

4.2 Reservoir Operation Study

As the existing large and medium scale reservoirs except the hydropower have been operated without the operation rule and the reservoir water has not been used always to meet the water use for agriculture and urban water supply. Some reservoirs presents the empty or scarce water conditions at the dry season and their beneficial area suffers from water shortage problem. It is necessary to set up the reservoir operation rule for the existing and proposed medium and large dams. The reservoir operation study to set up the rule is to be carried out taking into account the following items;

4.2.1 Reservoir Inflow

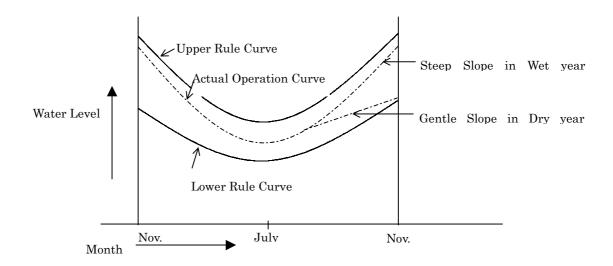
The discharge observation data of about 20 years in the recent years shall be used for the reservoir inflow. Old discharge data more than 20 years ago shall not be used for the reservoir operation study because such data are fairly changed as compared with the recent data due to the water use for the projects in the upstream basin in the past. Since small sub-basins will not have the observation discharge record, the inflow data will be reconstructed based on rainfall data, catchment area conditions, discharge data at adjoining basin, etc.

4.2.2 Water Demand

Monthly irrigation water demand is to be estimated based on proposed cropping pattern and cropping area as well as unit irrigation requirement for different crops. In case of wet season crops such as paddy, the supplemental irrigation water will be estimated taking into account effective rainfall, while the full irrigation water will be required for the dry season crops.

Monthly domestic water demand also is to be estimated based on unit consumption water (lcd) and population.

4.2.3 Notice Notes for Reservoir Operation Study


Items which have to take into account for the reservoir operation study are as follows;

- The reservoir will reach the full water level at the end of wet season from October to November and approach to the lowest water level at the beginning of wet season from June to July because the reservoir is to store a rich inflow during July to October and release it mainly in the dry season as well as in June to July at the beginning of the wet season crops.
- If the reservoir water level does not reach the full water level at the end of November, the proposed irrigation area can't be fully irrigated and will be reduced depending on the available reservoir water at the end of November

- The carrying over capacity in the reservoir to supplement the small reservoir inflow in next dry year will be estimated also by the operation study.
- The flood control to store the peak flood discharge occurred during August and September shall be studied. The upper rule curve will be set up based on the reservoir operation for flood control, while the lower rule curve prepared based on the scarce runoff in the dry year.
- As for the small scale reservoir, it will be not necessary to carry out the detailed reservoir operation study but prepare the reservoir operation guideline.

4.2.4 Reservoir Operation Practice

The reservoir operation practice shall be done monitoring the reservoir inflow, flood, variation of reservoir water level, outflow, etc. Reservoir shall be operated so as to place the fluctuated water level between the upper and lower rule curve.

When the actual operation curve shows the steep slope than the upper and lower curve, it is judged that the reservoir is operated with the wet year pattern and will reach the full water level at the end of wet season. Contrary the gentle slope shows the operation with the dry year pattern and the reservoir will not reach the full water level at the end of wet season.

4.2.5 Guideline for Study on Reservoir Plan

Many reservoir dams will be planned and constructed for the water use in agriculture and domestic and industrial water supply and hydropower. It is useful in the reservoir plan and reservoir water use to set up the following guideline.

(1) Standard Yield for Reservoir Inflow

The standard yield for the reservoir inflow on average year is evaluated as follows, based on the hydrological analysis in the control points and sub-basin. The average inflow in the wet and dry season is estimated easily by multiplication of the catchment area and runoff yield. For example, average inflow for the catchment area of 100sqkm and runoff yield of 200 mm is estimated at 20 MCM.

						Unit n	nm
River Basin	Rı	unoff Yie	ld	River Basin	Rı	ld	
RIVEI Dasili	Wet	Dry	Total	RIVEI Dasiii	Wet	Dry	Total
1. Sassandra				3. Comoe			
Upper Basin	200	20	220	Upper Basin	87	1	88
Middle Basin	165	15	180	Lower Basin	44	1	45
N'zo				4. Bani-Niger			
Bafingo	265	40	305	Baoule	158	5	163
2. Bandama				Kankelaba	118	3	121
Upper Basin	Upper Basin 72 3 75 Bagoe		Bagoe	156	6	162	
Marahoue	87	3	90	5. San Pedro	216	95	311
Upper							
Marahoue	houe 100 5 105 6. A		6. Agneby	28	3	31	
Middle	/iddle						
N'zi Upper	50	2	52	7. Bia	95	15	110
N'zi Lower	51	3	54	8. Me	208	22	230

Table S.10.4-1 Runoff Yield in Major Sub-Basin

As is clear in the above table, the dry season yield in the Bandama, Comoe, Bani-Niger is extremely small as only 1 to 5 mm. The water use in the dry season in those river basin, therefore requires the reservoir with a large capacity. As the Sassandra has some runoff yield of 15 to 40 mm even in the dry season. The reservoir capacity for the dry season water use could be small as compared with that of the Bandama and Comoe. Agneby river basin shows the low runoff yield in the wet and dry season, because many water uses for agriculture and water supply have be made in the river basin. There is no more water resources development in the Agneby basin.

(2) Proper Active Reservoir Capacity for Agriculture

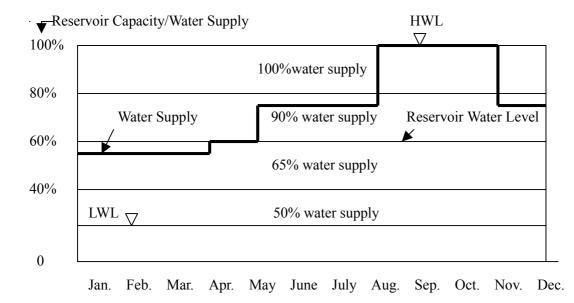
The proper active reservoir capacity in the small and medium scale dam for agricultural purpose is estimated at 80 to 100% of average inflow in the wet season taking into account the following conditions;

- Wet season inflow in the dry year with a return period of once to 5 years is assumed at 70 to 80% of the average year's inflow. Reservoir capacity shall be planned so as to have the carrying over capacity equivalent to 20~30% of average wet season inflow in order to recover the less inflow in the dry year.
- A part of wet season inflow will be used for supplemental irrigation for the wet season crops and released to the beneficial area without storage. This supplemental water use

quantity is reduced from the average wet season inflow in the estimation of reservoir capacity. This supplemental water quantity is assumed at about 30 to 40% of the average runoff in the wet season.

(3) Rainfall and Evaporation on Reservoir Area

Rainfall on the reservoir surface area is considered as the reservoir water, while 80 to 90% of the pan evaporation value against the reservoir area as the reservoir losses.


(4) Reach Time of High Water and Low Water Level

Reservoir will be operated generally so as to reach the high water level at the end of wet season (November) by rich wet season inflow and the low water level at the end of dry season (May). In case the reservoir does not reach near the full water level at the end of wet season, the irrigation area to be proposed in the next dry season shall be reduced in accordance with the available reservoir capacity at the end of wet season.

(5) **Probability D.P. Method for Preparation of the Proper Reservoir Rule**

According to our experience, it is a practical method to prepare the operation rule by "Probability DP(Dynamic Program) Method"

Basic consideration of the Probability DP Method is preparing the reservoir operation rules which would be reached to the lowest drought damage through the reservoir operating term. The solution of this method could be obtained by probability analysis and trial / error method based on actual observation hydrological data.

Moreover, the solution would be probably indicated as following figure.

CHAPTER5 Criteria and Manual

5.1 Criteria and manual for River Works

The contents of the criteria and manual for river works are as shown in Table S.10.5-1,2,3.

5.2 Manual for Water Right

The contents of the manual for water right are as shown in Table S.10.5-4.

Item	Contents
① Investigation of precipitation	Network • Location of gauging stations/ Equipment/ Observation/ Summary of data
② Investigation of water level / discharge	Network • Location of gauging station/ Staff-gauge/ Equipment/ Observation/ Summary of data/ Measurements of discharge/ Data arrangement
③ Hydrological statistic	Collection and arrangement of data/ Supplementation for missing data/ Probability analysis(return period)/ Correlation analysis/ Correlogram analysis (time series correlation)
(4) Run-off analysis	<u>Flood run-off calculation</u> : Rational formula/Unit-hydrograph Storage function/ Tank model/ Equivalent roughness/ Run-off function methods <u>Law water run-off calculation</u> : Tank model method <u>Flood routing</u>
(5) Roughness coefficient/ Water level analysis	Roughness coefficient: Water level analysis : Uniform flow/ Non-uniform flow/ Unsteady flow
6 Groundwater survey	Circulation • balance of groundwater.
⑦ River-mouth survey	Wave/ River mouth water level • discharge/ Tidal level/ Littoral drift sand/ Bottom material/ Water quality/ Wind/ etc.
8 Sediment yield and transport surveys	River bed fluctuation/ Sediment transportation/ River bed material surveys
	Wave/ Current/ Sounding/ Littoral drift sand/ Tidal surveys
③ Coastal survey	Water quality/ Bottom deposit/ Groundwater quality/
1 Water quality and bed material survey	Pollution source etc. surveys
1 Soil exploration and geological survey	Soil exploration for levees/ Investigation for river structures/ Geological survey for dams/ Site reconnaissance/ Seismic prospecting/ Electric prospecting/ Boring/ Soil • Rock tests etc.
12 Ecological environment survey	Vegetation (flora) • / Fish(icthyo-fauna • plankton)/ Bird & Beats(fauna) investigations etc.
13 Investigation of river economy	Flood control economy

Item	Contents
① Integrated river plan	Basic policy for the integrated river plan/ Basin plan/ Inland water plan/ Sediment plan/ Environment plan .
② Fundamentals of water use (low flow) plan	Discharge necessary for maintaining normal function/ Future water demand/ Development water .
③ Fundamentals of flood protection plan	Design rainfall • Hydro-graph • Flood discharge/ River channel plan & Reservoir plan in flood protection plan
④ Fundamentals of environmental	River environment conservation and improvement plan/ Water quality preservation(improvement) plan
conservation plan(5) Waterway and river structure plan	Formulating river channel plan/ Excavation of new river/ Design of flood level/ Longitudinal and cross section of river channel/ Levee/ Revetment/ Leak prevention/ Groynes/ Ground sill/ Weir/ Sluice-way and conduit/ Gate/ Tunnel river/ Inner water treatment/ River mouth treatment
6 Multipurpose facility plan	Multi-purpose dam / Weir / Multi-purpose regulating reservoir / Flow regime regulating channel plans
⑦ Dam installation plan	Selection of dam types/ Determination of dam size/ Spillway and other discharge installations/ Administrative installation/ Plan for maintaining the functions of surrounding of the reservoirs
8 Erosion control (sabo) facility plan	Dams/ Groundsel/ Revetment/ Spur dyke/ Channel works/ Hillside work/ etc.
③ Shore facility plan	Sea dykes/ Revetments/ Groins/ Offshore dykes/ Ancillary facilities
① Other	

Table S.10.5-2	Preparation of	"Criteria and Manual for River Works – Planing -"
----------------	----------------	---

Item	Contents
① Design of river structures	-Levee -Revetment -Ground Sill -Weir -Sluice-way and Conduit -Gate -Tunnel river -Drainage pumping station -Siphon culvert
② Design of dam	 Decision of Basic form/ Type/ Location Basic condition of dam design Preparatory work studies Geological analysis Design of foundation ground for dam Design of concrete dam Design of fill-type dam Design of spillway and outlet Design of gate
③ Design of erosion control (sabo) facility	 Sabo dam Ground sill Revetment Groynes Water channel facilities Hillside works/ Reforestation

Table S.10.5-3 Preparation of "Criteria and Manual for River Works – Design -"

Item	Contents
Scope of public water	Studies based on water law
Planning standard year	Studies based on hydrological statistic analysis
•Hydrological data accuracy	Studies based on manual for river works
• Discharge necessary for maintaining normal function of river flow	It is same as river maintenance discharge
Restricted Discharge	Storage restrict/ Intake restrict and Keeping discharge at the control points
Design control point	Calculation of water balance/ Water use safety factor etc.
Temporary water right	Temporary water right to intake high water/ Period limited temporary water right
• Water use safety factor	1/10 for domestic water supply,1/5 for agricultural water supply etc. shall be studied.
• Evaluation of existing water use	Especially agricultural water
• High water right	The high water right is producing the hard water resources management
• Water storage at out of watershed	The water storage at out of watershed is producing hard water resources management
• Criteria of standard drought discharge	Related to Normal flow/ River maintain discharge/ Limited water use/ Water use safety factor/ Existing water use
•Criteria of river structure examination	Dam/ Intake facilities/ Administrative facilities/ Operation and administrative criteria etc.
• Criteria of water use examination	For agriculture, domestic water, hydropower, industry etc.
• Criteria of wide area water supply	

Table S.10.5-4 Preparation of "Manual for Establishment of Water Right"

CHAPTER 6 Evaluation

6.1 Technical Evaluation

The Study principally aims at the improvement of water resources management, but not at the water resources development, in the whole country of Cote d'Ivoire. Accordingly the plans/items recommended by the Study are essentially matters of management such as organization, institution, laws/regulations, and training, although some plans/items include the matters with measures by structures and facilities.

The technical evaluation is to be carried out from general viewpoints for the engineering matters/items of the following sectors:

- (1) Water use quantity control plans
- (2) Water resources development plans
- (3) Water quality control plans
- (4) Watershed management plans
- (5) O & M of water control facilities
- (6) Meteo-hydrological data management
- (7) Establishment of data base for rivers
- (8) Effective use of GIS

As a conclusion, the proposed/recommended measures at respective field of water resources management are technically viable in general. However, there are some conditions to make certain the successful results. The specific evaluation from the technical aspects is briefly described as follows:

(1) Water use quantity control plans

The water use quantity control is done basically at control points established by the JICA study. Then the following are carried out at respective point:

- (a) Evaluation of water use/demand and water supply potential
- (b) Water balance study
- (c) Water allocation and control to the users/areas
 - Establishment of water use right
 - Establishment of operation rule of water control facilities such as dams and diversion works

It is expected that the actual practices for evaluation, allocation and control of water are comparatively complicated, due to various factors involved. However, it would be possible to establish the practical control system based on the comprehensive study and analyses, but with the following conditions.

- (a) Collection of detailed/reliable hydrological data
- (b) Specific survey on actual conditions of rivers, river facilities and groundwater

In addition, the special attention should be paid on the following points:

- (a) It is necessary to carry out the water balance study in consideration of the following factors:
 - Seasonal variation
 - Regional differences
 - Yearly variation
- (b) Establishment of computerized system for the above items will be required in the future. The actual control has to be made basically by reservoir operation and gate control of intakes.
- (c) Flexible rule/system is essential for taking into account the practical countermeasures at the time of unexpected situations
- (d) Quantity of irrigation water use shares a large part of the total use. Accordingly, the effective use for irrigation should be considered with high priority.
- (e) Operation rule should be as simple as possible, taking into account the long-term O & M cost as well as the availability of well-educated operator.
- (f) Long-term monitoring and analyses are essential for reliable evaluation of the surface water as well as the groundwater.
- (g) Additional control points will be necessary in the future.
- (h) Reasonable limit of water use rate in each river should be taken into account for the future development.

(2) Water resources development plans

The water resources development plans proposed by the Study are classified into the following:

- (a) Dam project for multi-purposes or single purposes (irrigation/agriculture, water supply, hydro-power, fishery and flood control)
- (b) Expansion project of irrigation area

(c) Rehabilitation project of irrigation facilities

Critical issues on technical matters are unlikely as far as the detailed plan & design is carried out on the basis of the detailed survey. However, the special attention should be paid, for dam construction, on the following points:

- (a) Selection of dam site based on soundness of topography as well as foundation geology.
- (b) River diversion plan & method during the construction, in consideration of sufficient capacity against unexpected floods.
- (c) Construction/embankment following the technical specifications.
- (d) Design of structures/facilities in consideration of simple & easy operation and maintenance.
- (e) Confirmation of water availability in the future at respective dam site.

The points listed above are the most probable causes of unexpected failure/problems of dam project.

(3) Water quality control plans

The water quality control in rivers, reservoirs, lagoons and groundwater will be carried out in the following manners:

- (a) Monitoring of water quality
- (b) Monitoring of sediment loads
- (c) Monitoring of pollution sources (primary and secondary)
- (d) Monitoring of water-born diseases
- (e) Control of effluent from pollution sources
- (f) Improvement of water quality in respective water body (mainly by sewerage system)

Among them, there would be no remarkable difficulty on technical aspects for the items of (a) to (e). However, it would not be easy to find practical methods to improve the water quality of the existing polluted water body, especially for large volume of water. It would be reasonable to make best effort on the control of effluent from pollution sources with priority. For the improvement of already contaminated water quality, it would be reasonable way to expect the natural function of water purification. Special priority should be given to the conservation and improvement of water quality in lagoons.

(4) Watershed management plans

The proposed measures and improvement on watershed management are presented from the following three aspects:

- (a) Effective management for increase of forest area
- (b) Increase of agricultural production by irrigation
- (c) Management for effective land use

In general, it seems that the proposed measures are technically sound as far as the detailed survey and studies are carried out with sufficient budget and time.

However, it is sure that the planning for forestation and irrigation needs careful discussion among the experienced engineers/experts. Selections of trees and crops have to be made from comprehensive viewpoints including soil suitability, water availability, climate, etc. Test pilot farm will be effective for confirming the suitability.

(5) O & M of water control facilities

The proposed measures on operation and maintenance of water control facilities are presented for the following four sectors:

- (a) Agricultural water supply
- (b) Urban water supply
- (c) Rural water supply
- (d) Hydro-electric power

It is not expected to have difficulties on technical points in general. However, careful study and survey will be necessary especially in consideration of the following points:

- (a) Computerized system is necessary and effective, but the actual importation needs to take into account the financial status and availability of experienced engineers/experts.
- (b) Specific alternative studies from overall viewpoints are necessary for multi-purpose use of existing dam and integrated operation of plural number of dams.
- (c) Improvement of water distribution control needs simulation study and practical methods should be decided.
- (d) Inventory survey of existing dam and irrigation systems have to be carried out with special attention on the status of existing operation and maintenance as well as the causes of problems.
- (e) Concerning rural water supply, there would be no serious difficulties on the mechanical matters, however, the hydro-geological matters need the judgement of

experienced engineers/experts.

- (f) Concerning the urban water supply, significant technical issues are unlikely in consideration of the capability of SODECI.
- (g) Concerning the hydroelectric power, significant technical issues are unlikely in consideration of the capability of CIE.

(6) Meteo-hydrological and hydro-geological network management

The management of meteo-hydrological and hydro-geological network is categorized into the following:

- (a) Establishment of equipment
- (b) Observation and measurement
- (c) Inspection and maintenance
- (d) Data transmission
- (e) Data processing and management
- (f) Monitoring and evaluation

It would be required to assign highly experienced engineers/experts for the data transmission, data processing & management and monitoring & evaluation. However, as far as the sufficient budget is prepared and the training on O & M is carried out properly, the technical difficulties may not happen.

In addition, for confirming the technical viability, it would be required to review the proposed measures on the following points:

- (a) Necessity of highly technical facilities/equipment (such as radar rain-gauges and real-time weather information system)
- (b) Availability of budget and experienced engineers to keep operational conditions of the established equipment for a long period in the future.
- (c) Establishment of definite and detailed plans based on the proposed management measures, which are described from the general/common viewpoints.

(7) Establishment of data base for rivers

It would be unlikely to identify the technical difficulties definitely on the establishment of database for rivers and river-related sectors, such as river facilities, water right, meteorology and hydrology, and river environment.

However, the periodical review and improvement of the data will be significant. In addition, the preparatory studies on the following points will need careful and detailed consideration and discussion among all the relevant agencies concerned.

- (a) Division of the country based on river basins
- (b) Establishment of address of rivers and locations in a river
- (c) Preparation of river system diagram
- (d) Classification of river based on the magnitude of importance for management
- (e) Definition of boundary of river area

(8) Effective use of GIS

It is expected to utilize the existing GIS more effectively, especially on the following points:

- (a) Use for the database of water resources development and management
- (b) Updating the tabular data periodically
- (c) Extension of the spatial information

The technical difficulties are unlikely if the government can prepare the sufficient hardware and software for the practical uses. Most essential matter for effective use of GIS will be the availability of experienced GIS experts. It seems that the government offices in charge of water management do not have sufficiently experienced GIS experts at present. However, it is possible to get assistance from private companies such CCT of BNEDT and CNTIG, which are the semi-governmental organizations and have good experiences in GIS preparation. In addition, the number of experienced experts will be increased in the government offices in the future according to the necessity.

6.2 Organizational Evaluation

The organizations being proposed under this study are evaluated here from the following two points :

- whether or not the proposed organizations have an effect on improvement of the existing organizations ;
- whether or not the proposed organizations have a possibility of realization.

(1) An effect on improvement of existing organizations

There are a lot of organizations for water resources management at present. And this may cause the fragmentation of management functions and the dispersion of water resources management. And such fragmentation of management function, i.e. sectarian water resources management, have produced some harmful effects on water resources development and management.

a) Water Authority and Basin Water Agency

The creation of Water Authority and three (3) Basin Water Agencies aims at an integrated management of water resources to resolve the problems caused by sectarian management. Therefore, that is believed to improve sufficiently the existing organizations and administrative method of water resources management.

b) National Water Committee and Basin Water Committees

The creation of "National Water Committee" and three (3) "Basin Water Committees" is believed to meet the spirit of Water Law,. Because the members of the committee shall be chosen from three (3) different fields, namely, ① planners, deciders and specialist, ② operator and ③ users

Local assemblies and users' participation in the Committees may reflect their voices/opinions to water sector development.

c) Inter – Ministries Committee

It is believed that the creation of "Inter – Ministries Committee" fits the purpose of Water Law. Because the Committee shall compose of the representatives from ministries implicated into water sector services. It is expected this committee may play an important role in discussing about water projects which have multiple objectives.

(2) A possibility of realization

It may be sure that a possibility of realizing proposed organizations depend upon ensuring of budget and development of human resources. Judging from the present situation of Cote d'Ivoire, an assistance from foreign countries for both funds and development of human resources may be the key point whether or not to realize the proposed organizations early.

The adjustment of the relation ship between Water Authority and other existing ministries concerned to water sector is also an important fact to realize the proposed organizations. The organization to be newly created such as Water Authority should keep in close contact and use jointly its privilege with other existing ministries concerned.

6.3 Economic and financial evaluation

(1) methodology

The degree of details reached by a master plan study allows to calculate :

- For the projects with a management profile, the amount of the investment part is not enough large to calculate an internal rate of return. But one can estimate the operation and maintenance costs of the most important ones : in the case of our actions programme, the construction of the institutional and legal framework. In fact this project aims to structure all the sector and surpass in consequences the only fact of insuring the maintenance of a new building. The implementation of the entities forming this framework will have to allow a big increase in terms of planning and programming. And these two items are certainly the most important issues of the sector, from the point of view of the administration.
- For the projects with a development profile, with assumptions concerning the future benefits of the project, it computes a yearly outflow (or balance) which is the result of the difference between the yearly flow of capital expenditures and the successive yearly receipts (future benefits of the project). This set of yearly balances does not include any O&M costs or current expenditures or provision for renewal, and provision for amortisation. These different items will be analysed later during a new stage of the project. The analyse carried out here focuses on economic costs (so the capital expenditures) and calculates :
- the internal rate of return (IRR) in % at different periods (after 15 years, 20 years and 25 years)
- the net present value (NPV) with the same different periods and an actualisation rate of 5%
- the return on investment (ROI) which defines the number of years necessary to cover the capital costs by the benefits expected of the project

This set of rates has been calculated for the most important and the largest projects *belonging to the priority list,* these are three among five projects concerning by integrated operations for river basins.

That does not mean that other projects have inefficient IRR or bad NPV or too longer ROI. The only understanding is that the three most important projects respond effectively for these IRR (at least positive), NPV (with a 5% actualisation rate, must be nil or quasi nil) and last ROI below 12 years.

These different hypothesis are the result of many experience within the country, even if some of them can seem leveraged (the ROI under 12 years can seem hard to obtain but it represents often the conditions offered by the international financial institutions), and other seem too easy (reaching just a positive IRR is certainly not sufficient for the same institutions) but both are a first analysis which claims to be confirmed and detailed at a later step.

(2) Results

The three selected projects are integrated operations for the river basin of the three main rivers of the country:

- Maraho ue, this project would have a duration of 8 years of which half would have developed for preliminary studies and half for the construction. With an estimated total cost raising FCFA 51,300 millions, the capital expenditures count for more than FCFA 50,000 millions.
- Comoe, this project is the most important one, as well for its amount (more than FCFA 279,000 millions) as for its strategic importance, the preliminary studies are planned for a duration of four years while the construction period reaches 5 years.
- Agneby is the longest-in-time project (10 years) but the preliminary steps gather also several studies which will be used also for the other projects. Its construction cost is estimated at FCFA 63,180 million out of FCFA 8,830 millions for preliminary studies. The duration of the only construction would reach 4 years.

	B/C Ratio	IRR	NPV, 5%	ROI
Marahoue				
15 years	0.89	-7%	-122,110	
20 years	1.6	+ 5%	869	6,9 years
25 years	2.3	+ 9%	157,307	
Comoe				
15 years	2.5	+ 8%	214,715	
20 years	4.0	+ 16%	1,560,271	8,1 years
25 years	5.6	+ 19%	3,153,929	
Agneby				
15 years	0.31	+ 4%	-21,850	
20 years	2.2	+ 11%	206,751	8,6 years
25 years	3.1	+ 14%	473,062	

At the level of details known presently, it would be reasonable to admit the feasibility of these projects as correct of IRR > 10 % in the case of project with 80 % of components in Hydro-electrically while IRR can be lower when the project includes often components much as irrigation.

6.4 Social impact aspects

At the stage of the master plan, social aspects will be limited to the creation of jobs implied by the creation, or the extension, of administrative entities. This creation of employment must be understood as a permanent one while many investment projects will produce more jobs but only at a temporary level.

All concerns for moving of population due to investment could not be measured at the level of details this master plan reached.

The extent of the improvement of way of life for the different categories of consumers thanks to the improvement of the water quality and to the increase of the water quantity, is depending on the part of income reserved for water consumption.

For a first approach as required in this type of study, we only suppose that the part of the income reserved for the water in urban areas will remain approximately the same : no more than 5%. But as in the meantime our forecasts intend to a global growth rate of the GDP per capita from six hundred equivalent dollars to seven hundred during the next fifteen years, the effect on water consumption at least follows the same rate (globally 17%).

For the rural area, it will be completely different as the level of the consumption is largely under any international standards. We only suppose that, at least, the rural population would be able to consume 20 litres per day per capita in the year 2015. These two main assumptions concern the consumption and its effect on the households (and , from a matter of fact, the administration as well). Their effects will be more important in health for the rural area while the urban one will win in a more comfortable daily life.

The effect on the other categories of consumers such as enterprises (whatever be industrial or in business agriculture), or other particular ones (energy, water producing) would enable to :

- improve the quality of products : agricultural ones, fruits, vegetables notably;
- increase the quantity of these products and consequently, their supply and, finally, having a result on higher competitiveness and pressure to moderate prices;
- and, of course while improving the management of the resource, improve the water balance

6.5 Environmental Aspect

It must take a notice of the following items in order to implement of the master plan.

(1) Social Condition

- Less job opportunity and low income in the rural area by low agricultural productivity due to lack of irrigation and insufficient rural infrastructure
- Negative effects and sanitary risks (hydrous diseases) developed from mosquitoes, flies living in the vast stretches of surface water and responsible for malaria, onchocercosis, etc
- Conflicts relative to among peoples
- Decamping, resettlement, and compensation problems
- Perturbation of economic activities relative to the combine action of the too intense evapo-transpiration under a wet tropical climate, the seasonal variation of precipitation and the technical failure at the level of the infrastructures of artificial reservoirs

(2) Natural Condition

- Lands consisting of weathered granite and ferrallitic soil which are easily eroded by heavy rain
- Rainfall and surface water with very scarce amount in dry season which is rather difficult to maintain ecological system and use for the human life
- Large devastated forest area and accelerating soil erosion
- Insufficient survey result and data for distribution of wild animals and aquatic fauna and flora
- The massive destruction of the rare, and in great demand, natural flora and of certain plants on vast occupied by the water of lakes
- The disturbing, the death and the forced flight of natural faunas and protected species far from their usual ecosystems invaded by reservoirs
- The perturbations and interruption of the natural cycle of fluvial fertilization of agricultural grounds which formerly received mud, zoo-plankton, limes, slit, etc, by the help of important rising flooding vast plains downstream big artificial reservoirs
- The perturbations and modification of the hydrologic flow of certain surface waterways invaded by artificial reservoirs

The pollution of surface waters and the massive death of fish in the fish breeding stations related to the human life and industrial drainage without control

10 WATER QUALITY AND ENVIRONMENT

10 WATER QUALITY AND ENVIRONMENT

Table of Contents

	Page
CHAPTER 1 WATER QUALITY	10 – 1
	10 1
1.1 Water Quality at the R.N.O Station	10 – 1
1.2 Metal Analysis of Ebrie Lagoon Sediment	10–15
1.3 Water Quality Survey by JICA Study Team	10–17
1.4 Groundwater Quality Analysis	10–23
1.5 Groundwater Quality around Abidjan	10–29
1.6 Drinking Water Quality Standard	10–33
CHAPTER 2 OVERVIEW OF GIS	10–34
2.1 National Park and Protected Area	10–34
2.2 Distribution of Fauna in the National Park	10–39
2.3 Importation Quantities and Price of pesticides	10–45
CHAPTER 3 A GOOD GIS	10–46
3.1 Environmental Law and Regulation	10–46
3.2 Organization on Ministry of Construction and Environment	10–56
CHAPTER 4 COMPONENTS OF GEOGRAPHIC DATA	10–64
CHAPTER 5 THE COMPOENTS OF A GIS	10–79
5.1 Survey Areas and Items	10–79
5.2 Results of Evaluation	10-83
5.3 Expert Report	10–95

CHAPTER 1. WATER QUALITY

1.1 Water Quality at the R.N.O Station

1.1-1 Monitoring Organization and System

(1) Organization

The center of Ivorian pollution control (CIAPOL) is a national public establishment with administrative characters, created by the decree N. 91-662 of October 09, 1991. It is on the authority of the administrative and technical department of the Ministry of Environment and Forest. The CIAPOL is managed by the consultative commission of management. The main roles are as follows.

- The systematic analysis of natural water, waste and residue according to the national observation

network called as RNO

- The valuation of the pollution and nuisance of different receptors area, water, air, and soil

- The collection, evaluation and spread of environmental data

- The regular supervision of the marine area and lagoon with the patrol group

- The control of wrecked pollution in the sea and lagoon

(2) Monitoring Station

The National Observation Network Stations for monitoring of surface water are established to 28 points in the Comoe, Bandama and Sassandra river basin, 9 points at coastal area and lagoon of Ebrie.

RESEAU NATIONAL D'OBSERVATION DE LA COTE D'VOIRE - QUALITE DES EAUX STATIONS CONTINENTALES ET LITTORALES

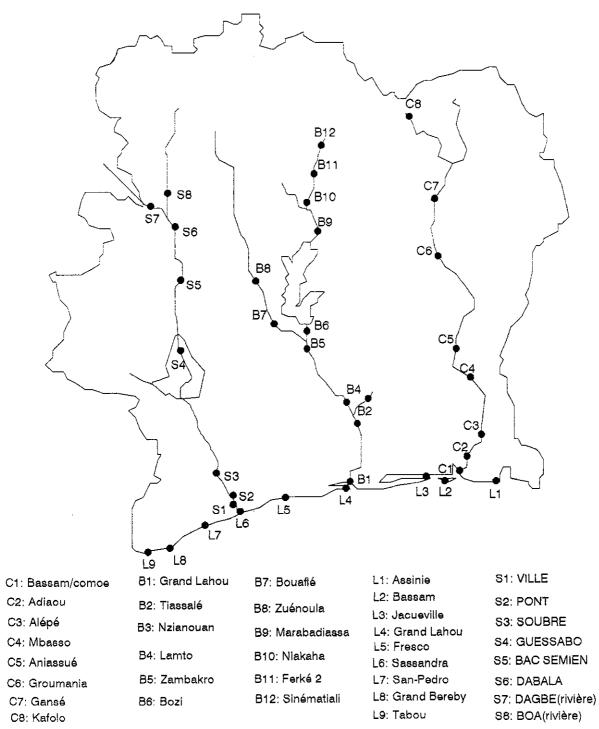


Figure 1.1-1 The National Observation Network Stations

Source: Data from CIAPOL (1998)

Paramètres	T°c	Hq	o2 0	Conductivité	Salinité	N-NO ₂	N-NO ₃	P-PO₄	N-NH₄	Chlorophile	Conductivité Salinité N-NO ₂ N-NO ₃ P-PO ₄ N-NH ₄ Chlorophile Phéopigments	M.E.S
/			%	μS/cm	%0	mg/]	mg/l	mg/l	mg/l	mg/m ³	mg/m ³	
fialadougou surf	26,1	6,46	81,6	100	0			0,200				
fond	27,2	6,80	76,7	50	0		0,000	0,210	0,249			
	26,7	6,59	59,0	06	0	ſ	0000'0	0,119	0,243			
	27,4	6,74	103,0	60	0	0,001	0000'0	0,057	0,287			
Semien (Man)	27,0	6,60	149,0	20	0	0,002	0,000	0,079	0,431			
	26,5	6,36	51,8	50	0	0,008		0,053	0,325			
	29,3	6,42	58,0	75	0	0,003	000'0	0,057	0,286			
	30,0	6,83	63,1	75	0		0000		0.237			
Sassandra Pont S.	28,4	6,70	57,5	75	0	0,002	0,002		0.344			
fond	28,9	6,92	55,8	20	0	0,012		0,063	0,443			
Sassandra Emb.	29,0	6,46	80,0	80	0	0 0.004		0.070	0.357			

du 31Octobre au 04 Novembre 1998

Table 1.1-2 Water Quality at the R.N.O Stations in the Sasandra Basin, in November

M.E.S													_		
Phéopigments	mg/m ³	0,1	0,4	0,5	0,6	0'0	1,5	3,8	3,8	1,1	4,0	0,6	1.5	1,4	1,8
Salinité N-NO2 N-NO3 P-PO4 N-NH4 Chlorophile	mg/m ³	1,2	1,5	2,3	2,6	0'0	8,7	5,8	10,5	8,7	0'6	4,7	2,6	2,9	1,5
N-NH₄	mg/l	0000'0	0,014	0,045	0'000	000'0	0,000	0,002	0,000	0,019	0,010	0,114	0,103	0,033	0,026
P-PO₄	mg/I	0,106	0,186	0,266	0,078	0,164	0,270	0,278	0,291	0,244	0,266	0,110	0,047	0,050	0,095
N-NO ₃	mg/l	0,000	0,012	0,021	0,020	600'0	0,007	0,015	0,050	0,051	0,051	0,027	0,003	0,003	0,013
N-NO ₂	mg/l	0,031	0,011	0,020	0,021	0,019	0,023	0,017	0,014	0,013	0,014	0,013	0000'0	0000'0	000'0
Salinité	%0	0'0	0'0	0'0	0'0	0,0	0'0	0'0	0'0	0'0	0'0	0'0	0'0	1,0	15,5
Conductivité	µS/cm	25,0	0'0	80,0	50,0	50,0	80,0	100,0	85,0	82,0	70'0	70,0	75,0	1600,0	20800,0
õ	%	130,0	10,0	148,0	176,0	169,0	161,0	137,0	89,0	125,0	174,0	179,0	42,0	148,0	141,0
Hq		7,68	5,59	7,92	8,22	8,21	7,51	7,31	7,48	7,48	7,81	7,91	7,89	7,90	7,87
T°c		25,0	26,5	27,5	27,0	26,5	30,0	28,0	31,0	28,5	30,0	31,0	30,5	30,0	28,0
Paramètres	Stations	Vialadougou	Dabala	Touba	Semien (Man) surf	fond	Guiglo surf	fond	Guessabo surf	fond	Soubré	Sassandra Pont S.	fond	Sassandra Emb. S.	fond

du 04 au 12 mars 1998

Table 1.1-1 Water Quality at the R.N.O Stations in the Sasandra Basin, in March

10-3

and
Comoe
in the (
in the
· Quality at the R.N.O Stations in th
0
R.N
le J
t tì
V a
Qualit
ater
No.
1.1-3
Table

Bandama Basin, in April

du 08 au 17 Avril 1998

			ć	Conductivité	Salinité	ν-Nο	Salinité N-NO ³ N-NO ³	P-PO₄	N-NH₄	N-NH ₄ Chlorophile	Phéopigments	MEG
Parametres	5 -		5 8	lis/cm	0%0	- [/um	ma/l	ma/l	mg/l	mg/m ³	mg/m ³	
Stations //			2 T				0000	0.033	0.026	2.0	4,5	
M'Basso	30,25	6,37	118,/	00'0	500		0000	0.035	0.019	3.8	2,9	
Anekouadiokro	29,23	7,34	108,2	19,0	0.03	0.003	0.013	0.055	0,017	3,5	0,6	
Groumania surf	29,1/	00, 7	03.6	82 D	0.03	0.002	0.029	0,036	0,028	1,2	1,7	
tond	20,42	1,03	442.5	77.0	0 03	0.001	600.0	0.033	0,019	0'0	0'0	
Gansé	29,96	4L/	7170	104 5	0.04	0 002	0.039	0.037		2,9	2,0	
Tortiya	25,19	7 47	0, 78 06, 8	82.0	0.03	0.003	0.035	0,040	0,004	1,8	0'3	
3.	50,45 20,24	(,1/ 6.65	100 0	20.07	0.03	0,002	0,052	0,032	0,027	2,3	0,1	
Sinematiali suri	28,31	0,00 6.55	62.6	69.0	0,03	0,001	0,001	0,033	0,040	1,8	3,6	
	21,02	7.46	142.6	102.0	0,04	0,006	0,060	0,036	0,025	0,0	0'0	
Narolo	20.03	7 31	129.0	103.0	0,04	0,001	0000'0	0,037	0,043	1,2	1,1	
200	20,00	7 13	109.8	78.0	0,03	0,000	0,000	0,019	0,035	1,8	0'1	
Zambakro suri	10,62	7.05	106.7	0.62	0,03	0,007	0,016	0,017	0,014	0'0	0'0	
Tonu	23,00	7 13	07.0	0.67	0.03	0.006	0,033	0,015	0,027	2,9	4,0	
Bozi	21,23	1,16	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	225.0	10			2.293	0.020	42,3	53,6	
Bouaflé	29,09	0,97	20'02	248.0	0.15	0.012	000.0	0.107	0,501	290,0	12,0	
Zuenoula	28,37	0,40	- 17	0.00	200	900	_	0.020	0.218	1,8	5,2	
amto	27,86	7,35	48,5	102.0			_	0 024	0.019	15.2	5,2	
N'Zianoua	29,37	7,82		0,201			_	0 024	0.024	8	1.9	
iassalé surf	29,52	7,40	114,0	0,10	36		_	0 022	0.016	0.0	0.0	
fond	29,32	7,37		0 0			+	0.000	0 000	11.1	10.5	
Alépé surf	26,46	6,53	113,3	740,0	0,00			0100	-	3.5	3.0	
fond	24,19	6,42	13,3	22433,0	13,30	0,000		0.018	-	Ĺ	6.0	
Adiahou surf	29,74	6,40	104,0	6941,U	2	╉	-				6 A	
	29,13	6,21	24,5	18329,0	10,24	-+		0,018			2.2	
Bassam surf	30,82	6,77	114,2	13425,0	6,83	-+		0,018	-		200	
ļ	29,71	6,70	63,7	20160,0	10,90	╈	-		+		40	
0-41 choir aint	24 42	7 55	0.70	112.0	0,05	0,009	0,003	0,024	010'0		D , t	

Source: Data from CIAPOL (1998)

Table 1.1-4 Water Quality at the R.N.O Stations in the Comoe and

Bandama Basin, in October

du 14 au 24 Octobre 1998

% μ S/cm %0 mg/l	Paramètres	T°C	Ha	°2	Conductivité	Salinité	Salinité N-NO2 N-NO3		P-PO4 N-NH4	N-NH₄	Chlorophile	Phéopigments	M.E.S
∞ 29,6 6,9 90,8 89 0 0,005 0,044 0,034 ania surf $27,3$ 6,8 7,0 89,6 60 0 0,014 0,115 0,034 fond $27,3$ 6,8 78,0 85 0 0,014 0,115 0,033 fond $27,3$ 6,6 18,7 87,9 70 0 0,007 0,115 0,033 surf $27,3$ 6,6 101,9 65 0 0,006 0,032 0,033 solution $27,3$ 6,6 101,9 65 0 0,006 0,035 0,033 solution $29,1$ 6,5 117,5 55 0 0,006 0,035 0,033 solution $28,0$ 6,9 100,0 50 0 0,016 0,034 0,025 solution $28,0$ 0 0,006 0,033 0,019 0,025 0,023 0,023	Stations			%	µS/cm	%٥	mg/l	mg/l	mg/l	l/gm	mg/m ³	mg/m ³	
29,1 7,0 89,6 60 0 0,004 0,054 0,046 0,030 ania surf 27,3 6,8 - 60 0 0,016 0,115 0,033 fond 27,3 6,5 78,3 85 0 0,017 0,115 0,033 surf 28,5 6,6 170,9 65 0 0,007 0,115 0,033 surf 28,5 6,6 101,9 65 0 0,006 0,035 0,034 27,6 6,6 101,9 65 0 0,006 0,035 0,034 sedougou 29,1 6,6 117,5 55 0 0,006 0,036 0,035 sedougou 28,0 6,9 110,5 52 0 0,004 0,036 0,035 sedougou 28,0 6,9 121,5 52 0 0,004 0,031 0,035 surf 28,5 6,9 120,0	M'Basso	29,6	6,9	90,8	68	0	0,005	0,040	0,073	0,347			
ania surf $27,3$ $6,8$ $78,3$ 85 0 $0,014$ $0,117$ $0,031$ fond $27,3$ $6,5$ $78,3$ 85 0 $0,007$ $0,115$ $0,032$ surf $28,5$ $6,6$ $78,3$ $85,6$ 0 $0,007$ $0,115$ $0,032$ 0		29,1	7,0	9'68	. 09	0	0,004	0,054	0,046	0,925			
fond $27,3$ $6,6$ $78,3$ 85 0 $0,011$ $0,111$ $0,033$ surf $29,5$ $6,1$ $87,9$ 70 0 $0,007$ $0,115$ $0,033$ fond $28,5$ $6,6$ $120,6$ 66 $0,004$ $0,032$ $0,024$ $27,3$ $6,6$ $101,9$ 65 0 $0,006$ $0,034$ $0,034$ sedougou $29,1$ $6,6$ $101,5$ 55 0 $0,006$ $0,034$ sytiali surf $28,0$ $6,6$ $101,5$ 55 0 $0,004$ $0,036$ soldougou $28,0$ $6,6$ $110,5$ 55 0 $0,004$ $0,036$ $0,024$ sold $28,0$ $6,6$ $112,5$ 52 0 $0,004$ $0,031$ $0,024$ sold $28,0$ $6,9$ $112,5$ 52 0 $0,004$ $0,032$ $0,032$ sold 28	L	27,3	6,8		60	0	0,016	0,116	0,030	0,285			
surf 29,5 6,1 87,9 76,0 68 0 0,007 0,115 0,032 fond 28,5 6,8 76,0 68 0 0,007 0,115 0,032 fond 27,3 6,6 101,9 65 0 0,006 0,095 0,032 sedougou 29,1 6,5 117,5 55 0 0,006 0,095 0,032 aytali <surf< td=""> 28,0 6,6 109,5 70 0 0,006 0,036 0,032 aytali<surf< td=""> 28,0 6,5 112,5 55 0 0,006 0,036 0,035 atial surf 28,6 6,9 112,5 52 0 0,007 0,016 0,035 atial surf 28,5 6,9 112,5 52 0 0,007 0,014 0,025 atial surf 28,5 6,9 112,5 52 0 0,007 0,014 0,025 fond 28,5</surf<></surf<>	I-	27,3	6,5	78,3	85	0	0,014	0,117	0,031	0,616			
fond 28,5 6,8 76,0 68 0 0,007 0,115 0,032 0,033 0,034 0,035 0,032		29,5	6,1	87,9	20	0	200'0	0,115	0,033	0,110			-
27,3 6,6 120,6 60 0 0,032 0,032 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 0,032 0 <th0< td=""><td></td><td>28,5</td><td>6,8</td><td>76,0</td><td>68</td><td>0</td><td>0,007</td><td>0,115</td><td>0,032</td><td>0,162</td><td></td><td></td><td></td></th0<>		28,5	6,8	76,0	68	0	0,007	0,115	0,032	0,162			
27,6 6,6 101,9 65 0006 0,051 0,035 0,0	Tortiya	27,3	6,6		60	0	0,004	0,032	0,024	0,183			
sedbuggou $29,1$ $6,5$ $117,5$ 55 0 $0,006$ $0,095$ $0,026$ $29,1$ $6,6$ $109,5$ 70 0 $0,006$ $0,118$ $0,034$ $29,1$ $6,6$ $98,0$ 50 0 $0,006$ $0,018$ $0,034$ $100d$ $28,0$ $6,7$ $80,0$ 60 0 $0,006$ $0,034$ $0,024$ $100,0$ $5,0,0$ $6,9$ $112,5$ 52 0 $0,004$ $0,070$ $0,019$ $30,7$ $6,9$ $112,5$ 52 0 0 $0,004$ $0,070$ $0,070$ $30,0$ $6,9$ $112,5$ 52 0 0 $0,004$ $0,072$ $0,070$ $30,0$ $6,9$ $112,5$ 52 0 0 $0,004$ $0,072$ $0,070$ $30,0$ $6,9$ $112,5$ 52 0 0 $0,001$ $0,071$ $0,071$ $100,0$ $28,5$ $6,9$ $120,0$ $84,0$ 61 0 $0,002$ $0,014$ $0,071$ $100,0$ $28,3$ $7,0$ $120,0$ 82 0 $0,002$ $0,014$ $0,071$ $100,0$ $28,5$ $6,9$ $ 100,5$ 90 0 $0,002$ $0,004$ $0,071$ $100,0$ $28,5$ $6,9$ $ 100,6$ $0,002$ $0,004$ $0,072$ $0,071$ $0,071$ $100,0$ $28,5$ $6,9$ $ 100,6$ $0,002$ $0,002$ $0,004$ $0,071$ $0,071$ $112,0,0$ <		27,6	6,6	101,9	65	0	0,006	0,051	0'030	0,362			
Z9,1 6,6 109,5 70 0 0,005 0,118 0,035 aytiali surf 28,0 6,6 98,0 50 0 0,005 0,004 0,035 fond 28,0 6,7 80,0 50 0 0,005 0,004 0,032 30,7 6,9 112,5 52 0 0,004 0,03 0,031 30,0 6,5 110,5 52 0 0,003 0,032 0,031 adiassa 27,6 6,9 110,5 55 0 0,003 0,014 0,032 kro< surf 28,5 6,9 12,18 80 0 0,003 0,049 0,037 0,033 0,049 0,037 0,033 0,041 0,037 0,031 0,041 0,032 0,033 0,041 0,033 0,042 0,033 0,042 0,033 0,044 0,055 0,044 0,055 0,042 0,041 0,155 0,041 0,155 <!--</td--><td>Ferkessedougou</td><td>29,1</td><td>6,5</td><td>117,5</td><td>55</td><td>0</td><td>900'0</td><td>0,095</td><td>0,029</td><td>0,387</td><td></td><td></td><td></td>	Ferkessedougou	29,1	6,5	117,5	55	0	900'0	0,095	0,029	0,387			
aytiali surf 28,0 6,6 98,0 50 0 0,005 0,004 0,035 fond 28,0 6,7 80,0 60 0 0,006 0,086 0,022 fond 28,0 6,9 112,5 52 0 0,004 0,030 0,036 adiassa 27,6 6,9 100,0 50 0 0,007 0,030 0,036 adiassa 27,6 6,9 121,8 84,0 61 0 0,03 0,049 0,075 kro surf 28,5 6,9 121,8 80 0 0,003 0,049 0,075 fond 28,5 6,9 120,0 82 0 0,003 0,014 0,021 fond 28,5 6,9 - 175 0 0,012 0,114 0,022 fond 28,5 6,9 - 85 0 0,013 0,014 0,023 0,014 0,022 <		29,1	6,6	109,5	70	0	0,009	0,118	0,034	0,270			
fond $28,0$ $6,7$ $80,0$ 60 0 $0,006$ $0,086$ $0,024$ $30,7$ $6,9$ $112,5$ 52 0 0 $0,004$ $0,070$ $0,019$ $30,7$ $6,9$ $110,5$ 52 0 0 $0,004$ $0,070$ $0,019$ $30,7$ $6,9$ $110,5$ 52 0 0 $0,004$ $0,070$ $0,019$ $30,7$ $6,9$ $110,0$ 50 0 $0,007$ $0,032$ $0,030$ $0,016$ $27,6$ $6,9$ $121,8$ $84,0$ 61 0 $0,007$ $0,032$ $0,030$ 1000 $28,3$ $7,0$ $120,0$ $84,0$ 61 0 $0,007$ $0,049$ $0,075$ 1000 $28,3$ $7,0$ $120,0$ $84,0$ 61 $0,007$ $0,012$ $0,014$ $0,072$ 1000 $28,3$ $7,0$ $120,0$ 82 0 0 $0,003$ $0,014$ $0,072$ 1175 0 $0,012$ $0,012$ $0,014$ $0,072$ $0,014$ $0,072$ 110 $28,5$ $6,9$ $ 175$ 0 $0,002$ $0,016$ $0,062$ 110 $21,0$ $6,9$ $ 175$ $0,013$ $0,014$ $0,023$ $0,014$ 110 $28,7$ $ 175$ 0 $0,013$ $0,042$ $0,023$ $0,042$ 110 $27,0$ $6,9$ $ 70,0$ 0 $0,013$ $0,042$ $0,023$ $0,084$ 100 <td></td> <td>28,0</td> <td>6,6</td> <td>98,0</td> <td>50</td> <td>0</td> <td>0,005</td> <td>0,004</td> <td>0,035</td> <td>0,102</td> <td></td> <td></td> <td></td>		28,0	6,6	98,0	50	0	0,005	0,004	0,035	0,102			
30,7 $6,9$ $112,5$ 52 0 $0,034$ $0,024$ $0,030$ $0,030$ $30,0$ $6,5$ $110,5$ 52 0 0 $0,004$ $0,070$ $0,070$ $0,016$ $30,0$ $6,5$ $100,0$ 50 0 0 $0,007$ $0,030$ $0,056$ $27,6$ $6,9$ $84,0$ 61 0 $0,007$ $0,032$ $0,032$ $0,032$ $27,6$ $6,9$ $84,0$ 61 0 $0,007$ $0,032$ $0,049$ $0,075$ $27,6$ $6,9$ $84,0$ 61 0 $0,007$ $0,032$ $0,041$ $0,027$ $28,5$ $6,9$ $121,8$ 80 0 0 $0,007$ $0,041$ $0,027$ 6 $28,5$ $6,9$ $120,6$ 82 0 $0,007$ $0,041$ $0,027$ 6 $28,5$ $6,9$ $ 175$ 0 $0,007$ $0,041$ $0,072$ $1a$ $surf$ $28,5$ $6,9$ $ 175$ 0 $0,012$ $0,146$ $0,062$ $1a$ $surf$ $27,0$ $6,9$ $ 85$ 0 $0,013$ $0,046$ $0,062$ $1a$ $surf$ $28,5$ $6,9$ $ 70,0$ $0,013$ $0,042$ $0,060$ $0,062$ $1a$ $surf$ $28,9$ $6,7$ $ 70,0$ $0,013$ $0,042$ $0,065$ $0,023$ $1a$ $surf$ $28,9$ $6,7$ $ 70,0$ $0,013$ $0,043$ $0,023$ $0,$	•	28,0	6,7	80,0	60	0	0,006	0,086	0,022	0,241			
30,0 6,5 110,5 52 0 0,004 0,070 0,019 abadiassa 27,6 6,9 100,0 50 0 0,003 0,030 0,030 0,056 bakro 27,6 6,9 84,0 61 0 0,003 0,032 0,030 0,056 bakro surf 28,5 6,9 121,8 80 0 0,003 0,014 0,075 0,037 0,032 0,037 afte 28,5 6,9 121,8 80 0 0,007 0,061 0,071 0,075 afte surf 28,5 6,8 - 175 0 0,003 0,014 0,025 oula surf 27,0 6,9 - 85 0 0,012 0,116 0,016 0,061 0,061 0,025 oula surf 27,0 6,9 - 85 0 0,013 0,046 0,032 0,044 0,084 0,084 </td <td></td> <td>30,7</td> <td>6'9</td> <td></td> <td>52</td> <td>0</td> <td>0,004</td> <td>0,034</td> <td>0,021</td> <td>0,279</td> <td></td> <td></td> <td></td>		30,7	6'9		52	0	0,004	0,034	0,021	0,279			
abadiassa $27,6$ 6,9 $100,0$ 50 0 $0,033$ $0,032$ $0,022$ $0,041$ $0,022$ $0,041$ $0,022$ $0,032$ $0,032$ $0,032$ $0,032$ $0,032$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,024$ $0,022$ $0,022$ $0,022$ $0,022$		30'0	6,5	110,5	52	0	0,004	0,070	0,019	0,242			
bakro $27,6$ $6,9$ $84,0$ 61 0 $0,007$ $0,032$ $0,022$ $0,032$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,044$ $0,022$ $0,042$ $0,022$ $0,042$ $0,022$ $0,042$ $0,022$ $0,042$ $0,022$ $0,042$ $0,022$ $0,042$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,022$ $0,024$ $0,022$ $0,024$ $0,022$ $0,024$ $0,022$ $0,024$ $0,022$ $0,024$ $0,022$ $0,024$ $0,022$ $0,022$ <td>Marabadiassa</td> <td>27,6</td> <td>6'9</td> <td>100,0</td> <td>50</td> <td>0</td> <td>0,003</td> <td>0,030</td> <td>0,056</td> <td>0,155</td> <td></td> <td></td> <td></td>	Marabadiassa	27,6	6'9	100,0	50	0	0,003	0,030	0,056	0,155			
bakro surf 28,5 6,9 121,8 80 0 0,003 0,049 0,075 fond 28,3 7,0 120,0 82 0 0,003 0,049 0,075 fond 28,3 7,0 120,0 82 0 0,007 0,061 0,037 afté 28,5 6,9 - 109,5 90 0 0,012 0,119 0,041 oula 28,5 6,9 - 85 0 0,012 0,119 0,045 0,051 oula surf 27,0 6,9 - 85 0 0,013 0,046 0,062 oula surf 27,0 6,9 - 60 0 0,013 0,046 0,082 tou 27,0 6,9 - 60 0 0 0,013 0,046 0,083 0,044 0,065 0 0 0 0 0 0 0 0 0		27,6	6,9	84,0	61	0	0,007	0,032	0,030	0,691			
fond28,37,0120,08200,0070,0610,037afté $28,6$ $6,5$ $109,5$ 90 00 $0,014$ $0,027$ $0,014$ $0,027$ aftésurf $28,5$ $6,8$ - 175 0 $0,012$ $0,119$ $0,041$ $0,021$ fond $28,5$ $6,9$ -850 $0,012$ $0,106$ $0,062$ fond $27,0$ $6,9$ - 85 0 $0,012$ $0,046$ $0,062$ fond $27,7$ $6,6$ $70,0$ 80 0 $0,013$ $0,046$ $0,082$ to $27,7$ $6,6$ $70,0$ 80 0 $0,013$ $0,046$ $0,084$ to $27,7$ $6,6$ $70,0$ 80 0 $0,013$ $0,046$ $0,084$ to $27,7$ $6,6$ $70,0$ 80 0 $0,013$ $0,046$ $0,083$ to $28,9$ $6,7$ - 78 0 $0,042$ $0,055$ $0,270$ salésurf $29,4$ $6,6$ - 82 0 $0,022$ $0,041$ $0,152$ fond $20,222$ $86,6$ - $88,6$ 0 $0,022$ $0,041$ $0,152$ fond $20,222$ $86,6$ - 82 0 $0,022$ $0,041$ $0,152$ fond $20,222$ $86,6$ - $88,7$ 0 $0,022$ $0,041$ $0,152$ fond $20,222$ $85,6$ - $85,6$ 0 <		28,5	6'9	-	80	0	0,003	0,049	0,075	0,194			
28,6 6,5 109,5 90 0 0,003 0,014 0,027 affé surf 28,5 6,8 - 175 0 0,012 0,119 0,041 fond 28,5 6,9 - 85 0 0,012 0,119 0,041 noula surf 27,0 6,9 - 60 0 0,023 0,106 0,062 noula surf 27,0 6,9 - 60 0 0,013 0,046 0,082 to 27,7 6,6 70,0 80 0 0,013 0,046 0,083 0,084 to 27,7 6,6 70,0 80 0 0,013 0,046 0,083 0,084 anoua surf 28,9 6,5 - 70 0 0,043 0,054 0,270 feat 28,9 6,5 - 78 0 0,042 0,055 0,272 fo		28,3	2,0		82	0	0,007	0,061	0,037	0,633			
surf 28,5 6,8 - 175 0 0,012 0,119 0,041 fond 28,5 6,9 - 85 0 0,023 0,106 0,180 surf 27,0 6,9 - 60 0 0,013 0,046 0,082 fond 27,0 6,9 - 60 0 0,013 0,046 0,082 a surf 28,9 6,5 - 70,0 80 0 0,013 0,063 0,084 a surf 28,9 6,7 - 78 0 0,042 0,054 0,270 surf 28,9 6,7 - 82 0 0,022 0,041 0,152 surf 29,4 6,6 - 85 0 0,022 0,041 0,152 surf 29,4 6,6 - 85 0 0,023 0,041 0,152		28,6	6,5		06	0	0,003	0,014	0,027	0,161			
fond 28,5 6,9 - 85 0 0,023 0,106 0,180 surf 27,0 6,9 - 60 0 0,005 0,060 0,062 fond 27,7 6,9 - 60 0 0,013 0,046 0,082 a 27,7 6,6 70,0 80 0 0,013 0,046 0,082 a surf 28,9 6,5 - 70 0 0,023 0,063 0,084 fond 28,9 6,5 - 70 0 0,043 0,054 0,270 surf 29,4 6,6 - 82 0 0,041 0,152 fond 29,3 6,6 - 85 0 0,041 0,152		28,5	6,8	,	175	0	0,012	0,119	0,041	0,546			
surf 27,0 6,9 - 60 0,005 0,060 0,062 fond 27,0 6,9 - 60 0 0,13 0,046 0,082 a 27,7 6,6 70,0 80 0 0,013 0,046 0,082 a surf 28,9 6,5 - 70,0 80 0 0,043 0,054 0,270 a surf 28,9 6,5 - 78 0 0,042 0,055 0,270 surf 29,4 6,6 - 82 0 0,022 0,041 0,152 fond 20,0 6,6 - 85 0 0,023 0,044 0,152	fond	28,5	6'9	1	85	0	0,023	0,106	0,180	0,768			
fond 27,0 6,9 - 60 0,013 0,046 0,082 a 27,7 6,6 70,0 80 0 0,013 0,046 0,083 a surf 28,9 6,5 - 70,0 80 0 0,043 0,054 0,270 fond 28,9 6,7 - 78 0 0,042 0,055 0,270 surf 29,4 6,6 - 82 0 0,042 0,065 0,272 surf 29,4 6,6 - 82 0 0,042 0,041 0,152 fond 20,02 6,6 - 85 0 0,044 0,156		27,0	6,9	1	60	0	0,005	0,060	0,062	0,275			
27,7 6,6 70,0 80 0 0,023 0,083 0,084 ia surf 28,9 6,5 - 70 0 0,043 0,054 0,270 fond 28,9 6,7 - 78 0 0,042 0,055 0,222 fond 28,9 6,7 - 78 0 0,042 0,055 0,222 surf 29,4 6,6 - 82 0 0,022 0,041 0,152 fond 20,22 6,6 - 82 0 0,022 0,041 0,152		27,0	6'9	3	60	0	0,013	0,046	0,082	0,527			
Ia surf 28,9 6,5 - 70 0 0,043 0,054 0,270 fond 28,9 6,7 - 78 0 0,042 0,065 0,222 surf 29,4 6,6 - 82 0 0,022 0,041 0,152 fond 29,4 6,6 - 82 0 0,022 0,041 0,152 fond 20,22 6,6 - 82 0 0,022 0,041 0,152		27,7	6,6	70,0	80	0	0,023	0,083	0,084	0,183			
fond 28,9 6,7 - 78 0 0,042 0,065 0,222 sulf 29,4 6,6 - 82 0 0,022 0,041 0,152 find 29,4 6,6 - 82 0 0,022 0,041 0,152 find 29,2 6,6 - 85 0 0,023 0,044 0,152		28,9	6,5	1	20	0	0,043	0,054	0,270	0,919			
surf 29,4 6,6 - 82 0 0,022 0,041 0,152 fame 20.2 6,6 - 85 0 0,024 0,152	fond	28,9	6,7		78	0	0,042	0,065	0,222	0,808			
202 66 5 85 0 0 0 0 23 0 044 0 126		29,4	6,6	1	82	0	0,022	0,041	0,152	0,281			
		29,2	6,6	1	85	0	0,023	0,044	0,126	0,325			

Source: Data from CIAPOL (1998)

Table 1.1-5 Water Quality at the R.N.O Stations in the Comoe and

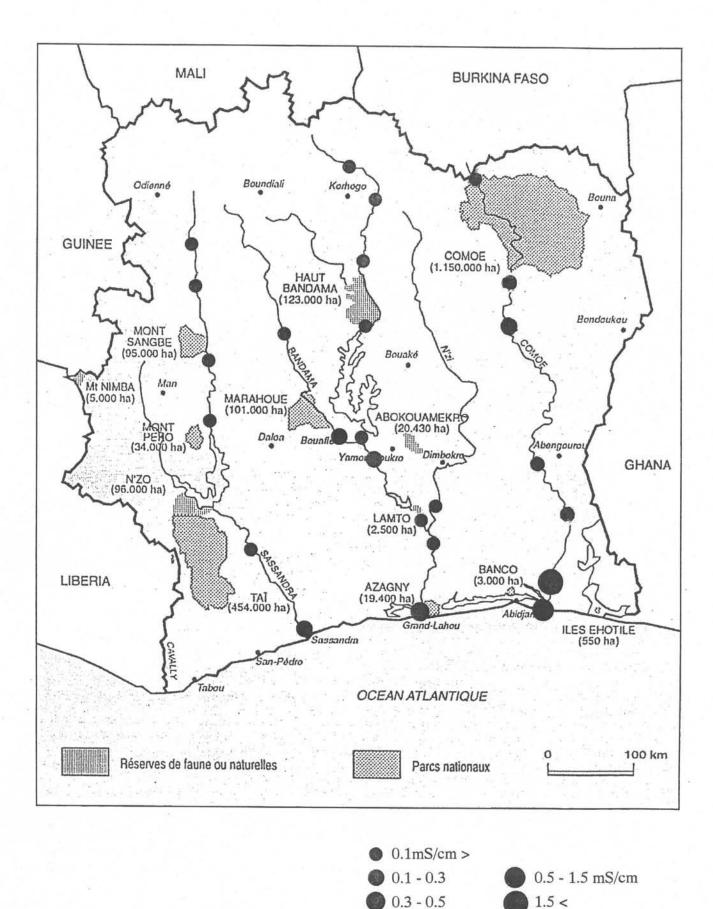
Bandama Basin, in October (continue)

ľ		c I		¢	Construction of the N-NO N-NO P-PO, N-NH, Chlorophile	Calinitá	N-NO.	N-NO.	P-PO,	N-NH,	Chlorophile	Phéopiaments	M.E.S
_ Ра	Parametres	ပ္ပ	Ed.	Š	Collancavite	Calling	2000	2	+)	+			
Stations	/			%	uS/cm	%0	mg/l	∥gm	mg/l	mg/l	mg/m	mg/m	
<u>Oldná</u>) L U	29.6	6.80	r	62.0	0,000	0,027	0,063	0,122	0,246			
2422		29.2	6,90	1	65,0	0,000	0,029	0,065	0,125	0,426			
	fond	29.2	6,60		65,0	0,000	0,028	0,063	0,114	0,428			
Adiahou	surf	28.7	6.60		62,0	0000'0	0,026	0,069	0,130	0,254			
		28.6	6.80		62,0	0,000	0,026	0,066	0,012	0,389			i
	fond	28.9	7.00	•	65,0	0000	0,026	0,066	0,125	0,297			
Raccam		264	6.40		60,0	0000	0,025	0,070	0,190	0,271			
		29.5	6.60		70,0	0,000	0,028	0,080	0,109	0,523			
	fond	29.0	6.50		70,2	0000	0,026	0,053	0,116	0,431			
Grd-I ahou		28.5	7,10	6'29	46,0	0,004	0,027	0,050	0,190	0,272			
	ľ	28,4	7,22	62,9	87,0	0,004	0,027	0,052	0,350	0,345			

Source: Data from CIAPOL (1998)

Table 1.1-6 Micro Organisms at the R.N.O Stations in the ComoBandama Basin, in November

CAMPAGNE R.N.O CONTINENTAL SUR LES FLEUVES COMOE ET BANDAMA du 13 au 22 Novembre 1995


Paramètres Stations	Coliformes totaux	Coliformes fécaux	Streptocoques fécaux	Streptocoques perfringens
M'basso	248	188	74	157
Aniassué	225	150	90	85
Groumania	2400	0	3000	10
Ganse	1800	25	35	10
Kafolo	235	13	75	0
Sinématiali	2170	10	485	20
Ferké 2	300	180	15	0
Niakaha	170	0	20	0
Marabadiassa	1400	0	23	20
Zambakro	3000	0	15	40
Zuenoula	2800	0	65	0
Bouaflé	1300	0	64	30
Bozi	800	0	85	140
Lamto	300	0	215	0
N'zianouan	2100	80	370	60
Tiassalé	1300	30	194	10
Grand Lahou	20000	1400	114	10
Embouchure		,		
Grand Lahou	30000	13000	75	50
Alépé	68500	268	80	60
Adiahou	86000	388	10	47
Bassam	31500	183	20	20

Source: Data from CIAPOL (1995)

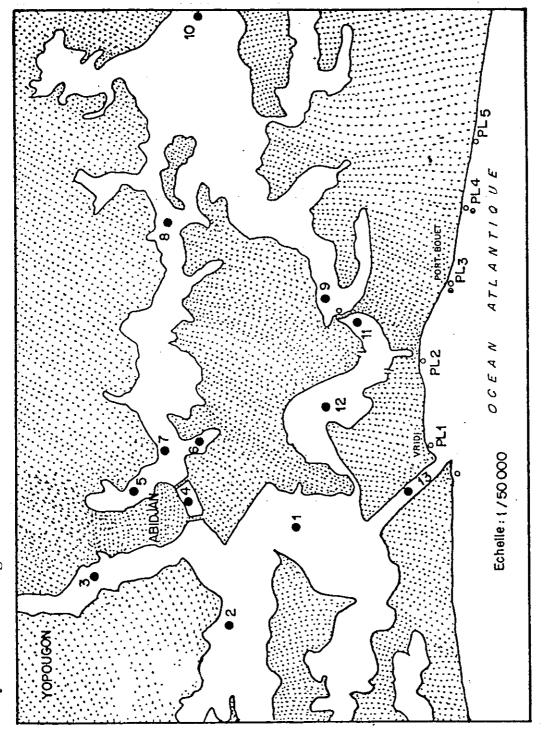
STATION	
PARAMETRE	Jacqueville
Г°С	31, 4
PH	8,28
Cond (µs/ Cm	38 600
Sal ‰	
N-NO ⁻ 2 (mg/l)	0, 007
N-NO ⁻ 3 (mg/l)	0, 013
N-NH ₄ (mg/l)	0, 091
P- PO ³⁻ 4 (mg/l)	0, 032
Chlorophylle a (mg/l)	< 0, 001
K (mg/l)	
Ca (mg/l)	
Mg (mg/l)	
Coliformes Totaux (100ml)	2
Coliformes Fécaux (100ml)	<1
Streptocoques (100ml)	10
Clostridium (100ml)	<1
MES (mg/l)	8, 4
Hydrocarbures Totaux (µg/l)	10, 6

Table 1.1-7 Water Quality at the Jacqueville in the Lagoon, in April

Source: Data from CIAPOL (1999)

Strepto- coccus perfringen	30	10					38	10							20	09					0	0				0	40							15	140				10	30			0
Strepto- coccus fecal p	293	114					158	194							178	370					220	215				80	15							162	85				68	64			Continues next page
Coli. fecal	20	1,400					5	30							305	80					243	0				155	0							5	0				50	0			Continue
Coli. total	4,200	20,000					365	1,300							420	2,100					388	300				223	3,000							70	800				133	1,300			
Pheopig- ments (mg/m ³)			0.0	4.0	0.4				0.5	0'0	1.9	0.0					3.4	5.2					1.0	5.2				1.2	0.2	0.7	0.0					1.6	4.0				25.9	17.5	
Chloro- phile (mg/m ³)	0	0.0	2.3	9.0	2.7				1.2	0'0	1.8	0.0					60.6	15.2					7.6	1.8				7.0	7.6	1.8	0.0					11.1	2.9				105.9	159.3	
N-NH ₄ (mg/l)			0.056	0.018	_	_			0.072	0.078	0.024	0.016					0.084	0.019	0.919	0.808			0.129	0.218	0.183			0.075	0.120	0.035	0.014	0.194	0.633				0.027	0.161				0.499	
P-PO ₄ (mg/l)			0.0/0	_	_	_			0.045		0.022	0.020	0.152	0.126			0.053	0.024	0.270	0.222					0.084								0.037					0.027				0.058	
N-NO ₃ (mg/l)			0.014	0.044	0.050	0.052			0.025	0.000	0.000	0.000	0.041	0.044			0.022	0.000	0.054	0.065			0.000	0.023	0.083			0.018	0.148	0.000	0.016	0.049	0.061					0.014				0.000	
N-NO ₂ (mg/l)		0000	0000		_				0.000	0.000	0.003	0.001	0.022	0.023			0.000	0.001	0.043	0.042				0.006	0.023							0.003	0.007			0.000	0.006	0.003			0.000	0.000	
Salinity (%o)			16.00	0.05	0000	00.0			00.0	00.00	0.03	0.03	00.00	0.00			00.0	0.04	0.00	0.00			00.00	0.03	0.00			0.00	0.00	0.03	0.03	0.00	0.00			0.00	0.03	0.00			0.00	0.00	
EC (μS/cm)		0000	1,200.0	20,000.0	46.0	87.0			80.0	80.0	81.0	81.0	82.0	85.0			120.0	102.0	70.0	78.0			82.0	82.0	80.0			180.0		78.0	79.0	80.0	82.0			100.0	79.0	90.0			260.0	390.0	
O ₂ (%)			127.0	0.4.0	679	62.9			142.0	128.0	114.6	109.2	I	I			151.0	116.9	I	1			60.0	48.6	70.0			142.0	138.0	109.8	106.7	121.8	120.0			123.0	97.2	109.5					
Hd			1	7 55	_	_			1	1	7.40	7.37	0.60	09.9			1	7.82	6.50	6.70			-		6.60								7.00			7.05	7.12	6.50			_	09.9	
(O°) T		-	29.00						34.00	33.00	29.52	1 29.32	29.40				38.50	29.37	28.90	1 28.90			29.00	27.86	27.70								1 28.30			31.00	27.23	28.60				38.00	
			surt	5 Ind	surf surf	fond			surf	fond	surf	fond	surf	fond					surf	fond								surf	fond	surf	fond	surf	fond								surf	fond	
Station	Grand Lahou	Grand Lahou	Grand Lahou	Grand Lahou	Grand Lahou	Grand Lahou	Tiassalé	Tiassalé	Tiassalé	Tiassalé	Tiassalé	Tiassalé	Tiassalé	Tiassalé	N'Zianouan	N'Zianouan	N'Zianoua	N'Zianoua	N'Zianoua	N'Zianoua	Lamto	Lamto	Lamto	Lamto	Lamto	Zambakro	Zambakro	Zambakro	Zambakro	Zambakro	Zambakro	Zambakro	Zambakro	Bozi	Bozi	Bozi	Bozi	Bozi	Bouaflé	Bouaflé	Bouaflé	Bouaflé	
No.	B01		BUI		_			B02	B02	B02	B02	B02	. B02	. B02	, B03	. B03	B03	B03	. B03	- B03	B04	B04	B04	B04			: B05	B05	B05					, B06	: B06	B06	B06	. B06	B07	B07	B07	B07	
Date (from - to)	Nov 11 Nov 17	1996 Nov 13 Nov 22	1998 Mar 26 Apr 4	ar 20 Apr 4				1996 Nov 13 Nov 22	lar 26 Apr 4	lar 26 Apr 4	pr 8 Apr 17	pr 8 Apr 17	oct 14 Oct 24		lov 11 Nov 17	lov 13 Nov 22	1ar 26 Apr 4	pr 8 Apr 17			lov 11 Nov 17	lov 13 Nov 22	1ar 26 Apr 4		oct 14 Oct 24	lov 11 Nov 17	ov 13 Nov 22	1ar 26 Apr 4	1ar 26 Apr 4				oct 14 Oct 24	lov 11 Nov 17	1996 Nov 13 Nov 22	1ar 26 Apr 4	pr8 Apr17	oct 14 Oct 24	lov 11 Nov 17	lov 13 Nov 22	lar 26 Apr 4	lar 26 Apr 4	
Year	1995 N	1996 N	1998 Mar 26	1990 Mar 20	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 N	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Apr 8	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 N	1998 Mar 26	1998 Apr 8	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Mar 26	

Table 1.1-8 Surface Water Quality in the National Observation Station between 1998 from 1995


Strepto- coccus perfringen				40	0					5	20					10	0					5	0											10	20	10	20								10
Strepto- S coccus fecal p				134	65					91	23					103	20					110	15											13/	485	215	20								25 89
Coli. fecal				0	0					195	0					15	0					183	180										0	30	10	70	183								Continues
Coli. total				95	2,800					310	1,400					50	170					205	300											135	2,170	2,700	31,500								1,243
Pheopig- ments (mg/m ³)	53.6					20.2	12.0					1.6	1.1					0.2	2.0					0.2	0.3			0.2	3.9	0.1	3.6							0.0	1.0	8.5	5.3				
Chloro- phile (mg/m ³)	42.3					114.8	290.0					2.9	1.2					1.5	2.9					4.1	1.8			4.7	12.2	2.3	1.8							9.6	8.2	14.0	8.2				
N-NH ₄ (mg/l)	0.020		0.768			0.078	0.501	0.275	0.527			0.117	0.043		0.691			0.166		0.183	0.362			0.099		0.387			0.089				0.241								0.024	0.271		0.431	
P-PO, (I/gm)	2.293	0.041	0.180			0.046	0.107	0.062	0.082			0.100	0.037	0.056	0.030			0.068	0.037	0.024	0.030			0.067	0.040	0.029	0.034	0.078	0.072	0.032	0.033	0.035	0.022					0.037	0.029	0.019	0.021	0.190		0.116	
N-NO ₃ (mg/l)	1	0.119	0.106			0.015	0.000	090.0	0.046			0.096	0.000	0.030	0.032			0.033	0.039	0.032	0.051			0.067	0.035	0.095	0.118	0.080	0.000	0.052	0.001	0.004	0.086					0.018	0.000	0.000	0.000	0.070	0.080	0.053	
N-NO ₂ N-NO ₃ P-PO ₄ (mg/l) (mg/l) (mg/l)		0.012	0.023			0.000	0.012	0.005	0.013			0.000	0.001	0.003	0.007			0.000	0.002	0.004	0.006			0.000	0.003	0.006	0.009	0.000	0.000	0.002	0.001	0.005	0.006					0.000	0.000	0.008	0.004	0.025	0.028	0.026	
Salinity (%o)	0.10	0.00	0.00			0.00	0.15	00'0	0.00			0.00	0.04	0.00	0.00			0.00	0.04	0.00	0.00			0.00	0.03	0.00	00'0	0.00	0.00	0.03	0.03	0.00	0.00					12.50	13.10	6.83	10.90	0.00	0.00	0.00	
EC (μS/cm)	235.0	175.0	85.0			130.0	348.0	60.0	60.0			120.0	103.0	50.0	61.0			110.0	104.5	60.0	65.0			2,000.0	82.0	55.0	70.0	88.0	110.0	70.0	69.0	50.0	60.0					23,000.0	24,500.0	13,425.0	20,160.0	60.0	70.0	70.2	
O ₂ (%)	23.0	Ι	I			114.0	27.7	-	I			112.0	129.0	100.0	84.0			123.0	97.0	120.6	101.9			126.0	96.8	117.5	109.5	118.0	76.0	102.0	62.6	98.0	80.0					116.0	100.0	114.2	63.7	Ι	Ι	I	
Hq	-		6.90			7.29		6.90	6.90			7.31	7.31		6.90			I	-	6.60	6.60			I	7.17	6.50	6.60	I					6.70					I	· ·		6.70	_		6.50	
T (°C)	29.09		28.50			30.00	28.37	27.00	27.00			29.00	30.93	27.60	27.60			30.00	25.19	27.30	27.60			31.00	30.43	29.10	29.10						28.00				-			_	29.71		29.50	29.00	
		surf	fond					surf	fond															n	n	n	n	surf	fond	surf	fond	surf	fond					surf	fond	surf	fond	surf	ы.	fond	_
Station	Bouaflé	Bouaflé	Bouaflé	Zuenoula	Zuenoula	Zuenoula	Zuenoula	Zuenoula	Zuenoula	Marabadiassa	Marabadiassa	Marabadiassa	Marabadiassa	Marabadiassa	Marabadiassa	Tortiya	Niakaha	Toriya	Toriya	Toriya	Toriya	Ferké 2	Ferké 2	Ferkessedougou	Ferkessedougou	Ferkessedougou	Ferkessedougou	Sinematiali	Sinematiali	Sinematiali	Sinematiali	Sinematiali	Sinematiali	Sinematiali	Sinématiali	Bassam	Bassam	Bassam	Bassam	Bassam	Bassam	Bassam	Bassam	Bassam	Adiahou
No.	B07	B07				B08	B08	B08	B08	B09	B09	B09			B09	B10	B10		B10	B10	B10	B11	B11	B11	B11	B11	B11				B12	B12						C01			C01	C01	C01	C01	C02
Date (from - to)	Apr 8 Apr 17				ov 13 Nov 22	lar 26 Apr 4	pr8 Apr17		ct 14 Oct 24	ov 11 Nov 17			pr 8 Apr 17	ct 14 Oct 24	ct 14 Oct 24	ov 11 Nov 17	1996 Nov 13 Nov 22	lar 26 Apr 4	pr8 Apr17	ct 14 Oct 24	Oct 14 Oct 24		ov 13 Nov 22	lar 26 Apr 4	pr8 Apr17	4	Oct 14 Oct 24	lar 26 Apr 4	lar 26 Apr 4	pr8 Apr17							ov 13 Nov 22	lar 26 Apr 4			pr8 Apr17	ct 14 Oct 24	ct 14 Oct 24	ct 14 Oct 24	1995 Nov 11 Nov 17
Year	1998 Aı	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 N	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 O	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Apr 8	1998 O	1998 O	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1998 Oct 14	1995 N

Strepto- coccus perfringen	47								0	60									157					0	85		2	10							20	10						5	0		
Strepto- Str	10								98	80									74					120	90		150	3,000							72	35						28	75		Continues next nage
Coli. fecal	388								108	268									188					10	150		160	0							160	25						130	13		Continues
Coli. total	86,000								523	68,500									248					488	225		220	2,400							185	1,800						245	235		
Pheopig- ments (mg/m ³)		0.4	0.2	6.0	6.8						3.4	1	10.5	3.0						4.9	4.5					2.9			1.2	0.6	0.6	1.7					0.5	0.9	0.0					4.2	0.0
Chloro- phile (mg/m ³)		19.8	25.3	14.0	5.1						61.2	1	11.1	3.5						2.7	2.0					3.8			24.5	8.7	3.5	1.2					14.6	1.2	0.0					2.3	0.0
N−NH₄ (mg/l)		0.129	0.091	0.102	0.062	0.254	0.389	0.297			0.085	I	0.020	0.111	0.246	0.426	0.428			0.290	0.026	0.347	0.925			0.019			0.088	0.130	0.017	0.028	0.285	0.616			0.071	0.081	0.019	0.110	0.162			0.200	0.025
P-PO ₄ N-NH ₄ (mg/l)		0.050	0.029	0.019	0.019	0.130	0.012	0.125			0.053	0.046	0.019	0.018	0.122	0.125	0.114			0.045	0.033	0.073	0.046			0.035			0.012	0.126	0.055	0.036	0.030	0.031			0.068	0.070	0.033	0.033	0.032			0.081	0.036
N−NO ₃ (mg/l)		0.136	0.041	0.003	0.000	0.069	0.066	0.066			0.022	0.000	0.003	0.000	0.063	0.065	0.063			0.123	0.020	0.040	0.054			0.004			0.023	0.114	0.013	0.029	0.116	0.117			0.169	0.099	0.009	0.115	0.115			0.107	090.0
N-NO ₂ (mg/l)		0.000	0.000	0.005	0.004	0.026	0.026	0.026			0.000	0.000	0.004	0.008	0.027	0.029	0.028			0.100	0.001	0.005	0.004			0.000			0.000	0.000	0.003	0.002	0.016	0.014			0.000	0.000	0.001	0.007	0.007			0.000	0.006
Salinity (%o)		3.50	4.80	3.35	10.24	00.00	00.0	0.00			1.00	3.00	0.35	13.30	0.00	0.00	0.00			00.0	0.04	00.0	0.00			0.03			0.00	0.00	0.03	0.03	0.00	0.00			0.00	0.00	0.03	0.00	0.00			0.00	0.04
(μ S/cm)		7,000.0	9,000.0	6,941.0	18,329.0	62.0	62.0	65.0			2,500.0	12,000.0	745.0	22.433.0	62.0	65.0	65.0				88.0	89.0	60.09			79.0			185.0	175.0	82.0	82.0	60.0	85.0			100.0	102.0	77.0	70.0	68.0			110.0	102.0
O ₂ (%)		145.0	116.0	104.0	24.5	I	1	1			121.0	106.0	113.3	13.3	1	1	1			159.0	118.7	90.8	89.6			108.2			155.0	88.0	101.9	93.6	I	78.3			141.0	127.0	112.2	87.9	76.0			66.0	142.6
Hd		I	I	6.40	6.21	6.60	6.80				1	1	6.53	-	+	-	-			7.27	6.37	-				7.34			8.35	8.20				6.50		-					6.80				7.46
Τ (°C)		31.00	30.50	29.74	29.13	28.70	-	-			30.50	30.50	26.46	-	-		-			32.00	30.25	29.60	29.10			29.23			30.00	27.00				27.30		-					28.50			31.20	29.21
		surf	fond	surf	fond	surf	і. Д	fond			surf	fond	surf	fond	surf	E	fond												surf	fond	surf	fond	surf	fond			surf	fond	_	surf	fond				
Station	Adiahou	Adiahou	Adiahou	Adiahou	Adiahou	Adiahou	Adiahou	Adiahou	Alépé	Alépé	Alépé	Alépé	Alépé	Alépé	Alépé	Alépé	Alépé	M'Basso	M'Basso	M.Basso	M.Basso	M.Basso	M.Basso	Aniassué	Aniassué	Aniassué	Goumania	Goumania	Groumania	Groumania	Groumania	Groumania	Groumania	Groumania	Ganse	Ganse	Ganse	Ganse	Ganse	Ganse	Ganse	Kafolo	Kafolo	Kafolo	Kafolo
No.	C02	C02	C02	C02	C02	C02	C02	C02	C03	C03	C03	C03	C03		C03	C03	C03	C04		C04	C04	C04	C04	C05		C05	C06	C06	C06	C06		C06	C06	C06							C07	C08	C08	C08	C08
Date (from - to)	1996 Nov 13 Nov 22	6 Apr 4	6 Apr 4	Apr 17		4 Oct 24							Apr 17		4	4 Oct 24	4 Oct 24			6 Apr 4	Apr 17	4 Oct 24	4 Oct 24	1 Nov 17	1996 Nov 13 Nov 22	Apr 17	1 Nov 17	1996 Nov 13 Nov 22	6 Apr 4		Apr 17				1 Nov 17	3 Nov 22	6 Apr 4		Apr 17		4 Oct 24	1 Nov 17	1996 Nov 13 Nov 22	6 Apr 4	Apr 17
ar (fro	96 Nov 1	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1998 Oct 14	1995 Nov 11	96 Nov 1	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	96 Nov 1.	1998 Apr 8	1995 Nov 11	96 Nov 1	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	1996 Nov 13	1998 Mar 26	1998 Mar 26	1998 Apr 8	1998 Oct 14	1998 Oct 14	1995 Nov 11	96 Nov 1.	1998 Mar 26	98 Apr 8
Year	19	19(19	19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19(19	19	19	19(19	19	19	19(19	19	19	19	19	19	19	19	19	19(19(19	19	19

Strepto- coccus perfringen			<1	\leq 1	<1		<1	<1	\sim	30	55	150	\sim	350	10	40	10	<1	<1	330	45				40					100					80				45			73			
Strepto- coccus fecal p			50	65	10	10	2	50	20	40	<1	10	16	3,800	39	27	30	120	1,750	460	0				0					150					60				75			1,118			Continues next page
Coli. fecal			20	23	<1	<1	<1	70	150	185	<1	57	10	2,900	<1	22	>1	<1	575	325	13				73					70					0				9,650			587			Continue
Coli. total			33	125	2	2	<1	150	275	425	200	90	59	4,500	4	45	60	10	675	1,100	55				275					115					240				19,050			1,650			
Pheopig- ments (mg/m ³)	0																					1.4	1.8			0.6	1.5				4.0	0	3.8	-		0.6	0.0			0.4			0.1		
Chloro- phile (mg/m ³)						<0.001																2.9	1.5			4.7	2.6				9.0		C.UI	0.1		2.6	0.0			1.5			1.2		
N-NH ₄ (mg/l)	0.279	0.242				0.091																		0.357			0.103	0.344	0.443		0.010	0.23/	0.000	0.019	0.100	0.000	0.000	0.431		0.014	0.243		0.000	0.340	
P-PO ₄ (mg/l)	0.021	0.019				0.032																		0.070		0.110	0.047	0.000	0.063		0.266	0.054	0.291	0.057	000	0.078	0.164	0.790		1.186	0.119			0.200	
N-NO ₃ (mg/l)	0.034	0.070				0.013																0.003	0.013	0.000		0.027	0.003	0.002	0.000		0.051	0.000	0.050		000	0.020	9.000	0.000		0.012	0.000		0.000	0.000	
N-NO ₂ (mg/l)	0.004	0.004				0.007																000.0	0.000	0.004		0.013	000.0	0.002	0.012		0.014	0.003	0.014	0.013	0000	0.021	0.019	0.002		0.011	0.003		0.031	0.001	
Salinity (%o)	0.00	0.00				Ι																1.00	15.50	0.00		00.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	000	0.00	00.0	0.00		00.0	0.00		0.00	0.00	
EC (μS/cm)	52.0	52.0				38,600.0																1,600.0	20,800.0	80.0		70.0	75.0	75.0	70.0		70.0	/5.0	85.0	75.0	0.01	50.0	50.0	70.0		0.0	90.0		25.0	100.0	
O ₂ (%)	112.5	110.5																				148.0	141.0	80.0		179.0	42.0	57.5	55.8		174.0	63.1 22.2	89.0	58.0	0.00	176.0	169.0	149.0		10.0	59.0		130.0	81.6	
Hd(6.50			nent	8.28						cture				~	ane	ement					_	6.46					6.92			_	7 40	_		8.22		09.9		5.59	6.59			6.46	
T (°C)	30.70	30.00	altour	lre	Campen	31.40	Kpanda	re		nne	ire	S/prefe	House	-peche	0	Balmer	e Digbo	I Campe		n			_	29.00			_		1 28.90		30.00	_	31.00	_	20.04	27.00	d 26.50	27.00		26.50	26.70		-	26.10	
			Plage V	nbouchi	/Hotel (Village	pouchu	Ige	ie. Ante	barcada	Plage (1 Club	2 Port-	3 Mairi	4 Hote	5 Villag	3r Hote	Ire	ırs d'ea	Ъ.		ıb. fond	Ъ.	nt	nt surf	nt fond		nt fond		_		surt			surf	fond							surf	
Station	Kafolo	Kafolo	Assounde 1./Plage Valtour	Bassam 2./Embouchure	Jacqueville 3./Hotel Campement	Jacqueville	GD-Lahou 4./Village Kpanda	Fresco F1 Embouchure	Fresco P2 Plage	Fresco F2 Baie. Antenne	Fresco F3 Debarcadaire	Sassandra P6 Plage S/prefecture	San Pedro SP1 Club House	San Pedro SP2 Port-peche	San Pedro SP3 Mairie	San Pedro SP4 Hotel Balmer	San Pedro SP5 Village Digboue	GD Bereby GBr Hotel Campement	Tabou T1 Phare	Tabou T2 Cours d'eau	Sassandra Emb.	Sassandra Emb.	Sassandra Emb.	Sassandra Emb.	Sassandra Pont	Soubre	Soubre	Soubre	Guessabo	Guessabo	Semien (Man)	Semien (Man)	Semien (Man)	Semien (Man)	Dabala	Dabala	Dabala	Vialadougou	Vialadougou	Vialadougou					
No.	C08	C08	L01	L02	L03	L03	L04	L05	L05	L05	L05	L06	L07	L07	L07	L07	L07	L08	L09	L09	S01	S01		S01	S02	S02			S02	S03		S03	S04	504 S04	S05	S05	S05	S05	S06	S06	S06	S07	S07	S07	
Date (from - to)	14 Oct 24		19 Apr 25		19 Apr 25		19 Apr 25								19 Apr 25			19 Apr 25		19 Apr 25														4 Mar 12 31 Nov 4				31 Nov 4		4 Mar 12				31 Nov 4	
Year (fr	1998 Oct 14	1998 Oct 14	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 20	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1999 Apr 19	1995 Oct 11	1998 Mar 4	1998 Mar 4	1998 Oct 31	1995 Oct 11	1998 Mar 4	1998 Mar 4	1998 Oct 31	1998 Oct 31	1995 Oct 11	1998 Mar 4	1998 Oct 31	1998 Mar 4	1990 Mar 4	1995 Oct 11	1998 Mar 4	1998 Mar 4	1998 Oct 31	1995 Oct 11	1998 Mar 4	1998 Oct 31	1995 Oct 11	1998 Mar 4	1998 Oct 31	

Date (from - to)	No.	Station	Τ (°C	T (°C) PH O ₂	O ₂ (%)	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Salinity (%o)	N-NO ₂ (mg/l)	N-NO ₃ (mg/l)	P-PO ₄ (mg/l)	N-NH4 ⁽	Chloro- Pheopig- phile ments (mg/m ³) (mg/m ³)	2hloro- Pheopig- phile ments mg/m ³) (mg/m ³)	Pheopig- ments Coli. total (mg/m ³)	Coli. fecal	Strepto- Strepto- coccus coccus fecal perfringer	Strepto- Strepto- coccus coccus fecal perfringen
Nov	1 S07	1998 Oct 31 Nov 4 S07 Vialadougou	fond 27.20 6.80	0 6.80	76.7	50.0		0.00 0.002 0.000 0.210 0.249	0.000	0.210							
Oct	15 S08	1995 Oct 11 Oct 15 S08 Dagbe												1,100	438	390	33
Mar	998 Mar 4 Mar 12 S08	Dagbe	27.5	27.50 7.92 1.	148.0	80.0		0.00 0.020 0.021 0.266 0.045	0.021	0.266	0.045	2.3	0.5				
I Nov	1 S08	1998 Oct 31 Nov 4 S08 Dagbe	27.4	0 6.74	27.40 6.74 103.0	0'09	0.00	0.00 0.001 0.000 0.057 0.287	0.000	0.057	0.287						
itre Ivoi	rien An	Source: Centre Ivoirien Anti-Pollution (CIAPOL), 1999	OL), 1999														

1	0-1	4	

Station	Cr(ppm)	Cu(ppm)	Fe(g/Kg)	Hg(ppm)	Mn(ppm)	Pb(ppm)	Zn(ppm)
Lagune							
1	156	30	48	0.1	404	31	158
2	119	43	50	0.3	221	17	79
3	1718	3	61	0.4	234	54	232
4	465	30	41	0.1	156	10	47
5	286	55	67	0.3	169	61	139
6	429	76	52	0.5	182	89	269
7	358	41	56	0.3	208	17	56
8	135	43	57	0.1	365	18	46
9	135	52	61	0.3	378	41	139
10	109	33	51	0.1	430	16	93
11	69	13	20	0.3	521	11	88
12	120	49	62	0.5	534	41	398
13	21	3	1	0.1	24	4	6
Plage							
PL1	17	6	8	0.1	40	4	10
PL2	118	9	7	0.1	68	2	10
PL3	57	6	12	0	69	3	16
PL4	29	5	17	0	88	2	18
PL5	24	8	11	0	112	2	16
				So	urce: CIAP	OL(1994)	

 Table 1.2-1
 Content of Metals of Ebrie Lagoon Sediments and the Beach

Table 1.2-2Variation of the Concentration of Total Hydrocarbon and
the Waste Organic Chloride in the Sediment of Abidjan Lagoon

DDD DDT	ΣDDT
ppb) (ppb)	(ppb)
0.5-11 0-18	2.0-25
5.5-23 0-30	13-60
0.5-7 0-2	8.0-16
4.9-12 3-7.6	19
803 45	997
0.2-47 0-7	2.0-72
1.0-11 0-2.5	6.0-32
0.2-35 0-113	1.0-159
0.5-7 0-6.4	2.0-17

Source: CIAPOL(1994)

1.3 Water Quality Survey by JICA Study Team

(1) Sampling Sites

The purpose of the Study is to define the physical-chemical and bacteriologic characteristics of groundwater and surface water of different regions. It has been taken in 13th to 20th October 1999, during rainy season and 7th to 13th January, 2000 that total of 21samples distributed as follows through out the territory.

(2) Analysis Items

All samples are kept in good conditions and carried to Abidjan within 24 hours. Only the measurements of temperature and pH have been made on the sites of sampling by using portable pH-meter. The other items are examined in the laboratory. The analysis items for groundwater are water temperature, pH, electric conductivity (EC), calcium, magnesium, sodium, potassium, iron, manganese, ammonium, carbonate, bicarbonate, sulfate, chlorine, nitrite, nitrate, fluoride, arsenic, totally 18 items.

On the other hand, the analysis items for surface water are water temperature, water level, suspended solids (SS), turbidity, pH, EC, ammonium, nitrite, nitrate, phosphate, manganese, fluoride, arsenic, total coliformes, dissolved oxygen (DO), chemical oxygen demand (COD), totally 17 items.

1.3 Water Quality Survey by JICA Study Team

DESTION INTEGREE DES RESSOURCES EN EAU BASIN AND CONTROL POINT MAP WITH CARTOGRAPHIC FEATURES

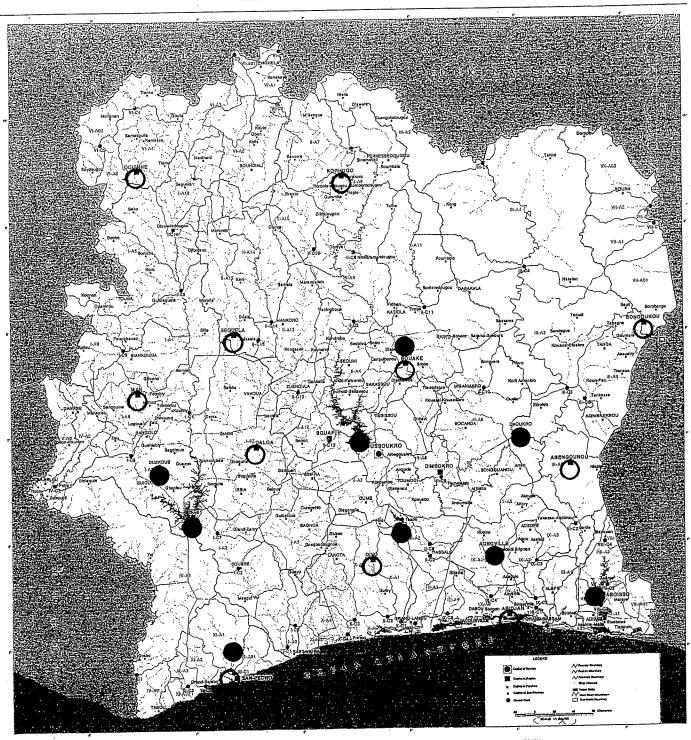


Figure 1.3-1 Location of Sampling Site for Water Quality Survey

Groundwater O Surface Water

Table 1.3-1 Water Quality of Groundwater in the Rainy Season

	Aben- Gouro u	Abidjan	Bondo- ukou	Bouaké	Daloa	Divo	Korho- go	Man	Odienné	San Pédro	Séguéla
T (°C)	27.8	30.9	27.7	29.8	26.6	28.7	29.3	28.1	27.3	28.6	27.9
рН	5.4	6.9	7.4	7.8	6.7	6.7	7.2	6.0	6.3	6.7	7.0
EC (µs/cm)	111	962	580	429	79	143	283	76	110	263	224
Ca (mg/l)	0.50	60.50	31.70	28.60	1.95	3.20	9.30	2.20	4.60	5.85	7.65
Mg (mg/l)	0.85	6.45	6.15	17.70	1.70	1.30	6.30	0.85	1.00	4.50	6.85
Na (mg/l)	10.30	90.70	43.10	18.60	7.70	18.20	20.70	8.80	10.50	27.70	15.90
K (mg/l)	2.15	27.40	37.60	5.25	4.10	3.80	7.50	2.65	2.90	5.50	4.30
Fe (mg/l)	1.60	0.50	1.10	2.50	0.02	0.26	0.12	0.02	0.02	2.42	4.00
NH ₄ (mg/l)	0.07	0.79	0.17	0.36	0.12	0.13	0.18	0.08	0.08	0.22	0.62
HCO ₃ (mg/l)	9.8	124.4	116.0	273.3	46.4	58.6	61.0	18.30	24.40	110.0	144.0
CO ₃ (mg/l)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Cl (mg/l)	17.75	130.64	55.00	2.84	5.30	20.24	22.70	4.26	5.70	25.10	1.80
SO ₄ (mg/l)	< 0.50	75.70	39.50	15.60	< 0.50	< 0.50	< 0.50	2.70	2.80	14.85	3.60
NO ₂ (mg/l)	< 0.01	0.03	0.03	< 0.01	< 0.01	0.03	0.03	< 0.01	< 0.01	< 0.01	< 0.01
NO ₃ (mg/l)	24.72	62.00	104.58	10.02	13.26	11.10	29.82	30.42	24.72	13.38	10.08
Mn (mg/l)	0.07	0.10	< 0.02	0.30	< 0.02	0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
F (mg/l)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
As (mg/l)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05

(1) Groundwater (Pumps)

Note: The survey was done by JICA Study Team.

19

Table 1.3-2 Water Quality of Surface Water in the rainy Season

	CIE	CIE	CIE	CIE	CIE	San Pédro	SODECI	SODECI	KAN	SODECI
	Buyo	Kossou	Taabo	Ayamé 1	Ayamé 2	(GRAH)	Agboville	Daoukro	Bouaké	Duékoué
Cote	Duyo	Itobbou	10000	rijulile i	rijulile 2	(one m)	rigoovine	Duouno	Douald	Duckoue
(m)	7.48	-	11.90	89.26	68.57	21.04	-	-	12.40	0.73
T (°C)	30.6	28.0	27.4	30.3	32.4	28.0	27.1	25.4	28.2	29.8
pН	8.1	7.6	7.2	7.1	7.4	7.0	7.4	7.1	8.0	6.6
SS										
(mg/l)	70	64.0	92.0	86	90	71.0	250	114	320	26.0
Turbi.										
(NTU)	6.90	1.90	22.00	4.10	3.20	22.00	8.00	45.00	4.00	13.00
EC										
(µs/cm	69	63	90	85	89	70	248	113	319	25
NO ₂										
(mg/l)	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	0.02	0.02	< 0.01
NO ₃										
(mg/l)	1.80	1.62	13.62	13.62	10.80	2.34	10.98	9.78	9.78	0.84
NH ₄										
(mg/l)	0.10	0.17	0.18	0.13	0.13	0.23	0.20	0.20	0.20	0.15
PO ₄										
(mg/l)	0,44	0.15	0.37	0.04	0.07	0.30	0.11	0.11	0.10	0.05
Mn										
(mg/l)	< 0.02	< 0,02	< 0.02	< 0.02	0.03	< 0.02	0.03	0.13	0.04	< 0.02
F										
(mg/l)	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02	< 0.02
As (1)		0 0 -	0 0 -	~ ~ -	• • -	• • -	~ ~ -	0 0 -	.	< 0.05
(mg/l)	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05
Colif.				0	0	<i>.</i>	1.50	0	10	0
UFC /	0	11	12	0	0	6	> 150	0	10	0
100 ml DO										
(mg/l)	6.5	7.2	6.5	7.0	7.1	6.0	6.5	7.5	3.5	6.2
COD	0.5	1.2	0.3	7.0	/.1	0.0	0.3	1.5	5.5	0.2
(mg/l)	7.90	2.50	5,.80	12.60	16.10	12.90	15.30	12.80	4.00	6.40
	/.90		3,.80		10.10		15.50	12.00	4.00	0.40

(2) <u>Surface Water</u> (Dams)

Note: The survey was done by JICA Study Team.

(1) Groundwater	(Pumps)
-----------------	---	--------

Γ	Aben- gourou	Abidjan	Bondo- ukou	Bouaké	Daloa	Divo	Korho- go	Man	Odienné	San Pédro	Séguéla
T (°C)	25,6	30,2	25,9	28,2	27,1	29,2	28,4	27,1	26,4	27,5	28,3
pН	5,2	6,0	6,5	7,8	6,4	6,1	6,3	5,6	5,7	6,45	6,7
EC			•••				• • •				• 10
(µs/cm)	110	893	228	494	90	146	287	79	128	294	249
Ca (mg/l)	0,65	61,30	8,16	55,00	2,10	3,50	10,20	2,40	6,45	7,45	10,90
Mg	,	,)	,	,	,	,	,	,	,	,
(mg/l)	0,95	5,45	2,95	22,45	1,60	1,30	6,85	0,78	1,16	6,20	9,00
Na											
(mg/l)	14,45	107,00	22,20	18,90	7,80	17,45	20,50	7,60	11,75	27,25	10,85
K											
(mg/l)	1,35	23,20	3,50	3,90	2,80	2,30	6,40	1,70	2,20	4,65	12,35
Fe											
(mg/l)	0,09	0,16	0,27	0,50	<0,02	0,03	0,06	0,03	0,03	1,60	0,25
NH ₄											
(mg/l)	0,20	0,80	0,20	0,40	0,10	0,10	0,20	0,10	0,10	0,20	0,60
HCO ₃											
(mg/l)	3,7	65,9	134,2	268,4	45,1	59,8	54,9	18,3	28,0	114,7	152,5
CO ₃											
(mg/l)	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00	0,00
Cl									< - a		
(mg/l)	16,33	130,64	3,20	31,95	4,26	12,07	23,43	5,32	6,70	24,85	1,42
SO_4		7 0 7 0	96.50	1 5 50			10.00	0.50		10.00	4.00
(mg/l)	< 0,50	70,50	36,50	15,50	<0,50	<0,50	13,20	2,50	2,20	12,80	4,00
NO_2	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	<0.01	< 0.01	<0.01	< 0.01	<0.01	<0.01
(mg/l)	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	<0,01	< 0,01	<0,01	< 0,01	<0,01	<0,01
NO ₃ (mg/l)	25,70	60,00	95,60	11,00	13,10	10.10	30,10	29,50	20,70	13,50	10,00
Mn	23,70	00,00	95,00	11,00	13,10	10,10	30,10	29,30	20,70	13,30	10,00
(mg/l)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	<0,02	< 0,02	<0,02	< 0,02	<0,02	<0,02
(IIIg, I) F	* 0,02	~ 0,02	× 0,02	~ 0,02	~0,02	~0,02	× 0,02	~0,02	~ 0,02	~0,02	~0,02
(mg/l)	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	< 0,02	<0,02	<0,02
As	,	,		,	,	,	,		,	,	,
(mg/l)	< 0,05	< 0,05	< 0,05	< 0.05	<0,05	<0,05	< 0,05	<0,05	< 0,05	<0,05	<0,05
)	,	s done b			· · · ·)	, · -	, · -	, -

Note : The survey was done by JICA Study Team.

	CIE	CIE	CIE	CIE	CIE	San	SODECI	SODECI	KAN	SODECI
	Buyo	Kossou	Taabo	Ayamé 1	Ayamé 2	Pédro (GRAH)	Agboville	Daoukro	Bouaké	Duékoué
Cote						(
(m)	6,90	-	10,50	87,70	68,90	20,18	-	-	-	0,61
T (°C)	29,8	28,5	27,8	29,9	31,2	30,4	26,2	28,9	27,6	28,7
pН	7,10	7,51	7,80	7,40	7,10	7,50	7,25	7,50	8,50	7,40
SS										
(mg/l)	59	70	83	81	94	82	222	424	332	31
Turbi.										
(NTU)	2,30	2,80	2,50	3,50	7,70	6,10	5,20	7,60	7,40	2,50
EC	50.10	70.00	02.00	01.00	02.00	01.00	221.00	100 00	221.00	20.50
(µs/cm)	59,10	70,00	83,00	81,00	93,00	81,90	221,00	423,00	331,00	30,50
NO_2 (mg/l)	<0.01	< 0.01	<0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01
(mg/l)	<0,01	< 0,01	<0,01	< 0,01	< 0,01	< 0,01	< 0,01	<0,01	< 0,01	<0,01
NO ₃ (mg/l)	2,00	1,16	14,10	14,60	11,20	2,30	11,00	9,60	10,80	0,80
NH ₄	2,00	1,10	11,10	11,00	11,20	2,30	11,00	,00	10,00	0,00
(mg/l)	0,10	0,20	0,20	0,10	0,10	0,20	0,20	0,20	0,20	0,15
PO ₄	,	,		,	,		,	,	,	,
(mg/l)	0,40	0,18	0,42	0,05	0,08	0,25	0,10	0,10	0,15	0,05
Mn										
(mg/l)	<0,02	< 0,02	<0,02	< 0,02	< 0,02	< 0,02	< 0,02	<0,02	< 0,02	<0,02
\mathbf{F}	-0.00	. 0. 00	-0.02					-0.02		.0.02
(mg/l)	<0,02	< 0,02	<0,02	< 0,02	< 0,02	< 0,02	< 0,02	<0,02	< 0,02	<0,02
As (mg/l)	<0,05	< 0,05	<0,05	< 0,05	< 0,05	< 0,05	< 0,05	<0,05	< 0,05	<0,05
Colif.	<0,03	< 0,03	<0,03	< 0,03	< 0,03	< 0,03	< 0,03	<0,03	< 0,03	<0,03
UFC/	> 150	> 150	7	0	0	> 150	> 150	0	0	> 150
100 ml	150	100	/			- 150	100			- 100
DO										
(mg/l)	6,00	7,00	6,80	7,00	7,00	5,80	6,00	7,00	3,50	6,00
COD										
(mg/l)	6,90	12,00	5,60	12,00	15,10	7,00	16,30	10,70	4,50	6,60

(2) <u>Surface Water</u> (Dams)

Note : The survey was done by JICA Study Team.

1.4 Water Quality Analysis

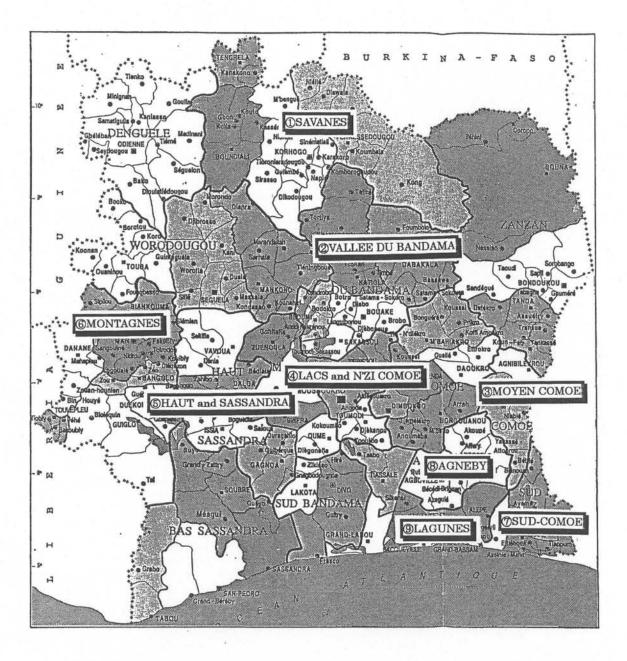
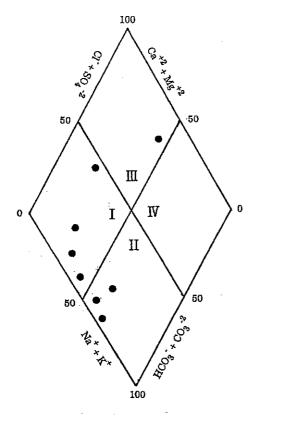



Figure 1.4-1 Investigation Area for Groundwater Quality Analysis

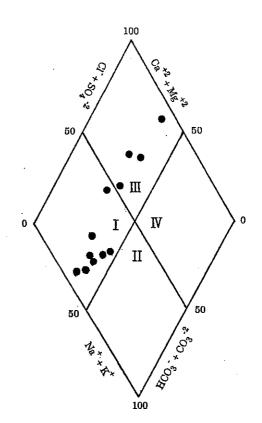
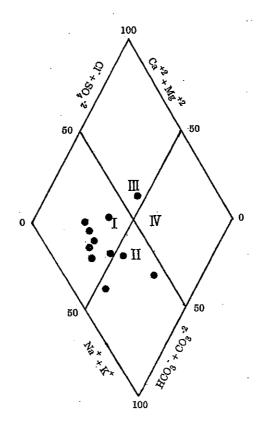
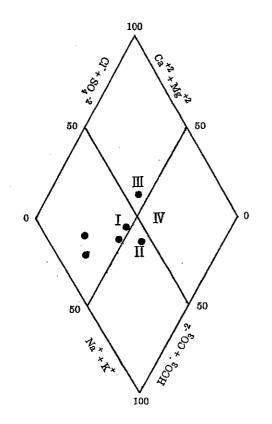
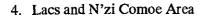

		G	Groundwater Type (%)	oe (%)	
Regional Area	Number	I	II		IV
1. Savanes	×	4 (50)	3 (38)	1 (12)	0)0
2. Vallee Du Bandama	12	8 (67)	0(0)0	4 (33)	0)0
3. Moyen Comoe	11	7 (64)	3 (27)	1(10)	0)0
4. Lacs and N'zi Comoe	9	4 (66)	1 (17)	1(17)	0)0
5. Haut and Sassandra	2	3 (43)	1 (14)	2 (29)	1(14)
6. Montagnes	4	2 (50)	1 (25)	1 (25)	0)0
7. Sud-Comoe	5	2 (40)	0 (0)	2 (40)	1 (20)
8. Agneby	9	(0) 0	1 (17)	2 (33)	3 (50)
9. Lagunes	5	0 (0) 0	1 (20)	1 (20)	3 (60)
cium Bicaı	s, II ;Sodium B	icarbonate, III;N	bonate, II ;Sodium Bicarbonate, III ;Non Calcium Bicarbonate	arbonate,	

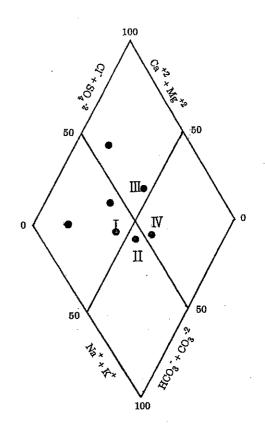
Table 1.4-1 Type of Groundwater Quality by Linear Diagram


) IV; Non Sodium Bicarbonate, 11, 30

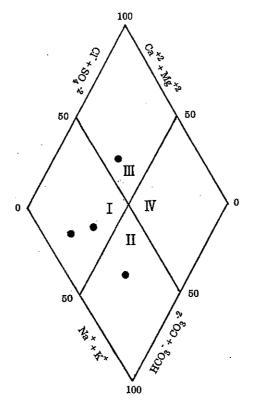
1. Savanes Area

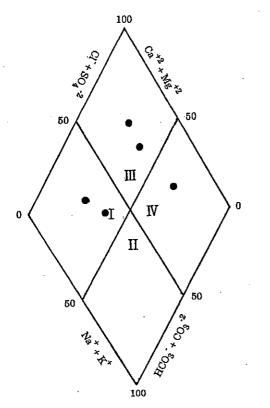




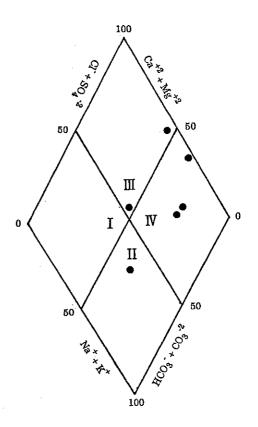


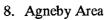
3. Moyen Comoe Area

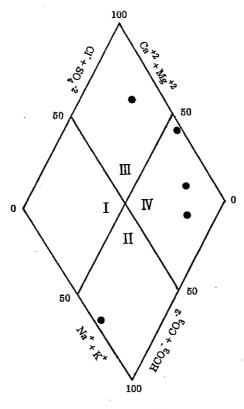

Figure 1.4-2 Type of Groundwater Quality by Linear Diagram (1)

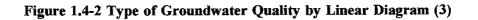


5. Haut and Sassandra Area




6. Montagnes Area





9. Lagunes Area

Abidjan
ality around
Quality
1.5 Groundwater

i Abidan
around
Quality
l Water
Ground
1.5-1
Table

SO4 ⁻ (mg/l)																																		age
mat org S (mg/l) (n	3	0.8	0.8	0.3	0.4	0.5	1.0	0.0	0.8	0.8	0.2	0.8	0.1	0.8	0.2	0.4	0.8	0.1	0.2	0.0	0.0	0.0		0.8		0.1		0.8	0.5	0.0		0.4	0.9	Continues next page
	0.001	0.003	0.007	0,096	0.000	0.070	0.004	0.003	0.004	0.010	0.006	0.003	0.006	0.016	0.001	0.003	0.000	0.006	0.003	0.007	0.007	0.003	0.021	0.040	0.014	0.003	0.015	0.040	0.016	0.003	0.016	0.023	0.000	Continu
NO ₃ ⁻ (mg/l)	4.9	7.5	7.5	1.3	6.6	1.0	4.9	4.4	5.7	8.4	5.9	12.3	5.8	6.6	4.0	7.9	5.3	0.7	4.5	5.3	6.6	4.5	20.8	7.5	20.7	6.2	20.8	5.7	9.2	4.4	20.6	8.6	8.8	
NH4 (mg/l)		0.0	0.0	0.0	0.0	0.0	0.3	0.0	0.3	0.0	0.4	0.0	0.4	0.0	0.4	0.0	0.0	0.0	0.4	0.0	0.0	0.0	0.1	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.0	
PO4 (mg/l)	0.09	0.70	0.79	0.28	0.23	0.78	0.02	0.04	0.03	0.10	0.02	0.08	0.03	0.06	0.06	0.09	0.18	0.80	0.05	0.07	0.17	1.14	0.03	0.06	0.06	0.09	0.02	0.07	0.06	1.16	0.02	0.07	0.08	
Silice (mg/l)	2.8	0.8	1.2	2.2	3.3	2.9	3.2	3.5	3.1	0.4	3.5	0.5	3.2	3.2	3.5	2.1	0.5	3.0	3.5	0.9	0.5	8.8	3.2	0.7	3.2	1.1	3.1	1.0	1.0	6.2	3.1	1.5	0.9	
O ₂ dis (mg/l)				7.0		7.4												6.9				7.7								9.0				
Mn (I/gm)		0.00	0.00	0.03	0.00	0.03	0.05	0.20	0.05	0.00	0.03	0.10	0.02	0,10	0.03	0.00	0.00	0.03	0.02	0.00	0.00	<0.03	0.02	0.00	0.10	0.20	0.02	0.10	0.10	<0.03	0.12	0.00	0.10	
Fe (mg/l)	0.05	0.03	0.03	0,15	0.03	<0.06	0.06	0.08	0.06	0.09	0.06	0.00	0.07	0.04	0.07	0.01	0.44	0.00	0.07	0.40	0.02	0.07	0.05	0.01	0.05	0.20	0.05	0.13	0.03	0.06	0.05	0.03	0.03	
CI [_] (mg/l)	39.1	12.4	7.1	2.3	14.2	3.0	23.1	10.7	16.0	7.1	17.8	12.4	17.8	8.9	16.0	8.9	10.7	3.0	19.5	8.9	8.9	2.0		10.7		8.9		10.7	10.7	2.5		7.1	10.7	
Hď		4.76	4.87	4.40	4.68	4.50	4.47	4.70	4.44	4.67	4.48	4.70	4.40	4.97	4.53	4.68	4.79	4.80	4.46	5.24	4.77	4.46	4.37	4.63	4.38	4.68	4.34	4.70	4.71	4.30	4.41	4.71	4.68	
Color (mg/l)	<5	5	5	<2.5	5	<2.5	<5	ນ	<5	5	<5	5	<5	5	<5	5	5	<2.5	<5	5	5	<2.5	<5	5	<5	5	<5	5	5	<2.5	<5	ß	5	
TURB (NTU)	0.20	0.60	0.80	0.00	0.50	1.00	0.40	0.50	0.40	0.60	0.40	0.60	0.60	0.90	0.50	0.60	0.60	0.00	0.80	0.40	0.30	0.00	0.90	0.60	0.50	0.70	0.30	0.70	0.30	0.00	0.20	0.40	0.40	
EC (μ S/cm)	39.4	38.0	27.7	33.7	32.2	31.1	33.2	31.4	34.5	33.5	34.9	32.4	36.8	34.3	33.1	35.6	31.3	31.8	32.3	29.5	38.1	39.6	36.6	31.5	37.2	34.7	34.0	35.3	29.1	35.1	32.7	32.1	36.1	
T (°C)	26.1	27.5	28.0	21.1	28.0	21.0	26.3	28.0	26.4	28.0	26.2	27.9	26.1	27.7	26.1	27.7	27.9	23.4	26.1	27.4	26.9	24.6	26.6	28.0	26.7	26.7	26.7	26.9	26.9	25.1	27.1	27.0	26.8	
Date	28/6/95	14/2/94	14/2/94	14/6/93	14/2/94	14/6/93	28/6/92	14/2/94	28/6/95	14/2/94	28/6/95	14/2/94	28/6/95	14/2/94	28/6/95	14/2/94	14/2/94	14/6/93	28/6/95	14/2/94	16/2/94	15/7/93	21/6/95	16/2/94	21/6/95	16/2/94	21/6/95	16/2/94	16/2/94	15/7/93	21/6/95	16/2/94	16/2/94	
Code	301	301	302	302	303	303	304	304	305	305	306	306	307	307	308	308	309	309	310	310	321	321	322	322	323	323	324	324	325	325	327	327	328	
Station	NIANGON NORD NNI	NIANGON NORD NN1	NIANGON NORD NN2	NIANGON NORD NN2	NIANGON NORD NN3	NIANGON NORD NN3	NIANGON NORD NN4	NIANGON NORD NN4	NIANGON NORD NN5	NIANGON NORD NN5	NIANGON NORD NN6	NIANGON NORD NN6	NIANGON NORD NN7	NIANGON NORD NN7	NIANGON NORD NN8	NIANGON NORD NN8	NIANGON NORD NN9	NIANGON NORD NN9	NIANGON NORD NN10	NIANGON NORD NN10	NORD RIVIERA NR1	NORD RIVIERA NRI	NORD RIVIERA NR2	NORD RIVIERA NR2	NORD RIVIERA NR3	NORD RIVIERA NR3	NORD RIVIERA NR4	NORD RIVIERA NR4	NORD RIVIERA NR5	NORD RIVIERA NR5	NORD RIVIERA NR7	NORD RIVIERA NR7	NORD RIVIERA NR8	

SO4 ⁻ (mg/l)																																				age
mat org (mg/l) (0.4	0.4	0.0	0.5	0.1	0.5	0.2	0.5	0.1	0.6	0.1	0.4	0.2	0.4	0.2	0.5	0.4	0.2	0.2	0.6	0.4	1.2	0.2	0.2	0.2	0.5	0.2	1.7	0.1	0.7	0.5	1.1	0.3	0.7	Continues next page
NO_2^{-} (mg/l)		0.016	0.007	0.003	0.030	0.003	0.028	0.003	0.028	0.006	0.029	900'0	0.028	0.003	0.028	0.003	0.008	0.162	0.003	0.000	0.006	0.200	0.007	0.000	0.000	0.000	0.004	0.003	0.005	0.003	0.003	0.003	0.007	0.003	0.006	Continu
NO_3^{-} (mg/l)	20.7	6.2	6.2	4.5	4.6	12.8	6.2	12.8	9.7	11.9	6.7	12.3	9.7	12.8	9.3	13.2	19.7	26.1	18.1	15.8	9.7	20.6	19.3	16.9	14.5	9.2	15.1	19.6	19.8	20.7	10.4	13.8	19.9	12.4	4.9	
NH4 (mg/l)	0.2	0.0	0.0	0.0	0.2	<0.5	0.2	0.0	0.2	<0.5	1.1	<0.5	0.2	0.0	0.2	<0.5	0.1	0.0	0.0	0.0	0.4	0.0	0.2	0.0	0.0	0.0	0.6	0.0	0.1	0.0	0.4	0.0	0.3	0.5	0.4	
PO ₄ (mg/l)	0.03	0.05	0.08	0.80	0.04	0.80	0.04	0.81	0.04	0.79	0.04	0.88	0.04	0.76	0.04	0.80	0.01	0.06	0.09	1.37	0.02	0.05	0.02	0.06	0.03	1.18	0.01	0.10	0.01	0.08	0.02	0.07	0.02	0.07	0.03	
Silice (mg/l)	3.1	0.6	1.4	3.3	3.2	2.6	3.1	3.9	3.1	4.4	3.2	4.9	3.1	4.8	3.2	4.2	2.7	40.4	49.0	3.8	3.5	50.3	3.1	44.2	41.4	3.4	3.3	42.7	2.9	48.6	3.2	41.5	3.2	47.6	3.5	
O ₂ dis (mg/l)				8.9		8.5		6.7		7.0		7.9		7.3		8.4				6.8						7.6										
Mn (mg/l)	0.10	0.00	0.20	<0.03	0.03	0.06	0.14	0.03	0.01	0.03	0.06	0.00	0.01	0.03	0.02	0.03	0.02	00.00	0.00	0.03	0.10	0.00	0.03	0.00	0.00	<0.03	0.13	0.00	0.02	0.00	0.12	0.00	0.02	0.00	0.21	
Fe (mg/l) (0.05	0.01	0.06	0.07	0.04	0.06	0.04	<0.06	0.04	<0.06	0.04	<0.06	0.04	0.08	0.05	<0.06	0.05	0.09	0.11	<0.06	0.04	0.03	0.05	0.13	0.06	<0.06	0.04	1.03	0.05	0.02	0.04	0.03	0.05	0.03	0.29	
CI ⁻ (mg/l) (8.9	10.7	2.0	7.1	1.5	14.2	2.0	14.2	1.5	17.8	2.0	12.4	1.5	10.7	1.5	28.8	10.7	10.7	2.5	21.3	14.2	24.9	10.7	14.2	4.0	19.5	14.2	17.8	14.2	21.3	14.2	17.8	21.3	17.8	
Hq	4.33	4.73	4.85	4.25	4.12	4.47	3.91	4.48	4.16	4.46	4.17	4.44	4.12	4.42	4.11	4.40	4.87	4.83	4.58	4.28	4.79	4.63	4.40	5.00	4.79	4.52	4.46	4.78	4.39	4.62	4.35	4.63	4.34	4.62	4.58	
Color (mg/l)	<5	5	5	<2.5	<5	<2.5	<5	<2.5	<5	<2.5	<5	<2.5	<5	<2.5	<5	<2.5		5	5	<2.5		5		5	5	<2.5		5		5		5		5		
TURB (NTU)	0.60	0.30	1.40	0.00		0.00		1.00		0.00		1.00		00.00		0.00	0.30	0.50	0.40	0.00	0.30	0.30	0.30	0.60	0.50	0.00	0.20	1.10	09.0	0.40	0.30	0.40	1.00	0.60	2.70	
EC (μ S/cm)	33.0	33.7	29.1	34.0	39.1	47.3	27.0	32.2	32.5	31.6	28.5	30.5	30.2	31.0	36.9	32.2	57.6	56.2	63.1	62.5	57.6	54.1	42.1	34.3	61.1	46.3	82.1	68.9	37.9	49.8	64.6	49.5	63.7	58.0	36.5	
T (°C)	26.6	27.2	27.6	25.1	25.1	26.1	25.6	26.9	25.0	26.6	25.2	26.6	25.4	26.9	25.3	26.9	25.2	28.1	28.8	25.0	26.7	28.5	25.2	28.3	27.2	25.4	26.7	26.7	25.4	26.9	26.7	26.8	25.3	26.9	26.8	
Date	21/6/95	16/2/94	16/2/94	15/7/93	17/8/95	7/7/93	17/8/95	7/7/93	17/8/95	7/7/93	17/8/95	2////03	17/8/95	2////83	17/8/95	7/7/93	12/6/95	1/2/94	1/2/94	5/7/93	3/1/95	1/2/94	12/6/95	1/2/94	1/2/94	5/7/93	3/7/95	1/2/94	12/6/95	1/2/94	3/1/95	1/2/94	12/6/95	1/2/94	3/7/95	
Code	329	329	330	330	331	331	332	332	333	333	334	334	335	335	336	336	341	341	342	342	343	343	344	344	345	345	346	346	347	347	348	348	349	349	350	
Station	NORD RIVIERA NR9	NORD RIVIERA NR9		RIVIERA NF	RIVIERA CENTRE RC1	RIVIERA CENTRE RC1	RIVIERA CENTRE RC2	RIVIERA CENTRE RC2	RIVIERA CENTRE RC3	RIVIERA CENTRE RC3	RIVIERA CENTRE RC4	RIVIERA CENTRE RC4	RIVIERA CENTRE RC5		CENTRE	ΓRE	ZONE OUEST ZO1	ZONE OUEST ZO1	ZONE OUEST ZO2	ZONE OUEST ZO2	ZONE OUEST ZO3	ZONE OUEST ZO3	ZONE OUEST ZO4	ZONE OUEST ZO4	ZONE OUEST Z05	OUEST	OUEST		ZONE OUEST ZO7	ZONE OUEST Z07	ZONE OUEST ZO8	ZONE OUEST ZO8	ZONE OUEST ZO9	ZONE OUEST Z09	ZONE OUEST Z010	

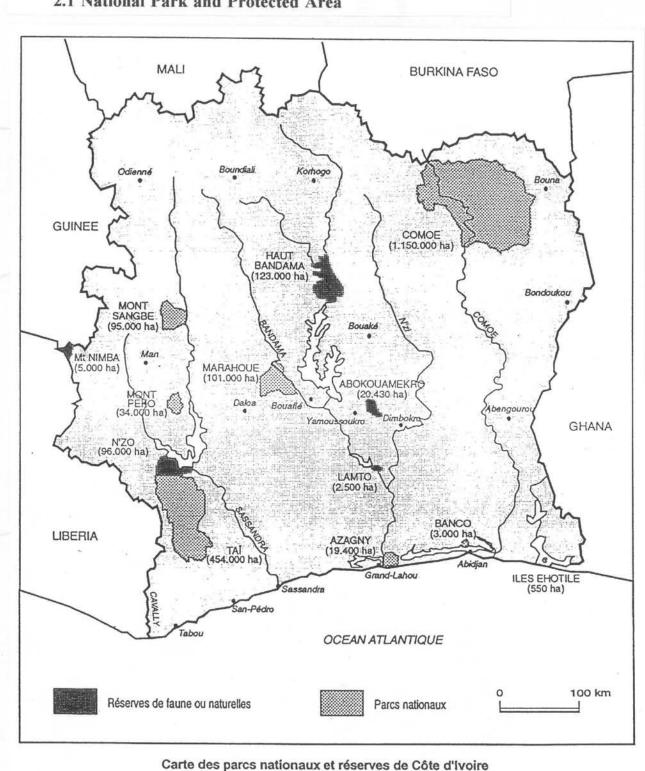
SO4 ⁻ (mg/l)																																	0.4		0.4		page
mat org (mg/l)		0.2	0.2	0.0	0.8	0.0	0.0	0.8	0.0	0.0	0.8	0.0	0.0	0.4	0.0	0.5	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.4	0.8	0.4	0.2	0.3	0.2	0.1	0.1	2.1	0.8	1.5	0.3	Continues next page
NO_2^{-} (mg/l)		0.007	0.023	0.003	1.642	0.003	0.003	1.646	900.0	0.003	0.120	0.003	0.006	0.011	0.001	0.014	0.001	0.001	0.014	0.001	0.002	0.001	0.003	0.003	1.668	0.007	0.040	0.006	0.020	0.040	0.003	0.000	0.000	0.000	0.000	0.020	Continu
NO_3^{-} (mg/l)	4.4	10.3	4.4	13.2	52.4	5.7	12.3	49.2	5.0	7.9	28.0	4.3	10.1	20.9	4.4	21.0	4.0	6.2	21.4	6.2	6.6	8.8	5.7	5.3	86.6	44.0	13.2	9.2	20.7	32.1	8.8	4.4	0.0	0.0	0.0	21.5	
NH4 (mg/l)	0.0	0.0	0.0	0.0	0.2	0.0	0.0	0.3	0.0	0.0	0.3	0.0	0.0	0.1	0.0	0.1	0.0	0.0	0.2	0.0	0.0	0.0	0.0	0.0	0.6	0.9	0.5	0.0	0.8	0.8	0.0	0.0	0.0	0.0	0.0	1.6	
PO ₄ (mg/l)	2.01	0.06	0.85	1.07	0.07	0.94	1.01	0.17	1.10	0.98	0.09	0.89	0.90	0.07	16.07	0.06	0.73	0.98	0.06	1.09	1.15	1.08	0.96	0.89	<1	0.03	0.09	1.11	0.05	0.06	0.16	1.46		0.70		0.06	
Silice (mg/l)		45.1	6.4	5.4		4.0	4.3	3.1	3.9	4.3	3.1	4.7	3.7	3.1	4.0	3.0	3.9	4.0	3.0	3.8	4.0	3.5	4.6	3.5	3.4	1.1	0.2	4.4	3.2	1.0		5.3	12.0		12.0	3.5	
O ₂ dis (mg/l)	_		7.0	6.2	3.3	7.6	7.6		6.5	6.0		6.6	7.0		6.6		6.8	6.6		7.6	6.4	6.8	7.0	6.7				7.6				6.8					
Mn (mg/l)	<0.03	0.00	0.00	0.03	0.25	0.00	0.03	0.18	0.03	0.03	0.12	0.06	0.03	0.13	<0.03	0.11	<0.03	0.03	0.13	<0.03	0.00	0.05	0.06	<0.03	0.20	0.10	0.00	<0.03	0.17	0.10	0.10	0.03				0.17	
Fe (mg/l)	<0.06	0.02	<0.06	0.06	0.05	0.07	0.06	0.05	0.06	0.06	0.05	0.42	0.07	0.05	0.06	0.05	0.06	0.06	0.05	0.09	0.07	0.16	0.10	0.10	0.05	0.11	0.03	<0.06	0.05	0.09	0.06	0.20	0.00	0.00	0.00	0.05	
Cl [_] (mg/l)		10.7	1.5	2.5	11.0	2.5	2.5	11.0	2.0	2.5	11.0	4.5	3.0	25.0	2.0	18.0	2.0	2.5	21.0	2.0	2.0	2.0	2.5	2.5	6.5	78.1	17.8	0.1	28.0	21.3	7.1	2.0	9.0	10.6	9.0	25.0	
Hd	4.55	4.63	4.43	4.53	4.26	4.53	4.46	4.21	4.37	4.30	4.48	4.41	4.33	4.70	4.58	4.43	4.55	4.36	4.39	4.52	4.35	4.50	4.55	4.30	4.06	4.43	4.79	4.58	4.27	4.49	4.69	4.58	4.70	4.60	4.60	4.35	
Color (mg/l)	<2.5	5	<2.5	<2.5	<5	2.5	2.5	<5	<2.5	<2.5	<5	<2.5	<2.5	<5	5	<5	3	5	<5	2	0	0	2	0	<5	5	5	<2.5	<5	5	5	2.5	3		3	<5	
TURB (NTU)	0.00	0.30	0.00	1.00	0.30	0.00	0.00	0.30	00.00	1.00	0.30	1.00	0.00	0.20	00.00	0.20	0.00	0.00	0.20	0.00	0.00	0.00	0.00	0.00	0.30	0.50	0.60	0.00	0.20	0.40	1.10	1.00	3.00		3.00	0.30	
EC (μ S/cm)	36.6	37.4	35.8	71.5	48.8	36.6	56.6	51.4	43.3	53.9	43.0	36.3	47.6	33.9	37.2	33.7	31.0	37.2	35.7	36.4	36.4	41.6	30.8	32.6	230.0	353.0	69.5	58.7	154.8	129.5	39.2	46.0	22,000.0		24,000.0	270.0	
T (°C)	25.7	26.4	24.9	25.7	20.9	26.2	26.2	20.9	26.5	25.9	20.7	26.2	26.0	25.0	25.6	25.1	26.0	25.8	25.1	24.6	24.5	24.9	24.8	24.5	20.7	26.0	26.4	24.6	25.0	26.2	26.9	24.8				24.8	
Date	5/1/93	1/2/94	1/	13/7/93	7/6/95	13/7/93	13/7/93	7/6/95	13/7/93	13/7/93	7/6/95	13/7/93	13/7/93	19/6/95	19/7/93	19/6/95	۲,	19/7/93	19/6/95	19/7/93	19/7/93	19/7/93	19/7/93	19/7/93	7/6/95	9/2/94	8/2/94	12/7/93	7/6/95	8/2/94	8/2/94	12/7/93	20/1/68	1972	20/1/68	7/6/95	
Code	350	351	351	356	357	357	358	359	359	360	361	361	363	371	371	372	372	373	374	377	378	379	380	381	382	382	391	391	392	392	393	393	394	395	395	397	
Station	OUEST	ZONE OUEST Z011	OUEST	ZONE NORD ZN6	ZONE NORD ZN7	ZONE NORD ZN7	ZONE NORD ZN8	ZONE NORD ZN9	ZONE NORD ZN9	ZONE NORD ZN10	ZONE NORD ZN11	ZONE NORD ZN11	ZONE NORD ZN13	ZONE EST ZE1	ZONE EST ZE1	ZONE EST ZE2	ZONE EST ZE2	ZONE EST ZE3	ZONE EST ZE4	ZONE EST ZE7	ZONE EST ZE8	ZONE EST ZE9	ZONE EST ZE10	ZONE EST ZE11	PLATEAU C4	PLATEAU C4	ADJAME NORD AN1	ADJAME NORD AN1	ADJAME NORD AN2	ADJAME NORD AN2	ADJAME NORD AN3		ADJAME NORD AN4	ADJAME NORD AN5	ADJAME NORD AN5	ADJAME NORD AN7	

~		1																	
SO4 ⁻ (mg/l)																			
mat org (mg/l)	0.5	1.7	0.3	0.3	0.4	0.4	0.1	0.5	0.2	0.5	0.2	0.2	0.7	0.3	0.1	0.7	0.2	0.5	0.2
NO_2^{-} (mg/l)	0.003	0.034	0.040	0.005	0.000	0.003	0.000	0.002	0.000	0.006	0.000	0.000	0.006	0.001	0.000	0.018	0.000	0.001	0.000
NO_3^{-} (mg/l)	40.9	21.9	48.0	5.7	11.7	4.6	12.8	4.1	11.2	6.4	10.3	18.7	5.7	4.4	16.3	4.1	16.2	6.3	17.3
NH4 (mg/l)	1.3	1.7	1.8	0.1	0.0	0.1	0.0	0.2	0.0	0.1	0.0	0.0	0.0	0.1	0.0	0.1	0.0	0.1	0.0
PO ₄ (mg/l)	0.03	0.07	0.08	0.01	0.73	0.02	0.21	0.01	0.25	0.01	0.65	0.73	0.10	0.02	0.66	0.01	1.13	0.10	2.18
Silice (mg/l)	5.9	3.4	0.2	3.4	33.7	3.4	28.6	3.4	39.1	3.1	40.4	30.5	1.9	3.2	60.8	3.3	48.2	3.6	54.7
O ₂ dis (mg/l)													8.2						
Mn (I/gm)	0.20	0.19	0.00	0.04	0.00	0.03	0.00	0.02	0.00	0.02	0.00	0.00	0.03	0.05	0.00	0.04	0.00	0.02	0.00
Fe (mg/l)	0.13	0.06	0.37	0.05	0.04	0.08	0.12	0.05	0.03	0.05	0.01	0.14	0.20	0.06	0.05	0.06	0.01	0.05	0.04
CI [_] (mg/l)	24.9	25.0	21.3	14.2	10.7	17.0	14.2	17.0	7.1	17.0	3.6	10.7	2.5	14.2	10.7	21.3	10.7	16.0	14.2
Hď	4.33	4.16	4.40	4.52	4.69	4.46	4.77	4.37	4.70	4.55	4.83	4.96	4.52	4.62	4.85	4.46	4.91	4.42	4.81
Color (mg/l)	5	<5	5	<5	5	<5	5	<5	5	<5	5	5	<2.5	<5	5	<5	5	<5	5
	1.10	0.51	0.90	0.20	0.40	0.30	0.80	0.20	0.70	0.16	0.70	0.40	0.00	0.30	0.40	0.30	0.40	0.20	0.40
$T(^{\circ}C) \begin{bmatrix} EC \\ (\mu S/cm) \end{bmatrix} (NTU)$	142.0	250.0	167.4	42.4	32.5	30.9	34.7	34.9	37.6	33.2	34.9	30.7	29.8	36.9	34.4	33.7	32.8	40.1	37.0
T (°C)	26.5	25.0	26.0	26.3	25.0	26.1	25.2	26.0	25.1	26.1	24.3	25.0	24.8	26.2	25.1	26.2	24.8	26.3	24.9
Date	8/2/94	7/6/95	8/2/94	26/0/95	18/1/94	26/9/92	18/1/94	553 26/6/95	18/1/94	26/9/95	554 18/1/94	18/1/94	555 28/7/93	556 26/6/95	18/1/94	557 26/6/95	557 18/1/94	26/9/92	558 18/1/94
Code	397	398	398	551	551	552	552	553	553	554	554	555	555	556	556		557	558	558
Station	ADJAME NORD AN7	ADJAME NORD AN8	ADJAME NORD AN8	ANOKOUAKOUTE AK1	ANOKOUAKOUTE AK1	ANOKOUAKOUTE AK2	ANOKOUAKOUTE AK2	ANOKOUAKOUTE AK3	ANOKOUAKOUTE AK3	ANOKOUAKOUTE AK4	ANOKOUAKOUTE AK4	ANOKOUAKOUTE AK5	ANOKOUAKOUTE AK5	ANOKOUAKOUTE AK6	ANOKOUAKOUTE AK6	ANOKOUAKOUTE AK7	ANOKOUAKOUTE AK7	ANOKOUAKOUTE AK8	ANOKOUAKOUTE AK8

1.6 Drinking Water Quality Standard

Item	W	HO	JAPAN
	Highest	Maximum	
	Desirable	Permissible	
Color	15	50	5
Taste	not offensive	not offensive	not offensive
Odor	not offensive	not offensive	not offensive
Turbidity	5	25	2
pН	6.5 to 8.5	6.5 to 9.2	5.8 to 8.6
Conductivity	0.5	1.5	

1. Physical Condition


_

2. <u>Toxin</u>

Item	WHO	JAPAN
Hg ·	0.001	None
Pb	0.1	0.1
As	0.05	0.05
Se	0.01	0.01
Cr ⁶⁺	0.05	0.05
Cn	0.1	None
Cd	0.005	0.01
Cl ₂	0.1	-
Phenol	0.0	-
Zn	5.0	-
No ₃	10	– .

3. Bacteriological Condition

		•
Item	WHO	JAPAN
Standard Plate Count	-	100
(Colonies / cm ³)		
MPN	-	- None
(Coliform Organism / 100 m ³)		
E. Coli	-	-

CHAPTER 2. PRESENT ENVIRONMENTAL CONDITION 2.1 National Park and Protected Area

En Ville

Figure 2.1-1 Distribution of National Parks and Protected Area

Name	Prefecture	Decree and Creation Date	Area(ha)
Azagny National Park	Grand-Lahou	Order n°536 of 25.06.1960	19,400
		Then Decree n°81-218 of	
		02.04.1981	
Banco National Park	Abidjan	Decree of 31.10.1953	3,000
Comoe National Park	Bouna	Decree n°68-81 of	1,149,150
		09.02.1968	
Ehotile Island National	Adiake	Decree n°74-179 of	550
Park		25.04.1974	
Maraahoue National Park	Bouafle	Decree n°68-80 of	101,000
		09.02.1968	
Peko mountain National	Duekoue	Decree n°68-79 of	34,000
park		09.02.1968	
Sangbe mountain National	Biankouma	Decree n°76-215 of	95,000
Park		19.02.1976	
Tai National Park	Tai	Decree n°72-544 of	340,000
		28.08.72	
		Then n°77-348 of	
		03.06.1977	
Total			1,742,100

Table 2.1-1 National Park

Table 2.1-2 Natural Reserves Area

Name	Prefecture	Decree and Creation Date	Area (ha)
Abokouamekro fauna reserve	Yamoussoukro	Decree n°93-695 of 19.08.93	20,430
High Banadama fauna reserve	Katiola	Decree n°73-133 of 21.03.73	123,000
Lamto scientific reserve	Toumodi Tiassale	Order n°857/AGRI/DOM of 12.07.1968	2,500
Nimba mountain integral reserve	Man	Decree of 05.07.1944	5,000
N'zo fauna reserve	Tai	Decree n°72-545 of 28.08.72; then n°73-132 of 21.03.73	96,000
	Total		246,930

Name	Prefecture	Decree and Creation Date	Area (ha)
Bamoro reserve	Diabo	Order n°1014 of 06.07.1926	2,200
		Modified by Order n°1996 of	
		03.08.1932	
Bouafle reserve	Bouafle	Order n°285 of 14.02.1929	32,400
Divo reserve	Divo	Order n°1419/SF of 03.09.1928	7,350
		Order n°3268/SF of 20.12.1932	
		Order gen.n°2359 of 26.10.1935	
		Order n°452 Minefor/DDAR	-
		Of 03.07.1975	
Kassa reserve	Tiassale	Order n°1415/SF of 01.05.1935	7,200
Katiola reserve	Katiola	Order n°1026 of 06.07.1926	200
Moni reserve	Danane	Order n°4611/SEF of 23.06.1954	10,000
Nieton mountain reserve	Danane	Order n° 838/SF of 18.07.1961	11,268
Sangouine mountain reserve	Danane	Order n°1993 of 03.08.1932	25,000
N'ganda reserve	Grand-Bassam	Order n°2020/SE of 07.04.1951	4,400
-	Adiake	Modified by Order n°5894/SE of	
		13.08.1954	
		Order n°279/Minagri of	
		01.08.1958	
Niangbo reserve	Niakaramandougou	Order n°1995 of 03.08.1932	1,700
Orumbo Boka reserve	Toumodi	Order n°200 of 31.01.1929	3,600
Singrobo reserve	Tiassale	Order n°999 of 22.05.1929	1,200
Tankesse reserve	Tanda	Order n°391/SF of 04.03.1929	3,600
Tiapleu reserve	Danane	Order n°2617 of 19.10.1932	28,000
Tos reserve	Bouafle, Sinfra	Order gl.n°3499/SE of 29.11.1937	23,000
Yapo reserve	Agboville	Order n°129/SF of 10.07.1947	37,300
	Total		198,418

Table 2.1-3 Botanical Reserves Area

ed Areas in Priority
-
ed Areas
ed
Protect
4
2.1
Table

(Magazine of literature: each colon corresponds to a document cited in following reference)

(1) IUCN, Action strategic for protected Areas in the Afrotropical Realm, 28th working section of IUCN's Commission on National Parks and Protected Areas "W" National Park, 1987

(2) IUCN, Biodiversity in Sub-Saharan Africa and its Islands, Occasional Papers of the IUCN Species Survival commission No. 6, IUCN, Gland, Switzerland, 1991, pp. A 154-170
(3) East R (compiler), Antelopes – Global survey and regional action Plans – Part 3 West and central Africa, compiled by, IUCN, Gland, Switzerland, 1991, pp. 1-39, 108-111.
(4) Collar N J and Stuart S.N., Key Forests for Threatened Birds in Africa, International Council for Bird Preservation, Monograph No. 3, Cambridge, UK, 1988, pp. 1-32 (5) Oates J.F. (compiler), Action Plan for African Primate Conservation: 1986-90, IUCN/SSC Primate Specialist Group, IUCN, Glad, and Switzerland

Area	Statue	Surface	(1)	(2)	3	(4)	(c)
		(ha)	General	General	Antelopes	Bird group	Primates
Tai	National park	330000	(Yes)		Yes	1 st priority of Guinean	1 st priority in
	4		(central of reforestation)		(Forestry species)	forestry block	Africa
Nzo	Reserve of Fauna	95000			Yes		
					(Forestry species)		
Comoe	National park	1150000	(Yes)	(Yes)	Yes		
			(To develop tourism)	(To develop tourism)	(Savanna species)		
Haut Bandama	Reserve of Fauna	123000		(Yes)	Yes		
				(endangered)	(Savanna species)		
Marahone	National park	101000	Yes	(Xes)	Yes		
		:		(endangered)	(Mixed species)		
Mont Sanohe	National park	95000		Yes	Yes		
And the second		1 1 1 1			(Mixed species)	-	
Mont Pako	National nark	34000		Yes	Yes		
		- - -			(Forestry species)		
Azagny	National park	21450	(Yes)	(Yes)			
>	1		(To develop tourism)	(To develop tourism)			
Island Ehotilees	National park	550					
Divo	Botanic reserve	7300		Yes	-		
						Kth Duinniter of Caliboon	
Mont Nimba	Integral reserve	5000		Y es Rich in species		FILIDILLY OF ULITICALI Forestry	
Banco	National park	3000		Yes			

Area	
Surface	
Protected	
2.1-5	
Table	

Name	Category of protection	Surface	Intervention in course	Classification in conservation priority	Soudanean	Transition area	Guinean
Tai	National Park, Reserve of the biosphere Site of World national patrimony	330000	GTZ/KFW, WWF (end 2000)	. I			
Nzo	Reserve of partial Fauna	95000	GTZ/KFW, WWF	I (Snace TAI)			×
Comoe	Reserve of Fauna and Flora	115000	WB/PSF	1	x	X	×
Haut Bandama	National Park	123000	(urgent action) EEC	4	x	(in the south)	
Marahoue	National Park	101000	(cvec) (cvec) EEC/PRHJ (end 2000)	2		X	
Mont Samgbe	National Park	95000	WB/PSF Study	3		x	x
Mont Peko	National Park	34000	WB/PSF (Urgent action)	ĥ			
Azagny	National Park	21450	2	2			X+ Coastal area
Island Ehotilees	National Park	555		4			X+ Coastal area
Abokouamekro	Reserve of Fauna	20430		5			
Divo	Reserve of Botany	7300		5			x
Mont Nimba	Strict natural reserve Site of World national patrimony	5000		2			×
Banco	National Park	3000		ñ	-		×
Lampto	Length reserve	2000		3			
TOTAL		2000000					

.

2.2 Distribution of Fauna in the National Park

Table 2.2-1 Distribution of Fauna in the National Park

1- AZAGNY

	COMMON NAME	SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
		Loxodonta africana cyclotis		
		(elephant),syncherus caffer		
	Elephant,	nanus (buffalo),c.diana		
	buffalo,chimpanzee,hippopo-	rotoway, C.mona lowei, colobus		
	tamus,royal antelope,panther, the	polykomos vellerosus, pan		
	group of cephalophe, tree daman,	troglodytes verus, c.verus,		
1- MAMMAL	culin chive, swanp mangoose	choeropsis liberiensis,		
	crocodile, varanus, snakes,	crocodylus niloticus, crocodilus		
2- REPTILE	tortues	cataphractus, varanus niloticus		
3- INSECT				exist but no inventory made
4-BIRD				exist but no inventory made
5- RUMINANT	Gambia rat, diverse squirrels			
6- AQUATIC ANIMALS Fishes,	Fishes,	periophtalme	numerous	
			Source: Monograph of Natio Protection, 1996	Source: Monograph of National Park, Direction of Nature Protection, 1996

Table 2.2-2 Distribution of Fauna in the National Park

2- BANCO

		SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
	רופטומות, טטמוווטטופוכי	וטאטטטונמימוחכמרומ;		
	buffalo,antelope,panther,	potamochoerus, synccerus		elephant, buffalo, panther
	chimpanzee,cephalotrophe, caffer, tragephus, trogloytes	caffer, tragephus, trogloytes		and many other animals
	mangoose, monkey, colobe,	monkey, colobe, verus,cephalophus sylvicultor,		have nearly
	demidoff galago, golden cat,	demidoff galago, golden cat, cephalophus niger, neotragus		disappeared,some
	culin chive, mangoose, tree	mangoose, tree pygmaeus, pan troglodytes	chimpanzee(10 or 15	mangoose, culin chive can
1- MAMMAL daman	daman	verus, colobus verus	left)	be present in the park
2- REPTILE				exist but are bad-known
3- INSECT	ant,termite or white ant			exist but are bad-known
4- BIRD				exist but no inventory made
		ariomaturus peit, protoxerus		
		stangeri temminckii,		
	<u>.</u>	heliosciurus rufobrachium		the three types of pangolin
	different types of squirrel,	haryi, thryonomis		have nearly disappeared, the
ம்	Gambia rat, aulacode, three	swinderianus, manis		gambia rat is certainly
RUMINANT	RUMINANT types of pangolin,	tetradactyla, toto rat or		present
6- AQUATIC				
ANIMAL	fish, aquatic chevrotain	Hyemoschus aquaticus,		

•

Table 2.2-3 Distribution of Fauna in the National Park

•

3- COMOE

	CUMINIUN NAME	SPECIFIC NAME	DATA IN NUMBERS	UTHEN INFUMMATIONS
	antelope,doguera baboon,	kob,hippotrague,papio anubis,		
	monkey, buffon cobe (horse	monkey, buffon cobe (horse alcelaphus buselaphus major,		
	for race), bubalis, ourebia,	ourebia ourebi, kobus defassa		
-	reed cobe, warthog, lion,	onctuosus, redunca redunca,		
	marked hyena, rocks	phacochoerus aethiopicus,		
	daman, buffalo, savanna	papio anubis, panthera leo,		
-	elephant, hippopotamus,	crocuta crocuta, felis libyca,		
	panthera, culin chive,	canis adustus, galago		
1- MAMMAL	1- MAMMAL cephaloph	senegalese		
	three species of crocodile,			
	two of tortues, varanus and			
2- REPTILE	many others snakes			
3- INSECT				
		ardeola Ibis, sagittarius	around 450 species with	lu:
		serpentarius, neotis denhami,	nearly 3/4 present all	
	secretary bird, egret, heron, eupodotis melanogaster,	eupodotis melanogaster,	the year (small quantity	
4- BIRD	the big calao, orns	bucorvus abyssinicus	emigrate)	
	Gambia rat, porcupine, hare			
۔ أ	with rabbit ears, aulacode,			
RUMINANT	palm tree rat, pangolin			

.

 Table 2.2-4 Distribution of Fauna in the National Park

 4- EHOTILE ISLAND

	COMMON NAME	SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
		neotragus pygmaeus,		because of the hunting
-		cercopithecus		pressure, formerly well-
	potamochere, harnache	nictitans,cephalophus		known, the manatee called
	guib (antelope), maxwell	monticola maxwelli,		trichechus senegalensis is in
1- MAMMAL	I- MAMMAL İcephalophe, antelope,	tragelaphus scriptus,		danger
2- REPTILE				no inventory made
3- INSECT				no inventory made
4- BIRD	bat	chiropter		
5				
RUMINANT				
			Lunuserous with	
			migratory species (128	
			species divided into 35	
			families), 58 species of	
6- AQUATIC	6- AQUATIC shellfish, mollusc, fish	tilapia guineensis, ethmalosa	fishes have been	
ANIMALS	(Tilapia, other species)	fimbriata	discover in the Aby	an inventory has been made

Table 2.2-5 Distribution of Fauna in the National Park

5- MARAHOUE

-	COMMON NAME	SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
		וסצסמסוונמ מוזורמו ומ' מורבומהווחס		
	elephant, buffalo, buffon	buselaphus major, kobus kob		
	cobe (horse for race),	kob, syncerus caffer	100 to 150 elephants	
		brachyceros, tragelaphus	left, buffon cobe meanly	
	hyppopotamus, cephalophe,	hyppopotamus, cephalophe, scriptus scriptus, tragelaphus	abundant, nuerous	
	tree daman, monkey,	euryceros, bongo, panthera	buffalo, panther	monkeys are in danger and
1- MAMMAL	1- MAMMAL mangoose, chimpanzee	pardus,	relatively important,	many others animals
	many reptiles but not specify			
	in the document, crocodile,			
2- REPTILE	snakes,etc	crocodylus niloticus	numerous	
3- INSECT				
				in dry season some
	several species for example:	several species for example: coracias cyanogaster, coracias		migrating species come to
4- BIRD	the roller	abyssinica,	300 species still exist	increase the number of the
ц.				
RUMINANT	aulacode, pangolin, squirrel, thryonomis swinderianus	thryonomis swinderianus		
6- AQUATIC				
ANIMALS	Fish exist			

Table 2.2-6 Distribution of Fauna in the National Park

6- PEKO MOUNTAIN

					ř		
DATA IN NUMBERS OTHER INFORMATIONS					ex: the picathartes gymnocephalus is in danger		
DATA IN NUMBERS					156 species divided into ex: the picathartes 41 families gymnocephalus is		
SPECIFIC NAME	hippopotamus amcana, hippopotamus amphibius, choeropsis liberiensis, tragelaphus euryceros, cenhalophus svivicultor,	maxwell cephalophe,			-		
COMMON NAME	elephant, hyppopotamus, anteione huffalo				several species		
		1- MAMMAL	2- REPTILE	3- INSECT	4- BIRD	5- RUMINANT	

Table 2.2-7 Distribution of Fauna in the National Park

Z
5
2
-
H
1
Ξ.
\Box
-
2
F -4
-
EQ.
75
Ξ
2
2
SO 1
1

	COMMON NAME	SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
	ears, palm tree rat, gambia	atelerix albiventris, lepus		
	rat, land squirrel, antelope,	crawshayi, xerus anthropus,		
	cephalophe, baboon,	papio anubis, cercopithecus		
	monkeys, warthog, buffon	aethiops sabaeus,		
	cobe, bubalis, ourebia,	phacochoerus aethiopicus,		
	rocks daman, panther,	ourebia ourebi, kobus kob kob,		
	hyena, serval, lion,	alcelaphus buselaphus major,		
	mangoose, golden cat, tree	procavia capensis, crocuta		
	daman, genet, Africa	crocuta, felis serval, panthera		
	buffalo,elephant, panther,	leo, loxodonta africana, atilax		cephalophe and cobe (horse
1- MAMMAL	mangoose, genet,	paludinosus		for race) are hunted enough
		crocodylus niloticus, c.		5
	three types of crocodile,	cataphractus, osteolaemus		
2- REPTILE	varanus, snakes, tortues	tetraspis, varanus niloticus		
3- INSECT				
	rich with several species			-
	mainly in dry season with			
4- BIRD	the migratory birds			
	pangolin,Gambia rat,	hystrix cristata, thryonomis		
ц Ч	squirrel, porcupine,	swinderianus, crycetomis		aulacodes are the more
RUMINANT	aulacode	gambianus, manis gigantea,		hunted specie

Table 2.2-8 Distribution of Fauna in the National Park

•

8- TAI

hippopotamus, cephalophe, cercopithec, colobe (horse for race), panther, chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird		COMMON NAME	SPECIFIC NAME	DATA IN NUMBERS	OTHER INFORMATIONS
hippopotamus, cephalophe, cercopithec, colobe (horse for race), panther, chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird					
hippopotamus, cephalophe, cercopithec, colobe (horse for race), panther, chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird			neotragus, pygmaeus, colobus		
cercopithec, colobe (horse for race), panther, chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird		hippopotamus, cephalophe,	polykomos polykomos,		
for race), panther, chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird		cercopithec, colobe (horse	cephalophus zebra,		
chimpanzee, forest buffalo, antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird		for race), panther,	cephalophus jentinki, syncerus		
antelope, elephant, crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird		chimpanzee, forest buffalo,	caffer nanus, troglodytes		
crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird	1- MAMMAL		verus, panthera pardus,		
crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird			crocoayius cataphractus,		
crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird			osteolaemus tetraspis, varanus		
crocodiles, varanus, water tortues, python (snake) forest guinea-fowl, monkey eagle, the great touraco, the big hornbill, weaver bird			niloticus, kinixys belliana,		
		crocodiles, v	testudo sulcata, python sebae,		
	2- REPTILE	tortues, pyth	p. regius		
<u>H</u>	3- INSECT				
E E			agelastes meleagrides,		
eagle, the gi big hornbill,		forest guinea-fowl, monkey	stephanoaetus coronatus,		
big hornbill, weaver bird		eagle, the great touraco, the	conythaeola cristata,		
5- DI IMMINANT	4- BIRD	big hornbill, weaver bird	ceratogymna atrata,		
	ம்				
	RUMINANT				

···-.

2.3 Importation Quantities and Price of Pestisides

Category				ye	ar		<u> </u>	
	90	91	92	93	94	95	96	97
Importation of	quantities		<u> </u>	l	٢g			
Insecticides	19,000		107,000	10,000	6,000	28,000	30,200	14,800
Herbicide	7,515		27,476	44,330	23,444	28,000	33,010	49,200
Fungicide					8,000	9,000		2,700
Unit price at i	importation			F CI	A/kg			
Insecticides	4,495		2,246	3,140	8,304	9,321	8,973	1,557
Herbicide	4,126		4,576	3,676	2,252	9,185	16,713	14,032
Fungicide					10,920	11,064		23,280
Unit price at s	selling		<u></u>	F CI	FA/kg	· · · · · · · · · · · · · · · · · · ·		
Insecticides	2,000		2,000	4,000	4,000	4,000	4,000	*
Herbicide	2,000		2,500	3,000	5,000	5,000	5,000	*
Fungicide					5,000	5,000		*

* the data was not available during the inquiry. **Source:** data from DPVQ (1998)

----- · .

......

CHAPTER 3. ENVIRONMENTAL ORGANIZATION AND LAW

1. Organizations Related to Environmental Control

The Ministry of Environment and Forest was established by decree N 98-688 of November 25 1998, considering the decree N 96-725 related to the structural organization of the Ministry of Agriculture and some Animal facilities.

The central management offices are 6 directions:

- Direction of the protection of the nature, constituted of two sub-directions; mainly to charge of manage, protect the national parks, botanical and zoological gardens etc.

- Direction of the production, some forest industries, reforestation, constituted of three sub-directions; mainly to charge of initiate the actions relative to the construction of forestry public domain and private etc.

- Direction of the forestry police and contentious; mainly to charge of the forest domain supervising of the state, the community and the particulars, and its preservation against the clearing etc.

- Direction of the environment, constituted of two sub-directions; mainly to charge of coordinating the actions for protection of some aquatic areas, lagoons and marine implementation etc.

- Direction of the planning and programming of the studies; this Direction is linked with whole ministry structures to elaborate and to coordinate, the strategies of forestry development policy and the protection of environment

- Direction of the administrative and financial affairs

2. Environmental Law and Regulation

(1) Survey Procedure Concerning an Environmental Impact of Development Project

In 1996, Ministry determined the role and applicable survey procedure concerning an environmental impact of development project by Decree N 96-894. Article 2 mentions related to development projects which makes the subject to the survey of environmental impact study, and locate of risked areas and ecological sensitive areas. There are as follows.

- Protected areas and analogue reserves
- Wet areas and mangroves
- Areas of scientific interest, cultural, and tourists
- Defined areas of economically sensible
- Protection points of surface water

- Seaside areas under national and international jurisdiction or the other international seas

(2) The survey of Environmental Impact

The Environmental Impact Survey is an assessment report of the probable impacts of scheduled activity on the environment. The Survey composed of 5 main activities, identification, analyze, evaluation, corrective measurements and, support and control. The survey must contain as following elements.

(A) Identification; detailed description of the project

(B) Analyze; this analyze must carry on the natural environment concerned with fauna, flora, hydrographic system, climate, soil type etc., on the landscape, ecological and human environment.

(C) Evaluation; the reason for the project has been retained the presentation of the variances will be made for the following classified spheres. (a)Agriculture, (b)Forest development, (c)Mining factory, (d)Waste disposal, (e)Food industry, (f)Chemical industry, (g)Metal work, (h)Textile, leather, and wood industry.

(D) Corrective measurements; the measurements of prevention, suppression, reduction, and/or compensation have been considered by the project owner or the petitioner in order to avoid the aftermath of the project.

(E) Support and control; the impact survey is permitted with given the measurements of prevention, suppression, reduction and compensation.

(3) Joining Situation to International Act

The government ratifies the international act of Convention on International Trade in Endangered Species of Wild Fauna and Flora called CITES in August 25, 1994, and Convention on Wetlands of International Importance Especially as Waterfowl Habitat called Convention of Ramsar in June 27, 1996.

3.1-1 Environmental Organization

DECREE N 98-688 OF NOVEMBER 25, 1998 RLATING TO THE MINISTRY OF ENVIRONMENT AND FOREST ORGANIZATION

CHAPTER III - THE CENTRAL MANAGEMENT OFFICES

ARTICLE VIII

The central management offices are:

- The Direction of the protection of the nature
- The Direction of the production, some forests industries and of reforestation
- The Direction of the forestry police and of contentious
- The Direction of the environment
- The Direction of the scheduling, of the programming and some studies
- The Direction of the Administrative and Financial Affairs

ARTICLE IX - THE DIRECTION OF THE PROTECTION OF THE NATURE

- Of creating, manage, protect and valorize the national parks, analogous reserves, stations and botanical and zoological gardens
- Of assuring the conservation of the botanical and zoological species
- Of conceiving and organize a rational practice of the hunting, and prescribe the regimentation and follow its application
- Of initiating, of conducting some actions of promotion, and of breeding development of wild cash animals

The Direction of the protection of the nature comprises two sub-Directions:

- The sub-direction of the parks and reserves
- The under Direction of the fauna and some hunting facilities

ARTICLE X - THE DIPARTMENT OF THE PRODUCTION, OF THE FORESTRY INDUSTRY AND OF REFORESTATION

- Of initiating the actions relative to the construction of forestry public domain and private, to its regimentation and its implementation

- Of conceiving and implement the relative actions to the construction, to the delimitation, to the management and to the protection of public domain and private
- Of achieving the whole inventory operations of forest domain
- Of valorizing the products of forest, notably by the promotion of some secondary products and the non woody products
- Of instructing the demand of forestry concession, of the forest operators agreement and of wood industry, and also the demand of license and other exploitation means
- Of updating the woody potential file of the forest and to manage the file of the field and the factories
- Of conceiving and care of the execution of the general plan reforestation and the development work in order to increase the afforestation rate of the national territory and of proposing and implement the whole actions of fight against the desertification and the increasing of the productivity in matter of woody
- Of promoting the forestry rural and the agro-forestry
- Of encouraging the construction of forest with the local community and the particulars

The direction of the production, the forestry industries and of reforestation composes to three sub-Directions 2:

- The sub-Direction of the reforestation and the desertification control
- The sub-Direction of the forestry production
- The sub-Direction of the forestry industries and secondary product of the forest

ARTICLE XI - THE DEPARTMENT OF THE POLICE FORESTRY AND OF THE

CONTENTIOUS

- Of the forest domain supervising of the state the community and the particulars, and of its preservation against the clearing
- Of the application of forest and fauna regimentation
- Of ensuring military training of the agents
- Of doing the forestry control
- Of searching and noting the infraction in matter of forest exploitation and the hunting offense
- Of preparing the actions of legal proceedings in the competent jurisdiction and of representing the forestry administration to the court of law

ARTICLE XII - THE EVIRONMENT DEPARTMENT

It has for mission to take of the protection of the environment, by pointing out and control all the forms of pollution and of some nuisances.

- Of conceiving, animating and coordinating the actions of protection and of some aquatic area, lagoons and marine implementation
- Of carrying out to the collection and the exploitation of data concerning the aquatic area, lagoon and marines
- Of promoting the public salubriousness in the town and the villages, of proposing and implementing all susceptible action to better the living condition
- Of defining the relative regimentation to the protection of the environment and to control its applying

The environment department is constituted of two sub-directions:

- The sub-Direction of the fight against the salubriousness
- The Sub-Direction of pollution control
- The planing department of the survey of environmental impact, that is on the authority of a team leader who as got the rank of the central administration Sub-Direction

ARTICLE XIII - THE DEPARTMENT OF THE PLANING AND THE PROGRAMING OF THE STUDIES

The Department has for mission, in links with the whole ministry structures, to elaborate and to coordinate the strategies of forestry development policy and the protection of environment.

- Of assuring the concordance of the initiated actions by the structures of the ministry and those that have been implemented by the international institutions, the intergovernmental institutions and the non-governmental organism. These institutions participle to the financing of the project relative to the forest development and the protection of the environment.
- Of preparing the planing work
- Of elaborating the reference terms of studies, of following its progress and evaluating the results
- Of formulating the programs and development projects, of coordinating and following its operation and its evaluation

3.1-2 Project Subjected to the Survey of Environmental Impact Projects Concerning the Article 2 - 1

The dangerous company, insalubrious or uncomfortable subject to an authorization of the nomenclature of the classified installations.

1-Agriculture :

- a) Project of rural regrouping
- b) Clearing and affectation project of barren land to the intensive farming of an acreage superior than 999ha

2 – Forest development

a) Reforestation operation of an acreage superior than 999ha

3-Extractive factories

- a) Working operation and petroleum concern and natural gas
- b) Extraction of mining resources

4 – Energy industry :

- a) Crud oil refinery and installation of gasification and liquefaction
- b) Thermal central and other combustion installations of high calorific power
- c) Hydroelectric dam

5-Waste disposal :

a) Installations in order to stock or to eliminate waste whatever the nature and the

procedure of elimination

- b) Non controlled discharge having or not biomedical waste
- c) Station of waste water purification

6-Industry of food

- a) Industry of vegetable fatty and Animals
- b) Canned of animals product and vegetables
- c) Manufacturing of milk product
- d) Brewing and Malting
- e) Preserving and syrup maker
- f) Installation for animal slaughtering
- g) Starch industry
- h) Factory of fish meal and fish oil
- i) Station of water treatment for human nourishment

7 – Chemical industry

a) Installation of manufacturing chemical product, of pesticide of pharmaceutical product, of painting and varnish, of elastomer, and of peroxide

8 – Metal work

- a) Iron and steel installation and installation of metal product which are not contain iron
- b) Stocking of old iron

9-Textile industry, leather industry, of wood and of papers

- a) Manufacturing unit of papers and cotton
- b) Production unit of cellulose treatment
- c) Unit of Tanning and megisserie

10 –Infrastructure project

a) Construction of road for the traffic of railway, for motorway and for airport that the take of and the landing are 2100 meter

b) Port of fish trading and for pleasure

- c) Development works of industrial areas
- d) Urban development works
- e) Canalization work and the regulation of basins river
- f) Dams or other installations which can retain water or to stock it durably
- g) Installation of pipeline and gas-pipeline or of other type of canalization
- h) Installation of aqueduct

11 –Others

- a) Installation of cement manufacturing
- b) Holidays village and hotels that capacity is inferior than 150 beds
- c) manufacturing and Conditioning, loading or insetting of powder and explosive

Appendix 9.3-3 Project subjected to the survey of the environmental impact,

Projects concerning the article 5

1 – Agriculture

- a) Hydraulic agriculture project
- b) Exploitation that can shield fowls
- c) Exploitation that can shield pigs and other ruminants
- d) Installation of fish farming
- e) Recovery of territory which are installed on the sea

2 - forest Development

a) Operation of reforestation of a surface between 100ha and 999ha

b) Clearing and affectation project of barren land or semi-natural surface to the intensive farming of an acreage between 100ha and 999ha.

3-Extractive industry

a) Deep boring exception to study the quality of the soil and notably

- 1 –Geothermal borings
- 2-The borings for stocking waste
- 3 The borings for supplying water

b) Extraction in underground operation of mineral resources

4 –Industry of energy

a) Industrial installation intended to the production of industry, of water vapor

b) Industrial installation intended to the transport of gas of water vapor, transport of electric energy by shipping airline

- c) Airline stocking of natural gas
- d) Stoking of combustible gas in underground storage
- e) Stoking of fossil combustible gas
- f) Installation intended to the production of hydroelectric energy

5 – Metal works

- a) Stamping, punching of big piece
- b) Treatment of surface of metal
- c) Boiler-making, construction of reservoir and other type of piece
- d) Construction and assembling of automobile vehicle and construction of motor for vehicle.
- e) Naval site
- f) Installation for the construction and reparation of airplane
- g) construction of railway material
- h) Stamping of operating charges

Appendix 9.3-4 Sites that the projects are subjected to the survey of Environmental Impact Study, in article 2 - 2

- 1 –Protected areas and analogue reserves
- 2 -humid area and mangroves
- 3 Space of scientific interest, cultural, and tourists
- 4 Area defined economically sensible
- 5-Surface of water point protection
- 6-Seaside space under national and international jurisdiction or other international seas

Appendix 9.3-5 A model report of the survey of environment impact

1 - Non technical Summarized

2 – Introduction

- Object of the report
- □ Introducing of the responsible survey of the environmental impact
- **D** Procedure and range of the survey of the environmental impact
- □ Short descriptions of the contain of the method and technical used to do the survey of environmental impact

3 Description of the project or program

- □ The author of the project
- □ Introducing of the responsible of the survey of environmental impact
- □ Implantation site of the project or program
- □ Necessity and justification of the project or program
- □ Elaboration of the objectives, target and indicators
- Description of the project : Raw material, Processed, Equipment, Manpower, Products, etc....
- □ Maps, Organization chart and photography if necessary
- □ A measure of technical characteristic, Economy and ecology is necessary for the or the program
- □ Application calendar is foreseen
- □ Necessity of the survey of the environmental impact

4 – Environmental context

- □ Method of data collection
- Qualitative and quantitative statement of physics, biologics, social-economics environmental after the operating of the project
- □ Spatial bordering in the considered environment
- □ Area ecologically sensible that have an ecological value recognized scientifically, socialeconomically or cultural space or unique
- **D** Tendencies of the environment state
- □ Lack of data

5 – Other option of environment

6 - Environment impact of each option and control plan

- **D** Technical method and implicated hypothesis
- Databases
- □ Prevision (fullness, importance, distribution, uncertainty)
- □ The attenuation measures required
- □ Need of supervision

7 - Comparison of the options, conclusion

8 – Program of supervision

9 - Recommendation for the evaluation of the project or program

10 - Source of data and information

communication, consultation, program of data collection on the ground, written options, participation of the public.

11 - References

12 - Annex

3.2 Organization on Ministry of Construction and Environment

MINISTRY OF THE CONSTRUCTION AND ENVIRONMENT REPUBLIC OF CÔTE D'IVOIRE Union- Discipline- Work

DECREE N°2000-80 OF FEBRUARY 09 2000 RELATED TO THE ORGANIZATION CHART OF THE CONSTRUCTION AND ENVIRONMENT MINISTRY

The President of the Republic

On the Construction and Environment Ministry Report;

Considering the Constitutional Act n° 1/99-PR of December 27, 1999 related to the suspension of the Constitution and temporary organization of Public Authorities;

Considering the Decree n° 2000-02 of January 04, 2000 related to the Appointment of the Government of Transition members modified by the Decree n° 2000-09 of January 13, 2000;

Considering the Decree n° 2000-13 of January 21, 2000 related to Attributions of the Government of Transition members;

The Council of Ministers

Enact:

Article 1:

For the exercise of its attributions, the Construction and Environment Ministry disposes, besides the Cabinet, of Connected Services, Central Directions, and Exterior Services, which it is charge to organize by departmental orders.

CHAPTER 1: <u>THE CABINET</u>

Article 2:

The Cabinet includes:

- The Director of Cabinet
- The Chief of Cabinet
- The Official Representative
- The Chief of the Particular Secretariat
- Six Technical Counselors
- Four Project Managers

CHAPTER II: SERVICES LINKED TO THE CABINET

Article 3:

Are linked to the Cabinet of the Minister:

- The general Inspection of Construction and Urbanization and the General Inspection of Environment and Forest;
- The Service of Unique Counter and of Habitat;
- The Service of the Urban Domain;
- The Service of Civil Buildings;
- The Service of Inspection of Classified Installations;
- The Secretariat of the National Committee of Defense and Fight against Forest Fires;
- The department of Information, Education and Sensitizing;
- The Office of Control of Projects;
- The Service of Training and Teaching.

Article 4: THE GENERAL INSPECTION OF CONSTRUCTION AND URBANISM AND THE GENERAL INSPECTION OF ENVIRONMENT AND FOREST

They are charged of:

- To apply legislative and regular texts in the services of the Ministry;
- To execute, under the Minister's instructions, all necessary operations of inspection and control;
- To control and evaluate technical activities and management of the Ministry staff;
- To watch to the respect of discipline particularly to the respect of wearing of the uniform;
- To assist the Minister in the setting up all dispositions which include the changing of behaviour.

General Inspections include two General Inspectors and Technical Inspectors appointed by decree.

Article 5: THE SERVICE OF UNIQUE COUNTER, LANDED AND HABITAT

It is charge of:

- To centralize all demands of administrative acts;
- To assume the control of treatments of documents;
- To give back to interested, according to delays, the sequel reserved to their demands;
- To establish statistics;
- To inform populations on the composition and the composition of documents.

It is controlled by an office manager of the unique counter, which have the grade of Sub-Director of Central Administration.

Article 6: THE SECRETARIAT OF THE NATIONAL COMITY OF FOREST DEFENSE AND THE FIGHT AGAINST FOREST FIRE

It is charge of:

- To conceive and control the setting up of A National System of Defense and Fight against bush fire;
- To elaborate programs proposed to the committee;
- To insure the coordination of actions of defense and fight realized on the field;

The secretary of the National Committee of the Forest defense and fight against bush fires has the grade of Sub-Director of central Administration.

Article 7: THE OFFICE OF PROJECTS CONTROL

It is charge of:

- To insure the coordination of all projects on exterior financing;
- To initiate, prepare and control the execution of new projects;
- To insure the concordance of actions initiated by structures of the Ministry and ones established by international organisms, intergovernmental institutions and non-governmental organizations, which participate to the financing of projects relating to the development of the Construction and urbanism sector, the protection of the environment and the development of the forest.

The office of control of the projects is under the authority of the Director of Cabinet.

Article 8: THE DEPARTMENT OF INFORMATION, EDUCATION AND SENSITIZING

It is charge of:

- To conceive a policy of communication, education and sensitizing concerted within sectors of Construction, Environment and each of concerned activities;
- To control the execution of the policy of communication;
- To evaluate the impact, near populations, of actions of sensitizing and campaigns of education.

It is under the authority of an office manager, which has the grade of Sub-Director of Central administration.

Article 9: THE SERVICE OF TRAINING AND TEACHING

It is charge of:

- to conceive a policy of training of the department agents;
- to program and supervise several examinations organized by the Construction and Environment Ministry, in relation with competent ministerial departments;

- To control organisms of forest or environmental training in relation with other competent ministerial departments
- To elaborate and control, at a national level, the policy of permanent training and the improvement of agents of the department.

The Service of Training and Teaching is under the authority of an office manager, which has the grade of Sub-Director of Central Administration.

Article 10: THE INSPECTION SERVICE OF CLASSIFIED INSTALLATIONS

It is charge of:

- To inspect and control classified installations;
- To watch over the apply and respect of regulations in all industries which are in the national territory;
- To insure the management of industrial wastes (dangerous) and to promote new technologies by favoring their access;
- To associate industrials in the setting up of actions of fighting against pollution.

It is under the authority of an office manager that has the grade of Sub-Director of Central Administration.

CHAPTER III: CENTRAL DIRECTIONS

Article 11: CENTRAL DIRECTIONS

They are composed of:

- The Direction of Habitat;
- The Direction of Construction and Sanitation;
- The Direction of Urbanism;
- The Direction of Environment;
- The Direction of Protection of the Nature;
- The Forest Police Direction;
- The Direction of Forest Industries Production and Forestation;
- Administrative and Financial Affairs Direction.

Article 12: THE DIRECTION OF HABITAT

It is charge of:

- To elaborate, apply and control the policy of habitat;
- To improve habitat, especially by actions, which promote the production of lodgings both in urban and rural area;
- To develop mechanisms of inciting in favor of private house operators and individual initiatives;

It includes three Sub-Directions:

- The Sub-Direction of Urban Habitat;

- The Sub-Direction of Rural Habitat;
- The Sub-Direction of Construction License.

Article 13: THE CONSTRUCTION AND SANITATION DIRECTION

It is charge of:

- To supervise studies and control constructions realized for the State;
- To insure the keeping and maintenance of the State house patrimony;
- To elaborate and program the execution of master plans of sanitation and drainage;
- To supervise studies and works of primary networks;
- To pursue the contract with SODECI for the maintenance of sanitation and drainage networks of Abidjan.

It includes three Sub-Directions:

- The Sub-Direction of new works;
- The Sub-Direction of keeping and maintenance;
- The Sub-Direction of sanitation.

Article 14: THE DIRECTION OF URBANISM

It is charge of:

- To supervise studies and control the application of Urbanism Plans;
- To supervise the approving of housing plans in urban and rural area;
- To define the regulation and legislation in matter of urbanism;
- To assist local collectivities in matter of planning.

It includes two Sub-Directions:

- The Sub-Direction of urban Planning;
- The Sub-Direction of Land Arrangement.

Article 15- ENVIRONMENT DIRECTION

It is charge of:

- To conceive and coordinate actions of protection and valorization of aquatic and lagoon areas;
- To collect and exploit datas related to aquatic and lagoon milieus;
- To promote public healthiness in towns and villages and to propose all action susceptible to improve environment;
- To supervise the elaboration and execution of tree-planting programs;
- To define the regulation related to the environment protection and control its application;
- To study environmental impacts of development projects.

It include two Sub-Directions and an office:

- The Sub-Direction of environment;

- The Sub-Direction of fighting against pollution;
- The Office Environmental Impact Survey.

Article 16- THE DIRECTION OF PROTECTION OF THE NATURE

It is charge of:

- To create, manage, protect and valorize national parks;
- To insure the conservation of botanic and zoological species;
- To conceive and organize a rational practice of hunting;
- To initiate actions of promotion and development of wild animals species.

It includes two Sub-Directions:

- The Sub-Direction of Parks and Reserves;
- The Sub-Direction of Fauna and hunting resources.

Article 18- THE DIRECTION OF FOREST POLICE AND LITIGATION

It is charge of:

- To supervise the Forest Domain of the State, Local Collectivities and to protect it against grubbing;
- To apply the forest regulation;
- To insure the military training of agents;
- To effect the forest control;
- To research damages in matter of forest exploitation;
- To prepare actions of pursuing in competent jurisdictions and to represent the forest administration at tribunals.

The Direction of Forest Police and Litigation includes two sub-Directions:

- The Sub Direction of Forest Police;
- The Sub-direction of Regulation and Litigation.

Article 18- <u>THE DIRECTION OF FOREST INDUSTRIES PRODUCTION AND</u> FORESTATION

It is charge of:

- To initiate actions related to the constitution of the public and private forest domain and its regulation;
- To conceive and to set up actions related to the constitution, delimitation, management and protection of the public and private forest domain
- To realize whole of the forest domain operations of inventory;
- To valorize forest products, especially by the promotion of timber wood species and secondary products.
- To instruct demands of forest concessions, agreements of forest exploiters and industrial of wood;

- To update documents of the forest potential and to manage documents of yards and factories;
- To conceive and execute the General Plan of forestation and arrangement operations and to propose to set up whole of actions of fighting against desertification;
- To promote rural forestry and agro-forestry;
- To encourage the constitution of forests by collectivities.

It include three Sub-Directions:

- The Sub-Direction of Forestation and Fighting against Desertification;
- The Sub-Direction of Forest Production;
- The Sub-Direction of Forest industries and forest Secondary Products.

Article 19: THE DIRECTION OF ADMINISTRATIVE AND FINANCIAL AFFAIRS (DAAF)

It is charge of:

- To prepare the functioning and investment budget of the Ministry and to supervise its execution;
- To manage human resources and the Ministry patrimony;
- To effect the Ministry accounts;
- To control operations effectuated for existing activities;
- To effect buying related to closing;
- To buy arms and munitions;
- To make up programs of forest exploitation and programs of supervision of secondary products exploitation.

It includes two Sub-Directions and an Intendance:

- The Financial and Account Direction;
- The Sub-direction of Human Resources and Logistic;
- The intendance of Water and Forests.

CHAPTER IV- EXTERIOR SERVICES

Article 20: EXTERIOR SERVICES

They are constituted of 20 Regional Directions on which depend Departmental Directions and the quartering of water and forests.

Regional Directions exercise, each in its circumscription, technical competencies trusted to the Ministry of Construction and Environment in matter of construction, urbanism, environment and forests. They organize and control regional actions of the Ministry.

CHAPTER V- DIFFERENT DISPOSITIONS

Article 21:

The Environment and Construction Ministry exercise the trusteeship and the technical control on establishments and organisms, which the mission is within its attributions, according to existing legislative texts and regulations.

CHAPTER VI- FINAL DISPOSITIONS

Article 22:

The present decree abrogates all reverse anterior dispositions.

Article 23:

The Environment and Construction Ministry is in charge of the execution of the present decree which will be published in the official newspaper of Côte d'Ivoire.