PART II DESIGN CALCULATIONS – HYDRAULIC

MALIGAKANDA RESERVOIR SITE – GRAVITY DRAIN FOR OVERFLOW / WASHOUT

Maligakanda Reservoir Site Design of Gravity Drain for Overflow / Washout

R2 - Existing Circular Reservoir

R3 - New Maligakanda Reservoir

Scenario 1 - R2 and R3 Reservoirs Overflowing

Design Flow: MH1 - MH2 = 74,000 m3/day = .856 m3/s

: EMH - MH3 - MH4 - MH2 = 22,000 m3/day = .255 m3/s

: MH2 - Outfall = 96,000 m3/day = 1.111 m3/s

Manning N for RCC Hume Pipes: 0.012

Segment	From	To	Length	Flaw	H/L	Dia	d	Full Cap.	Q max	% full	V
No.	МН	MH	m	m3/s		m(")	m	m3/s	m3/s		m/s
1	MH1	MH2	40	0.856	0.025	.6(24")	0.41	1.05	1.13	68.79	4.15
2	EMH	мнз	6	0.255	0.038	375 (15")	0.23	0.36	0.38	63.31	3.62
3	MH3	MH4	32	0.255	0.038	.375 (15")	0.23	0.36	0.38	63.31	3.62
4	MH4	MH2	32	0.255	8.00.0	.375 (15")	0.23	0.36	0.38	63.31	3.62
5	MH2	MH5	14	1.111	0.025	.6 (24")	0.53	1.05	1.13	88.27	4.20
6	MH5	MH6	31	1.111	0.025	6 (24")	0.53	1.05	1.13	88.27	4.20
7	MH6	MH7	30	1.111	0.050	6 (24")	0.39	1.49	1.60	64.42	5.77
8	MH7	MH8	23	1.111	0.050	.6 (24")	0.39	1.49	1.60	64.42	5.77
9	MH8	MH9	52	1.111	0.050	6 (24")	0.39	1.49	1.60	64.42	5.77
10	MH9	MH10	52	1.111	0.050	.6 (24")	0.39	1.49	1.60	64.42	5.77
11	MH10	MH11	47	1.111	0.050	6 (24")	0.39	1.49	1.60	64.42	5.77
12	MH11	Outfall	116	1.111	0.019	.75 (30")	0.45	1.65	1.78	59.99	4.81

Scenario 2 - R3 Reservoir Overflowing

Design Flow: MH1 - MH2 = 74,000 m3/day = .856 m3/s

: EMH - MH3 - MH4 - MH2 = No Flow

: MH2 - Outfall =74,000 m3/day = 0.856 m3/s

Manning N for RCC Hume Pipes: 0.012

Segment	From	To	Length	Flow	H/L	Dia	d	Full Cap.	Q max	% full	V
No.	_MH	MH	m	m3/s		m(")	m	m3/s	m3/s		m/s
1 1	MH1	MH2	40	0.856	0.025	.6 (24")	0.41	1.05	1.13	68.55	4.15
2	EMH	MH3	6		0.038	.375 (15")					
3	MH3	MH4	32		0.038	.375 (15")					
4	MH4	MH2	32		0.038	.375 (15")		<u> </u>			
5	MH2	MH5	14	0.856	0.025	.6 (24")	0.41	1.05	1.13	68.55	4_15
6	MH5	MH6	31	0.856	0.025	.6 (24")	0.41	1.05	1.13	68.55	4.15
7	MH6	MH7	30	0.856	0.050	.6 (24").	0.33	1.49	1.60	54.58	5.45
8	MH7	8HM	23	0.856	0.050	.6 (24")	0.33	1.49	1.60	54.58	5.45
9	8HM	MH9	52	0.856	0.050	.6 (24")	0.33	1.49	1.60	54.58	5.45
10	MH9	MH10	52	0.856	0.050	.6 (24")	0.33	1.49	1.60	54.58	5.45
11	MH10	MH11	47	0.856	0.050	.6 (24")	0.33	1.49	1.60	54.58	5.45
12	MH11	Outfall	116	0.856	0.019	.75 (30")	0.46	0.91	0.98	77.31	3.67

Scenario 3 - R2 Reservoir Overflowing

Design Flow: MH1 - MH2 = No Flow

: EMH - MH3 - MH4 - MH2 = 22,000 m3/day = .255 m3/s

: MH2 - Outfall = 22,000 m3/day = .255 m3/s

Manning N for RCC Hume Pipes: 0.012

Segment	From	То	Length	Flow	H/L	Dia	đ	Full Cap.	Q max	% full	V
No.	HM	MH	m	m3/s		m(")	m	m3/s	m3/s		m/s
1	MH1	MH2	40		0.025	.6 (24")					
2	EMH	MH3	6	0.255	0.038	.375 (15")	0.23	0.36	0.38	63.31	3.62
3	MH3	MH4	32	0.255	0.038	.375 (15")	0.23	0.36	0.38	63.31	3.62
4	MH4	MH2	32	0.255	0.038	.375 (15")	0.23	0.36	0.38	63.31	3.62
5	MH2	MH5	14	0.255	0.025	.6 (24")	0.20	1.05	1.13	33.54	3.07
6	MH5	MH6	31	0.255	0.025	.6 (24")	0.20	1.05	1.13	33.54	3.07
7	MH6	MH7	30	0.255	0.050	.6 (24")	0.17	1.49	1.60	27.74	3.91
8	MH7	MH8	23	0.255	0.050	.6 (24")	0.17	1.49	1.60	27.74	3.91
9	MH8	MH9	52	0.255	0.050	.6 (24")	0.17	1.49	1.60	27.74	3.91
10	MH9	MH10	52	0.255	0.050	.6 (24")	0.17	1.49	1.60	27.74	3.91
11	MH10	MH11	47	0.255	0.050	.6 (24")	0.17	1.49	1.60	27.74	3.91
12	MH11	Outfall	116	0.255	0.019	.75 (30")	0.20	1.65	1.78	26.29	2.70

Summary of Pipe Lengths .275 (15") = 70 m

.6(24") = 289 m

.75 (30") = 116 m

Total =475 m

MALIGAKANDA RESERVOIR SITE – INLET / OUTLET SIZING

			l	
			-	

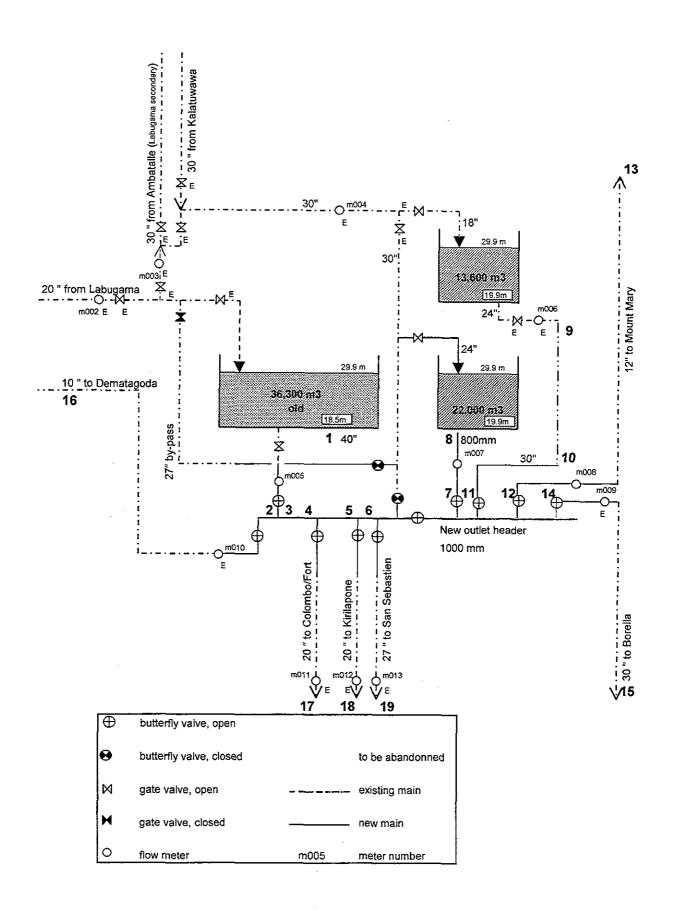


Figure 2-7 Maligakanda Reservoir - piping schematic for single tank option overflow and washout drains not shown for clarity

			EH	GL	WL	O.	Туре	NO
			m 12.37	m 17.00	m 29.37	l/sec	0	3
			12.37	17.00	29.37		ŏ	4
			12.37	17.00	29.37		ō	5
			12.38	17.00	29.38		0	6
	y 12949 (8		12.38	17.00	29.38		0	7
			29.90		29.90	-1 571.891	1	8
4.9			29.90		29.90	-468.109	1	9
			10.83	19.00	29.83		0	10
			12.38	17.00	29.38		0	11
			12.38	17.00	29.38		0	12
			9.89	19.00	28.89	71.000	D	13
			12.38	17.00	29.38		0	14
			10,33	19.00	29.33	372.000	0	15
498245			8.09	17.00	25.09	230.000	0	16
	X Transasiona?		12.03	17.00	29.03	364.000	0	17
i i	4 20 40 61 5 424		12.08	17.00	29.08	336,000	0	18
			12.15	17.00	29.15	667.000	0	19
			and sound finished			Serifakus Series S.	. 4 (2 % X88)	IPE .
1	V	Q	dH	C	Length	Dia	NO(d)	NO(u)
0/00	m/sec	l/sec	m		m	mm		
-0	-0.29	-230.00	3	120	2	1000	4	3
-0	-0.76	-594.00	र्दे	120	2	1000	5	4
-1	-1.18	-930.00		120	2	1000	6	5
-3	-2.03	-1597.00		120	1	1000	7	6
্ল0	-3.13	-1571.89		120	50	800	8	7
16.004	1.03	468.11	·	120	50	760	10	9
0	-0.03	-25.11		120	2	1000	11	7
4	1.66	468.11		120	100	600	11	10
	0.56	443.00	3	120	2	1000	12	11
	1.45	71.00	8	120	50	250	13	12
. 0	0.47	372.00	ŝ	120	2	1000	14	12
2.15.11.20	0.82	372.00	Ž.	120	50	760	15	14
85	4.69	230.00	* \$	120	50	250	16	3
	1.85	364.00		120	50	500	17	4
. 6		336.00	ž.	120 120	50 50	500 685	18 19	5 6
	1.71 1.81	667.00						

NO 7	уре	Q	WL	GL	EH		d in Artist Artist		
		!/sec	m	m	m				20948
1	1	-1232.423	29.90			9.90			
2	0		29.81	17.00		2.81			
3	0		29.81	17.00		2.81			
4	0		29.81	17.00		2.81			
5	0		29.80	17.00		2.80			
6	0		29.80	17.00		2.80			
7	0		29.81	17,00		2.81			
8	1	-622.062	29.90	91.454.35 44.353.44		9.90			
9	1	-185.515	29.90	40.00		9.90			
10	0		29.89	19.00 17.00		0.89 2.81			
11	0		29.81 29.81	17.00		2.81			
12	0	74.000	29.32	19.00		0.32			
13 14	0	71.000	29.32 29.81	17,00	 1 2 2 3 4 5 5 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	∪.3∠ 2.81	gariyali.		
	0	372.000	29.76	19.00		0.76			
15 16	0	230,000	25.53	17.00		8.53			
ιφ		364.000	29.46	17.00		2.46			
17	^		23.40					Application for the first	William Control
17	0		20.51						
18 19 IPE	4O(q) 0 0 0	336.000 667.000 Dia	29.51 29.58 Length	17.00 17.00	1 1 dH	2.51 2.58	Q Vsec	V m/sec	1 0/00
18 19 IPE NO(u) 1	4O(q) 0 0	336.000 667.000 Dia mm	29.58 Length m	17.00 17.00	1 1	2.51 2.58	1/sec	m/sec	0/00
18 19 IPE NO(u)	0 0 VO(d)	336.000 667.000 Dia mm 1000	29,58 Length m 40	17.00 17.00 C	1 1 dH	2.51 2.58	l/sec 1232.42	m/sec 1.57	0/00 2.2
18 19 IPE: NO(u) 1 1 2	0 0 40(d) 2 3	336.000 667.000 Dia mm 1000 1000	29,58 Length m 40 1	17.00 17.00 C 120 120	1 1 dH	2.51 2.58	1/sec 1232.42 1232.42	m/sec 1.57 1.57	0/00 2.2 2.2
18 19 IPE: NO(u) 1 2 3	0 0 VO(d) 2 3 4	336.000 667.000 Dia mm 1000 1000 1000	29.58 Length m 40 1 2	17.00 17.00 C 120 120 120 120	1 1 dH	2.51 2.58	l/sec 1232.42	m/sec 1.57 1.57 1.28	0/00 2.2 2.2 1.5
18 19 IPE NO(u) 1 2 3 3	0 0 0 NO(d) 2 3 4 16	336.000 667.000 Dia mm 1000 1000 250	29.58 Length m 40 1 2 50	17.00 17.00 C 120 120	1 1 dH	2.51 2.58	1/sec 1232.42 1232.42 1002.42	m/sec 1.57 1.57	0/00 2.2 2.2 1.5 85.6
18 19 IPE NO(u) 1 1 2 3 3 4	0 0 0 VO(d) 2 3 4 16 5	336.000 667.000 Dia mm 1000 1000 250 1000	29.58 Length m 40 1 2	17.00 17.00 C 120 120 120 120 120	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00	m/sec 1.57 1.57 1.28 4.69	0/00 2.2 2.2 1.5 85.6 0.6
18 19 IPE NO(u) 1 2 3 3	0 0 0 NO(d) 2 3 4 16	336.000 667.000 Dia mm 1000 1000 250	29.58 Length m 40 1 2 50 2	17.00 17.00 C 120 120 120 120 120 120	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42	m/sec 1.57 1.57 1.28 4.69 0.81	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1
18 19 IPE: NO(u) 1 2 3 3 4 4 5	0 0 0 VO(d) 2 3 4 16 5 17	336.000 667.000 Dia mm 1000 1000 250 1000 500	29.58 Length m 40 1 2 50 2 50	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120	1 1 dH	2.51 2.58	l/sec 1232.42 1232.42 1002.42 230.00 638.42 364.00	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71	e simples, in the
18 19 IPE NO(u) 1 2 3 3 4 4	0 0 0 VO(d) 2 3 4 16 5 17 6	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000	29.58 Length m 40 1 2 50 2 50 2 50 1	17.00 17.00 17.00 C	1 1 dH	2.51 2.58	1/sec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1 5.9
18 19 IPE: NO(u) 1 2 3 3 4 4 5 5	0 0 0 YO(d) 2 3 4 16 5 17 6 18	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 500 600 685	29.58 Length m 40 1 2 50 2 50 2 50 1 50	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58 667.00	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 4.29 1.81	0/00 2.2 2.5 85.6 0.6 6.8 0.1 5.9 -2.8
18 19 IPE: NO(u) 1 2 3 3 4 4 5 5 6	0 0 0 3 3 4 16 5 17 6 18 7	336.000 667.000 Dia mm 1000 1000 250 1000 500 600 685 800	29.58 Length m 40 1 2 50 2 50 2 50 1 50 50	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58 667.00 -622.06	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24	0/00 2.2 1.5 85.6 0.6 6.8 0.1 5.9 -2.8
18 19 IPE NO(u) 1 2 3 3 4 4 4 5 5 6 6 7 7	0 0 0 3 4 16 5 17 6 18 7 19 8	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 600 685 800 1000	29.58 Length m 40 1 2 50 2 50 2 50 1 50 50 2 2 50 2 50 2	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58 667.00 -622.06 257.49	m/sec 1.57 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1 5.9 -2.8 -1.8
18 19 IPE NO(u) 1 2 3 3 4 4 5 5 6 6 6 7 7	0 0 0 3 4 16 5 17 6 18 7 19 8 11	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 685 800 1000 760	29.58 Length m 40 1 2 50 2 50 2 50 1 50 50 2 50 50 50 2	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.08 -667.00 -622.06 257.49 185.51	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33 0.41	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1 5.9 -2.8 4.5 -1.6 0.1
18 19 IPE NO(u) 1 2 3 3 4 4 5 5 6 6 6 7 7 9	0 0 0 3 4 16 5 17 6 18 7 19 8 11 10 11	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 685 800 1000 769 600	29.58 Length m 40 1 2 50 2 50 2 50 1 50 50 50 50 50 100	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 384.00 302.42 336.00 -364.58 667.00 -622.06 257.49 185.51	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33 0.41 0.66	0/00 2.2 2.2 1.5 85.6 6.8 6.8 6.8 4.5 -1.6 0.1
18 19 NO(u) 1 2 3 3 3 4 4 5 5 6 6 7 7 9 10	0 0 0 3 3 4 16 5 17 6 18 7 19 8 11 10 11	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 685 800 1000 769 600 1000	29.58 Length m 40 1 2 50 2 50 2 50 1 50 2 50 1 50 2 50 1 50 2 50 2	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58 667.00 -622.06 257.49 185.51 443.00	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33 0.41 0.66 0.56	0/00 2.2 2.2 1.5 85.6 0.6 6.8 6.8 4.5 -1.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
18 19 IPE: NO(u) 1 1 2 3 3 4 4 5 5 6 6 7 7 9 10 11 12	0 0 0 3 3 4 16 5 17 6 18 7 19 8 11 10 11 12 13	336.000 667.000 Dia mm 1000 1000 250 1000 500 600 685 800 1000 760 600 600 1000 250	29.58 Length m 40 1 2 50 2 50 2 50 1 50 50 2 50 100 2 50	17.00 17.00 17.00 17.00 17.00 120 120 120 120 120 120 120 1	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 336.00 -364.58 667.00 -622.06 257.49 185.51 185.51 185.51 443.00 71.00	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33 0.41 0.66 0.56 1.45	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1 1.5 9.2 4.5 -1.6 0.1 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
18 19 NO(u) 1 2 3 3 3 4 4 5 5 6 6 7 7 9 10	0 0 0 3 3 4 16 5 17 6 18 7 19 8 11 10 11	336.000 667.000 Dia mm 1000 1000 250 1000 500 1000 685 800 1000 769 600 1000	29.58 Length m 40 1 2 50 2 50 2 50 1 50 2 50 1 50 2 50 1 50 2 50 2	17.00 17.00 17.00 C 120 120 120 120 120 120 120 120 120 12	1 1 dH	2.51 2.58	Vsec 1232.42 1232.42 1002.42 230.00 638.42 364.00 302.42 336.00 -364.58 667.00 -622.06 257.49 185.51 443.00	m/sec 1.57 1.57 1.28 4.69 0.81 1.85 0.39 1.71 -1.29 1.81 -1.24 0.33 0.41 0.66 0.56	0/00 2.2 2.2 1.5 85.6 0.6 6.8 0.1 5.9 -2.8 4.5 -1.6 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Flows used in the hydraulic model for Maligakanda

Α	maximum day supply (ultimate)	1275 l/s
В	maximum day demand (supply x 1.6)	2040 l/s

Node no.	D Measured Flow liter/s	(B/C x D) Estimated future flow liter/s
13 10" to mount mary	55	71
15 30" to Borella	289	372
16 10" to Dematagoda	179	230
17 20" to Fort	283	364
18 20" to Kirulapone	261	336
19 27" to San Sebastien	518	667
C tota	1585	2040

ELLIE HOUSE RESERVOIR SITE – GRAVITY DRAIN FOR OVERFLOW / WASHOUT

Design of Overflow / washout pipe for Ellie House Reservoir

For overflowing Rate

A. From Manhole 1 to Manhole 2

Elevation at overflow vier = 27.85 Elevation at First manhole = 21.61 Distance = 42 m

Hydraulic Gradient = $\frac{27.85 - 21.61}{42} = \frac{6.24}{42} = 1.486$

Rate of flow = $2/3 \times 110,000 \text{ m}^3/\text{d} = 73,333 \text{ m}3/\text{d} = 0.849 \text{ m}^3/\text{s}$

D = 500 mm n = 0.012

Solve for Actual Depth

D = 0.50 m S = 0.1486 n = 0.012 q = 0.849

D = 0.26 m Velocity = 8.18 m/s % Full = 52.38% Full capacity = 1.58 cum/s QMax = 1.70 cum/s

B. From Manhole 2 to Existing washout

Elevation at overflow view = 27.85 Elevation at connection to existing overflow / washout = 21.00

Distance = 137 m

Hydraulic gradient = 27.85 - 21.00 = 0.185

Rate of flow = $110,000 \text{ m}^3/\text{d} = 1.273 \text{ m}^3/\text{s}$

Valve for actual Depth

D = 0.60 S = 0.185 n = 0.012 Q = 1.273 m³/s

d = 0.31 V = 9.76 m/s % full = 62. 96 % Full capacity = 1.76 m³/s Q max = 1.89 m³/s

2. Washout Rates Through Overflow / Washout System

C. From Manhole 1 to Manhole 2

Elevation of pipe at MH 1 = 22.10
Elevation of pipe at MH 2 = 21.61
Drop = 0.49
Distance = 42 m
S = 0.01167

Solve for Full Flow capacity

$$d = 0.5 \text{ m} \text{ S} = .01167$$

$$N = .012$$

Q=0.44 cum/s

$$O \max = 0.48 \text{ cum/s} =$$

$$41,472 \text{ m}^3/\text{d}$$

D. From manhole 2 to Existing Washout

Solve for Full Flow capacity

$$D = 0.6 \text{ m}$$

$$S = .0129$$

$$N = 0.12$$

$$Q=0.76$$
 cum/s

$$Q \text{ Max} = 0.81 \text{ cum/s}$$

$$= 69,984 \text{ m}^3/\text{d}$$

Therefore the designed overflow/ washout system can safely discharge the maximum designed overflow rate of $110,000 \text{ m}^3/\text{d}$.

The system can also safely discharge a washout rate of 41,472 m³/d.

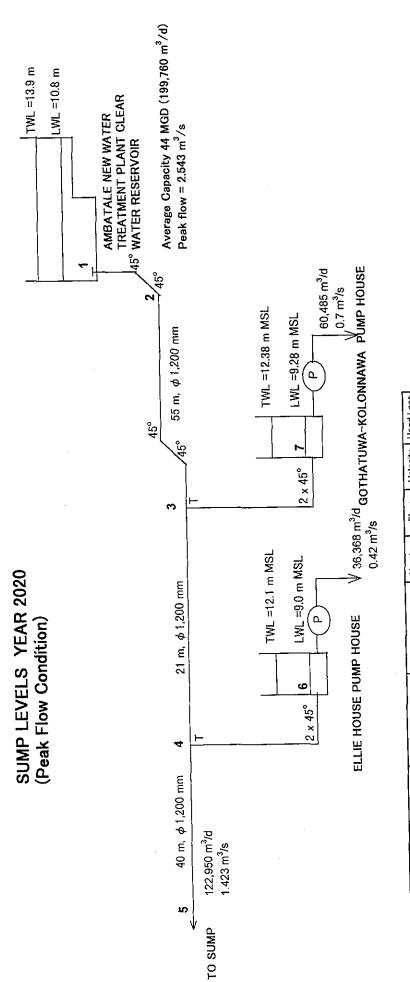
ELLIE HOUSE RESERVOIR SITE – INLET / OUTLET SIZING

New Ellie House Reservoir Schematic Diagram - Stage 8 inlet chanels restored overflow and washout drains not shown for clarity

NO NO	Туре	Q l/sec	WL m	GL m	EH m				
1	1	-114.472	28.45	22.50		5.95			
2	0		28.45	22.50		5.95			
3	1	-187.847	28.45	22.50		5.95			
4	0		28.45	22.50		5.95			
5	1	-1737.681	28.45	22.50		5.95	The state of the s		30.93
6	0		28.44	22.50		5,94		China da Cara d Cara da Cara d	01000 1000 1000 1-100 1-1100 1000
7	0		28.07	22.50		5.57	3 32 2 2 2		
8	0		28.05	22.50		5.55			
9 10	0		28.04 28.03	22.50		5.54			- C. S
10	0 0		28.03 28.02	22.50		5.53			
12	0		28.02 28.02	22.50 22.50	Salario est	5.52 5.52			45.46
13	0		28.02	22.50		5.52 5.52			
14	0	330.000	27.49	20.00		7.49		eustrik († 18	
15	0	330.000	27.48	20.00		7.48			
16	ŏ	180.000	24.83	20.00	380 S 29 08x	4.83			10.04.12
17	ō	400.000	27.54	20.00	Colford (6)	7.54			
18	ō	600.000	27.96	20.00		7.96			
19		200.000	26.42	20.00	esterio de persona. Para Paris de Carlos	6.42			
IPE NO(u)	NO(d)	Dia	Length	C	dH		Q	V	
NO(a)	1 1 O(u)	mm	m		m		l/sec	m/sec	0/00
1	2	1000	2	110	. realisables areas	30,344,46	114.47	0.15	
	4	1000	2	110		ĺ	187.85	0.24	0.0
3 5 2	6	1000	2	110		6. 8.	1737,68	2.21	4.9
2	4	1000	3	110		- S	114.47	0.15	0.C
4	6	1000	50	110		Š	302.32	0.38	0.2
6	7	1000	5 5	110		S.	2040.00	2.60	6.6
7	8	1000	3	110		2	2040.00	2.60	6.6
8	9	1000	3	110		1	1710.00	2.18	4,8
9	10	1000	3	110		N. S.	1380.00	1.76	3.2
10	11	1000	3	110		Ś	1200.00	1.53	2.5
11	12	1000	3	110			800.00	1.02	1.1
12	13	1000	3	110		97 20 21	600.00	0.76	0.6
8	14	450	50	110) P	330,00	2.07	11.2
9	15	450	50	110		8	330.00	2.07	11.2
10	16	250	50	110		1	180.00	3.67	63.9
11	17	500	50 50	110			400.00	2.04	9.5
12	19 18	300 900	50 50	110 		1	200.00 600.00	2.83 0.94	31.5 1.1
13				440				estate of the contract of the	Are, Area, Area

4,550

36,400


0.421

Flows	used in the hydraulic mod	lel for Ellie l	House	<u> </u>		
						[
Α	maximum day supply	(ultimate)	<u> </u>	1	1275	l/s
В	maximum day dema	nd (ultimate	supply x 1	6)	2040	1/s
· · · - ·		D	(B/C x D)			· ·
Node	:	Measured	Estimated	future flow		
no.		liter/s	liter/s			:
	15 18" to Fort	232	330			
	16 18" to Walls lane	233	330	T T		i
	17,10" to Kotahena	82	180			
	18 20" to MattaKulliya	-	400			1
	19 36" to Walls lane	74	600			
	20 12" to Mutawal	73	200			
C	total	694	2,040			

GOTHATUWA – KOLONNAWA PUMP HOUSE - CLEAR WELL OPERATING LEVELS

Pipe	(n) apoN	Node (u) Node (d)	Losses	Loss Coefficient Number Flow Vectors $KV^2/2g$	Number	s/ _E m	m/s	kV²/2g	Total losses 1-3-7	·	1.173 m
200	-	2	1000 mm ND 45° bend	neglect 0.4	2	2.54	3.24	0.428	Minimum operating water level	II 11	10.8-1.∠0/3 9.627 m
300	03	в	1200 mm ND 45° bend	0.4	N	2.54	2.25	0.260	Top water level is set as same level as the Clear Water Reservoir of Ambatale New Water Treatment Plant at 13.9 m MSL to cater for the condition when clear water reservoir is	as the Clear reatment Pla water resen	Water int at 13.9 m MSL oir is
700	б	٨	1200 mm ND T for Qa/Q = 0.7/3.43	neglect	-	0.7	2.25	0.26	full and the outflow is zero (stopping of all pumps). An allowance of 350 mm is included to cater for changes in fittings	of all pumps to cater for). changes in fittings
			Butterfly valve	0.25	- 2	0.7	0.62	0.005	and the Low water level is set at 9.28 m MSL. Similarly, maximum operating level in year 2020 is 12.38 m MSL.	8 m MSL in year 2020	is 12.38 m MSL

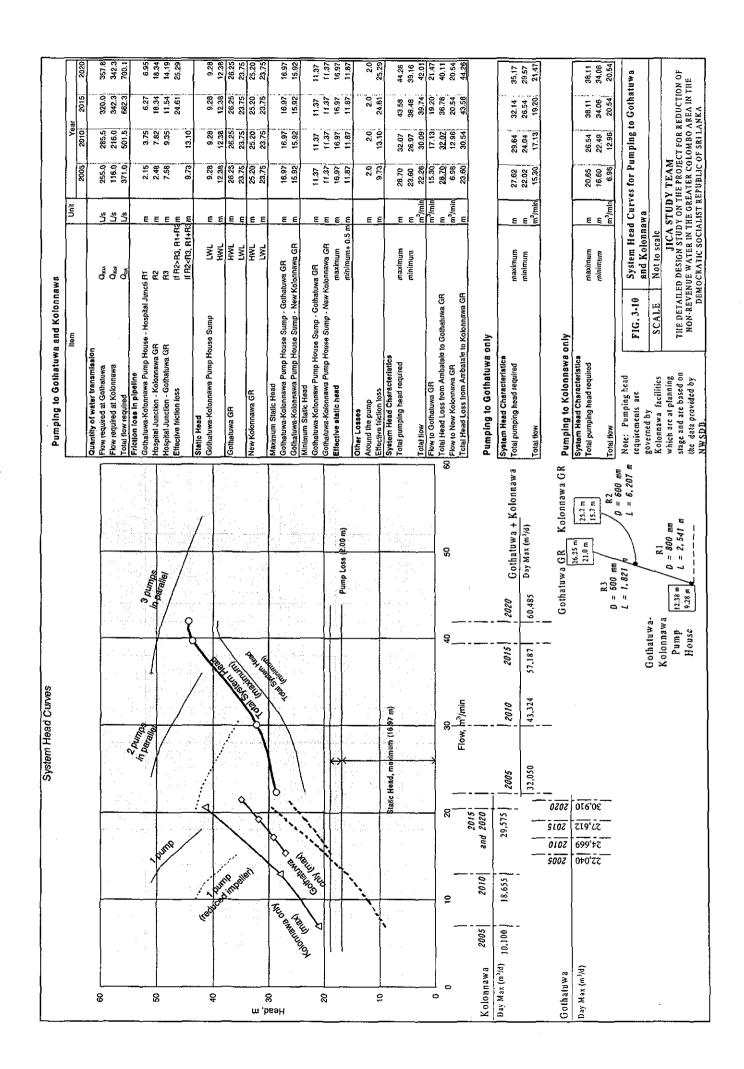
= 8.627 m
Top water level is set as same level as the Clear Water
Reservoir of Ambatale New Water Treatment Plant at 13.9 m MSL,
to cater for the condition when clear water reservoir is
full and the outflow is zero (stopping of all pumps).
An allowance of 350 mm is included to cater for changes in fittings etc.
and the Low water level is set at 9.28 m MSL
Similarly, maximum operating level in year 2020 is 12.38 m MSL

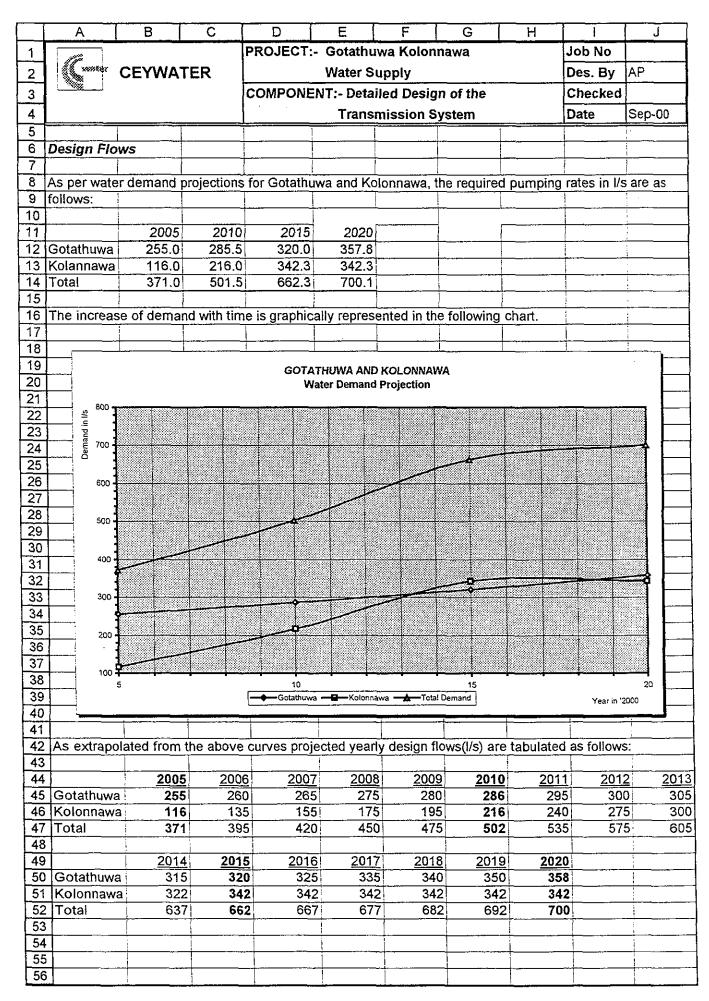
N	ODE	HARRI AR		Jan Barrier		4-355			
	NO	Туре	Q	WL	GL EH				
1. 100.0			l/sec	m	m m				
.i>.T	1	1	-2543.000	10.80	11.00	0.20			
	2	0	0.000	10.76	11.00	0.24			
1	3	0	0.000	10.59	11.00	0.41			
	4	0	0.000	10.55	11.00	0.45			
901 1	5	0	1423.000	10.51	11.00	0.49			
	6	0	420.000	10.55	9.00	1.55			
9°	7	0	700.000	10.59	7.50	3.09			
P	IPE		1.000						
	NO(u)	MOVAL	Dia	Length	C dH		Q	V	1
C 193	itO(u)	NO(d)	No IG						NOTE OF A PERSON
	160(0)	NO(a)	mm	m			1/sec	m/sec	0/00
	1	NO(0)	11			0.00	1/sec 2543.00	m/sec 3.24	
0	1 2	2 3	mm	m		0.00			7.
0	1 2 3	2 3 4	mm 1000	m 6	130 (0.00	2543.00	3.24	7. 3.
0	1 2 3 3	2 3 4 7	mm 1000 1200	m 6 55	130 (130	0.00	2543.00 2543.00	3,24 2,25	7. 3. 1.
0 0 0	1 2 3 3 4	2 3 4 7 6	mm 1000 1200 1200	m 6 55 21	130 (130 130	0.00	2543.00 2543.00 1843.00	3,24 2,25 1,63	0/00 7. 3. 1. 0.

GOTHATUWA TRANSMISSION MAIN – HYDRAULIC ANALYSIS DURING NORMAL OPERATION

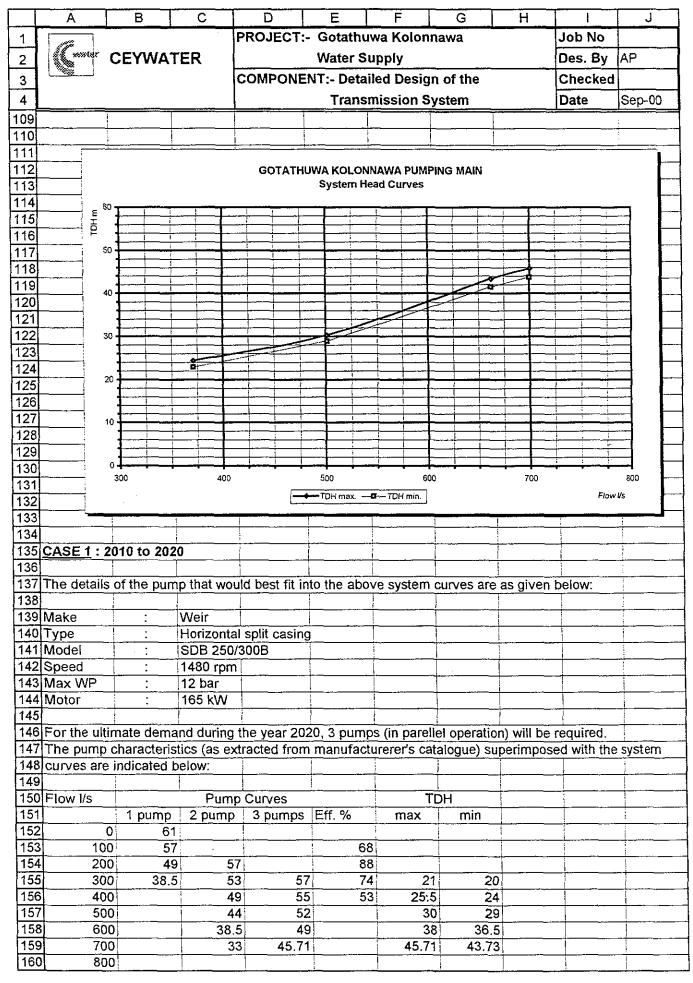
173	to Gothatuwa and Kolonnaw	_	and the second second second
PIIMNINA	to ("othatillus and Kolonnall	'A LEPA	HING MOCOMINISC
, umpmu	to comatuma and itolomiam	a 0,0	のいい いんつらい かいいつ

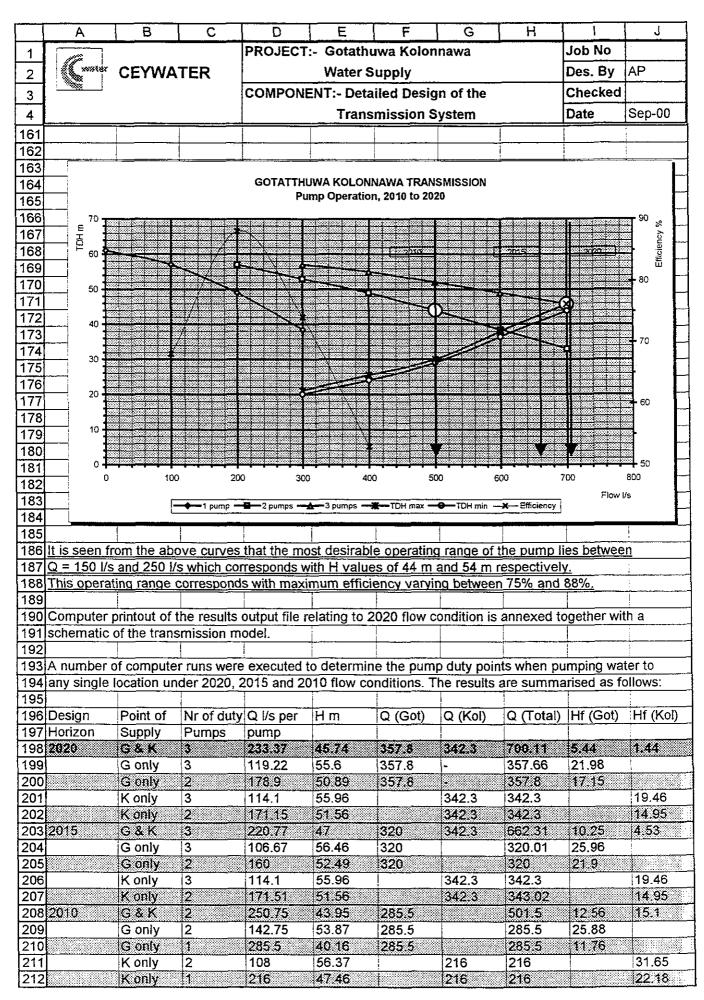
NO IODE	Year 2020 Type	Q	WL	GL		ЕН	er i till silver i sammer i s Sammer i sammer i sa		
1 1 1		l/sec	m	m	er deflactivités <u>ann l</u> et trans	m	_		
1		-700.100	9.28		7.00	2.28			
2		0.000 0.000	50.49 43.54		11.00	39.49		C 05	مالمستدرا التعليثات
3 4		357,800	29.35		18.00 26.25	25.54 3.10			Hospital Junctio Kolonnawa GR
5		342,300	25.20		25.20	0.00			Gothatuwa GR
ine.					Na Na		-		
iPE NO(u)	NO(d)	Dia	Length			dH	Q	V	4
		mm	m			m	l/sec	m/sec	0/00
1 2		800 800	11 2541		110	41.24	700.10 700.10	1.39 1.39	2.73
3		500	1821		110 110		357.80	1.82	2.73 7.79
3		600	6207		110		342.30	1.02	2.95
nd									
ODE	Year 2015								
NO	Type	Q	WL	GL		EH	- ``		1
<u> </u>		l/sec	m.	m		m	-		
1		-662.300	9.28		7.00	2.28			
3		0.000 0.000	50.49 44,22		11.00 18.00	39.49 26.22		6 27 m	Hospital Junctio
4		320.000	32.68		26.25	6.43			Kolonnawa GR
5		342.300	25.88		25.20	0.68			Gothatuwa GR
	1 1 1 1 1 1 1 1 1								
IPE NO(u)	NO(d)	Dia	Length	С	Allerten grad	dH	Q	v	
(0)	110(0)	mm	m			m	l/sec	m/sec	0/00
	1 2	800	11		110	41.2		1.32	2.47
	2 3		2541		110		662.30	1.32	2.47
	3 4 3 5	500 600	1821		110		320.00	1.63	6.34
nd	3 5	600	6207		110		342.30	1.21	2.95
		4.5							
ODE	Year 2010				<u> </u>	<u> 41 - 44 - 41 - 1</u>	en de la <u>L</u> ui de la lace		san kalandi
NO	Туре	Q	WL	GL		EH	Torri		
	1 1	-501.500	m 9.28	m	7.00	m 2.2	<u>. </u>		
	1 1 2 0		39.34		11.00	28.3 28.3			
	3 0		35,60		18.00	17.6		3.75 m	Hospital Junctic
	4 0		26.25		26.25	0.0			Kolonnawa GR
	5 0	216.000	27.77		25.20	2.5	7 R3	9.35 m	Gothatuwa GR
PIPE				4	***				
NO(u)	NO(d)	Dia	Length	С	· · · · · · · · · · · · · · · · · · ·	dH	Q	V	1
		mm	m 44		140	m	l/sec	m/sec	0/00
	1 2 3		11 2541		110 110	30.0	8 501.50 501.50	1,00 1,00	1.48 1.48
	3 4		1821		110		285.50	1,45	5.13
	3 5		6207		110		216.00	0.76	1.26
nd					13. 30.				
IODE	Voor 2006								
NO NO	Year 2005 Type	, Q	WL	GL		EH	- i sana		
.,,0	1300	Vsec	m	m		m			
	1 1		9.28		7.00	2.2			
	2 (35.98		11.00	24.9			
	3 (18.00	15.8	1.5		Hospital Juncti
	4 (26.25 25.20	0.0 6.1			Kolonnawa GR Gothatuwa GR
	5 (116.000	31,36	<u> </u>	20.20	6.,	` '`		
PIPE							<u> </u>		
	NO(d)	Dia	Length	Ċ		dН	Q Vsec	V m/sec	0/0a
NO(u)		mm 2 800	m 11		110	m 26.7			
	1				110	25.,	371.00		
		3 800	2541				255.00	1.30	4.16
•	2 3	3 800 4 500	1821		110				
•	2 3	3 800	1821		110		116.00		0.40
•	2 3	3 800 4 500	1821						0.40
•	2 3	3 800 4 500	1821	:	110 EH		116.00	0.41 lead	0.40
End	2 3 3	3 800 4 500 5 600 Flowrate Hazen-Williar	1821 6207	:	110 EH dH		116.00 Effective F Pumping i	0.41 lead	0.40
End	2 3 3	8 800 4 500 5 600 Flowrate	1821 6207 on Coefficien	t :	110 EH		116.00	0.41 lead lead	0.40

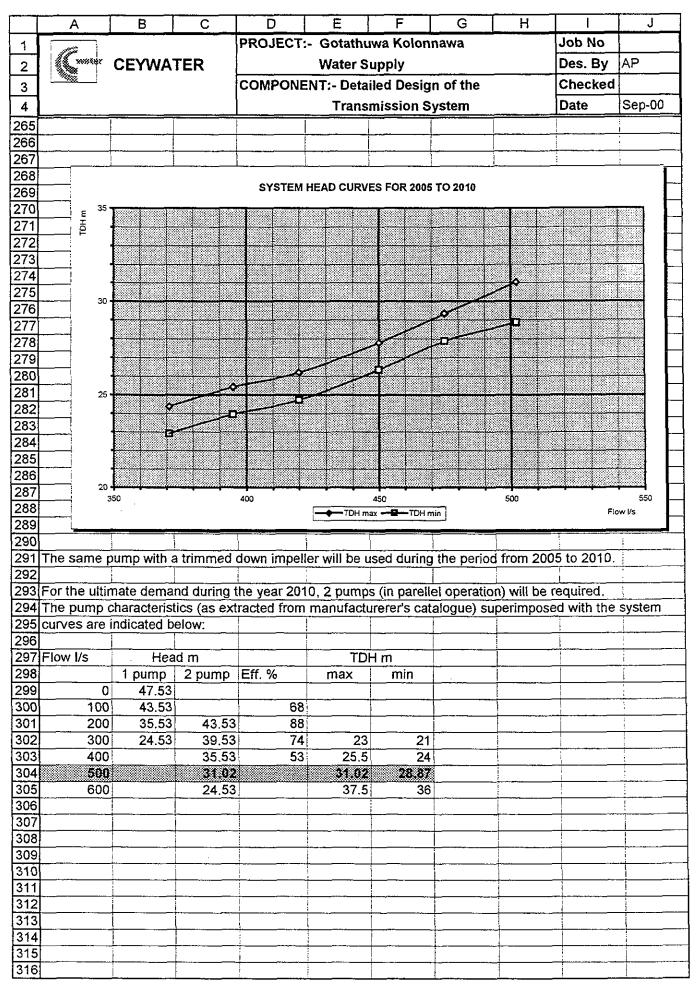

NODE	Year 2020		Kolonnawa	Only					Filesia	
NO	Туре	Q	WL	GL		EH				
<u> </u>	<u>- (</u>	-342,300	9.28	<u> </u>	7.00	m	2.28			
	1 1 2 0	0,000	50.51		11.00		39.51			
	3 0	0.000	48.66		18.00		30.66	R1	1.85 m	Hospital Junction
	4 0	342.300	30.32		25.20		5.12	- R2	18.34 m	Kolonnawa GR
PIPE					1 -4/4+					<u> </u>
NO(u)	NO(d)	Dia mm	Length m	С		dH m	15 (1)	Q Vsec	V m/sec	0/00
	1 2	800	11		110		41.24	342,30	0.68	0.73
	2 3 4	800 600	2541 6207		110 110			342.30 342.30	0.68 1.21	0.73 2.95
nd			0201							2.55
(ODE	Year 2015		Kolonnawa	Only						
NO	Type	Q	WL	GL		EH	Walter			
		Vsec	m	m		m	- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	1 1	-342.300	9.28		7.00		2.28			
	2 0	0.000 0.000	50.51 48.66		11.00 18.00	reperting	39.51 30.66	R1	1 85	Hospital Junctio
	4 0	342.300	30.32		25.20		5.12	R2		Kolonnawa GR
PPE										
NO(u)	NO(d)	Dia	Length	C .	righter Harr	dH		Q	V	
	1 2				110	m	41.24	1/sec 342.30	m/sec 0.68	0/00
	2 3	800	2541		110		41.24	342.30	0.68	
	3 4	600	6207		110			342.30	1.21	(i) I will be a first of the second of th
IODE NO	Year 2010 Type	Q	Kolonnawa WL	Only GL		EH			- 1,5	
1,00	Type	//sec	m	m.		m				
	1 1	-216.000	9.28		7.00	1 1 1 1 1 1 1	2.28		Mar Pas	열리도 화학이
	2 0	0.000	39.36		11.00		28.36			
	3 0	0.000	38.57		18.00 25.20		20.57 5.54	R1 R2		Hospital Junction Kolonnawa GR
tribuit.		216,000	30.74		25.20		3.04			KUUIIIIawa GA
NO(u)	NO(d)	Dia	Length			dH	<u> San Baka</u> Gana Barr	Q	V.	
		mm	m	gazisi Pan		m .		Vsec	m/sec	0/00
	1 2	800	11		110		30.08	216.00 216.00	0.43 0.43	The second of th
	2 3 4	800 600	2541 6207		110 110			216.00	0.76	A CONTRACTOR OF THE CONTRACTOR
nd										
IODE	Year 2005		Kolonnawa	Only						
NO	Type	Q	WL	GL	1 2 2 2 2	EH	Trans.			
		l/sec	m	m		m	4 999			
	1 1	-116.000	9.28		7.00		2.28		ydy, yf	
	2 0	0.000	39.36	•	11.00		28.36	D4	A 25	Hospital Junction
	3 0 4 0	0.000 116.000	39.11 36.63		18.00 25.20		21.11 11.43	R1 R2		Kolonnawa GR
PIPE							Night Y			
NO(u)	NO(d)	Dia	Length	C		dH	1.00	Q	V	4 4 30
W. 1985	1 ~	mm	m 11		110	m	30.09	l/sec	m/sec	
	1 2 2 3	mm 800 800			110 110	m	30.08	1/sec 116.00 116.00	m/sec 0.23 0.23	0.10

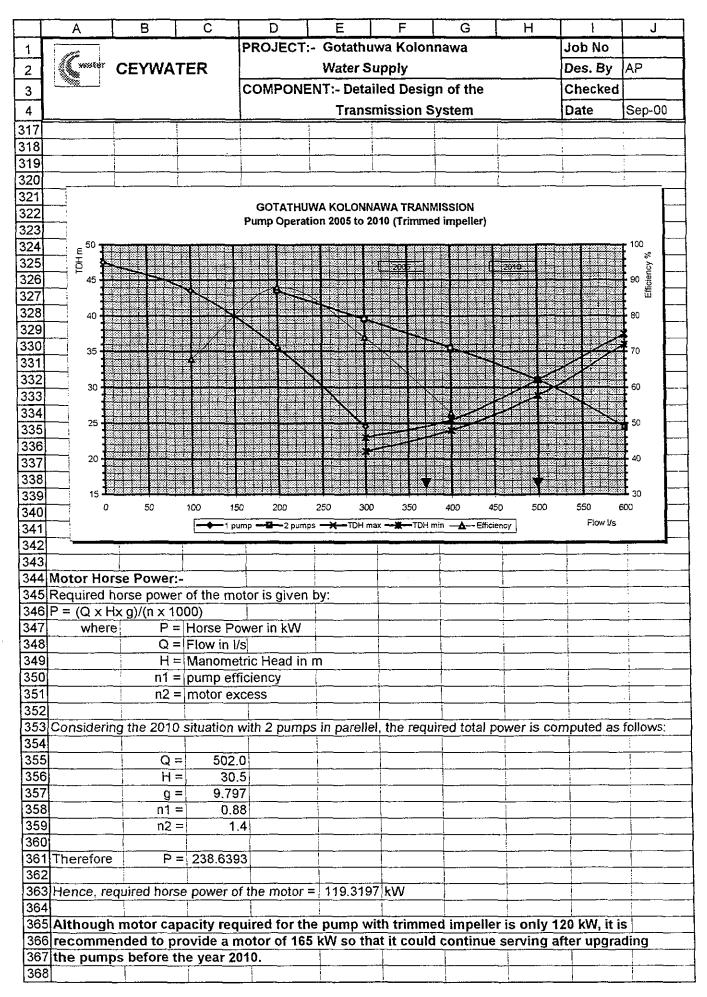

															Effec				
			WIT																
						ficier									Pum				
٠Μ			ater												Velo				
															Frict				
			oún																
															;				

End


R1, R2 and R3 are friction losses in common main (800 mm), branch to Kolonnawa Ground Reservoir (600 mm) and branch to Gothatuwa Ground Reservoir (500 mm).


DDE	Year 2020	F	oumping to G	othatuwa only			<u> </u>	A		
NO	Type	Q	WL	GL		EH				er ere egy d
1	1	-357,800	9.28	m·	7.00	m	2.28		맞았다	
2	Ö	0.000	50.51		11.00		39.51		árcied.	
3	0	0.000	48.50		18.00		30.50	R1	2.01	Hospital Junction
4	0	357.800	34.31		26.25		8.06	R3	14.19	Gothatuwa GR
IPE NO(u)	NO(d)	Dia	Length	C	e po era esperanto do como La reconstruir de como	dH	<u>, kir staat 12</u> Yrista Sarah	Q	V	
110(u)	140(0)	mm	m			m		l/sec	m/sec	0/00
1	2	800	11		110		41.24	357.80	0.71	0.79
2	3	800	2541		110			357.80	0.71	0.79
3	4	500	1821		110		· · · · · · · · · · · · · · · · · · ·	357.80	1.82	7.79
End										
	V 2045								u (ligh	
NO NO	Year 2015 Type		Pumping to G WL	othatuwa only GL		EH				
INO	туре	Vsec .	m	m		m.			a degr	
1	1	-320.000	9.28		7.00	magazin in	2.28			원래 보육하게 없
2	0	0.000	50.51		11.00		39.51			
3		0.000	48.88		18.00		30.88	R1		Hospital Junction
4	0	320.000	37.34		26,25		11.09	R3	11.54	Gothatuwa GR
PIPE								. *		
NO(u)	NO(d)	Dia	Length	C		dH		Q	V	1
(4)	10(0)	mm	m			m.	:	l/sec	m/sec	0/00
1	2		11		110		41.24	320,00	0.64	0.64
2		800	2541		110			320.00	0.64	0.64
3	4	500	1821		110			320.00	1.63	6.34
End	(2) (高速)			an egitta it						
NODE	Year 2010		Diumnina to C	othatuwa only	er ilda Nya Fara a S				Makil	보는 보고 현기를
NO	Type	Q	WL WL	GL.		EH				
	.,,,,,	l/sec	m	m		m				
1	1		9.28		7.00	41 . 1	2.28			
2			39.35		11.00		28.35			
3			38.03		18.00		20.03	R1		Hospital Junction
4	0	285,500	28.69		26.25	<u> </u>	2.44	R3	9.35	Gothatuwa GR
PIPE		en e								
NO(u)	NO(d)	Dia	Length	С	134.14.14.1	dH		Q	V	
	4.3	mm	m	<u> </u>		m		Vsec	m/sec	9/00
1			11		110		30.08	285.50	0,57	0.52
2			2541		110 110		1	285.50	0.57	0.52
3 End	3 4	500	1821_		110			285.50	1.45	<u>5.13</u>
-114							e in the contract of the contr			re jakul
NODE	Year 2005		Pumping to (Sothatuwa only	- 1.					
NO	Type	Q	WL	GL		EH				
- 11		l/sec	m	m		m				
1					7.00		2.28		7 B. H	
					11.00		28.36		4 07	Hospital Junction
2					18.00 26.25		20.28 4.45	R1 R3		Gothatuwa GR
3	,	200,000			20,20					
				<u> </u>	<u></u>	<u> </u>	<u> </u>			
3		Dia	Length	С	1-1949	dΗ	B 1174	Q	ν	
3 4	NO(d)		m			m	00.00	l/sec	m/sec	0/00
PIPE NO(u)		mm			110 110		30.08	255.00 255.00	0.51 0.51	
PIPE NO(u)	1 2	mm 800						255.00	1.30	
PIPE NO(u)	1 2 2 3	mm 2 800 3 800	2541						,,,,,	<u> </u>
PIPE NO(u)	1 2 2 3	mm 800	2541		110		2	V a Maria		
PIPE NO(u)	1 2 2 3	mm 2 800 3 800	2541				4-8			
PIPE NO(u)	1 2 2 3	mm 2 800 3 800 4 500 Flowrate	2541 1821		110 EH		and the second second	Effective He	S	
PIPE NO(u)	1 2 2 3 3 4	mm 2 800 3 800 4 500 Flowrate Hazen-Willian	2541 1821		110 EH dH			Effective He Pumping He	S	
PIPE NO(u)	1 2 2 3 3 4	mm 2 800 3 800 4 500 Flowrate Hazen-Willian Water Level	2541 1821 m Coefficient		110 EH			Effective He Pumping He Velocity	ead	
PIPE NO(u)	1 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	mm 2	2541 1821 m Coefficient	mon main (800 m	110 EH dH V			Effective He Pumping He Velocity Friction Gra	ead dient	Proposit 4




	A	В	С	D	E	F	G	H		J
1	150	<u> </u>	L	PROJECT	·				Job No	
2	Twater .	CEYWA	TFR		Water S				Des. By	AP
3		CLITTA	\	COMPONE			in of the		Checked	
				COMPONE		_	•			000 00
4	D				Irans	mission S	ystem		Date	Sep-00
57 58	Design Ap	proacn	<u> </u>						<u> </u>	
-	An econom	ic analysis	taking into	account si	ich factors	as estimat	ted numnin	n head er	eray cons	umntion
-	capital and									
-	The result of									
62							i .			
	From Amba							mm dia D		2510
	From the he							mm Dia D		1765
	From the h	ospital junc	tion up to I	Kolonnawa	reservoir si	te :-	600	mm Dia D) with L=	6151
66 67	Based on th	nic recult o	tranemiec	ion model u	rac dovrolor	and indicat	ing the god	metric and	d bydraulio	!
	properties of									
	for each of									
	program for									
	Flow contro									1
	Frictional h									
	minor loss				of each pip	e is assum	ed to be in	cluded wit	hin the ove	erall
	frictional he	ad loss of	the pipelin	e.	ļ <u>.</u>	 			 	
75 76	Because of	the feet th	ot Cotothu	wo and Kale	i	alina ravita	a veldalvedi	ffor in lone	th it is sai	hor
	difficult to a									ilei
-	Kolonnawa									ns.
79								1		
80	Based on the	nis concept	two syster	n curves we	ere develor	ed using t	he KYPIPE	program,	one for th	e
	maximum s	static head	and the ot	her for the r	ninimum st	atic head.	The result	s are sumr	narised as	follows:
82										!
83 84	Year Flow to G	200 <u>5</u> 255.0								
	Flow to K	116.0	 	 			 			:
	Total flow	371.0	` —	<u> </u>	1			<u> </u>	1	<u> </u>
	TDH(max)	24.35						 	- 	
88	TDH(min)	22.89	28.87	41.48	43.73	m				
89										
	Eight (8) co	mputer rur	is were ex	ecuted in de	veloping th	ne sytem c	urves.			
91 92	The sustant	1		lly depicted	halaw	ļ				
93	THE System	Curves an	e garpincai	iy depicted	below.	<u> </u>	 	!	!	
94		<u>:</u>		 	 	<u> </u>	<u> </u>			-i
95		 	 	 		<u> </u>	 			
96										
97										
98		-								
99		<u> </u>			1	!	ļ	[ļ
100	<u> </u>	 	1 -	 	 	<u> </u>	-	 		
101		<u>i </u>	<u> </u>		 	 -	 			
103		 	 	 	 	1	+	1		
104				 						
105					<u> </u>	1			~~	
106										
107		1			1	1				
108		· ·				!				

Т	A	В	С	D	E	F	Τ	G	Н	<u> </u>	J
1	منص			PROJECT:	- Gotathu	wa Koio	nna	wa		Job No	
2	(worster	CEYWA	ΓER		Water Supply					Des. By	AP
3			*	COMPONE	COMPONENT:- Detailed Design of the					Checked	
4				J J J J J J J J J J J J J J J J J J J	Transmission System					Date	Sep-00
213					1101151	111331011	Jys	tem		Date	Gep-00
	The highligh	ited rows re	enresent th	e recomme	ended oners	tina mac	les	lt is imn	ortant to	maintain	nrecise
	flow contro										
	is indicated									<u> </u>	
217											
	As evident f										
	54 m when										
	variable spe										
	pumps are										ator
223	should imm	ediately Sw	ALCH OH OH	e pump in c	suer to kee	b me bre	SSU	re below	5 <u>2 III IIIII</u>	<u>. </u>	-
	Motor Hors	se Power-								<u> </u>	
	Required ho			or is aiven	bv:		+				
	P = (Q x H)			<u> </u>			+-			 	
227	where		Horse Pov	ver in kW			İ				
228			Flow in I/s								
229				ic Head in a	n						1
230	·		pump effic				<u> </u> _			<u> </u>	<u>:</u>
231		n2 =	motor exc	ess	<u> </u>						
232	Considering	the 2020	cituation w	ith 2 numne	in perallal	the real	irod	l total pa	uor io oor	nouted es	follows
234		1116 2020	Situation w	in a pumps	in parener	, me requ	med	totai po	wei is coi	ilputed as	ioliows.
235		Q =	700.1	<u> </u>	 		+			 	
236		H=	<u></u>		 		+			' 	†
237		g =			1					1	
238		n1 =									
239		n2 =	1.25		<u> </u>	<u> </u>					
240		<u> </u>	100.077	<u> </u>		<u> </u>	_		•	<u> </u>	
	Therefore	P =	489.874		-	<u> </u>	_			 	
242	Hence, req	uired horse	nower of	the motor =	163.2913	k\M	$\dot{-}$				<u> </u>
244		dired fiorse	s power or	The motor -	103.2913	KVV	-		<u> </u>	 	-
	Provide a	motor of c	apacity =	165 kW			\dashv		 	!	
246											
	CASE 2:2	2010 to 202	20						1		
248				<u> </u>			$\Box \Box$				<u> </u>
	The results	of the con	nputer runs	reveal the	following s	ystem cu	rves	S		<u> </u>	
250		2005	2000	200	7 2000	200	20	2040			
251	Yea Flow to G	<u>2005</u> 255.0					90 80	2010 286			
	Flow to K	116.0					95	216	·		
	Total flow	371.0					75	502			<u> </u>
	TDH(max)					The second second second	ينانست	31.02	<u> </u>		
256	TDH(min)	22.89	23.9	24.7	2 26.33	27.	87	28.87			
257				ļ			_[
258			<u> </u>	 		 	$-\downarrow$		 		
259 260				 	 				-	-	
26		-	1	 	-	 			 		
262			- 	 	 	<u> </u>			 		+
263		-	 	†	 -	:	\dashv		 	 	-
264			1	†		!	+				1
264	 		1			!			<u> </u>		

AP 11/27/00 ... 9:51 AM

	Α	В	С	D	E	F	G	Н	l I	J
1				PROJECT	:- Gotathu	ıwa Kolon	nawa		Job No	
2	yesister.	CEYWA	TER		Water S	upply			Des. By	AP
3				COMPON	ENT:- Deta	iled Desig	n of the		Checked	
4					Trans	mission S	ystem		Date	Sep-00
369										
370	Net Positiv	e Suction	Head (NP	SH) Compi	utation:-					
371								<u>:</u> !	!	
	The manufa					ps at flood	led suction	conditions	. For solo	
	operation th	e required	NPSH is a	pproximate	ely	5	m	į		
374	= ""				<u> </u>	<u> </u>				
	For "flooded	suction" (condition N	PSH is give	en by:	<u> </u>		<u> </u>		
376		1 l h /\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>	<u> </u>		1		<u> </u>	:
377 378	NPSH = Pb Where	+ Ln - (Vp		Atmospher	io Proceur	in m of w	otor	<u> </u>	<u> </u>	:
379	VVIIEIE	Lh		Minimum S				he center	ine of the	numn
380		Vp		Vapor Pres				(He center	into of the	pump
381		hf		Suction Pi					-	<u> </u>
	Minimum N						/ suppliers	=	5	m
383]		Pb	=	1	
384							Vp	=		
385	Suction Los	ses as ext	racted fron	KYPIPE o	utput file		hf	=	1.68	m
386						Ī		Ĭ		
387]	
	in case of ta	apping fror	n a pipelin	e under pre	ssure, NPF	IS is given	by,			
389								ļ	<u> </u>	<u> </u>
	NPSH = Pb								 	ļ
391	Where			Atmospher			ater	<u> </u>	<u> </u>	
392 393		р		Gage Pres			22222	<u> </u>	-ontor line	<u> </u>
394 394		H Vp		Height diffe				and pump	Center line	
395		hf		Suction Pi			ule)	1	<u>i</u>	
396		111		Ouction i	ping Losse	1			<u> </u>	
	Conclusion	7:-			 		*	-	 	<u> </u>
398			 	 	-	 			<u>:</u>	
	NPSHA (NE	SH Availa	ble) Ref. D	Drawing Nr I	KMU/PSM/	02		\	<u> </u>	<u> </u>
400				<u> </u>	Ţ				<u></u>	
401			LWL of th	e well				=	9.28	m
402			Center lin	e elevation	of the pum	p		=		
403				<u> </u>			Lh	=	0.73	m
404									 	ļ
405				NPSHA is			 	<u> </u> =	8.80	<u> m</u>
406				A is greater			- 01/	<u> </u>	1	
407				e proposed				ided water	level in the	
408	L	<u>i </u>	<u>ıntake we</u>	<u>Il is abvove</u>	+9.∠8 m (l	_vvL) eleva	ation	1	1	<u>i</u>

GOTATHUWA KOLONNAWA TRANSMISSION SYSTEM

Hydraulic Analysis

Year 2020 Situation - Three duty pumps in parallel and with flow control devices installed At Gotathuwa and Kolonnawa Reservoirs

DATE: 10/17/2000 TIME: 9: 8:55

INPUT DATA FILENAME ------ c:\anselm\kyp2\GKT_REV1.DAT
TABULATED OUTPUT FILENAME ----- c:\anselm\kyp2\GKT_REV1.OUT
POSTPROCESSOR RESULTS FILENAME --- c:\anselm\kyp2\GKT_REV1.RES

UNITS SPECIFIED

FLOWRATE = liters/second
HEAD (HGL) = meters
PRESSURE = kpa

REGULATING VALVE DATA

VALVE TYPE	POSITION JUNCTION	CONTROLLED PIPE	VALVE SETTING (m or 1/s)
FCV-1	12	15	357.80
FCV-1	18	22	342.30

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE FG -FIXED GRADE NODE PU -PUMP LINE CV -CHECK VALVE RV -REGULATING VALVE

PIPE NUMBER	NODE #1		Length (m)	DIAMETER (cm)		MINOR LOSS COEFF.	FGN-HGL (m)
1-FG	0	1	5.0	50.0	110.00	1.79	9.28
2-PU	1	2	6.0	50.0	110.00	4.64	
3-PU	1	2	6.0	50.0	110.00	4.64	
4-PU	1	2	6.0	50. 0	110.00	4.64	
5	2	3	31.0	60.0	110.00	1.65	
6	3	4	225.0	80.0	110.00	.00	
7	4	5	100.0	80.0	110.00	.00	
8	5	6	725.0	80.0	110.00	.00	
9	6	7	275.0	80.0	110.00	.00	
10	7	8	850.0	80.0	110.00	.00	
11	8	9	335.0	80.0	110.00	.00	
12	9	10	40.0	50.0	110.00	.00	
13	10	11	925.0	50.0	110.00	.00	
14	11	12	800.0	50.0	110.00	.00	
15-RV	12	20	6.0	40.0	110.00	.00	
16	9	13	927.0	60.0	110.00	.00	
17	13	14	804.0	60.0	110.00	.00	
18	14	15	2572.0	60.0	110.00	.00	
19	15	16	558.0	60.0	110.00	.00	
20	16	17	1080.0	60.0	110.00	.00	
21	17	18	210.0	60.0	110.00	.00	
22-RV	18	19	6.0	50.0	110.00	.00	
23-FG	19	0	50.0	60.0	110.00	.00	25.20
24-FG	20	0	50.0	50.0	110.00	.00	26.25

Hydraulic Analysis

Year 2020 Situation - Three duty pumps in parallel and with flow control devices installed At Gotathuwa and Kolonnawa Reservoirs

PUMP DATA

THERE IS A PUMP IN LINE 2 DESCRIBED BY THE FOLLOWING DATA:

HEAD	FLOWRATE				
(m)	(l/s)				
61.00	.00				
45.74	233.70				
38.50	300.00				

THERE IS A PUMP IN LINE 3 DESCRIBED BY THE FOLLOWING DATA:

w told	T74	TITLE	
CARH		FLOW	RATE
(m)		(1,	/s)
61.00			.00
45.74		23:	3.70
38.50		300	00.0

THERE IS A PUMP IN LINE 4 DESCRIBED BY THE FOLLOWING DATA:

HEAD	FLOWRATE				
(m)	(l/s)				
61.00	.00				
45.74	233.70				
38.50	300.00				

JUNCTION NODE DATA

JUNCTION JUNCTION NUMBER TITLE	EXTERNAL DEMAND (1/s)	JUNCTION ELEVATION (m)	CONNE	CTING	PIPES	
1	.00	8.55	1	2	3	4
2	.00	8.55	2	3	4	5
3	.00	8.55	5	6		
4	.00	16.24	6 .	7		
5	.00	21.48	7	8		
6	.00	5.52	8	9		
7	.00	15.95	9	10		
Ø	.00	6.74	10	11		
9	.00	12.83	11	12	16	
10	.00	13.70	12	13		
11	.00	1.97	13	14		
12	.00	21.73	14	15		
13	.00	18.20	16	17		
14	.00	1.40	17	18		
15	.00	11.17	18	19		
16	.00	22	19	20		
17	.00	22.44	20	21		
18	.00	18.63	21	22		
19	.00	18.63	22	23		
20	.00	21.73	15	24		

ATAG MOITGO TUGTUO

OUTPUT SELECTION: ALL RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

SYSTEM CONFIGURATION

NUMBER	OF	PIPES(p)	_	24
NUMBER	OF	JUNCTION NODES(j)	=	20
NUMBER	OF	PRIMARY LOOPS(1)	=	2
NUMBER	OF	FIXED GRADE NODES(f)	=	3
NUMBER	OF	SUPPLY ZONES(z)	=	1

Hydraulic Analysis

Year 2020 Situation - Three duty pumps in parallel and with flow control devices installed At Gotathuwa and Kolonnawa Reservoirs

THE RESULTS ARE OBTAINED AFTER $\,$ 2 TRIALS WITH AN ACCURACY = $\,$.00000

PIPELINE RESULTS

STATUS CODE:		-closed -check		FIXED GRA REGULATIN			UMP LINE TORAGE TA	ANK
PIPE	NODE	NOS.	FLOWRATE	HEAD	PUMP	MINOR	LINE	HL/
NUMBER	#1	#2		LOSS	HEAD	Loss	VELO.	1000
			(1/s)	(m)	(m)	(m)	(m/s)	(m/m)
1-FG	0	1	700.10	.13	.00	1.16	3.57	26.77
2-PU	1	2	233.37	.02	45.77	.33	1.19	3.50
3-PU	1	2	233.37	.02	45.77	.33	1.19	3.50
4-PU	1	2	233.37	.02	45.77	.33	1.19	3.50
5	2	3	700.10	. 34	.00	.52	2.48	11.01
6	3	4	700.10	. 61	.00	.00	1.39	2.71
7	4	5	700.10	. 27	.00	.00	1.39	2.71
8	5	6	700.10	1.97	.00	.00	1.39	2.71
9	6	7	700.10	. 75	.00	.00	1.39	2.71
10	7	В	700.10	2.31	.00	.00	1.39	2.71
11	8	9	700.10	.91	.00	.00	1.39	2.71
12	9	10	357.80	.31	.00	.00	1.82	7.72
13	10	11	357.80	7.14	.00	.00	1.82	7.72
14	11	12	357.80	6.18	.00	.00	1.82	7.72
15-RV	12	20						
16	9	13	342.30	2.71	.00	.00	1.21	2.93
17	13	14	342.30	2.35	.00	.00	1.21	2.93
18	14	15	342.30	7.53	.00	.00	1.21	2.93
19	15	16	342.30	1.63	.00	.00	1.21	2.93
20	16	17	342.30	3.16	.00	.00	1.21	2.93
21	17	18	342.30	. 61	.00	.00	1.21	2.93
22-RV	18	19						
23-FG	19	0	342.30	.15	.00	.00	1.21	2.93

357.80

.39

.00

.00

1.82

7.72

JUNCTION NODE RESULTS

0

20

24-FG

JUNCTION NUMBER		GRADE	JUNCTION ELEVATION (m)	HEAD	JUNCTION PRESSURE (kpa)
1	.00	7.99	8.55	56	-5.53
2	.00	53.40	8.55	44.85	439.88
3	.00	52. 5 5	8.55	44.00	431.47
4	.00	51.94	16.24	35.70	350.07
5	.00	51.67	21.48	30.19	296.02
6	.00	49.70	5.52	44.18	433.24
7	.00	48.95	15.95	33.00	323.64
8	.00	46.65	6.74	39.91	391.35
9	.00	45.74	12.83	32.91	322.71
10	.00	45.43	13.70	31.73	311.15
11	.00	38.29	1.97	36.32	356.14
12	.00	32.11	21.73	10.38	101.79
13	.00	43.02	18.20	24.82	243.44
14	.00	40.67	1.40	39.27	385.11
15	.00	33.14	11.17	21.97	215.47
16	.00	31.51	22	31.73	311.15
17	.00	28.35	22.44	5.91	57.93
18	.00	27.73	18.63	9.10	89.26
19	.00	25.3 5	18.63	6.72	65.87
20	.00	26.64	21.73	4.91	48.11

GOTATHUWA KOLONNAWA TRANSMISSION SYSTEM

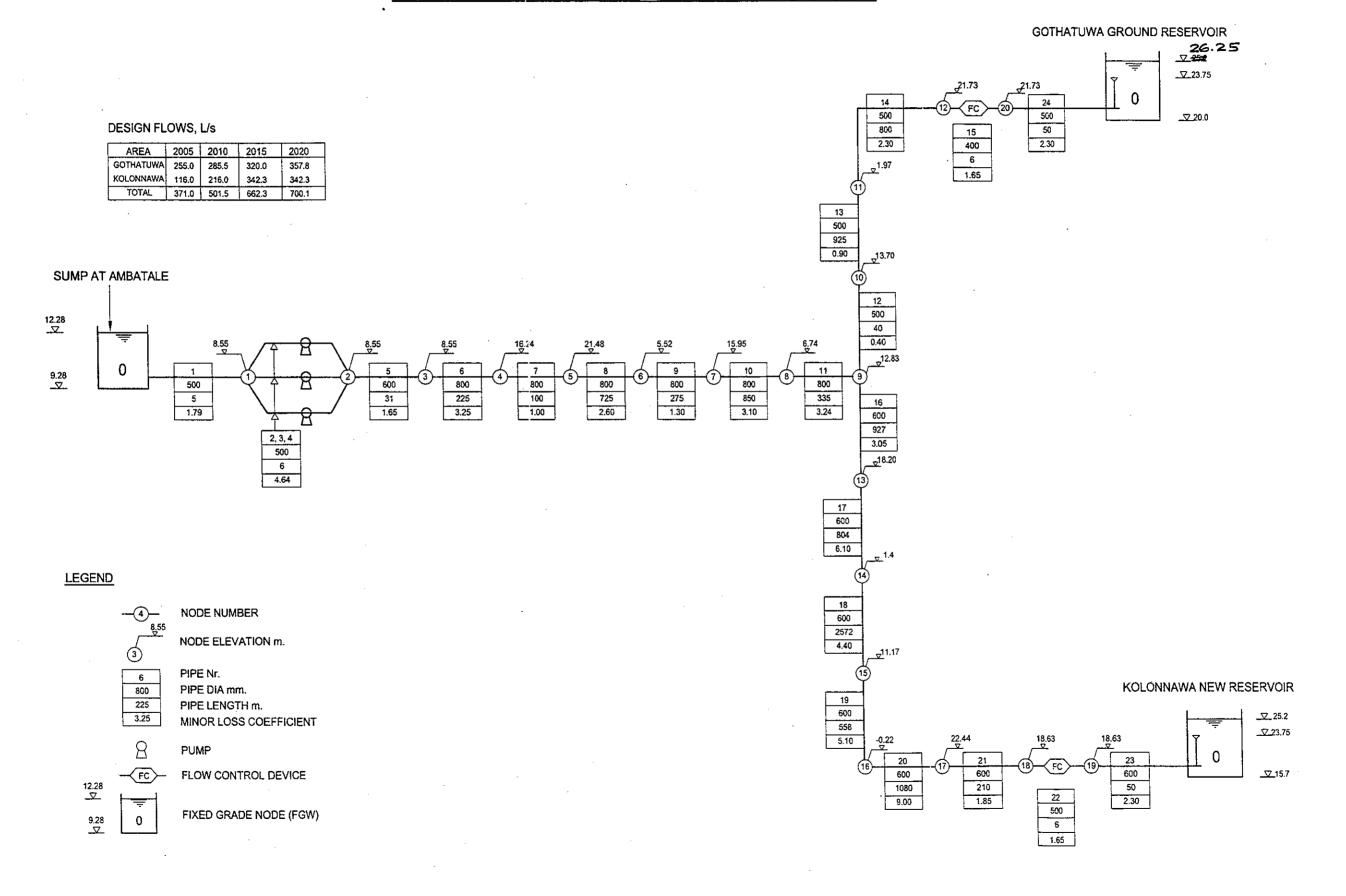
Hydraulic Analysis

Year 2020 Situation - Three duty pumps in parallel and with flow control devices installed At Gotathuwa and Kolonnawa Reservoirs

REGULATING VALVE REPORT

VALVE TYPE	POSITION NODE	CONTROLLED PIPE	VALVE SETTING (m or 1/s	VALVE STATUS	UPSTREAM GRADE (m)	DOWNSTREAM GRADE (m)	THROUGH FLOW (1/s)
FCV-1	12	15	357.80	THROTTLED	32.11	26.64	357.80
FCV-1	18	22	342.30	THROTTLED	27.73	25.35	342.30

SUMMARY OF INFLOWS AND OUTFLOWS


- (+) INFLOWS INTO THE SYSTEM FROM FIXED GRADE NODES (-) OUTFLOWS FROM THE SYSTEM INTO FIXED GRADE NODES

	PIPE NUMBER		FLOWRATE (1/s)
	1		700.10
	23		-342.30
	24		-357.80
NET SYSTEM	INFLOW	=	700.10
NET SYSTEM	OUTFLOW	=	-700.10
NET SYSTEM	DEMAND	=	.00

**** KYPIPE SIMULATION COMPLETED ****

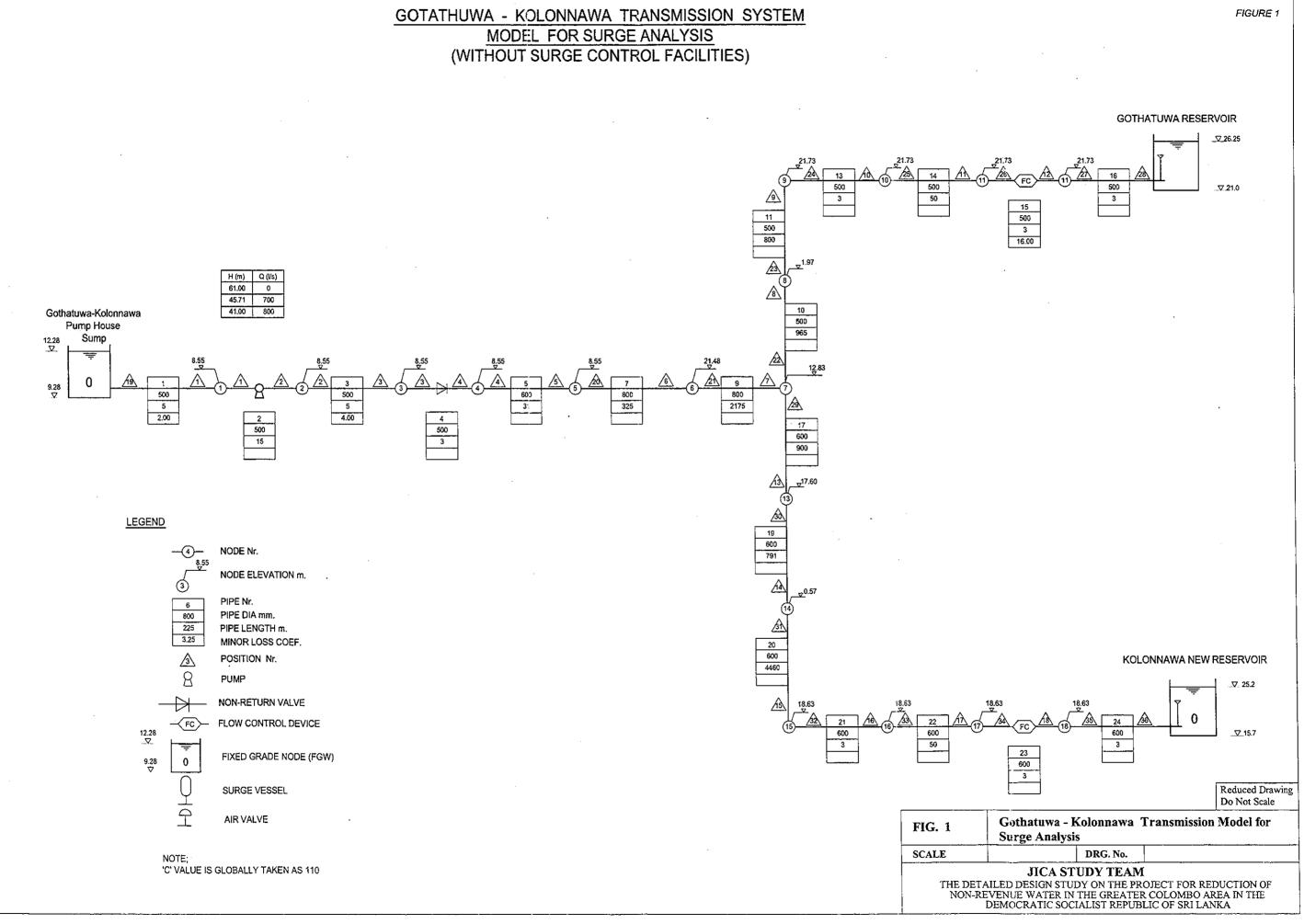
DATE: 10/17/2000 TIME: 9: 8:55

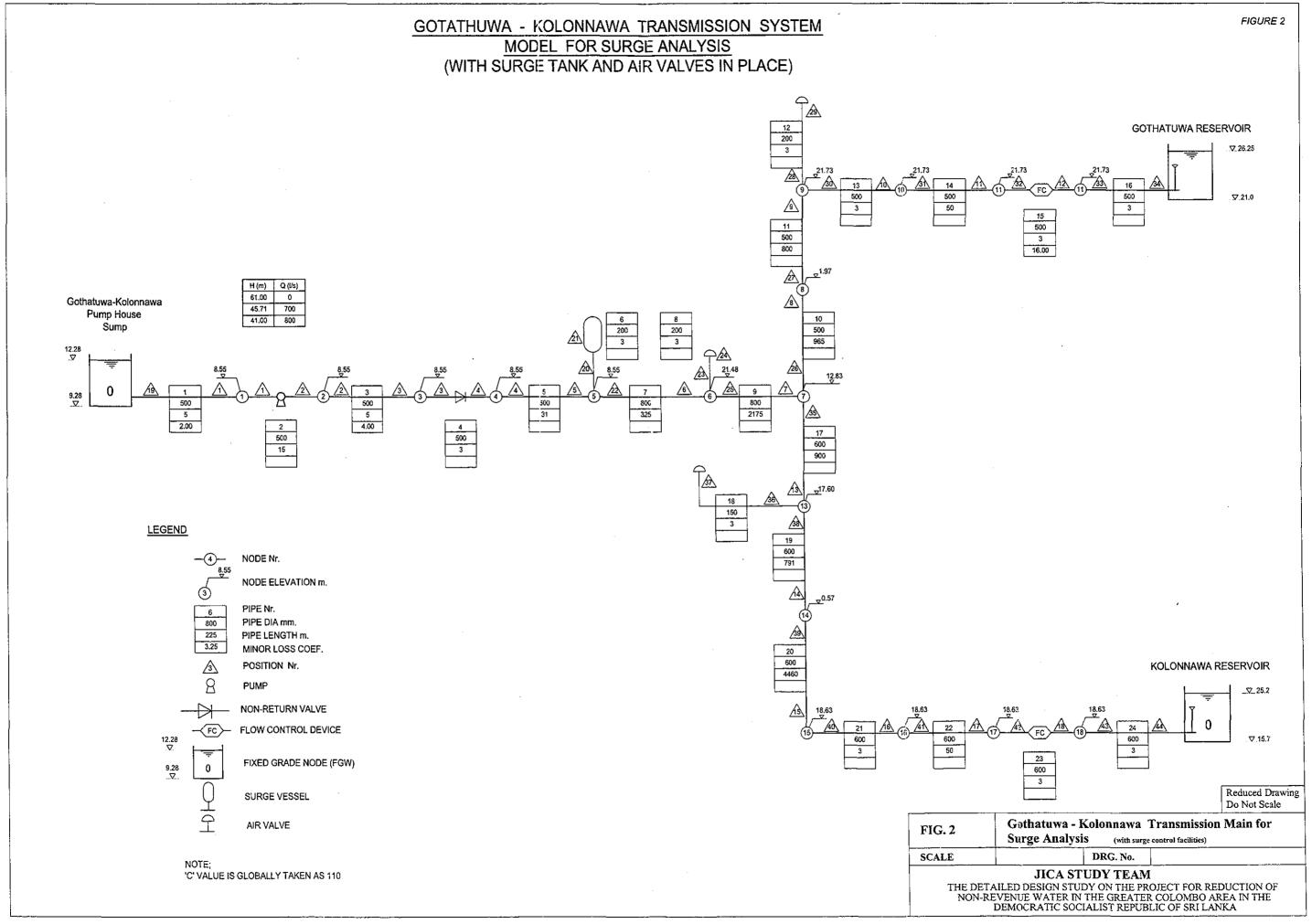
GOTHATUWA KOLONNAWA TRANSMISSION MODEL

GOTHATUWA TRANSMISSION MAIN - SURGE ANALYSIS

·		

	Α	В	С	D	E	F	G	Н		J
1	19 mm			PROJECT	T:- Greater	Colombo	NRW Redu	ıction	Job No	
2	water	CEYWAT	ΓER				Des. By	AP		
3				COMPON	ENT:- G'th	uwa K'naw	a Pumpin	g Main	Checked	
4					Surge	Analysis			Date	25-7-00
5			· ·	· · · · ·	··· <u>·</u>					·
6	1. Design F	low Condi	tion						·	
7	The surge of	control syste	em is desi	gned to car	ter for the y	ear 2020 flo	w condition	n ie	700.1	l/s
8								·····	- · · - ·	
9	2. Design o	of Surge Co	ontrol Sys	stem	4		:			
10						i				
12	Introduction	o n Total on the contract of						· 	· -	
$\overline{}$	In the even	of power fa	ailure or a	rapid pum	n shutdown	the nump	rapidly dec	elerates fr	om steady	
	speed to ze									
	body in the									
	of the pum									
	This negati end it is ref									
	flow in the									
	completed.									
	the force m		· · · · · · · · · · · · · · · · · · ·		1					
	However, p									
	The round build up at									
25	or greater t				TOT BIG HOW	is stopped	iii a anto ii	iterval egu	ai to oi tes	3 11 21
26	<u> </u>								:	
27	Surge Ana	lysis							ļ	
28 29	The oritical	poriod T (in	\ ia	i aiyon by		· 	1		<u>:</u>	-
30	T = 2*L/a	period T (ir	i secs) is	given by		÷ · · ·		· ;	· 	<u>:</u>
31	where	L =	Length o	f the pumpi	ng main bel	ween pum	station an	d point of	discharge	inm
32		1								
	From Amb					.	·	mm dia D		2510
	From the h						· · · · · · · · · · · · · · · · · · ·	mm Dia D mm Dia D		1818 6151
36	From the n	ospital julic	tion up to	Noioniawa	reservoir s	-, oile ,-	. 000		ximum L =	
37	 -					- 	j			
38		Hs =	Static He		=	15.92	m			<u> </u>
39		a=	Velocity	of pressure	wave in m/	<u>s</u>	<u> </u>	<u> </u>		<u> </u>
40	Pressure v	in volocit	in mle ie	given by		<u> </u>	 	<u> </u>	<u> </u>	
42		1+C1*(K*d/f		given by			<u> </u>	 		
43	where			e with expa	ansion joints	throughou	t		 	
44	management of the management				hored agair					
45	 				out expans	ion joints ar	nd anchore	d at the up	stream en	<u>d</u>
46			Poisson'		ater taken a	e	2.2E+09	N/sq m	<u>:</u>	
48			Pipe dia		ACT CANCILE		2.20708	i way ii		<u> </u>
49					y of pipe ma	aterial in Mi	V/sq m	<u> </u>		<u> </u>
50				l thickness						
51				· · · · · · · · · · · · · · · · · · ·	م جانب ما	lace MO D1			<u> </u>	
	For u =	0.5 0.28		U: U.8	30 m dia. C	ass ky Di j	oipe,	-		<u> </u>
_	u	1,7E+11			-			1		
	√e =	0.0140		0.017	75		_ 			
56	C1 =	0.92	for burie	d pipeline					T	i
57	a	= 1200	117	9 11	52		Average a	<u> </u>	1177.2	8 m/s


	Α	В	C	D	E	F	G	Н	l i	J
1	معمير			PROJECT:	- Greater	Colombo	NRW Red	uction	Job No	
2	Cwater	CEYWA	TER				•	•	Des. By	AP
3				COMPONE	NT:- G'th	uwa K'nav	/a Pumnin	a Main	Checked	
4			·			Analysis		9	Date	25-7-00
58	Therefore c	ritical perio	d T	·	13.87431		for Kolonn	awa hranc		23-7-00
59	1110101010	ntiodi pono	<u> </u>		4.260303		for Gotath			
60					*1120000	-	TOT GOLDEN	awa biano		<u> </u>
61	The magnitu	ide of the r	naximum v	vater hamm	er pressur	e Ps (in m)	at pump d	ischarge is	given by	
62									<u> </u>	
	Ps = a*v/g									
		a=		vave velocit						
65		ν =		w velocity in		=	1.47	average		
66		g =	Gravity co	nstant in m/	s^2	<u> </u>		<u> </u>	ļ i ———	
67	In the coop		; ;			41.1.1.1.				
60	In the case	of a pump	trip this pre	ssure is neg	gative. For	this to hap	pen, pump	speed mu	st reach ze	ro
_	within a time When press					orio cond	itions va-	or hubble	e etart	
	developing									
	This pheno	menon ie	called "ca	vitation" ar	nd it can c	ance years	age to nine	es and equ	i and pipe Jinment	
73	Hence, it is	verv imno	rtant that	pipeline ar	nd equinm	ent is ade	guately nr	otected ac	ainst	
74	cavitaion.	J. Jpc			daibin		Jacros Mr.		,	
_	When press	ure wave a	approaches	the pump a	after reflect	ting back a	t the reserv	oir end, th	e reverse v	elocity
	causes a po									
77				·			,			
	Analysis of	Pressure	Flow Tran	sients						
79								L		
-	Introduction								1	<u></u>
	The comput									yze
	and determi									
	This program									
	from the tim have used 1				nor the an	alysis is pre	edetermine	a, which i	i uns case	we
86	nave used	oo second	3 and 200	seconus.		<u> </u>			<u> </u>	·
	The steps o	f analysis is	s briefly de	scribed as f	ollows:					<u> </u>
88	. . 			layout of the		tem (witho	ut provisior	for surge	control de	vices)
89	<u> </u>			ers viz. pipe						
90		Refer Figu								
91				file using KY						
92	*			run for stead					!	
93	 		YPIPE DAT	file into Ste	eady state	Initial Cond	lition (SIC)	using C-S	IC data con	version
94		program.								
95				and create the						
96 97				ated ICF file				eait and m	odiry data a	15
98				SE4 progran				Dumn Ct	ation and o	f the
99				very end at			Joures 11011	Trump St	ation end C	
100				model to in			orifices (SF	Os) for m	odelina su	: ae
101				as surge ta						
102				for surge tar						
103				ind compile			ation of gas	volume w	ithin the su	irge
104		tank.								
105				ial runs and				size for th	e surge tai	nk
106	12	Design lay	out, piping	and air com	pressor fo	r the surge	tank.		ļ	<u> </u>
107			· ·							<u> </u>
108		-					<u> </u>	<u> </u>	<u>:</u>	;
109				· · · · · · · · · · · · · · · · · · ·			· ·	<u> </u>	 	
110	<u> </u>	·						: 	<u> </u>	
111		_,:					<u> </u>	<u> </u>	ii	<u> </u>


	Α	В	С	D	E	F	G	Н	1 1	J
1		· · · · · · · · · · · · · · · · · · ·	<u> </u>	PROJECT:	- Greater	Colombo	NRW Red	uction	Job No	
2	water	CEYWA	TER						Des. By	AP
3				COMPONE	NT:- G'th	uwa K'nav	va Pumpin	a Main	Checked	
4		<u> </u>	<u> </u>			Analysis			Date	25-7-00
	Computer	Runs	<u> </u>	·	54.90	7 intary 616	<u> </u>]	Dutt]
113							 			
114	The following	g compute	er runs were	e executed t	for the sim	ulation of "	pump trip"	under diffe	erent operat	ional
115	scenarios:		į					-		
116				!			<u>:</u>]	
17	Run 1			surge contro					elivering the	<u> </u>
18				ut of 700.1 l/					<u> </u>	<u> </u>
119	Run 2			surge contro			pump in o	peration d	elivering	<u> </u>
120 121	Dun 2			utput to Got			numer in a		lationalism	
22	Kun 3			surge contro utput to Kol			pump in o	peration d	elivering	-
123	Run 4			ge control de			h one numi	in opera	tion doliveri	! na
124	TOTAL T			utput to Go				p in Opera	tion deliveri	
125		ino annia	to acoigii o	diput to co		ia resonna				
$\overline{}$	Program as	sumptions		! !	!			 	- 	1
127		<u> </u>				1				
128	10	Within the	program,	each of the	pipelines is	s divided in	ito line segi	ments as	indicated in	
129		network d	iagrams. E	ach line seg	ment is de	fined by th	e program	by assign	ing two num	bers
130				oint and the					<u> </u>	
131		The basic		s calculated						<u> </u>
132		•		f wave trave			s of time inc	rement p	rovided, whi	ch in
133		<u>!</u>		.01 seconds				<u> </u>		<u> </u>
134		•		A which is (wave spee	d)/(gravity	constant*c	ross secti	onal area of	pipe)
135 136			Initial flow	Resistance	<u> </u>	 	 	1		
137		•		rves are def	ined by au	Adratic cur	Ves with A	B and C :	es constants	<u> </u>
138				ssumed to					as constant	7
139				ken as 100		~ <u>. </u>	_ 		ecs for the	un 4.
140				been simp						
141			<u></u>	is allowed						e
142			stoppage							
143				nin the surge		sumed to	follow adial	patic com	pression and	<u> </u>
144		expansion	n with gas o	constant = 1	<u>.1</u>			<u> </u>		
145		<u>i </u>	<u>.l</u>	<u> </u>		<u> </u>	<u> </u>	<u> </u>		
146 147	Presentation	on of Resul	<u>ts:-</u>	: -	<u> </u>	-	1			1
	Computer	printquto of	F CIC and C	Yuraa Analy	io progran	on for cook	of the Bur	o montion	od abovo a	<u> </u>
	enclosed in							15 ITIETITIO	ieu above a	
150		i tile Appel	:	:	;	1 23 10110473	<u>'• </u>			
	Run 1					<u> </u>		1	<u> </u>	
	Computer	File Organi	ization:-						;	
	Steady Sta			out Data File		:	gkic1.5	SIC		
154	Steady Sta	ite Initial Co	ondition Ou	itput Data F	ile		gkic1.	ric		<u> </u>
	Surge Ana		ļ <u> </u>							
	Input Data	File	ļ		-i	<u>:</u>	gk_ic1.D	AT		
157			<u> </u>	<u>.</u>	4		 			<u> </u>
	Results Int			o position O	and is ser	ini to 249 2	m	 		
	Maximum							Nona the	nineline	i
	During the							Tiong me	hiheillie	
	sub-atmos The maxin							condition	is not acce	ntable
	since this									Plant
	to the syst		ori would le	Jour III Cavit	i and and p	- Journie da	age to th	- Pipolitie	•	
	<u> </u>				<u> </u>	Charts 1	227			 -

	A	В	С	D	E	F	G	Н	ĺ	J
1	ACCULATE TO			PROJECT:-	Greater	Colombo	NRW Red	uction	Job No	
2	Cwater	CEYWA	ΓER						Des. By	AP
3	No.			COMPONE	NT:- G'th	g Main	Checked			
4				!		Analysis		<u></u>	Date	25-7-00
166				 		l	 		Juco	20.00
	Run 2					<u>:</u>	<u> </u>			
168							 			
	Computer F						:			
	Steady Stat					:	gkic2.S	C		
			dition Out	put Data File		· · · · · · · · · · · · · · · · · · ·	gkic2.T	С		
	Surge Anal			<u> </u>			!			
	Input Data			i		:	gk_ic2.DA			
	Output File			ļ			gk_ic2.OL	<u> </u>		<u>:</u>
175					·				<u> </u>	
177	Results Inte	rpretation:-					<u> </u>			
	The positive	eurae ie na	of en seve	re as in the c	aco of Pu	n 1 and the	a mavimum	Drecur	of 115.1 m	occure
				surge will rea						Julia
180	_ pooliion _		uganvo .	Jango Will IGA	on ouvitat	on prossu	. C COOH all	J. GIO PUII	<u>, P.</u>	
	The results	are graphic	ally repres	sented in the	attached (Charts 2 au	nd 3.			
182		<u> </u>					1		· ·	1
183	Run 3						<u> </u>			
184				i					1	
	Computer F									
	Steady Stat					<u> </u>	gkic3.S			
			dition Out	put Data File		<u> </u>	gkic3.T	<u>c</u>		<u> </u>
	Surge Analy									
	Input Data F					<u> </u>	gk_ic3.DA		·	
190	Output File						gk_ic3.OL) 		
_	Results Inte	rprototion	· · · · · · · · · · · · · · · · · · ·		·	· -			+	<u> </u>
193	results inte	ipretation								
-	The positive	surge is no	nt so seve	re as in the c	ase of Ru	ns 1 & 2 a	nd the max	pressure	of 108.6 m	occurs
				surge will rea					0, 100.0 11	
196			3-4-					- 1- 1		
197	The results	are graphic	ally repres	sented in the	attached (Charts 5 au	nd 6.	- · · · · · · · · · · · · · · · · · · ·		-
198			<u>-</u>							
199	Run 4									
		lates "pump	trip" with	the surge tar	ik in place	and for th	e operatior	al scenar	io defined u	nder
_	Run 1.									<u> </u>
202			••					<u> </u>	<u> </u>	
	Computer F			4 D - 1		<u> </u>	 		1	<u> </u>
	Steady Stat						gkic4.S		<u> </u>	
			attion Out	put Data File		<u> </u>	gkic4.T	i	 	<u> </u>
	Surge Analy Input Data F						gk_ic4.DA	<u></u>	<u> </u>	1
	Output File					· · ·	gk_ic4.DA			
209	Julput Tile	<u>: </u>				•	191 <u>1</u> 104.00	· •	+	
	With the sui	rge tank in r	olace. a m	aximum pres	sure of 83	3.3 m occu	rs at posific	on 3. The	pipeline will	not
				pressure up						
				dicated for po						the
				negative pres						
214	Pressure wa	ave energy	is absorbe	ed by the volu	me of gas	in the sur	ge tank. Th	ne gas vol		
	from 7 cum	to a maxim	um of 19.6	3 cum and gr				_		
216				1	The initial	gas head i	s estimated	at	41.6	m
217		<u> </u>		<u> </u>			<u> </u>	<u> </u>	1	<u> </u>
				that adequa						<u> </u>
219	without allow	ving the tan	k to go en	npty. Sizing o	the tank	is indicate	a later in the	us calcula	tion.	

	Α	В	С	D	E	F	G	Н	1	J
1			<u> </u>	PROJECT		Colombo			Job No	
2	water	CEYWA	TFR		• • • • • • • • • • • • • • • • • • • •				Des. By	AP
3		OL IVIA	(ILIX	COMPONE	NT- G'th	uwa Kinay	ra Dumnin	a Main	Checked	
				COM ONE				y Mairi		25 7 00
4 220			-1	<u>!</u>	Surge	Analysis	<u>!</u>		Date	25-7-00
-	The results	are granhi	ically repre	sented in the	attached	Charts 7_8	and 9 ren	esentina:		
222	1110 1000110	are grapin		Jenteu III tire	attached	Jilaito 1, 0	and 3 rep	escriting.		
223		Variation	of Head an	d Flow Vs. 7	ime at Po	sition 22	<u> </u>			
224		Gas Volu	me Vs. Tim	ne			! 	!		
225										
226										
227	Sizing of the	ne surge v	/essel:-				<u> </u>	<u> </u>		
228			1	1		· 	<u> </u>			
				signed to ca		ultimate op	erating coi	ndition of /	00.1 I/s and	·
<u>230</u> 231	snould be a	DIE TO WITH	istand a pre	essure of 10	bar.				<u></u>	
_	As per abov	re analysis	maximun	n gas volume	<u></u>	<u></u>		-	10 6	cu m
	To avoid ga					% buffer o	anacity is	usually allo		Ou III
	Hence the r					70 201101	apacity is	=		cu m
235						 	<u> </u>	Say		cu m
236									1	
237									i	
238					<u></u>					
239	1 .			<u> </u>	l	<u> </u>		<u> </u>	<u> </u>	
	Replaceabl	e bladder	type hydrol	oneumatic ta				the follow		,
241 242			<u> </u>			of the ves		ļ .	· · · · · · · · · · · · · · · · · · ·	m
242			-		Overall H	leight of th	e vessel		5.97	m
243		<u> </u>	<u> </u>			-	 	<u> </u>		
	Design of	Air Como	ressor:-		;	<u>:</u>	 	-	<u> </u>	
246			1	<u> </u>	:	 	<u> </u>	<u> </u>	<u> </u>	
247			<u> </u>	Initial gas	/olume		<u> </u>		7	cu m
248				Initial gas I		e)	!	=		
249				Atmospher				=	10.34	m
250				Therefore,				=	01.01	
		oyle's Law	PV = cons	tant, equival	ent volume	of free air	İ	=	00.1020	
252			<u> </u>	<u> </u>		ļ		=======================================	35162.5	liters
		compresso	or conformi	ng to following	ng:		-	 	!	<u> </u>
254	J	tarma of l	Fron Air Da	liven (EAD)					26.66	I/o
	Operating		I ICC AII DE	elivery (FAD)	<u> </u>	<u> </u>	:	 		bar
257		1033uie	 -	<u> </u>	1	-		ļ ——— <u> </u>	 	
	Absolute C	peratina F	ressure	 	!			=	 	
	Time taker			ssel			İ	=	1	
260		<u> </u>		:	i .			=		
261		1							OK	
262		;								
		l Air Powe	r for the co	mpressor in	kW is give	n by:-	-		<u> </u>	
264						•	-			
	((P1*FAD)	/10)*in(P2	/P1)			<u> </u>	!		-	<u>i</u>
266	Where	D in the	sheelute er	essure in ba	r at initial s	and final ca	nditions	ļ	<u> </u>	į
268		P is the a	absolute pr	essure in pa	i ai iillial a	nio imai co	nuluons			
·	Therefore	theoretic	cal air nov	rer		-		:	6.44824	kW
270		,	-ai aii poti							1777
		lorse Pow	er of the m	otor is gene	rally		2 times the	theoritical	horse pow	er.
	Therefore,	· · · · · · · · · · · · · · · · · · ·						:	12.8965	
273					Provide a	a motor of o	capacity		= 15	kW

	Α	В	C	D	E	F	_G	Н		J
1	ART CONT.	<u></u>		PROJECT	:- Greater	Colombo	NRW Red	ıction	Job No	
2	water	CEYWA	TER						Des. By	ΑP
3				COMPONE	NT:- G'th	uwa K'naw	/a Pumpin	g Main	Checked	
4					Surge	Analysis			Date	25-7-00
274		:	<u> </u>							
275	Computatio	n of size of	the air rec	ceiver:-		i				
276										
277	Required vo	olume of the	e receiver	is given by:	:					
278					:					
279	Vr =	60*C*B/P	for consta	int demand						
280	Vr =	180*C*B/F	for variab	le demand]	:				
281	Where	C =	Output of	the compres	ssor in FAI	2\ls				
282		B=	Atmosphe	eric Pressure	e in bar ab	solute				
283		P =	Working F	Pressure in l	oar absolut	te				
284					l		В	=	1.01	bar
285							Р	=	10	bar
286					Vr for con	stant dema	nd	=	161.56	liters
287					Vr for var	able demar	nd	=	484.679	liters
288				:						
289	Therefore,	provide a	air receive	er with volu	me not le	ss than		480	liters	

