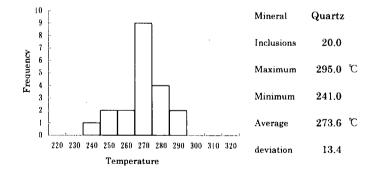
Homogenization temperatura and salinity of fluid inclusions of quartz samples (10/19)

Sample A00MZ066


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio		İ	Temperature	
		(mµ)	(%)		(C)	(C)	Wt (%
1	Quartz	10.0	15	po	195	-1.4	2.41
2	Quartz	7.5	15	po	203	1.6	2.74
3	Quartz	7.5	13	ро	211	·1 <u>.3</u>	2.24
4	Quartz	5.0	12	sq	209	1.3	2.24
5	Quartz	5.0	13	sq	223	·	
6	Quartz	10.0	15	irr	180	1.5	2.57
7	Quartz	5.0	15	po	203	-1.7	2.90
8	Quartz	2.5	10	po	191	-	
9	Quartz	< 2.5	10	po	194		-
10	Quartz	< 2.5	7	eg	177		
11	Quartz	12.5	13	po	221	1.3	2.24
12	Quartz	10.0	12	po	215	1.2	2.07
13	Quartz	5.0	10	sq	201	. !	
14	Quartz	5.0	13	sq	215		-
15	Quartz	7.5	12	po	213	-1.5	2.57
16	Quartz	12.5	12	po	195	1.9	3.23
17	Quartz	10.0	13	sq	222	1.4	2.41
18	Quartz	5.0	12	po	213	-	-
19	Quartz	5.0	12	po	207		•
20	Quartz	7.5	10	po	183	1.2	2.07
	1						
	1		<u> </u>			i ' i	

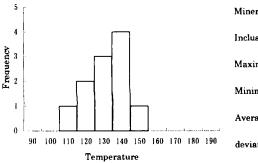
Appendix-11
Homogenization temperatura and salinity of fluid inclusions of quartz samples (11/19)

Sample A00TM039


		Size	Volume	Form	Temperature	· '	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	12.5	17	po	224	161.0	30.1
2	Quartz	12.5	15	po	265	125.0	28.6
3	Quartz	10.0	20	po	275	166.0	30.1
4	Quartz	10.0	17	po	253	131.0	28.9
5	Quartz	10.0	20	ро	277	165.0	30.1
6	Quartz	5.0	20	sq	283	172.0	30.5
7	Quartz	5.0	17	sq	275	177.0	30.5
8	Quartz	7.5 .	20	po	281	135.0	28.9
9	Quartz	7.5	17	ро	263	125.0	28.6
10	Quartz	5.0	13	ро	242	117.0	28.3
11	Quartz	12.5	13	irr	215	182.0	30.9
12	Quartz	10.0	17	ро	261	131.0	28.9
13	Quartz	7.5	15	irr	237	177.0	30.5
14	Quartz	5.0	15	ро	262		-
15	Quartz	5.0	13	ро	251	125.0	28.6
16	Quartz	10.0	15	ро	262	163.0	30.1
17	Quartz	7.5	20	sq	266	152.0	29.7
18	Quartz	10.0	17	wg	263	164.0	30.1
19	Quartz	7.5	17	po	261	162.0	30.1
20	Quartz	7.5	20	po	273	•	•
l .							

Homogenization temperatura and salinity of fluid inclusions of quartz samples (12/19)

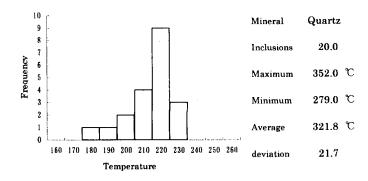
Sample A00TM042


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio		1	Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	27.5	13	irr	276	-2.5	4.18
2	Quartz	7.5	13	po	241	·1.2	2.07
3	Quartz	32.5	15	irr	279	-2.0	3.39
4	Quartz	20.0	13	po	251	-3.4	5.56
5	Quartz	22.5	17	irr	270	-3.2	5.26
6	Quartz	17.5	17	irr	271	-2.2	3.71
7	Quartz	12.5	20	po	288	-1.5	2.57
8	Quartz	10.0	17	po	267	-1.7	2.90
9	Quartz	10.0	20	po	282	-2.0	3.39
10	Quartz	5.0	13	ро	255	-	-
11	Quartz	17.5	20	irr	289	-2.7	4.49
12	Quartz	10.0	17	po	274	-2.8	4.65
13	Quartz	7.5	20	ро	295	-	•
14	Quartz	7.5	17	ро	275	-	-
15	Quartz	12.5	17	ро	291	-3.0	4.96
16	Quartz	40.0	20	irr	283	1.3	2.24
17	Quartz	22.5	17	irr	275	-1.5	2.57
18	Quartz	10.0	17	po	279	-2.2	3.71
19	Quartz	5.0	15	po	260	-	
20	Quartz	12.5	17	po	271	·2.1	3.55
	<u> </u>	,					

Appendix-11 Homogenization temperatura and salinity of fluid inclusions of quartz samples (13/19)

Sample A00TM059

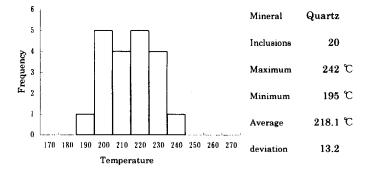
No.	Mineral	Size (mµ)	Volume ratio (%)	Form	Temperature	Melting Temperature (°C)	NaCl Wt (%)
1	Quartz	5.0	13	ро	145	-0.8	1.40
2	Quartz	5.0	12	ро	132	-0.9	1.57
3	Quartz	2.5	10	ро	147	•	
- 	Quartz	< 2.5	7	po	124	•	•
5	Quartz	< 2.5	10	eg	143		
6	Quartz	< 2.5	7	eg	121	-	
7	Quartz	< 2.5	7	eg	119	-	•
8	Quartz	5.0	12	po	135	-0.4	0.71
9	Quartz	< 2.5	10	eg	151		•
10	Quartz	< 2.5	7	eg	144	•	
11	Quartz	< 2.5	7	eg	132	•	
	-i						
	i						
						[
	İ						
	i						
						1	
			i				
					1		
			<u> </u>			 	
						i	



Mineral	Quartz
Inclusions	11
Maximum	151 °C
Minimum	119 ℃
Average	135.7 ℃
deviation	10.6

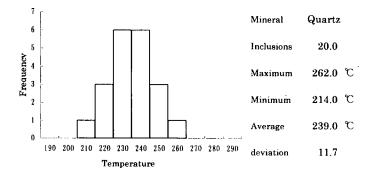
Homogenization temperature and salinity of fluid inclusions of quartz samples (14/19)

Sample A00MZ119


No.	Mineral	Size	Volume ratio	Form	Temperature	Melting Temperature	NaCl
		$(m\mu)$	(%)		(℃)	(C)	Wt (%)
1	Quartz	7.5	10	po	227	0.3	0.53
2	Quartz	5.0	12	ро	231	-0.8	1.40
3	Quartz	5.0	10	po	217	-1.3	2.24
4	Quartz	2.5	10	po	221	•	
5	Quartz	2.5	7	po	189	-	
6	Quartz	5.0	10	po	222	-1.0	1.74
7	Quartz	10.0	12	wg	235	-1.5	2.57
8	Quartz	5.0	10	po	228	-0.1	0.18
9	Quartz	7.5	12	po	225	-1.7	2.90
10	Quartz	5.0	10	po	210	·0.3	0.53
11	Quartz	2.5	10	eg	221	•	
12	Quartz	2.5	7	po	194		
13	Quartz	< 2.5	10	eg	207		
14	Quartz	< 2.5	10	eg	225	·	
15	Quartz	5.0	13	sq	238	·0.6	1.05
16	Quartz	7.5	12	po	224	-0.5	0.88
17	Quartz	7.5	10	po	208	0.0	0.00
18	Quartz	5.0	10	po	212	·1.4	2.41
19	Quartz	2.5	10	ро	226		
20	Quartz	< 2.5	7	po	215		
					-		
	1						

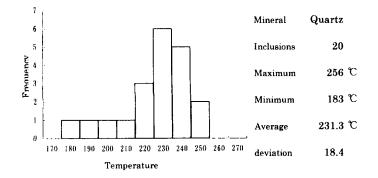
Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (15/19)

Sample A00MZ148


		Size	Volume	Form	Temperature	"	NaCl
No.	Mineral		ratio			Temperature	
	<u> </u>	(mµ)	(%)		(℃)	(°C)	Wt (%)
1	Quartz	17.5	17	irr	235	-0.7	1.23
2	Quartz	10.0	15	po	223	∙0.2	0.35
3	Quartz	12.5	15	sq	207	-0.4	0.71
4	Quartz	15.0	15	po	236	-0.3	0.53
5	Quartz	25.0	17	po	221	-0.3	0.53
6	Quartz	27.5	15	irr	202	∙0.5	0.88
7	Quartz	25.0	13	irr	206	-0.8	1.40
8	Quartz	12.5	15	ро	217	·1.0	1.74
9	Quartz	10.0	20	tr	242	·0.4	0.71
10	Quartz	7.5	17	ро	213	-	
11	Quartz	15.0	17	wg	235	-0.3	0.53
12	Quartz	20.0	13	irr	202	-0.7	1.23
13	Quartz	22.5	15	irr	210	-0.7	1.23
14	Quartz	15.0	17	ро	222	-0.8	1.40
15	Quartz	10.0	13	po	195	·0.6	1.05
16	Quartz	10.0	15	irr	212	·0.7	1.23
17	Quartz	7.5	15	ро	233		•
18	Quartz	12.5	13	irr	203	·0.7	1.23
19	Quartz	10.0	12	ро	220	-0.7	1.23
20	Quartz	7.5	13	po	227	-	-

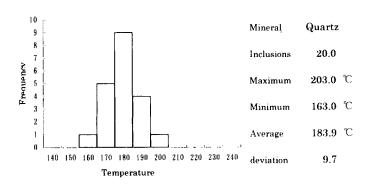
Homogenization temperature and salinity of fluid inclusions of quartz samples (16/19)

Sample A00TM103


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%
11	Quartz	15.0	17	po	246	·8.3	12.05
2	Quartz	12.5	12	po	223	·11.2	15.17
3	Quartz	5.0	13	po	235	-	
4	Quartz	10.0	13	po	241	10.5	14.46
5	Quartz	12.5	15	irr	247	8.6	12.39
6	Quartz	10.0	15	wg	255	-11.3	15.27
7	Quartz	5.0	17	po	239	•	•
8	Quartz	5.0	15	po	214	•	
9	Quartz	17.5	15	irr	221	-10.6	14.57
10	Quartz	12.5	13	irr	232	-9.8	13.72
11	Quartz	12.5	13	ро	238	10.9	14.87
12	Quartz	5.0	17	8q	252		
13	Quartz	5.0	13	ро	241	•	
14	Quartz	17.5	15	irr	250	-12.3	16.24
15	Quartz	15.0	13	po	244	-11.6	15.57
16	Quartz	7.5	12	po	235	-	
17	Quartz	7.5	17	sq.	262	-8. 2	11.93
18	Quartz	10.0	15	irr	232	10.3	14.25
19	Quartz	5.0	12	po	227		
20	Quartz	12.5	13	irr	245	-10.5	14.46
					·		

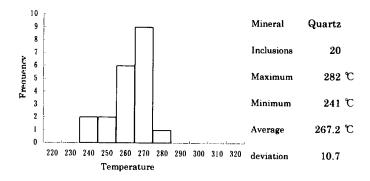
Appendix-11
Homogenization temperature and salinity of fluid inclusions of quartz samples (17/19)

Sample A00TM109


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		(mµ)	(%)		(℃)	(℃)	Wt (%)
1	Quartz	17.5	15	po	183	-4.2	6.74
2	Quartz	32.5	17	ро	256	-4.3	6.88
3	Quartz	30.0	15	irr	247	•5.1	8.00
4	Quartz	10.0	13	po	218	-4.6	7.31
5	Quartz	10.0	15	po	233	-	
6	Quartz	5.0	12	po	244	·	-
7	Quartz	27.5	15	irr	245	·4.0	6.45
8	Quartz	12.5	13	ро	225	4.5	7.17
9	Quartz	7,5	12	po	198		
10	Quartz	10.0	13	wg	238	-4.6	7.31
11	Quartz	17.5	17	irr	220	-5.5	8.55
12	Quartz	12.5	15	ро	235	·4.3	6.88
13	Quartz	7.5	13	po	204	-]	·
14	Quartz	30.0	20	irr	233	-4.5	7.17
15	Quartz	15.0	17	irr	248	-4.2	6.74
16	Quartz	7.5	20	sq	255	-	_
17	Quartz	12.5	17	i rr	229	-3.8	6.16
18	Quartz	10.0	13	po	235	•4.5	7.17
19	Quartz	7.5	15	po	241	-4.0	6.45
20	Quartz	12.5	15	irr	238	-4.1	6.59

Homogenization temperatura and salinity of fluid inclusions of quartz samples (18/19)

Sample A00TM112


		Size	Volume	Form	Temperature	Melting	NaCl
No.	Mineral		ratio			Temperature	
		$(m\mu)$	(%)		(°C)	(℃)	Wt (%)
1	Quartz	22.5	12	irr	186	·6.4	9.73
2	Quartz	10.0	12	po	195	•4.5	7.17
3	Quartz	15.0	10	irr	188	-6.8	10.24
4	Quartz	7.5	10	po	190		
5	Quartz	22.5	12	irr	185	6.5	9.86
6	Quartz	17.5	10	irr	177	-4.2	6.74
7	Quartz	32.5	10	irr	172	-6.2	9.47
8	Quartz	25.0	12	irr	188	-6.6	_9.98
9	Quartz	12.5	13	wg	195	-4.7	7.45
10	Quartz	7.5	12	po	203	-	
11	Quartz	10.0	10	po	173	4.3	6.88
12	Quartz	10.0	10	irr	181	-5.8	8.95
13	Quartz	20.0	10	irr	188	4.3	6.88
14	Quartz	22.5	12	irr	188	-4.4	7.02
15	Quartz	15.0	13	ро	193	.6.8	10.24
16	Quartz	10.0	10	po	171	4.6	7.31
17	Quartz	7.5	10	po	185		
18	Quartz	12.5	10	irr	163	-7.1	10.61
19	Quartz	10.0	12	wg	185	-4.2	6.74
20	Quartz	7.5	10	ро	172	-	•
			.				

 ${\bf Appendix-11}\\ {\bf Homogenization\ temperatura\ and\ salinity\ of\ fluid\ inclusions\ of\ quartz\ samples\ (19/19)}$

Sample	A00TM119

No.	Mineral	Size	Volume ratio	Form	Temperature	Temperature	NaCl
1	04-	(mµ)	(%)		(℃)	(℃)	Wt (%)
	Quartz	25.0	17	irr	273	•3.6	5.86
2	Quartz	12.5	15	po	275	-3.4	5.56
3	Quartz	7.5	13	sq	265	-3.6	5.86
4	Quartz	25.0	15	irr	261	-4.8	7. 59
5	Quartz	17.5	15	po	274	-3.6	5.86
6	Quartz	7.5	12	sq	273	-	-
7	Quartz	20.0	13	irr	243	-3.7	6.01
8	Quartz	17.5	13	po	264	4.0	6.45
9	Quartz	7.5	15	ро	278		-
10	Quartz	22.5	15	irr	258	-3.5	5.71
11	Quartz	12.5	13	ро	257	-3.6	5.86
12	Quartz	10.0	17	wg	282	3.6	5.86
13	Quartz	10.0	13	po	268	·3.8	6.16
14	Quartz	7.5	12	ро	265	-	
15	Quartz	32.5	15	irr	272	-3. 2	5. 26
16	Quartz	17.5	13	irr	275	·3.6	5.86
17	Quartz	5.0	12	ро	241	•	•
18	Quartz	12.5	15	po	278	-3.8	6.16
19	Quartz	7.5	15	po	275	·4.0	6.45
20	Quartz	12.5	12	irr	266	-3.5	5.71

Legend of Form eg:egg shape; irr:irregular; po:polygon; sq:square; tr:triangle; tu:tube; wg:wedge-shape