
WWWWALLANDSWEER

CHERNINA I DE MARCE AND CEMERAGE MARACEMENTEM DE ECHEMETERE EN ENCLANTEM NELEMENTERE EN ENCLANTEM ANTAL NELEMETER METERE EN ENCLASSION

J1164054[7]

A CONTRACTIVE STORE STORES AND A STORES AN

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

BRAZILIAN COOPERATION AGENCY (ABC), STATE SECRETARIAT OF PLANNING AND SOCIAL DEVELOPMENT, STATE OF PERNAMBUCO (SEPLANDES) FEDERATIVE REPUBLIC OF BRAZIL

THE STUDY ON STORMWATER DRAINAGE AND SEWERAGE MANAGEMENT PLAN FOR RECIFE METROPOLITAN AREA IN THE FEDERATIVE REPUBLIC OF BRAZIL

FINAL REPORT DATA BOOK

JANUARY 2001

PACIFIC CONSULTANTS INTERNATIONAL, TOKYO

The cost estimate was made based on prevailing market price in July 2000 and expressed in US\$ according to the following exchange rate.

US\$1.00 = R\$ 1.80 = Yen 110.00 (As of June 2000)

LIST OF DATA BOOK

DATA BOOK A : WATER QUALITY AND SEDIMENT QUALITY SURVEY
DATA BOOK B : SOIL INVESTIGATIONS
DATA BOOK C : DRAWINGS
DATA BOOK D : PROCESS CALCULATION SHEET AND B/Q OF STFs

DATA BOOK A WATER QUALITY AND SEDIMENT QUALITY SURVEY

DATA BOOK OF WATER QUALITY AND SEDIMENT QUALITY SURVEY

- 1. OBJECTIVE
- 2. MATERIAL TESTED
- 3. ANALYTICAL PROCEDURE
- 4. **RESULTS OBTAINED**

1. <u>OBJECTIVE</u>

The objective of this technical report is to recount results of analisis of samples of water, effuentes and sendiments to verify the quality.

2. MATERIAL TESTED

74 samples of water and effluents and 24 samples of sediments were collected in several points and places in the Metropolitan area of Recife in the Federative Republic of Brazil.

3 ANALYTICAL PROCEDURE

The analytical procedure based on the 20th Edition of Standard Methods for the Examination of Water and Wastewater - APHA-AWWA-WEF.

4. **RESULTS OBTAINED**

4.1 Material tested: Water A-001

Sampling Location: Capibaribe river under Princesa Isabel bridge low tide.

Date of Sampling: December 22, 1999 - Time: 9:00h

Environmental Conditions: Sample Temp: 28.6°C - Air Temp: 30°C

Parameter	Unit	Results
рН		7.70
BOD	mg/L	888
COD	mg/L	1280
S.S (Suspended Sediment)	mg/L	298
DO	mg/L	5.38
E.Coli	NMP/100ml	Present
Total Nitrogen	mg/L	4.0
Total Phosphorous	mg/L	1.4
N.Hexane Extract (Oil & Grease)	mg/L	40.0
Chlorine	mg/L	311.0

4.2 Material tested: Water A-003

Sampling Location: Capibaribe river under the bridge on Av. Caxangá.

Date of Sampling: December 22, 1999 - Time: 10:15h

Environmental Conditions: Sample Temp: 31°C - Air Temp: 32°C

Parameter	Unit	Results
рН		7.73

BOD	mg/L	480
COD	mg/L	626
S.S (Suspended Sediment)	mg/L	70
DO	mg/L	7.20
E.Coli	NMP/100ml	Present
Total Nitrogen	mg/L	2.0
Total Phosphorous	mg/L	1.4
N.Hexane Extract (Oil & Grease)	mg/L	72.0
Chlorine	mg/L	20.0

43 Material tested: Water A-005

Sampling Location: Capibaribe river under the bridge uptream firm the Tiúma Plant Date Of Sampling: December 22, 1999 - Time: 11: 25h

Environmental Conditions: Sample Temp: 27.3°C - Air Temp: 30°C

Parameter	Unit	Results
pH		6.67
BOD	mg/L	23
COD	mg/L	80
S.S (Suspended Sediment)	mg/L	20 - 121
DO	mg/L	0
E.Coli	NMP/100ml	Present
Total Nitrogen	mg/L	2.0
Total Phosphorous	mg/L	0.25
N.Hexane Extract (Oil & Grease)	mg/L	38
Chlorine	mg/L	86.7

4.4 Material tested: Water A-007

Sampling Location: Capibaribe river under Princesa Isabel bridge high tide.

Date of Sampling: December 22, 1999 - Time: 14:40h

Environmental Conditions: Sample Temp: 29.2°C - Air Temp: 30°C

Parameter	Unit	Results
pH		8.23
BOD	mg/L	450
COD	mg/L	510
S.S (Suspended Sediment)	mg/L	324
DO	mg/L	6.14
E.Coli	NMP/100ml	Present
Total Nitrogen	mg/L	1.8

Total Phosphorous	mg/L	0.55
N.Hexane Extract (Oil & Grease)	mg/L	14
Chlorine	mg/L	392.6

4.5 Material tested: Water A-036

Sampling Location : Water from the Ipojuca river collected at the river's estuary at low tide.

Date of Sampling: January 4, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 31.4°C - Air Temp: 28°C

Parameter	Unit	Results
pH		6.58
BOD	mg/L	34
COD	mg/L	86
S.S (Suspended Sediment)	mg/L	55.0
DO	mg/L	0
E.Coli	NCMF/mL	1.6×10^5
Total Nitrogen	mg/L	38
Total Phosphorous	mg/L	0.92
N.Hexane Extract (Oil & Grease)	mg/L	8.0
Chlorine	mg/L	15.4

4.6 Material tested: Water A-038

Sampling Location : Water from the Ipojuca river collected downstream at the RMK pollution area.

Date of Sampling: January 4, 2000 - Time: 12:00h

Environmental Conditions: Sample Temp: 30.2°C - Air Temp: 29°C

Parameter	Unit	Results
pH		6.93
BOD	mg/L	0.4
COD	mg/L	12
S.S (Suspended Sediment)	mg/L	61
po	mg/L	3.24
E.Coli	NCMF/mL	5.0x10 ⁴
Total Nitrogen	mg/L	64.0
Total Phosphorous	mg/L	0.8
N.Hexane Extract (Oil & Grease)	mg/L	60

Chlorine	mg/L	11.97
----------	------	-------

4.7 Material tested: Water A-040

Sampling Location : Water from the Ipojuca river collected at the river's estuary at higt tide.

Date of Sampling: January 4, 2000 - Time: 15:40h

Environmental Conditions: Sample Temp: 40.2°C - Air Temp: 30°C

Parameter	Unit	Results
рН		6.38
BOD	mg/L	41
COD	mg/L	44
S.S (Suspended Sediment)	mg/L	4.0
DO	mg/L	0.95
E.Coli	NCMF/mL	2.2×10^4
Total Nitrogen	mg/L	1
Total Phosphorous	mg/L	0.65
N.Hexane Extract (Oil & Grease)	mg/L	7.6
Chlorine	mg/L	26.0

4.8 Material tested: Water A-043

Sampling Location : Water from the Jaboatão river collected at the river's estuary at low tide.

Date of Sampling: January 6, 2000 - Time: 10:10h

Environmental Conditions: Sample Temp: 29.5°C - Air Temp: 32°C

Parameter	Unit	Results
pН		7.95
BOD	mg/L	11
COD	mg/L	91
S.S (Suspended Sediment)	mg/L	68.0
DO	mg/L	1.2
E.Coli	NCMF/mL	0.5 x 10
Total Nitrogen	mg/L	150.0
Total Phosphorous	mg/L	0.60
N.Hexane Extract (Oil & Grease)	mg/L	Not detected
Chlorine	mg/L	2.325

4.9 Material tested: Water A-044

Sampling Location : Water from the Jaboatão river collected downstream at the pollution area.

Date of Sampling: January 6, 2000 - Time: 13:15h

Environmental Conditions: Sample Temp: 28.8°C - Air Temp: 32°C

Parameter	Unit	Results
pH		7.67
BOD	mg/L	100
COD	mg/L	123
S.S (Suspended Sediment)	mg/L	62.0
DO	mg/L	1.0
E.Coli	NCMF/mL	0.6 x 10
Total Nitrogen	mg/L	13.0
Total Phosphorous	mg/L	1.18
N.Hexane Extract (Oil & Grease)	mg/L	Not Detected
Chlorine	mg/L	34.2

4.10 Material tested: Water A-046

Sampling Location : Water from the Beberibe river collected at the river's estuary at low tide (0,1m)

Date of Sampling: January 5, 2000 - Time: 9:30h

Environmental Conditions: Sample Temp: 27.9°C - Air Temp: 28.5°C

Parameter	Unit	Results
pH		7.04
BOD	mg/L	42
COD	mg/L	138
S.S (Suspended Sediment)	mg/L	38
DO	mg/L	0
E.Coli	NCMF/mL	1.6 x 10 ⁶
Total Nitrogen	mg/L	12
Total Phosphorous	mg/L	2.65
N.Hexane Extract (Oil & Grease)	mg/L	13.8
Chlorine	mg/L	825

4.11 Material tested: Water A-048

Sampling Location : Water from the Beberibe river collected downstream

Date of Sampling: January 5, 2000 - Time: 10:30h

Parameter	Unit	Results
pН		7.04
BOD	mg/L	77
COD	mg/L	85
S.S (Suspended Sediment)	mg/L	242
DO	mg/L	1.3
E.Coli	NCMF/mL	9.0 x 10 ⁵
Total Nitrogen	mg/L	12
Total Phosphorous	mg/L	2.2
N.Hexane Extract (Oil & Grease)	mg/L	4.2
Chlorine	mg/L	100.0

Environmental Conditions: Sample Temp: 26.9°C - Air Temp: 32°C

4.12 Material tested: Water A-050

Sampling Location : Water from the Beberibe river collected upstream

Date of Sampling: January 5, 2000 - Time: 12:45h

Environmental Conditions: Sample Temp: 26.4°C - Air Temp: 27°C

Parameter	Unit	Results
pH		5.80
BOD	mg/L	22
COD	mg/L	27
S.S (Suspended Sediment)	mg/L	6.0
DO	mg/L	7.0
E.Coli	NCMF/mL	2.4×10^2
Total Nitrogen	mg/L	2.0
Total Phosphorous	mg/L	0.5
N.Hexane Extract (Oil & Grease)	mg/L	15.8
Chlorine	mg/L	21.0

4.13 Material tested: Water A-052

Sampling Location : Water from the Beberibe river collected at the river's estuary at high tide (2,5m).

Date of Sampling: January 5, 2000 - Time: 15:50h

Environmental Conditions: Sample Temp: 27°C - Air Temp: 24°C

Parameter	Unit	Results
рН		7.87
BOD	mg/L	23
COD	mg/L	150
S.S (Suspended Sediment)	mg/L	66
DO	mg/L	6.7
E.Coli	NMP/100ml	Present
Total Nitrogen	mg/L	0.5
Total Phosphorous	mg/L	0.88
N.Hexane Extract (Oil & Grease)	mg/L	4.0
Chlorine	mg/L	11966.7

4.14 Material tested: Water A-068

Sampling Location : Water from the Jaboatão river collected upstream at the pollution area.

Date of Sampling: January 6, 2000 - Time: 12:10h

Environmental Conditions: Sample Temp: 28.8°C - Air Temp: 32.1°C

Parameter	Unit	Results
pH	1	7.39
BOD	mg/L	6.0
COD	mg/L	18.0
S.S (Suspended Sediment)	mg/L	48.0
DO	mg/L	6.3
E.Coli	NCMF/mL	1.2x10
Total Nitrogen	mg/L	9.0
Total Phosphorous	mg/L	1.08
N.Hexane Extract (Oil & Grease)	mg/L	not detected
Chlorine	mg/L	10.3

4.15 Material tested: Water A-070

Sampling Location : Water from the Jaboatão river collected at the river`s estuary at high tide..

Date of Sampling: January 6, 2000 - Time: 16:40h

Environmental Conditions: Sample Temp: 31.1°C - Air Temp: 30.3°C

	Parameter	Unit	Results
pH			7.40
BOD		mg/L	124
COD		mg/L	495

S.S (Suspended Sediment)	mg/L	2.0
DO	mg/L	0.82
E.Coli	NCMF/mL	1.7×10^2
Total Nitrogen	mg/L	31.3
Total Phosphorous	mg/L	0.76
N.Hexane Extract (Oil & Grease)	mg/L	8.0
Chlorine	mg/L	3.850

4.16 Material tested: Water A-081

Sampling Location : Water from the Ipojuca river collected upstream at the RMK pollution area, motorway BR 101 South.

Date of Sampling: January 12, 2000 - Time: 10:50h

Environmental Conditions: Sample Temp: 29.1°C - Air Temp: 32.8°C

Parameter	Unit	Results
pH		6.58
BOD	mg/L	26
COD	mg/L	53
S.S (Suspended Sediment)	mg/L	10.0
DO	mg/L	5.8
E.Coli	NCMF/mL	3.9x10 ⁶
Total Nitrogen	mg/L	1.3
Total Phosphorous	mg/L	0.17
N.Hexane Extract (Oil & Grease)	mg/L	147.0
Chlorine	mg/L	15.0

4.17 Material tested: Effluent E-008

Sampling Location : Alesoquímica and Petroflex plant's effluent collected at treatment system's outlet.

Date of Sampling: December 22, 1999 - Time: 11:00h

Environmental Conditions: Sample Temp: 28.7°C - Air Temp: 32.5°C

Parameter	Unit	Results
pH		8.0
BOD	mg/L	4
COD	mg/L	38
S.S (Suspended Sediment)	mg/L	24
DO	mg/L	5.10
E.Coli	NMP/100mL	Present

Total Nitrogen	mg/L	1.0
Total Phosphorous	mg/L	0.56
N.Hexanc Extract (Oil & Grease)	mg/L	33.0
Chlorine	mg/L	25.5

4.18 Material tested: Effluent E-009

Sampling Location : Residential effluent collected at Compesa's very close Coelhos street in front of Hospital Pedro II; "class C".

Date of Sampling: December 27, 1999 - Time: 12:03h

Environmental Conditions: Sample Temp: 31.0°C - Air Temp: 32.0°C

Parameter	Unit	Results
pH		7.9
BOD	mg/L	256
COD	mg/L	797
S.S (Suspended Sediment)	mg/L	156
DO	mg/L	0
E.Coli	NCMF/mL	1.4×10^{2}
Total Nitrogen	mg/L	50.0
Total Phosphorous	mg/L	16.0
N.Hexane Extract (Oil & Grease)	mg/L	40
Chlorine	mg/L	918.5

4.19 Material tested: Effluent E-010

Sampling Location : Residential effluent collected at Compesa's very close crossing of

José Alencar street with Esperanto street nr 269 - Boa Vista; "Class A".

Date of Sampling: December 28, 1999 - Time: 13:15h

Environmental Conditions: Sample Temp: 34.0°C - Air Temp: 32.0°C

Parameter	Unit	Results
рН		7.0
BOD	mg/L	265
COD	mg/L	1016
S.S (Suspended Sediment)	mg/L	350
DO	mg/L	0
E.Coli	NCMF/mL	0.9×10^{3}
Total Nitrogen	mg/L	50
Total Phosphorous	mg/L	27.8
N.Hexane Extract (Oil & Grease)	mg/L	94
Chlorine	mg/L	408.2

4.20 Material tested: Effluent E-011

Sampling Location : Residential effluent collected at Compesa's very close 01 Av. near

treatment system's - Vila Rica Jaboatão; "class B"

Date of Sampling: December 27, 1999 - Time: 16:30h

Environmental Conditions: Sample Temp: 29.0°C - Air Temp: 32.0°C

Parameter	Unit	Results
pH		6.90
BOD	mg/L	1058
COD	mg/L	2090
S.S (Suspended Sediment)	mg/L	686.6
DO	mg/L	0
E.Coli	NMP/100mL	Present
Total Nitrogen	mg/L	65.0
Total Phosphorous	mg/L	49.6
N.Hexane Extract (Oil & Grease)	mg/L	194
Chlorine	mg/L	116.2

4.21 Material tested: Effluent E-012

Sampling Location : Refrescos Guararapel plant effluent collected at treatment system's outlet.

Date of Sampling: December 27, 1999 - Time: 10:15h

Environmental Conditions: Sample Temp: 30.1°C - Air Temp: 30.0°C

Parameter	Unit	Results
pН		8.9
BOD	mg/L	16
COD	mg/L	104
S.S (Suspended Sediment)	mg/L	82
DO	mg/L	6.7
E.Coli	NCMF/mL	1.2×10^{2}
Total Nitrogen	mg/L	15
Total Phosphorous	mg/L	1.0
N.Hexane Extract (Oil & Grease)	mg/L	108.0
Chlorine	mg/L	60.3

4.22 Material tested: Effluent E-013

Sampling Location : Ondunorte II - Igarassu plant effluent collected at treatment system's outlet.

Date of Sampling: December 28, 1999 - Time: --

Environmental Conditions: Sample Temp: 36.6°C - Air Temp: 33.0°C

Parameter	Unit	Results
pH		5.6
BOD	mg/L	563
COD	mg/L	1480
S.S (Suspended Sediment)	mg/L	552.4
DO	mg/L	0
E.Coli	NCMF/mL	1.6×10^2
Total Nitrogen	mg/L	15
Total Phosphorous	mg/L	1.7
N.Hexanc Extract (Oil & Grease)	mg/L	96
Chlorine	mg/L	107.6

4.23 Material tested: Effluent E-014

Sampling Location : Cia Agro Industrial de Igarassu CA 11 plant Effluent collected at treatment system's outlet.

Date of Sampling: December 29, 1999 - Time: 14:25h

Environmental Conditions: Sample Temp: 34.4°C - Air Temp: 31.5°C

Parameter	Unit	Results
рН		6.8
BOD	mg/L	53
COD	mg/L	158
S.S (Suspended Sediment)	mg/L	36
DO	mg/L	7.3
E.Coli	NCMF/mL	3.9×10^2
Total Nitrogen	mg/L	2.1
Total Phosphorous	mg/L	0.4
N.Hexane Extract (Oil & Grease)	mg/L	56
Chlorine	mg/L	105

4.24 Material tested: Effluent E-015

Sampling Location : Residential Effluent collected at Compesa's very close Cardeal street in front of house nr 76 - Rio Doce - Olinda; "Class B"

Sampling: December 29, 1999 - Time: 11:30h

Parameter	Unit	Results
рН		6.8
BOD	mg/L	275
COD	mg/L	1188
S.S (Suspended Sediment)	mg/L	237.5
DO	mg/L	2.2
E.Coli	NCMF/mL	1.8×10^2
Total Nitrogen	mg/L	13.0
Total Phosphorous	mg/L	7.5
N.Hexane Extract (Oil & Grease)	mg/L	62
Chlorine	mg/L	68.9

Environmental Conditions: Sample Temp: 31.9°C - Air Temp: 29.0°C

4.25 Material tested: Effluent E-016

Sampling Location : Residential effluent collected at Compesa's very close crossing of Elesbão de Castro street with Maria Ramos street bairro Nova-Olinda "Class A". Date of Sampling: December 30, 1999 - Time: 12:15h

Environmental Conditions: Sample Temp: 30.6°C - Air Temp: 30.5°C

Parameter	Unit	Results
рН		6.8
BOD	mg/L	209
COD	mg/L	693
S.S (Suspended Sediment)	mg/L	125
DO	mg/L	0
E.Coli	NCMF/mL	1.2×10^2
Total Nitrogen	mg/L	37.9
Total Phosphorous	mg/L	7.56
N.Hexane Extract (Oil & Grease)	mg/L	40.0
Chlorine	mg/L	51.7

4.26 Material tested: Effluent E-017

Sampling Location : Residential effluent collected at Compensa's very close Golfinho

street in front of house nr 19 - Ouro Preto Olinda; "Class C".

Date of Sampling: December 29, 1999 - Time: 13:15h

Environmental Conditions: Sample Temp: 29.9°C - Air Temp: 29°C

Parameter	Unit	Results	

рН		6.94
BOD	mg/L	244
COD	mg/L	990
S.S (Suspended Sediment)	mg/L	190
DO	mg/L	2.0
E.Coli	NCMF/mL	1.0×10^{3}
Total Nitrogen	mg/L	23.2
Total Phosphorous	mg/L	7.76
N.Hexanc Extract (Oil & Grease)	mg/L	52.0
Chlorine	mg/L	99.0

4.27 Material tested: Effluent E-018

Sampling Location : Residential Effluent collected at Compesa's very close crossing of Triunfo street with Bom Consclho Arruda street; "class C".

Sampling: December 29, 1999 - Time: 15:15h

Environmental Conditions: Sample Temp: 30.0°C - Air Temp: 29.0°C

Parameter	Unit	Results
pН		6.7
BOD	mg/L	1025
COD	mg/L	1545
S.S (Suspended Sediment)	mg/L	446.7
DO	mg/L	0
E.Coli	NCMF/mL	1.6×10^7
Total Nitrogen	mg/L	40
Total Phosphorous	mg/L	8.8
N.Hexane Extract (Oil & Grease)	mg/L	352
Chlorine	mg/L	111.9

4.28 Material tested: Effluent E-019

Sampling Location : Brahma plant effluent collected at treatment system's outlet.

Date of Sampling: December 29, 1999 - Time: 11:10h

Environmental Conditions: Sample Temp: 30.0°C - Air Temp: 30.0°C

Parameter	Unit	Results
рН		8.2
BOD	mg/L	23
COD	mg/L	89
S.S (Suspended Sediment)	mg/L	0
DO	mg/L	5.6

E.Coli	NCMF/mL	1.6×10^2
Total Nitrogen	mg/L	35.8
Total Phosphorous	mg/L	4.2
N.Hexane Extract (Oil & Grease)	mg/L	42
Chlorinc	mg/L	51.7

4.29 Material tested: Effluent E-021

Sampling Location : Corn Product's plant effluent collected at treatment system's outlet.

Date of Sampling: December 29, 1999 - Time: 13:30h

Environmental Conditions: Sample Temp: 30.0°C - Air Temp: 31.0°C

Parameter	Unit	Results
pH		6.75
BOD	mg/L	1300
COD	mg/L	1820
S.S (Suspended Sediment)	mg/L	1080
DO	mg/L	0
E.Coli	NCMF/mL	2.0x10 ⁴
Total Nitrogen	mg/L	34
Total Phosphorous	mg/L	29.8
N.Hexane Extract (Oil & Grease)	mg/L	62
Chlorine	mg/L	17.2

4.30 Material tested: Effluent E-022

Sampling Location : Effluent from ETE-Peixinho collected at treatment system's inlet.

Sampling: December 28, 1999 - Time: 10:30h

Environmental Conditions: Sample Temp: 30.6°C - Air Temp: 27.5°C

Parameter	Unit	Results
pH		6.7
BOD	mg/L	229
COD	mg/L	922
S.S (Suspended Sediment)	mg/L	440
DO	mg/L	0
E.Coli	NCMF/mL	1.4×10^2
Total Nitrogen	mg/L	30.0
Total Phosphorous	mg/L	12.7
N.Hexane Extract (Oil & Grease)	mg/L	76.0
Chlorine	mg/L	77.5

4.31 Material tested: Effluent E-023

Sampling Location : Effluent from ETE-Peixinho collected at treatment system's outlet.

Date of Sampling: December 28, 1999 - Time: 11:00h

Environmental Conditions: Sample Temp: 31°C - Air Temp: 29°C

Parameter	Unit	Results
pH		7.1
BOD	mg/L	20
COD	mg/L	86
S.S (Suspended Sediment)	mg/L	38
DO	mg/L	2.03
E.Coli	NCMF/mL	1.1×10^{3}
Total Nitrogen	mg/L	16.0
Total Phosphorous	mg/L	15.5
N.Hexane Extract (Oil & Grease)	mg/L	114
Chlorine	mg/L	111.9

4.32 Material tested: Effluent E-025

Sampling Location : Effluent from ETE-Peixinho collected at treatment system's outlet.

Date of Sampling: December 29, 1999 - Time: 13:30h

Environmental Conditions: Sample Temp: 34.4°C - Air Temp: 31°C

Parameter	Unit	Results
pH	a sult	7.3
BOD	mg/L	32
COD	mg/L	87
S.S (Suspended Sediment)	mg/L	36
DO	mg/L	7.3
E.Coli	NCMF/mL	1.8x10 ²
Total Nitrogen	mg/L	16.0
Total Phosphorous	mg/L	14.0
N.Hexane Extract (Oil & Grease)	mg/L	146
Chlorine	mg/L	111.9

4.33 Material tested: Effluent E-026

Sampling Location : Effluent from ETE-Peixinho, collected at treatment system's inlet.

Date of Sampling: December 28, 1999 - Time: 14:00h

Environmental Conditions: Sample Temp: 30.8°C - Air Temp: 30°C

1.1	Parameter	Unit	Results

pH		6.6
BOD	mg/L	215
COD	mg/L	505
S.S (Suspended Sediment)	mg/L	176.6
DO	mg/L	0
E.Coli	NCMF/mL	$1.9 x 10^{2}$
Total Nitrogen	mg/L	25.0
Total Phosphorous	mg/L	11.0
N.Hexane Extract (Oil & Grease)	mg/L	114
Chlorine	mg/L	150.7

4.34 Material tested: Effluent E-028

Sampling Location : Effluent from ETE-Peixinho collected at treatment system's outlet.

Date of Sampling: December 28, 1999 - Time: 16:00h

Environmental Conditions: Sample Temp: 33.4°C - Air Temp: 30°C

Parameter	Unit	Results
рН		8.02
BOD	mg/L	538
COD	mg/L	1485
S.S (Suspended Sediment)	mg/L	22
DO	mg/L	1.5
E.Coli	NCMF/mL	1.6×10^2
Total Nitrogen	mg/L	30.0
Total Phosphorous	mg/L	13.0
N.Hexane Extract (Oil & Grease)	mg/L	56
Chlorine	mg/L	111.9

4.35 Material tested: Effluent E-029

Sampling Location : Residential effluent collected at ETE-Peixinho at treatment system's inlet.

Date of Sampling: December 29, 1999 - Time: 16:30h

Environmental Conditions: Sample Temp: 30.1°C - Air Temp: 28.5°C

Parameter	Unit	Results
pН		6.71
BOD	mg/L	309
COD	mg/L	1089
S.S (Suspended Sediment)	mg/L	125
DO	mg/L	0
E.Coli	NCMF/mL	1.8×10^2

Total Nitrogen	mg/L	1.6
Total Phosphorous	mg/L	12.5
N.Hexane Extract (Oil & Grease)	mg/L	88
Chlorine	mg/L	107.6

4.36 Material tested: Effluent E-031

Sampling Location : Ondunorte III - Moreno plant effluent collected at treatment system's outlet.

Date of Sampling: January 03, 2000 - Time: 11:45h

Environmental Conditions: Sample Temp: 32.9°C - Air Temp: 32.5°C

Parameter	Unit	Results
pH		7.28
BOD	mg/L	200
COD	mg/L	1215
S.S (Suspended Sediment)	mg/L	586.7
DO	mg/L	2.0
E.Coli	NCMF/mL	3.4×10^2
Total Nitrogen	mg/L	4.1
Total Phosphorous	mg/L	4.2
N.Hexane Extract (Oil & Grease)	mg/L	36
Chlorine	mg/L	46.2

4.37 Material tested: Effluent E-032

Sampling Location : Portela plant effluent collected at treatment system's outlet.

Date of Sampling: January 04, 2000 - Time: 13:15h

Environmental Conditions: Sample Temp: 34.2°C - Air Temp: 28.0°C

Parameter	Unit	Results
рН		7.47
BOD	mg/L	146
COD	mg/L	692
S.S (Suspended Sediment)	mg/L	190
DO	mg/L	0
E.Coli	NCMF/mL	$0.7 x 10^2$
Total Nitrogen	mg/L	8.2
Total Phosphorous	mg/L	11.1
N.Hexane Extract (Oil & Grease)	mg/L	44
Chlorine	mg/L	92.3

4.38 Material tested: Effluent E-033

Sampling Location : Sorvane plant effluent collected at treatment system's outlet.

Date of Sampling: January 04, 2000 - Time: --

Environmental Conditions: Sample Temp: 35.0°C - Air Temp: 29.0°C

Parameter	Unit	Results
pH		7.94
BOD	mg/L	118
COD	mg/L	1001
S.S (Suspended Sediment)	mg/L	190
DO	mg/L	2.6
E.Coli	NCMF/mL	$0.2 \mathbf{x} 10^2$
Total Nitrogen	mg/L	9.2
Total Phosphorous	mg/L	9.2
N.Hexane Extract (Oil & Grease)	mg/L	128
Chlorine	mg/L	25.6

4.39 Material tested: Effluent E-034

Sampling Location : Fibrasil plant effluent collected at treatment system's outlet.

Date of Sampling: January 04, 2000 - Time: 9:50h

Environmental Conditions: Sample Temp: 32.5°C - Air Temp: 28.5°C

Parameter	Unit	Results
pН		7.07
BOD	mg/L	37
COD	mg/L	840
S.S (Suspended Sediment)	mg/L	10
DO	mg/L	7.4
E.Coli	NCMF/mL	4.0×10^{3}
Total Nitrogen	mg/L	22
Total Phosphorous	mg/L	35.5
N.Hexane Extract (Oil & Grease)	mg/L	156
Chlorine	mg/L	444.5

4.40 Material tested: Effluent E-035

Sampling Location : Norton Lixa's plant effluent collected at treatment system's outlet.

Date of Sampling: January 04, 2000 - Time: 12:20h

Environmental Conditions: Sample Temp: 30.5°C - Air Temp: --

Parameter	Unit	Results

рН		8.52
BOD	mg/L	106
COD	mg/L	131
S.S (Suspended Sediment)	mg/L	240
DO	mg/L	6.8
E.Coli	NCMF/mL	4.0×10^{3}
Total Nitrogen	mg/L	44
Total Phosphorous	mg/L	7.8
N.Hexane Extract (Oil & Grease)	mg/L	80
Chlorine	mg/L	51.3

4.41 Material tested: Effluent E-041

Sampling Location : Effluent from ETE-Janga collected at treatment system's inlet.

Date of Sampling: January 5, 2000 - Time: 10:20h

Environmental Conditions: Sample Temp: 30.9°C - Air Temp: 28.0°C

Parameter	Unit	Results
pH		6.98
BOD	mg/L	225
COD	mg/L	287
S.S (Suspended Sediment)	mg/L	84
DO	mg/L	7.5
E.Coli	NCMF/mL	1.6x10 ⁶
Total Nitrogen	mg/L	60
Total Phosphorous	mg/L	5.70
N.Hexane Extract (Oil & Grease)	mg/L	18.0
Chlorine	mg/L	130

4.42 Material tested: Effluent E-042

Sampling Location : Effluent from ETE-Janga collected at treatment system`s outlet. Date of Sampling: January 5, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 30.4°C - Air Temp: 28.0°C

	the second se	
Parameter	Unit	Results
pH		7.22
BOD	mg/L	33
COD	mg/L	52
S.S (Suspended Sediment)	mg/L	36
DO	mg/L	1.90

E.Coli	NCMF/mL	1.6x10 ⁶
Total Nitrogen	mg/L	30
Total Phosphorous	mg/L	3.75
N.Hexane Extract (Oil & Greasc)	mg/L	5.8
Chlorine	mg/L	97

4.43 Material tested: Effluent E-044

Sampling Location : Galvatex plant effluent collected at treatment system's outlet.

Date of Sampling: January 04, 2000 - Time: 13:30h

Environmental Conditions: Sample Temp: 28.1°C - Air Temp: 30.0°C

Parameter	Unit	Results
pH		7.2
BOD	mg/L	390
COD	mg/L	3390
S.S (Suspended Sediment)	mg/L	258
DO	mg/L	0
E.Coli	NMP/100mL	Ausent
Total Nitrogen	mg/L	520
Total Phosphorous	mg/L	1.6
N.Hexane Extract (Oil & Grease)	mg/L	7.2
Chlorine	mg/L	1000

4.44 Material tested: Effluent E-053

Sampling Location : Effluent from the Antartica's plant collected at treatment system's outlet.

Date of Sampling: January 05, 2000 - Time: 11:30h

Environmental Conditions: Sample Temp: 33.2°C - Air Temp: 28.5°C

Parameter	Unit	Results
рН		7.16
BOD	mg/L	85
COD	mg/L	147
S.S (Suspended Sediment)	mg/L	66
DO	mg/L	2.10
E.Coli	NCMF/mL	5.0×10^3
Total Nitrogen	mg/L	10.0
Total Phosphorous	mg/L	2.0
N.Hexane Extract (Oil & Grease)	mg/L	18.6
Chlorine	mg/L	42.0

4.45 Material tested: Effluent E-055

Sampling Location : Effluent from ETE-Janga collected at treatment system's inlet. Date of Sampling: January 5, 2000 Time: 13:15h.

Environmental Conditions: Sample Temp: 31.9°C - Air Temp: 24.0°C

Parameter	Unit	Results
рН		6.98
BOD	mg/L	211
COD	mg/L	282
S.S (Suspended Sediment)	mg/L	124
DO	mg/L	0
E.Coli	NCMF/mL	1.6x10⁶
Total Nitrogen	mg/L	40
Total Phosphorous	mg/L	5.70
N.Hexane Extract (Oil & Grease)	mg/L	17.2
Chlorine	mg/L	125

4.46 Material tested: Effluent E-056

Sampling Location : Effluent from ETE-Janga collected at treatment system's outlet.

Date of Sampling: January 5, 2000 - Time: 13:25h

Environmental Conditions: Sample Temp: 30.9°C - Air Temp: 24.0°C

Parameter	Unit	Results
рН		7.10
BOD	mg/L	39
COD	mg/L	71
S.S (Suspended Sediment)	mg/L	42
DO	mg/L	1.1
E.Coli	NCMF/mL	9.0x10 ⁵
Total Nitrogen	mg/L	26
Total Phosphorous	mg/L	2.30
N.Hexane Extract (Oil & Grease)	mg/L	9.6
Chlorine	mg/L	97

4.47 Material tested: Effluent E-058

Sampling Location : Effluent from ETE-Janga collected at treatment system's inlet.

Date of Sampling: January 6, 2000 - Time: 16:15h

Parameter	Unit	Results
pH		7.06
BOD	mg/L	420
COD	mg/L	896
S.S (Suspended Sediment)	mg/L	325
DO	mg/L	0
E.Coli	NCMF/mL	$0.2x10^{2}$
Total Nitrogen	mg/L	96
Total Phosphorous	mg/L	1
N.Hexane Extract (Oil & Grease)	mg/L	78
Chlorine	mg/L	113

Environmental Conditions: Sample Temp: 31.4°C - Air Temp: 29.5°C

4.48 Material tested: Effluent E-059

Sampling Location : Effluent from ETE-Janga collected at treatment system's outlet.

Date of Sampling: January 6, 2000 Time:16:30h

Environmental Conditions: Sample Temp: 31.7°C - Air Temp: 29.0°C

Parameter	Unit	Results
рН		7.33
BOD	mg/L	1.000
COD	mg/L	2.650
S.S (Suspended Sediment)	mg/L	1.667
DO	mg/L	0
E.Coli	NCMF/mL	0.5×10^2
Total Nitrogen	mg/L	160.0
Total Phosphorous	mg/L	31.5
N.Hexane Extract (Oil & Grease)	mg/L	208.0
Chlorine	mg/L	88.9

4.49 Material tested: Effluent E-061

Sampling Location : Usina Bom Jesus plant effluent collected at treatment system's.

Date of Sampling: January 06, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 26.7°C - Air Temp: 27.0°C

Parameter	Unit	Results
pH		6.67

BOD	mg/L	5
COD	mg/L	14
S.S (Suspended Sediment)	mg/L	42
DO	mg/L	4.7
E.Coli	NCMF/mL	6.0 x1 0
Total Nitrogen	mg/L	1.0
Total Phosphorous	mg/L	2.8
N.Hexane Extract (Oil & Grease)	mg/L	16.0
Chlorine	mg/L	13.7

4.50 Material tested: Effluent E-062

Sampling Location : Usina Salgado plant effluent collected at treatment system's.

Date of Sampling: January 07, 2000 - Time: 13:00h

Environmental Conditions: Sample Temp: 30.0°C - Air Temp: 34.5°C

Parameter	Unit	Results
pH		5.90
BOD	mg/L	40
COD	mg/L	175
S.S (Suspended Sediment)	mg/L	156
DO	mg/L	0.81
E.Coli	NCMF/mL	0.9×10^2
Total Nitrogen	mg/L	1
Total Phosphorous	mg/L	0.4
N.Hexane Extract (Oil & Grease)	mg/L	26
Chlorine	mg/L	34.2

4.51 Material tested: Effluent E-063

Sampling Location : Suape Textil plant effluent collected at treatment system's outlet.

Date of Sampling: January 06, 2000 - Time: 11:30h

Environmental Conditions: Sample Temp: 34.5°C - Air Temp: 33.0°C

Parameter	Unit	Results
pH		8.38
BOD	mg/L	8 0
COD	mg/L	510
S.S (Suspended Sediment)	mg/L	60
DO	mg/L	4.66
E.Coli	NCMF/mL	7.1x1 0

Total Nitrogen	mg/L	85
Total Phosphorous	mg/L	9.6
N.Hexane Extract (Oil & Grease)	mg/L	20
Chlorinc	mg/L	85.5

4.52 Material tested: Effluent E-071

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's inlet.

Date of Sampling: January 11, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 30.2°C - Air Temp: 32.1°C

Parameter	Unit	Results
pН		7.34
BOD	mg/L	196
COD	mg/L	517
S.S (Suspended Sediment)	mg/L	180
DO	mg/L	. 0
E.Coli	NCMF/mL	4.9x1 0
Total Nitrogen	mg/L	70.1
Total Phosphorous	mg/L	1.26
N.Hexane Extract (Oil & Grease)	mg/L	36.0
Chlorine	mg/L	193.7

4.53 Material tested: Effluent E-073

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's outlet.

Date of Sampling: January 10, 2000 - Time: 10:55h

Environmental Conditions: Sample Temp: 32.1°C - Air Temp: 32.0°C

Parameter	Unit	Results
pH		8.18
BOD	mg/L	18
COD	mg/L	130
S.S (Suspended Sediment)	mg/L	88.0
DO	mg/L	1.3
E.Coli	NCMF/mL	3.1x1 0
Total Nitrogen	mg/L	80.6
Total Phosphorous	mg/L	9.6
N.Hexane Extract (Oil & Grease)	mg/L	2.0
Chlorine	mg/L	172.2

4.54 Material tested: Effluent E-074

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's inlet.

Date of Sampling: January 11, 2000 - Time: 14:15h

Environmental Conditions: Sample Temp: 30.6°C - Air Temp: 31.2°C

Parameter	Unit	Results
pH		7.21
BOD	mg/L	294
COD	mg/L	622
S.S (Suspended Sediment)	mg/L	10.0
DO	mg/L	0
E.Coli	NCMF/mL	1.4×10^2
Total Nitrogen	mg/L	54.8
Total Phosphorous	mg/L	1.08
N.Hexane Extract (Oil & Grease)	mg/L	136.0
Chlorine	mg/L	258.3

4.55 Material tested: Effluent E-076

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's outlet.

Date of Sampling: January 10, 2000 - Time: 14:35h

Environmental Conditions: Sample Temp: 34.0°C - Air Temp: 32.8°C

Parameter	Unit	Results
pH		8.43
BOD	mg/L	25
COD	mg/L	146
S.S (Suspended Sediment)	mg/L	170
DO	mg/L	1.4
E.Coli	NCMF/mL	3.9x1 0
Total Nitrogen	mg/L	28.9
Total Phosphorous	mg/L	9.8
N.Hexane Extract (Oil & Grease)	mg/L	42
Chlorine	mg/L	170

4.56 Material tested: Effluent E-077

Sampling Location : Effluent from the Jaboatão river - Usina Bulhões plant, collected at treatment system's outlet.

Date of Sampling: January 10, 2000 - Time: 12:45h

Unit	Results
	5.80
mg/L	154
	257
	80.0
	5.1
NCMF/mL	2.1x 10
	3.2
	1.1
	0.2
mg/L	21.5
	mg/L mg/L mg/L mg/L NCMF/mL mg/L mg/L mg/L

Environmental Conditions: Sample Temp: 27.6°C - Air Temp: 31.0°C

4.57 Material tested: Effluent E-078

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's inlet.

Date of Sampling: January 10, 2000 - Time: 16:50h

Environmental Conditions: Sample Temp: 30.9°C - Air Temp: 32.1°C

Parameter	Unit	Results
pH		7.10
BOD	mg/L	324
COD	mg/L	556
S.S (Suspended Sediment)	mg/L	144
DO	mg/L	0
E.Coli	NCMF/mL	2.4×10^{5}
Total Nitrogen	mg/L	50
Total Phosphorous	mg/L	3.0
N.Hexane Extract (Oil & Grease)	mg/L	22
Chlorine	mg/L	365

4.58 Material tested: Effluent E-080

Sampling Location : Effluent from ETE-Mangueira collected at treatment system's outlet.

Date of Sampling: January 11, 2000 - Time: 17:20h

Environmental Conditions: Sample Temp: 33.2°C - Air Temp: 30.8°C

Parameter	Unit	Results
pH		7.36
BOD	mg/L	44

COD	mg/L	170
S.S (Suspended Sediment)	mg/L	44
DO	mg/L	1.1
E.Coli	NCMF/mL	$1.7 \mathbf{x} 10^4$
Total Nitrogen	mg/L	36
Total Phosphorous	mg/L	1.22
N.Hexane Extract (Oil & Grease)	mg/L	22.0
Chlorine	mg/L	215

4.59 Material tested: Effluent E-083

Sampling Location : Brasperola plant effluent collected at treatment system's outlet.

Date of Sampling: January 12, 2000 - Time: 10:00h

Environmental Conditions: Sample Temp: 32°C - Air Temp: 31.3°C

Parameter	Unit	Results
pН		7.37
BOD	mg/L	9
COD	mg/L	76
S.S (Suspended Sediment)	mg/L	165
DO	mg/L	4.2
E.Coli	NCMF/mL	1.9×10^2
Total Nitrogen	mg/L	1.6
Total Phosphorous	mg/L	7.5
N.Hexane Extract (Oil & Grease)	mg/L	10
Chlorine	mg/L	94.7

4.60 Material tested: Effluent E-084

Sampling Location : Residential Effluent collected at Rafe-Praia Grande-Candeias at treatment system's inlet.

Sampling: January 11, 2000 - Time: 10:15h

Environmental Conditions: Sample Temp: 29.7°C - Air Temp: 29.4°C

Parameter	Unit	Results
pH		6.73
BOD	mg/L	161
COD	mg/L	307
S.S (Suspended Sediment)	mg/L	127
DO	mg/L	6.2
E.Coli	NCMF/mL	2.8x10 ⁶
Total Nitrogen	mg/L	69
Total Phosphorous	mg/L	4

N.Hexane Extract (Oil & Grease)	mg/L	146
Chlorine	mg/L	150

4.61 Material tested: Effluent E-085

Sampling Location : Residential effluent collected at Rafe-Praia Grande-Candeia at treatment system's outlet.

Date of Sampling: January 11, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 29.2°C - Air Temp: 30.1°C

Parameter	Unit	Results
pН		6.72
BOD	mg/L	181
COD	mg/L	245
S.S (Suspended Sediment)	mg/L	37
DO	mg/L	6.7
E.Coli	NCMF/mL	2.8x 10 ⁶
Total Nitrogen	mg/L	31
Total Phosphorous	mg/L	0
N.Hexane Extract (Oil & Grease)	mg/L	163
Chlorine	mg/L	110.0

4.62 Material tested: Effluent E-087

Sampling Location : Residential effluent collected at Rafe-Praia Grande-Candeias at treatment system's inlet.

Date of Sampling: January 11, 2000 - Time: 13:15h

Environmental Conditions: Sample Temp: 29.8°C - Air Temp: 31.8°C

Parameter	Unit	Results
рН		6.50
BOD	mg/L	219
COD	mg/L	442
S.S (Suspended Sediment)	mg/L	60
DO	mg/L	4.5
E.Coli	NCMF/mL	4.6x 10 ⁷
Total Nitrogen	mg/L	33
Total Phosphorous	mg/L	0.31
N.Hexane Extract (Oil & Grease)	mg/L	86.0
Chlorine	mg/L	170.0

4.63 Material tested: Effluent E-088

Sampling Location : Residential effluent collected at Rafe-Praia Grande-Candeias at treatment system's outlet.

Date of Sampling: January 11, 2000 - Time: 13:30h

Environmental Conditions: Sample Temp: 29.8°C - Air Temp: 31.0°C

Parameter	Unit	Results
рН		6.73
BOD	mg/L	55
COD	mg/L	125
S.S (Suspended Sediment)	mg/L	4.0
DO	mg/L	5.30
E.Coli	NCMF/mL	7.5x10 ⁶
Total Nitrogen	mg/L	29.0
Total Phosphorous	mg/L	0.08
N.Hexane Extract (Oil & Grease)	mg/L	12.0
Chlorine	mg/L	100.0

4.64 Material tested: Effluent E-089

Sampling Location : Residential effluent collected at Rafe-Praia Grande-Candeias at treatment system's inlet.

Date of Sampling: January 12, 2000 Time: 16:10h

Environmental Conditions: Sample Temp: 29.3°C - Air Temp: 30.1°C

Parameter	Unit	Results
pH		6.93
BOD	mg/L	233
COD	mg/L	523
S.S (Suspended Sediment)	mg/L	195
DO	mg/L	0
E.Coli	NCMF/mL	2.3×10^2
Total Nitrogen	mg/L	23.7
Total Phosphorous	mg/L	9.9
N.Hexane Extract (Oil & Grease)	mg/L	58.0
Chlorine	mg/L	142.1

4.65 Material tested: Effluent E-090

Sampling Location : Residential effluent collected at Rafe - Praia Grande - Candeias at treatment system's outlet.

Date of Sampling: January 12, 2000 - Time: 16:35h

Environmental Conditions: Sample Temp: 29.5°C - Air Temp: 30°C

Parameter	Unit	Results
pH		7.17
BOD	mg/L	40
COD	mg/L	120
S.S (Suspended Sediment)	mg/L	90
DO	mg/L	0
E.Coli	NCMF/mL	1.7×10^{2}
Total Nitrogen	mg/L	79.6
Total Phosphorous	mg/L	0.94
N.Hexane Extract (Oil & Grease)	mg/L	10
Chlorine	mg/L	94.7

4.66 Material tested: Effluent E-091

Sampling Location : Mars Chocolates plant effluent collected at treatment system's outlet.

Date of Sampling: January 12, 2000 - Time: 11:15h

Environmental Conditions: Sample Temp: 30.9°C - Air Temp: 34.7°C

Parameter	Unit	Results
pH		8.55
BOD	mg/L	4
COD	mg/L	62
S.S (Suspended Sediment)	mg/L	- 76
DO	mg/L	7.4
E.Coli	NCMF/mL	4.7x1 0
Total Nitrogen	mg/L	1.58
Total Phosphorous	mg/L	8.76
N.Hexane Extract (Oil & Grease)	mg/L	32
Chlorine	mg/L	86

4.67 Material tested: Effluent E-092

Sampling Location : Motoguia plant effluent collected at treatment system's outlet.

Date of Sampling: January 12, 2000 - Time: 10:30h

Environmental Conditions: Sample Temp: 26.9°C - Air Temp: 32.5°C

Parameter	Unit	Results
РН		7.96

BOD	mg/L	7
COD	mg/L	19
S.S (Suspended Sediment)	mg/L	42.5
DO	mg/L	6.98
E.Coli	NCMF/mL	8.4x 10
Total Nitrogen	mg/L	1.58
Total Phosphorous	mg/L	0
N.Hexane Extract (Oil & Grease)	mg/L	38.0
Chlorine	mg/L_	602.7

4.68 Material tested: Effluent E-093

Sampling Location : Residential Efluent collected at Compesa's very close Desembargador João Paes street nr 197 Boa Viagem; "class A".

Date of Sampling: January 12, 2000 Time: 11:30h

Environmental Conditions: Sample Temp: 29.8 Air Temp: 32.1°C

Parameter	Unit	Results
pH		6.49
BOD	mg/L	397
COD	mg/L	1074
S.S (Suspended Sediment)	mg/L	395
DO	mg/L	0
E.Coli	NCMF/mL	4.1×10^2
Total Nitrogen	mg/L	21.1
Total Phosphorous	mg/L	11.2
N.Hexane Extract (Oil & Grease)	mg/L	114
Chlorine	mg/L	150.7

4.69 Material tested: Effluent E-096

Sampling Location : Residential effluent collected at Vila Rica - Jaboatão ; "class C". Date of Sampling: December 12, 1999 Time: 15:00h.

Parameter	Unit	Results
pH		6.49
BOD	mg/L	708
COD	mg/L	1613
S.S (Suspended Sediment)	mg/L	330
DO	mg/L	0
E.Coli	NCMF/mL	9.3x10 ¹⁰
Total Nitrogen	mg/L	88
Total Phosphorous	mg/L	22.6

Environmental Conditions: Sample Temp: 31.2°C Air Temp: 31.4°C

N.Hexane Extract (Oil & Grease)	mg/L	182
Chlorine	mg/L	17.0

4.70 Material tested: Effluent E-097

Sampling Location : Alcoa Plant effluent collected at treatment system's outlet.

Date of Sampling: January 13, 2000 - Time: 15:35h

Environmental Conditions: Sample Temp: 31.8°C - Air Temp: 32.5°C

Parameter	Unit	Results
pH		7.55
BOD	mg/L	10
COD	mg/L	35
S.S (Suspended Sediment)	mg/L	0
DO	mg/L	5,5
E.Coli	NCMF/mL	2.5x10
Total Nitrogen	mg/L	4.7
Total Phosphorous	mg/L	0.16
N.Hexane Extract (Oil & Grease)	mg/L	56.0
Chlorine	mg/L	160

4.71 Material tested: Sediment S-002

Sampling Location : Sediment from Capibaribe river under Princesa Isabel bridge.

Parameter	Unit	Results
Cadmium	mg/kg	1.96
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.04
Lead	mg/kg	32.4
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	Not detected
Total Mercury	mg/kg	0.35
РСВ	µg/kg	< 216
Total Nitrogen	mg/kg	0.37
Total Phosphorous	mg/kg	714.1
Ignition Loss	%	20.51

Date of Sampling: December 21, 1999 - Time: 9:00 AM

4.72 Material tested: Sediment S-004

Sampling Location : Sediment collected at capibaribe river under bridge on Av. Caxangá.

Parameter	Unit	Results
Cadmium	mg/kg	1.25
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.003
Lead	mg/kg	63.2
Chromium (Hexavalent)	mg/kg	0.81
Arsenic	mg/kg	0.23
Total Mercury	mg/kg	1.60
РСВ	μg/kg	< 239
Total Nitrogen	mg/kg	1.13
Total Phosphorous	mg/kg	1683.6
Ignition Loss	%	20.03

Date of Sampling: December 21, 1999 - Time: 10:15 AM

4.73 Material tested: Sediment S-006

Sampling Location : Sediment collected at Capibaribe river under bridge uptream firm the Tiúma plant.

Date of Sampling: December 21, 1999 - Time: 11:25 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.78
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.87
Lead	mg/kg	38.2
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.12
Total Mercury	mg/kg	1.81
PCB	μg/kg	< 291
Total Nitrogen	mg/kg	0.28
Total Phosphorous	mg/kg	1149.2
Ignition Loss	%	26.8

4.74 Material tested: Sediment S-020

Sampling Location : Sediment from Brahma plant collected at treatment system's decanter.

Date of Sampling: December 29, 1999 - Time: 12:15 PM

Parameter	Unit	Results
Cadmium	mg/kg	Not detected

Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.68
Lead	mg/kg	2.42
Chromium (Hexavalent)	mg/kg	0.53
Arsenic	mg/kg	0.001
Total Mercury	mg/kg	0.15
РСВ	μg/kg	< 1675
Total Nitrogen	mg/kg	19
Total Phosphorous	mg/kg	460
Ignition Loss	%	45.5

4.75 Material tested: Sediment S-024

Sampling Location : Sediment collected at ETE - Peixinho.

Date of Sampling: December 28, 1999 - Time: 11:15 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.93
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.93
Lead	mg/kg	76.3
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.008
Total Mercury	mg/kg	10.64
РСВ	μg/kg	< 100
Total Nitrogen	mg/kg	0.36
Total Phosphorous	mg/kg	5200
Ignition Loss	%	61.6

4.76 Material tested: Sediment S-027

Sampling Location : Sediment collected at ETE - Peixinho.

Date of Sampling: December 28, 1999 - Time: 2:15 PM

Parameter	Unit	Results
Cadmium	mg/kg	Not detected
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.63
Lead	mg/kg	1.48
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.003
Total Mercury	mg/kg	1.056
РСВ	µg/kg	< 353

Total Nitrogen	mg/kg	0.88
Total Phosphorous	mg/kg	1336.1
Ignition Loss	%	67.1

4.77 Material tested: Sediment S-030

Sampling Location : Sediment collected ETE - Peixinho.

Date of Sampling:	December 28,	, 1999 - Time: 4:45 PM	

Parameter	Unit	Results
Cadmium	mg/kg	2.11
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	1.3
Lead	mg/kg	63.1
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.009
Total Mercury	mg/kg	8.08
РСВ	μg/kg	< 957
Total Nitrogen	mg/kg	1.44
Total Phosphorous	mg/kg	1132
Ignition Loss	%	68.9

4.78 Material tested: Sediment S-037

Sampling Location : Sediment from Ipojuca river collected at river's estuary at low tide.

Date of Sampling: January 04, 2000 - Time: 10:45 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.91
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	8
Lead	mg/kg	33.7
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.38
Total Mercury	mg/kg	0.32
РСВ	µg/kg	< 223
Total Nitrogen	mg/kg	0.2
Total Phosphorous	mg/kg	1331.2
Ignition Loss	%	21.6

4.79 Material tested: Sediment S-039

Sampling Location : Sediment collected downstream at RMK pollution area.

Parameter	Unit	Results
Cadmium	mg/kg	0.039
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	1.3
Lead	mg/kg	6.6
Chromium (Hexavalent)	mg/kg	0.99
Arsenic	mg/kg	0.036
Total Mercury	mg/kg	0.159
PCB	μg/kg	< 99
Total Nitrogen	mg/kg	0.47
Total Phosphorous	mg/kg	373.7
Ignition Loss	%	3.94

Date of Sampling: January 04, 2000 - Time: 12:25 PM

4.80 Material tested: Sediment S-043

Sampling Location : Sediment collected at Worton-Lixa's plant at centrifuge after.

Parameter Unit Results 0.67 Cadmium mg/kg < 0.01 **Total Cyanide** mg/kg 9 **Organic Phosphorous** mg/kg 22.8 Lead mg/kg Not detected Chromium (Hexavalent) mg/kg 0.11 mg/kg Arsenic 0.41 Total Mercury mg/kg < 279 PCB µg/kg 3.75 Total Nitrogen mg/kg 22000 **Total Phosphorous** mg/kg % 79.1 Ignition Loss

Date of Sampling: January 04, 2000 - Time: 12:20 PM

4.81 Material tested: Sediment S-045

Sampling Location : Sediment from Galvatex plant collected at treatment system's.

Date of Sampling: January 04, 2000 - Time: 2:30 PM

Parameter	Unit	Results
Cadmium	mg/kg	0.26
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	1.3
Lead	mg/kg	0.004

Chromium (Hexavalent)	mg/kg	0.07
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.0048
РСВ	μg/kg	< 419
Total Nitrogen	mg/kg	28.9
Total Phosphorous	mg/kg	1.8
Ignition Loss	%	86.04

4.82 Material tested: Sediment S-047

Sampling Location : Sediment from Beberibe river collected at river's estuary.

Date of Sampling: January 05, 2000 - Time: 9:30 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.092
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.61
Lead	mg/kg	0.116
Chromium (Hexavalent)	mg/kg	0.01
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.0041
PCB	μg/kg	< 160
Total Nitrogen	mg/kg	16.9
Total Phosphorous	mg/kg	2.4
Ignition Loss	%	57.2

4.83 Material tested: Sediment S-049

Sampling Location : Sediment from Beberibe river collected downstream.

Date of Sampling: January 05, 2000 - Time: 10:30 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.36
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.20
Lead	mg/kg	0.02
Chromium (Hexavalent)	mg/kg	0.05
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.0066
РСВ	µg/kg	< 223
Total Nitrogen	mg/kg	54
Total Phosphorous	mg/kg	0.8
Ignition Loss	%	75.93

4.84 Material tested: Sediment S-051

Sampling Location : Sediment from Beberibe river collected upstream.

Parameter	Unit	Results
Cadmium	mg/kg	0.044
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.23
Lead	mg/kg	0.008
Chromium (Hexavalent)	mg/kg	0.01
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.0046
РСВ	μg/kg	< 96
Total Nitrogen	mg/kg	61.6
Total Phosphorous	mg/kg	0.31
Ignition Loss	%	44.69

Date of Sampling: January 05, 2000 - Time: 12:45 PM

4.85 Material tested: Sediment S-054

Sampling Location : Sediment from ETE - Janga collected at treatment system's.

Date of Sampling: January 05, 2000 - Time: 10:40 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.086
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	1.3
Lead	mg/kg	0.023
Chromium (Hexavalent)	mg/kg	0.02
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.19
РСВ	µg/kg	< 100
Total Nitrogen	mg/kg	38.5
Total Phosphorous	mg/kg	2.9
Ignition Loss	%	84.4

4.86 Material tested: Sediment S-057

Sampling Location : Sediment from ETE - Janga collected at treatment system's.

Date of Sampling: January 05, 2000 - Time: 1:30 PM

Parameter	Unit	Results
Cadmium	mg/kg	0.32

Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.13
Lead	mg/kg	0.063
Chromium (Hexavalent)	mg/kg	0.11
Arsenic	mg/kg	< 0.01
Total Mercury	mg/kg	0.0995
РСВ	μg/kg	< 100
Total Nitrogen	mg/kg	26.7
Total Phosphorous	mg/kg	0.4
Ignition Loss	%	89.76

4.87 Material tested: Sediment S-060

Sampling Location : Sediment from ETE - Janga collected at treatment system's.

Date of Sampling: January 05, 2000 - Time: 4:50 PM

Parameter	Unit	Results
Cadmium	mg/kg	2.6
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	7
Lead	mg/kg	68.3
Chromium (Hexavalent)	mg/kg	7.54
Arsenic	mg/kg	0.36
Total Mercury	mg/kg	32.96
РСВ	ug/kg	< 2
Total Nitrogen	mg/kg	16.9
Total Phosphorous	mg/kg	22690
Ignition Loss	%	64.7

4.88 Material tested: Sediment S-065

Sampling Location : Sediment from Jaboatão river, collected at river's estuary.

Date of Sampling: January 06, 2000 - Time: 10:15 AM

Parameter	Unit	Results
Cadmium	mg/kg	0.019
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	6.8
Lead	mg/kg	0.497
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.23
Total Mercury	mg/kg	0.23
PCB	μg/kg	< 126
Total Nitrogen	mg/kg	3.6
Total Phosphorous	mg/kg	880.2

		*
Ignition Loss	%	10.06

4.89 Material tested: Sediment S-067

Sampling Location : Sediment from the Jaboatão river collected downstream at pollution area.

Date of Sampling: January 06, 2000 - Time: 1:50 PM

Parameter	Unit	Results
Cadmium	mg/kg	0.56
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	0.4
Lead	mg/kg	33.6
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.040
Total Mercury	mg/kg	0.66
PCB	µg/kg	< 2
Total Nitrogen	mg/kg	2.11
Total Phosphorous	mg/kg	326.2
Ignition Loss	%	10.68

4.90 Material tested: Sediment S-069

Sampling Location : Sediment from Jaboatão river collected upstream at pollution area.

Date of Sampling: January 06, 2000 - Time: 12:15 PM

Parameter	Unit	Results
Cadmium	mg/kg	0.04
Total Cyanide	mg/kg	< 0.01
Organic Phosphorous	mg/kg	2
Lead	mg/kg	6.1
Chromium (Hexavalent)	mg/kg	Not detected
Arsenic	mg/kg	0.014
Total Mercury	mg/kg	0.115
PCB	µg/kg	< 103
Total Nitrogen	mg/kg	9.5
Total Phosphorous	mg/kg	136.2
Ignition Loss	%	1.48

4.91 Material tested: Sediment S-082

Sampling Location : Sediment from Ipojuca river collected upstream at the RMK pollution

area.

Date of Sampling: January 11, 2000 - Time: 11:00 AM

Parameter	Unit	Results
Cadmium	mg/kg	Not detected
Total Cyanide	mg/kg	< 0.2
Organic Phosphorous	mg/kg	100
Lead	mg/kg	15.53
Chromium (Hexavalent)	mg/kg	1.56
Arsenic	mg/kg	0.066
Total Mercury	mg/kg	0.157
PCB	μg/kg	< 2
Total Nitrogen	mg/kg	408
Total Phosphorous	mg/kg	355
Ignition Loss	%	8.59

4.92 Material tested: Sediment S-086

Sampling Location : Sediment from Rafe - Praia Grande.

Date of Sampling: January 11, 2000 - Time: 10:45 AM

Parameter	Unit	Results
Cadmium	mg/kg	3.54
Total Cyanide	mg/kg	< 0.2
Organic Phosphorous	mg/kg	152
Lead	mg/kg	55.5
Chromium (Hexavalent)	mg/kg	6.23
Arsenic	mg/kg	0.31
Total Mercury	mg/kg	47.23
РСВ	μg/kg	< 479
Total Nitrogen	mg/kg	2855
Total Phosphorous	mg/kg	2926
Ignition Loss	%	72.39

4.93 Material tested: Scdiment S-094

Sampling Location : Sediment from Rafe - Praia Grande - Candeias.

Date of Sampling: January 12, 2000 - Time: 12:30 PM

Parameter	Unit	Results		
Cadmium	mg/kg	3.57		
Total Cyanide	mg/kg	< 0.2		
Organic Phosphorous	mg/kg	. 74		

Lead	mg/kg	65.26
Chromium (Hexavalent)	mg/kg	7.63
Arsenic	mg/kg	0.33
Total Mercury	mg/kg	12.84
PCB	μg/kg	< 319
Total Nitrogen	mg/kg	3142
Total Phosphorous	mg/kg	6900
Ignition Loss	%	71.02

4.94 Material tested: Sediment S-095

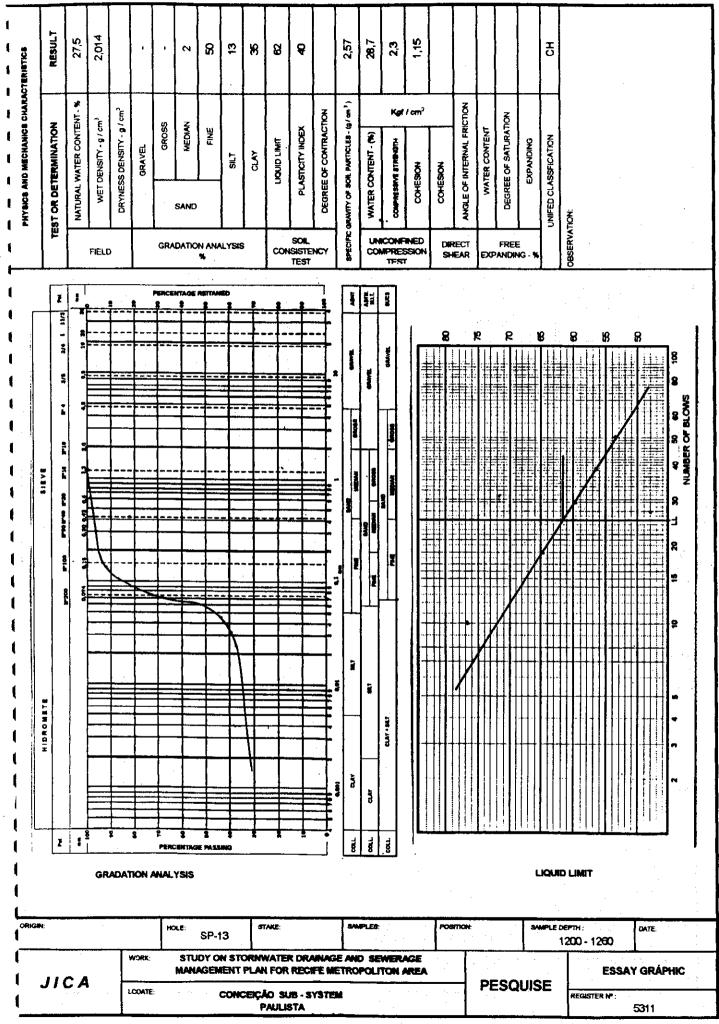
Sampling Location : Sediment from Rafe - Praia Grande - Candeias.

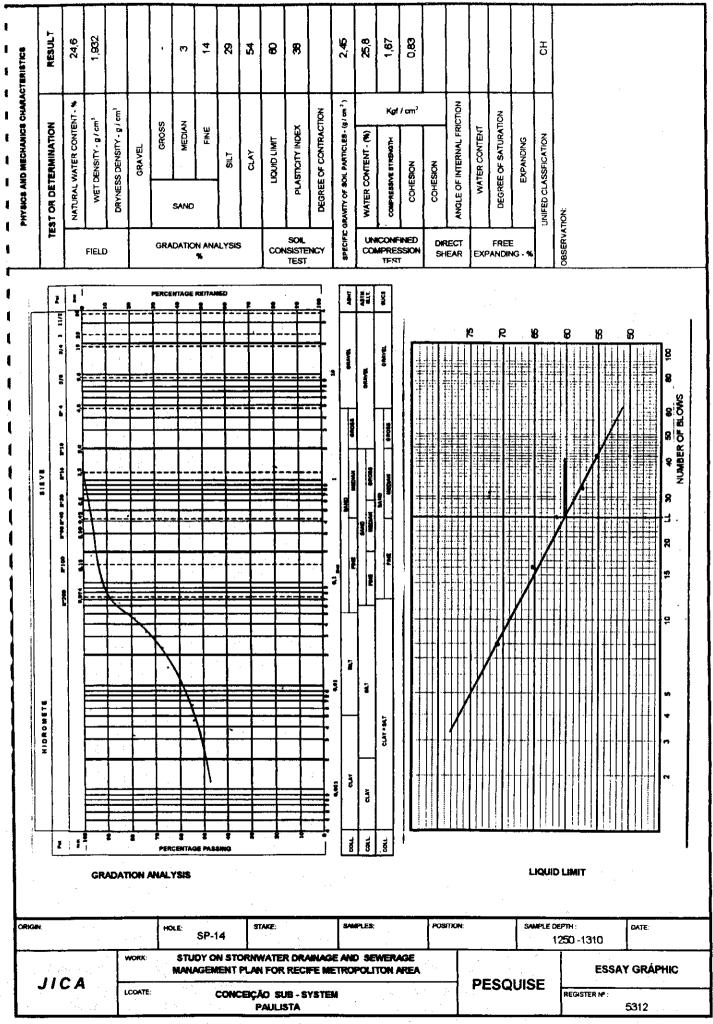
Date of Sampling: January 12, 2000 - Time: 4:00 PM

Parameter	Unit	Results	
Cadmium	mg/kg	2.29	
Total Cyanide	mg/kg	< 0.2	
Organic Phosphorous	mg/kg	188	
Lead	mg/kg	49.19	
Chromium (Hexavalent)	mg/kg	6.94	
Arsenic	mg/kg	0.14	
Total Mercury	mg/kg	8.72	
PCB	μg/kg	< 2	
Total Nitrogen	mg/kg	2068	
Total Phosphorous	mg/kg	47900	
Ignition Loss	%	65.78	

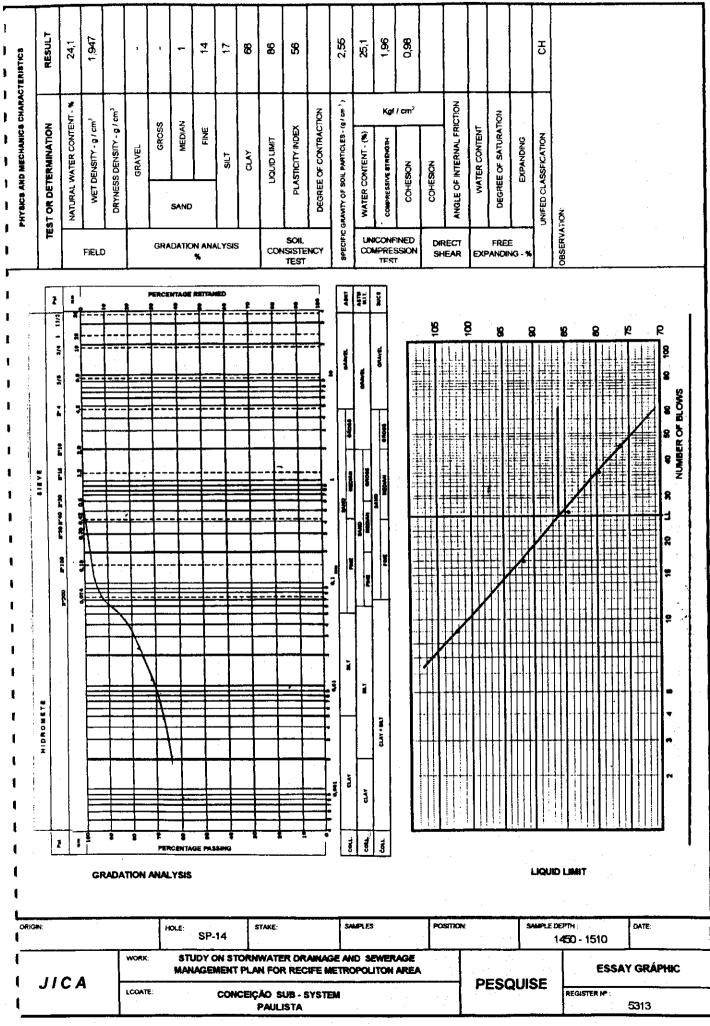
DATA BOOK B SOIL INVESTIGATIONS

DATA BOOK OF SOIL INVESTIGATIONS


- 1. CONCEICAO
- 2. JANGA
- 3. CABANGA
- 4. BOA VIAGEM
- 5. CORDEIRO
- 6. PRAZERES
- 7. CURCURANA
- 8. **RESULTS OF LABORATORY TESTS**


1. CONCEICAO

PERCUSSION (SPT)		T)		INFILTRATION STUDY		DEPTH (m)									
				81.0WS 30 cm		WASHING				Đ	Z.,]			91. o
30 30			L			BY TIME	TEST	ABSORPTION K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS		ESCRIPTION OF TH	IE MATERIAL	REVEST
		/ 300	m	INITIAL	LAST	cm/mim	N ^e	K- Chrsey	GRAI	CHAN	GRA			:	α.
		<u>) 3</u>			5	ļ		ļ	0,00						
			'	: 4					0,00			Fine sand,	not too copact, brown	nish gray.	
				5	- 5					0,95		·····			
				- -	6										= 100mm
				- 5					2,00	2,46	W		di Kaba wasa		¢ = 1
				6	. 6							Same as	above, light gray.		
	\downarrow			- 5	- 6				4,00						
			H	- 34	41					4,65	+ +	1			†
				1								Fine sand	, not very silty, very co	mpact, yellowish gray.	
		,	И	- 30	. 34				6,00	6,00					. i
		Ĭ	[- 21	0.3					6,87	.	Same as	above, compact.		4
		1			- 23						.				1
	ł			- 16	- 19				8,00	1	•	Fine san	d silty, compact, mixe	d light gray colors.	
	ł			- 16	- 18					9,00					
				- 17	- 19				10,00		• •		·		
		N								1		Same as	above, averagely con	npact to compact.	
		ŀN		- 20	- 27										
				38	48/20				12,00	11,88	+ +	<u>. Silbu olov</u>	, hard, dark yellow an	d groonich grav	4
				1 30						12,50			ous alteration)	· · ·	
				╞	-	4/30				12,00		End	of Perforation		
				{						[]			or renorminar		ļ
				ŀ	-						EDOUGRION	ł			
							- [1		IMPENETRABLE BY PE				
										8		ТІМ	IE (minutes) Al	DVANC. (meters)	
				ł				1	16,00	2			10 10	0,02	ĺ
													10	0,01 0,01	
											1				
				- .	-				18,00			ļ			ļ
										1					
					T I					Ĭ					
					}	<u> </u>		<u> </u>	20,00	<u> </u>		<u> </u>			
ОВ	SER	ATK	ON:	6) S	ample take	n from the	DENIS	ON method	1						
LO	CALE	ZATK	DN:												
┢				COOP	DINATES		000	TA:	OPERAT	íor:	<u> </u>		DATE	VERIFIED BY:	
N	=			_	1E=			- 2° 1. 	ABDIA		;	= 28/08/00	F= 26/06/00		
	.]	11	<u> </u>	- I	WORK:			RNWATER 2 AN FOR R					PESQUISE	PROFILE OF SOM	
							¢			STEM				SOUNDING N* SP-13	


PERCU	SSION (SP	т)			FILTRATION STUDY	D	EPTH (m)		
30cm INITIAL +- 30cm I.AST	30	cm	WASHING BY TIME cm/mim	TESŤ N [¢]	ABSORPTION K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	
BLOWS / 30cm 10 20 30			ļ		 	ە 0,00	Ō	ŏ ⁻	· · · · · · · · · · · · · · · · · · ·
	4					0,00	0,78		Fine sand, soft, dark gray.
	- 5	- 5					1,49	₩.	
	5					2,00			
	- 5	5		ŀ					Fine sand, not too compact, light gray.
	- 6	- 6				4,00			
	- 28	_ 33					4,4 7	•	
							- 		Fine sand, not very silt, compact, yellowish gray.
	- 30	- 33				6,00	6,65		
	- 21	- 27						+ +	
	- 19	- 24				8,00		.	
4	- 17	- 22							Fine sand, silty, with rare fragments of shells, compact, mixed light gray colors.
	- 18	- 25				10,00	Ì	• •	
		_ 2							
	- 9						11,15	./.	Fine sand, silty clay, with fragments of shells, soft,
	- 2	- 2				12,00	12,50		mixed light gray colors.
	- 11	_ 13							
	- 15	- 17				14,00			Sitty clay, firm, dark yellow and greenish gray.
	- 17	. 19							- Alteration soil.
	- 19	- 22				16,00			
			3/30				16,64	,[<u>*/</u>]	Same as above, hard. (Calcareous atteration)
						ł			End of Perforation
				ļ		18,00			- WASHING BY TIME TIME (minutes) ADVANC. (meters)
	-	-							10 0,02 10 0,01
OBSERVATION						20,00			10 0,00
	k∭ Sa	mple takei	n from the	DENIS	SON method	s 		<u> </u>	
				0.11		OPERA			DATE VERIFIED BY:
N=		IE=			ATC:	ABDIA			= 29/08/00 F= 29/08/00
JIC		VORK			ORNWATER PLAN FOR R				
		OCATE:			CONCEIÇÃO PAL	SUB - SY JLISTA	STEM		SOUNDING Nº SP-14

	IC.	Wid		STUDY ON	STORNWATE	ER DRAINAG R RECIFE MI	E AND SEW	PESQUISE	SU	MARY OF SC	DIL TESI		
						<u></u> .		· · · · · · · · · · · · · · · · · · ·					· .
								•					·
Observ	ation:			L		L	<u>l</u>	<u> </u>	<u> </u>	_ !		<u> </u>	
Field		Wet der Dryness d		2,014	1,932	1,947	 					<u> </u>	
Ę		cont	ent	27,5	24,6	24,1	 		<u> </u>				
		Expan Natural	-				 	 	· .			· ·	
Free Expanding	(%)	Degree of s											
ling		Water c	ontent										
		Angle of frictic	internal m (*)										
Direct Shear		Cohe (kgf /											
		(kgf/c	;m²)	1,15	0,83	0,98		<u> </u>	<u> </u>				ļ
Uniconfined	ë. ⊢	(kaf / Coher	cm²)	2,30	1,67	1,96		<u> </u>	<u> </u>			 	
Mined Majori	ti ti	Water of Compressive		28,7	25,8	25,1	· · .	 	<u> </u>			 	
-					СН	CH			<u> </u>			+	┠
	cific graenty of soil particles Unifed classification			2,57		f	· · · · ·		┫┈╌──				· · ·
				2,57	2,45	2,55		1 .	+				· · · ·
C		of contract		~~			· · · ·	<u> </u>			ļ		<u> </u>
		quid amit 		- 6∠ 40	38	86 56		· · · ·	-				
	1	Cla quid limit	y	35 62	54 60	68	<u> </u>						
•	Lidron	*		13	29	17		┨────					
		N ^e : Sih		73	90	94			 	-		 	_
		N*		95	94	97		1				<u> </u>	ļ
		N*:		97	96	99	· · · ·	<u> </u>	<u> </u>			· · · ·	ļ
				98	97	99	· ·		<u> </u>				
Grad		N*		99	98	100							
Gradation Analysis				100	100								
Analy		N*	10										
13	Carline Carlin	N°	8									1	1
		» N*	4					1	1			1	
		3/	8				1	1	1			+	<u>† </u>
		1					<u> </u>	<u>†</u>	1			1	<u>† </u>
	Τ	2							1				<u> </u>
-		Register N	•	5311	5312	5313	<u> </u>	1	+			+	<u> </u>
Identification	San	npie Depth	to	1260	1310	1510	<u> </u>	1	+			1	<u> </u>
Cati,	~		from	1200	1250	1450		1	1				1

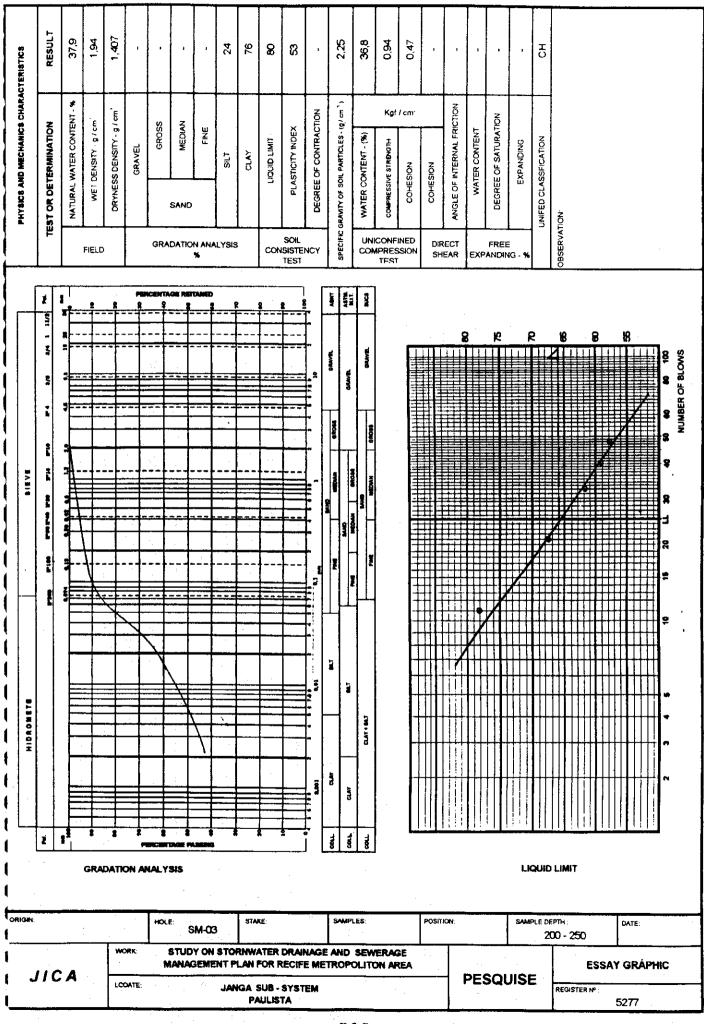
B.1-5

B.1-6

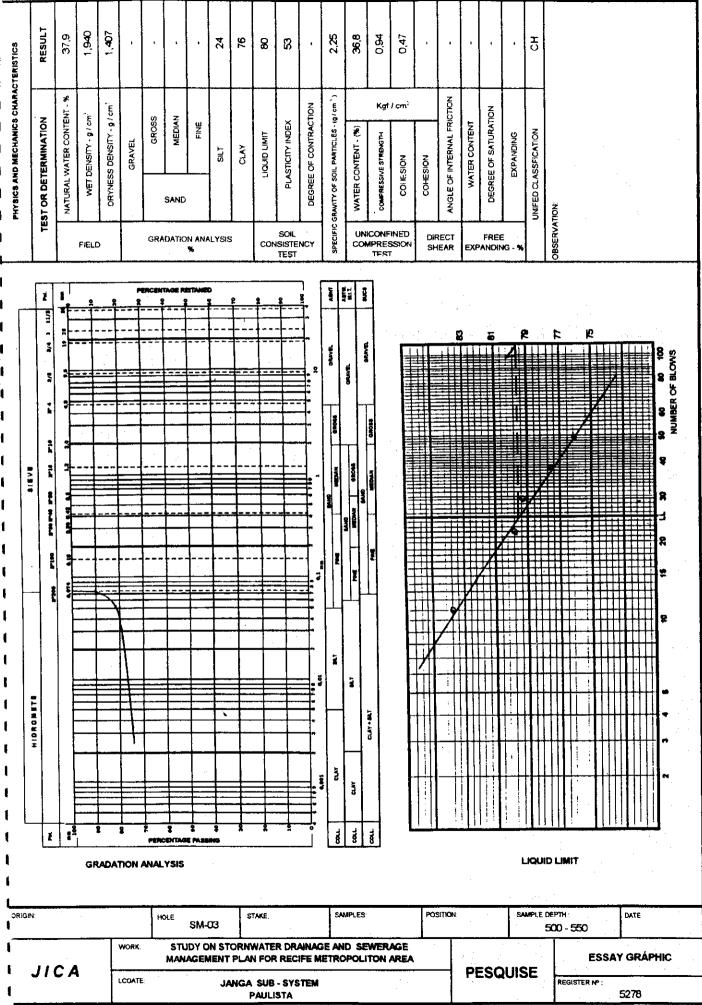
.

2. JANGA

PERCUSS	ION (SF	τ ^ι		ILTRATION STUDY-		GRAPH		SN					4
30cm INITIAL 10/m + 10(A). BLOWS / 30cm	N	BLOWS WASHING BY TIME cm/min.	TEST N° PERMEABILITY	ABSORBTION K = cm/ses	PRESSURE Ka/cm	Specific Rate Of Flow L / min. m	DЕРТН (т)	CONVENTIONS	DES	CRIPTION OF	THE MA	TERIAL	REVEST
	5						0,00 0,78	+ + +	Sandy silty	clay, not too c	ompact, o	tark red.	
	- 7						2,00 2,96		Sitty clay, r	nedium, motle	y light gra	ay.	
	- 6 - 10						4,00	A A Y	Same as a	above, grayish-	-green an	d yellowish.	100 mm
	- 9						6,00	• •	Alteratio	rigid, greenish n soil. above, hard. on to rock.	gray and	yellowish.	÷
	- 18 - 5/1 - 5/1	4/30 F2 SH/					8,00 8,20	¥ 7	Very cla occasion	ayey limesto ally fracture surfaces filled	d sub-h	very coherent, norizontally, with y with greenish -	
	4 R1 (C2/C) R3	S3 P4					8,60 9,43			above, clayey		ow. eragely fractured	
	R3	2 F3 SH/3 S3 P4 2 F2 SH	5V				10,00 10,47		with sub-	horizontal and	subverti	cal fractures dark	
	R1	S3 P4	-				11,30			above, not too	<u> </u>	d dark gray.	
							12,00) 	LING	of Perforation	I	·	
							14,0						
							16,0	0					
							18,0	ю					
							0BS.:	00			<u> </u>	<u> </u>	
20 40 60 RECUPERATION 3 EFECTIVE		5 10 FRACT.		RFECTIVE PRESSURE ka/cm²	PERCOLATION (HV) L /mim. m. Kg / cm ² PRESSURE	SPECIFIC RA OF FLOW The Vinin. m.	5		L = 0.00 Sample taker	n from the DEM	NSON m	ethod	
		LEVEL OF LEVEL OF FRACTURE INCLINATION	FULFIENE			GRAPHIC	LOCAT	ION:					
ROTATING	DORDINA	ROCK M		TAW ATO	OPE	UNDER PRESSUR ERATOR:			DATE:	= 20/06/00	VERIFIED) BY:	
N=		E = JOSÉ DANTAS WORK: STUDY ON STORNWATER DRAINAGE MANAGEMENT PLAN FOR RECIFE MET					AND SEV	= 20/0		- 20100100	1	PROFILE OF S	
JICA	- LC	CATE:	MAN	· · ·		SYSTEM	ROPOLIT	ON ARE	A	PESQL	IISE		ON
		an trainn Martin an S		Ur M	- PAULI					L		SM.03	

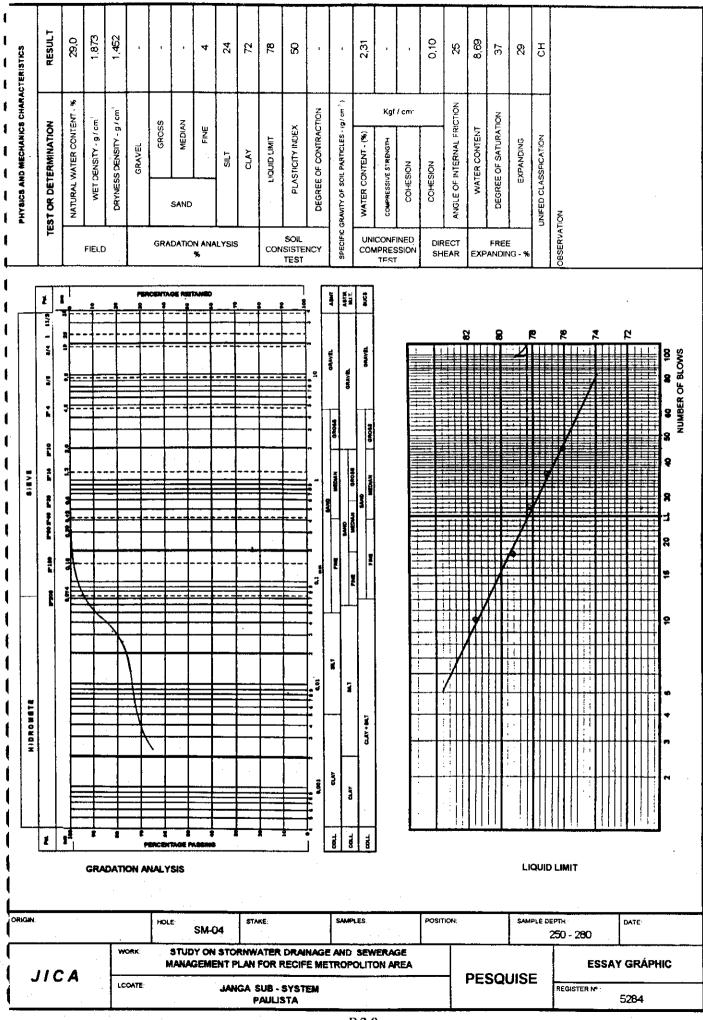

PERCUSSIC	ON (SPT)	INFILTRATION - STUDY-		GRAPH		δ			
30cm INITIAL	BLOWS WASHING BY TIME cm/min.	TEST N° PERMEABILITY ABSORFTION K = cm/seg	PRESSURE Kalcm ^r	SPECIFIC RATE OF FLOW L / min. m	DEPTH (a) (a) GRAPHIC	CONVENTION	DESCRIPTION O	F THE MATERIAL	REVEST. ¢
	3				0,00 0,46 7		and with a bit of ray and brownish.	averacte sand, silty, soft,	Е
	4				2,00		lay, soft, motley gr ation soil.	eenish gray.	4 = 100 mm
	2				3.95 4.00 4.50	Z11 -	lay, a bit sandy, so ation soil.	oft, motley dark yellow.	
	4/34				6,00	Sitty o	lay, soft, greenish	gray and reddish brown.	
	7/31 10/32				8,00		as above, average ation soil.	9.	
	7 B				10,00 + 10,86 +		ay, firm, greennis	h gray and dark yellow.	
	14 20/8 5/30				12,00 12,08	- Roc	e as above, hard. k alteration I of Sounding	· · · · · · · · · · · · · · · · · · ·	
					14,00		ing, interrupted (lir IMPENETRABLE	method of percussion and mestone) BY PERCUSSION 3 BY TIME -	
	-				16,00	IT	ME (minutes) 10 10 10	ADVANC. (in meteers) 0,02 0,02 0,01	
					18,00				
20 40 60 80 SELFERINE. 5 Report 100	LEVEL OF COHERENCE RACO. RCO. LEVEL OF FRACTURE MCLINATION NOLINATION SURFACE FULLENEED	HYDRAULIC TEST HYDRAULIC TEST EFFECTIVE PRESSURE MOLETION (HV)	L. Imim. m. Kg / am ² PRESSURE Kalam ²	B 20,00 OBS.: WL = 0,00 OF FLOW OBS.: VIMM. m. Increase of the second of non-deformed block. LOCATION:					
ROTATING	ROCK MASS	S WATE	R LOSS UN	GRAPHIC				· .	
1 1	DINATES	QUOTA	OPER/ JOSE	ATOR: É DANTAS	DAT	e: F = 26/06/00	VERIFIED BY:		
JICA	E = WORK: LOCATE:	MANAGEMENT P	RNWATE	R DRAINAGE AND RECIFE METROPO	SEWERAG	E	PESQUI		
			PAULIS		PESQUISE SOUNDING Nº SM.04				

PER	cus	SION (SP	T)		I IN	FILTRATION STUDY	<u>،</u>	DEPTH (m)		
30cm INITIA ગોલ્મના લાગે?		30	cm	WASHING By TIME cavaim	test №	ABSORPTION K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	DESCRIPTION OF THE MATERIAL	REVEST o
BLOWS / 30d		INITIAL	LAST	ļ		 	0,00		80 +.+.4		
				:			0,00	0,20		Sandy clay silt, not too compact, motley light red.	
		. 7	- 9				1.00	0,65	•/•/	Clay sandy silt, medium, dark yellow and greenish.	
							1,00		, , , , ,	Silty clay, medium, greenish gray and dark red. - Alteration soil.	
i ș t		- 8	- 11				2,00	1,85			
		10	. 13	· · ·			3,00				
		- 	- - - 11				4,00				
		v.	-			1	.,			Silty clay, firm, greenish gray and dark yellow .	
		- 11	- 12				5,00		• •		
		- 10	. 13				6,00				
		·· 14	- 17				7,00			· · · · · · · · · · · · · · · · · · ·	
		- 19	- 24				8,00	8,00		Same as above, hard. - Alteration soil.	
		-		5/30					····	End of Perforation	
			-	330			9,00	8,85		- WASHING BY TIME TIME (minutes) ADVANC. (meters) 10 0,02 10 0,02	
DBSERVATION							10,00			10 0,02 10 0,01	
OCALIZATION			<u>.</u>							······································	
N=		COORDIN			QUOT	A:				DATE VERIFIED BY:	
		LE WO	રκ :			NWATER DI		AND SEV	VERAGE		
JIC	; A		ATE:			JANGA SUE	- SYSTE			PESQUISE SOUNDING N°	
- 10 (10) 						- PAUL	ISTA -			SP.05	


PERCU	SSION (SP	r)			FILTRATION STUDY					
30cm INITIAL 20cm LAST	30	ows cm	WASHING BY TIME cm/mim	TEST	absorption K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	DESCRIPTION OF THE MATERIAL	KEVES - 9
BLOWS/30cm 10 20 30	INITIAL	LAST					Ċ	87		
	7	8				0,00			Silty clay, medium to firm, greenish gray and yellowish. - Alteration soil.	¢ = 100 mm
	- 7	. 9				2,00	1,76		L Clay not very sitty, mediun, greenish gray and yellowish. - Alteration soil.	
	9	- 11				3,00	3,00			
	- 11	- 12				4,00				
	- 14	- 17				6,00			Same as above, firm.	
	- 15	- 18				7,00		Y		
	17	- 22				8,00) 8,0	° / ·	Same as above, hard.	
	- 22	- 29				9,00	9,6	5	- End of Perforation	
OBSERVATION	<u>↓ .</u>					10,0				
LOCALIZATION	DRY H	OLE								
N=	COORD	INATES		QUO	DTA:	OPER/ ABDI/		. 1	DATE VERIFIED BY: = 28/06/00 F= 29/06/00	
JIC		ORK:			ORNWATER PLAN FOR F	RECIFE M	ETROPOL		PESQUISE	
	ľ				JANGA S - PA	UB - SYS' ULISTA -	TEM	•	SOUNDING Nº SP-06	

OWNER NUME NECKNOW NECKNOW	PERCUS	SSION (SPT				IL FRATION STUDY	r	DEPTH (m)				
6 7 9 7 8 0,00 0,93 Sitty clay, medium, greenish gray and reddish 7 10 2,00 2,52 Sitty clay, medium, greenish gray and reddish 4 5 4 4 4,00 4,65 5 8 9 4,00 4,65 Sitty clay, soft, mixed light, gray colors. 4 4 4,00 4,65 Sitty clay, soft, mixed light, gray colors. 8 9 10 5,00 8,58 Sitty clay, medium, greenish gray willow. 11 13 10,00 8,58 Same as above, medium, greenish gray willow. 11 13 10,00 8,58 Same as above, firm to hard. 18 22 12,00 11,67 End by Perforation	.0enstand "OWS / 30cm	<u>30 c</u>	cm	FOR TIME			GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	ום	ESCRIPTION OF T	HE MATERIAL
7 10 7 10 4 5 4 4 5 8 9 10 8 9 11 13 15 17 16 10,00 8 9 10 10,00 8 9 11 13 12 10,00 13 10,00 14 18 15 17 10,00 11,87 11,87 10,00 11,87 11,87 12,00 11,87 14,00 11,87	0 20 30	6	7	<u> </u>			0,00		<i>[]]</i>	Silty clay, I	medium, greenish g	ray and yellowish.
4 5 4 4 5 8 9 10 8 9 11 13 15 17 16 17 17 10,00 8,53 5 11 13 15 17 16 17 17 10,00 8,53 5 9 10 16 17 17 10,00 18,53 5 19 10 10 11,87 11 13 12,00 11,87 End by Perforation 14,00 16,00							2,00	0,93		Silty clay, r - Alteration	medium, greenish g n soil.	ray and reddish yellow.
5 8 9 6,00 Same as above, medium, greenish gray yelkw. 9 10 8,00 8,50 Alteration soil. 11 13 15 17 10,00 15 17 10,00 Same as above, firm to hard. 18 22 12,00 11,87 End by Perforation 14,00 16,00 16,00 16,00 Interview		- 4	- 5					2,52		Silty clay, :	soft, mixed light, gra	y colors.
9 10 8 9 11 13 15 17 16 22 17 10,00 18 22 11,87 End by Perforation 11,87 End by Perforation 11,00 16,00		- 4					4,00	4,65	¥]]]			
8 9 8,00 8,53 11 13 10,00 8,53 15 17 10,00 11,87 18 22 12,00 11,87 11,87 End by Perforation 14,00 16,00 16,00 16,00							6,00			yellow.		greenish gray and dark
11 13 15 17 18 22 12,00 11,87 - End by Perforation 14,00 16,00							8,00	8.58	\ } }			· · · · · · · · · · · · · · · · · · ·
12,00 11,87 - End by Perforation							10,00	_,		Same as	above, firm to hard	
14,00		- 18	- 22			- - - -	12,00	11,87				· · · · · · · · · · · · · · · · · · ·
16,00		-								End t	by Perforation	·
							14,00					
18,00							16,00					
							18,00					
OBSERVATION: - DRY HOLE	BSERVATION:						20,00					
LOCALIZATION:	OCALIZATION:					<u> </u>				<u></u>		
COORDINATES QUOTA: OPERATOR: DATE VERIFIED BY: N= E= I = 29/06/00 F= 29/06/00 F= 29/06/00	N=			<u>i,</u>	QUO	TA:	OPERA	TOR:	1:			VERIFIED BY:
WORK: STUDY ON STORNWATER DRAINAGE AND SEWERAGE PROFIL		Wo		STUDY (ON STO MENT F	RNWATER	DRAINAG ECIFE ME	e and set etropoli	WERAGI	E	DEGOLIJOT	PROFILE OF SC INVESTIGATIO
JICA PESQUISE SOUNDING N"	JIC	A	CATE					EM	·		PESQUISE	and a second

		tole		SM-03	SM-03	SM-04					T	1	
tion			6	200	500	250				_	·	<u> </u>	
Identification	Samp	le Depth	from	250	550							<u> </u>	
Ē			to	5277		280				·	<u> </u>		
	1	Register N		5211	5278	5284					<u> </u>	· · ·	
			-										
	1	3/							·		<u> </u>		
		Nº.			i								
	Passing	N*				· · · · · ·		• •		-	<u> </u>	 	
alyzia	d -	N*		100	<u> </u>								
Gradation Analysis	- X Total	N*		98					·	·-··		 	
adatic		N*		96		·····					<u>+</u>		
Ğ	Sieve	Nº	40	94								<u> </u>	
		N*	50	92		100						1	
		N [®]	100	92		98				1		<u> </u>	· .
		Nº.	200	87	, 100	96		<u> </u>				†	
	Ë	_ Sill	t	38	24	24			1	1 .	1		
	Hidron.		ay .	49	76	72					<u> </u>	† .	
	Liq	uid limit		66	80	78							
	Plas	icity index	:	33	53	50					· · · · · · · · · · · · · · · · · · ·		
Þ	egree	of contract	tion	-		-					ļ		
Specifi	ic grae	rty of soil	particles	2,45	2,25	2,31						1	•
U	nifed o	lassificati	on	MH	Сн	СН						1. A.	
Σg		Water	ontent	28,7	36,8	· -	1	· ·				1	
Uniconfined Compression	Test	Compressiv (kgf.)	e Strength (cm²)	1,99	0,94	-						·	
5 Š		Cohe (kgf /		0,99	0,47	-							
Direct Shear			esion / cm²)	-	-	0,10							
Direc			of internation (*)	-	-	25		1					
ing		Water	content	-	-	8,69							
Free Expanding	€ [Degree of	saturation	-		37							
ມິ 		Expa Natura	nding Lwater	·	· · ·	29	ļ		ļ		ļ		
ŋ	ļ	CON	tent	26,4	37,9	29,0	<u> </u>					1 1 1	
Field	ŀ	Wet de		1,928	1,940	1,873	ļ	ļ			_	ļ	.*
Observa	ation	Dryness	density	1.525	1,407	1,452							
								- - -		· · · · · · · · · · · · · · · · · · ·		•	
		_					··· ·			· · · · ·		· ·	
	IC		/ork:	STUDY ON	STORNWAT	ER DRAINAG	E AND SEW	ERAGE DN AREA				MARY OF S	OIL TEST
			ocate.		JAN	GA SUB - SY PAULISTA			PESQUIS	E PAGE 1	N* :	· · · ·	



.

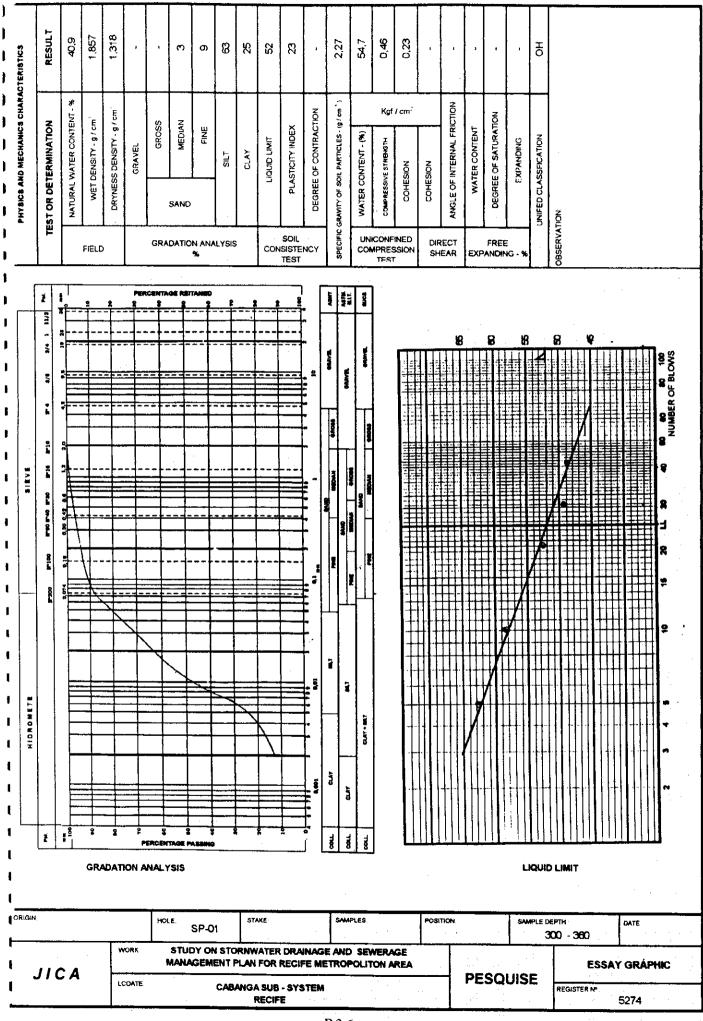
B.2-8

B.2-9

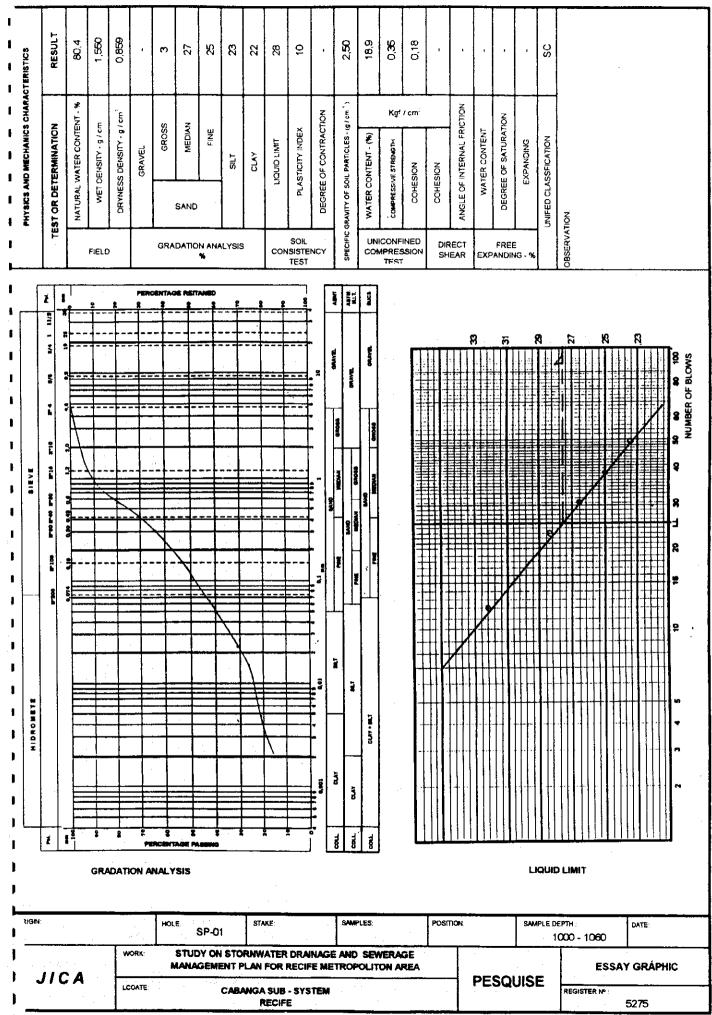
. .

. . .

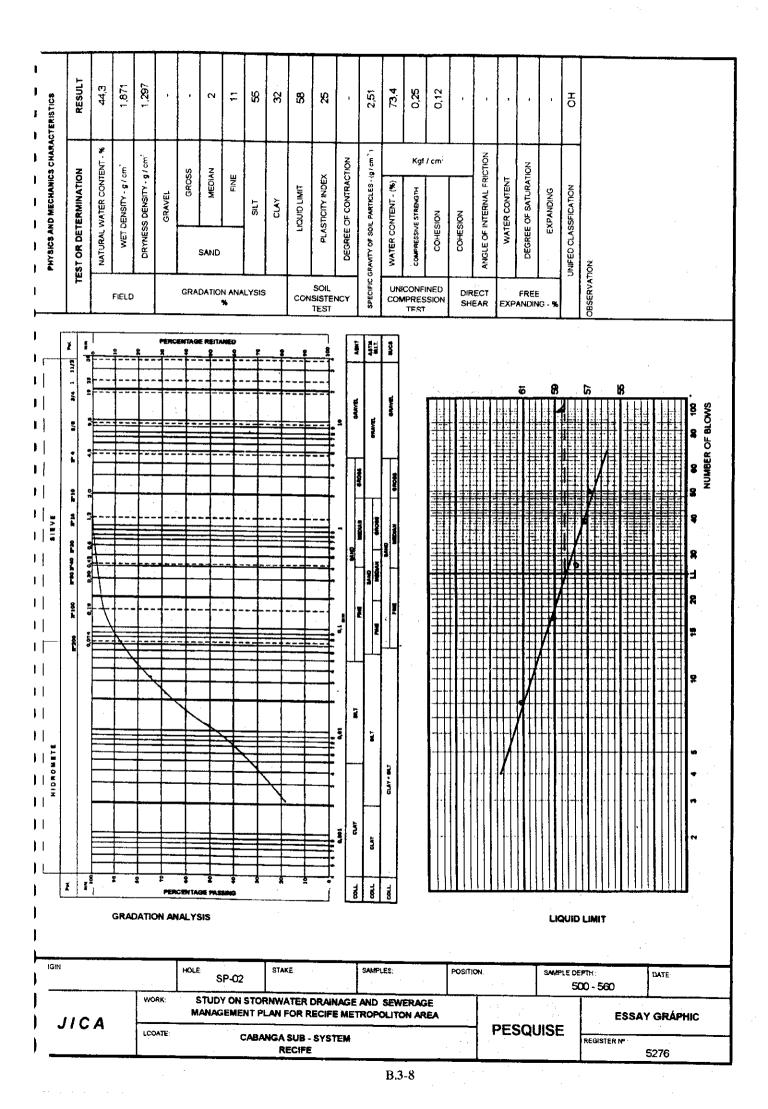
3. CABANGA


PERCU	SSION (SP		ł		FILTRATION STUDY	ם 	EPTH (m)		
30cm INITIAL 30cm 1,453		0WS I cm 	WASHING BY TIME crivinim	TEST	ABSORPTION K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	DESCRIPTION OF THE MATERIAL
8LOWS / 30cm 10 20 30	INITIAL	LAST				_	CHAN	CON	
	2	4				0,00	0,65	/* */	Fine and average sand, silty clay, with a bit small rocks, soft, dark yellow LANDING ~
/	- 8	- 9	:				0,95	+ +	Average and fine sand, silty clay, soft, mixed light gray colors.
	- 1/65					2,00	1,90 2,25	<u>/</u>	Fine sand, silty, averagely compact, dark yellow. Fine and average, silty clay, soft, dark gray.
	- 1/59	_					2,85		Silty clay, with traces of organics material and few fragments of shells, very soft, dark gray.
	- 4	- 5				4,00	3,97 4,60	• •	Fine and average sand, not very silty, not too \sim compact, mixed light gray colors and dark.
	- 1/53								Silty clay, with traces of organics material and few fragments of shells, very soft, dark gray.
	- 2	- 2				6,00	6,00 6,85	+0	Same as above, soft.
	- 1/50								Organic clay with peat, very soft, dark brown and black.
	- 1/58	- 5				8,00	8,00 8,63		Silty clay, with traces of organic material and fragments of shells, very soft, dark gray.
	- 4					10,00	10,00		Sand clay, soft, greenish gray.
	- 5	- 5					10,95	M	Same as above, medium.
	- 5	- 5				12,00		/_/	Fine and average sand, silty, a bit clay, not too compact, greenish gray.
	- 5	- 6					12,50	/ ;	Average and fine sand, silty clay, not too compact,
	- 9	- 12				14,00	13,75	/ 77	greenish gray.
	- 11	- 12					1		
	- 9	- 11				15,00			Silty clay, firm, greenish gray and light yellow.
	- 12	- 15							
	- 13	- 13				18,00			
	- 11	- 12					18,85	+ +	Fine sand, sitty, averagely compact, motley light yellow.
OBSERVATION:	1 <u>13</u> Take	13 en from a	SHELBY :) sample	_ I	20,00	<u>II</u>	<u>netetet</u>	<u></u>
							<u> </u>		
NI-	COORDI			ano.	TA:	OPERAT HEROI		1	DATE VERIFIED BY: 19/06/00 F= 21/06/00
	W	E= DRK:			RNWATER D	RAINAGE	AND SEV	VERAGE	
	JICA			<u> </u>					PESQUISE SOUNDING N*

PERCUS	SSION (SP	T)			FILTRATION	ב	ЕРТН (л)		
30cm INITIAL 	1	DWS cm LAST	WASHING BY TIME cm/mim	TEST N°	ABSORPTION K≖ cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	DESCRIPTION OF THE MATERIAL	
10 20 30	13	13		 		20,00			·····	
	· 11 · 13 · 13	- 13 - 14				22,00		* *	Fine sand, silty, averagely compact, motley light y el low.	
	- 13 - 11	- 13				24,00	23,80	+ + +	Same as above, yellowish gray.	
	32	- 49/23				26,00	25,90	+ + +	Rusty silt, concrete like, dark brown and reddish.	
	- 27 - 32	- 34 - 42			- - -	28,00	26,55 28,45		Clay silt, with a bit of fine sand, with a bit of mica, hard, mixed light gray and dark gray. End of Perforation	
						30,00				
						32,00	1			·
	*** ***					34,00				
						38,00				
OBSERVATION		1	<u> </u>	1	1	40,00	11	1	1	
LOCALIZATION:			.							
	COORDI			QUO	TA:	OPERAT			DATE VERIFIED BY:	
JIC	A	E= DRK: XCATE		MENT F	RNWATER L PLAN FOR R CABANGA S	ECIFE ME	E AND SI	WERAGI		
1						CIFE			SP.01	


	PERC	USSION (SP	Ť)			FIL FRATION STUDY	[[DEPTH (m	n)	<u> </u>			
			ows	WASHING					Z (A				o tr
	Sm INITIAL	<u>ာပ</u>	cm	BY TIME cm/rism	7est N ^e	ABSORPTION K≕ cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS		DESCRIPTION OF 1	HE MATERIAL	REVEST
	WS/30cm 2030	NITIAL	LAST				й U	CHA	N N 0 0 0 0				12
		3	4	<u> </u>	<u> </u>		0,00		† / †			clay, soft, dark yellow.	
		- 4	- 5					1,00 1,32	 	- LANDI	ING -		μω
		- 5	. 6				2.00	1,72				nents of shells, not too	o = 100 mm
							2,00	2,65		Compac	t, mixed light gray and	i yeilowish.	
		- 3	- 4								d average sand, with compact, mixed light g	few fragments of shells, gray colors.	
		- 1 /62	-				4,00	3,76	1/7			······································	
		- 1/58	-						7-0/				
		- 1/47							1/1				
							6,00	4	19	Silty clar	y, with traces of or	ganic material and rare	
		- 1/51							201	fragment	s of shells, very soft,	dark gray.	
		- 1/58					8,00						
\mathbf{N}		6	5					8,90		<u> </u>			
						ł		9,60	<u> </u>	Average compact	and fine sand, silt) dark yellow and green	y, a bit clay, not too iish.gray.	
		5	6				10,00		1//	Silty ok	a hit cand modium	n, greenish gray and dark	
		7	- 8							yellow.	ay, a bit sand, medidi	r, greenish gray and dark	
	N	- 18	23			•	12,00	11,75	\square				
							,	12,30	77	Silty sar	nd clay, hard, dark ye l i	low and greenish gray.	
		- 13									······································		
		- 13	13				14,00	14,00	///	Silty clay	y, firm,greenish gray a	ind dark yellow.	
	$\left \right $	15	- 17						1/+ + + + +	Silty cla dark yell		pact, greenish gray and	
		- 13	- 15				16,00	15,57	+/7				
	4	15	10					ļ	1.	Silty cla	y, firm, dark yellow an	d greenish gray.	
		- 15	-~ 16					17,68	-/-				
		13	_ 14	-			18,00	17,00	• •				
		- 13	14						/.		nd, silty, a bit clay, d yellowish.	averagely compact, light	
	\mathbb{N}	15	- 23				20,00		1				1
OBSE	rvation:	🕅 Take	n from a S	SHELBY si	ample							······································	
LOCAI	LIZATION					<u> </u>					<u></u>		
		COORDINA			QUOTA	v.	OPERATO		1			VERIFIED BY:	
N=	· · ·	WOR	RK:			NWATER DR		and sev	VERAGE	21/06/00	F= 23/06/00	PROFILE OF SOIL	
Ĵ	IC												

PERCUSSION (SPT)			ILTRATION STUDY	D	EPTH (m)		
BLOWS 	WASHING BY TIME	test N	ABSORPTION K= cm/seg	GRAPHICS	CHANGE OF LAYER	CONVENTION GRAPHICS	DESCRIPTION OF THE MATERIAL	
BLOWS / 30cm INITIAL LAST				ЯÐ	CH CH	055		
10 20 30 16 23	<u> </u>	†	1	20,00		·/		
1 18 26							Fine sand, sitty, a bit clay, averagely compact, light gray and yellowish.	
17 - 23				22,00	22,45	1		İ
56 - 50/18							Clay silty, with a bit of fine sand and mica, hard, mixed light gray and dark gray.	
- 70/25 - 50/10				24,00		* + + + + +		ļ
- 69/23 - 50/8					24,50	+	Clay sandy silt, with a bit of mica, hard, mixed light gray and dark gray.	
- 74/21 - 49/6				26,00	26,21	-/-	*	
							End of Perforation	
				28,00	l			
				ł				
				30,00				
				32,00	5			
				34,0	0			
	ł	ļ						
				36,0	o y			
					1			
		Ì		38,0	»			
			Ì					
· · · · · · · · · · · · · · · · · · ·		1			Ĭ.			
OBSERVATION:				40,	00 []			-
· · · · · · · · · · · · · · · · · · ·						<u></u>	· · · · · · · · · · · · · · · · · · ·	
LOCALIZATION:						T	DATE VERIFIED 8Y:	
COORDINATES N≂ LE=		Q	UOTA:		ATOR:	s	DATE VERIFIED BY: 1 = 21/06/00 F= 23/06/00	
	STUD	OY ON S	TORNWATE		GE AND	SEWER	AGE PROFILE OF SOIL AREA PESQUISE INVESTIGATION	
LOCATE:				A SUB - S' RECIFE	YSTEM		SOUNDING Nº SP.02	


	Hole			SP-01	SP-01	SP-02								
tion				300	1000	500				+			····	
Identification	Sample Depth to		+	360	1060	560								
			┸╼╌╍╋	5274	5275	5276								
	Register N*			5274	5215	5210				+				
		2" 1"												
	Sieve - % Total Passing	3/												
		N*			100					+				
		N*			97			• .						
Gradation Analysis		N*		100	97				<u> </u>					
		N*		98	93	100								
		N®		97	82	96						<u> </u>		
		Nº	40	97	70	96								
		N [®]	50	96	64 ·	97			<u> </u>	1		<u> </u>	1	
		N*	100	. 93	52	96		 		1			1	
		N*	200	88	- 45 -	87	1			1		I		
	5 -		t	63	23	55	[
	Midron.		ay :	25	22	32				1		1	1	
 	Lic	Liquid limit		52	28	58								
Plasticity ind			مراجع ا	23	10	25	1	1	1			1		
Degree of contraction			-	-	-	1								
Specific graerty of soil particles			2,27	2,50	2,51									
Unifed classification			он	sc	он									
v 5		Water content		54,7	18,9	73,4								
Uniconfined	Test	Compressive Strength		0,46	0,35	0,25					·			
58	3	Cohn (kgf/	esion cm²)	0,23	0,18	0,12								
Direct Shear		Cohesion (kgf / cm ²)		-		-								
Direct		Angle of internal friction (*)		.	-	-								
			content		-	-								
Free Evnanding	£	Degree of	saturation	-	-	-								
	1			•	<u> </u>	-	1	· ·	<u> </u>		ļ			
			ai water itent	40,9	80,4	44,3	· · · ·		· ·		ļ		ļ	
	-	Wet d	ensity	1,857	1,550	1,871	<u> </u>		<u> </u>					
	vation:	Dryness density		1,318	0,859	1,297	<u> </u>	·	<u> </u>		<u> </u>	1		
				· ·	ч 									
			1.14				:							
JICA										PESQUISE		SUMARY OF SOIL TEST		
		ן ר	_ocate:	CABANGA SUB - SYSTEM RECIFE								PAGE Nº		

B.3-6

-7

