DATA BOOK D

PROCESS CALCULATION SHEET AND B/Q OF STFs

Process Calculation Sheet of Priority STFs

Remark:

(1) This process calculation sheet presents the results of selected optional processes as well as not selected ones.

- 1. Design Basis
- 2. Grit Chamber
- 3. Influent Pump
- 4. RAFA Reactor
- 5. Bio-Filter
- 6. B/F Recirculation Pump
- 7. Sedimentation Tank
- 8. Aerated Lagoon
- 9. Aerator for Aerated Lagoon
- 10. Polishing Pond
- 11. Sludge Generation
- 12. Sludge Thickener
- 13. Sludge Digester
- 14. Sludge Dehydrator
- 15. Sludge Drying Bed
- 16. B/F Recirculation Tank
- 17. Disinfection Tank
- 18. Transfer Pump
- · 19. Transfer Tank
- 20. Treated Sewage Discharge Pipe

The following figures, which have been formulated in the Sewerage Planning, are adopted for this preliminary design:

					Systems			
Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Sewage Flow in 2020							T	
Daily maxmum flow	(m^3/d)	14,900	73,585	66,374	31,337	22,245	38,219	28,762
Daily average flow	(m^3/d)	13,135	64,464	57,381	27,087	19,308	32,677	24,795
Hourly maximum flow	(m^3/d)	20,508	102,382	93,791	44,408	31,091	53,937	40,638
Capacity of Existing Treatment	Facilities							
Daily maxmum flow	(m^3/d)	-	39,200	80,000	_	-	-	
Daily average flow	(m^3/d)	-	34,341	69,161	-	-		-
Hourly maximum flow	(m ³ /d)		54,541	######	-		-	-
Sewage Flows for Expansion or	New Installa	tion				٠,		
Daily maxmum flow	(m^{3}/d)	14,900	34,385	66,374	31,337	22,245	38,219	28,762
Daily average flow	(m^{3}/d)	13,135	30,123	57,381	27,087	19,308	32,677	24,795
Hourly maximum flow	(m^3/d)	20,508	47,841	93,791	44,408	31,091	53,937	40,638
Influent Sewage Qualities		-						
BOD	(mg/l)	257	271	304	315	305	386	
SS (Suspended Solids)	(mg/l)	285	301	338	350	339	429	363
Treated Sewage Qualities								
Overall removal rate	(%)	90	90	90	90	90	90	90
BOD	(mg/l)	20	5 27	30	32	. 31	39	
SS (Suspended Solids)	(mg/l)	29	9 30) 34	35	34	4 43	36
	·····							
Train number of facilities	[*]		2 3	3 3	3 3	8	2 2	3

Remark:

(1) In the Cabanga STF (Sewage Treatment Facilities), the existing influent system containing influent pumps, grit chambers and sludge treatment-related facilities will be continued to be used after the expansion.

(2) In the Janga STF, the exisitng treatmentment facilities will work as another trains, separately with the STF to be expanded.

Base Sewage Flow:

Hourly maximum flow (Q_{hmax}, m³/d)

Design Criteria:

The following design criteria are app	blied to remove sand particles with
larger than 0.15 mm diameter:	
- Water surface loading rate (L _s):	1,300 (m/d)
- Critical horizontal velocity (V _c):	0.12 (m/sec)
- Detention time (T_d) :	40 (sec)

Calculation Equation:

Water surface area	$= Q_{\text{hmax}} \times 1/L_{\text{s}}$	(m ²)
Verical section area	$= Q_{nmax} \times 1/V_c$	(m ²)
Volume	$= Q_{\text{hmax}} \times T_{\text{d}} \times 86400$	(m ³)

Caculation Results:

						Systems				
		Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit nur	mb	ers		2	3	. 2	3	2	. 3	2
ed s/	L I	Water surface	m ²	7.9	12.3	36.1	11.4	12.0	13.8	15.6
Required figures /	train	Vertical section	m ²	1.0	1.5	4.5	1.4	1.5	1.7	2.0
μ. E	-	Volume	m ³	4.7	7.4	21.7	6.9	7.2	8.3	9.4
s /		Width	m	2.0	2.0	8.75	2.0	2.0	2.0	2.0
Actual dimensions	train	Length	m	5.0	7.0	8.75	7.0	6.0	7.0	8.0
Act	tra	Depth	m	0.5	0.8	0.6	0.8	0.8	1.0	1.0
di		Depth of sand pit	m	0.3	0.3	0.15	0.3	0.3	0.3	0.3
s/	_	Water surface	m ²	10.0	14.0	76.6	14.0	12.0	14.0	16.0
Actual figures /	train	Vertical section	m ²	1.0	1.6	4.9	1.6	1.6	2.0	2.0
Υ ³ α	_	Volume	m ³	5.0	11.2	42.9	11.2	9.6	14.0	16.0

Remarks:

(1) The existing grit chambers in the Cabanga STF will be used after rehabilitated.

Results	OK						
•							

Base Sewage Flow:

Hourly maximum flow $(Q_{hmax}, m^3/d)$

Design Criteria:

The following criteria are applied: - Suction side velocity (V_s):

2.0 (m/sec)

Calculation Equation:

Diameter of suction pipe	$= 146 \text{ x} (Q_{\text{hmax}}/V_{\text{s}})^{0.5}$	(mm)
Shaft power	= 0.163 x Q_{hmax}/N_{pump} x H_{total} x 1/ η_{pump} x 1/1440	(kw)

Where:

N _{pump}	: Quantity of duty pump (-)
H _{total}	: Total pump head (m)
η_{pump}	: Pump efficiency (-)

Caculation Results:

					·····	Systems			
	Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Quantities of pumps	Duty	-	2	3	4	3	2	3	2
Quan of pu	Stand-by	-	1	1	1	1	1	1	. 1
Conditions	Total head	m	16	13	10	16	16	16	16
Condi	Pump efficiency	%	75	80	80	75	75	75	75
ed unit	Discharge	m ³ /min	7.1	11.1	16.3	10.3	10.8	12.5	14.1
Required figures / unit	Diameter of suction pipe	mm	275	344	417	331	339	365	388
fign R	Shaft power	kw	24.8	29.3	33.2	35.7	37.5	43.4	49.1
Actual figures / unit	Type of pump		Mixed flow	Mixed flow	Centrifugal	Mixed flow	Mixed flow	Mixed flow	Mixed flow
gures	Discharge	m ³ /min	7.2	11.5	26.4	11.0	11.0	13.0	14.5
al fig	Diameter of suction pipe	mm	300	350	500	350	350	400	400
Actu	Motor rated power	CV	40	50	75	60	75	75	75

Remarks:

(1) The existing influent pumps in the Cabanga STF will be used after rehabilitated.

Results	OK	OK	OK	OK	OV		OV.
Results					OK	OK	OK

Base Sewage Flow:

Daily maximum flow (Qd_{max} , m^3/d)

Design Criteria:

The following criteria are applied: - Hydlauric detention time (T _{RAFA}):	7.0 (h)
- Unit volume of RAFA reactors for Cabanga	$150 (m^3)$
- Unit volume of RAFA reactors for other STFs (5.0 mW x 5.0 mL x 6.0 mH for the Cabanga Station,	125 (m ³)
5.0 mW x 5.0 mL x 5.0 mH for other STFs)	

Calculation Equation:

- Required Quantities of RAFA reactors = $Q_{dmax} \times T_{RAFA} \times 1/24 \times 1/125$

(unit)

		Systems						
Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Train numbers	-	4	4	. 8	- 4	4	6	6
Total required volume	m ³	4,346	10,029	19,359	9,140	6,488	11,147	8,389
Required quantities	unit/train	8.7	20.1	19.4	18.3	13.0	14.9	11.2
Actual quantities	unit/train	9	21	17	20	13	16	12
Total numbers of RAFA	units	36	84	136	80	52	96	72
Total actual volume	m ³	4,500	10,500	20,400	10,000	6,500	12,000	9,000

| Results | OK |
|---------|----|----|----|----|----|----|----|

BIO-FILTER

Base Sewage Flow:

Daily maximum flow (Qd_{max} , m^3/d)

Design Criteria:

The following criteria a	are	applied:
--------------------------	-----	----------

- BOD loading rate (L_{BF}):

- Height of bio-filters (H_{BF})

Calculation Equation:

- Required horizontal area of bio-filter = $Q_{dmax} \times T$ -BOD_{inf, BF}/1000 x 1/L_{BF} x 1/H_{BF} (m²)

2.0 (m)

 $0.75 (kg-BOD/m^3.d)$

Where:

T-BOD_{inf, BF} : Total-BOD of influent to bio-filters (mg/l)

						Systems			
]	Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit num	bers		2	3	3	3	2	3	2
Required	horizontal area / unit	m ²	319	517	1,121	548	565	820	784
/	Diameter	m	21.0	26.0	39.0	27.0	27.0	33.0	32.0
Actual figures / unit	Height	m	2.0	2.0	2.0	2.0	2.0	2.0	2.0
اح ش	Horizontal area	m ²	346	531	1,194	572	572	855	804

1	_		0.11	017	OF	OV	OK	OK
	Results	OK	OK	OK	OK			
	rcouno			U 4 16				

RECIRCULATION PUMP FOR BIO-FILTER

Base Sewage Flow:

Daily maximum flow (Q_{dmax} , m^3/d)

Design Criteria:

The following criteria are applied:		
- Recirculation rate (R _{BF})	2.0	(-)
- Suction side velocity (V_s) :	2.0	(m/sec)

Calculation Equation:

	Required Discha Shaft power	arge = $Q_{\text{dmax}} \times R_{\text{BF}} \times 1/1440$ = 0.163 x $Q_{\text{hmax}}/N_{\text{pump}} \times H_{\text{total}} \times 1/\eta_{\text{pump}} \times 1/1440$	(m ³ /min) (kw)
Where:	Diameter of suc	tion pip = $146 \times (Q_{\text{hmax}}/V_s)^{0.5}$	(mm)
, and the second s	H _{total}	: Quantity of duty pump (-) : Total pump head (m) : Pump efficiency (-)	

						Systems			
	Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
tities mps	Duty	-	2	3	6	3	2	3	2
Quantities of pumps	Stand-by	-	1	1	1	1	1	1	1
Conditions / unit	Total head	m	8	8	8	8	8	8	8
Cond / u	Pump efficiency	%	80	77	80	80	80	80	80
ed unit	Discharge	m³/min	. 10.3	15.9	15.4	14.5	15.4	17.7	20.0
Required figures / unit	Diameter of suction pipe	mm	332	412	405	393	406	434	461
R. figu	Shaft power	kw	16.9	27.0	25.0	23.6	25.2	28.8	32.6
Actual figures / unit	Type of pump	-	Mixed flow	Mixed flow	Mixed flow	Mixed flow	Mixed flow	Mixed flow	Mixed flow
igure	Discharge	m ³ /min	11.0	16.0	16.0	15.0	16.0	18.0	20.5
ual f	Diameter of suction pipe	mm	350	450	450	400	450	450	500
Act	Motor rated power	CV	30	45	40	45	40	45	50

Reference:								
Grand total of duty recirculation pump	kw	60	135	240	135	80	135	100
Grand total of aerator	kw	22	59	113	56	33	83	55

SEDIMENTATION TANK

Base Sewage Flow:

Daily maximum flow $(Q_{dmax}, m^3/d)$

Design Criteria:

The following	criteria	are	applied:	
---------------	----------	-----	----------	--

- Water surface loading rate (L_{ST}): 24.0 ($m^3/m^2.d$)
- Hydlauric retention time (T_{ST}) :
- Weir overflow rate (WO_{ST}) :

Calculation Equation:

- Required water surface	$= Q_{dmax} \times 1/L_{ST}$	(m ²)
- Required volume	$= Q_{dmax} \times T_{ST} \times 1/24$	(m ³)
- Required weir length	$= Q_{dmax} \times 1/WO_{ST}$	(m)

2.5 (h)

 $150 (m^3/m.d)$

						Systems	•		
Design Parameters		Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit num	bers		. 2	3	4	3	2	3	2
s /	Water surface	m ²	310	478	691	435	463	531	599
Required figures / unit	Water volume	m ³	776	1,194	1,728	1,088	1,159	1,327	1,498
μ, K	Weir length	m	50	76	111	.70	74	85	96
2	Diameter	m .	20	25	· -	24	25	27	28
Actual dimensions/ unit	Width		-		12	-	-	-	
limen. unit		m		(312	w x 4m)				
ib la	Length	m	-		60	-	-	-	
ctua	Water depth	m	3.0	3.0	3.0	3.0	3.0	3.0	3.0
L	Weir length	m	60	90	90	80	80	90	100
Actual figures / unit	Water surface	m ²	314	491	720	452	491	572	615
_u ∆r ⊿c	Water volume	m ³	942	1,472	2,160	1,356	1,472	1,717	1,846

Water surface	Results	ОК	OK	OK	OK	OK	ОК	OK
Water volume	Results	OK						

AERATED LAGOON

Base Sewage Flow:

Daily maximum flow $(Q_{dmax}, m^3/d)$

Design Criteria:

The following criteria are applied: - Hydlauric retention time (T_{AA}) :	1.0 (d)
- Water depth (H _{A/L}):	3.8 (m)
- Slope of embankment :	2:1 (-)
- Free board of embankment	0.5 (m)

Calculation Equation:

- Required volume

= $Q_{dmax} \times T_{A/L}$

 (m^3)

Caculation Results:

				Systems						
Design Parameters		Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA	
Unit numbers		-	2	4	. 3	3	2	3	2	
quired ures / unit	Volume	m ³	7,450	8,596	22,125	10,446	11,123	12,740	14,381	
Required figures / unit	Water surface at the median	m ²	1,961	2,262	5,822	2,749	2,927	3,353	3,784	
t t	Width	m	32	50	- 51	49	38	39	50	
Actual dimensions / unit	Length	m	100	66	160	86	120	130	115	
dim	Depth	m	4.3	4.3	4.3	4.3	4.3	4.3	4.3	
Actual volume / unit		m ³	7,695	8,659	23,661	11,439	11,914	13,451	16,181	

D-9

Results OK OK OK OK OK OK

AERATOR FOR AERATED LAGOONS

Base Sewage Flow:

Daily maximum flow $(Q_{dmax}, m^3/d)$

Design Criteria: The following criteria are applied: Submersible aerator - Type of an aerator: - BOD removal rate in RAFA reactors (η_{RAFA}): 75 (%) 60 (%) - BOD removal rate in aerated lagoons (η_{AL}): 35 (mg/l)- Cell concentration in aeated lagoons (X_{A/L}): (kg-O₂/kwh) 1.0- Aerator efficiency at the standard state (N₀): 0.9 - Oxygen transfer rate in sewage (α): (-) (°C) 28 - Sewage temeprature (t): 0.9 (-) - Oxygen saturation ration (β): (mg/l) - Oxygen saturation conc. at 28°C (Cs'): 7.6 (mg/l)9.1 - Oxygen saturation conc. at 20°C (Cs): - DO concentration in aerated lagoons (C_L): 0.5 (mg/l)**Calculation Equation:** Required oxygen (R₀₂) = $1.5/1000 \text{ x} (\text{T-BOD}_{inf, A/L} - \text{F-BOD}_{eff, A/L})Q_{dmax} - 1.42/1000 \text{ x} X_{A/L}Q_{dmax}$ (kg/d)Influent BOD of aerated lagoons (T-BOD_{inf,A/L}) (mg/l)= T-BOD_{inf,RAFA}(1 - $\eta_{RAFA}/100$) Effluent BOD of aerated lagoons (F-BOD_{eff,A/L}) (mg/l)= T-BOD_{intA/L}(1 - $\eta_{A/L}$ /100) Aerator efficiency at the actual state (N) = $N_0 x \alpha (1.024^{1-20}) (\beta Cs' - C_L)/Cs$ (kg-O₂/kwh)

Where:

: Cell concentration in aeated lagoons

(mg/l)

X_{A/L} Caculation Results:

					S	ystems		· · · · ·	
Design Parameters		Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Train	number		2	4	3	3	2	3	2
Influe	nt T-BOD of RAFA	mg/l	257	271	304	315	305	386	327
Influent T-BOD of aerated lagoons		mg/l	64	68	76	79	76	97	82
Effluent F-BOD of aerated lagoons		mg/l	26	27	30	32	31	39	33
Cell concentration in aerated lagoons		mg/l	25	27	29	29	31	37	29
N/N _o		-	0.76	0.76	0.76	0.76	0.76	0.76	0.76
p; /	Oxygen consumption	kg/d	166	199	592	308	272	445	457
Required oxygen /	Oxygen supply at actual state	kg/h	6.9	8.3	24.7	12.8	11.3	18.6	19.0
ex.	Aerator capacity at standard state	kw	9.1	10.9	32.5	16.9	15.0	24.5	25.1
	Quantities of aerators	-	3	4	5	5	3	5	5
Actual Figure ,	Unit rated power of aerators	kw	3.7	3.7	7.5	3.7	5.5	5.5	5.5
Ϋ́Ξ	Total rated power of aerators /train	kw	11.1	14.8	37.5	18.5	16.5	27.5	27.5
Gran	total of aerators	kw	22.2	59.2	112.5	55.5	33.0	82.5	55.0

Results OK OK OK OK OK OK

POLISHING POND

Base Sewage Flow:

Daily maximum flow $(Q_{dmax}, m^3/d)$

Design Criteria:

The following criteria are applied:	
- Hydlauric retention time (T _{P/P}):	1.5 (d)
- Water depth (H _{P/P}) :	3.6 (m)
- Slope of embankment :	2:1 (-)
- Free board of embankment	0.7 (m)

Calculation Equation:

- Required volume

 $= Q_{dmax} \ x \ T_{P/P}$

(m³)

		Systems							
	Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit num	Unit numbers		2	4	3	3	2	. 3	. 2
	Volume	m ³	11,175	12,894	33,187	15,669	16,684	19,110	21,572
Required figures / unit	Water surface at the median	m ²	3,104	3,582	9,219	4,352	4,634	5,308	5,992
	Width	m	32	50	51	49	38	39	50
Actual mensio / unit	Length	m	152	100	235	125	180	200	166
Actual dimensions / unit	Depth	m	4.3	4.3	4.3	4.3	4.3	4.3	4.3
	olume/unit	m ³	11,246	12,960	33,210	16,146	17,136	19,836	22,464

1	Results	OK	OK	ОК	OK	OK	OK	OK	
	ICounto								

SLUDGE GENERATION

30	(%)	
$= 250/T_{RAFA} + 10$	(mg/l)	
75	(%)	
15	(% of removed E	BOD)
	•	,
80	(%)	
60	(%)	
7 0	(%)	
	• •	
75	(%)	
	· •	
$= \mathbf{T} - \mathbf{BOD}_{\inf, \mathbf{RAFA}} \mathbf{x} (1 - \eta)$	rafa/100)	(mg/l)
= $(T-BOD_{inf} - T-BOD_{eff})$	х г _{RAFA} /100	(mg/l)
$= (R_{fix,SS} + Y_{RAFA} - T - SS_{eff,J})$	_{rafa})/1000 x Q _{davg}	(kg-DS/d)
= T-SS _{eff,RAFA} /1000 x Y _B	_{/F} /100 x Q _{davg}	(kg-DS/d)
	.,	
= T-BOD _{eff,RAFA} $(1 - \eta_{iz})$	_{goon} /100)	(mg/l)
-BOD _{eff,RAFA} -S-BOD _{eff,lagoor}	$)/(1 + 0.07T_{lagoon})$	(mg/l)
		(mg/l)
100) - T-SS _{eff,RAFA} x R _{fix,SS})	x Q _{davg}	(kg-DS/d)
		(-)
= $Q_{dave} \times T-SS_{inf}/1000 \times t$	r _{0/D} /100	(kg-DS/d)
	$= 250/T_{RAFA} + 10$ 75 15 80 60 70 75 $= T-BOD_{inf,RAFA} \times (1 - \eta)$ $= (T-BOD_{inf} - T-BOD_{eff})$ $= (R_{fix,SS} + Y_{RAFA} - T-SS_{eff})$ $= T-SS_{eff,RAFA} / 1000 \times Y_{B}$ $= T-BOD_{eff,RAFA} - S-BOD_{eff}$ $= X + T-SS_{eff,RAFA} \times R_{fix,SS}$ 100) - T-SS_{eff,RAFA} \times R_{fix,SS}	$= 250/T_{RAFA} + 10 $ (mg/l) 75 (%) 15 (% of removed E 80 (%) 60 (%) 70 (%)

- T_{RAFA} - T-BOD_{ibt,RAFA}

: Hydraulic retention time in RAFA reactors (h) : Total BOD of RAFA influent (mg/l)

: Influent Total Suspended Solids (mg/l)

- T-SS_{inf} Calculation Results:

					S	Sub-Systems	ş		
	Design Parameters	Units	CONCEICAD	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
۲	Influent Total SS	mg/l	257	271	304	315	305	386	327
cto	Influent Fixed SS	mg/l	77	81	91	95	92	116	98
Around RAFA reactors	Influent Total BOD	mg/i	285	301	338	350	339	429	363
FA	Effluent Total BOD	mg/l	71	75	85	- 88	85	107	91
2	Hydraulic retention time	h	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Pe	Effluent Total SS	mg/l	46	46	46	46	46	46	46
лол	Cell yield	mg/l	32	34	38	39	38	- 48	41
٩	Generated sludge from RAFA	kg-DS/d	833	2,088	4,792	2,388	1,620	3,867	2,311
Generated	sludge from bio-filters	kg-DS/d	480	1,102	2,099	991	706	1,195	907
	Effluent soluble BOD	mg/l	29	30	34	35	34	43	36
Around lagoon system	Cell generation	mg/l	26	27	31	32	31	39	33
Arc lag sys	Cell generation Sludge generation in lagoon.	mg/l	40	41	45	46	45	53	47
	Generated sludge from lagoons	kg-DS/d	282	661	1,317	631	444	831	586
Generated	from existing facilities	kg-DS/d	-	7,745	-	-	-	-	
Overall S	udge Generation Rate	•				•			
Sludge ger	neration rate in RAFA + B/F	· (-)	0.39	0.39	0.40	0.40	0.40	0.40	0.40
(= Genrated DS/Influent T-SS		.,,							
Sludge ger	neration rate in RAFA + Lagoon	(-)	0.33	0.34	0,35	0.35	0.35	0.37	0.36
(= Genrate	d DS/Influent T-SS including lag								
	neration rate in RAFA + Lagoon	(-)	0.25	0.26	0.27	0.28	0.28	0.31	0.29
	d DS/Influent T-SS excluding lag	oon sludge)							

SLUDGE THICKENER

Base Sewage Flow:

Daily average flow $(Q_{dmax}, m^3/d)$

Design Criteria:

The following criteria are applied:		
- Solid surface loading rate (L _{solid}):	60	$(kg-DS/m^2.d)$
- Detention time (T _{thicker}):	15	(h)
- Sludge concentration after thickening	3.5	(%)

Calculation Equation:

- Surface area	$= F_{solid} / L_{solid}$	(m ²)
- Volume of thickener	= $Q_{sludge}/24 \times T_{thickener}$	(m ³)

Where:

- F_{solid}

- Q_{studge}

: Sludge dry solid flow (kg-DS/d)

: Wet sludge flow (m^3/d)

Caculation Results:

		· · · · · · · · · · · · · · · · · · ·					Systems			
	Design Parameters		Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit number			1	1	1	1	1	1	- 1	
In th	e case of RA	AFA + Bio-Filter						1. A.		
	Generated	sludge	kg-DS/d	1,314	10,934	6,890	3,379	2,327	5,062	3,218
	Influent slu	idge concentration	%	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Influent slu	idge flow	m ³ /d	131	1,093	689	338	233	506	322
		udge concentration	%	3.5	3.5	3.5	3.5	3.5	3.5	3.5
	Effluent sh	udge flow	m ³ /d	37.5	312.4	196.9	96.5	66.5	144.6	92.0
	Req'd figures	Water surface	m ²	21.9	182.2	114.8	56.3	38.8	84.4	53.6
		Volume	m ³	82.1	683.4	430.7	211.2	145.4	316.4	201.1
	Actual dim's	Diameter	m	5.5	16.0	13.0	9.0	8.0	10.5	9.0
		Water depth	m	4.0	4.0	4.0	4.0	4.0	4.0	4.0
	Actual figures	Water surface	m ²	23.7	201.0	132.7	63.6	50.2	86.5	63,6
	Ac	Volume	m ³	95.0	803.8	530.7	254.3	201.0	346.2	254.3
In th	e case of RA	AFA + Lagoon								
	Generated	sludge	kg-DS/d	833	9,832	4,792	2,388	1,620	3,867	2,311
	Influent slu	idge concentration	%	1.0	1.0	1.0	1.0	1.0	1.0	1.0
	Influent slu	idge flow	m ³ /d	83	983	479	239	162	387	231
	Effluent sli	udge concentration	%	3.5	3,5	3.5	3.5	3.5	3.5	3.5
	Effluent sh	udge flow	m ³ /d	23.8	280.9	136.9	68.2	46.3	110.5	66.0
1 ·	Req'd figures	Water surface	m ²	13.9	163.9	79.9	39,8	27.0	64.5	38.5
	Lig K	Volume	m ³	52.1	614.5	299.5	149.3	101.3	241.7	144.5
	Actual dím's	Diameter	m	4.5	15.0	11.0	7.5	6.0	9.5	8.0
	k	Water depth	m	4.0	4.0	4.0	4.0	4.0	4.0	4.0
1	Actual figures	Water surface	m ²	15.9	176.6	95.0	44.2	28.3	70.8	50.2
	Ac	Volume	m ³	63.6	706.5	379.9	176.6	113.0	283.4	201.0

Remark:

(1) The thickener in the Janga STF treats the sludge generated the existing STF, together.

SLUDGE DIGESTER

Base Sewage Flow:

Daily average flow $(Q_{daveg}, m^3/d)$

Design Criteria:		
	The following criteria are applied:	
	- Volatile sludge portion (R _{volatile}):	70.0 (%)
	- Hydraulic retention time (T _{digester}):	20.0 (d)
	- Digestion rate (r _{digestion}):	50.0 (%)
	- Concentration of influent sludge (Cinf) :	3.5 (%)
	- Concentration of digested sludge (C _{eff}) :	3.5 (%)
	- Digestion gas generation rate (rgas):	0.4 (nm ³ /kg-removed Sludge)
Calculation Equa	ition:	

(m³) - Required digester volume $= Q_{inf} \mathbf{x} T_{digester}$ - Digested dry solid flow $= Q_{inf} x C_{inf} / 100 \{ R_{volatile} / 100 x (1 - r_{digestion} / 100) + (1 - R_{volatile} / 100 (kg-DS/d) \}$ = $Q_{inf} \times C_{inf}/100 \times R_{volatile}/100 \times r_{digestion}/100 \times r_{gas}$ - Digestion gas flow

 (nm^3/d)

Caculation Results (In the case of RAFA + Bio-Filter):

Design Parameters Unit number		Units	CABANGA Systems	Remarks
		-	1	One unit of 2 units will be used as sludge a separation and storage tank.
Required	l volume	m ³	3,937	
ial sions	Diameter	m	25.0	
Actual dimensions	Height	m	8.2	
Actual v	/olume	m ³	4,115	
Digested dry sludge flow		kg-DS/d	4,479	
Digested wet sludge flow		m ³ /d	118	3
Digestion gas flow		nm ³ /d	965	5

Existing Digester: Existing Gas Holder	Q'ty: Dimension Straigh Water Botton Top he	depth 1 height	2 8.23 m 7.16 m (Straight Part) 2.9 m 3.05				
Existing Gas Holder	Q'ty: Diameter: Height		10.0 m 5.0 m	1			

SLUDGE DEHYDRATOR

Base Sewage Flow:

Daily average flow $(Q_{daveg}, m^3/d)$

Design Criteria:

The following criteria are applied:		
- Operation hours (T _{dehydrator}):	8	(h/d)
- Filtration rate (r _{dehydrator}):	130	(kg-DS/m.h)
- Dosing rate of polymer coagulant (rpolymer):	0.7	(% for dry solid)
- Water content of dehydrated sludge (Ccake):	80	(%)

Calculation Equation:

- Required belt width	= $Q_{inf} \times C_{inf}/100 \times 1/T_{dehydrator} \times 1/r_{dehydrator}$	(m)
- Injected polymer coagulant	= $Q_{inf} \mathbf{x} C_{inf} / 100 \mathbf{x} r_{polymer} / 100 \mathbf{x} 1000$	(kg/d)
- Dehydrated sludge quantity	= $Q_{inf} \times C_{inf}/100 \times 1/(1 - C_{cake}/100)$	(Wet-ton/d)

Where:

\mathbf{Q}_{inf} :	Influent sludge flow (m³/d)
C _{inf} :	Influent sludge concentration (%)

Caculation Results:

		Systems								
		· .	BOA VI	AGEM	CORDEIRO					
Design Parameters	Units	CABANGA	In case of RAFA + Bio- Filter	In case of RAFA + Lagoon	In case of RAFA + Bio- Filter	In case of RAFA + Ľagoon				
Unit numbers	-	2	2	2	2	2				
Required filter belt width / unit	m	2.2	1.6	1.1	1.1	0.8				
Actual filter belt width / unit	m	2.5	2.0	1.5	1.5	1.0				
Injected polymer coagulant	kg/d	31.4	23.7	16.7	16.3	11.3				
Dehydrated sludge quantity	Wet-ton/d	22.4	16.9	11.9	11.6	8.1				

Remark:

(1) The dehydrators in the Janga STF treats the sludge generated the existing STF, together.

and the second	· · · · · · · · · · · · · · · · · · ·					
Influent sludge	kg-DS/d	4,479	3,379	2,388	2,327	1,620

Results	OK	OK	OK	OK	OK

Base Sewage Flow: Daily average flow $(Q_{daveg}, m^3/d)$ **Design Criteria:** The following criteria are applied: $1.3 (kg-DS/m^2.d)$ - Drying rate (r_{drying}): 60 (%) - Water content of dried sludge (Ccake): - Unit area of drying bed (A_{dry}): $150 (m^2)$ (10mW x 15mL) **Calculation Equation:** = $Q_{inf} \ge C_{inf}/100 \ge 1/r_{drying} \ge 1/A_{dry}$ (unit) - Required quantities of beds $= Q_{inf} x C_{inf} / 100 x 1 / (1 - C_{cake} / 100)$ (Wet-ton/d) - Dryied sludge quantity

Where:

Q _{inf} :	Influent sludge flow (m ³ /d)
Cinf:	Influent sludge concentration (%)

Caculation Results:

	Systems								
				BOA VIAGEM		CORDEIRO			A
Design Parameters	Units	CONCEICAO	JANGA	In case of RAFA + Bio- Filter	In case of RAFA + Lagoon	In case of RAFA + Bio- Filter	In case of RAFA + Lagoon	PRAZERES	CURCURANA
Required numbers of beds	units	4.3	50.4	17.3	12.2	11.9	- 8.3	19.8	11.9
Required drying area	m ²	641	7,563	2,599	1,837	1,790	1,246	2,975	1,778
Actual numbers of beds	units	6	56	20	15	15	10	- 24	14
Actual humbers of beds			= 8 x 7					= 2 x 12	= 2 x 7
Actual drying area	m ²	900	8,400	3,000	2,250	2,250	1,500	3,600	2,100
Dried sludge quantity	Wet-ton/d	2.1	24.6	8.4	6.0	5.8	4.1	9.7	5.8
Remark:						÷			

(1) The drying beds in the Janga STF treats the sludge generated the existing STF, together.

	Results	OK	OK	OK	OK	OK	OK	OK.	OK
Influent sludge	kg-DS/d	833	9,832	3,379	2,388	2,327	1,620	3,867	2,311

BF RECIRCULATION TANK

Base Sewage Flow:

Daily maximum flow (Q_{dmax} , m^3/d)

Design Criteria:

The following criteria are applied:	
- Hydlauric retention time (T _{R/T}):	2.0 (min)
- Water depth (H _{R/T}) :	2.5 (m)

Calculation Equation:

- Required volume

 $= Q_{dmax} \times T_{R/T}$

 (m^3)

					-	Systems			
Design Parameters		Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Unit numbers -			1	1	1	1	1	1	1
Required	figures	m ³	21	48	92	44	31	53	40
al ions	Width	m	3	3	3	3	3	3	3
Actual dimensions	Length	m	6	10	13	8	6	10	6
dim /	Depth	m	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Actual v	volume	m ³	45 75 98 60 45 75 4					45	

Train number of facilities	2	3	3	3	2	3	2

DISINFECTION TANK

Base Sewage Flow:

Daily maximum flow $(Q_{dmax}, m^3/d)$

Design Criteria:

The following criteria are applied:	
- Hydlauric retention time (T _{D/T}):	3.0 (min)
- Water depth (H _{D/T}) :	2.5 (m)

Calculation Equation:

- Required volume

= $Q_{dmax} \mathbf{x} T_{D/T}$

 (m^{3})

Caculation Results: Systems **BOA VIAGEM** CURCURANA CONCEICAO CORDEIRO PRAZERES CABANGA Units **Design Parameters** JANGA 1 1 1 1 1 1 Unit numbers 1 -138 80 60 65 m³ 31 72 46 **Required figures** 3 3 3 4 3 5 4 dimensions Width m Actual 6 10 8 10 10 10 12 m Length 2.5 2.5 2.5 2.5 2.5 2.5 2.5 Depth m 100 75 m³ 45 88 150 75 60 Actual volume

Train number of facilities	2	3	3	3	2	3	2

Base Sewage Flow	W:		
	Hourly maximum flow (Q_{hn}	max , m^3/d)	
Design Criteria:			
	The following criteria are a		
	- Suction side velocity (V _s):	2.0 (m/sec)	
Calculation Equa	ation:		
-	Diameter of suction pipe	$= 146 \text{ x} (\text{Q}_{\text{hmax}}/\text{V}_{\text{s}})^{0.5}$	(mm)
	Shaft power	= 0.163 x Q _{hmax} /N _{pump} x H _{total} x 1/ η pump x 1/1440	(kw)
Where:			
	N _{pump} : Quantity o	f duty pump (-)	*

N_{pump}	: Quantity of duty pum
H _{total}	: Total pump head (m)
η_{pump}	: Pump efficiency (-)

	Design Parameters	Units	CABANGA System
iities mps	Duty	-	4
Quantities of pumps	Stand-by	÷	···· • • • • • • • • • • • • • • • • •
Conditions	Total head	m	10
Condi	Pump efficiency	%	75
72 0	Discharge	m ³ /min	16.3
Required figures	Diameter of suction pipe	mm	417
a d	Shaft power	kw	35.4
	Type of pump		Mixed flow
gure	Discharge	m ³ /min	16.5
Actual figures	Diameter of suction pipe	mm	450
Act	Motor rated power	CV	50

TRANSFER TANK

Base	Sewage	Flow:
------	--------	-------

Hourly maximum flow (Q_{hmax}, m³/d)

Design Criteria:

The following criteria are applied:	
- Hydlauric retention time (T _{D/T}):	1.5 (min)
- Water depth (H _{D/T}):	3.5 (m)

Calculation Equation:

- Required volume

= $Q_{hmax} \times T_{D/T}$

(m³)

	Design Parameters	Units	CABANGA System
Unit nun	nbers		1 .
Required	figures	m ³	98
l DILS	Width	m	3.5
ctual	Length	m	9.0
Vidth Length Depth		m	3.5
Actual volume		m ³	110

TREATED SEWAGE DISCHARGE PIPES

					Systems	·······		
Design Parameters	Units	CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA
Design Conditions	•		·					
Hourly maximum flow	m ³ /day	20,508	102,382	93,791	44,408	31,091	53,937	40,63
Design water level of discharge points	m (+MSL)	1.36	1.36	1.36	1.36	2.76	3.01	1.3
Design water level of discharge points	m (+EL)	-3.14	-6.64	-1.64	-2.64	-1.24	-1.99	-1.64
Length of discharge pipes	m	2,900	2,300	50	95	50	2,900	1,60
Ground level		· · ·						
Station site (= Disinfection tank water level)	m (+MSL)	4.50	8.00	3.00	4.00	4.00	5.00	3.0
(= Grand level of STF=EL±0)	and the second second							
at Discharge point	m (+MSL)	3.00	3.00	3.00	3.00	4.00	4.00	2.5
Discharge point	m (+EL)	-1.50	-5.00	0.00	-1.00	0.00	-1.00	-0.50
Pipe Characteristics								
ND of discharge pipe	mm	800	1,200	1,000	800	800	1,200	1,00
Number of discharge pipes	-	1	1	2	1	1	1	
A (section area)	m ²	0.502	1.130	0.785	0.502	0.502	1.130	0.78
V (velocity)	m/sec	0.47	1.05	0.69	1.02	0.72	0.55	0.6
R (A/P)	-	0.20	0.30	0.25	0.20	0.20	0.30	0.2
I (hydraulic gradient)	-	0.00037	0.00107	0.00060	0.00176	0.00086	0.00030	0.0004
Water level of effluent point	m (+MSL)	2.45	3.83	1.39	1.53	2.80	3.87	2.0
Water level of effluent point	m (+EL)	-2.05	-4.17	-1.61	-2.47	-1.20	-1.13	-0.92
Level of discharge pipe (BOP)		<u> </u>						
at Effluent box	m (+MSL)		3.23		1.13	2.40	3.27	1.5
at Effluent box	m (+EL)	-2.45	-4.77	-2.11	-2.87	-1.60	-1.73	-1.42
at Discharge point	m (+MSL)	•						0.8
at Discharge point	m (+EL)	-3.54	-7.24	-2.14	-3.04	-1.64	-2.59	-2.14

-	Results		OK						
Actual Length		(m)			50	40	60		

Electricity Consumption for STFs Loading rate: 0.85

		Consumption (kwh/day)								
ltems		CONCEICAO	JANGA	CABANGA	BOA VIAGEM	CORDEIRO	PRAZERES	CURCURANA		
Daily Max. Flow (n	n3/d)	14,900	73,585	66,374	31,337	22,245	38,219	28,762		
Hourly Max. Flow (n	n3/d)	20,508	102,382	93,791	44,408	31,091	53,937	40,638		
Influent System							1 - 1 - 1 - 1 - 1			
Influent Pump		1,088	2,040	4,080	2,448	2,040	3,060	2,040		
Others		51	252	227	107	76	131	98		
Biological Treatment System	n			-				<u> </u>		
Transfer Pump		-	_	2,720	-	-	-	· _		
Recirculation Pump		-	-	4,896	-	1,632				
Aerator		453	1,208	-	1,132		1,683	1,122		
Others		21	105	95	45	32	55	41		
Disinfection System					1					
UV unit		408	979	1,632	918	653	1,122	1,020		
Sludge Treatment System				1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -						
Continuous operation		8	40	375	92	. 92	21	16		
16 hours operation		-	-	510	· · · _					
8 hours operation		-	-	170	139	136				
ExistingTreatment System						· · · · · · · · · · · · · · · · · · ·	: 			
Continuous operation		· · ·	12,032	· _	· _	-	-	-		
8 hours operation		-	· -		-		-			
	·					· · ·				
Total	1 - E	2,029	16,656	14,195	4,881	4,660	6,071	4,337		

Remarks:

(1) In the Janga STF, the electricity consumption for the existing facilities is included.

Bill of Quantities of Conceicao S	TF (1/7)		
-			

		1	<u> </u>
Work Items	Descriptions	Unit	Quantities
1. Civil Structures		- - 3	4 000
1.1 Grit chamber	1) Excavation	m	1,200
Influent well	2) Backfill	m ³	320
	3) Disposal of surplus soil	m ³	880
	4) Invert concrete	m ³	30
	5) Reinforced concrete(B200)	m ³	271
	6) H steel pile(10"x4"5/8")	m	451
· · · ·	Breast boad(2"x10")	m ²	340
	7) Well piont installation	unit	2
· · · · · · · · · · · · · · · · · · ·	Rental period	month	3
1.2 RAFA reactor	1) Reinforced concrete(B200)	m ³	1,800
	2) PC pileD350	m	6,930
1.3 Aerated lagoon	1) Excavation	m ³	14,000
	2) Embankment	m ³	3,600
	3) Disposal of surplus soil	m ³	10,400
	4) Mortar	m ³	245
1.4 Polishing pond	1) Excavation	m ³	21,000
	2) Embankment	m ³	5,000
and the second	3) Disposal of surplus soil	m ³	16,000
	4) Mortar	m ³	3 40
1.5 Disinfection tank	1) Excavation	m ³	200
	2) Backfill	m ³	150
e de la companya de l	3) Disposal of surplus soil	m ³	50
	4) Reinforced concrete(B200)	m ³	30
1.6 Sludge thickener	1) Excavation	m ³	70
	2) Backfill	m ³	50
	3) Disposal of surplus soil	m ³	20
	4) Reinforced concrete(B200)	m ³	31
1.7 Sludge drying bed	1) Excavation	m ³	950
1.7 Shuge drying bed	2) Disposal of surplus soil	m ³	950
	3) Reinforced concrete(B200)	m ³	360
1.8 Treated sewage	1) Pipe D800	m	2,900
discharge pipe			
1.9 Treated sewage	1) Reinforced concrete(B200)	m ³	4.8
outfull	2) RC pileD250	m	16
	3) Sandbag	m ³	91
	4) Water mat	m ²	68

	Work Items	Descriptions	Unit	Quantities
	2. Buildings			
	2.1 Influent pump room	RC	m ²	160
	2.2 Disinfection room	RC	m ²	105
	2.3 Electrical room	Brick	m ²	100
	2.4 Administration room	RC	m ²	1,000
	3. Ground Leveling, etc			
	3.1 Ground leveling	1) Excavation	m ³	20,140
		2) Disposal of surplus soil	m³	20,140
	3.2 Inside road		m ²	7,740
	3.3 Inside drain ditch	U type drain ditch		
		200x200 cast in place	m	2,480
	3.4 Fence and gate	Fence	m	1,170
l	4. Mechanical Equipment and Pipings		T	-
	4.1 Coarse bar screen		L/S	1
	4.2 Bucket conveyer for grit screen		L/S	1
	4.3 Fine bar screen		L/S	1
	4.4 Influent pump		L/S	1
	4.5 RAFA GLS separator and machinery		L/S	1
	4.6 RAFA sludge draw-off pump	1	L/S	1
	4.7 Aerator and operation walkway		L/S	1
1.	4.8 Sludge collector for sludge thickener		L/S	1
	4.9 Sludge drying bed machinery		L/S	1
ľ	4.10 Gate and weir		L/S	1
	4.11 Laboratory equipment		L/S	1
	4.12 Pipes and valves		L/S	1
	5. Electricals and Instruments			
	5.1 Receiving board		L/S	1
·	5.2 Motor control center		L/S	1
	5.3 Supervision board		L/S	1
	5.4 Instruments		L/S	1
	5.5 Cable and wiring works		L/S	1

Work Items	Descriptions	Unit_	Quantities
1. Civil Structures			
1.1 Grit chamber	1) Excavation	m³	1,820
Influent well	2) Backfill	m ³	410
	3) Disposal of surplus soil	m ³	1,410
	4) Invert concrete	m³	40
	5) Reinforced concrete(B200)	m ³	390
	6) H steel pile(10"x4"5/8")	m	56
	Breast boad(2"x10")	m ²	41
,	7) Well piont installation	unit	
	Rental period	month	
1.2 RAFA reactor	1) Reinforced concrete(B200)	m ³	4,00
1.3 Aerated lagoon	1) Excavation	m³	29,00
U	2) Embankment	m³	6,30
	3) Disposal of surplus soil	m ³	22,70
	4) Mortar	m ³	42
1.4 Polishing pond	1) Excavation	m³	45,00
01	2) Embankment	m ³	8,10
· · ·	3) Disposal of surplus soil	m ³	36,90
	4) Mortar	m ³	55
1.5 Disinfection tank	1) Excavation	m ³	31
	2) Backfill	m ³	19
and the second	3) Disposal of surplus soil	m ³	12
	4) Reinforced concrete(B200)	m ³	15
1.6 Sludge thickener	1) Excavation	m ³	35
	2) Backfill	m ³	16
	3) Disposal of surplus soil	m ³	19
	4) Reinforced concrete(B200)	m ³	15
1.7 Sludge drying bed	1) Excavation	m ³	8,80
	2) Disposal of surplus soil	m ³	8,80
· ·	3) Reinforced concrete(B200)	m ³	3,30
1.8 Treated sewage	1) Pipe D1200	m	2,30
discharge pipe			
1.9 Treated sewage	1) Reinforced concrete(B200)	m ³	
outfull	2) RC pileD250	m 3	1
· · · ·	3) Sandbag	m ³	9
	4) Water mat	m ³	· · 7

Work Items	Descriptions	Unit	Quantities
2. Buildings			
2.1 Influent pump room	RC	m^2	250
2.2 Disinfection room	RC	m ²	200
2.3 Electrical room	Brick	m ²	200
2.4 Administration room	RC	m ²	750
3. Ground Leveling, etc			
3.1 Temporary access road	W=6m,	m²	6,000
3.2 New road	W=6m,	m ³	6,000
3.3 Ground leveling	1) Excavation	m ³	36,000
	2) Embankment	m³	135,000
3.4 Masonry retaining wall	1) Revetment	m^2	2,150
	2) Turf(Seed despersal)	m^2	525
3.5 Inside road		m^2	10,320
3.6 Inside drain ditch	U type drain ditch		
	200x200 cast in place	m	3,44 0
3.7 Fence and gate	Fence	m	1,550
4. Mechanical Equipment and Pipings			
4.1 Coarse bar screen		L/S	1
4.2 Bucket conveyer for grit screen		L/S	1
4.3 Fine bar screen		L/S	1
4.4 Influent pump		L/S	1
4.5 RAFA GLS separator and machinery		L/S	1
4.6 RAFA sludge draw-off pump		L/S	1
4.7 Aerator and operation walkway		L/S	1
4.8 Sludge collector for sludge thickener		L/S	1
4.9 Sludge drying bed machinery		L/S	1
4.10 Gate and weir		L/S	1
4.11 Laboratory equipment		L/S	1
4.12 Pipes and valves	· ·	L/S	1
5. Electricals and Instruments			
5.1 Receiving board		L/S	1
5.2 Motor control center		L/S	1
5.3 Supervision board		L/S	
5.4 Instruments		L/S	1
5.5 Cable and wiring works		L/S	1

Bill of Quantities of Janga STF (2/7)

Work Items	Descriptions	Unit	Quantities
1. Civil Structures			
1.1 Transfer well	1) Excavation	m ³	1,820
	2) Backfill	m³	410
	3) Disposal of surplus soil	m ³	1,410
	4) Invert concrete	m ³	40
	5) Reinforced concrete(B200)	m ³	390
	6) H steel pile(10"x4"5/8")	m	562
	Breast boad(2"x10")		410
1.2 RAFA reactor	1) Embankment	m ³	8,000
	2) Reinforced concrete(B200)	m ³	6,500
: .	3) PC pileD350	m	6 ,38 0
1.3 Bio-filter	1) Reinforced concrete(B200)	m ³	3,200
	2) PC pileD350	m	11,340
1.4 Recirculation tank	1) Excavation	m ³	200
· · · ·	2) Backfill	m ³	40
	3) Invert concrete	m ³	70
	4) Reinforced concrete(B200)	m ³	210
	5) PC pileD350	m	810
1.5 Sedimentation tank	1) Excavation	m ³	11,000
(Rectangular type)	2) Backfill	m ³	7,700
	3) Disposal of surplus soil	m ³	3,300
	4) Reinforced concrete(B200)	m ³	1,250
· · · · · · · · · · · · · · · · · · ·	5) PC pileD350	m	5,720
1.6 Disinfection tank	1) Excavation	m ³	400
	2) Backfill	m ³	230
	3) Disposal of surplus soil	m ³	170
	4) Reinforced concrete(B200)	m ³	70
е 	5) PC pileD350	m	250
1.7 Sludge thickener	1) Excavation		280
-	2) Backfill	m ³	140
	3) Disposal of surplus soil	m ³	140
	4) Reinforced concrete(B200)	m ³	121
	5) PC pileD350	m	560
1.8 Treated sewage	1) Pipe D1000	m	50
discharge pipe			50
1.9 Treated sewage	1) Reinforced concrete(B200)		5.6
outfall	2) RC pileD250	m	16
·	3) Sandbag	m ³	93
	4) Water mat	m ²	69

Bill of Quantities of Cabanga STF (3/7)

Work Items	Descriptions	Unit	Quantities
2. Buildings		<u> </u>	
2.1 Transfer purap room	Brick	m ^z	70
2.2 Recirculation pump room	RC	m²	300
2.3 Disinfection room	RC	m²	200
2.4 Electrical room	Brick	m ²	200
2.5 Administration room	RC	m ²	1,800
	PC pileD350	m	, i
3. Ground Leveling, etc		*	
3.1 Demolishing	Concrete	m ³	1,160
3.2 Ground leveling	1) Excavation	m ³	3,200
	2) Embankment	m ³	5,300
3.3 Inside road		m ²	4,920
3.4 Inside drain ditch	U type drain ditch		
	200x200 cast in place	m	1,640
3.5 Fence and gate	Fence	m	860
4. Mechanical Equipment and Pipings			
4.1 Transfer pump		L/S	1
4.2 RAFA GLS separator and machinery		L/S	1
4.3 RAFA sludge draw-off pump		L/S	1
4.4 Bio-filter machinery		L/S	1
4.5 Recirculation pump		L/S	1
4.6 Chain conveyer for sedimentation tank		L/S	1
4.7 S/T sludge draw-off pump		L/S	1
4.8 Sludge collector for sludge thickener		L/S	1
4.9 Thickened sludge pump		L/S	1
4.10 Sludge dehydrator		L/S	1
4.11 Polymer coagulant dosing unit		L/S	1
4.12 Gate and weir		L/S	1
4.13 Laboratory equipment		LS	1
4.14 Pipes and valves		LS	1
5. Electricals and Instruments			
5.1 Receiving board		L/S	1
5.2 Motor control center		L/S	1
5.3 Supervision board		L/S	1
5.4 Instruments		L/S	1
5.5 Cable and wiring works		L/S	1

D-25

Work Items	Descriptions	Unit	Quantities
1. Civil Structures			
1.1 Grit chamber	1) Excavation	m³	2,47(
Influent well	2) Backfill	m³	550
	3) Disposal of surplus soil	m³	1,920
	4) Invert concrete	m³	4(
	5) Reinforced concrete(B200)	m ³	46
	6) H steel pile(10"x4"5/8")	m	68
· · · · ·	Breast boad(2"x10")	m ²	56
1.2 RAFA reactor	1) Reinforced concrete(B200)	m ³	3,90
1.3 Aerated lagoon	1) Excavation	m ³	28,00
1.5 Ablated ingoon	2) Embankment	m ³	5,50
	3) Disposal of surplus soil	m³	22,50
an a	4) Mortar	m ³	37
1.4 Polishing pond	1) Excavation	m ³	41,00
1.4 Polisning polid	2) Embankment	m ³	7,00
	3) Disposal of surplus soil	m ³	34,00
	4) Mortar	m³	48
1.5 Disinfection tank	1) Excavation	m ³	28
1.5 Disinfection tank	2) Backfill	m ³	19
	3) Disposal of surplus soil	m ³	9
	4) Reinforced concrete(B200)	m ³	5
	1) Excavation	m ³	13
1.6 Sludge thickener	2) Backfill	m ³	
	3) Disposal of surplus soil	m ³	
	4) Reinforced concrete(B200)	m ³	(
	1) Pipe D800		4
1.7 Treated sewage	I) The Door		
discharge pipe 1.8 Treated sewage	1) Reinforced concrete(B200)	m ³	1
1.8 Treated sewage outfall	2) RC pileD250	m	1
outan	3) sandbag	m ³	9
	4) Water mat	m ²	(

Bill of Quantities of Boa Viagem STF (4/7)

Work Items	Descriptions	Unit	Quantities
2. Buildings			
2.1 Influent pump room	RC	m ²	250
2.2 Disinfection room	RC	m ²	150
2.3 Electrical room	Brick	m ²	150
2.4 Administration room	RC	m ²	1,400
3. Ground Leveling, etc			
3.1 Ground leveling	1) Excavation	m ³	3,500
	2) Embankment	m	26,000
3.2 Inside road		m ²	8,880
3.3 Inside drain ditch	U type drain ditch		
	200x200 cast in place	m	2,960
3.4 Fence and gate	Fence	m	1,260
4. Mechanical Equipment and Pipings			
4.1 Coarse bar screen		L/S	1
4.2 Bucket conveyer for grit screen		L/S	1
4.3 Fine bar screen		L/S	1
4.4 Influent pump		L/S	1
4.5 RAFA GLS separator and machinery		L/S	1
4.6 RAFA sludge draw-off pump		L/S	t 1
4.7 Aerator and operation walkway		L/S	1
4.8 Sludge collector for sludge thickener		L/S	
4.9 Thickened sludge pump		L/S	
4.10 Sludge dehydrator		L/S	
4.11 Polymer coagulant dosing unit		L/S	
4.12 Gate and weir		L/S	1 :
4.13 Laboratory equipment		L/S	
4.14 Pipes and valves		L/S	
5. Electricals and Instruments			
5.1 Receiving board		L/S	
5.2 Motor control center		L/S	
5.3 Supervision board		L/S	
5.4 Instruments			
5.5 Cable and wiring works		L/S	

D-26

Work Items	Descriptions	Unit	Quantities
1. Civil Structures			
1.1 Grit chamber	1) Excavation	m	1,760
Influent well	2) Backfill	m³	· 470
	3) Disposal of surplus soil	m ³	1,290
	4) Invert concrete	m ³	30
	5) Reinforced concrete(B200)	m ³	35
	6) H steel pile(10"x4"5/8")	m	59
	Breast boad(2"x10")	m ²	48
1.2 RAFA reactor	1) Reinforced concrete(B200)	m³	2,50
	2) PC pileD350	m	6,93
1.3 Bio-filter	1) Embankment	m ³	1,60
	2) Reinforced concrete(B200)	m ³	68
	3) PC pileD350	m	4,21
1 4 Recirculation tank	1) Excavation	m	. 85
	2) Backfill	m ³	37
	3) Disposal of surplus soil	m³	48
	4) Invert concrete	m ³	7
	5) Reinforced concrete(B200)	m ³	21
	6) PC pileD350	m	66
1.5 Sedimentation tank	1) Excavation	m³	5,00
(Circular type)	2) Backfill	m ³	1,90
(Cheular type)	3) Disposal of surplus soil	m ³	3,10
	4) Reinforced concrete(B200)	m ³	60
•	5) PC pileD350	m	2,28
1.6 Disinfection tank	1) Excavation	m ³	24
1.0 Distincection tank	2) Backfill	m ³	17
	3) Disposal of surplus soil	m^3	1
	4) Reinforced concrete(B200)	m ³	
	5) PC pileD350	m	37
1.7 Sludge thickener	1) Excavation	m ³	14
1.7 Shuge unexents	2) Backfill	m ³	
	3) Disposal of surplus soil	m ³	
	4) Reinforced concrete(B200)	m ³	· · ·
	5) PC pileD350	m	20
1.8 Treated sewage	1) Pipe D800	m	
discharge pipe	1) . 120 2000		1
1.9 Treated sewage	1) Reinforced concrete(B200)	m ³	4
outfall	2) RC pileD250	m	
outtan	3) Sandbag	m ³	

Work Items	Descriptions	Unit	Quantities
2. Buldings			
2.1 Influent pump	RC	m²	171
2.2 Recirculation pump room	RC	m ²	200
2.3 Disinfection room	RC	m²	150
2.4 Administration room	RC	m ²	1,400
	PC pileD350	m	
3. Ground Leveling, etc			
3.1 Ground leveling	1) Demolishon of soil	m³	12,000
	2) Sandfill(Replacement)	m ³	7,600
3.2 Inside road	, , , ,	m ²	5,640
3.3 Inside drain ditch	U type drain ditch		
	200x200 cast in place	m	1,880
3.4 Fence and gate	Fence	m	860
4. Mechanical Equipment and Pipings			
4.1 Coarse screen		L/S	1
4.2 bucket conveyer for grit screen		L/S	1
4.3 Fine screen		L/S	1
4.4 Influent pump		L/S	1
4.5 RAFA GLS separator and machinery		L/S	1
4.6 RAFA sludge draw-off pump		L/S	1
4.7 Bio-filter machinery		L/S	1
4.8 Recirculation pump		L/S	1
4.9 Sludge collector for sedimentation tank		L/S	1
4.10 S/T sludge draw-off pump		L/S	1
4.11 Sludge collector for sludge thickener		L/S	1
4.12 Thickened sludge pump		L/S	1
4.13 Sludge dehydrator		L/S	1
4.14 Polymer coagulant dosing unit		L/S	1
4.15 Gate and weir		L/S	1
4.16 Laboratory equipment		L/S	1
4.17 Pipes and valves	<u> </u>	L/S	1
5. Electricals and Instruments			
5.1 Receiving board		L/S	1
5.2 Motor control center		L/S	1
5.3 Supervision board		L/S	1
5.4 Instruments		L/S	1
5.5 Cable and wiring works		L/S	1

Bill of Quantities of Cordeiro STF (5/7)

Work Items	Descriptions	Unit	Quantities
L Civil Structures			
.1 Grit chamber	1) Excavation	m³	2,47
Influent well	2) Backfill	m ³	55
	3) Disposal of surplus soil	m ³	1,92
	4) Invert concrete	m ³	4
	5) Reinforced concrete(B200)	m ³	. 46
	6) H steel pile(10"x4"5/8")	m	68
	Breast boad(2"x10")	m ²	56
1.2 RAFA reactor	1) Reinforced concrete(B200)	m ³	4,60
.3 Aerated lagoon	1) Excavation	m ³	33,00
	2) Embankment	m ³	6,90
	3) Disposal of surplus soil	m ³	26,10
	4) Mortar	m ³	46
L4 Polishing pond	1) Excavation	m ³	52,00
Let I olisining poind	2) Embankment	m ³	9,70
	3) Disposal of surplus soil	m ³	42,30
н. Н. П.	4) Mortar	m ³	65
1.5 Disinfection tank	1) Excavation	m ³	31
1.5 Distillection tank	2) Backfill	m ³	19
	3) Disposal of surplus soil	m ³	12
	4) Reinforced concrete(B200)	m ³	
1.6 Sludge thickener	1) Excavation	m ³	1'
1.0 Shudge unekener	2) Backfill	m ³	9
	3) Disposal of surplus soil	m ³	
	4) Reinforced concrete(B200)	m ³	2 - E
1.7 Studeo devine had	1) Excavation	m ³	3,80
1.7 Sludge drying bed	2) Disposal of surplus soil	m ³	3,8
	4) Reinforced concrete(B200)	m ³	1,4
1.8 Treated sewage	1) Pipe D1200, pipe jacking	m	
discharge pipe	Pipe D1200	m	2,4
1.9 Treated sewage	1) Reinforced concrete(B200)	m³	6
outfull	2) PC pileD250	m	
	3) Sandbag	m ³	
	4) water mat	m ²	

Quantities Descriptions Unit Work Items 2. Buildings RC m^2 250 2.1 Influent pump room m^2 RC 200 2.2 Disinfection room m² 200 Brick 2.3 Electrical room m² RC 1.350 2.4 Administration room 3. Ground Leveling, etc m² 2,400 W=6m. 3.1 Temporary access road m³ 2,400 W=6m, 3.2 New road m³ 15,000 1) Excavation 3.3 Ground leveling m³ 11,100 2) Embankment m² 10,680 3.4 Inside Road U type drain ditch 3.5 Inside drain ditch 200x200 cast in place 3,560 m 1,360 m Fence 3.6 Fence and gate 4. Mechanical Equipment and Pipings L/S 4.1 Coarse bar screen L/S 4.2 Bucket conveyer for grit screen L/S 4.3 Fine bar screen L/S 4.4 Influent pump L/S 4.5 RAFA GLS separator and machinery L/S 4.6 RAFA sludge draw-off pump L/S 4.7 Aerator and operation walkway L/S 4.8 Sludge collector for sludge thickener L/S 4.9 Sludge drying bed machinery

1

1

1

1

1

1

1

1

1

L/S

L/S

L/S

LS

L/S

L/S

L/S

L/S

Bill of Quantities of Prazeres STF (6/7)

4.10 Gate and weir

4.12 Pipes and valves 5. Electricals and Instruments

5.1 Receiving board

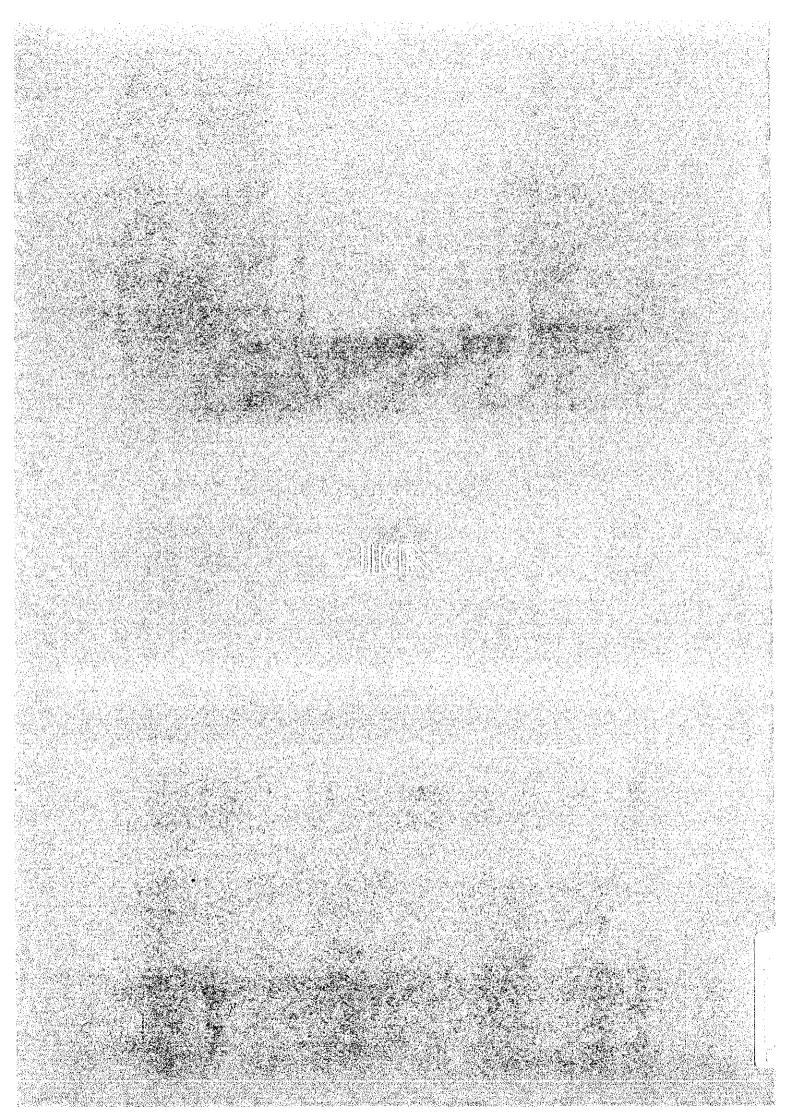
5.2 Motor control center

5.5 Cable and wiring works

5.3 Supervision board

5.4 Instruments

4.11 Laboratory equipment


D-28

Descriptions	Unit	Quantities
1) Excavation	m ³	1,910
2) Backfill	m ³	500
3) Disposal of surplus soil	m ³	1,410
4) Invert concrete	m ³	30
5) Reinforced concrete(B200)	m ³	370
6) H steel pile(10"x4"5/8")	m	637
Breast boad(2"x10")		51(
1) Reinforced concrete(B200)	m	3,500
2) PC pileD350	m	4,060
1) Excavation		26,000
2) Embankment		4,500
3) Disposal of surplus soil		21,500
4) Mortar	m ³	300
1) Excavation	m ³	38,000
2) Embankment	m ³	5,800
3) Disposal of surplus soil	m ³	32,200
4) Mortar	m ³	400
1) Excavation	m ³	280
2) Backfill	m ³	190
3) Disposal of surplus soil	m ³	90
4) Reinforced concrete(B200)	m ³	50
5) PC pileD350	m	168
1) Excavation	m ³	140
2) Backfill		90
3) Disposal of surplus soil	m ³	50
4) Reinforced concrete(B200)	m ³	63
	m	112
1) Excavation	ໍ່ຫຼັ	2,200
	m	2,200
		830
1) Pipe D900	m	900
1) D. 1. (3	
		5.2 16
		92
,		69
	1) Excavation 2) Backfill 3) Disposal of surplus soil 4) Invert concrete 5) Reinforced concrete(B200) 6) H steel pile(10"x4"5/8") Breast boad(2"x10") 1) Reinforced concrete(B200) 2) PC pileD350 1) Excavation 2) Embankment 3) Disposal of surplus soil 4) Mortar 1) Excavation 2) Embankment 3) Disposal of surplus soil 4) Mortar 1) Excavation 2) Embankment 3) Disposal of surplus soil 4) Mortar 1) Excavation 2) Backfill 3) Disposal of surplus soil 4) Reinforced concrete(B200) 5) PC pileD350 1) Excavation 2) Backfill 3) Disposal of surplus soil 4) Reinforced concrete(B200) 5) PC pileD350 1) Excavation 2) Backfill 3) Disposal of surplus soil 4) Reinforced concrete(B200) 5) PC pileD350	1) Excavation m^3 2) Backfill m^3 3) Disposal of surplus soil m^3 4) Invert concrete m^3 5) Reinforced concrete(B200) m^3 6) H steel pile(10"x4"5/8")mBreast boad(2"x10") m^2 1) Reinforced concrete(B200) m^3 2) PC pileD350m1) Rexcavation m^3 2) Embankment m^3 3) Disposal of surplus soil m^3 4) Mortar m^3 1) Excavation m^3 2) Embankment m^3 3) Disposal of surplus soil m^3 4) Mortar m^3 1) Excavation m^3 2) Backfill m^3 3) Disposal of surplus soil m^3 4) Mortar m^3 3) Disposal of surplus soil m^3 4) Reinforced concrete(B200) m^3 5) PC pileD350m1) Excavation m^3 2) Backfill m^3 3) Disposal of surplus soil m^3 4) Reinforced concrete(B200) m^3 5) PC pileD350m1) Excavation m^3 2) Disposal of surplus soil m^3 4) Reinforced concrete(B200) m^3 1) Pipe D900m1) Reinforced concrete(B200) m^3 1) Pipe D900m

Bill of Quantities of Curcurana STF (7/7)

Work Items	Descriptions	Unit	Quantities	
2. Buildings				
2.1 Influent pump room	RC	m ²	189	
2.2 Disinfection room	RC	m ²	150	
2.3 Electrical room	Brick	m ²	150	
2.4 Administration room	RC	m ²	1,225	
3. Ground Leveling, etc				
3.1 Temporary access road	W=6m,	m ²	5,400	
3.2 New road	W=6m,	m ³	5,400	
3.3 Ground leveling	1) Excavation	m³	161,000	
3.4 Inside Road		m	7,740	
3.5 Inside drain ditch	U type drain ditch			
	200x200 cast in place	m	2,480	
3.6 Fence and gate	Fence	m	1,280	
4. Mechanical Equipment and Pipings				
4.1 Coarse bar screen		L/S	1	
4.2 Bucket conveyer for grit screen		L/S	1	
4.3 Fine bar screen		L/S	1	
4.4 Influent pump		L/S	1	
4.5 RAFA GLS separator and machinery		L/S	1	
4.6 RAFA sludge draw-off pump		L/S	1	
4.7 Aerator and operation walkway		L/S	1	
4.8 Sludge collector for sludge thickener		L/S	1	
4.9 Sludge drying bed machinery		L/S	1	
4.10 Gate and weir		L/S	1	
4.11 Laboratory equipment		L/S	1	
4.12 Pipes and valves		L/S	1	
5. Electricals and Instruments				
5.1 Receiving board		L/S	1	
5.2 Motor control center		L/S	1	
5.3 Supervision board		L/S	1	
5.4 Instruments		L/S	1	
5.5 Cable and wiring works		L/S	1	

D-29

