GOTATHUWA ~ KOLONNAWA TRANSMISSION SYSTEM, SURGE ANALYSIS STEADY STATE HYDRAULIC ANALYSIS PRIOR TO GENERATION OF INITIAL CONDITION FILE 2020 FLOW CONDITIONS FEEDING BOTH GOTATHUWA AND KOLONNAWA RESERVOIRS

DATE: 1/ 2/2001 TIME: 16:36:41

INPUT DATA FILENAME ------ gk_ic1.DAT
TABULATED OUTPUT FILENAME ----- gk_ic1.OUT
POSTPROCESSOR RESULTS FILENAME --- gk ic1.RES

UNITS SPECIFIED

FLOWRATE = liters/second

HEAD (HGL) = meters
PRESSURE = kpa

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NODE #1		LENGTH			MINOR LOSS COEFF.	
1-FG	0	1	5.0	50.0	110.00	2.00	9.28
2-PU	1	2	15.0	50.0	110.00	.00	
3	2	3	5.0	50.0	110.00	4.00	
4	3	4	3.0	50.0	110.00	.00	
5	4	5	31.0	60.0	110.00	.00	
7	5	6	325.0	80.0	110.00	.00	
9	6	7	2175.0	80.0	110.00	.00	
10	7	8	965.0	50.0	110.00	.00	
11	8	9	800.0	50.0	110.00	.00	
13	9	10	3.0	50.0	110.00	.00	
14	10	11	50.0	50.0	110.00	.00	
15	11	12	3.0	50.0	110.00	16.00	
16-FG	12	0	3.0	50.0	110.00	.00	26.25
17	7	13	900.0	60.0	110.00	.00	
19	13	14	791.0	60.0	110.00	.00	
20	14	15	4460.0	60.0	110.00	.00	
21	15	16	3.0	60.0	110.00	.00	
22	16	17	50.0	60.0	110.00	.00	
23	17	18	3.0	60.0	110.00	.00	
24-FG	18	0	3.0	60.0	110.00	.00	25.20

PUMP DATA

THERE IS A PUMP IN LINE 2 DESCRIBED BY THE FOLLOWING DATA:

HEAD	FLOWRATE
(m)	(l/s)
61.00	.00
45.71	700.00
41.00	800.00

C:\Anselm\NRW\GK_IC1.OUT.doc Created by Anselm Perera 1/2/01 - 4:47 PM

JUNCTION NODE DATA

JUNCTION NUMBER	JUNCTION TITLE	EXTERNAL DEMAND (1/s)	(m)	CONNE		PIPES
1		.00	8.55	1	2	
2		.00	8.55	2	3	-
3		.00	8.55	3	4	
4		.00	8.55	4	5	
5		.00	8.55	5	7	
6		.00	21.48	7	9	
7		.00	12.83	9	10	17
8		.00	1.97	10	11	
9		.00	21.73	11	13	
10		.00	21.73	13	14	
11		.00	21.73	14	15	
12		.00	21.73	15	16	
13		.00	17.60	17	19	
14		.00	.57	19	20	
15		.00	18.63	20	21	
16		.00	18.63	21	22	
17		.00	18.63	22	23	
18		.00	18.63	23	24	

OUTPUT OPTION DATA

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER OF	PIPES(p)	=	20
NUMBER OF	JUNCTION NODES(j)	=	18
NUMBER OF	PRIMARY LOOPS(1)	=	0
NUMBER OF	FIXED GRADE NODES(f)	=	3
NUMBER OF	SUPPLY ZONES(z)	=	1

THE RESULTS ARE OBTAINED AFTER 4 TRIALS WITH AN ACCURACY = .00120

PIPELINE RESULTS

STATUS CODE:	XX -CLOSED PIPE	FG ~FIXED GRADE NODE	PU -PUMP LINE
	CV -CHECK VALVE	RV -REGULATING VALVE	TK -STORAGE TANK

PIPE NUMBER	NODE #1	NOS. #2	FLOWRATE	HEAD LOSS (m)	PUMP HEAD (m)	MINOR LOSS (m)	LINE VELO. (m/s)	HL/ 1000 (m/m)
1-FG	0	1	700.28	.13	.00	1.30	3.57	26.78
2-90	1	2	700.28	.40	45.70	.00	3.57	26.78
3	2	3	700.28	.13	.00	2.59	3.57	26.78
4	3	4	700.28	.08	.00	.00	3.57	26.78
5	4	5	700.28	.34	.00	.00	2.48	11.02
7	5	6	700.28	.88	.00	.00	1.39	2.71
9	6	7	700.28	5.90	.00	.00	1.39	2.71

C \Anselm\NRW\GK_ICLOUT.doc Created by Anselm Perera 1/2/01 • 4/47 PM

GOTATHUWA – KOLONNAWA TRANSMISSION SYSTEM, SURGE ANALYSIS STEADY STATE HYDRAULIC ANALYSIS PRIOR TO GENERATION OF INITIAL CONDITION FILE 2020 FLOW CONDITIONS FEEDING BOTH GOTATHUWA AND KOLONNAWA RESERVOIRS

10	7	8	359.69	7.52	.00	.00	1.83	7.80
11	8	9	359.69	6.24	.00	.00	1.83	7.80
13	9	10	359.69	.02	.00	.00	1.83	7.80
14	10	11	359.69	.39	.00	.00	1.83	7.80
15	11	12	359.69	.02	.00	2.74	1.83	7.80
16-FG	12	0	359.69	.02	.00	.00	1.83	7.80
17	7	13	340.58	2.61	.00	.00	1.20	2.90
19	13	14	340.58	2.29	.00	.00	1.20	2.90
20	14	15	340.58	12.93	.00	.00	1.20	2.90
21	15	16	340.58	.01	.00	.00	1.20	2.90
22	16	17	340.58	.15	.00	.00	1.20	2.90
23	17	18	340.58	.01	.00	.00	1.20	2.90
24-FG	18	0	340.58	.01	.00	.00	1.20	2.90

JUNCTION NODE RESULTS

	CTION EXTERNA TLE DEMAND (1/s)		ELEVATION	HEAD	JUNCTION PRESSURE (kpa)
1	.00	7.85	8.55	70	-6.87
2	.00		8.55	44.60	437.33
3	.00	50.42	8.55	41.87	410.58
4	.00	50.34	8.55	41.79	409.79
5	.00	50.00	8.55	41.45	406.44
6	.00	49.11	21.48	27.63	270.99
7	.00	43.21	12.83	30.38	297.92
8	.00	35.68	1.97	33.71	330.63
9	.00	29.45	21.73	7.72	75.68
10	.00	29.42	21,73	7.69	75.45
11	.00	29.03	21.73	7.30	71.63
12	.00	26.27	21.73	4.54	44.56
13	.00	40.60	17.60	23.00	225.54
14	.00	38.31	.57	37.74	370.06
15	.00	25.37	18.63	6.74	66.11
16	.00	25.36	18.63	6.73	66.02
17	.00	25.22	18.63	6.59	64.60
18	.00	25.21	18.63	6.58	64.52

SUMMARY OF INFLOWS AND OUTFLOWS

- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES
- (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

	PIPE NUMBER		FLOWRATE (1/s)
	1		700.28
	16		-359.69
	24		-340.58
NET SYSTEM	INFLOW	=	700,28
NET SYSTEM	OUTFLOW	=	-700.28
NET SYSTEM	DEMAND	=	.00

**** KYPIPE SIMULATION COMPLETED ****.

DATE: 1/ 2/2001 TIME: 16:36:41

C:\Anselm\NRW\GK_IC1.OUT.doc Created by Anselm Perera 1/2/Q1 - 4:47 PM ***** SIC PROGRAM: STEADY STATE - SURGE INITIAL CONDITIONS *****

Version 1.32, Nov. 1991

DATE = 01-03-2001

INPUT DATA FILE NAME FOR THIS SIMULATION = $gk_ic1.SIC$ OUTPUT DATA FILE NAME FOR THIS SIMULATION = gk ic1.TIC

NUMBER OF PIPES = 20

NUMBER OF JUNCTION NODES = 18

FLOW UNITS = CUBIC METERS / SECONDS

PRESSURE UNITS = KPA

THE HAZEN WILLIAMS HEAD LOSS RELATION IS USED FOR THIS SIMULATION

**** SUMMARY OF INPUT DATA ***

PIPE	NODE	NODE	LENGTH	DIAM.	PIPE	SUM-M	PUMP	FGN
NO.	#1	#2	(MT.)	(MM.)	RES.	FACT.	TYPE	GRADE
1	0	1	5.0	500.0	110.0	2.0	0.0	9.3
2	1	2	0.0	0.0	0.0	0.0	1.0	
3	2	3	5.0	500.0	110.0	4.0	0.0	
4	3	4	0.0	0.0	0.0	0.3	0.0	
5	4	5	31.0	600.0	110.0	0.0	0.0	
7	5	6	325.0	800.0	110.0	0.0	0.0	
9	6	7	2175.0	800.0	110.0	0.0	0.0	
10	7	8	965.0	800.0	110.0	0.0	0.0	
11	8	9	800.0	500.0	110.0	0.0	0.0	
13	9	10	3.0	500.0	110.0	0.0	0.0	
14	10	11	50.0	500.0	110.0	0.0	0.0	
15	11	12	3.0	500.0	110.0	16.0	0.0	
16	12	0	3.0	500.0	110.0	0.0	0.0	26.3
17	7	13	900.0	600.0	110.0	0.0	0.0	
19	13	14	791.0	600.0	110.0	0.0	0.0	
20	14	15	4460.0	600.0	110.0	0.0	0.0	
21	15	16	3.0	600.0	110.0	0.0	0.0	
22	16	17	50.0	500.0	110.0	0.0	0.0	
23	17	18	3.0	600.0	110.0	0.0	0.0	
24	18	0	3.0	600.0	110.0	0.0	0.0	25.2

FUNCTION OF ZERO LENGTH LINE SET UP:

LINE NO. 2 IS A COMPONENT BETWEEN TWO LINE SEGMENTS LINE NO. 4 IS A COMPONENT BETWEEN TWO LINE SEGMENTS

*** DATA FOR PUMPS FOR THIS SYSTEM ***

PUMP TYPE # 1 IS DESCRIBED BY THE FOLLOWING DATA:

HEAD DISCHARGE 61 0 45.71 .7 41 .8

THE FOLLOWING COEFFICIENTS ARE CALCULATED FOR THE PUMP CHARACTERISTIC:

A = 61 B = .257C = -31.571

JUNCT. N	O. DEM	AND	ELEVATION
1		0.0	8.6
2		0.0	8.6
3		0.0	8.6
4		0.0	8.6
5		0.0	8.6
6		0.0	21.5
7		0.0	12.8
8		0.0	2.0
9		0.0	21.7
10		0.0	21.7

C:\Anselm\NRW\GK_IC1.T1C.doc Created by Anselm Perera Created on 1/4/01 11:19 AM

11	0.0	21.7
12	0.0	21.7
13	0.0	17.6
14	0.0	0.6
15	0.0	18.6
16	0.0	18.6
17	0.0	18.6
18	0.0	18.6

**** THE RESULTS FOR THE STEADY STATE SIMULATION FOLLOW ****

NO. OF TRIALS = 8 - ACCURACY ATTAINED = 0

PIPE	NODE	NODE	FLOW	HEAD	MINOR	PUMP	LINE	HL
NO.	#1	#2	RATE	LOSS	LOSS	HEAD	VELOCITY	1000
1	0	1	0.74	0.15	1.45	0.00	3.77	29.65
2	1	2	0.74	0.00	0.00	43.91	0.00	0.00
3	2	3	0.74	0.15	2.90	0.00	3.77	29.65
4	3	4	0.74	0.00	0.14	0.00	0.00	0.00
5	4	5	0.74	0.38	0.00	0.00	2.62	12.20
7	5	6	0.74	0.98	0.00	0.00	1.47	3.01
9	6	7	0.74	6.54	0.00	0.00	1.47	3.01
10	7	8	0.43	1.06	0.00	0.00	0.85	1.10
11	8	9	0.43	8.67	0.00	0.00	2.19	10.83
13	9	10	0.43	0.03	0.00	0.00	2.19	10.83
14	10	11	0.43	0.54	0.00	0.00	2.19	10.83
15	11	12	0.43	0.03	3.91	0.00	2.19	10.83
16	12	0	0.43	0.03	0.00	0.00	2.19	10.83
17	7	13	0.31	2.20	0.00	0.00	1.10	2.44
19	13	14	0.31	1.93	0.00	0.00	1.10	2.44
20	14	15	0.31	10.88	0.00	0.00	1.10	2.44
21	15	16	0.31	0.01	0.00	0.00	1.10	2.44
22	16	17	0.31	0.30	0.00	0.00	1.58	5.93
23	17	18	0.31	0.01	0.00	0.00	1.10	2.44
24	18	0	0.31	0.01	0.00	0.00	1.10	2.44

JUNCTION	ELEVATION	DEMAND	PRESSURE	PRESSURE	HYDRAULIC	DEMAND
NO.	(MT.)		(KPA)	HEAD	GRADE	RESISTANCE
1	8.6	0.0	-8.5	-0.9	7.7	
2	8.6	0.0	422.1	43.0	51.6	
3	8.6	0.0	392.3	40.0	48.6	
4	8.6	0.0	390.9	39.9	48.4	
5	8.6	0.0	387.2	39.5	48.0	
6	21.5	0.0	250.9	25.6	47.1	
7	12.8	0.0	271.6	27.7	40.5	
8	2.0	0.0	367.7	37.5	39.5	
9	21.7	0.0	88.9	9.1	30.8	
10	21.7	0.0	88.6	9.0	30.8	
11	21.7	0.0	83.3	8.5	30.2	
12	21.7	0.0	44.6	4.6	26.3	
13	17.6	0.0	203.3	20.7	38.3	
14	0.6	0.0	351.4	35.8	36.4	
15	18.6	0.0	67.6	6.9	25.5	
16	18.6	0.0	67.5	6.9	25.5	
17	18.6	0.0	64.6	6.6	25.2	
18	18.6	0.0	64.5	6.6	25.2	

THE NET SYSTEM DEMAND = 0

SUMMARY OF INFLOWS (+) AND OUTFLOWS (-)

PIPE NO. FLOW
1 0.74
16 -0.43
24 -0.31

C:\Anselm\NRW\GK_ICI.TIC.doc Created by Anselm Perera Created on 1/4/01 11:19 AM ***** DATA FOR CARRYING OUT A SURGE ANALYSIS FOLLOWS:

THE TIME INCREMENT SELECTED FOR SURGE ANALYSIS = .0085 SEC.

*** TABLE OF ASSIGNED POSITIONS, LENGTHS AND INITIAL CONDITIONS FOR SURGE4 ***

SECTION	ORIG	GINAL	ASS	IGNED	ORIGINAL	ASSIGNED	WAVE	INITIAL	CONDIT	IONS
NUMBER	N	ODES	N	DDES	LENGTH	LENGTH	SPEED	Q	Hl	H2
1	0	1	19	1	5	10	1177	0.74	0.73	-0.87
2	1	2	1	2	0	0	1177	0.74	-0.87	43.04
3	2	3	2	3	5	10	1177	0.74	43.04	40.00
4	3	4	3	4	0	0	1177	0.74	40.00	39.86
5	4	5	4	5	31	30	1177	0.74	39.86	39.49
6	5	6	20	6	325	320	1177	0.74	39.49	25.58
7	6	7	21	7	2175	2171	1177	0.74	25.58	27.69
8	7	8	22	8	965	960	1177	0.43	27.69	37.49
9	8	9	23	9	800	800	1177	0.43	37.49	9.06
10	9	10	24	10	3	10	1177	0.43	9.06	9.03
11	10	11	25	11	50	50	1177	0.43	9.03	8.49
12	11	12	26	12	3	10	1177	0.43	8.49	4.55
13	12	0	27	28	3	10	1177	0.43	4.55	4.52
14	7	13	29	13	900	900	1177	0.31	27.69	20.73
15	13	14	30	14	791	790	1177	0.31	20.73	35.83
16	14	15	31	15	4460	4462	1177	0.31	35.83	6.89
17	15	16	32	16	3	10	1177	0.31	6.89	6.88
18	16	17	33	17	50	50	1177	0.31	6.88	6.58
19	17	18	34	18	3	10	1177	0.31	6.58	6.58
20	18	0	35	36	3	10	1177	0.31	6.58	6.57

NOTES:

- 1. Head computations at FGN'S use elevation of other end of pipe section
- 2. Pipe section resistances are based on initial conditions (Q <> 0)
- 3. Resistances for zero flow sections based on velocity (4 ft/s or 1 m/s)
- 4. The use of the Hazen Williams head loss relation results in values

**** THE INITIAL CONDITION DATA FILE FOR SURGE4 IS NOW BEING GENERATED *****

1. SYSTEM DATA:

Number of line segments = -18
Number of components = 2
Number of junctions = 17
Number of SDO's = 0
Time increment = .0085

NOTE: USERS MUST PROVIDE THE ADDITIONAL SYSTEM DATA

2. LINE SEGMENT DATA:

FIRST POSITION	SECOND POSITION	NO. OF TIME INCREMENTS	C/GA	INITIAL FLOW	SEGMENT RESISTANCE
19	1	1	611.2385	0.7398	2.9156
2	3	1	611.2385	0.7398	5.5604
4	5	3	424,4712	0.7398	0.6910
20	6	32	238.7651	0.7398	1.7845
21	7	217	238.7651	0.7398	11.9426
22	8	96	238.7651	0.4296	5.7425
23	9	80	611.2385	0.4296	46.9600
24	10	1	611.2385	0.4296	0.1761
25	11	5	611.2385	0.4296	2.9350
26	12	1	611.2385	0.4296	21.3345
27	28	1	611.2385	0.4296	0.1761
29	13	90	424.4712	0.3102	22.8139
30	14	79	424.4712	0.3102	20.0509

C:\Anselm\NRW\GK_ICT.TIC.doc Created by Anselm Perera Created on 1/4/01 11:19 AM

31	15	446	424.4712	0.3102	113.0557
32	16	1	424.4712	0.3102	0.0760
33	17	5	611.2385	0.3102	3.0799
34	18	1	424.4712	0.3102	0.0760
35	36	1	424.4712	0.3102	0.0760

The total number of wave travel increments = 1061

3. COMPONENT DATA:

1st	2nd	characteristics			Heads		
POS.	POS.	A	В	С	H1	H2	
1.0	2	61.000	0.257	-31.571	-0.866	43.044	
3.0	4	0.000	0.000	-0.250	40.001	39.864	

5. JUNCTION DATA:

POS. NO.	NO. OF	INITIAL	ADDITIONAL
1st PIPE	LEGS	HEAD	POS. NO's
5	-2	39.49	20
6	-2	25.58	21
7	-3	27.69	22 29
8	-2	37.49	23
9	-2	9.06	24
10	-2	9.03	25
11	-2	8.49	26
12	-2	4.55	27
13	-2	20.73	30
14	-2	35.83	31
15	-2	6.89	32
16	-2	6.88	33
17	-2	6.58	34
18	-2	6.58	35
19	0	0.73	
28	0	4.52	
36	0	6.57	

NOTE: HEAD values noted above at reservoirs connections may be incorrect - elevations of reservoir connections are undefined in the SIC data.

6. SDO DATA - NO SDO'S WERE SET UP IN THE SIC DATA FILE

8. CHECK VALVE DATA

ALL Check Valve data must be provided by the User - with SURGEDAT

NOTE: Users must provide the following data using SURGEDAT

- 9a. VARIABLE INPUT DATA
 - 9b. time ratio data
- 10. TABULATED OUTPUT DATA
- 11. PLOTTED OUTPUT DATA
- 12. SCREEN PLOT DATA

>>>> THE INITIAL CONDITION FILE FOR SURGEDAT (gk_icl.ICF) IS NOW GENERATED *****

C:\Anselm\NRW\GK_IC1.TIC.doc Created by Anselm Perera Created on 1/4/01 11:19 AM

******** - SURGE PROGRAM - VERSION 4.4 - ********* COPYRIGHTED BY DON J. WOOD, JAMES E. FUNK - LEXINGTON, KENTUCKY, 1991

DATE = - TIME = 08:07:52

INPUT DATA FILE NAME = gk_ic1.DAT OUTPUT DATA FILE NAME = gk_ic1.OUT

TOTAL SIMULATION TIME = 100

TIME INCREMENT = .01

SI UNITS ARE SPECIFIED: FLOW = CMS - HEAD = M.

**** SUMMARY OF PIPE SYSTEM DATA ****

NUMBERS OF SPECIFIC ELEMENTS

COMPONENTS = 2 BYPASS LINES = 0 LINE SEGMENTS = 18 JUNCTIONS = 17

SIDE ORIFICES = 0

RELIEF VALVES = 0 CHECK VALVES = 1 VARIABLE INPUTS= 1

LINE SEGMENT DATA

POS	MOITE	TRAVEL	C/GA	INITIAL	SEGMENT
OF	ENDS	INCREMENTS		FLOWRATE	RESISTANCE
19	1	1	611.24	0.74	2.92
2	3	1	611.24	0.74	5.56
4	5	3	424.47	0.74	0.69
20	6	32	238.77	0.74	1.78
21	. 7	217	238.77	0.74	11.94
22	8	96	238.77	0.43	5.74
23	3 9	80	611.24	0.43	46.96
24	10	ı	611.24	0.43	0.18
25	5 11	5	611.24	0.43	2.93
26	1.2	1	611.24	0.43	21.33
2	7 28	1	611.24	0.43	0.18
29	1.3	90	424.47	0.31	22.81
30	14	79	424.47	0.31	20.05
3:	1 15	446	424.47	0.31	113.06
3:	2 16	1	424.47	0.31	0.08
3.	3 17	5	611.24	0.31	3.08
3	4 18	1	424.47	0.31	0.08
3	5 36	1	424.47	0.31	0.08

COMPONENT DATA

POSITION NUMBERS = 1 2

A = 61 B = .257 C = -31.571 INITIAL FLOWRATE = .74 INITIAL HEADS =-.9 - 43

POSITION NUMBERS = 3 4

A = 0 B = 0 C = -.25

INITIAL FLOWRATE = .74 INITIAL HEADS = 40 - 39.8

JUNCTION DATA

JUNCTION	NUMBER	INITIAL	CONNE	CTING
LOCATION	OF LEGS	HEAD	POST	TIONS
5	2	39.5	20	
6	2	25.6	21	
7	3	27.7	22	29
8	2	37.5	23	
9	2	9.1	24	
10	2	9.0	25	
11	2 .	8.5	26	
12	2	4.6	27	
13	2	20.7	30	
14	2	35.8	31	
15	2	6.9	32	

16	2	6.9	33
17	2	6.6	34
18	2	6.6	. 35
19	0	0.7	
28	0	4.5	
36	0	6.6	

CHECK VALVE DATA

THERE IS A CHECK VALVE AT POSITION 3

TIME DELAY FOR VALVE = .1 - CV RESISTANCE = .25NOTE: THIS CHECK VALVE WILL NOT REOPEN ONCE CLOSURE OCCURS THE INITIAL HEAD LOSS DUE TO THE CHECK VALVE RESISTANCE = .14

NOTE: CHECK VALVE RESISTANCES MUST BE INCLUDED WITH THE COMPONENT DATA

VARIABLE INPUT DATA

INPUT # 1 - PUMP START UP OR SHUT DOWN IS SPECIFIED AT POSITION NO. 1 REFERENCE VALUES FOR PUMP COEFFICIENTS (N/NR (R) =1): A = 61 B = .257 C = -31.571

> TIME - RATIO INPUT DATA TIME RATIO 3 1 Ð

THE FOLLOWING INITIAL VALUE IS CALCULATED FOR THIS VARIABLE INPUT: ... These should agree with initial values previously input (in parenthesis) THE INITIAL VALUES FOR PUMP COEFF. - A = 61 (61) B = .257 (.257)

**** SUMMARY OF INITIAL CONDITIONS FOR LINE SEGMENTS ****

END POSITION DESIGNATIONS: J - JUNCTION, C - COMPONENT, S - SDO * - THIS DENOTES AN UNDESIGNATED END POSITION (UNACCEPTABLE) - CORRECT DATA

END PO	SITIONS	FLOW	HEA	D	HEAD	ELEVATION
#1	#2	1 to 2	#1	#2	Loss	DIFFERENCE
19 J	1 C	0.74	0.7	-0.9	1.6	0.0
2 C	3 C	0.74	43.0	40.0	3.0	-0.0
4 C	5 J	0.74	39.9	39.5	0.4	0.0
20 J	6 J	0.74	39.5	25.6	1.0	12.9
21 J	7 Ј	0.74	25.6	27. 7	6.5	-8.7
22 J	8 J	0.43	27.7	37.5	1.1	-10.9
23 J	9 Ј	0.43	37.5	9.1	8.7	19.8
24 J	10 J	0.43	9.1	9.0	0.0	-0.0
25 J	11 J	0.43	9.0	8.5	0.5	0.0
26 J	12 J	0.43	8.5	4.6	3.9	-0.0
27 J	28 ச	0.43	4.6	4.5	0.0	0.0
29 J	13 J	0.31	27.7	20.7	2.2	4.8
30 J	14 J	0.31	20.7	35.8	1.9	-17.0
31 J	15 J	0.31	35.8	6.9	10.9	18.1
32 J	16 J	0.31	6.9	6.9	0.0	0.0
33 J	17 J	0.31	6.9	6.6	0.3	-0.0
34 J	18 J	0.31	6.6	6.6	0.0	0.0
35 J	36 J	0.31	6.6	6.6	0.0	0.0

***** F	LOWRATE	AND PRESSURE	RESU	LTS	*****
TIME	H- 4	Q- 4			
0.200	39.9 39.9	0.740 0.740			
0.600	39.9	0.740			
0.800	39.9	0.740			
1.000	39.9	0.740			
1.200	24.8 10.4	0.689 0.627			
1.600	-0.5	0.579			
1.800	-7.5	0.548			
2.000 2.200	-10.1 -10.1	0.534 0.531			
2.400	0.5	0.506			
2.600	-5.4	0.453			
2.800 3.000	-6.8 -4.0	0.437 0.431			
3.200	-7.8	0.408			
3.400	~3.6	0.377			
3.600 3.800	-3.7 -10.1	0.365 0.351			
4.000	-4.8	0.343			
4.200	-1.4	0.322			
4.400 4.600	-1.8 0.1	0.305 0.279			
4.800	0.9	0.301			
5.000	-2.5	0.278			
5.200	-9.1 2.6	0.269			
5.400 5.600	15.6	0.239 0.285			
5.800	-3.2	0.240			
6.000	1.7 12.6	0.217			
6.200 6.400	-10.1	0.207 0.295			
6.600	-10.1	0.215			
6.800	10.1	0.187			
7.000 7.200	-4.3 -10.1	0.199 0.155			
7.400	20.1	0.192			
7.600	-10.1	0.124			
7.800 8.000	-10.1 -10.1	0.080 0.231			
8.200	-10.1	0.181			
8.400	10.7	0.113			
8.600 8.800	-10.1 -10.1	0.180 0.150			
9.000	-10.1	0.239			
9.200	18.7	0.022			
9.400 9.600	-10.1 -10.1	0.023 0.217			
9.800	44.6	0.122			
10.000	46.5	0.125			
10.200 10.400	16.7 -10.1	0.064 0.042			
10.600	10.9	0.104			
10.800	-10.1	0.241			
11.000 11.200	6.1 32.7	0.032 0.138			
11.400	-10.1	0.101			
CV CLOS	TRE OCCU	RS AT POSITIO)N #	3	
11.600 11.800		-0.122 0.032			
12.000		-0.074			
12.200	-10.1	-0.013			
12.400 12.600		0.000 0.074			
12.800		0.000			
13.000	-10.1	0.216			
13.200	106.0	0.000			

13.400 13.600 13.800 14.000 14.200 14.400 14.600 14.800	-10.1 -10.1 -10.1 -10.1 -10.1 -8.6 -10.1	-0.023 -0.102 0.082 0.016 -0.092 0.000 0.041
15.000 15.200 15.400 15.600 15.800 16.000 16.200 16.400	6.6 -10.1 -10.1 -10.1 -10.1 -10.1 -10.1	0.000 -0.144 -0.235 -0.234 -0.004 0.031 0.130 -0.020
16.600 16.800 17.000 17.200 17.400 17.600 17.800	21.9 7.9 -3.9 -10.1 -10.1 -10.1	0.000 0.000 -0.034 0.040 0.115 0.008 0.016
18.000 18.200 18.400 18.600 18.800 19.000 19.200 19.400	-10.1 52.7 -10.1 21.1 -4.7 -10.1 -10.1	-0.170 0.000 -0.012 0.000 0.000 -0.070 0.052 -0.029
19.600 19.800 20.000 20.200 20.400 20.600 20.800 21.000	40.0 -10.1 -10.1 35.3 -10.1 38.4 37.7 -10.1	0.000 -0.104 0.045 0.000 0.115 0.000 0.000
21.200 21.400 21.600 21.800 22.000 22.200 22.400 22.600	47.4 -10.1 -10.1 21.0 -10.1 18.7 66.1 -10.1	0.000 -0.082 -0.139 0.000 -0.064 0.000 0.000
22.800 23.000 23.200 23.400 23.600 23.800 24.000	7.4 -10.1 -10.1 -10.1 -10.1 63.5 -10.1	-0.096 -0.097 -0.154 0.088 -0.101 0.000 0.046
24.200 24.400 24.600 24.800 25.000 25.200 25.400 25.600	-10.1 51.7 -10.1 -10.1 -10.1 -10.1 -10.1 -4.4	0.041 0.000 -0.176 -0.034 -0.109 -0.034 -0.069 0.000
25.800 26.000 26.201 26.401 26.601 26.801 27.001	-10.1 -10.1 -10.1 -10.1 -10.1 -10.1	-0.023 0.118 -0.057 -0.084 0.017 -0.161 -0.188

27.201	33.7	0.000
27.401 27.601	90.5 -10.1	0.000 -0.061
27.801	-10.1	0.011
28.001	-10.1	0.000
28.201 28.401	-10.1 -10.1	0.050 -0.091
28.601	70.5	0.000
28.801	-10.1	-0.089
29.001 29.201	33.8 -10.1	0.000 0.018
29.401	-10.1	0.016
29.601 29.801	-10.1 -10.1	0.046 -0.115
30.001	-10.1	0.025
30.201 30.401	-10.1 -10.1	0.111 0.078
30.601	21.2	0.000
30.801	-10.1	-0.141
31.001 31.201	-10.1 -10.1	0.050 -0.139
31.401	-10.1	0.007
31.601 31.801	-10.1 -10.1	-0.132 -0.058
32.001	-10.1	0.107
32.201	71.5 -10.1	0.000
32.401 32.601	-10.1	0.097 -0.076
32.801	-10.1	-0.074
33.000 33.200	-10.1 55.3	-0.144 0.000
33.400	-10.1	-0.009
33.600	-1.3	-0.049
33.800 34.000	-10.1 -10.1	-0.025 -0.093
34.200	-10.1	-0.097
34.400 34.600	-10.1 8.4	0.010 0.000
34.800	71.1	0.000
35.000 35.200	11.5 -10.1	0.000 0.073
35.400	-10.1	0.011
35.600 35.800	-10.1 -10.1	-0.019 -0.168
36.000	-10.1	-0.168
36.200	-10.1	-0.021
36.400 36.600	-10.1 -10.1	0.042 0.080
36.800	-10.1	0.043
37.000 37.200	-10.1 -10.1	0.001 -0.025
37.400	-10.1	0.054
37.600	-10.1	0.037
37.800 38.000	-10.1 -10.1	-0.070 0.012
38.200	22.7	0.000
38.400 38.600	-10.1 -10.1	0.201 -0.075
38.799	27.2	0.000
38.999	-10.1	0.001
39.199 39.399	17.8 -5.2	0.000 -0.027
39.599	-10.1	0.020
39.799 39.999	-10.1 -10.1	0.049 0.012
40.199	-10.1	0.029
40.399 40.599	-10.1 57.4	0.070 0.000
40.599	-10.1	0.064

C:\Anselm\NRW\GK_IC1.OUT.doc Created by Anselm Perera Created on 1/5/01 \$:17 AM

40.999	44.2	0.000
41.199	-10.1	-0.095
41.399	60.2	0.000
41.599	-10.1	-0.033
41.799	-10.1	0.003
41.999	-10.1	0.055
42.199	-10.1	0.226
42.399	19.2	0.000
42.599	-10.1	0.027
42.799	70.4	0.000
42.999	60.9	0.000
43.199	-10.1	-0.193
43.399	-10.1	-0.237
43.599	-10.1	0.128
43.799	-10.1	-0.193
43.999	26.7	0.000
44.199	-10.1	-0.010
44.399	25.4	0.000
44.599	8.2	0.000
44.798	-10.1	0.157
44.798	-10.1	0.137
	-10.1	
45.198	-10.I	0.028
45.398	-3.9	0.000
45.598	50.9	0.000
45.798	5.6	0.000
45.998	-10.1	0.099
46.198	-10.1	0.190
46.398	-10.1	0.160
46.598	37.2	0.000
46.798	-10.1	0.095
	-10.1	0.093
46.998	1.0	0.000
47.198	-10.1	-0.009
47.398	-10.1	0.007
47.598	-10.1	0.021
47.798	-10.1	0.030
47.998	6.6	-0.092
48.198	-8.0	0.000
48.398	24.5	0.000
48.598	-10.1	-0.248
48.798	-10.1	0.133
48.998	-10.1	-0.074
49.198	30.6	0.000
49.398	-10.1	-0.038
49.598	40.6	0.000
49.798	-10.1	0.119
49.998	-10.1	0.172
50.198	-7.7	0.000
50.398	-10.1	-0.107
50.598	-10.1	0.062
50.797	-10.1	0.022
50.997	-10.1	0.005
51.197		
	-10.1	0.070
51.397	-10.1	-0.082
51.597	61.2	0.000
51.797	-10.1	-0.049
51.997	86.1	0.000
52.197	-10.1	0.143
52.397	-10.1	0.027
52.597	-10.1	0.069
52.797	-10.1	-0.168
52.997	-10.1	0.027
	100.7	0.000
53.197		
53.397	-10.1	-0.024
53.597	-10.1	-0.078
53.797	-10.1	0.035
53.997	-10.1	0.070
54.197	-10.1	0.026
54.397	-10.1	0.113
54.597	-10.1	0.145

69.396 -10.1 0.024 69.596 45.0 0.000 69.797 -10.0 0.000 69.997 -10.1 -0.124 70.197 -10.1 -0.169 70.397 -10.1 -0.155 70.797 -10.1 0.010 70.997 -10.1 0.109 71.197 51.3 0.000 71.397 -10.1 0.064 71.597 -10.0 0.000 71.797 -4.8 0.000 71.797 -10.1 -0.033 72.197 0.6 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 72.397 -10.1 -0.02 73.397 -10.1 -0.07 73.397 -10.1 -0.02 73.397 -10.1 -0.06 74.397 -10.1 -0.06 74.397 -10.1 -0.06 74.998 -10.1 -0.06	68.596 68.796 68.996 69.196	23.8 -10.1 -10.1 -10.1	0.000 -0.167 0.064 -0.040
69.797 -10.0 0.000 69.997 -10.1 -0.124 70.197 -10.1 -0.169 70.397 -10.1 -0.155 70.797 -10.1 0.010 70.997 -10.1 0.000 71.197 51.3 0.000 71.397 -10.1 0.064 71.597 -10.0 0.000 71.797 -4.8 0.000 71.997 -10.1 -0.033 72.197 0.6 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 72.397 -10.1 -0.02 73.397 -10.1 -0.07 73.397 -10.1 -0.02 73.797 -10.1 -0.02 73.797 -10.1 -0.02 73.797 -10.1 -0.02 73.797 -10.1 -0.02 73.397 -10.1 -0.02 73.397 -10.1 -0.02 73.597 -10.1 -0.06 73.597 -1	69.396	-10.1 45.0	0.024
70.197 -10.1 -0.169 70.397 -10.1 0.010 70.597 -10.1 -0.155 70.797 -10.1 0.010 70.997 -10.1 0.010 70.997 -10.1 0.064 71.397 -10.1 0.000 71.797 -4.8 0.000 71.997 -10.1 -0.033 72.197 0.6 0.000 72.397 -10.1 0.032 72.597 -10.1 0.032 72.797 0.2 0.000 72.997 -10.1 -0.042 73.397 -10.1 -0.007 73.397 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026	69.797	-10.0	0.000
70.597 -10.1 -0.155 70.797 -10.1 0.010 70.997 -10.1 0.109 71.197 51.3 0.000 71.397 -10.0 0.000 71.597 -10.0 0.000 71.997 -4.8 0.000 71.997 -4.8 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 73.397 -10.1 -0.026 73.397 -10.1 -0.026 73.397 -10.1 -0.026 73.397 -10.1 -0.026 73.397 -10.1 -0.067 74.197 -10.1 -0.067 74.197 -10.1 -0.067 74.197 -10.1 -0.067 74.798 -10.1 -0.028	70.197	-10.1	-0.169
70.997 -10.1 0.109 71.197 51.3 0.000 71.397 -10.1 0.064 71.597 -10.0 0.000 71.797 -4.8 0.000 71.997 -10.1 -0.033 72.197 0.6 0.000 72.397 -10.1 0.032 72.797 0.2 0.000 72.997 -10.1 -0.07 73.397 -10.1 -0.007 73.397 -10.1 -0.02 73.797 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.067 74.197 -10.1 -0.067 74.797 -10.1 -0.067 74.798 -10.1 -0.040 75.198 -10.1 -0.088 75.598 -10.1 -0.088	70.597	-10.1	-0.155
71.397 -10.1 0.064 71.597 -10.0 0.000 71.997 -4.8 0.000 72.197 0.6 0.000 72.397 -10.1 -0.032 72.797 0.2 0.000 72.997 -10.1 -0.142 73.197 -10.1 -0.007 73.397 40.8 0.000 73.597 -10.1 -0.026 73.797 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 -0.042 74.397 -10.1 -0.166 74.598 -10.1 -0.040 74.798 -10.1 -0.040 75.598 -10.1 -0.088 75.598 -10.1 -0.08 75.998	70.997	-10.1	0.109
71.797 -4.8 0.000 71.997 -10.1 -0.033 72.197 0.6 0.000 72.397 -10.1 0.087 72.597 -10.1 0.032 72.797 0.2 0.000 72.997 -10.1 -0.042 73.197 -10.1 -0.007 73.397 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.067 74.397 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 -0.067 74.197 -10.1 -0.040 74.398 -10.1 -0.040 75.598 -10.1 -0.088 75.598 -10.1 -0.05<		-10.1	0.064
71.997 -10.1 -0.033 72.197		-10.0 -4.8	
72.397 -10.1 0.087 72.597 -10.1 0.032 72.797 0.2 0.000 72.997 -10.1 -0.142 73.197 -10.1 -0.007 73.397 40.8 0.000 73.597 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 -0.067 74.397 -10.1 -0.166 74.798 -10.1 -0.109 74.798 -10.1 -0.040 74.998 86.8 0.000 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 -0.088 75.798 -10.1 -0.051 76.198 -10.1 -0.132 76.398 -10.1 -0.132 76.798 98.3 0.000 77.198 -10.1 -0.087 77.798 -10.1 -0.058 77.998 -10.1 -0.058<		-10.1	-0.033
72.797 0.2 0.000 72.997 -10.1 -0.142 73.197 -10.1 -0.007 73.397 40.8 0.000 73.597 -10.1 -0.026 73.797 -10.1 -0.067 74.197 -10.1 -0.166 74.397 -10.1 -0.166 74.500 -10.1 -0.040 74.798 -10.1 -0.040 74.798 -10.1 -0.040 75.198 -10.1 -0.044 75.398 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 -0.080 75.998 -10.1 -0.132 76.398 0.8 0.000 76.798 -10.1 -0.132 76.398 19.8 0.000 77.198 -10.1 -0.087 77.398 -10.1 -0.058 77.798 -10.1 -0.058 77.998 -10.1 -0.058	72.397	-10.1	0.087
73.197 -10.1 -0.007 73.397 40.8 0.000 73.597 -10.1 0.002 73.797 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 -0.166 74.397 -10.1 -0.109 74.798 -10.1 -0.040 74.998 86.8 0.000 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 -0.088 75.798 -10.1 -0.051 76.198 -10.1 -0.051 76.398 0.8 0.000 75.598 -10.1 -0.132 76.398 0.8 0.000 76.798 -10.1 0.019 76.598 -10.1 0.019 76.798 19.8 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.058 77.998 13.5 0.00	72.797	0.2	0.000
73.597 -10.1 0.002 73.797 -10.1 -0.026 73.997 -10.1 -0.067 74.197 -10.1 0.042 74.397 -10.1 -0.166 74.590 -10.1 -0.040 74.798 -10.1 -0.040 74.998 86.8 0.000 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 -0.088 75.798 -10.1 -0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.087 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 79.399	73.197	-10.1	-0.007
73.997 -10.1 -0.067 74.197 -10.1 0.042 74.397 -10.1 -0.166 74.500 -10.1 -0.109 74.798 -10.1 -0.040 74.998 86.8 0.000 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 0.060 75.998 -10.1 -0.132 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.087 77.598 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 77.998 -10.1 0.042 78.598 -10.1 -0.058 79.399 -10.1 0.002 78.798			
74.197 -10.1 0.042 74.397 -10.1 -0.166 74.798 -10.1 -0.109 74.798 -10.1 -0.040 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 -0.051 76.198 -10.1 -0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 76.798 98.3 0.000 77.198 -10.1 -0.128 77.398 -10.1 -0.087 77.598 -10.1 -0.087 77.598 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.042 78.598 -10.1 -0.168 78.998 -10.1 -0.168 78.999 -10.1 -0.105 79.399			
74.590 -10.1 -0.109 74.798 -10.1 -0.040 74.998 86.8 0.000 75.198 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 76.798 19.8 0.000 76.798 19.8 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.087 77.598 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.999 -10.1 0.002 79.399 -10.1 0.053 </td <td>74.197</td> <td>-10.1</td> <td>0.042</td>	74.197	-10.1	0.042
74.998 86.8 0.000 75.198 -10.1 0.044 75.398 -10.1 -0.088 75.798 -10.1 0.060 75.998 -10.1 0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 76.998 19.8 0.000 77.198 -10.1 0.128 77.398 -10.1 -0.087 77.598 -10.1 -0.087 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.198 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.02 79.399 -10.1 0.053 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2	74.598	-10.1	-0.109
75.398 -10.1 -0.028 75.598 -10.1 -0.088 75.798 -10.1 0.060 75.998 -10.1 0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 76.798 19.8 0.000 77.198 -10.1 0.128 77.398 -10.1 -0.087 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.02 79.399 -10.1 0.053 79.999 -10.1 0.051 79.799 -10.1 0.051 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.	74.998	86.8	0.000
75.798 -10.1 0.060 75.998 -10.1 0.051 76.198 -10.1 -0.132 76.398 0.8 0.000 76.798 98.3 0.000 76.798 98.3 0.000 76.998 19.8 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.067 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.02 79.399 -10.1 0.053 79.999 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	75.398	-10.1	-0.028
76.198 -10.1 -0.132 76.398 0.8 0.000 76.598 -10.1 0.019 76.798 98.3 0.000 76.998 19.8 0.000 76.998 19.8 0.000 77.198 -10.1 -0.087 77.598 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 0.002 79.599 -10.1 0.053 79.999 -10.1 0.051 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.00 80.799 -10.1 0.134	75.798	-10.1	0.060
76.598 -10.1 0.019 76.798 98.3 0.000 76.998 19.8 0.000 77.198 -10.1 0.128 77.598 -10.1 -0.087 77.798 -10.1 -0.058 77.798 -10.1 -0.058 77.799 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 0.105 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	76.198	-10.1	-0.132
76.998 19.8 0.000 77.198 -10.1 0.128 77.398 -10.1 -0.087 77.598 -10.1 -0.167 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 0.105 79.799 -10.1 0.105 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134		0.8 -10.1	
77.198 -10.1 0.128 77.398 -10.1 -0.087 77.598 -10.1 -0.167 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 0.105 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	76.798 76.998	98.3	
77.598 -10.1 -0.167 77.798 -10.1 -0.058 77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 0.105 79.799 -10.1 0.053 79.999 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	77.198	-10.1	0.128
77.998 13.5 0.000 78.198 -10.1 0.039 78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 -0.110 79.599 -10.1 0.053 79.999 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	77.598	-10.1	-0.167
78.398 -10.1 0.042 78.598 47.6 0.000 78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 -0.110 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	77.998	13.5	0.000
78.798 -10.1 -0.168 78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 -0.110 79.599 -10.1 0.053 79.799 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	78.398	-10.1	0.042
78.998 16.9 0.000 79.199 -10.1 0.002 79.399 -10.1 -0.110 79.599 -10.1 0.053 79.799 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134			
79.399 -10.1 -0.110 79.599 -10.1 0.105 79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	78.998	16.9	0.000
79.799 -10.1 0.053 79.999 -10.1 0.061 80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	79.399	-10.1	-0.110
80.199 84.2 0.000 80.399 -10.1 -0.289 80.599 78.4 0.000 80.799 -10.1 0.134	79.799	-10.1	0.053
80.599 78.4 0.000 80.799 -10.1 0.134	80.199	84.2	0.000
	80.599	78.4	0.000
	80.999	-10.1	-0.140
81.199 -10.1 -0.227 81.399 -10.1 0.038	81.399	-10.1	0.038
81.599 -10.1 0.011 81.799 -10.1 0.045			
81.999 25.3 -0.195 82.199 -0.4 -0.053			

C:\Anselm\NRW\GK_IC1,OUT.doc Created by Anselm Perera Created on 1/5/01 8:17 AM

82.399 82.799 82.799 82.799 83.199 83.399 83.599 84.000 84.400 84.600 84.400 85.600 85.600 85.600 85.600 86.200 86.400 86.600 87.200 87.400 87.600 87.600 88.200 88.400 88.801 89.201 88.801 89.201 89.401 89.601 89.201 90.601 90.801 91.001 91.601 90.801	-10.1 -10.1 83.1 -10.1 39.2 -10.1 45.0 24.5 -10.1 62.8 -10.1	-0.000 -0.018 0.000 0.106 0.000 0.139 0.000 0.056 0.000 0.080 -0.033 -0.098 0.000 0.113 0.000 0.72 -0.032 0.050 -0.222 0.037 0.054 0.000 -0.156 0.016 0.011 0.000 -0.220 0.001 0.011 0.000 -0.220 0.001 0.011 0.000 -0.220 0.001 0.001 -0.033 -0.031 0.072 0.000 0.001 -0.033 -0.031 0.072 0.000 0.000 0.000 -0.017 -0.029 0.000 0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000
88.200 88.400 88.601 88.801 89.001 89.201 89.401	-10.1 15.8 -10.1 109.1 -10.1 -10.1	0.011 0.000 -0.220 0.000 0.051 -0.033 -0.031
89.801 90.001 90.201 90.401 90.601 90.801 91.001	-6.5 -10.1 18.5 64.2 -10.1 -10.1	0.000 0.124 0.000 0.000 -0.017 -0.029 0.009
91.401	66.4	0.000 -0.000 0.000 0.000 0.000 0.000
93.001 93.201 93.402 93.602 93.802 94.002 94.202 94.402	111.8 105.5 110.7 108.6 107.5 106.5 115.3 119.2	0.000 0.000 0.000 0.000 0.000 0.000 0.000
94.602 94.802 95.002 95.202 95.402 95.602 95.802 96.002		0.000 0.000 0.000 0.000 0.000 0.000 0.000

C:\Anselm\NRW\GK_ICI OUT.doc Created by Anselm Perera Created on 1/5/01 8:17 AM

96.202	84.7	0.000
96.402	91.7	0.000
96.602	97.4	0.000
96.802	64.2	0.000
97,002	63.9	0.000
97.202	67.9	0.000
97.402	68.5	0.000
97.602	54.1	0.000
97.802	64.9	0.000
98,003	99.2	0.000
98.203	81.7	0.000
98.403	97.3	0.000
98.603	93.2	0.000
98.803	121.2	0.000
99.003	119.3	0.000
99.203	117.7	0.000
99.403	124.6	0.000
99.603	124.9	0.000
99.803	93.6	0.000

SUMMARY OF MAXIMUM AND MINIMUM HEADS

SUMMARY OF MA	XIMUM AND N	AINIMUM HEAL
POSITION NO.	MUMIKAM	MINIMUM
1	236.0	-10.1
2	236.2	-10.1
3	318.3	-10.1
4	131.2	-10.1
5	126.0	-10.1
6	114.5	-10.1
7	117.5	-10.1
8	138.1	-3.7
9	84.6	-10.1
10	75.0	-10.1
11	89.9	-10.1
12	58.2	-10.1
13	122.2	-10.1
14	131.4	-10.0
15	53.0	-10.1
16	53.4	-10.1
17	43.5	-10.1
18	41.7	-10.1
19	0.7	0.7
28	4.5	4.5
36	6.6	6.6

*** END OF THIS SIMULATION ***

A PLOT FILE ($gk_ic1.PLT$) HAS BEEN CREATED WITH THE FOLLOWING DATA:

ITEM NO. SPECIFIC RESULT
1 HEAD AT POS. # 4
2 FLOW AT POS. # 4

***** SIC PROGRAM: STEADY STATE - SURGE INITIAL CONDITIONS *****

Version 1.32, Nov. 1991

DATE = 01-05-2001

INPUT DATA FILE NAME FOR THIS SIMULATION = gk_ic2.SIC OUTPUT DATA FILE NAME FOR THIS SIMULATION = gk ic2.TIC

NUMBER OF PIPES = 20

NUMBER OF JUNCTION NODES = 18

FLOW UNITS = CUBIC METERS / SECONDS

PRESSURE UNITS = KPA

THE HAZEN WILLIAMS HEAD LOSS RELATION IS USED FOR THIS SIMULATION

CLOSED LINES - 17

**** SUMMARY OF INPUT DATA ***

PIPE	NODE	NODE	LENGTH	DIAM.	PIPE	SUM-M	PUMP	FGN
NO.	#1	#2	(MT.)	(MM.)	RES.	FACT.	TYPE	GRADE
1	0	1	5.0	500.0	110.0	2.0	0.0	9.3
2	I	2	0.0	0.0	0.0	0.0	1.0	
3	2	3	5.0	500.0	110.0	4.0	0.0	
4	3	4	0.0	0.0	0.0	0.3	0.0	
5	4	5	31.0	600.0	110.0	0.0	0.0	
7	5	6	325.0	800.0	110.0	0.0	0.0	
9	6	7	2175.0	800.0	110.0	0.0	0.0	
10	7	8	965.0	800.0	110.0	0.0	0.0	
11	8	9	800.0	500.0	110.0	0.0	0.0	
13	9	10	3.0	500.0	110.0	0.0	0.0	
14	10	11	50.0	500.0	110.0	0.0	0.0	
15	11	12	3.0	500.0	110.0	16.0	0.0	
16	12	0	3.0	500.0	110.0	0.0	0.0	26.3
17	7	13	900.0	600.0	110.0	0.0	0.0	
19	13	14	791.0	600.0	110.0	0.0	0.0	
20	14	15	4460.0	600.0	110.0	0.0	0.0	
21	15	16	3.0	600.0	110.0	0.0	0.0	
22	16	17	50.0	500.0	110.0	0.0	0.0	
23	17	18	3.0	600.0	110.0	0.0	0.0	
24	18	0	3.0	600.0	110.0	0.0	0.0	25.2

FUNCTION OF ZERO LENGTH LINE SET UP:

LINE NO. 2 IS A COMPONENT BETWEEN TWO LINE SEGMENTS LINE NO. 4 IS A COMPONENT BETWEEN TWO LINE SEGMENTS

*** DATA FOR PUMPS FOR THIS SYSTEM ***

PUMP TYPE # 1 IS DESCRIBED BY THE FOLLOWING DATA:

HEAD DISCHARGE 61 0 45.71 .7 41 .8

THE FOLLOWING COEFFICIENTS ARE CALCULATED FOR THE PUMP CHARACTERISTIC:

A = 61 B = .257C = -31.571

C:\Anselm\NRW\GK_1C2.TIC.doc Created by Anselm Perera Created on 1/5/01 2:16 PM

JUNCT. NO.	DEMAND	ELEVATION
1	0.0	8.6
2	0.0	8.6
3	0.0	8.6
4	0.0	8.6
5	0.0	8.6
6	0.0	21.5
7	0.0	12.8
8	0.0	2.0
9	0.0	21.7
10	0.0	21.7
11	0.0	21.7
12	0.0	21.7
13	0.0	17.6
14	0.0	0.6
15	0.0	18.6
16	0.0	18.6
17	0.0	18.6
18	0.0	18.6

THERE IS A SEPARATE PRESSURE ZONE SUPPLIED THROUGH PIPE # 24

**** THE RESULTS FOR THE STEADY STATE SIMULATION FOLLOW ****

NO. OF TRIALS = 8 - ACCURACY ATTAINED = 0

PIPE	NODE	NODE	FLOW	HEAD	MINOR	PUMP	LINE	HL
NO.	#1	#2	RATE	LOSS	LOSS	HEAD	VELOCITY	1000
1	0	1	0.58	0.10	0.90	0.00	2.97	19.05
2	1	2	0.58	0.00	0.00	50.43	0.00	0.00
3	2	3	0.58	0.10	1.80	0.00	2.97	19.05
4	3	4	0.58	0.00	0.08	0.00	0.00	0.00
5	4	5	0.58	0.24	0.00	0.00	2.06	7.84
7	5	6	0.58	0.63	0.00	0.00	1.16	1.93
9	6	7	0.58	4.20	0.00	0.00	1.16	1.93
10	7	8	0.58	1.86	0.00	0.00	1.16	1.93
11	8	9	0.58	15.24	0.00	0.00	2.97	19.05
13	9	10	0.58	0.06	0.00	0.00	2.97	19.05
14	10	11	0.58	0.95	0.00	0.00	2.97	19.05
15	11	12	0.58	0.06	7.19	0.00	2.97	19.05
16	12	0	0.58	0.06	0.00	0.00	2.97	19.05
LINE	NO. 17	IS SH	UT OFF					
19	13	14	0.00	0.00	0.00	0.00	0.00	0.00
20	14	15	0.00	0.00	0.00	0.00	0.00	0.00
21	15	16	0.00	0.00	0.00	0.00	0.00	0.00
22	16	17	0.00	0.00	0.00	0.00	0.00	0.00
23	17	18	0.00	0.00	0.00	0.00	0.00	0.00
24	18	0	0.00	0.00	0.00	0.00	0.00	0.00

JUNCTION	ELEVATION	DEMAND	PRESSURE	PRESSURE	HYDRAULIC	DEMAND
NO.	(MT.)		(KPA)	HEAD	GRADE	RESISTANCE
1	8.6	0.0	-2.6	-0.3	8.3	
2	8.6	0.0	492.0	50.2	58.7	
3	8.6	0.0	473.4	48.3	56.8	
4	8.6	0.0	472.6	48.2	56.7	
5	8.6	0.0	470.2	47.9	56.5	
6	21.5	0.0	337.2	34.4	55.9	
7	12.8	0.0	380.9	38.8	51.7	
8	2.0	0.0	469.1	47.8	49.8	
9	21.7	0.0	125.8	12.8	34.6	
10	21.7	0.0	125.3	12.8	34.5	
11	21.7	0.0	115.9	11.8	33.5	

C:\Anselm\NRW\GK_1C2.TIC.doc Created by Anselm Perera Created on 1/5/01 2:16 PM

12	21.7	0.0	44.9	4.6	26.3
13	17.6	0.0	74.5	7.6	25.2
14	0.6	0.0	241.5	24.6	25.2
15	18.6	0.0	64.4	6.6	25.2
16	18.6	0.0	64.4	6.6	25.2
17	18.6	0.0	64.4	6.6	25.2
18	18.6	0.0	64.4	6.6	25.2

THE NET SYSTEM DEMAND = 0

SUMMARY OF INFLOWS (+) AND OUTFLOWS (-)

PIPE NO. FLOW
1 0.58
16 -0.58
24 0.00

***** DATA FOR CARRYING OUT A SURGE ANALYSIS FOLLOWS:

THE TIME INCREMENT SELECTED FOR SURGE ANALYSIS = .0085 SEC.

*** TABLE OF ASSIGNED POSITIONS, LENGTHS AND INITIAL CONDITIONS FOR SURGE4 ***

SECTION	ORI	GINAL	ASS	IGNED	ORIGINAL	ASSIGNED	WAVE	INITIAL	CONDIT	IONS
NUMBER	N	ODES	N	ODES	LENGTH	LENGTH	SPEED	Q	H1	H2
ı	0	1	19	1	5	10	1177	0.58	0.73	-0.26
2	1	2	1	2	0	0	1177	0.58	-0.26	50.17
3	2	3	2	3	5	10	1177	0.58	50.17	48.27
4	3	4	3	4	0	0	1177	0.58	48.27	48.19
5	4	5	4	5	31	30	1177	0.58	48.19	47.95
6	5	6	20	6	325	320	1177	0.58	47.95	34.39
7	6	7	21	7	2175	2171	1177	0.58	34.39	38.84
8	7	8	22	8	965	960	1177	0.58	38.84	47.83
9	8	9	23	9	800	800	1177	0.58	47.83	12.83
10	9	10	24	10	3	10	1177	0.58	12.83	12.77
11	10	11	25	11	50	50	1177	0.58	12.77	11.82
12	11	12	26	12	3	10	1177	0.58	11.82	4.58
13	12	0	27	28	3	10	1177	0.58	4.58	4.52
14	7	13	29	13	900	900	1177	0.00	38.84	7.60
15	13	14	30	14	791	790	1177	0.00	7.60	24.63
16	14	15	31	15	4460	4462	1177	0.00	24.63	6.57
17	15	16	32	16	3	10	1177	0.00	6.57	6.57
18	16	17	33	17	50	50	1177	0.00	6.57	6.57
19	17	18	34	18	3	10	1177	0.00	6.57	6.57
20	18	0	35	36	3	10	1177	0.00	6.57	6.57

NOTES:

- 1. Head computations at FGN'S use elevation of other end of pipe section
- 2. Pipe section resistances are based on initial conditions (Q <> 0)
- 3. Resistances for zero flow sections based on velocity (4 ft/s or 1 m/s)
- 4. The use of the Hazen Williams head loss relation results in values

***** THE INITIAL CONDITION DATA FILE FOR SURGE4 IS NOW BEING GENERATED *****

1. SYSTEM DATA:

Number of line segments = -18 Number of components = 2 Number of junctions = 17 Number of SDO's = 0 Time increment = .0085

NOTE: USERS MUST PROVIDE THE ADDITIONAL SYSTEM DATA

2. LINE SEGMENT DATA:

FIRST POSITION	SECOND POSITION	NO. OF TIME INCREMENTS	C/GA	INITIAL FLOW	SEGMENT RESISTANCE
19	1	1	611.2385	0.5827	2.9254
2	3	1	611.2385	0.5827	5.5702
4	5	3	424.4712	0.5827	0.7158
20	6	32	238.7651	0.5827	1.8487
21	7	217	238.7651	0.5827	12.3720
22	8	96	238.7651	0.5827	5.4892
23	9	80	611.2385	0.5827	44.8884
24	10	1	611.2385	0.5827	0.1683
25	11	5	611.2385	0.5827	2.8055
26	12	1	611.2385	0.5827	21.3267
27	28	1	611.2385	0.5827	0.1683
29	13	90	424.4712	0.0000	26.9065
30	14	79	424.4712	0.0000	23.6479
31	15	446	424.4712	0.0000	133.3369
32	16	1	424.4712	0.0000	0.0897
33	17	5	611.2385	0.0000	4.0464
34	18	1	424.4712	0.0000	0.0897
35	36	1	424.4712	0.0000	0.0897

The total number of wave travel increments = 1061

3. COMPONENT DATA:

1st	2nd	characteristics			Heads		
POS.	POS.	A	B	¢	H1	H2	
1.0	2	61.000	0.257	-31.571	-0.263	50.165	
3.0	4	0.000	0.000	-0.250	48.274	48.189	

5. JUNCTION DATA:

POS. NO.	NO. OF	INITIAL	ADDITIONAL
1st PIPE	LEGS	HEAD	POS. NO's
5	-2	47.95	20
6	-2	34.39	21
7	-3	38.84	22 29
8	-2	47.83	23
9	-2	12.83	24
10	-2	12.77	25
11	-2	11.82	26
12	-2	4.58	27
13	-2	7.60	30
14	-2	24.63	31
1.5	-2	6.57	32
16	-2	6.57	33
17	-2	6.57	34

C:\Anselm\NRW\GK_IC2.TIC.doc Created by Anselm Perera Created on 1/5/01 2:16 PM

GOTATHUWA KOLONNAWA TRANSMISSION SYSTEM - SURGE ANALYSIS GENERATION OF INITIAL CONDITION FILE UNDER 2020 FLOW CONDITION WITHOUT PROVISION FOR SURGE CONTROL AND FEEDING ONLY GOTATHUWA RESERVOIR

18	-2	6.57	35
19	0	0.73	
28	0	4.52	
36	0	6.57	

NOTE: HEAD values noted above at reservoirs connections may be incorrect - elevations of reservoir connections are undefined in the SIC data.

- 6. SDO DATA NO SDO'S WERE SET UP IN THE SIC DATA FILE
- 8. CHECK VALVE DATA ALL Check Valve data must be provided by the User - with SURGEDAT

NOTE: Users must provide the following data using SURGEDAT

- 9a. VARIABLE INPUT DATA 9b. time ~ ratio data 10. TABULATED OUTPUT DATA 11. PLOTTED OUTPUT DATA 12. SCREEN PLOT DATA

>>>> THE INITIAL CONDITION FILE FOR SURGEDAT (gk_ic2.ICF) IS NOW GENERATED *****

******* - SURGE PROGRAM - VERSION 4.4 - ********* COPYRIGHTED BY DON J. WOOD, JAMES E. FUNK - LEXINGTON, KENTUCKY, 1991

DATE = - TIME = 14:38:05

INPUT DATA FILE NAME = gk ic2.DAT OUTPUT DATA FILE NAME = gk_ic2.OUT

TOTAL SIMULATION TIME = 100

TIME INCREMENT = .01

SI UNITS ARE SPECIFIED: FLOW = CMS - HEAD = M.

**** SUMMARY OF PIPE SYSTEM DATA ****

NUMBERS OF SPECIFIC ELEMENTS

LINE SEGMENTS = 18 COMPONENTS = 2
JUNCTIONS = 17 BYPASS LINES = 0 LINE SEGMENTS - 10

JUNCTIONS = 17

SIDE ORIFICES = 0

WATUES = 1

WATUES = 1

LINE SEGMENT DATA

POS	NOITI	TRAVEL	C/GA	INITIAL	SEGMENT
OF	ENDS	INCREMENTS		FLOWRATE	RESISTANCE
19	1	1.	611.24	0.58	2.93
2	3	1	611.24	0.58	5.57
4	. 5	3	424.47	0.58	0.72
20	6	32	238.77	0.58	1.85
21	. 7	217	238.77	0.58	12.37
22	8	96	238.77	0.58	5.49
23	9	80	611.24	0.58	44.89
24	10	1	611.24	0.58	0.17
25	11	5	611.24	0.58	2.81
26	1.2	1	611.24	0.58	21.33
27	28	1	611.24	0.58	0.17
29	13	90	424.47	0.00	26.91
30	14	79	424.47	0.00	23.65
31	. 15	446	424.47	0.00	133.34
32	16	1	424.47	0.00	0.09
33	17	5	611.24	0.00	4.05
34	18	1	424.47	0.00	0.09
35	36	1	424.47	0.00	0.09

COMPONENT DATA

POSITION NUMBERS = 1 2

A = 61 B = .257 C = -31.571 INITIAL FLOWRATE = .58 INITIAL HEADS =-.3 - 50.1

POSITION NUMBERS = 3 4

A = 0 B = 0 C = -.25INITIAL FLOWRATE = .58 INITIAL HEADS = 48.2 - 48.1

JUNCTION DATA

JUNCTION	NUMBER	INITIAL	CONN	ECTING
LOCATION	OF LEGS	HEAD	POS	ITIONS
5	2	47.9	20	
6	2	34.4	21	
7	3	38.8	22	29
8	2	47.8	23	
9	2	12.8	24	
10	2	12.8	25	
11	2	11.8	26	
12	2	4.6	27	
13	2	7.6	30	
14	2	24.6	31	
15	2	6.6	32	
16	2	6.6	33	
17	2	6.6	34	
18	2	6.6	35	
19	0	0.7		
28	0	4.5		
36	0	6.6		

CHECK VALVE DATA

THERE IS A CHECK VALVE AT POSITION 3

TIME DELAY FOR VALVE = .1 - CV RESISTANCE = .25 NOTE: THIS CHECK VALVE WILL NOT REOPEN ONCE CLOSURE OCCURS THE INITIAL HEAD LOSS DUE TO THE CHECK VALVE RESISTANCE = .08

NOTE: CHECK VALVE RESISTANCES MUST BE INCLUDED WITH THE COMPONENT DATA

VARIABLE INPUT DATA

INPUT # 1 - PUMP START UP OR SHUT DOWN IS SPECIFIED AT POSITION NO. 1 REFERENCE VALUES FOR PUMP COEFFICIENTS (N/NR (R) =1): $A \approx 61 \quad B = .257 \quad C \approx -31.571$

TIME - RATIO INPUT DATA TIME ratio 1 1

THE FOLLOWING INITIAL VALUE IS CALCULATED FOR THIS VARIABLE INPUT: ... These should agree with initial values previously input (in parenthesis) THE INITIAL VALUES FOR PUMP COEFF. - A = 61 (61) B = .257 (.257)

**** SUMMARY OF INITIAL CONDITIONS FOR LINE SEGMENTS ****

END POSITION DESIGNATIONS: J - JUNCTION, C - COMPONENT, S - SDO * - THIS DENOTES AN UNDESIGNATED END POSITION (UNACCEPTABLE) - CORRECT DATA

END PO	SITIONS	FLOW	HEA	D	HEAD	ELEVATION
#1	#2	1 to 2	#1	#2	LOSS	DIFFERENCE
19 J	1 C	0.58	0.7	-0.3	1.0	0.0
2 C	3 C	0.58	50.2	48.3	1.9	-0.0
4 C	5 J	0.58	48.2	47.9	0.2	0.0
20 J	6 Ј	0.58	47.9	34.4	0.6	12.9
21 J	7 J	0.58	34.4	38.8	4.2	-8.7
22 J	8 3	0.58	38.8	47.8	4.9	~10.9
23 J	9 J	0.58	47.8	12.8	15.2	19.8
24 J	10 J	0.58	12.8	12.8	0.1	-0.0
25 J	11 J	0.58	12.8	11.8	1.0	-0.0

26 J	12 J	0.58	11.8	4.6	7.2	0.0
27 J	28 Ј	0.58	4.6	4.5	0.1	0.0
29 J	13 J	0.00	38.8	7.6	0.0	31.2
30 J	14 Ј	0.00	7.6	24.6	0.0	-17.0
31 J	15 J	0.00	24.6	6.6	0.0	18.1
32 J	16 J	0.00	6.6	6.6	0.0	0.0
33 J	17 J	0.00	6.6	6.6	0.0	0.0
34 J	18 Ј	0.00	6.6	6.6	0.0	0.0
35 J	36 J	0.00	6.6	6.6	0.0	0.0

•	*****	FLOWRATE	AND PRESSURE	RESULTS	*****
	TIME	н- 4	Q- 4		
	0.200	48.2	0.583		
	0.400	48.2	0.583		
	0.600	48.2	0.583		
	0.800	48.2	0.583		
	1,000		0.583		
	1.200		0.531		
	1.400		0.466		
	1.600		0.416		
	1.800		0.382		
	2.000		0.366		
	2.200		0.364		
	2.400		0.363		
	2.600		0.330		
	2.800		0.310		
	3.000		0.306		
	3.200		0.309		
	3.400		0.284		
	3.600		0.266		
	3.800		0.259		
	4.000		0.265		
			0.246		
	4.400		0.229		
	4.600		0.222		
	4.800		0.228		
	5.000		0.213		
	5.200		0.198		
	5.400		0.190		
	5.600		0.196		
	5.800		0.184		
	6.000		0.170		
	6.200		0.162		
	6.400		0.167		
	6.600		0.158		
	6.800		0.146		
	7.000		0.137		
	7.200		0.143		
	7.400		0.137		
	7.600		0.124		
	7.800		0.115		
	8.000		0.119		
	8.200		0.116		
	8.400		0.104		
	8.600		0.094		
	8.800		0.097		
	9.000		0.096		
	9.200		0.086		
	9.400		0.075		
	9.600		0.076		
	9.800		0.078		
	10.000		0.069		
	10.200		0.058		
	10.400	0.8	0.057		
	10.600		0.060		
	10.800	1.8	0.052		
	11.000		0.041		

```
11.200
           0.5
                    0.039
11.400
                    0.042
           0.6
11.600
           1.8
                    0.034
11.800
           0.9
                    0.025
12.000
           0.8
                    0.021
12.200
                    0.025
           0.1
 12.400
           1.5
                    0.018
 12.600
           1.3
                    0.009
 12.800
           0.7
                    0.004
 13.000
           0.4
                    0.009
                    0.003
13.200
           1.4
CV CLOSURE OCCURS AT POSITION #
 13.400
           4.0
                    0.000
 13.600
           4.5
                    0.000
                    0.000
 13.800
           2.3
                    0.000
 14.000
           4.8
 14.200
           1.4
                    0.000
 14.400
           3.6
                    0.000
           1.8
 14.600
                    0.000
 14.800
            5.3
                    0.000
 15.000
            4.4
                    0.000
 15.200
            2.8
                    0.000
 15.400
            3.0
                    0.000
                    0.000
 15.600
            0.7
 15.800
            3.8
                    0.000
 16.000
            1.1
                    0.000
 16.200
            5.0
                    0.000
 16.400
            3.5
                    0.000
 16.600
            3.4
                    0.000
 16.800
            1.5
                    0.000
 17.000
            0.5
                    0.000
 17.200
            3.4
                    0.000
                    0.000
 17.400
            1.4
                    0.000
 17.600
            3.8
 17.800
            2.7
                    0.000
 18.000
            3.9
                    0.000
 18.200
            1.1
                    0.000
                     0.000
 18.400
            1.3
                    0.000
 18.600
            2.7
 18.800
            2.7
                     0.000
 19.000
            3.2
                     0.000
 19.200
            2.5
                     0.000
            4.0
                     0.000
 19.400
            1.7
                     0,000
 19.600
 19.800
            2.9
                     0.000
 20.000
            2.4
                     0.000
                     0.000
 20.200
            4.4
 20,400
            3.4
                     0.000
  20.600
            3.0
                     0.000
  20.800
            3.4
                     0.000
  21.000
            2.4
                     0.000
                     0.000
            4.2
  21.200
  21.400
            2.4
                     0,000
  21.600
            5.4
                     0.000
  21.800
            3.5
                     0.000
  22.000
            3.7
                     0.000
                     0.000
  22.200
            2.1
  22.400
             2.5
                     0.000
                     0.000
  22.600
             4.1
  22.800
            2.5
                     0.000
                     0.000
             5.2
  23.000
  23.200
             2.9
                     0.000
  23.400
             4.2
                     0.000
                     0.000
  23.600
             0.8
  23.800
                     0.000
             2.5
             2.7
                     0.000
  24,000
                     0.000
  24,200
             2.7
  24.400
             4.3
                     0.000
```

24.600 24.800 25.000 25.200 25.400 25.600 26.000 26.201 26.401 27.001 27.201 27.401 27.601 27.801 28.001 28.401 28.401 28.801 29.001 29.201 29.401 29.601	1.7 4.0 0.3 2.8 1.3 3.2 3.4 1.2 3.5 1.0 3.6 1.0 3.8 2.9 2.1 2.8 2.4 4.1 2.1 4.3 2.8 3.7 2.1 3.4 3.5	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
29.401	3.4	0.000

38.200 38.400 38.600 38.799 38.999 39.199 39.599 39.799 40.399 40.599 40.799 41.399 41.799 41.799 41.799 42.799 42.799 42.799 42.799 42.799 43.399 43.399 43.399 43.399 44.798 45.798 46.398 45.798 46.798 46.798	44.8 50.1 58.0 66.6 67.8 65.6 66.6 67.8 1.8 -10.1 -0.9 2.4 -3.8 -10.1 -10.1 -1.3 -1.0 -1.1 -1.3 -1.0 -1.1 -1.3 -1.0 -1.3 -1.0	0.000 0.000
44.399 44.599 44.798 44.998 45.198 45.598 45.598 46.398 46.598 46.798 46.798 47.198 47.798 47.798 47.998 48.198 48.198 48.598 48.598 48.798 48.998 48.798 48.998 49.998	-4.9 -8.2 12.0 10.7 5.7 1.0 -7.5 -3.7 22.5 13.4 6.2 20.5 28.0 0.5 -7.0 15.9 -10.1 2.7 12.3 22.8 -10.1 -1.1 10.2 23.3 28.4 29.5 -7.4 -10.1	0.000 0.000
50.198 50.398 50.598 50.797 50.997 51.197 51.397 51.597	10.5 -1.8 19.4 5.3 8.2 -10.1 -10.1	0.000 0.000 0.000 0.000 0.000 0.044 0.015 0.000

C:\Anselm\NRW\GK_IC2.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/5/01 2:52 PM

51.797 51.997	22.4 -5.5	0.000
52.197 52.397	11.1 20.7	0.000
52.597 52.797	9.2 -10.1	0.000
52.997 53.197	-10.1 16.9	-0.001 0.000
53.397 53.597	-0.1 -0.8	0.000
53.797 53.997	-4.9 -10.1	-0.029 -0.044
54.197 54.397	-10.1 -10.1	-0.024 -0.002
54.597 54.797	12.1 -3.1	0.000
54.997 55.197	-2.8 13.6	0.000
55.397 55.597	-6.8 -0.7	0.000
55.797 55.997	-10.1 30.8	-0.015 0.000
56.197 56.397	13.2 18.0	0.000
56.597 56.796	15.0 -10.1	0.000 -0.015
56.996 57.196	-10.1 -10.1	0.034
57.396 57.596	28.9 26.4	0.000
57.796 57.996	1.4 15.1	0.000
58.196 58.396	-10.1 -10.1	0.009
58.596 58.796	-10.1 90.8	0.013
58.996 59.196	62.7 66.8	0.000
59.396 59.596	61.3 64.3	0.000
59.796 59.996	58.0 62.4	0.000
60.196 60.396	62.7 63.8	0.000
6 0.596 6 0.796	70.5 71.2	0.000
60.996 61.196	75.5 69.0	0.000
61.396 61.596	61.9 72.4	0.000
61.796 61.996	96.8 90.4	0.000
62.196 62.396	83.8 87.7	0.000 0.000
62.596 62.795	95.2 96.4	0.000 0.000
62.995 63.195	96.4 94.6	0.000 0.000
63.395 63.595	94.8 78.1	0.000 0.000
63.795 63.995	84.8 52.3	0.000 0.000
64.195 64.395	44.7 50.0	0.000 0.000
64.595 64.795	40.6 44.1	0.000 0.000
64.995 65.196	41.6 42.7	0.000 0.000

C:\Anselm\NRW\GK_IC2.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/5/01 2:52 PM

78.998 79.199 79.399 79.599 79.799 79.999 80.199 80.599 80.799	-10.1 -5.2 21.6 -10.1 -10.1 12.7 -10.1 20.3 28.4 0.5 20.9	-0.011 0.000 0.000 0.027 0.018 0.000 -0.048 0.000 0.000 0.000
81.199 81.399 81.599 81.799 81.999 82.199 82.399 82.799 82.799 82.999 83.199 83.399 83.599	8.3 -10.1 -10.1 74.9 56.0 70.9 71.5 47.0 49.3 42.5 45.3 42.5 59.9	0.000 -0.036 -0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000
83.799 84.000 84.200 84.400 84.600 85.000 85.200 85.200 85.600 85.800	52.2 39.2 35.2 44.5 54.9 65.3 65.8 65.3 65.1 55.1	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
86.000 86.200 86.400 86.600 87.000 87.200 87.400 87.600 87.800 88.000 88.200	65.5 52.9 68.7 68.1 77.1 50.3 66.4 39.5 34.5 46.0 22.1 55.5	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
88.400 88.601 88.801 89.001 89.201 89.601 89.601 90.001 90.201 90.401	46.3 80.0 67.2 82.1 77.6 77.4 83.0 14.6 20.5 32.1 42.7	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
90.601 90.801 91.001 91.201 91.401 91.601 91.801 92.001 92.201 92.401	-10.1 -10.1 -10.1 -10.1 -10.1 -10.1 34.1 26.2 23.1 63.5	-0.037 0.085 0.076 -0.037 0.085 -0.063 0.000 0.000 0.000

C:\Anseim\NRW\GK_IC2.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/5/01 2:52 PM

92.601	-10.1	-0.070
92.801	-10.1	0.062
93.001	-10.1	0.036
93,201	-10.1	-0.070
93.402	-10.1	-0.117
93.602	-10.1	0.077
93.802	24.7	0.000
94.002	16.4	0.000
94.202	45.9	0.000
94.402	41.9	0.000
94.602	-10.1	0.062
94.802	-10.1	-0.050
95,002	-10.1	0.001
95.202	-10.1	0.062
95,402	-10.1	-0.071
95.602	41.4	0.000
95.802	37.4	0.000
96.002	17.2	0.000
96,202	44.9	0.000
96.402	-10.1	0.007
96.602	-10.1	0.002
96.802	-10.1	-0.004
97.002	-10.1	0.007
97.202	-10.1	-0.086
97.402	29.6	0.000
97.602	37.6	0.000
97.802	24.4	0.000
98.003	-10.1	0.010
98.203	9.5	0.000
98.403	-10.1	0.027
98.603	-10.1	-0.027
98.803	-10.1	-0.072
99.003	-10.1	-0.032
99.203	29.1	0.000
99.403	32.9	0.000
99.603	39.1	0.000
99.803	-1.3	0.000

SUMMARY OF MAXIMUM AND MINIMUM HEADS

POSITION NO.	MUMIXAM	MINIMUM
1	3.6	-2.1
2	50.2	-3.8
3	48.3	-4.6
4	115.1	-10.1
5	114.6	-10.1
6	98.3	-10.1
7	78.9	-10.1
8	112.6	-10.1
9	77.2	-10.1
10	71.6	-10.1
11	74.0	-10.1
12	54.9	-10.1
13	7.6	-10.1
14	25.2	5.0
15	8.4	-5.3
16	8.3	-4.1
17	7.2	4.2
18	6.9	5.4
19	0.7	0.7
28	4.5	4.5
36	6.6	6.6

*** END OF THIS SIMULATION ***

A PLOT FILE (gk_ic2.PLT) HAS BEEN CREATED WITH THE FOLLOWING DATA:

 ITEM NO.
 SPECIFIC RESULT

 1
 HEAD AT POS. # 4

 2
 FLOW AT POS. # 4

C:\Anselm\NRW\GK_IC2.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/5/01 2:52 PM ***** SIC PROGRAM: STEADY STATE - SURGE INITIAL CONDITIONS *****
Version 1.32, Nov. 1991

DATE = 01-05-2001

INPUT DATA FILE NAME FOR THIS SIMULATION = $gk_ic3.SIC$ OUTPUT DATA FILE NAME FOR THIS SIMULATION = $gk_ic3.TIC$

NUMBER OF PIPES = 20

NUMBER OF JUNCTION NODES = 18

FLOW UNITS = CUBIC METERS / SECONDS

PRESSURE UNITS = KPA

THE HAZEN WILLIAMS HEAD LOSS RELATION IS USED FOR THIS SIMULATION

CLOSED LINES - 10

**** SUMMARY OF INPUT DATA ***

PIPE	NODE	NODE	LENGTH	DIAM.	PIPE	SUM-M	PUMP	FGN
NO.	#1	#2	(MT.)	(MM.)	RES.	FACT.	TYPE	GRADE
1	0	1	5.0	500.0	110.0	2.0	0.0	9.3
2	1	2	0.0	0.0	0.0	0.0	1.0	
3	2	3	5.0	500.0	110.0	4.0	0.0	
4	3	4	0.0	0.0	0.0	0.3	0.0	
5	4	5	31.0	600.0	110.0	0.0	0.0	
7	5	6	325.0	800.0	110.0	0.0	0.0	
9	6	7	2175.0	800.0	110.0	0.0	0.0	
10	7	8	965.0	800.0	110.0	0.0	0.0	
11	8	9	800.0	500.0	110.0	0.0	0.0	
13	9	10	3.0	500.0	110.0	0.0	0.0	
14	10	11	50.0	500.0	110.0	0.0	0.0	
15	11	12	3.0	500.0	110.0	16.0	0.0	
16	12	0	3.0	500.0	110.0	0.0	0.0	26.3
17	7	13	900.0	600.0	110.0	0.0	0.0	
19	13	14	791.0	600.0	110.0	0.0	0.0	
20	14	15	4460.0	600.0	110.0	0.0	0.0	
21	15	16	3.0	600.0	110.0	0.0	0.0	
22	16	17	50.0	500.0	110.0	0.0	0.0	
23	17	18	3.0	600.0	110.0	0.0	0.0	
24	18	0	3.0	600.0	110.0	0.0	0.0	25.2

FUNCTION OF ZERO LENGTH LINE SET UP:

LINE NO. 2 IS A COMPONENT BETWEEN TWO LINE SEGMENTS LINE NO. 4 IS A COMPONENT BETWEEN TWO LINE SEGMENTS

*** DATA FOR PUMPS FOR THIS SYSTEM ***

PUMP TYPE # 1 IS DESCRIBED BY THE FOLLOWING DATA:

HEAD DISCHARGE 61 0 45.71 .7 41 .8

THE FOLLOWING COEFFICIENTS ARE CALCULATED FOR THE PUMP CHARACTERISTIC:

A = 61 B = .257C = -31.571

JUNCT. NO.	DEMAND	ELEVATION
1	0.0	8.6
2	0.0	8.6
3	0.0	8.6
4	0.0	8.6
5	0.0	8.6
6	0.0	21.5
7	0.0	12.8
8	0.0	2.0

C:\Anselm\NRW\GK_IC3.TIC.doc Created by Anselm Perera Created on 1/5/01 3:11 PM

9	0.0	21.7
10	0.0	21.7
11	0.0	21.7
12	0.0	21.7
13	0.0	17.6
14	0.0	0.6
15	0.0	18.6
16	0.0	18.6
17	0.0	18.6
18	0.0	18.6

THERE IS A SEPARATE PRESSURE ZONE SUPPLIED THROUGH PIPE # 16

**** THE RESULTS FOR THE STEADY STATE SIMULATION FOLLOW ****

NO. OF TRIALS = 8 - ACCURACY ATTAINED = 0

PIPE	NODE	NODE	FLOW	HEAD	MINOR	PUMP	LINE	HĽ,
NO.	#1	#2	RATE	LOSS	LOSS	HEAD	VELOCITY	1000
1	0	1	0.47	0.06	0.58	0.00	2.39	12.74
2	1	2	0.47	0.00	0.00	54.18	0.00	0.00
3	2	3	0.47	0.06	1.16	0.00	2.39	12.74
4	3	4	0.47	0.00	0.05	0.00	0.00	0.00
5	4	5	0.47	0.16	0.00	0.00	1.66	5.24
7	5	6	0.47	0.42	0.00	0.00	0.93	1.29
9	6	7	0.47	2.81	0.00	0.00	0.93	1.29
LINE	NO. 10	IS SHUT	OFF					
11	8	9	0.00	0.00	0.00	0.00	0.00	0.00
13	9	10	0.00	0.00	0.00	0.00	0.00	0.00
14	10	11	0.00	0.00	0.00	0.00	0.00	0,00
15	11	12	0.00	0.00	0.00	0.00	0.00	0.00
16	12	0	0.00	0.00	0.00	0.00	0.00	0,00
17	7	13	0.47	4.72	0.00	0.00	1.66	5.24
19	13	14	0.47	4.15	0.00	0.00	1.66	5,24
20	14	15	0.47	23.39	0.00	0.00	1.66	5.24
21	15	16	0.47	0.02	0.00	0.00	1.66	5.24
22	16	17	0.47	0.64	0.00	0.00	2.39	12.74
23	17	18	0.47	0.02	0.00	0.00	1.66	5.24
24	18	0	0.47	0.02	0.00	0.00	1.66	5.24

JUNCTION NO.	ELEVATION (MT.)	DEMAND	PRESSURE (KPA)	PRESSURE HEAD	HYDRAULIC GRADE	DEMAND RESISTANCE
1	8.6	0.0	0.8	0.1	8.6	
2	8.6	0.0	532.2	54.3	62.8	
3	8.6	0.0	520.1	53.0	61.6	
4	8.6	0.0	519.6	53.0	61.5	
5	8.6	0.0	518.0	52.8	61.4	
6	21.5	0.0	387.1	39.5	60.9	
7	12.8	0.0	444.3	45.3	58.1	
8	2.0	0.0	238.1	24.3	26.3	
9	21.7	0.0	44.3	4.5	26.3	
10	21.7	0.0	44.3	4.5	26.3	
11	21.7	0.0	44.3	4.5	26.3	
12	21.7	0.0	44.3	4.5	26.3	
13	17.6	0.0	351.3	35.8	53.4	
14	0.6	0.0	477.6	48.7	49.3	
15	18.6	0.0	71.1	7.3	25.9	
16	18.6	0.0	71.0	7.2	25.9	
17	18.6	0.0	64.7	6.6	25.2	
18	18.6	0.0	64.6	6.6	25.2	

C:\Anselm\NRW\GK_IC3.TIC.doc Created by Anselm Perera Created on 1/5/01 3:11 PM THE NET SYSTEM DEMAND = 0

SUMMARY OF INFLOWS (+) AND OUTFLOWS (-)

PIPE NO. FLOW 0.47 1 0.00 16 24 -0.47

***** DATA FOR CARRYING OUT A SURGE ANALYSIS FOLLOWS:

THE TIME INCREMENT SELECTED FOR SURGE ANALYSIS = .0085 SEC.

*** TABLE OF ASSIGNED POSITIONS, LENGTHS AND INITIAL CONDITIONS FOR SURGE4 ***

SECTION	ORI	GINAL	ASS	IGNED	ORIGINAL	ASSIGNED	WAVE	INITIAL	CONDIT	IONS
NUMBER	N	ODES	N	ODES	LENGTH	LENGTH	SPEED	Q	H1	H2
1	0	1	19	1	5	10	1177	0.47	0.73	80.0
2	1	2	1	2	0	0	1177	0.47	0.08	54.26
3	2	3	2	3	5	10	1177	0.47	54.26	53.04
4	3	4	3	4	0	0	1177	0.47	53.04	52.98
5	4	5	4	5	31	30	1177	0.47	52.98	52.82
6	5	6	20	6	325	320	1177	0.47	52.82	39.47
7	6	7	21	7	2175	2171	1177	0.47	39.47	45.31
8	7	8	22	8	965	960	1177	0.00	45.31	24.28
9	8	9	23	9	800	800	1177	0.00	24.28	4.52
10	9	10	24	10	3	10	1177	0.00	4.52	4.52
11	10	11	25	11	50	50	1177	0.00	4.52	4.52
12	11	12	26	12	3	10	1177	0.00	4.52	4.52
13	12	0	27	28	3	10	1177	0.00	4.52	4.52
14	7	13	29	13	900	900	1177	0.47	45.31	35.82
15	13	14	30	14	791	790	1177	0.47	35.82	48.70
16	14	15	31	15	4460	4462	1177	0.47	48.70	7.25
17	15	16	32	16	3	10	1177	0.47	7.25	7.24
18	16	17	33	17	50	50	1177	0.47	7.24	6.60
19	17	18	34	18	3	10	1177	0.47	6.60	6.59
20	18	0	35	36	3	10	1177	0.47	6.59	6.57

NOTES:

- 1. Head computations at FGN'S use elevation of other end of pipe section
- 2. Pipe section resistances are based on initial conditions (Q <> 0)
 3. Resistances for zero flow sections based on velocity (4 ft/s or 1 m/s)
- 4. The use of the Hazen Williams head loss relation results in values

***** THE INITIAL CONDITION DATA FILE FOR SURGE4 IS NOW BEING GENERATED *****

1. SYSTEM DATA:

2.

Number of line segments = -18

Number of components = 2

Number of junctions = 17 Number of SDO's = 0

Time increment = .0085

NOTE: USERS MUST PROVIDE THE ADDITIONAL SYSTEM DATA

2. LINE SEGMENT DATA:

first Position	SECOND POSITION	NO. OF TIME INCREMENTS	C/GA	INITIAL FLOW	SEGMENT RESISTANCE
19	1,	1	611.2385	0.4689	2.9345
2	3	1	611.2385	0.4689	5.5793
4	5	3	424,4712	0.4689	0.7392
20	6	32	238.7651	0.4689	1.9091
21	7	217	238.7651	0.4689	12.7762
22	8	96	238.7651	0.0000	5.9941
23	9	80	611.2385	0.0000	64.7431
24	10	1	611.2385	0.0000	0.2428

C:\Anselm\NRW\GK_IC3.TIC.doc Created by Anselm Perera Created on 1/5/01 3:11 PM

25	11	5	611.2385	0.0000	4.0464
26	12	1	611.2385	0.0000	21.4012
27	28	1	611.2385	0.0000	0.2428
29	13	90	424.4712	0.4689	21.4604
30	14	79	424.4712	0.4689	18.8613
31	15	446	424.4712	0.4689	106.3483
32	16	1	424.4712	0.4689	0.0715
33	17	5	611.2385	0.4689	2.8972
34	18	1	424.4712	0.4689	0.0715
35	36	1	424.4712	0.4689	0.0715

The total number of wave travel increments = 1061

3. COMPONENT DATA:

lst	2nd	characteristics			Heads	
POS.	POS.	A	В	c	H1	H2
1.0	2	61.000	0.257	-31.571	0.085	54.262
3.0	4	0.000	0.000	-0.250	53.035	52.980

5. JUNCTION DATA:

POS. NO.	NO. OF	INITIAL	ADDITIONAL
1st PIPE	LEGS	HEAD	POS. NO's
5	-2	52.82	20
6	-2	39.47	21
7	-3	45.31	22 29
8	-2	24.28	23
9	-2	4.52	24
10	-2	4.52	25
11	-2	4.52	26
12	-2	4.52	27
13	-2	35.82	30
14	-2	48.70	31
15	-2	7.25	32
16	-2	7.24	33
17	-2	6.60	34
18	-2	6.59	35
19	0	0.73	
28	0	4.52	
36	0	6.57	

NOTE: HEAD values noted above at reservoirs connections may be incorrect - elevations of reservoir connections are undefined in the SIC data.

6. SDO DATA - NO SDO'S WERE SET UP IN THE SIC DATA FILE

8. CHECK VALVE DATA

ALL Check Valve data must be provided by the User - with SURGEDAT

NOTE: Users must provide the following data using SURGEDAT

9a. VARIABLE INPUT DATA

9b. time - ratio data

- 10. TABULATED OUTPUT DATA
- 11. PLOTTED OUTPUT DATA
- 12. SCREEN PLOT DATA

>>>> THE INITIAL CONDITION FILE FOR SURGEDAT (gk_ic3.ICF) IS NOW GENERATED *****

C:\Anselm\NRW\GK_IC3 TIC.doc Created by Anselm Perera Created on 1/5/01 3:11 PM

******* - SURGE PROGRAM - VERSION 4.4 - ********* COPYRIGHTED BY DON J. WOOD, JAMES E. FUNK - LEXINGTON, KENTUCKY, 1991

DATE = - TIME = 14:53:25

INPUT DATA FILE NAME = gk_ic3.DAT OUTPUT DATA FILE NAME = gk_ic3.OUT

TOTAL SIMULATION TIME = 100

TIME INCREMENT = .01

SI UNITS ARE SPECIFIED: FLOW = CMS - HEAD = M.

**** SUMMARY OF PIPE SYSTEM DATA ****

NUMBERS OF SPECIFIC ELEMENTS

LINE SEGMENTS = 18 COMPONENTS = 2JUNCTIONS = 17 BYPASS LINES = 0 RELIEF VALVES VARIABLE INPUTS= 1 SIDE ORIFICES = 0 CHECK VALVES = 1

LINE SEGMENT DATA

POSIS	TION NDS	TRAVEL INCREMENTS	C/GA	INITIAL FLOWRATE	SEGMENT RESISTANCE
19	1	1	611.24	0.47	2.93
2	3	1	611.24	0.47	5.58
4	5	3	424.47	0.47	0.74
20	6	32	238.77	0.47	1.91
21	7	. 217	238.77	0.47	12.78
22	8	96	238.77	0.00	5.99
23	9	80	611.24	0.00	64.74
24	10	1	611.24	0.00	0.24
25	11	- 5	611.24	0.00	4.05
26	12	1	611.24	0.00	21.40
27	28	1	611.24	0.00	0.24
29	13	90	424.47	0.47	21.46
30	14	79	424.47	0.47	18.86
31	15	446	424.47	0.47	106.35
32	16	1	424.47	0.47	0.07
33	17	5	611.24	0.47	2.90
34	18	1	424.47	0.47	0.07
35	36	1	424.47	0.47	0.07

COMPONENT DATA

POSITION NUMBERS = 1 2

A = 61 B = .257 C = -31.571INITIAL FLOWRATE = .47 INITIAL HEAT

INITIAL HEADS = 0 - 54.2

POSITION NUMBERS = 3 4 A = 0 B = 0 C = -.25

INITIAL FLOWRATE = .47 INITIAL HEADS = 53 - 52.9

JUNCTION DATA

JUNCTION LOCATION	NUMBER OF LEGS	INITIAL HEAD		ECTING ITIONS
5	2	52.8	20	
6	2	39.5	21	
7	3	45.3	22	29
8	2	24.3	23	
9	2	4.5	24	
10	2	4.5	25	
11	2	4.5	26	

12	2	4.5	27
13	2	35.8	30
14	2	48.7	31
15	2	7.3	32
16	2	7.2	33
17	2	6.6	34
18	2	6.6	35
19	0	0.7	
28	0	4.5	
36	0	6.6	

CHECK VALVE DATA

THERE IS A CHECK VALVE AT POSITION 3

TIME DELAY FOR VALVE = .1 - CV RESISTANCE = .25 NOTE: THIS CHECK VALVE WILL NOT REOPEN ONCE CLOSURE OCCURS THE INITIAL HEAD LOSS DUE TO THE CHECK VALVE RESISTANCE = .05

NOTE: CHECK VALVE RESISTANCES MUST BE INCLUDED WITH THE COMPONENT DATA

VARIABLE INPUT DATA

INPUT # 1 - PUMP START UP OR SHUT DOWN IS SPECIFIED AT POSITION NO. 1 REFERENCE VALUES FOR PUMP COEFFICIENTS (N/NR (R) \approx 1):

A = 61 B = .257 C = -31.571

TIME - RATIO INPUT DATA
TIME RATIO
1 1
2 0

THE FOLLOWING INITIAL VALUE IS CALCULATED FOR THIS VARIABLE INPUT:
... These should agree with initial values previously input (in parenthesis)
THE INITIAL VALUES FOR PUMP COEFF. - A = 61 (61) B = .257 (.257)

**** SUMMARY OF INITIAL CONDITIONS FOR LINE SEGMENTS ****

END POSITION DESIGNATIONS: J - JUNCTION, C - COMPONENT, S - SDO

* - THIS DENOTES AN UNDESIGNATED END POSITION (UNACCEPTABLE) - CORRECT DATA

END PO	SITIONS	FLOW	HEA	D	HEAD	ELEVATION
#1	#2	1 to 2	#1	#2	LOSS	DIFFERENCE
19 J	1 C	0.47	0.7	0.1	0.6	0.0
2 C	3 C	0.47	54.3	53.0	1.2	0.0
4 C	5 J	0.47	53.0	52.8	0.2	-0.0
20 J	6 J	0.47	52.8	39.5	0.4	12.9
21 J	7 3	0.47	39.5	45.3	2.8	-8.7
22 J	8 J	0.00	45.3	24.3	0.0	21.0
23 J	9 J	0.00	24.3	4.5	0.0	19.8
24 J	10 J	0.00	4.5	4.5	0.0	0.0
25 J	11 J	0.00	4.5	4.5	0.0	0.0
26 J	12 J	0.00	4.5	4.5	0.0	0.0
27 Ј	28 J	0.00	4.5	4.5	0.0	0.0
29 Ј	13 J	0.47	45.3	35.8	4.7	4.8
30 J	14 J	0.47	35.8	48.7	4.1	-17.0
31 J	15 J	0.47	48.7	7.3	23.4	18.1
32 J	16 J	0.47	7.3	7.2	0.0	0.0
33 J	17 J	0.47	7.2	6.6	0.6	0.0
34 J	18 J	0.47	6.6	6.6	0.0	0.0
35 J	36 J	0.47	6.6	6.6	0.0	-0.0

***** F)	TOWER OF THE	AND PRESSURE	DEC	יות ייפ	*****
TIME	H- 4	Q- 4	T.E.O	0113	
0.200	53.0	0.469			
0.400	53.0	0.469			
0.600	53.0	0.469			
0.800 1.000	53.0 53.0	0.469 0.469			
1.200	37.2	0.416			
1.400	21.6	0.349			
1.600	9.6	0.297			
1.800	2.0	0.262			
2.000	-1.3	0.245			
2.200 2.400	-1.6 -1.6	0.242 0.242			
2.600	0.1	0.230			
2.800	-0.5	0.211			
3.000	-0.9	0.207			
3.200	-1.5	0.209			
3.400	0.5	0.199			
3.600 3.800	0.0 -0.3	0.182 0.177			
4.000	-0.9	0.180			
4.200	0.6	0.172			
4.400	0.4	0.157			
4.600	0.5	0.150			
4.800 5.000	-0.7	0.153			
5.200	0.7 0.6	0.148 0.134			
5.400	0.4	0.125			
5.600	-0.2	0.130			
5.800	0.8	0.126			
6.000	0.5	0.115			
6.200 6.400	0.6 -0.2	0.104 0.107			
6.600	0.9	0.107			
6.800	1.0	0.096			
7.000	0.8	0.084			
7.200	0.3	0.087			
7.400 7.600	1.1 1.3	0.085 0.078			
7.800	0.9	0.066			
8.000	-0.0	0.067			
8.200	0.7	0.066			
8.400	1.3	0.061			
8.600	1.1	0.048			
8.800 9.000	0.3 0.7	0.050 0.049			
9.200	1.4	0.044			
9.400	1.3	0.032			
9.600	0.6	0.032			
9.800	0.5	0.031			
10.000 10.200	1.4 1.4	0.028 0.015			
10.400	0.9	0.014			
10.600	0.5	0.015			
10.800	1.2	0.012			
11.000	1.1	-0.001	* 11	_	
CV CLOSUF	UE OCCUR 1.6	S AT POSITION 0.000	N #	3	
11.400	0.9	0.000			
11.600	2.1	0.000			
11.800	3.6	0.000			
12.000	4.4	0.000			
12.200 12.400	4.4 0.3	0.000 0.000			
12.400	1.9	0.000			
12.800	0.9	0.000			
13.000	3.6	0.000			

13.200 13.400 13.600 13.800 14.000 14.200 14.400 14.600 15.200 15.400 15.600 15.800 16.200 16.400 17.000 17.200 17.400 17.600 17.800 18.000 18.400 18.600 19.200 18.400 19.200 19.400 19.200 20.400 20.600 20.200 20.400 20.800 21.200 21.400 21.800 21.400 21.800 21.200 21.400 21.800 21.400 21.800 21.400 21.800 21.400 22.200 22.400 22.400 23.600 23.600 23.600 24.400 25.400 25.400 25.600 25.400 25.800	3.530214.3521.1.1.54.5.1.2.4.4.4.0.20.3.3.4.3.0.1.0.4.3.4.2.1.0.1.5.4.5.1.3.8.5.9.4.8.8.8.6.7.6.7.0.9.8.6.7.0.7.0.9.8.6.7.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0	0.000 0.000
25.200	63.9	0.000
25.400	67.8	0.000

26.801 27.001	65.7 66.2	0.000
27.201 27.401 27.601	73.7 73.0 71.0	0.000 0.000 0.000
27.801 28.001	68.1 51.7	0.000 0.000
28.201	52.7 58.7	0.000 0.000 0.000
28.601 28.801 29.001	41.7 56.4 48.6	0.000
29.201 29.401	47.6 53.1	0.000
29.601 29.801	59.8 -10.1	0.000
30.001 30.201 30.401	-4.6 17.4 14.8	0.000 0.000 0.000
30.601	96.5 74.8	0.000 0.000
31.001	72.4 77.3	0.000
31.401 31.601 31.801	83.6 77.0 86.4	0.000 0.000 0.000
32.001 32.201	93.8 105.9	0.000
32.401	71.2 58.9	0.000
32.801 33.000 33.200	54.9 62.3 72.2	0.000 0.000 0.000
33.400 33.600	73.7 69.5	0.000
33.800	68.4 63.0	0.000
34.200 34.400 34.600	47.4 53.0 57.6	0.000 0.000 0.000
34.800 35.000	55.9 55.2	0.000
35.200 35.400 35.600	52.8 59.2 52.8	0.000 0.000 0.000
35.800 36.000	39.3 27.3	0.000
36.200 36.400	35.2 37.1	0.000
36.600 36.800 37.000	48.4 36.0 33.5	0.000 0.000 0.000
37.200 37.400	19.6 42.4	0.000
37.600 37.800 38.000	59.4 45.0 48.4	0.000 0.000 0.000
38.200 38.400	47.6 79.5	0.000
38.600 38.799	69.6 76.3	0.000
38.999 39.199 39.399	95.8 75.4 37.1	0.000 0.000 0.000
39.599 39.799	32.2 28.0	0.000
39.999 40.199	31.9 29.0	0.000

40.399 40.399 40.799 41.199 41.399 41.599 41.599 42.399 42.399 42.399 42.399 42.399 43.399 43.399 43.399 44.399 44.399 44.399 44.399 44.399 44.598 45.198 45.198 45.198 45.198 46.398 46.398 46.398 47.798 47.798 47.798 48.398 47.398 48.398 49.398 50.399 50.399	29.36.8 2 - 2.8 2 - 2.8 6.0 2 3 - 2.0 1 2.0 0 1 2.0 0 1 2.0	0.000 0.000
51.797 51.997 52.197 52.397	32.3 49.6 42.0 44.9	0.000 0.000 0.000

{

53.997	-10.1	0.013
54.197	74.2	0.000
54.397	53.0	0.000
54.597		
	53.8	0.000
54.797	45.5	0.000
54.997	49.0	0.000
55.197	65.1	0.000
55.397	65.8	0.000
55.597	63.5	0.000
55.797	72.6	0.000
55.997	40.3	0.000
56.197	34.4	0.000
56.397	36.5	0.000
56.597	45.2	0.000
56.796	57.2	0.000
56.996	61.6	0.000
57.196	37.0	0.000
57.396	39.9	0.000
57,596	58.6	0.000
		0.000
57.796	34.2	0.000
57.996	48.6	0.000
58.196	19.3	0.000
58,396	31.6	0.000
58.596	22.7	0.000
58.796	14.2	0.000
		0.000
58.996	54.4	0.000
59.196	39.0	0.000
59.396		
	41.2	0.000
59.596	52.9	0.000
59.796	46.1	0.000
		0.000
59.996	63.0	0.000
60.196	70.2	0.000
60.396	55.5	0.000
60.596	27.5	0.000
60.796	22.9	0.000
60.996	27.8	0.000
61.196	44.2	0.000
	44.Z	0.000
61.396	31.7	0.000
61.596	39.3	0.000
61.796	43.6	0.000
61.996	41.5	0.000
		0.000
62.196	43.1	0.000
62.396	45.2	0.000
62.596	63.7	0.000
		0.000
62.795	76.8	0.000
62,995	32.5	0.000
63.195	51.3	0.000
63.395	56.7	0.000
63.595	41.9	0.000
63.795	52.3	0.000
63.995	42.3	0.000
64.195	38.9	0.000
64.395	47.0	0.000
64.595	29.8	0.000
64.795	27.6	0.000
64.995	30.0	0.000
65.196	20.1	0.000
65.396	22.4	
		0.000
65.596	41.3	0.000
65.796	29.2	0.000
65.996	55.3	0.000
66.196	49.7	0.000
	20.0	
66.396	28.6	0.000
66.596	21.1	0.000
66.796	26.4	0.000
66.996	25.7	0.000
67.196	9.3	0.000
67 396	5.3	0.000

C:\Anseim\NRW\GK_IC3.OUT.doc Created by Anselm Perera Created on 1/6/01 3:03 PM

67.396 5.3

0.000

87.600 38.4 0.000 87.800 27.2 0.000 88.000 53.4 0.000 88.200 57.2 0.000 88.400 32.9 0.000 88.601 38.0 0.000 89.801 23.0 0.000 89.201 24.7 0.000 89.401 23.2 0.000 89.601 43.6 0.000 89.801 37.8 0.000 90.201 30.6 0.000 90.401 37.8 0.000 90.401 23.3 0.000 90.801 29.9 0.000 91.001 49.2 0.000 91.201 41.4 0.000 91.401 13.3 0.000	81.199 81.399 81.599 81.799 82.199 82.399 82.599 82.799 83.399 83.599 83.799 84.000 84.400 84.600 85.000 85.600 85.600 85.600 85.600 86.600 86.600 86.600 86.600 86.800 87.000	35.7 44.8 22.8 20.7 22.0 20.1 49.1 35.0 30.3 49.9 53.2 46.0 51.6 55.9 50.0 45.5 39.1 45.8 35.2 46.9 47.2 35.0 49.1 49.1 40.2 40.2 40.3	0.000 0.000
89.001 38.1 0.000 89.201 24.7 0.000 89.401 23.2 0.000 89.601 43.6 0.000 89.801 37.8 0.000 90.001 15.0 0.000 90.201 30.6 0.000 90.401 37.8 0.000 90.601 23.3 0.000 90.801 29.9 0.000 91.001 49.2 0.000 91.201 41.4 0.000 91.401 13.3 0.000	86.000 86.200 86.400 86.600 87.000 87.200 87.400 87.600 87.800 88.000 88.200	47.2 35.3 31.1 45.2 40.3 39.0 36.7 31.7 38.4 27.2 53.4 57.2 32.9	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
	88.801 89.001 89.201 89.401 89.601 89.801 90.001 90.201 90.401 90.601 90.801 91.001 91.201	23.0 38.1 24.7 23.2 43.6 37.8 15.0 30.6 37.8 23.3 29.9 49.2 41.4	0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

94.802	42.9	0.000
95.002	53.2	0.000
95.202	46.7	0.000
95.402	22.5	0.000
95.602	25.1	0.000
95.802	13.4	0.000
96.002	25.7	0.000
96,202	26.0	0.000
96.402	35.1	0.000
96.602	24.3	0.000
96.802	28.7	0.000
97.002	32.8	0.000
97.202	46.5	0.000
97.402	49.1	0.000
97.602	43.4	0.000
97.802	69.5	0.000
98.003	55.5	0.000
98.203	33.8	0.000
98.403	41.9	0.000
98.603	47.9	0.000
98.803	47.5	0.000
99.003	54.0	0.000
99.203	36.0	0.000
99.403	51.0	0.000
99.603	48.5	0.000
99.803	37.4	0.000

SUMMARY OF MAXIMUM AND MINIMUM HEADS

POSITION NO.	MAXIMUM	MUMINIM
1	2.4	-0.3
2	54.3	-1.3
3	53.0	-1.7
4	110.2	-10.1
5	108.6	-10.1
6	83.3	-10.1
7	87.3	-10.1
8 .	88.8	-10.1
9	59.0	-10.1
10	59.1	-10.1
11	59.1	-10.1
12	64.3	-10.1
13	90.2	-10.1
14	99.4	-10.1
15	57.5	-10.1
16	57.3	-10.1
17	53.2	-10.1
18	51.7	-10.1
19	0.7	0.7
28	4.5	4.5
36	6.6	6.6

*** END OF THIS SIMULATION ***

A PLOT FILE (gk_ic3.PLT) HAS BEEN CREATED WITH THE FOLLOWING DATA:

ITEM NO. SPECIFIC RESULT

1 HEAD AT POS. # 4

2 FLOW AT POS. # 4

```
***** SIC PROGRAM: STEADY STATE - SURGE INITIAL CONDITIONS *****
                     Version 1.32, Nov. 1991
```

DATE = 01-07-2001

INPUT DATA FILE NAME FOR THIS SIMULATION = gk ic4.SIC OUTPUT DATA FILE NAME FOR THIS SIMULATION = gk ic4.TIC

NUMBER OF PIPES = 24

NUMBER OF JUNCTION NODES = 18

FLOW UNITS = CUBIC METERS / SECONDS

PRESSURE UNITS = KPA

THE HAZEN WILLIAMS HEAD LOSS RELATION IS USED FOR THIS SIMULATION

CLOSED LINES - 6 8 12

**** SUMMARY OF INPUT DATA ***

PIPE	NODE	NODE	LENGTH	DIAM.	PIPE	SUM-M	PUMP	FGN
NO.	#1	#2	(MT.)	(MM.)	RES.	FACT.	TYPE	GRADE
1	0	1	5.0	500.0	110.0	2.0	0.0	9.3
2	1	2	0.0	0.0	0.0	0.0	1.0	
3	2	3	5.0	500.0	110.0	4.0	0.0	
4	3	4	0.0	0.0	0.0	0.3	0.0	
5	4	5	31.0	600.0	110.0	0.0	0.0	
6	5	0	0.0	0.0	0.0	0.3	0.0	10.0
7	5	6	325.0	800.0	110.0	0.0	0.0	
8	6	0	0.0	0.0	0.0	0.3	0.0	22.0
9	6	7	2175.0	800.0	110.0	0.0	0.0	
10	7	8	965.0	500.0	110.0	0.0	0.0	
11	8	9	800.0	500.0	110.0	0.0	0.0	
12	9	0	0.0	0.0	0.0	0.3	0.0	22.0
13	9	10	3.0	500.0	110.0	0.0	0.0	
14	10	11	50.0	500.0	110.0	0.0	0.0	
15	11	12	3.0	500.0	110.0	16.0	0.0	
16	12	0	3.0	500.0	110.0	0.0	0.0	26.3
17	7	13	900.0	600.0	110.0	0.0	0.0	
18	13	0	0.0	0.0	0.0	0.3	0.0	18.0
19	13	14	791.0	600.0	110.0	0.0	0.0	
20	14	15	4460.0	600.0	110.0	0.0	0.0	
21	15	16	3.0	600.0	110.0	0.0	0.0	
22	16	17	50.0	600.0	110.0	0.0	0.0	
23	17	18	3.0	600.0	110.0	0.0	0.0	
24	18	0	3.0	600.0	110.0	0.0	0.0	25.2

FUNCTION OF ZERO LENGTH LINE SET UP:

LINE NO. 2 IS A COMPONENT BETWEEN TWO LINE SEGMENTS LINE NO. 4 IS A COMPONENT BETWEEN TWO LINE SEGMENTS

LINE NO. 6 IS A SDO CONNECTION (TO A RESERVOIR)

LINE NO. 8 IS A SDO CONNECTION (TO A RESERVOIR)
LINE NO. 12 IS A SDO CONNECTION (TO A RESERVOIR)

LINE NO. 18 IS A SDO CONNECTION (TO A RESERVOIR)

*** DATA FOR PUMPS FOR THIS SYSTEM ***

PUMP TYPE # 1 IS DESCRIBED BY THE FOLLOWING DATA:

HEAD DISCHARGE 61 0 45.71 .7 41 .8

THE FOLLOWING COEFFICIENTS ARE CALCULATED FOR THE PUMP CHARACTERISTIC:

A = 61 B = .257 C = -31.571

C:\Anselm\NRW\GK_1C4.TIC.doc Created by Anselm Perera Created on 1/7/01 9:55 AM

JUNCT. NO	. DEMAND	ELEVATION
1	0.0	8.6
2	0.0	8.6
3	0.0	8.6
4	0.0	8.6
5	0.0	8.6
6	0.0	21.5
7	0.0	12.8
8	0.0	2.0
9	0.0	21.7
10	0.0	21.7
11	0.0	21.7
12	0.0	21.7
13	0.0	17.6
14	0.0	0.6
15	0.0	18.6
16	0.0	18.6
17	0.0	18.6
18	0.0	18.6

**** THE RESULTS FOR THE STEADY STATE SIMULATION FOLLOW **** NO. OF TRIALS = 8 - ACCURACY ATTAINED = 0

PIPE	NODE	NODE	FLOW	HEAD	MINOR	PUMP	LINE	HL
NO.	#1	#2	RATE	LOSS	LOSS	HEAD	VELOCITY	
1	0	1	0.70	0.13	1.31	0.00	3.58	
2	1	2	0.70	0.00	0.00	45.57	0.00	0.00
3	2	3	0.70	0.13	2.62	0.00	3.58	-
4	3	4	0.70	0.00	0.12	0.00	0.00	
5	4	5	0.70	0.34	0.00	0.00	2.49	11.11
	NO. 6	IS SHUT C						
7	5	6	0.70	0.89	0.00	0.00	1.40	2.74
LINE		IS SHUT C						
9	6	7	0.70	5.95	0.00	0.00	1.40	
10	7	8	0.36	7.58	0.00	0.00	1.84	
11	8	9	0.36	6.29	0.00	0.00	1.84	7.86
	NO. 12	IS SHUT						
1.3	9	10	0.36	0.02	0.00	0.00	1.84	
14	10	11	0.36	0.39	0.00	0.00	1.84	
1.5	11	12	0.36	0.02	2.76	0.00	1.84	
16	1.2	0	0.36	0.02	0.00	0.00	1.84	
17	7	13	0.34	2.63	0.00	0.00	1.21	2.92
	NO. 18	IS SHUT		0 01	0.00	0.00	1 01	2 20
19	13	14	0.34	2.31	0.00	0.00	1.21	
20	14	15	0.34	13.03	0.00	0.00	1.21	_
21	15	16	0.34	0.01	0.00	0.00	1.21	
22	16	17	0.34	0.15	0.00	0.00	1.21	
23	17	18	0.34	0.01	0.00	0.00	1.21	
24		0	0.34	0.01	0.00			
	CTION	ELEVATION	n demand			RESSURE HY		DEMAND RESISTANCE
ŗ	۸O.	(MT.)		(KP) -1		HEAD	7.8	RESISTANCE
	1	8.6	0.0			-0.7		
	2	8.6	0.0		9.9	44.9	53.4	
	3	8.6	0.0		2.9	42.1	50.7	
	4	8.6	0.0		1.7	42.0	50.5 50.2	
	5	8.6	0.0		3.3	41.6		
	6	21.5	0.0		2.8	27.8	49.3	
	7	12.8	0.0		9.3	30.5	43.3	
	8	2.0	0.0		1.4	33.8 7. 7	35.8	
	9	21.7	0.0		6.0 5.7	7.7	29.5 29.5	
	10	21.7	0.0		1.9	7.7	29.5	
	11	21.7 21.7	0.0		1.9 4.6	4.5	26.3	
	12				4.6 6.7	23.1	40.7	
	13	17.6				37.8	38.4	
	14 15	0.6 18.6			1.0 6.1	6.7	25.4	
	15 16	18.6			6.0	6.7	25.4	
	16 17	18.6			4.6	6.6	25.4	
	1, 18	18.6			4.5	6.6	25.2	
	10	10.0	0.0	. 6.	3.5	0.0	20.2	

THE NET SYSTEM DEMAND = 0

SUMMARY OF INFLOWS (+) AND OUTFLOWS (-)

PIPE NO. FLOW
1 0.70
16 -0.36
24 -0.34

***** DATA FOR CARRYING OUT A SURGE ANALYSIS FOLLOWS:

THE TIME INCREMENT SELECTED FOR SURGE ANALYSIS = .0085 SEC.

*** TABLE OF ASSIGNED POSITIONS, LENGTHS AND INITIAL CONDITIONS FOR SURGE4 ***

SECTION	ORI	GINAL	ASS	IGNED	ORIGINAL	ASSIGNED	WAVE	INITIAL	CONDIT	IONS
NUMBER	N	ODES	N	ODES	LENGTH	LENGTH	SPEED	Q	H1	H2
1	0	1	19	1	5	10	1177	0.70	0.73	-0.71
2	1,	2	1	2	0	0	1177	0.70	-0.71	44.85
3	2	3	2	3	5	10	1177	0.70	44.85	42.10
4	3	4	3	4	0	0	1177	0.70	42.10	41.98
5	4	5	4	5	31	30	1177	0.70	41.98	41.64
6	5	0	20	21	0	0	1177	0.00	41.64	1.45
7	5	6	22	6	325	320	1177	0.70	41.64	27.82
8	6	0	23	24	0	0	1177	0.00	27.82	0.52
9	6	7	25	7	2175	2171	1177	0.70	27.82	30.52
10	7	8	26	8	965	960	1177	0.36	30.52	33.79
11	8	9	27	9	800	800	1177	0.36	33.79	7.74
12	9	0	28	29	0	0	1177	0.00	7.74	0.27
13	9	10	30	10	3	10	1177	0.36	7.74	7.72
14	10	11	31	11	50	50	1177	0.36	7.72	7.33
15	11	12	32	12	3	10	1177	0.36	7.33	4.54
16	12	0	33	34	3	10	1177	0.36	4.54	4.52
17	7	13	35	13	900	900	1177	0.34	30.52	23.12
18	13	0	36	37	0	0	1177	0.00	23.12	0.40
19	13	14	38	14	791	790	1177	0.34	23.12	37.84
20	14	15	39	15	4460	4462	1177	0.34	37.84	6.74
21	15	16	40	16	3	10	1177	0.34	6.74	6.73
22	16	17	41	17	50	50	1177	0.34	6.73	6.59
23	17	18	42	18	3	10	1177	0.34	6.59	6.58
24	18	0	43	44	3	10	1177	0.34	6.58	6.57

NOTES:

- 1. Head computations at FGN'S use elevation of other end of pipe section
- 2. Pipe section resistances are based on initial conditions ($Q \Leftrightarrow 0$)
- 3. Resistances for zero flow sections based on velocity (4 ft/s or 1 m/s)
- 4. The use of the Hazen Williams head loss relation results in values

***** THE INITIAL CONDITION DATA FILE FOR SURGE4 IS NOW BEING GENERATED *****

1. SYSTEM DATA:

Number of line segments = -18
Number of components = 2
Number of junctions = 13
Number of SDO's = 4
Time increment = .0085

NOTE: USERS MUST PROVIDE THE ADDITIONAL SYSTEM DATA

2. LINE SEGMENT DATA:

FIRST	SECOND	NO. OF TIME	C/GA	INITIAL	SEGMENT
POSITION	POSITION	INCREMENTS		FLOW	RESISTANCE
19	1	1	611.2385	0.7032	2.9177
2	3	1	611.2385	0.7032	5.5625
4	5	3	424,4712	0,7032	0.6962
22	6	32	238.7651	0.7032	1.7980
25	7	217	238,7651	0.7032	12.0326
26	8	96	611.2385	0.3612	58.1175
27	9	80	611.2385	0.3612	48.1803
30	10	1	611.2385	0.3612	0.1807
31	11	5	611.2385	0.3612	3.0113

32	12	1	611.2385	0.3612	21,3391
33	34	1	611.2385	0.3612	0.1807
35	13	90	424.4712	0.3420	22,4870
38	14	79	424.4712	0.3420	19.7636
39	15	446	424,4712	0.3420	111.4355
40	16	1	424.4712	0.3420	0.0750
41	17	5	424.4712	0.3420	1,2493
42	18	1	424.4712	0.3420	0.0750
43	44	1	424.4712	0.3420	0.0750

The total number of wave travel increments = 1061

3. COMPONENT DATA:

1st	2nd	char	acteristic	s	Head	is
POS.	POS.	A	B	c	н1	H2
1.0	2	61.000	0.257	~31.571	-0.713	44.855
3.0	4	0.000	0.000	-0.250	42.104	41.980

5. JUNCTION DATA:

POS. NO.	NO. OF	INITIAL	ADDITIONAL
1st PIPE	LEGS	HEAD	POS. NO's
7	-3	30.52	26 35
8	-2	33.79	27
10	-2	7.72	31
11	-2	7.33	32
12	-2	4.54	33
14	-2	37.84	39
15	-2	6.74	40
16	-2	6.73	41
17	-2	6.59	42
18	-2	6.58	43
19	0	0.73	
34	0	4.52	
44	O	6.57	

NOTE: HEAD values noted above at reservoirs connections may be incorrect - elevations of reservoir connections are undefined in the SIC data.

6. SDO DATA

1st	2nd	EXT.	ORIFICE	LINE	EXTERNAL
POS.	POS.	POS.	RESISTANCE	HEAD	HEAD
-5	22	20	0.25	41.64	1.45
-6	25	23	0.25	27.82	0.52
-9	30	28	0.25	7.74	0.27
-13	38	36	0.25	23.12	0.40

ADDITIONAL SDO DATA IS NORMALLY REQUIRED - PROVIDE THIS DATA USING SURGEDAT

8. CHECK VALVE DATA

ALL Check Valve data must be provided by the User - with SURGEDAT

NOTE: Users must provide the following data using SURGEDAT

9a. VARIABLE INPUT DATA

9b. time - ratio data

- 10. TABULATED OUTPUT DATA
- 11. PLOTTED OUTPUT DATA
- 12. SCREEN PLOT DATA

>>>> THE INITIAL CONDITION FILE FOR SURGEDAT (gk_ic4.ICF) IS NOW GENERATED *****

DATE = - TIME = 12:26:07

INPUT DATA FILE NAME = gk_ic4.DAT OUTPUT DATA FILE NAME = gk_ic4.OUT

TOTAL SIMULATION TIME = 200

TIME INCREMENT = .01

SI UNITS ARE SPECIFIED: FLOW = CMS - HEAD = M.

**** SUMMARY OF PIPE SYSTEM DATA ****

NUMBERS OF SPECIFIC ELEMENTS

LINE SEGMENTS = 18 JUNCTIONS = 13 SIDE ORIFICES = 4 CHECK VALVES = 1

COMPONENTS ≈ 2 BYPASS LINES = 0 RELIEF VALVES = 0 VARIABLE INPUTS≃ 1

LINE SEGMENT DATA

	TION NDS	TRAVEL INCREMENTS	C/GA	INITIAL FLOWRATE	SEGMENT RESISTANCE
19	1	1	611.24	0.70	2.92
2	3	1	611.24	0.70	5.56
4	5	3	424.47	0.70	0.70
22	6	32	238.77	0.70	1.80
25	7	217	238.77	0.70	12.03
26	8	96	611.24	0.36	58.12
27	9	80	611.24	0.36	48.18
30	10	1	611.24	0.36	0.18
31	11	5	611.24	0.36	3.01
32	12	1	611.24	0.36	21.34
33	34	1	611.24	0.36	0.18
35	13	90	424.47	0.34	22.49
38	14	79	424.47	0.34	19.76
39	15	446	424.47	0.34	111.44
40	16	1	424.47	0.34	0.07
41	17	5	424.47	0.34	1.25
42	18	1	424.47	0.34	0.07
43	44	1	424.47	0.34	0.07

COMPONENT DATA

POSITION NUMBERS = 1 2

A = 61 B = .257 C = -31.571 INITIAL FLOWRATE = .7 INITIAL HEADS =-.8 - 44.8

POSITION NUMBERS = 3 4 $A = 0 \quad B = 0 \quad C = -.25$ INITIAL FLOWRATE = .7 INITIAL HEADS = 42.1 - 41.9

JUNCTION DATA

NS.

C:\Anselm\NRW\GK_IC4.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/7/01 12:55 PM

18	2	6.6	43
19	0	0.7	
34	0	4.5	
44	0	6.6	

SIDE DISCHARGE ORIFICE DATA

DATA FOR SDO # 1

SDO LINE POSITION NUMBERS = 5 22 - DISCHARGE POSITION = 20
SDO RESISTANCES = .25 (OUTFLOW) - .25 (INFLOW)
ORIFICE FLOW = 0 LINE HEAD = 41.64 EXTERNAL HEAD = 45.6
THIS SDO REPRESENTS A SURGE TANK - ADDITIONAL DATA FOLLOWS:
TANK DIAMETER = 2.5 GAS VOLUME = 7 INITIAL GAS HEAD = 41.6

DATA FOR SDO # 2

SDO LINE POSITION NUMBERS = 6 25 - DISCHARGE POSITION = 23 ARV EFFECTIVE ORIFICE AREAS = .25 (OUTFLOW) - .25 (INFLOW) THIS SDO REPRESENTS AN AIR RELIEF VALVE

DATA FOR SDO # 3

SDO LINE FOSITION NUMBERS = 9 30 - DISCHARGE POSITION = 28 ARV EFFECTIVE ORIFICE AREAS = .25 (OUTFLOW) - .25 (INFLOW) THIS SDO REPRESENTS AN AIR RELIEF VALVE

DATA FOR SDO # 4

SDO LINE POSITION NUMBERS = 13 38 - DISCHARGE POSITION = 36 ARV EFFECTIVE ORIFICE AREAS = .25 (OUTFLOW) - .25 (INFLOW) THIS SDO REPRESENTS AN AIR RELIEF VALVE

CHECK VALVE DATA

THERE IS A CHECK VALVE AT POSITION 3

TIME DELAY FOR VALVE = .01 - CV RESISTANCE = .25
NOTE: THIS CHECK VALVE WILL NOT REOPEN ONCE CLOSURE OCCURS
THE INITIAL HEAD LOSS DUE TO THE CHECK VALVE RESISTANCE = .12

NOTE: CHECK VALVE RESISTANCES MUST BE INCLUDED WITH THE COMPONENT DATA

VARIABLE INPUT DATA

INPUT # 1 - PUMP START UP OR SHUT DOWN IS SPECIFIED AT POSITION NO. 1 REFERENCE VALUES FOR PUMP COEFFICIENTS (N/NR (R) =1):

A = 61 B = .257 C = -31.571

TIME - RATIO INPUT DATA

TIME RATIO 1 1 2 0

THE FOLLOWING INITIAL VALUE IS CALCULATED FOR THIS VARIABLE INPUT:
... These should agree with initial values previously input (in parenthesis)
THE INITIAL VALUES FOR PUMP COEFF. - A = 61 (61) B = .257 (.257)

**** SUMMARY OF INITIAL CONDITIONS FOR LINE SEGMENTS ****

END POSITION DESIGNATIONS: J - JUNCTION, C - COMPONENT, S - SDO
* - THIS DENOTES AN UNDESIGNATED END POSITION (UNACCEPTABLE) - CORRECT DATA

END PO	SITIONS	FLOW	HEA	D.	HEAD	ELEVATION
#1	#2	1 to 2	#1	#2	LOSS	DIFFERENCE
19 J	1 C	0.70	0.7	-0.7	1.4	-0.0
2 C	3 C	0.70	44.9	42.1	2.8	0.0
4 C	5 S	0.70	42.0	41.6	0.3	-0.0
22 S	6 \$	0.70	41.6	27.8	0.9	12.9
25 S	7 J	0.70	27.8	30.5	6.0	-8.6
26 J	8 J	0.36	30.5	33.8	7.6	-10.9
27 J	9 S	0.36	33.8	7.7	6.3	19.8
30 S	10 J	0.36	7.7	7.7	0.0	0.0
31 J	11 Ј	0.36	7.7	7.3	0.4	-0.0
32 J	12 Ј	0.36	7.3	4.5	2.8	0.0
33 J	34 J	0.36	4.5	4.5	0.0	0.0
35 J	13 S	0.34	30.5	23.1	2.6	4.8
38 S	14 J	0.34	23.1	37.8	2.3	-17.0
39 J	15 J	0.34	37.8	6.7	13.0	18.1
40 J	16 J	0.34	6.7	6.7	0.0	-0.0
41 J	17 J	0.34	6.7	6.6	0.1	0.0
42 J	18 J	0.34	6.6	6.6	0.0	-0.0
43 J	44 J	0.34	6.6	6.6	0.0	-0.0

*****	FLOWRATE A	ND PRESSU	RE RESULTS	*****
TIME	H- 22	Q- 22	V- 20	
1.000	45.1	0.718	7.1	
CV CLOS	TURE OCCURS	AT POSIT	ION # 3	
2.000	41.6	0.703	7.5	
3.000	37.0	0.683	8.2	
			~ ~	

4.000 33.2 0.667 8.9 0.655 9.5 5.000 30.1 6.000 10.2 27.3 0.644 10.8 7.000 25.0 0.636 8.000 22.9 0.629 11.4 9.000 21.0 0.634 12.1 0.627 12.7 10.000 19.3 17.9 0.610 13.3 11.000 13.9 12.000 16.5 0.595 0.586 14.5 13.000 15.3 14.000 14.2 0.573 15.1 15.000 13.2 0.559 15.7 0.547 16.2 16.000 12.3 0.527 16.8 17.000 11.5 0.497 17.3 18.000 10.7 17.7 0.459 19.000 10.1 20.000 9.5 0.413 18.2 21.000 9.0 0.362 18.6 22.000 8.6 0.305 18.9 23,000 8.3 0.245 19.2 0.182 19.4 24,000 8.1 19.5 25.000 7.9 0.116 7.8 19.6 0.049 26,000 27.001 7.8 -0.018 19.6 28.001 7.8 -0.084 19.6 -0.150 19.5 29.001 8.0 19.3 30,001 -0.212 8.2 -0.271 19.0 8.5 31.001 18.7 -0.325 32.001 8.9 18.4 33.000 9.3 -0.372 34.000 9.8 -0.412 18.0 35.000 10.4 -0.445 17.6 -0.469 17.1 36.000 11.1

-0.482

16.6

C:\Anselm\NRW\GK_IC4.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/7/01 12:55 PM

11.8

37.000

C.\Anselm\NRW\GK_IC4.OUT doc Created by Anselm PereraAnselm Perera Created on 1/7/01 12:55 PM

105.004	10.8	0.288	17.2
106.004	10.5	0.257	17.5
107.004	10.1	0.221 0.182	17.7 17.9
109.005	9.7 9.5	0.139	18.1
110.005	9.4	0.095	18.2 18.3
112.006	9.4	0.003	18.3
113.006	9.4	-0.043	18.3
114.006	9.5	-0.089	18.2
115.006	9.6	-0.132	18.1
116.006	9.8	-0.174	18.0
117.007	10.1	-0.211	17.8
118.007	10.4	-0.245	17.5
119.007	10.8	-0.274	17.3
120.007	11.2	-0.297	17.0
121.007	11.7	-0.314	16.7
122.008	12.2	-0.325	16.4
123.008		-0.329	16.1
124.008	13.2	-0.326	15.7
125.008	13.8	-0.316	15.4
	14.3	-0.299	15.1
127.009	14.9	-0.275	14.8
128.009	15.4	-0.245	14.5
129.008	15.8	-0.209	14.3
130.008	16.2	-0.168	14.1
131.007	16.5	-0.122	14.0
132.007	16.7	-0.074	13.9
133.006	16.8	-0.023	13.8
134.006	16.8	0.027	13.8
135.005	16.7	0.077	13.9
136.005	16.5	0.125	14.0
137.004	16.2	0.168	14.1
138.003	15.8	0.207	14.3
139.003 140.002	15.3 14.8	0.240	14.6
141.002	14.3	0.286	15.1
142.001	13.8		15.4
143.001	13.3	0.304	15.7 16.0
144.000	12.7	0.295	16.3
145.999 146.998	11.8	0.281	16.6 16.9
147.998	11.0	0.238	17.1
148.997	10.7	0.210	
149.997	10.4	0.178	17.5
150.996	10.2	0.144	17.7
151.996	10.1	0.107	17.8
152.995	9.9	0.068	17.9
153.995	9.9	0.029	17.9
154.994	9.9	-0.012	18.0
155.994	9.9	-0.051	17.9
156.993	10.0	-0.091	17.9
157.992	10.2	-0.127	17.7
158.992	10.4	-0.162	17.6
159.991	10.6	-0.194	17.4
160.991	10.9	-0.221	17.2
161.990	11.2	-0.244	17.0
162.990	11.6	-0.262	16.7
163.989	12.0	-0.275	16.5
164.989		-0.282	16.2
165.988	12.9	-0.283	15.9
166.988	13.4	-0.278	15.6
167.987	13.9	-0.267	15.3
168.986 169.986	14.4	-0.249 -0.226	15.1
170.985	15,2	-0.198	14.6

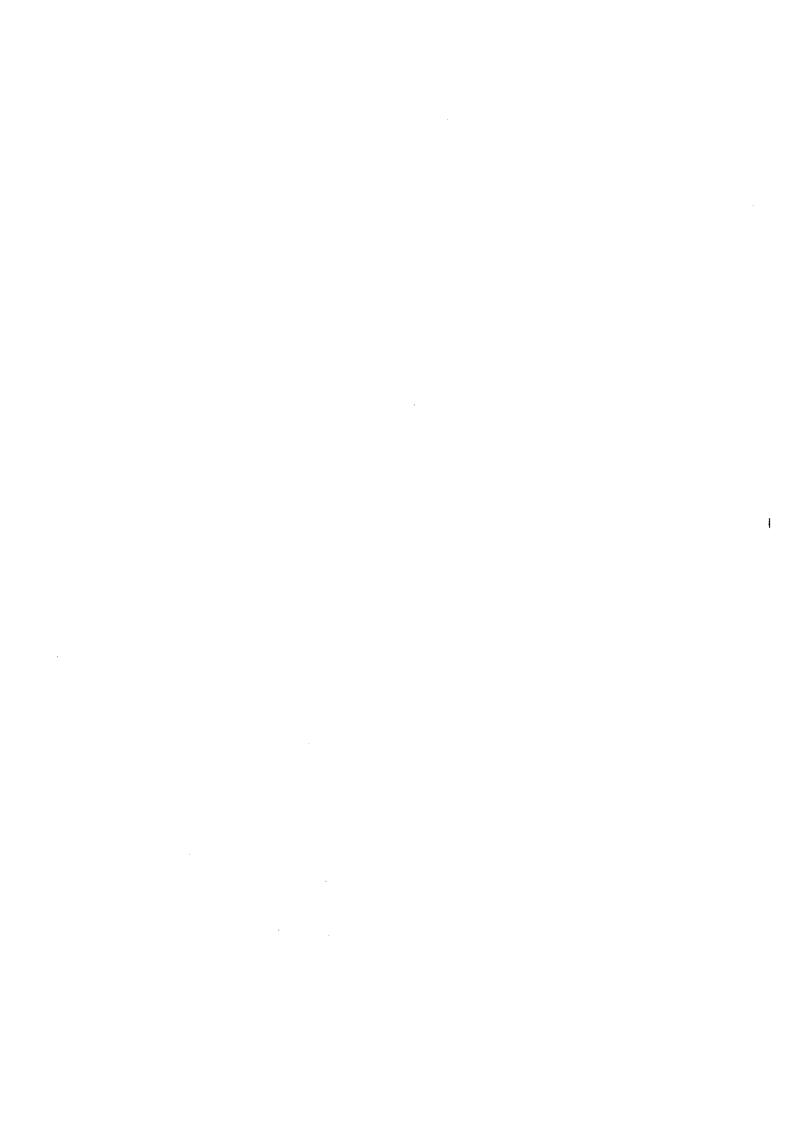
C:\Anselm\NRW\GK_IC4.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/7/01 12:55 PM

171.985	15.6	-0.165	14.5
172.984	15.8	-0.129	14.3
173.984	16.1	-0.089	14.2
174.983	16.2	-0.047	14.1
175.983	16.3	-0.004	14.1
176.982	16.2	0.040	14.1
177.981	16.1	0.082	14.2
178.981	15.9	0.122	14.3
179.980	15.6	0.157	14.4
180.980	15.2	0.190	14.6
181.979	14.8	0.216	14.8
182.979	14.4	0.237	15.0
183.978	14.0	0.253	15.3
184.978	13.5	0.262	15.5
185.977	13.1	0.265	15.8
186.977	12.6	0.262	16.1
187.976	12.2	0.254	16.3
188.975	11.8	0.240	16.6
189.975	11.5	0.223	16.8
190.974	11.2	0.200	17.0
191.974	10.9	0.175	17.2
192.973	10.7	0.146	17.4
193.973	10.5	0.115	17.5
194.972	10.4	0.082	17.6
195.972	10.3	0.047	17.7
196.971	10.2	0.012	17.7
197.970	10.2	-0.023	17.7
198.970	10.3	-0.058	17.6
199.969	10.4	-0.092	17.6

SUMMARY OF MAXIMUM AND MINIMUM HEADS

POSITION NO.	MAXIMUM	MINIMUM
1	64.8	-10.1
2	64.8	-10.1
3	83.3	-10.1
4	66.4	-5.7
5	45.6	7.8
6	31.8	-0.0
7	34.4	5.7
8	37.6	19.5
9	11.4	3.1
10	11.4	3.1
11	11.0	3.6
12	8.1	2.8
13	26.9	1.0
14	41.6	18.6
15	10.2	4.6
16	10.2	4.7
17	10.0	4.8
18	10.0	4.8
19	0.7	0.7
34	4.5	4.5
44	6.6	6.6

*** END OF THIS SIMULATION ***


A PLOT FILE (gk_ic4.PLT) HAS BEEN CREATED WITH THE FOLLOWING DATA:

ITEM NO. SPECIFIC RESULT

1 HEAD AT POS. # 22

2 FLOW AT POS. # 22

C:\Anselm\NRW\GK_IC4.OUT.doc Created by Anselm PereraAnselm Perera Created on 1/7/01 12:55 PM

GOTHATUWA GROUND RESERVOIR SITE – GRAVITY DRAIN FOR OVERFLOW / WASHOUT

Gothatuwa Ground Reservoir and Water Tower Design of Gravity Drain for Overflow and Washout

Design flow: assume flow control valve fully open and 2 pumps at Ambatalle

2 x 14 m3/min =

0.47 m3/sec

Manning n value for RCC Hume pipes:

0.012

Gravity drain design completed using mannings equation, $V = 1/n \times R^{2/3} \times S^{1/2}$ where R = D/4 for full pipe

Segment			Length					pipe full		
No.	From	То	(m)	Slope	dia. (m)	(m) A (m2)	R (m2/m)	Q (m3/s)	V m/s	
1	MH1	MH2	42.4	0.005	0.600	0.283	0.150	0.47	1.66	
2	MH2	MH3	22.5	0.005	0.600	0.283	0.150	0.47	1.66	
3	MH3	MH4	20.0	0.036	0.450	0.159	0.113	0.59	3,68	
4	MH4	MH5	48.0	0.036	0.450	0.159	0.113	0.59	3.68	
5	MH5	MH6	50.0	0.036	0.450	0.159	0.113	0.59	3,68	
6	MH6	MH7	59.5	0.042	0.450	0.159	0.113	0.63	3.98	
7	MH7	Outfall	12.0	0.015	0.500	0.196	0.125	0.50	2.55	

GOTHATUWA GROUND RESERVOIR, PUMP HOUSE AND GOTHATUWA NEW WATER TOWER - TIME SERIES ANALYSIS OF STORAGE AND PUMP CYCLES

Time Series Analysis for Year 2020 Maximum daily demand Transmission main inflow Hourly Pumping rate

30,910 m³/d 1287.9 m³/h 1,080 m³/h

	· · · · · · · · · · · · · · · · · · ·			 _		·		· 			 j
<u> </u>			7-4-1	Storage	No -f	Total	Total		Τ-	Total Flow	Total
	Hourly	Infla	Total	Volume in	No. of			Storage Volume	To Distribution	to	Storage
Time, h	Demand	Inflow, m3	Daily Inflow,	Ground	Pumping Units for	Rate per	Rate per	in Water	Network,	Distribution	(Ground Reservoir
	Coefficient	"""	m3/d	Reservoir,	the Hour	Hour,	day,	Towers, m ³	m ³	Network,	and Water
1				m³		m3	m3		"	m³/d	Tower)
0	0,40	1,287.9	1,288	2,000	1.00	1,080	1,080	565	515	515	2,565
1	0.40	1,287.9	2,576	2,478	0.75	810	1,890	860	515	1,030	3,338
2	0.40	1,287.9	3,864	3,226	0.50	540	2,430	885	515	1,546	4,110
3	0.50	1,287.9	5,152 6,440	3,974 4,182	0.50 1.00	540	2,970	781 820	644	2,189	4,754
<u>4</u> 5	1.20	1,287.9 1,287.9	7,728	4,102	1.25	1,080 1,350	4,050 5,400	830 635	1030 1546	3,220 4,765	5,012 4,754
6	1.60	1,287.9	9,015	3,248	2.00	2,160	7,560	734	2061	6,826	3,982
7	1.30	1,287.9	10,303	2,915	1.50	1,620	9,180	680	1674	8,500	3,595
8	1,00	1,287.9	11,591	3,123	1.00	1,080	10,260	472	1288	9,788	3,595
9 10	0.80 0.90	1,287.9 1,287.9	12,879 14,167	3,331 2,999	1.00 1.50	1,080	11,340 12,960	521 982	1030 1159	10,819	3,853
11	1,35	1,287.9	15,455	2,667	1.50	1,620		864	1739	11,978 13,716	3,982 3,531
12	1.30	1,287.9	16,743	2,335	1.50	1,620	16,200	809	1674	15,391	3,144
13	0.90	1,287.9	18,031	2,543	1.00	1,080		730	1159	16,550	3,273
14	0,90	1,287.9	19,319	2,751	1.00	1,080		651	1159	17,709	3,402
15 16	0,90 0,95	1,287.9 1,287.9	20,607 21,895	2,959 2,627	1.50	1,080 1,620		572 968	1159 1224	18,868 20,092	3,531 3,595
17	1.40	1,287.9	23,183	2,295	1.50	1,620		785	1803	21,895	3,080
18	1,50	1,287.9	24,470	1,423	2.00	2,160	24,840	1,014	1932	23,826	2,436
19	1.60	1,287.9	25,758	550	2.00	2,160			2061	25,887	1,663
20	1.40	1,287.9	27,046	758	1.00	1,080		390	1803	27,690	1,148
21	0.80	1,287.9	28,334 29,622	966 1,174	1.00	1,080			1288 1030	28,978 30,008	1,148 1,406
23	0.70	1,287.9	30,910	1,792	0.62	670		232	902	30,000	1,792
24	0.40	1,287.9		2,000	1.00	1,080		565	515		2,565
25	0.40	1,287.9		2,478	0.75	810		860	515		3,338
26 27	0,40	1,287.9	 	3,226 3,974	0.50 0.50	540 540		885	515 644	 	4,110
28	0.80	1,287.9		4,182	1.00	1,080		781 830	1030	 	4,754 5,012
29	1,20	1,287.9		4,120	1.25	1,350		635	1546		4,754
30	1.60	1,287.9		3,248		2,160		734	2061		3,982
31	1.30	1,287.9	ļ <u></u>	2,915 3,123	1.50	1,620 1,080		680	1674 1288	ļ	3,595
32	1.00 0.80	1,287.9		3,123		1,080		472 522	1030	 	3,595 3,853
34	0.90	1,287.9		2,999	1.50	1,620		982	1159	 	3,982
35	1.35	1,287.9		2,667	1.50	1,620)	864	1739		3,531
36	1.30	1,287.9		2,335		1,620		809	1674	ļ <u></u>	3,144
37 38	0.90	1,287.9 1,287.9	 -	2,543 2,751		1,080		730 651	1159 1159	+	3,273 3,402
39	0.90	1,287.9	 -	2,751 2,959		1,080		572	1159	 	3,531
40	0.95	1,287.9	<u> </u>	2,627	1.50	1,620)	969	1224		3,595
41	1.40	1,287.9	Ļ	2,295		1,620		785	1803		3,080
42	1.50	1,287.9		1,423 550		2,160 2,160		1,014	1932	 	2,436
43	1,60	1,287.9 1,287.9		758		1,080		1,113 390	2061 1803	 	1,663 1,148
45	1.00	1,287.9		966		1,080		182	1288		1,148
46	0.80	1,287.9		1,174	1.00	1,080)	232	1030		1,406
47	0.70	1,287.9	30,910			670			902	30,910	
48	0.40	1,287.9 1,287.9		2,000		1,080		565 860	515 515	 	2,565 3,338
50	0.40	1,287.9	T	3,226	0.50	540		885	515	1	4,110
51	0.50	1,287.9		3,974	0.50	540)	781	644		4,754
52	0.80	1,287.9		4,182		1,080		830	1030		5,012
53 54	1.20	1,287.9		4,120 3,247		1,350 2,160		635 734	1546 2061	 	4,754
55	1.30	1,287.9		2,915		1,620		680	1674	 	3,982
56	1.00	1,287.9		3,123		1,080		472	1288	 	3,595
57	0.80	1,287.9	I	3,331	1.00	1,08		522	1030		3,853
58	0.90	1,287.9		2,999		1,620		982	1159	 	3,982
59 60	1.35	1,287.9		2,667 2,335		1,62		864 809	1739 1674	1	3,531
61	0.90	1,287.9		2,543		1,02		730	1159	 	3,144
62	0.90	1,287.9		2,751	1.00	1,08	0	651	1159		3,402
63	0.90	1,287.9		2,959		1,08		572	1159		3,531
64	0.95	1,287.9		2,627		1,62		969 785	1224 1803		3,595
66	1.50	1,287.9		1,423		2,16		1,014	1932	 	2,436
67	1.60	1,287.9		550	2.00	2,16	0	1,113	2061	<u> </u>	1,663
68	1.40	1,287.9		758	1.00	1,08	0	390	1803		1,148
69	1.00	1,287.9		966		1,08		182	1288		1,148
70 71	0.80	1,287.9		1,174		1,08		232	1030 902	 	1,406 1,792
72	0.40	1,287.9				1.08			515	30,910	
					, .,,,,,				. =:-		

Page 1 Input Data

[TITLE]
Gothatuwa 2020, 2 duty pumps in parallel, + 1 stand-by

[JUNCTIONS]

;	ID	Elev m	Demand 1/s	
,	2 3 5 6	21.0 26.2 23.0 19.5	0 0 0 325	1

[TANKS]

-		Elev m		Min Level	Max Level	Diam. m
<i>;</i> -	1 4	21 41.50	6.0	.25	6.0	19.55

[PIPES]

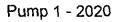
; ;ID	Start Node	End Node	Length m	Diam mm	Rough. Coeff.	
: -	2	3	20	500	110	4.0
30	3	4	18.5	450	110	
30	4	5	18.5	450	110	
10	5	6	1000	500	110	

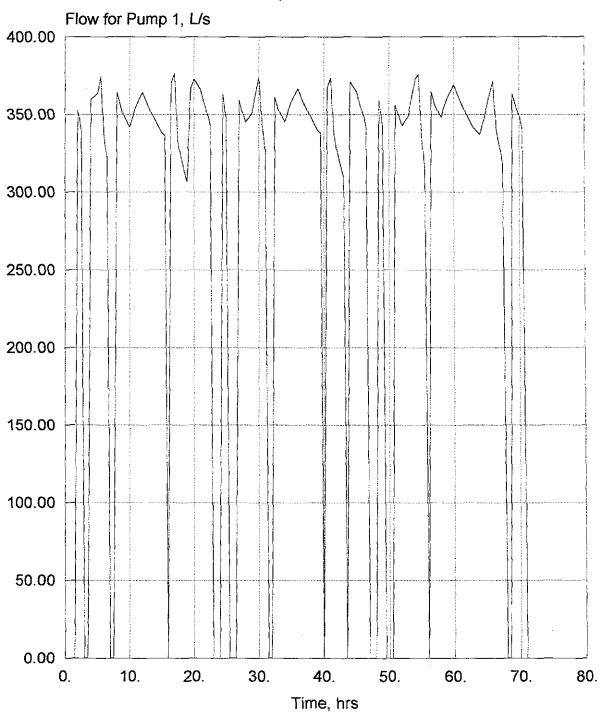
[PUMPS]

ID	Start	End	Desig	n H-Q
	Node	Node	m	1/s
	1	2	30	300
	1	2	30	300

CONTROLS]

Pump 1 is on when Tank level < 3.5 m
Pump 2 is on when Tank level < 2.5 m


LINK 1 OPEN IF NODE 4 BELOW 3.5


Link 1 CLOSED IF NODE 4 ABOVE 6.0

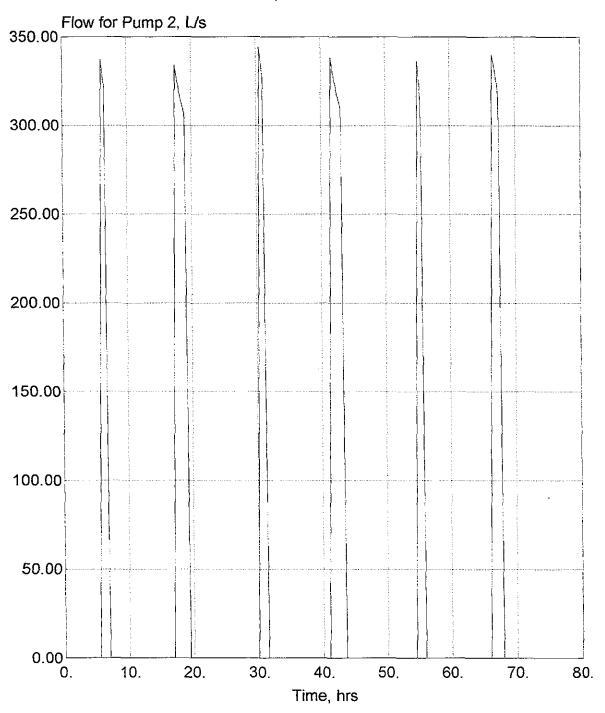
LINK 2 OPEN IF NODE 4 BELOW 2.5

LINK 2 CLOSED IF NODE 4 ABOVE 6.0

PATTERNS]

Page 2
Time Series for Pump 1

Time	Diameter	Flow	Velocity	Head
hrs	mm	L/s	m/sec	m
24:00 24:30 25:00 25:30 26:00 26:30 27:00 27:30 28:30 29:30 30:30 31:30 31:30 31:30 32:30 31:30 32:30 33:30 33:30 34:30 35:30 36:30 37:30 37:30 38:30 37:30 38:30 39:30 39:30 40:30 41:30 41:30 41:30 42:30 42:30 42:30 43:30		0.00 363.29 346.76 0.00 0.00 0.00 0.00 358.87 345.24 348.49 351.47 363.33 374.10 0.00 360.79 349.31 345.20 351.95 362.60 366.73 367.40 367.40 373.38 374.38 374.38 374.38 374.38 374.38 374.38 374.38 374.38 374.38 374.38 375.20 376.38 37		0.00 25.34 26.64 0.00 0.00 0.00 25.69 26.27 26.27 26.27 25.33 24.46 26.27 25.33 24.46 26.27 25.39 26.47 26.44 26.76 26.27 25.39 25.39 25.47 25.39 25.47 25.39 25.47 25.39 25.47 26.27 26.27 27.25 26.27 27.25 26.27 27.25 26.27 27.29 28.18 29.00 24.59 28.79 28.35 26.35
46:30	0.00	341.56	0.00	27.04
47:00	0.00	0.00	0.00	0.00
47:30	0.00	0.00	0.00	0.00


Page 3
Time Series for Pump 1

			——————————————————————————————————————		77 - 3
	Time hrs	Diameter mm	Flow L/s	Velocity m/sec	Head m
					~
	48:00	0.00	0.00	0.00	0.00
	48:30	0.00	359.16	0.00	25.67
	49:00	0.00	342.74	0.00	26.95
:	49:30	0.00	0.00	0.00	0.00
	50:00	0.00	0.00	0.00	0.00
	50:30 51:00	0.00 0.00	0.00 356.05	0.00 0.00	0.00 25.91
	51:00	0.00	349.19	0.00	26.45
	52:00	0.00	342.71	0.00	26.95
	52:30	0.00	346.16	0.00	26.69
	53:00	0.00	349.33	0.00	26.44
	53:30	0.00	361.41	0.00	25.49
	54:00	0.00	372.29	0.00	24.60
	54:30	0.00	375.67	0.00	24.32
	55:00	0.00	336.07	0.00	27.45
	55:30	0.00	313.60	0.00	29.07
	56:00	0.00	0.00	0.00	0.00 25.25
	56:30 57:00	0.00 0.00	364.36 357.08	0.00 0.00	25.25
	57 : 30	0.00	352.50	0.00	26.19
	58:00	0.00	348.20	0.00	26.53
1	58:30	0.00	354.68	0.00	26.02
1	59:00	0.00	360.59	0.00	25.55
	59:30	0.00	364.89	0.00	25.21
	60:00	0.00	368.84	0.00	24.88
	60:30	0.00	363.59	0.00	25.31
	61:00	0.00	358.64	0.00	25.71
	61:30 62:00	0.00	353.97 349.57	0.00	26.08 26.42
	62:30	0.00 0.00	345.44	0.00 0.00	26.74
	63:00	0.00	341.57	0.00	27.04
	63:30	0.00	339.14	0.00	27.22
	64:00	0.00	336.88	0.00	27.39
	64:30	0.00	345.59	0.00	26.73
	65:00	0.00	353.46	0.00	26.12
	65:30	0.00	362.88	0.00	25.37
	66:00	0.00	371.42	0.00	24.67
	66:30	0.00	339.94	0.00	27.16
	67:00 67:30	0.00 0.00	329.90 316.58	0.00 0.00	27.91 28.86
	68:00	0.00	0.00	0.00	0.00
	68:30	0.00	0.00	0.00	0.00
	69:00	0.00	363.27	0.00	25.34
	69:30	0.00	356.04	0.00	25.91
	70:00	0.00	349.19	0.00	26.45
	70:30	0.00	340.31	0.00	27.13
	71:00	0.00	0.00	0.00	0.00
	71:30	0.00	0.00	0.00	0.00

Page 4
Time Series for Pump 1

	Time	Diameter	Flow	Velocity	Head	
	hrs	mm	L/s	m/sec	m	
_	72:00	0.00	0.00	0.00	0.00	

Pump 2 - 2020

Gothatuwa 2020, 2 duty pumps in parallel, + 1 stand-by

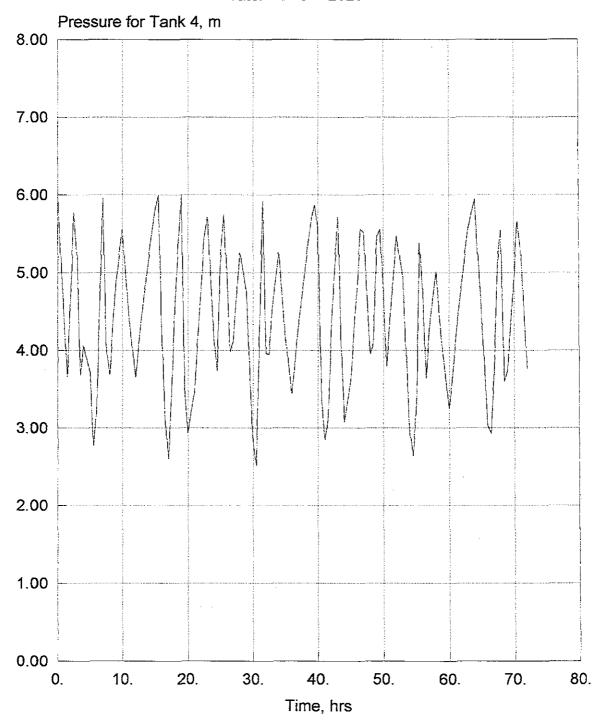
Time Series for Pump 2

Time hrs	Diameter	Flow L/s	Velocity m/sec	Head m
0:00 0:30 1:00 1:30 2:00 2:30 3:30 4:00 4:30 5:00 5:30 6:00 7:00 7:30 8:00 9:30 10:30 11:00 11:30 12:30 13:30 14:30 14:30 15:30 16:30 17:00 17:30 16:30 17:00 17:30 16:30 17:00 17:30 16:30 17:30 16:30 17:00 17:3		0.00 0.00		0.00 0.00
23:30	0.00	0.00	0.00	0.00

Page 2
Time Series for Pump 2

Time hrs	Diameter mm	Flow L/s	Velocity m/sec	Head m
47:30	0.00	0.00	0.00	0.00

Page 3


Time Series for Pump 2

Time	Diameter	Flow	Velocity	Head
hrs	mm	L/s	m/sec	m
hrs 48:00 48:30 49:30 50:30 50:30 51:30 51:30 52:30 53:30 54:30 53:30 54:30 55:30 56:30 57:30 58:30 59:30 60:30 61:30 62:30 63:30 64:30 64:30 64:30 65:30 66:3	mm	L/s 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	m/sec 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0
70:00	0.00	0.00	0.00	0.00
70:30	0.00	0.00	0.00	0.00
71:00	0.00	0.00	0.00	0.00
71:30	0.00	0.00	0.00	0.00

Page 4
Time Series for Pump 2

				
Time	Diameter	Flow	Velocity	Head
hrs	mm	L/s	m/sec	m
72:00	0.00	0.00	0.00	0.00

Water Tower - 2020

Gothatuwa 2020, 2 duty pumps in parallel, + 1 stand-by

Time Series for Tank 4

 Time hrs	Demand L/s	Elevation	Grade	Pressure m
 0:00 0:30 1:00 1:30	-130.00 -130.00 -130.00 -130.00	m 41.50 41.50 41.50 41.50	m 47.50 46.72 45.94 45.16	m 6.00 5.22 4.44 3.66
2:00 2:30 3:00 3:30 4:00 4:30	190.33 176.49 -260.00 -260.00 -30.55 -28.42	41.50 41.50 41.50 41.50 41.50	46.13 47.27 46.74 45.18 45.56 45.38	4.63 5.77 5.24 3.68 4.06 3.88
5:00 5:30 6:00 6:30 7:00	-156.45 -145.78 251.64 219.48 -325.00 -325.00	41.50 41.50 41.50 41.50 41.50	45.21 44.27 44.70 46.21 47.45 45.50	3.71 2.77 3.20 4.71 5.95 4.00
8:00 8:30 9:00 9:30 10:00 10:30	103.86 96.60 57.22 53.08 -97.05 -89.98	41.50 41.50 41.50 41.50 41.50	45.18 45.81 46.39 46.73 47.05 46.46	3.68 4.31 4.89 5.23 5.55 4.96
11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00 15:30	-67.30 -62.57 71.78 66.79 62.08 57.65 53.48 49.57 29.66 27.45	41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50	45.92 45.52 45.15 45.58 45.98 46.35 46.70 47.02 47.31 47.49 45.74	4.42 4.02 3.65 4.08 4.48 4.85 5.20 5.52 5.81 5.99 4.24
16:30 17:00 17:30 18:00 18:30 19:00 19:30 20:00 20:30 21:00 21:30 22:00 22:30	-84.61 -111.40 179.91 124.34 107.90 158.29 -88.57 47.46 44.24 106.21 98.84 124.35 115.34	41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50	44.61 44.10 45.02 46.10 46.85 47.49 44.96 44.43 44.71 44.98 45.61 46.21 46.21	3.11 2.60 3.52 4.60 5.35 5.99 3.46 2.93 3.21 3.48 4.11 4.71 5.45
23:00 23:30	-130.00 -130.00	41.50 41.50	47.21 46.43	5.71 4.93

Page 2
Time Series for Tank 4

Time	Domand	Elevation	Grade	Pressure
hrs	L/s	m	m	m
24:00	-130.00	41.50	45.65	4.15
24:30	233.29	41.50	45.23	3.73
25:00	216.76	41.50	46.63	5.13
25:30	-130.00	41.50	47.24	5.74
26:00	-162.50	41.50	46.46	4.96
26:30	-162.50	41.50	45.49	3.99
27:00	98.87	41.50	45.61	4.11
27:30	91.87	41.50	46.21	4.71
28:00	-44.76	41.50	46.76	5.26
28:30	-41.51	41.50	46.49	4.99
29:00	-168.53	41.50	46.24	4.74
29:30	-156.67	41.50	45.23	3.73
30:00	-48.47	41.50	44.29	2.79
30:30	265.69	41.50	44.02	2.52
31:00	329.91	41.50	45.61	4.11 5.91
31:30 32:00	-325.00 -260.00	41.50 41.50	47.41 45.46	3.96
32:30	100.79	41.50	45.45	3.95
33:00	61.19	41.50	46.05	4.55
33:30	56.81	41.50	46.42	4.92
34:00	-93.55	41.50	46.76	5.26
34:30	-86.80	41.50	46.20	4.70
35 : 00	-64.40	41.50	45.68	4.18
35:30	-59.90	41.50	45.29	3.79
36:00	74.23	41.50	44.93	3.43
36:30	69.10	41.50	45.38	3.88
37:00	64.26	41.50	45.79	4.29
37:30	59.70	41.50	46.18	4.68
38:00	55.41	41.50	46.54	5.04
38:30 39:00	51.38 31.35	41.50 41.50	46.87 47.18	5,37 5,68
39:30	29.03	41.50	47.37	5.87
40:00	-455.00	41.50	47.08	5.58
40:30	-87.60	41.50	44.87	3.37
41:00	-114.15	41.50	44.35	2.85
41:30	188.83	41.50	44.59	3.09
42:00	132.42	41.50	45.73	4.23
42:30	115.12	41.50	46.52	5.02
43:00	164.70	41.50	47.21	5.71
43:30	-455.00	41.50	45.57	4.07
44:00	45.77	41.50	44.58	3.08
44:30	42.66	41.50	44.85	3.35
45:00	104.72	41.50	45.11	3.61
45:30 46:00	97.43 123.00	41.50 41.50	45.74 46.32	4.24 4.82
46:00 46:30	123.00	41.50	47.06	4.82 5.56
47:00	-130.00	41.50	47.02	5.52
47:30	-130.00	41.50	46.24	4.74
17.50	200.00	11.00	10.21	± •

Page 3
Time Series for Tank 4

	Elevation	Grade	Pressure
L/s	m 	m	m
L/s -130.00 229.16 212.74 -130.00 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -170.67 -158.59 -50.21 -46.83 347.14 302.21 -260.00 104.36 64.58 60.00 -90.55 -84.07 -61.91 -57.61 76.34 71.09 66.14 61.47 57.07 52.94 32.82 30.39 -118.12 -109.41 -134.04 -124.62	m 41.50	m 45.46 45.59 46.29 46.29 45.83 46.42 45.39 46.43 46.42 45.14 46.82 45.75 46.15 46.15 46.15 46.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 45.75 47.73 46.77 45.27	m
-134.04 -124.62 -148.58 159.88 204.80 178.16 -325.00 103.27 96.04 121.69 112.81 -130.00	41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50 41.50	46.07 45.27 44.52 44.42 45.38 46.61 47.04 45.09 45.23 45.85 46.43 47.16 46.82	4.57
	L/s -130.00 229.16 212.74 -130.00 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -162.50 -158.59 -158.59 -158.59 -18.12 -109.41 -134.04 -124.62 -148.58 159.88 204.80 178.16 -325.00	-130.00	-130.00

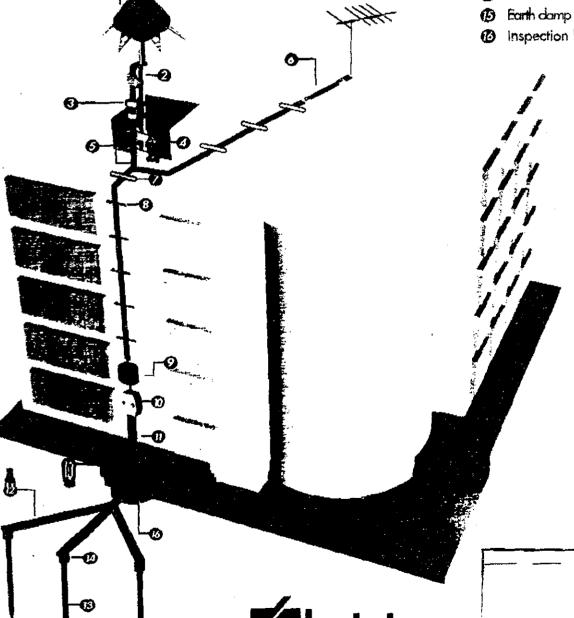
Page 4

Fime Series for Tank 4

Time hrs	L/s	Elevation m	m	
	-130.00	41.50	. <u></u>	3.76

PART III MISCELLANEOUS

MALIGAKANDA OFFICE BUILDING - CATALOGUE FOR LIGHTING FIXTURES AND DIESEL GENERATOR

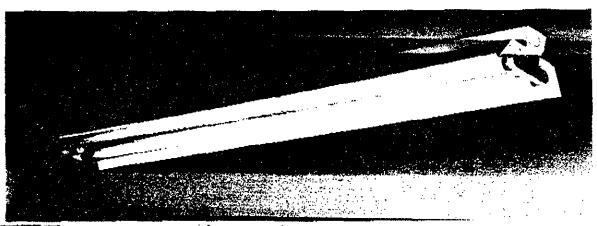

ref: 2023

PROTECTION OF A BUILDING

using a **PREVECTRON**° EARLY STREAMER EMISSION (E.S.E) LIGHTNING CONDUCTOR

KEY

- Prevectron S 6.60 ref: 1241
- 2 Elevation pole
- 3 Clamping collar ref: 6058
- Side mounting brackets ref: 3013
- 6 Copper conductor ref: 5001
- Aerial mast diverter ref: 8760
 Waterproofing holdfast ref: 6031
- 3 Galvanized steel hook ref: 6002 Léad plug ref: 6005
- Lightning flash counterref: 8010
- Test clamp ref: 7001
 Protection sheath ref: 7011
- Protection sheath ref: 7011Copper earthing ref: 7021
- B Earth rod ref: 7030
- Rod-to-conductor clamp ref: 7039
 Fairth clamp ref: 8004
- 10 Inspection housing ref: 7052



Corporate Headquarters and Export Division

61, chemin des Postes 59500 DQUAI (France) - Tél ; (33) 327.944.944 - Fax : (33) 327.944.945

the component parts stowns on the left one guest by way of exacts—Tiple only. This droning is not to scole - novement on one and managed on the contract of the contract of the contract on the contract of the contract on the contract of th

BATTEN WITH DOUBLE SIDED REFLECTOR

TEDR

DESCRIPTION:

Commercial /Industrial fluorescent batten luminaires with double-sided reflector, conforming to relevant IEC & BS standards.

Available for single & twin fluorescent lamps of 18/20W, 36/40W & 58/65W rating.

SALIENT FEATURES

- Good shielding
- Sturdy construction
- · Switch start circuit
- Push fit type starter seat & lamp holder
- Mains connector ensures positive contact
- Heat resistant wiring
- Wide choice of lamps
- Easy to install & maintain
- IP20

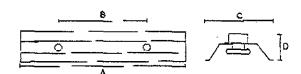
MATERIAL & FINISH

Body, cover & Reflector: Fabricated from high quality CRCA sheet steel, pretreated, phosphated & powder coated.
Lamp & starter holders: Heat resistant polycarbonate.

OPTIONS

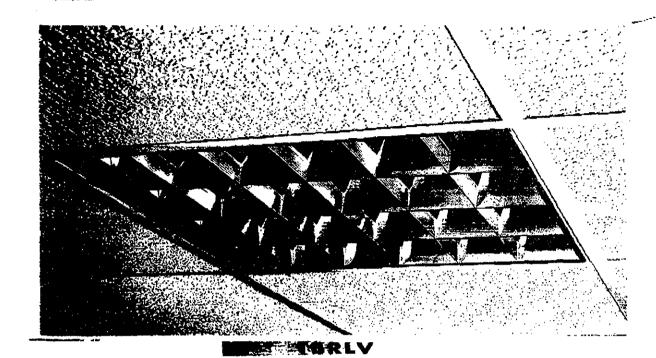
HPF, Extra- Low loss ballast, Electronic ballast, Dimmable ballast, Silicone rubber wiring, Emergency version. Other Voltages/frequency, Anadised aluminium reflector. Custom made version of the above product can also be offered.

REFLECTOR


Reflector provides better optical control & the radial light distribution ensures higher uniform spacing to mounting height ratio & better vertical illumination.

MOUNTING

Suitable for surface mounting or through 20mm conduit suspension. A 20mm knockout is provided to facilitate cable entry.


APPLICATIONS

For cost effective lighting of working areas with low to medium visual requirements, such as in sheet metal processing areas, Industrial sheds, workshops, assembly plants, stores, warehouses etc.

		DIMENSIC	N & TECHNI	CAL DATA:		
Model	Lom		on (mm)	·		
	Туре	No.	Α	В	С	D
TEDR120	FTL18/20W	1	616	_	190	88
TEDR220	FTL18/20W	2	616		190	88
TEDR140	FTL36/40W	1	1226	608	190	88
TEDR240	FTL36/40W	2	1226	608	190	88
TEDR165	FTL58/65W	1	1526	608	190	88
TEDR265	FTL58/65W		1526	608	190	88

RECESSED MOUNTED - MIRROR OPTIC LUMINAIRE

DESCRIPTION:

Decorative / Commercial fluorescent luminaire for recessed mounting in modular false ceiling (exposed T' & concealed T') with high performance mirror optic reflector system. Suitable for upto 4 nos of fluorescent lamps of 16/20W, 36/40W & 58/65W rating, conforming to the relevant IEC & BS standards.

SALIENT FEATURES:

- · High downward light output
- Low surface luminance
- Good glare control
- Push fit type starter seat & lamp holders
- Wide choice of lamps
- Heat resistant wiring
- Easy to install and maintain
- Wishbone springs for easy maintenance
- IP 20

MATERIAL & FINISH

Housing: Fabricated from high quality CRCA sheet steel, pretreated, phosphated & powder coated.

Lamp & starter holders: Heat resistant polycarbonate.

Optical assembly: Very high purity pre-anodised aluminium reflector & serrated X'mas tree cross lauvres.

OPTIONS

HPF circuit or HF electronic control gear, emergency version,

Dimmable ballast, Silicone rubber wiring, Other voltages/frequency, Provision for Clip-on ceiling. Custom made version of the above product can also be offered.

OPTICAL SYSTEM

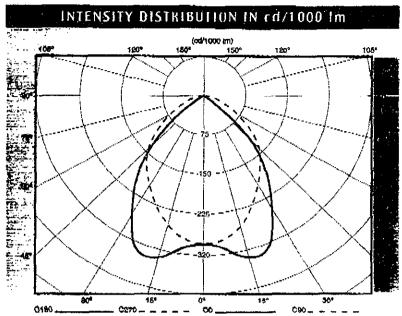
Scientifically designed optical contour minimises spill-over light & gives excellent flux utilisation. Batwing light distribution gives higher uniform spacing to mounting height ratio & provides better balance between horizontal & vertical lighting.

MOUNTING:

A 20mm knockaut is provided on the housing for cable entry. Provision for fixing of side brackets facilitate installation of luminaire directly on to false ceiling frame.

APPLICATIONS

Used for all economic energy saving & low luminance lighting installations for medium visual requirements, such as offices, sales & display areas, also for banking & counter halls, hotels, restaurants & living rooms etc.


LUMINAIRE

TBR 420LV

OPTICS

Standard 24 Cell Louvre

LAMP : 4 x 18W Fluorescent

ROOM INDEX				REFLECT	TION FACT	ORS			
r (ceil)	70	70	70	50	50	50	30	30	0
r (wall)	50	30	10	50	30	10	30	10	0
r (work)	10	10	10	10	10	10	10	10	0
ROOM INDEX				UTILIZA	TION FACT	ORS			
0.6	32	28	25	31	27	25	27	25	23
0.8	39	35	32	38	34	31	34	31	30
1.0	44	40	37	43	39	37	39	36	35
1.25	49	46	43	48	45	43	45	42	41
1.5	52	49	47	51	48	46	48	46	45
2.0	56	53	51	54	52	50	51	50	48
2.5	58	56	54	57	55	53	54	5 3	51
3.0	60	58	57	59	57	56	56	55	54
4.0	61	60	58	60	59	58	58	57	55
5.0	62	61	60	61	60	59	5 9	58	57

DIMENSION & TECHNICAL DATA:									
Model Tyr	Lam			Dimensi		·			
	Туре	No.	. A	8	c	D			
TBR220LV	FTL18/20W	2	611	59 7	297	90			
TBR42QLY	FTL18/20W	4	611	597	597	90			
TBR240LV	FTL36/40W	2	1221	1198	297	90			
TBR440LY	FTL36/40W	4	1221	1198	597	90			
TBR265LV	FTL58/65W	2	1521	1498	297	90			
TBR465LV	FTL58/65W	4	1521	1498	597	90			

(Data subject to change without notice)

RECESSED MOUNTED - MIRROR OPTIC LUMINAIRE - CATEGORY I

空間過去。でAT-I

DESCRIPTION:

Decorative /Commercial fluorescent luminaire for recessed mounting in modular false ceiling (exposed T' & concealed T') with high performance mirror optic reflector system. Suitable for upto 4 nos of fluorescent lamps of 18/20W, 36/40W & 58/65W rating, conforming to the relevant IEC & BS standards.

SALIENT FEATURES

- Very low surface luminance
- Excellent glare control
- Push-fit type starter seat & lamp holders
- Mains connector ensures positive contact
- Wide choice of lamps
- Heat resistant wiring
- Easy to install and maintain
- Wishbone springs for easy maintenance
- IP20

MATERIAL & FINISH

Housing: Fabricated from high quality CRCA sheet steel, pretreated & powder coated.

Lamp & starter holders: Heat resistant polycarbonate.

Optical assembly: Very high purity pre-anodised aluminium reflector & louvre assembly complying to IG3 CAI 1.

OPTIONS

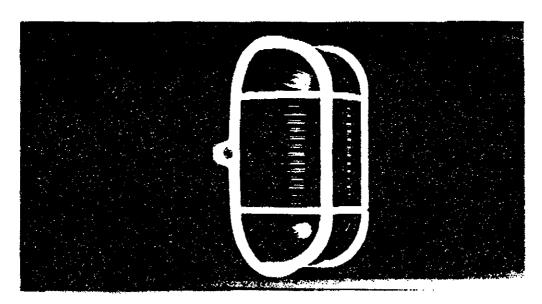
HPF circuit or HF electronic control gear, emergency version, other voltages/frequency, Provision for Clip-on ceiling. Custom made version of the above product can also be offered.

OPTICAL SYSTEM

The louvre assembly comprises of double parabolic louvres, shielding the lamp in the critical direction of view & re-directing the light in the direction of interest. This louvre assembly gives low luminosity level & excellent glare control thus giving the room a more friendly atmosphere. Provides high standard glare free lighting of work stations with critical visual requirements. This optical assembly reduces the possibilities of image formation on VDTs and thereby limits the annoying reflected glare on the screen.

MOUNTING

A 20mm knockout is provided on the housing for cable entry. Provision for fixing of side brackets facilitate installation of luminaire directly on to false ceiling frame.

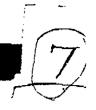

APPLICATIONS

Such luminaires would be specified where there is a high density of screens in an area & the VDT terminal usage is sustained over a long period or is of intense nature or where errors are critical. Examples would be the entry of continuous data in an insurance office, or the constant screen interrogation in a financial dealer room. More specialised computers also require this Category luminaires.

UTILITY LIGHTS

GENERAL PURPOSE BULK HEAD LUMINAIRE

TEBH


- Enclosed luminaire suitable for General Service Lamps (40/60/100W) or Compact Fluorescent Lamps (9/11W)
- Available both in polycarbonate & cast aluminium
- Clear ribbed Glass/PMMA polycarbonate diffuser cover
- Suitable for ceiling or wall mounting
- Guard for protection
- Integral ballast (if required)


EMERGENCY LIGHTING LUMINAIRES

- Surface mounted emergency luminaire suitable for 8W fluorescent lamp
- · Self contained, non maintained 3 hour duration
- Maintained version also available

- Body, diffuser: polycarbonate
- Luminaire equipped with nickel cadmium battery
 & LED indicator

TED OPL

DESCRIPTION :

Aesthetically designed, easy to install surface mounted luminaire with high performance opal diffuser for a wide range of commercial and domestic applications, conforming to relevant IEC & BS standards. Available for single and twin fluorescent lamps of 18/20W, 36/40W & 58/65W rating.

SALIENT FEATURES

- Balanced luminance distribution
- Soft and diffused lighting
- Excellent glare control
- Sturdy construction
- Switch start circuit
- Push-fit type starter seat & lamp holders
- Mains connector ensures positive contact
- Wide choice of lamps
- Heat resistant wiring
- · Easy to install and maintain
- IP20

MATERIAL & FINISH

Housing: Fabricated from high quality CRCA sheet steel, pretreated, phosphated & powder coated.

Lamp & starter holders: Heat resistant polycarbonate.

Opal diffuser: UV stabilized diffuser has remarkable light softening characteristics combined with a very low luminosity at angles approaching the harizontal surface.

End caps: ABS white colour.

OPTIONS

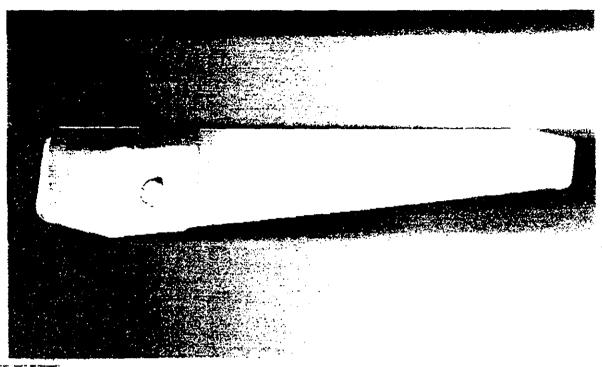
HPF, Extra Low-loss ballast, Electronic ballast, Dimmable ballast, Silicone rubber wiring, Emergency version, other voltages/frequency. Custom made version of the above product can also be offered.

MOUNTING

Suitable for surface mounting. A 20mm knockout provided on the rear side of the housing facilitates cable entry.

APPLICATIONS

These luminaires are used in situations where the requirement calls for glare-free, soft & diffused lighting. These luminaires will meet most of the lighting requirement in offices, banks, schools, hospitals, shopping complexes, sales & leisure areas like halls, lobbies etc.


	- 507	DIMENSIO	N & TECHNI	CAL DATA:		
Model	Lam	P		Dimensio	n (mm)	
	Туре	No.	A	8	¢	D
TED120-OPL	FTL18/20W	1	624	440	90	85
TED220-OPL	FTL18/20W	2	816	440	150	65
TED140-OPL	FTL36/40W	1	1234	840	90	85
TED240-OPL	FTL36/40W	2	1228	840	150	65
TED165-OPL	FTL58/65W	1	1534	1140	90	85
TED265-OPL	FTL58/65W	2	1528	1140	150	65

444

(Data subject to change without notice)

DECORATIVE MIRROR LIGHT LUMINAIRE

TEML-S

DESCRIPTION :

Decorative surface mounted luminaire with diffuser cover suitable for single 11/15W compact fluorescent lamp & 18/36W fluorescent lamp.

SALIENT FEATURES

- Available with earthed socket & rocker switch
- · Available in white colour
- Aesthetically appealing design
- Sturdy construction
- · Switch start circuit
- Push-fit type starter seat & lamp holders
- Mains connector ensures positive contact
- Heat resistant wiring
- IP40

MATERIAL & FINISH

Channel: Luminaire body made from sheet steel & white stove enamelled.

Diffuser: specially designed PMMA opal diffuser.

APPLICATIONS

This elegant, slim luminaire is intended for interior use. It is suitable for the illumination of individual work places & general areas. An ideal luminaire for recreation rooms, wardrobes, bathrooms, kitchens etc.

0 0	1	В	-8		<u> </u>
	i			··· ٦	<u>ا</u> زــــــا
·			C	Ì	i >
				ļ	. ii

DIMENSION & TECHNICAL DATA:											
Model		Lamp		on (mm)							
	Туре	No.	Α	₽	c	0					
TEML-\$111	ÇFL	1	340	190	67	80					
TEML-S115	CFL	1	519	330	67	80					
TEML-S118	CFL	1	670	500	67	80					
TEML-S136	CFL	1	1280	800	67	80					

445

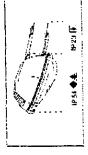
(Data subject to change without notice)

Fittings for lighting of public, commercial and industrial areas.

The fittings are suitable for 70 to 250W high pressure sodium lamps, 250W metal halide lamps and 80 to 250W mercury vapour lamps. Body in die cast aluminium painted black 99,85% aluminium reflector. The connection plate is in polyamide for ease of installation.

The protection bowl must be ordered separately.

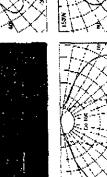
Streßenkeuchten zur Beleuchtung von öftentichen, privaten und industriellen P\(\text{achen}\).
 In der Serie MYRA sind Natriundampflanpen 70+2\(\text{50W}\). Metalldampflampen 250\(\text{V}\) und


Gehäuse Aluminium-Druckguß, pulverbaschichtet schwarz. Reitektor aus reinem Muniinkim. Quecksilberdampilanpen 80+250W verwendhar.

Die Anschlußplatte ist aus Fiberglas-Nyton und leicht zu montieren. Die Schutzhaube muß gesondert bestellt werden.

mounting with size entry or postflop reversible; installation (da 28 60 mm). The range is suitable for pole

Тортопеде ыл Мамен 48-60 плп декулет. ☐ Sve Serie ist für Sevien octer


100W NAVESON E40 150W NAVENSON E40

MYRA 11/100 -N- CR MYRA 11/150 -N. CR

05532017 05528017

MYRA 11/70 -N-CR

70W NAV-EISON E27 A

PROFORMA INVOICE

Our Ref: CU/GEN/2111100 29th November 2000

Managing Director Ceywater Consultants (Pvt) Limited 372/2 Nawala Road Rajagiriya

Tel: 876750

E-mail: ceywater@slt.lk

Attn: Mr Karunaratne

Dear Sir,

SUPPLY OF 1 NO. CUMMINS / ONAN MODEL DGCB, 64 KVA PRIME RATED GENERATING SET

TECHNICAL OFFER

One No. new and complete "Cummins" model DGCB,

prime rated at 64 kVA, 3 phase; 50 Hertz; 230/400 Volts

at 0.8 power factor.

PRIME POWER RATING

The Prime Power rating is applicable for supplying electrical power in lieu of commercially purchased power. Prime power is the maximum power available at variable load for an unlimited number of hours. A 10% over load capability is available for 1 hour in every 12

hours.

ENGINE

:

Cummins model 4BT3.9G2 Turbo-charged, direct injection Diesel Engine developing 76 BHP at 1500 RPM. Unit mounted tropicalised radiator system. Complete with replaceable type fuel, Lube oil and air

filter and battery charging alternator.

ALTERNATOR

Brushless 4 pole Alternator rated at 64 kVA. See

specification sheet for details.

ACCESSORIES

- * AC Meter Package consists of the following:
 - AC Voltmeter (dual range)
 - AC Ammeter (dual range)
 - Voltmeter/Ammeter phase selector switch with off position
 - Frequency Meter
 - AC Rheostat + / 5% voltage adjust
- * 3 pole MCCB with shunt trip
- * Residential Muffler
- * Stainless Steel Flexible connector
- * Run stop remote switch
- * Lamp test switch
- * Fault reset switch
- * Coolant temperature guage
- * Oil pressure gauge
- * Field circuit breaker
- * DC Voltmeter
- * Running time meter
- * 12 light engine monitoring system consists of the following:
 - Run
 - Pre warning for low oil pressure
 - Pre warning for high coolant temperature
 - Low oil pressure shutdown
 - High coolant temperature shutdown
 - Over crank shutdown
 - Over speed shutdown
 - Low fuel
 - Low coolant temperature
 - Two customer selected faults
- * Anti condensation heater (Alternator)
- * Batteries
- * Manuals

Generally in accordance with Manufacturer's standard specification sheets attached.

Page 3

PRICE: CIF Colombo for 1 unit US\$ 11,900.00

(US\$ Eleven Thousand Nine Hundred Only)

OPTIONAL: 250 Amp wall mounted 4 pole ATS with indicators,

5 Amp Battery Charger, selector switch and phase

failure relay.

ADDITIONAL PRICE : Add to CIF US\$ 2,250.00

(US\$ Two Thousand Two Hundred & Fifty Only)

VALIDITY: 30 days from date of offer

DELIVERY: Approximately 8 weeks from date of receipt of

acceptable Letter of Credit at our Principals. However delivery can be improved subject to order confirmation.

delivery can be improved subject to order confirmation.

TERMS OF PAYMENT: Be confirmed irrevocable Letter of Credit in favour of our

Principals.

Cummins Power Generations (S) Pte Ltd.

44 Pioneer Sector Singapore 628395

All Bank charges to applicant's account.

WARRANTY: 12 months from date of commissioning at site.

COUNTRY OF ORIGIN: Singapore

Yours faithfully, TRADE PROMOTERS LIMITED

Jeevalal de Alwis

SALES EXECUTIVE

Note: 70 kVA generator with same specifications as above

Price CIF Colombo US\$ 12,600.00

Our Ref: CU/GEN/2111100 29th November 2000

Managing Director Ceywater Consultants (Pvt) Limited 372/2 Nawala Road Rajagiriya

Attn: Mr Karunaratne

Dear Sir.

COST OF CUSTOMS CLEARING, TRANSPORT & COMMISSIONING OF 64 KVA GENERATING SET AT MALIGAKANDA

We are pleased to forward our quotation for commissioning of the above generator at your site. Our quotation is inclusive of the following items.

(A)

- 1. Clearing, handling and documentation charges.
- 2. Transport to site.
- 3. Unloading the genset at site.

Total Cost (Item 1-3)

Rs. 22,000.00

Please note that this price does not include customs duty, GST, cess, defence levy and bank charges.

(B)

- 1. Supply and installation of standard cast iron earth electrodes.
- 2. Supply laying and termination of power/control cables from generator to changeover panel. (Maximum distance 5 meters)
- 3. Supply and laying of fuel pipes from day tank to generator.
- 4. Supply of fuel day tank for 8 hour operation.
- 5. Fabrication of Radiator hot air duct. (Maximum distance between room wall and radiator 2 feet.)
- 6. Testing and commissioning.

Total Cost (Item 1-6)

Rs. 60,000.00

G.S.T. 12.5% (A+B)

Rs. 11,000.00

Page 2

Notes:

- 1. Item 3 power cables 35 sq.mm. 4 core XLPL/PVC/PVC cables.
- 2. The above prices do not include the prices of any civil work, carpentry work, diesel and cable
- 3. Load test at site will be carries out with the available load at site for a period of one hour.

PAYMENT TERMS

75% advance payment with order confirmation 25% balance after commissioning

Yours faithfully, TRADE PROMOTERS LIMITED

Jeevalal de Alwis SALES EXECUTIVE

MALIGAKANDA OFFICE BUILDING - CATALOGUE FOR WATER PUMPS AND FIRE PUMPS

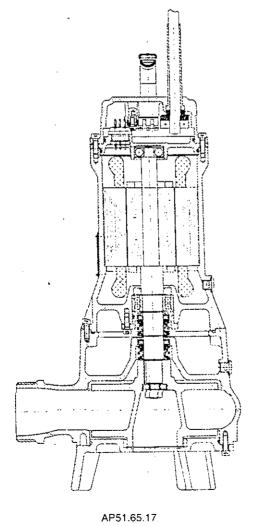
			:
			t

WATER SUPPLY PUMPS

Construction

Vertical, single-stage, submersible centrifugal pumps with horizontal or vertical discharge port designed for free-standing installation or installation by means of an auto-coupling guide rail system.

The pumps are directly connected to an asynchronous submersible motor for 1 x 230 V +6/-10%, 3 x 230 V +6/-10% or 3 x 400 V +6/-10%, 50 Hz.


Enclosure Class: IP 68.

Insulation Class: F (155°C).

Single-phase AP12, AP35 and AP50 incorporate thermal overload protection and require no additional motor protection.

All explosion-proof AP pumps, AP100 APG and APL pumps have a thermal switch built into the motor windings. The thermal switch is connected to the control circuit of the motor starter.

Sectional Drawing

Motor Cables

AP12, AP35, AP50:

AP100:

Single-phase: 3/ Three-phase: 10

3/10 m, H07RNF 4 x 1.0 mm².

10 m, 7 x 1.5 mm²/

16 x 1.5 mm².

APG.50.xx.3: 10 m, H07RNF 7 x 1.5 mm². Explosion-proof pumps: 10 m, NSSHÖU-l 7 x 1.5 mm². Remaining AP pumps: 10 m, H07RNF 4 x 1.5 mm².

APL/APLD units:

Mains to controller:
Controller to motor:

0.8 m. H07RNF 5 x 1.5 mm². 3 m. H07RNF 7 x 1.5 mm².

AP51 65 12 A1

Installation

The pumps are suitable for free-standing installation as well as installation on an auto-coupling guide rail system, which is available as an accessory.

Pumps in permanent installations can be installed by means of a stationary auto-coupling at the bottom of the pit. A twin guide rail going to the top of the pit ensures that the pump is positioned correctly when lowered from the top of the pit down to the auto-coupling and connected to the pipe system. Due to this system, the pump can easily be pulled up for service.

For free-standing installation the AP70, AP100 and APG pumps must be fitted with a base stand, see Accessories.

Type Key

Explosion-proof version -

Evample:

Example.	A1 0 11001 1217 1
Type range ————	
Max. particle size (mm)	
Nominal diameter (mm) ——————————————————————————————————	
Power output P ₂ /100 (W)	
A = With level switch	
1 = Single-phase voltage supply	
Example:	APG.50.19.3E
Type range —	
With cutter system	
Nominal diameter (mm) —————of discharge port	
	1 1 1
Power output P ₂ /100 (W) ———	

Example:	APLD.82.21.3
Type range	
Lifting stations	
= With one pump D = With two pumps	
81 = 180 mm horizontal inlet level 82 = 250 mm horizontal inlet level	
Power output P, /100 (W)	
3 = Three-phase voltage supply	

11/60 3552 5093

AP10

The pumps are used for pumping wastewater, sludgecontaining water, ground water and surface water in places such as:

- sumps
- shafts
- ducts
- tunneis
- excavations
- basements
- cellars
- underground car parks

AP10 pumps are ideal for general flood relief applications and for miscellaneous industrial applications.

Pump and Stator Housing

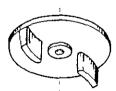
The pump housing and stator housing of the standard versions as well as the explosion-proof versions are made of cast iron.

The standard pumps have oil-filled stator housings. The explosion-proof versions are dry, i.e. not oil-filled.

Discharge

All AP10 pumps have a horizontal discharge port for threaded connection.

AP10.50.EX: R 2. AP10.65: R 2½.


Shaft and Bearings

The shaft is made of chromium steel and rotates in maintenance-free prelubricated ball bearings.

The lower bearing comprises a double row of ball bearings.

Impeller

The impeller is a semi-open multivane cast iron impeller with a clearance of 10 mm. Cast iron is chosen to give high resistance to mechanically wearing particles.

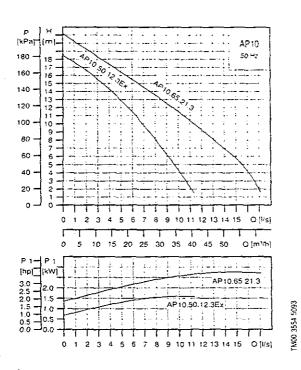
TM00 3553 5093

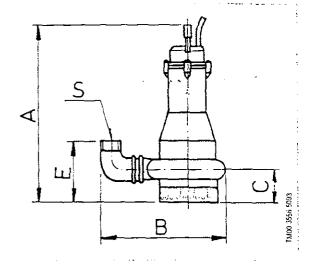
An adjustable cast iron wear plate is fitted at the inlet side of the impeller.

Shaft Seals

Standard:

Two mechanical bellows seals and a lip seal.

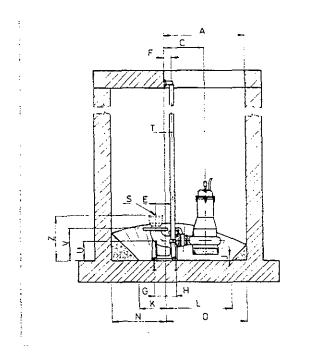

The primary and the secondary shaft seals are made of silicon carbide/eilicon carbide. The chamber between the shaft seals is oil-filled. Between the lower ball bearing and the stator housing there is a lip seal.

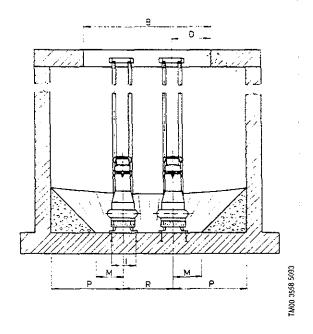

Ex version: Combination of mechanical shaft seal and lip

The primary shaft seal is made of silicon carbide/silicon carbide. The secondary shaft seal is a lip seal. The chamber between the shaft seals is oil-filled.

Materials

Description	Materials	DIN WNr.	AISI/ASTM
Stator housing	Cast iron GG25	0.6025	ASTM 25B
Pump housing	Cast iron GG25	0.6025	ASTM 25B
Impeller	Cast iron GG25	0.6025	ASTM 25B
Wear plate	Cast iron GG25	0.6025	ASTM 25B
Shaft	Chromium steel	1.4104	AISI 430F
Bearings	Heavy-duty prelubricated ball bearings		
Screws	Stainless steel	1.4301	AISI 304




Elbows are accessories.

Pump Type		~ 4114			1 [0]	Cos ip	l _{stre}		Weight*				
	Voitage	P. (kW)	P ₂ [kW]	n [min ']	I _n [A]			A	В	O	٤	s	[kg]
AP10.50.12.3Ex	3 x 400 V	1.60	1.20	2850	2.9	0.84	4.6	577	300	87	161	R2	30
AP10.65.21.3	3 x 230 V	2.50	2.10	2800	7.8	0.84	4.7	551	380	108	198	R 21/2	27
AP10.65.21.A3	3 x 230 V	2.50	2.10	2800	7.8	0.84	4.7	551	380	108	198	R 21/2	27
AP10.65.21.3	3 x 400 V	2.50	2.10	2800	4.5	0.84	4.6	551	380	108	198	R 21/2	27
AP10.65.21.A3	3 x 400 V	2.50	2.10	2800	4.5	0.84	4.6	551	380	108	198	R 2½	27

^{*} Pump inclusive of cable and controller, if any.

AP10 Installations

One-Pump Installation on Auto-Coupling

	Α	В	С	D	Е	F	G	Н	1	J	К	L	M	N	0	Р	R	s	T	U	٧	Z
AP10.50.12.Ex	1	σ600	245	300	45	45	65	-	115	74	150	450	200	300	700	500		Rp 2	1/2"	160	250	300
AP10.65.21	9600	ø600	300	297	70	60	82	68	180	32	150	510	220	350	650	500		DN65	1"	160	250	-

Two-Pump Installation on Auto-Coupling

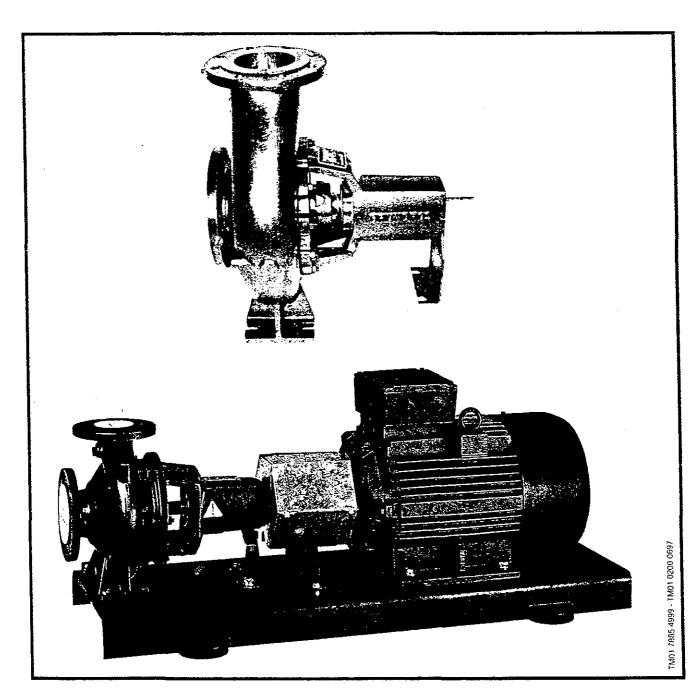
	Α	В	С	D	E	F	G	н	1	J	K	L	М	N	0	P	R	S	Ŧ	U	٧	Z
AP10.50.12.Ex	445	600	245	135	45	45	65	-	115	74	150	450	200	300	700	335	330	Rp 2	15"	160	250	300
AP10.65.21	600	975	300	297	70	60	82	68	180	32	150	510	220	375	875	435	380	DN65	1"	160	250	•

Standard pumps

Water supply, boosting, circulation of water in heating and air-conditioning systems.

Liquid transfer in industry, agriculture, horticulture, etc.

In accordance with EN 733.


Pump flange sizes: DN Maximum system pressure: 16

DN 32-300 16 bar

Liquid temperature:

-10°C to +140°C

50 Hz

General data

Applications

The pump is suitable for the pumping of thin, clean and non-aggressive liquids without solid particles or fibres in:

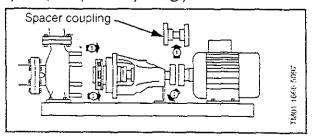
- · District heating
- · Water supply
- Airconditioning
- Cooling plants
- Industry
- Fire fighting
- Environment engineering

Operating conditions

Flow	Max. 2000 m ³ /h.
Head	Max. 150 m.
Liquid temperature	-10°C up to +140°C.
Operating pressure	Max. 10 or 16 bar. Operating pressure = inlet pressure + pressure against a closed valve (Q = 0).
inlet pressure	Max. 9 bar. Max. 7 bar for 400 mm impellers or bigger.

Pump

Non-self-priming single-stage centrifugal volute pump with axial suction port, radial discharge port and horizontal shaft components.


The NK pumps have dimensions and nominal performances according to EN 733 (10 bar) but are designed for 16 bar operation wherever the shaft seal type allows it. NKG pumps according to DIN 24 256 (16 bar) are described in a separate booklet. Pumps up to 25 bar operating pressure are available on request.

Types outside of the official DIN-norm (NK 200 and up) will be called "oversize". Dimensions can differ from other suppliers.

The suction and discharge flanges are according to EN 7005 PN 10 or 16. All pumps are dynamically balanced according to ISO 1940 class 6.3 and impellers are hydraulically balanced.

Pump and motor are mounted on a common baseptate in accordance with EN 23 661 in all-welded steel. Oversizes have profile base frames.

Due to the pump design the complete bearing assembly including impeller and shaft seal can be dismantled without removing the volute casing from the pipe system (back-pull-out system 3).

Flexible coupling

Standard version or a spacer coupling which allows the motor to remain in place during the above mentioned dismantling to avoid subsequent alignment.

If the pump housing, motor or the entire unit is moved, alignment is always neccessary.

Bearing assembly with shaft

The bearing assembly includes two sturdy antifriction bearings lubricated for life. Oversize pumps with shaft $d5 \approx 55$ mm however, have open bearings with grease nipples.

A thrower on the shaft prevents liquid from entering the bearing housing.

In stuffing box versions the shaft is protected by a stainless steel sleeve at the shaft seal.

All the NK pumps according to EN 733 are covered by only four sizes of shaft, shaft seal and bearings, and the oversizes by an additional three sizes.

Due to the ample sizes of the bearings and shaft the NK pumps can be driven by a belt drive, belt variator or a diesel engine, if required.

Shaft seal

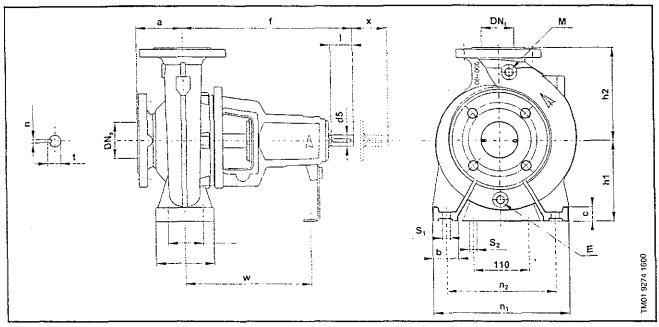
The standard version is provided with a mechanical Burgmann shaft seal according to DIN 24 960, Grundfos type BAQE. Depending on pumped liquid and operating conditions other types and stuffing boxes are available. Shaft sleeve is available on request.

Motor

The motor is a totally enclosed, fan-cooled squirrelcage Grundfos MMG motor dimensioned to IEC publication 72 and complying with IEC 34 and DIN 42 950.

Mounting designation	B3 (IM 1001)
Enclosure class	IP 55
Insulation class	F (100°C)
Ambient temperature	Max. 40°C
Voltages, 50 Hz	3 x 220-240/380-415 V, 3 x 380-415 Δ V,
Thermistor	TP 211 according to DIN 44 082 when P2 2 3 kW

NK units with 60 Hz motors and NKE units with MGE motors are also available, but are described in separate booklets.


Other brands of motors can be mounted on request.

Surface treatment

All stationary cast iron parts are dip-painted with waterbased, ether-epoxy no-lead painting. The thickness of the film is 25 $\mu m \pm 5~\mu m$.

Finally, the product is spray-painted with black water-based, ether-epoxy no-lead painting. The thickness of the dry coating is 35 μ m \pm 5 μ m.

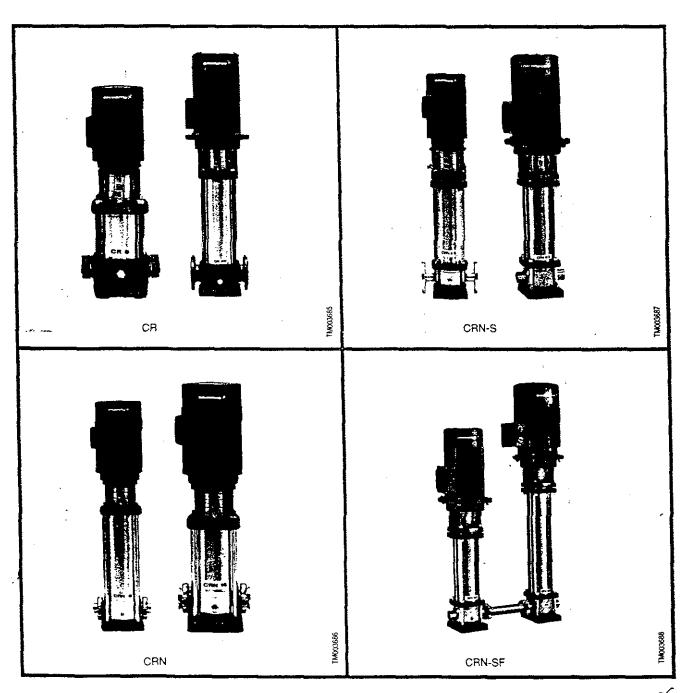
Pump dimensions and weights



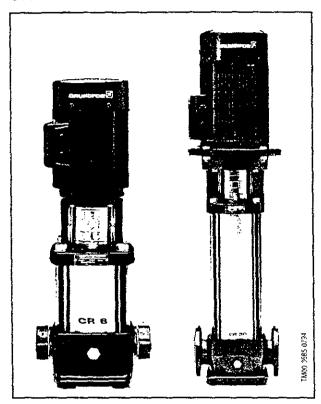
E	 Drain plug	
M	 Pressure gauge tapping	1

	Dimensions [mm]					Supporting feet [mm]						Shaft [mm]				Ę_						
Туре	DNs	s DN.	a	f	h ₁	h ₂	ь	m ₁	m ₂	n ₁	กว	w	s,	S ₂	С	20	١ ١	x	t	c	Weight [kg]	
NK 32-125.1					112	140				190	140				14						34	
NK 32-125		į '			112	140		İ	1	150	140		ĺ		, 4				1	-	34	
NK 32-160.1	50	32	80	360	132	160	50	100	70			260	M12	M12		24	50	100	27	8	37	
NK 32-160		32	80	300	132	100] 30	100	′" [240	190		10112	IVI I Z	18	24	50	100	21	٦	37	
NK 32-200.1)		Ì	160	180)		1	240	1,90] !				47	
NK 32-200	_				100	180															47	
NK 40-125			80		112	140		· · · · [210	160										34	
NK 40-160	65	40		360	132	160	50	100	70	240	190	260	M12	M12	18	24	50	100	27	8	39	
NK 40-200	05	40	40	100	360	160	180				265	212	200 1011	10112	10112		24	1	100	٠. ا		49
NK 40-250	į .		100]	180	225	65	125	95	320	250		, !		19]]					64	
NK 50-125			50 100		132	160	50	100	70	240	190	190 212 260	M12	M12				100	27	8	34	
NK 50-160	65	EA		360	160	180				265	212				18	24	50				42	
NK 50-200	05	30			100	200				203	212					24	30				56	
NK 50-250	1		1		180	225	65	125	95	320	250	}	ļ		19	1	}	Ĭ	{	1	67	
NK 65-125					160	180				280	212		j					100			41	
NK 65-160	ĺ	ļ	100	360	160	200	65	125	95	280	212	260	M12		19	24	50	100	27	8	46	
NK 65-200	80	65	100		180	225	1	İ	ļ	320	250	1		M12		1	1		1		55	
NK 65-250	1			470	200	250	00	1.00	100	360	280	340	M16	1		32	80	140	37	10	89	
NK 65-315*	7	1	125	4/0	225	280	80	160	120	400	315	340	INCTR	}	23	34	100	1	3"	1 "	177	
NK 80-160		1		360	100	225	5	1		320	250	260	1	1	1.0	24	50	1	67	8	55	
NK 80-200	1	00 80	80	105	470	180	250	65	125	95	345	280		M12	M12	19		Ţ		27	8	73
NK 80-250	100			125		200	280	1		100			340	i			32	80	140		1.0	93
NK 80-315"	1			!	250	315	80	160	120	400	315	'	M16		23		[37	10	123	
NK 100-200	1		125		200	1	1	1	1	360	280	1	†	<u> </u>	23	†			\dagger	1	83	
NK 100-250	125	100		470	225	280	80	160	120		1	340	M16	M12	24	32	80	140	37	10	101	
NK 100-315	7		140	140	250	315	7	-		400	315			-	23	<u> </u>					130	
NK 125-250**	150	125	140	470	250	355	80	160	120	1 400	315	340	M16	M12	23	32	80	140	37	10	118	
NK 150-200	200	150	160	1 470	280	400	100	200	150	550	450	340	M20	1 1/12	27	32	80	140	37	10	210	

⁴⁻pole only


^{** 4-}pote and 6-pote only

in according the con inthe purp Cockey


CR/CRN

Vertical Multistage Centrifugal Pumps 50 Hz

General Data

CR

Applications

For liquid transfer, circulation and pressure boosting of cold and hot clean water.

Typical applications:

- Municipal water supply and pressure boosting
- Domestic water supply
- Boiler feed and condensate systems
- Cooling water systems
- Irrigation and dewatering
- Fire fighting
- Washing plants and washdown
- Vehicle washing
- Pumping of cooling and cutting liquids

Pump

The CR pump is a non self-priming, vertical multistage centrifugal pump fitted with a GRUNDFOS standard

The pump consists of a base and a pump head. The pump body and the outer sleeve are fixed between the base and the pump head by means of staybolts. The base has in-line suction and discharge ports.

The pump has a maintenance-free mechanical shaft seal with dimensions to DIN 24960.

Pipework Connection

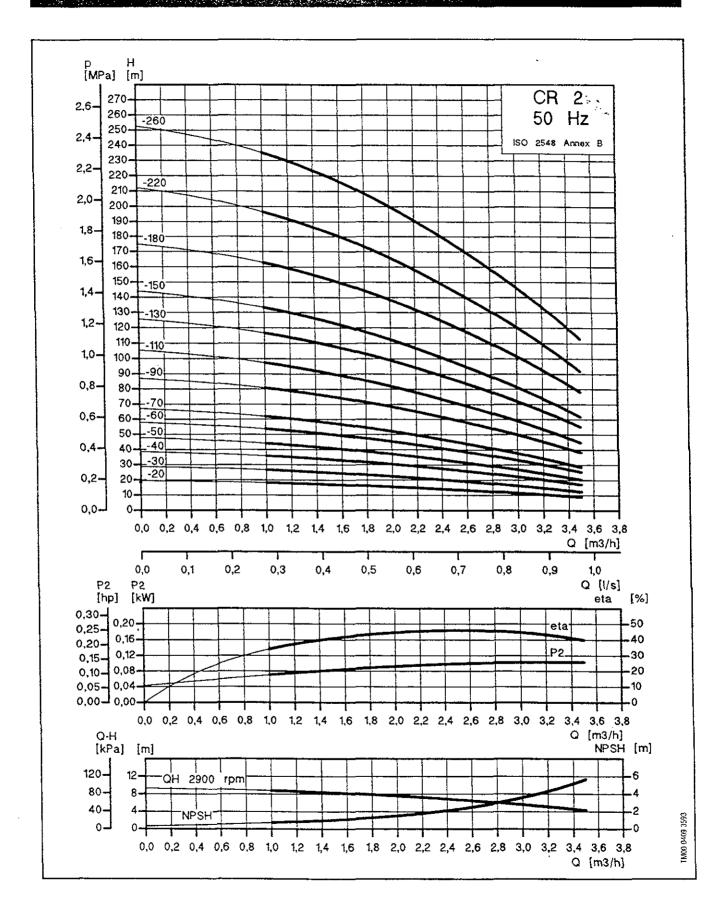
Pump Type	Oval Flange Max. 16 bar	DIN Flange Max. 25 bar	
CR 2	Rp 1	DN 25	
CR 4	Rp 11/4	DN 32	
CR 8	Rp 15 & Rp 2	DN 40	
CR 16		DN 50	
CR 30		DN 65	
CR 60	T	DN 100	

Operating Conditions

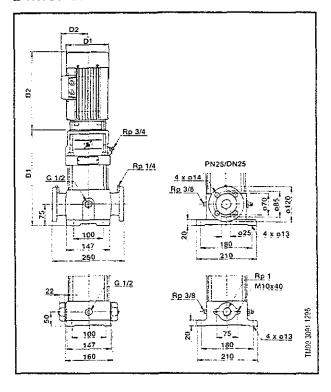
Liquid Temperature:

-15°C to +120°C.

Ambient Temperature: . Maximum +40°C.


Minimum Inlet Pressure: According to the NPSH curve

+ a safety margin of minimum


0.5 metres head.

Materials (Basic Version A)

Description	Materials	DIN WNr.	AISI/ASTM
Pump head	Cast iron GG20	0.6020	ASTM 25B
Coupling guard	Stainless steel	1.4301	AISI 304
Shaft	Stainless steel	1.4301 1.4401 1.4057	AISI 304 AISI 316 AISI 431
Impeller	Stainless steel	1.4301	AISI 304
Intermediate chamber	Stainless steel	1.4301	AISI 304
Outer sleeve	Stainless steel	1.4301	AISI 304
Staybolts	Stainless steel Steel 50	1.4057 1.0531	AIS1 431
Base	Cast iron GG 20	0.6020	ASTM 25B
O-rings	EPDM or FPM (Viton)		

Dimensional Sketches

Dimensions and Weights

Pump		Net Weight [kg]							
Туре	В1	B2	81 + B2	в 1	B1 + B2	D1	D2	•	••
CR 2-20	220	190	410	245	435	140	110	20	25
CR 2-30	240	190	430	265	455	140	110	20	25
CR 2-40	260	190	450	285	475	140	110	20	25
CR 2-50	275	190	465	300	490	140	110	20	25
CR 2-60	300	230	530	325	555	140	110	20	25
CR 2-70	315	230	545	340	570	140	110	25	30
CR 2-90	350	230	580	375	605	140	110	30	35
CR 2-110	385	230	615	410	640	140	110	30	35
CR 2-130	440	280	720	465	745	180	110	30	35
CR 2-150	475	280	755	500	780	180	110	30	35
CR 2-180		280		555	835	180	110		50
CR 2-220		280		625	905	180	110		55
CR 2-260		335		705	1040	180	110		60

CR 2 with oval flangesCR 2 with DIN flanges

Pipework connection:

DIN 2566 with threaded socket DIN 2634 with socket for welding

Electrical Data 3 x 380-415 V, 50 Hz

D T	Mo	otor	Full Load Current	Power Factor	Motor Efficiency	I _{start}	
Pump Type	[kW] [hp]		I, , [A]	$Cos \phi_{i,i}$	η[%]	I _{3.1}	
CR 2-20	0.37	0.50	0.96	0.84-0.76	72	4.8-5.2	
CR 2-30	0.37	0.50	0.96	0.84-0.76	72	4.8-5.2	
CR 2-40	0.55	0.75	1.44	0.84-0.76	72	4.8-5.2	
CR 2-50	0.55	0.75	1.44	0.84-0.76	72 .	4.8-5.2	
CR 2-60	0.75	1.0	1.86	0.86-0.78	74	5.0-5.5	
CR 2-70	0.75	1.0	1.86	0.86-0.78	74	5.0-5.5	
CR 2-90	1.1	1.5	2.65	0.87-0.79	76	5.2-5.7	
CR 2-110	1.1	1.5	2.65	0.87-0.79	76	5.2-5.7	
CR 2-130	1.5	3.6	3.60	0.85-0.78	77	6.1-6.6	
CR 2-150	1.5	3.6	3.60	0.85-0.78	77	6.1-6.6	
CR 2-180	2.2	5.1	5.10	0.86-0.77	81	7.2-7.6	
CR 2-220	2.2	5.1	5.10	0.86-0.77	81	7.2-7.6	
CR 2-260	3.0	6.5	6.60	0.88-0.82	83	8.1-9.1	

Summery of pups/Vent. Fairs. Maligaledarde Office Building 1) Fire pumps: Main pup: 60 Unic @. 45 m Maria Affroz. power: 4 kw Tylical Silection GKENDECS AK 32 100.1 /200 De 10 m 11 Jokey pup: 30 4/min @ Approx pu : 3 km

sufficiel solvetion of properties cho so

with separate which is 2) Water supply purps: Qty: 02 Nos. Capacity , 5 m3/hr @ 19 m Approse power: 2.5 kw 3) Vent Jan:
Qty: 04 Nos Typical selection: Apro-65.11.3 324000 p.1 KV Capacity: 50 m³/min, @ 75 Pa Typical Model: BXV 400-150-10 1450 rpm / .20. Motor Pourer, 0.22 ka

Maligakande Pine Props id static head to highest The dian had y 2 m Frictional 1005e) (601/min, 50 Total head : 14.65+2 \$25 Typical dinagion: 4.5,775,2 3x 2 x 2.5 Samp capacity: 2000 5th Q = 60 L/min Power by Static pressure at tep floor level: C.65+3.8x3 - 12.05 m Min Recsiduel press. le be maintain. Frie Prictional dosses: Design flow with of such hose real: 30 4 min tuc

- 60 L/min

Molgolinde Coffee. Reds

High deft proping sels

No of propins : 00 (redely/1 516y)

Vol of C/11 tank is mis

Vol of grand surps - 10 mis

Pomping capacity : 5 mis /Ahrs

Sta Hs - 14 7 m.

Hester - 2 m

Hester - 2 m

Hester - 2 m

Hester - 18.7 m = 19.m

Typiel Pump relection

Malizakada Ventilation

1) LOPEY, WHITING ARLA CORRIDOR:

Total Acrea (6 x 5.5) x 3 + 1 x (6+6+5)

= 33 x 3 + 17

116 m²

Air Vlunc = 116 x 3.5

- 486 m³

@ 6 arichaeilbro.

Veloffer inh = 2436 m³/hr = 40.6 m³/min

Recommended capacity of vont from = so million

Apron.

Typical Model

WOLTER, BXV 355-150-10

1450 8 pm, 50.

Blade angle: 25.

Motor power: 0.22 kw