GOTHATUWA TRANSMISSION MAIN

ł

.

. I

	A	B	C	D	E	F	G	н		J
2			GRI	EATER	COLOME	IO NRW	PROJEC	CT		
3						<u></u>				
4	Des	sign of Non	ninal Thrus	st Blocks	and restra	int pipe l	lengths for	r the trans	smission r	main
5										
	0			Г	Ohaali Duu			1	Date:	2/60/00
6	Comp. By:	A. P.		Į	Check By:]	Date:	2/10/00
7										
8							<u> </u>	ļ	<u> </u>	1
9	1. DESIGN	APPROA	СН				÷			
10	la situstisa	ns where su	baail condi	tiono oro h	المتعادية المعا	d ha aduit		i wido roeto	in od i oint	
11		o resist unb								
13		joints at loc								
14		to provide a								
15		. These nor								
16	· · · · · · · · · · · · · · · · · · ·						1		i	
17	<u>_</u>			·				<u> </u>		
18	2. HORIZO	ONTAL BEI	NDS			·····				
19										
-	2.1 DATA	1								
21		<u>!</u>	ļ ļ					<u> </u>		
	Pipe mate		<u> </u>	- NI/	<u></u>		DI/PVC		1	
		drostatic P		n N/sq.mn)			Max Hyd	rostatic Te	st Press.
		soil ρ in kΝ					: 20			
25		nternal fricti		egrees	!		: 30 : 1.5	в		-]
26	racio ui	Salely								
	2 2 CALC	ULATIONS				!			4a	
29					! 		F		$\overline{\mathbf{v}}$	
	Hydrostat	ic force F =	$(\pi/4 + D^2 x p)$) kN	}				1	
31			1000		1			XX		
32										
33		ed Thrust T	2*F*sin(α/	/2 [*] π/180) kN	1				F	
34	Where	α=	angle of b	end in deg	rees			! '		
35		<u> </u>	<u> </u>	<u> </u>		<u> </u>				
36	Soil Cons	tant for pas	sive resista	ince, k =	<u>ρ*(1+sinθ</u>	<u>)</u>				<u> </u>
37		<u> </u>			(1-sinθ) 60	<u></u>			i	
38			·····			<u> </u>		V		
40		proximation	passive p	ressure at	the hottom	is		<u> </u>	- 	<┼──┼───
41		to act unifo						1		
42		ck based of				1	°.	1		
43										
44		pressure, q	= k*(c+D/2)	kN/sq m		 		10	▶_ <u> </u>	┫
45		<u></u>	<u> </u>	<u> </u>	<u> </u>		=.		≠	+
		e area requi	red for the	thrust bloc		1	ha solar a star of a	1/	passive force Q	
47			<u> </u>	<u> </u>	=(T/(q))*	isq m	hydrostatic	- <u>+</u>		· · · · · · · · · · · · · · · · · · ·
48		 		>110	90	1		_ <u>SECTIO</u>	<u>N</u>	
50		/er c shall b	e taken as				i shall be ta	ken as = (0.5*D	+
51		1	1					1		
52										
53	3					1				
54									_	
55						<u> </u>				
50										
57						- <u> </u>				<u> </u>
58				+				<u> </u>		
6										
6										
6		_	1							
					·				· · · · · · · · · · · · · · · · · · ·	

ļ

	A	В	С	D	E	F	G	н	1	J
1				EATED						
2			GR	EAICK	COLOME		PROJEC	• •		
	Des	Design of Nominal Thrust Blocks and restraint pipe lengths for the transmission main								
4										
6	Comp. By:	A. P.	· · · · · · · · · · · · · · · · · · ·		Check By:]	ſ	Date:	2/10/00
-7	· · · · · · · · · · · · · · · · · · ·							l		
63										
	2.3 RESUL	TS								
65 66	On the bas	is of above	annroach	the followi	ing table gi	vec lateral	eurface ar		d for the t	brust
67	blocks, for				ing table gi	ves lateral	Surface an	cas require		ii ust
68										
69										
70 71	D	c+D/2	q kN/m²	Later	ral Area re 22 ¹ / ₂				<u>.</u>	
71	<u>mm</u> 50	m 0.78		0.01		<u>45</u> 0.02	90 0.04			· · · · · ·
73	90		200	0.01	0.01	0.02	0.04			
74	100	1.05	63.00	0.02	0.04	0.07	0.13			
75	150	1.08		0.04		0.16	0.29			
76	200			0.07		0.27	0.51			
77 78	250 300			0.11		0.42	0.77	• • • • •		
79	350			0.13			1.45			
80	500	1.25	75.00	0.39	0 77	1 50	278			
81	600	1.30	78.00	0.53		2.08	3 85			
82 83	800	1.40	84.00	0 88	1.75	3.44	6.35			<u> </u>
84	Estimated	size of th	rust block	s						
85										
00									l	İ
86			nensions				The second se			
86 87	Dmm	11	1/4	22	1/2	4	5	9	0	;
86 87 88		11 B	1/4 H	22 B	1/2 H	B	5 H	B	ю н	
86 87	D mm 50 90	11 B	1/4 H 0.08	22 B	1/2 H 0.11	B	5 H	9	0 H 0.21	
86 87 88 89 90 91	50 90 100	11 B 0.08 0.12 0.14	1/4 H 0.08 0.12 0.14	22 B 0.11 0.17 0.19	1/2 H 0.11 0.17 0.19	B 0.16 0.24 0.27	5 H 0.16 0.24 0.27	B 0.21 0.33 0.36	0 H 0.21 0.33 0.36	
86 87 88 89 90 91 92	50 90 100 150	11 B 0.08 0.12 0.14 0.20	1/4 H 0.08 0.12 0.14 0.20	22 B 0.11 0.17 0.19 0.28	1/2 H 0.11 0.17 0.19 0.28	B 0.16 0.24 0.27 0.40	5 H 0.16 0.24 0.27 0.40	9 8 0.21 0.33 0.36 0.54	0 H 0.21 0.33 0.36 0.54	
86 87 88 89 90 91	50 90 100 150 200	11 B 0.08 0.12 0.14 0.20 0.26	1/4 H 0.08 0.12 0.14 0.20 0.26	22 B 0.11 0.17 0.19 0.28 0.37	1/2 H 0.11 0.17 0.19 0.28 0.37	4 B 0.16 0.24 0.27 0.40 0.52	5 H 0.16 0.24 0.27 0.40 0.52	9 8 0.21 0.33 0.36 0.54 0.71	0 H 0.21 0.33 0.36 0.54 0.71	
86 87 88 89 90 91 92 93 94 95	50 90 100 150 200 250 300	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39	1/4 0.08 0.12 0.14 0.20 0.26 0.33 0.39	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55	8 0.16 0.24 0.27 0.40 0.52 0.65 0.77	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77	B 0.21 0.33 0.36 0.54 0.71 0.88 1.04	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04	
86 87 88 89 90 91 92 93 94 95 96	50 90 100 150 200 250 300 350	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63	8 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20	
86 87 88 89 90 91 92 93 94 95 96 97	50 90 100 150 200 250 300 350 500	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.88	8 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 123	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20	
86 87 88 89 90 91 92 93 94 95 96	50 90 100 150 200 250 300 350	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.68 1.93	1/2 H 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.88 1.03	B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.23 1.44	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96	
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100	50 90 100 150 200 250 300 350 500 600 800 800 NOTE:- Th	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.68 1.03 1.32	1/2 H 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	9 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.07 1.96 2.52	
86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 100 101	50 90 100 150 200 250 300 350 500 600 809 809 NOTE:- Th	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.68 1.03 1.32	1/2 H 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	9 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.07 1.96 2.52	
86 87 88 89 90 91 92 93 94 95 94 95 97 98 99 90 91 100 101 102	50 90 100 150 200 250 300 350 500 600 809 NOTE:- Th	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.68 1.03 1.32	1/2 H 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	9 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.07 1.96 2.52	
86 87 88 89 90 91 92 93 94 95 94 95 97 98 99 90 91 100 101 102	50 90 100 150 200 250 300 350 500 600 803 NOTE:- Th 3.TEES	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.63 0.68 1.03 1.32	1/2 H 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	5 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85	9 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.07 1.96 2.52	
86 87 88 89 90 91 92 93 94 95 96 97 95 96 97 97 100 101 102 103 104 105	50 90 100 150 200 250 300 350 500 800 800 800 800 800 800 800 800 8	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 e above ta	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate	22 B 0.11 0.17 0.19 0.28 0.37 0.46 0.55 0.63 0.68 1.63 1.32 es the prace	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minin	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	50 90 100 150 200 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.45 0.62 0.73 0.94 e above ta JLATIONS of tees, fu	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate	22 B 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.68 1.03 1.32 es the prace tic force F	1/2 H 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32 ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minin	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107	50 90 100 150 200 250 300 350 500 500 800 800 800 800 800 800 800 8	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.45 0.62 0.73 0.94 e above ta JLATIONS of tees, fu	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate	22 B 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.68 1.03 1.32 es the prace tic force F	1/2 H 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32 ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minin	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106	50 90 100 150 200 250 300 350 500 600 800 800 800 800 800 800 800 800 8	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.45 0.62 0.73 0.94 e above ta JLATIONS of tees, fu	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate	22 B 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.68 1.03 1.32 es the prace tic force F	1/2 H 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32 ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minin	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 94 95 96 97 98 99 91 100 101 102 103 104 105 106 107 108 109 109 100 107 108 109 100 107 100 100 100 100 100 100 100 100	50 90 100 250 250 300 350 500 500 800 800 800 800 800 800 800 8	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 94 95 96 97 98 99 91 100 101 102 103 104 105 106 107 108 109 109 110 100 100 100 100 100 100 100	50 90 100 250 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.88 1.03 1.32 ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 90 91 92 93 94 95 96 97 97 98 99 91 100 101 102 103 104 109 109 100 101 102 103 100 100 100 100 100 100 100 100 100	50 90 100 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 98 99 94 95 96 97 98 99 91 100 101 102 103 104 105 106 107 108 109 109 110 100 100 100 100 100 100 100	50 90 100 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 90 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115	50 90 100 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend
86 87 88 89 90 91 92 93 94 95 96 97 97 98 99 90 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114	50 90 100 150 200 250 300 350 500 500 500 500 500 500 500 5	11 B 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 0.45 0.62 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.73 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.94 0.94 0.45 0.52 0.73 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.52 0.53 0.94 0.45 0.55	1/4 H 0.08 0.12 0.14 0.20 0.26 0.33 0.39 0.45 0.62 0.73 0.94 ble indicate ll hydrosta t block, as rocedure a	22 B 0.11 0.19 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 es the prace tic force F shown in	1/2 H 0.11 0.17 0.28 0.37 0.46 0.55 0.63 0.63 1.03 1.32 ctically feas ctically feas	4 B 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 sible minim	15 H 0.16 0.24 0.27 0.40 0.52 0.65 0.77 0.89 1.23 1.44 1.85 num dimen	9 8 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 sions to su	0 H 0.21 0.33 0.36 0.54 0.71 0.88 1.04 1.20 1.67 1.96 2.52 uit the type	of bend

Thrust Block Design-Transmission - TP 10 bar/12/5/00

.

i

	Á	В	С	D	E	F	G	Н	1	J
2 3			GRI	EATER	COLOMB	O NRW I	PROJEC	т		
4	Desi	gn of Non	ninal Thru	st Blocks	and restra	int pipe le	ngths for	the trans	mission r	nain
5	Comp. By:	A. P.]		Check By:				Date:	2/10/00
6 7			I				l			
18	3.2 RESUL	re							_ F	
20	5.2 RESUL	13						₩		 F
21	D	c+D/2	q	Area	В	Н		F		
22	mm	 	kN/m ²	sq m	<u>m</u>	 		В	<u> </u>	:
23 24	50 90	0.78	46.50	0.03		0.18			<u> </u>	
25	100	1.05	63.00	0.09		0.31		Ŧ	Q	
26	150	1.08	64.50	0.21		0.45		G.	·	<u> </u>
27	200	1.10	66.00 67.50	0.36		0.60 0.74			<u>.</u>	
28 29	250 300	<u>1.13</u> 1.15	69.00	0.55		0.74			\vdash	+
30	350	1.18	70.50	1.02	1.01	1.01	o			\ <u>_</u>
31	500	1.25		1.98		1 40				
32 33	600 800	1,30 1,40	78.00 84.00	2.72		1 65 2 12	,	·		
33 34	שטם	1.44	CM:UU	4.43	∠ 3∠	2.12		$+\underline{\Box}$	┣╴┸┼┼╸	$\neg \land \vdash$
35					1					 *
36							hydrostatic thr	ust F	passive force Q	
37				<u> </u>					<u> </u>	:
<u>38</u> 39	4.VERTICA			l			\	GL	1	
	4.1 DESIG	N APPRO	ACH	L					<u></u> i 	
41							TS	Sinα A7	1	
	In the case upwards as								- TCosα	
	place, this								<u></u>	
45	following m	nethods;					<u>↓</u>	В	\wedge	
	(1) provisio						<u> </u>		<u>ı</u> '	
_	overburder (2) provisio						1	<u> </u>	<u> </u>	
	restrained							$ 0\rangle$	∦] н —	
150				1						
	For larger							_ <u>SECT</u>		
	impractica to balance				linust bloc		<u></u>			
154				<u> </u>		<u> </u>			-	:
	Therefore									
	on both sid									
	available s									
159)									i
160		<u> </u>	; -{	+		<u></u>				
161 162						1				
163			··			<u> </u>				<u></u>
164	1							.ļ	1	
165								-		
166			1	-			+	+		
168		1					1		+	
169	9									
170						ļ	ļ	ļ		
171	2			1		1	1	. I	1	

	A	В	С	D	E	F	G	Н	1	J
1	ł		GR	EATER	COLOME	30 NRW	PROJEC	т		
3								<u> </u>		
4	Design of Nominal Thrust Blocks and restraint pipe lengths for the transmission main								ain	
6	Comp. By:	A. P.		. [Check By:			[Date:	2/10/00
7			J	l			l	L.		
173 174	D mm	D 11		s of thrust 22		m. for dif	ferent vert	ical angle 9		
175	Dinin	В	H	B	H	B	н	B	H	
176 177	50 90	0.08 0.14	0.08	0.09	0.09	0.10	0.10	0.13	0.13 0.23	
178	100	i	0.14	0.16	0.16 0.18	0.18	0.18	0.23	0.23	
179	150	0.23	0.23	0.26	0.26	0.30	0.30	0.38	0.38	
180 181	200 250			0.35	0.35	0.40	0.40	0.50	0.50	
182	300	0.45	0.45	0.53	0.53	0.60	0.60	0.75	0.75	
183 184	350 500	0.53 0.75	0.53 0.75	0.61 0.88	0.61 0.88	0.70 1.00	0.70 1.00	0.88	0.88	
185	500 600	0.73	0.90		0.88 1.05	1.00	1.00	1.25 1.50	1.23	
186	800	1.20	1.20	1.40	1.40	1.60	1 60	2.00	2.00	
187 188	5. VERTIC	AL DOWN	WARD BE	ND						
189										
	As in the ca both sides									
	in place us								Te Dena	
193 194										
	6. REQUIR	ED LENG	THS FOR	RESTRAIN	T					
196										
197	The length	of pipeline	required to	be restrai	ned on ead	ch side of t	he bend is	given by;		
199	L = P*A*(1-	-Cos α)/μ*(We+Ww+	Wp)						
200 201		Length of	restrained	ioints on e	ach side of	the hend ((m)			
202		Internal Pr								
203 204		Cross-sec			e in sq mm					
204		Bend defle			he pipe an	d the soil		=	0.3	
206		Weight of					h of pipe)		<u> </u>	
207 208		Weight of Weight of				th of pipe)			<u> </u>	
209			C							
210 211	Dmm	P	A	We	Ww	Wp			<u> </u>	
212		N			****	114	11 1/4	22 1/2		2
213	50				0.02		0.16	0.65		
214 215	<u>90</u> 100				0.06		0.29 0.24	1.14 0.96		
216	150	1.00	17671	3.00	0.18		0.36	1.41	9.76	18.54
217 218	200 250						0.47 0.52	1.85 2.07		
219	300	1.00	70686	6.00	0.71	0.68	0.61	2.43	18.56	31.92
220 221	350 580						0.70 0.97	2.78 3.85		
222	600	1.00	282743	12.00			1.12	3.85 4.44		
223	800				5.03		1.41	5.61		
224 225						ļ				
226				· · · · · · · · · · · · · · · · · · ·		<u>├</u> ────			ļ	
227		ļ		<u> </u>		<u> </u>	<u> </u>		<u> </u>	<u> </u>

Thrust Block Design-Transmission - TP 10 bar/12/5/00

Design Calculation sheet 4 of 5

	A	В	C	D	E	F	G	н	1	J
1										
2			GR	EATER (COLOMB	O NRW	PROJEC	Т		
3										
4	Des	ign of Nor	ninal Thru	st Blocks	and restra	int pipe le	engths for	the trans	mission I	nain
5										
6	Comp. By:	A. P.			Check By:				Date:	2/10/00
7								J		
228	7. THRUST	BLOCKS	FOR TAPE	RS			1		<u></u>	!
229							i			
	The same of	design con	cept is appl	ied to size	the thrust	blocks for	tapers. In t	he case of	f tapers, re	esulting
	differentilal									<u> </u>
232			1			 				
233	Taper siz	e in mm	Force F	c+D/2	q	A	Thrust Bl	ock size		1
234	d1	d2	kN	m	kN/sq m	sqm	Hm	Brn		1
235	uPVC									
236	110	90	1.5708	1.06	63.30	0.03432	9.19	9.19		
237	225	160	9.82729	1.11	66.75	0.18699	5.43	6.43		1
238	160	110	5.30144	1.08	64.80	0.10192	8.32	\$ 32		
239	DI	1								1
240	250	150	15.708	1.13	67,50	0.2818	0.53	5 53		
241	300	150	26.5072	1.15	69.00	0.45485	0.67	0.67		
242	300	200	19.635	1.15	69.00	0.35525	8.60	0.60		
243	300	250	10.7992	1.15	69.00	0.2272	0.48	6.48		
244	400	200	47.1239	1.20	72.00	0.78016	0.88	0.88		
245	400	250	38.2882	1.20			0.81	9.81		
246	400	300	27.4889	1.20			9.74	6.71		1
247	450	300	44.1786	1.23			0.87	6.87		:
248	450	400	16.6897	1.23			0.62	0.62		!
249	_500	300	62.8319	1.25			1.02	<u>^.sz</u>		;
250		400	35.3429	1.25				8.82		
251	500	450	18.6532	1.25				8.87		1
252		300	106.029	1.30	1			1.28	×	
253		400	78.5398	1.30						
254	1	500	43.1969	1.30				0.91		
255		500	94.2478			+- <u></u>		1.24		
256	700	600	51.0509	1.35	81.00	1.0151	1.01	1.01		1

.

÷

i

GOTHATUWA GROUND RESERVOIR AND PUMP HOUSE

i

	NSULTANT (PVT) LTD.	PROJECT NEW	JOB NO.	
DPLANNERS	ENVIRONMENTAL ENGINEERS	CALCULATIONS BY MELD, LUTHEY,	SHEET.O.L.OF	
		SCHEME KMU - GOTHTHATUWA COMPONENT RESERVOIR & P. HOW	DATE	
ITEM		CALCULATIONS	OUT PUT	
1.	DATA.			
		- · ·	1	
ļ	A) DEAD LO			
1		G. AREA SLAB 200Km THK = 4.8 Km	/	
		OMM THICK BENCHING ON ROOF = 2.4 1	Ļ .	
		1 TERRAZ70 = 1.8 "		
		O'R ROOF SLAB 250MW = GO N THOK BENCHING CONCI = 2.4 "		
	200 mm	PEBBLE LAYER = 4.8 "		
	ZINC	ALDMINIUM ROOFING = 0.5 "		
	WITH PU	RLINS ETC.		
1	200444	BLOCK WALL = 312 "		
	DENSITY	OF CONCRETE = 24.0 by	2 10	
		OF WATER = 10.0 "		
			-	
	B). LIVE L		4 77 - 1	
2		= 1.0 M/m		
		TAGING AREA SLAB =100 " SERVOIK ROOF = 215 "		
	C). WIND J			
	C). WIND ,		:	
	BASIC	Winio scaro = 34.0 m/s	S	
	CHARAC	Teristic wind Pressure		
		$k = 0.613 \frac{1/2}{s} = \frac{N}{m^2}$	-	
	WHER	E $V_{S} = S_1 S_2 S_3 V$	1	
	$S_j = 1$	$S_{3} = 1.0$ $S_{2} = 0.83$ for		
	-	HISON.	•	
	~) ALLOWA	ABLE SOIL BEARING PRESSURE		
		= 250.0 KN/m2	•	
		· · · · · · · · · · · · · · · · · · ·		
	Con	ORE TE $f_{cu} = 35.0 \text{ N/mm}^2$.		
	RE,	NFORCEMENT J= 460.0 "		
	i Nu	2 STEEL = 250,0 "		
			v .*	

ł

. 222

	ISULTANT (PVT) LTD.	PROJECT NRW	JOB NO.	
NFRASTRUCTURE & E AND PLANNERS	NVIRONMENTAL ENGINEERS	CALCULATIONS BY MOHD, LUTHEY	SHEET.02OF	
		SCHEME ICMU - GOTHTHATUWA RESERV COMPONENT & PUMP HOUSE .	DATE OUT PUT	
ITEM		CALCULATIONS		
2,	WK = = BUILDING	OF WIND FORCES $0.613 V_s^2$ $0.613 \times (1.0 \times 0.83 \times 1.0 \times 34)^2$ 0.488×1.0^2 0.488×1.0^2 0.1MENSIONS. 24.5m, b = 11.5m $h = 5.0$	Wk=0.488 KN/M2.	
		$h \neq K b$. ROOF SLOPE = 15°. RIGHT ANGLE TO BUILDING		
-		pe =-0.8 5 -0.4		
		-LEL TO BUILDING. pe=-0.8 & -0.6	•	
	CUIN JELOT F	= W _K . A (C _{Pe1} - C _{Pe2})		
		= 0.488 × 4.0 × h × (-0.8-(-0.9))		
	WIND PORCT	= 0.78 km/m	(UIND FORMS F=-0.78 Kulja	

i

	NSULTANT (PVT) LTD.	PROJECT NRW	JOB NO.	
RASTRUCTURE & I PLANNERS	ENVIRONMENTAL ENGINEERS	CALCULATIONS BY MOHD. LUTHEY.	SHEET	
		SCHEME KMU- GOTHATUWA RESERVOIRE COMPONENT PURIP HOUSE.	DATE	
ITEM		CALCULATIONS	OUT PUT	
3)	BS 8110 : PA	RESERVOIR ROOF SLAB. ART 1 1985 FOR FLAT SLAB DESIGN LOAD ON ROOF SLAB	·····	
		$n = 1.4 G_{\rm E} + 1.6 Q_{\rm IC}$		
		$= 1.4(6.0+4.8+2.4) + 1.6 \times 2.5$ = 22.48 km/m ²	DEFIGN LOX N=22.48 km	
	ANGULAR	B ANALYSED IN TWO RIGHT DIRECTION AS FLAT SLAB ON SET OF COLOMNS WITH GRIDS.		
	elas k	1107A = 5442 mm. D = 250 mm.	-	
	`.	$I = \frac{1}{12} bh^3$		
		$=\frac{1}{12} \times 5342 \times 250^{3}$	• •	
	SLAB W	= 7.086, Eg mm ²	• • •	
	•	$\frac{1}{12} = \frac{1}{12} \times 5330 \times 253^{3}$	· · · · · · · · · · · · · · · · · · ·	
		= 6.940 E9 Nm		
		$4(D \times 40D \rightarrow I = \frac{1}{12} \times 400^{4}$ $= 2.133F9 \text{ mm}$	•	
	•	B & SHEAR ANALYSED USING BASED ON SLAB-COLUMN FRAME		
	FRAME 1	(ALONG THE RESERVOIR PARALLEL TO MIDDLE WALL.		
	DL 3829 LL 72:5 4 5:33 7:08657	3829 3829 3829 3829 72.5 72.5 72.5 5.33 5.33 5.33 5.33		
· · · · · · · · · · · · · · · · · · ·		·8 ·133E9 // // //		

į

224

F.O.S FOR DL= 1.4 ***F.O.S. FOR IMPL= 1.6 ***STRUCTURE INFORMATION*** NO.OF SPANS= 5

SPAN NO	SPAN LTH-m	$Iz - mm^4$
1	5.33	7.086E+09
2	5.33	7.086E+09
3	5.33	7.086E+09
4	5.33	7.086E+09
5	5.33	7.086E+09

COLUMN	LENGTH(m)	2ND MOMENT	
ROW		OF AREA(mm^4)	
1.00	0.00	0.00	ABOVE
1.00	0.00	0.00	BELOW
2.00	0.00	0.00	ABOVE
2.00	5.80	%2133000000.00	BELOW
3.00	0.00	0.00	ABOVE
3.00	5.80	%2133000000.00	BELOW
4.00	0.00	0.00	ABOVE
4.00	5.80	\$2133000000.00	BELOW
5.00	0.00	0.00	ABOVE
5.00	5.80	%2133000000.00	BELOW
6.00	0.00	0.00	ABOVE
6.00	0.00	0.00	BELOW

*****LOADING INFORMATION*****

SP.NO	LOAD-kN	ST.DIST-m	COV.DIST-m	DD/IMP
1	382.90	0.00	5.33	D
1	72.50	0.00	5.33	I
2	382.90	0.00	5.33	D
2	72.50	0.00	5.33	I
3	382.90	0.00	5.33	D
3	72.50	0.00	5.33	I
4	382.90	0.00	5.33	D
4	72.50	0.00	5.33	I
5	382.90	0.00	5.33	D
5	72.50	0.00	5.33	I

CANT.CHR.D.MT LHS= 0 kNm CANT.CHR.IMP.MT.LHS = 0 kNm CANT.CHR.D.MT RHS= 0 kNm CANT.CHR.IMP.MT.RHS = 0 kNm

MAX.SHEARS AND MOMENTS. SF-kN BM-kNm

SPAN NO. 1	SHEAR	HOG.MT	SAG.MT			
-	266.76 -396.73	-0.03 -376.84	0.00			
2	MAX.SPAN MNT=	290.67 kNm	AT A DISTANCE= 2.13 m			
2	341.56 -314.40	-355.60 -272.84	0.00			
3	MAX.SPAN MNT=	173.21 kNm	AT A DISTANCE= 2.66 m			
5	326.03	-278.82	0.00			

. _. .___ ___ . .

3

....

. ____

	-326.03	-278.82	0.00	
	MAX.SPAN MNT=	200.69 kNm	AT A DISTANCE=	2.66 m
4	314.40 -341.56	-272.84 -355.60	0.00	
5	MAX.SPAN MNT=	173.21 kNm	AT A DISTANCE=	2.66 m
C	396.73 -266.76	-376.85 0.00	0.00 0.00	
	MAX.SPAN MNT=	290.68 kNm	AT A DISTANCE=	3.19 m

COLUMN MOMENTS, kN.m

. میک خان همه بیک ماند بای بابه منه بین کار سی می خان می می مرد می می سر می مرد ا

į

COLUMN	COLUMN 1	MOMENTS
ROW	ABOVE	BELOW
1.00	0.0	0.00
2.00	0.0	0 -43.71
3.00	0.0	0 30.92
4.00	0.0	0 -30.92
5.00	0.0	0 43.71
6.00	0.0	0 0.00

· -----

the second s

.O.S FOR DL= 1.4 ***F.O.S. FOR IMPL= 1.6 **STRUCTURE INFORMATION*** NO.OF SPANS= 6

PAN NO	SPAN LTH-m	$Iz-mm^4$
1	5.44	6.940001E+09
2	5.44	6.940001E+09
3	5.44	6.940001E+09
4	5.44	6.940001E+09
5	5.44	6.940001E+09
6	5.44	6.940001E+09

(L)

OLUMN	LENGTH(m)	2ND MOMENT	
OW		OF AREA(mm^4)	
1.00	0.00	0.00	ABOVE
1.00	0.00	0.00	BELOW
2.00	0.00	0.00	ABOVE
2.00	5.80	%2133000000.00	BELOW
3.00	0.00	0.00	ABOVE
3.00	5.80	%2133000000.00	BELOW
4.00	0.00	0.00	ABOVE
4.00	0.00	0.00	BELOW
5.00	0.00	0.00	ABOVE
5.00	5.80	%2133000000.00	BELOW
6.00	0.00	0.00	ABOVE
6.00	. 5.80	\$ 2133000000. 00	BELOW
7.00	* 0.00	0.00	ABOVE
7.00	0.00	0.00	BELOW

*****LOADING INFORMATION*****

	ه هيچ هند عند هند منه دور ويم زمن متر چرد غن ري			
P.NO	LOAD-KN	ST.DIST-m	COV.DIST-m	DD/IMP
1	382.90	0.00	5.44	D
1	72.50	0.00	5.44	I
2	382.90	0.00	5.44	D
2	72.50	0.00	5.44	I
3	382.90	0.00	5.44	Đ
3	72.50	0.00	5.44	I
4	382.90	0.00	5.44	D
4	72.50	0.00	5.44	I
5	382.90	0.00	5.44	D
5	72.50	0.00	5.44	I
6	382.90	0.00	5.44	D
6	72.50	0.00	5.44	I

:ANT.CHR.D.MT LHS= 0 kNm CANT.CHR.IMP.MT.LHS = 0 kNm :ANT.CHR.D.MT RHS= 0 kNm CANT.CHR.IMP.MT.RHS = 0 kNm

AX.SHEARS AND MOMENTS. SF-kN BM-kNm

···· - · · ---- ·

PAN	NO.	SHEAR	HOG.MT	SAG.MT
1		266.56	-0.03	0.04
		-396.98	-386.09	0.00
2		MAX.SPAN MNT=	296.41 kNm	AT A DISTANCE= 2.17
_		342.54	-363.98	0.00

. . _ -

227

ш

	-312.93	-274.13	0.00	
3	MAX.SPAN MNT=	178.91 kNm	AT A DISTANCE= 2.7	72 m
5	325.52 -330.65	-278.96 -304.08	0.00 0.00	
4	MAX.SPAN MNT=	203.62 kNm	AT A DISTANCE= 2.7	72 m
4	330.65 -325.52	-304.08 -278.96		
-	MAX.SPAN MNT=	203.62 kNm	AT A DISTANCE= 2.7	72 m
5	312.93 -342.54	-274.13 -363.98	0.00	
~	MAX.SPAN MNT=	178.91 kNm	AT A DISTANCE= 2.3	72 m
6	396.97 -266.57	-386.08 -0.00	0.00 0.00	
	MAX.SPAN MNT=	296.39 kNm	AT A DISTANCE= 3.2	26 m

D

COLUMN MOMENTS, kN.m

COLUMN	COLUMN MOME	INTS
ROW	ABOVE	BELOW
1.00	0.00	0.00
2.00	0.00	-46.15
3.00	0.00	32.44
4.00	0.00	0.00
5.00	0.00	-32.43
6.00	0.00	46.14
7.00	0.00	0.00

'.O.S FOR DL= 1 ***F.O.S. FOR IMPL= 1 **STRUCTURE INFORMATION*** NO.OF SPANS= 5

SPAN NO	SPAN LTH-m	Iz- mm^4
1	5.33	7.086E+09
2	5.33	7.086E+09
3	5.33	7.086E+09
4	5.33	7.086E+09
5	5.33	7.086E+09

OLUMN	LENGTH(m)	2ND MOMENT	
SOM MOS		OF AREA(mm^4)	
1.00	0.00	0.00	ABOVE
1.00	0.00	0.00	BELOW
2.00	0.00	0.00	ABOVE
2.00	5.80	%213300000 . 00	BELOW
3.00	0.00	0.00	ABOVE
3.00	5.80	%2133000000.00	BELOW
4.00	0.00	0.00	ABOVE
4.00	5.80	%2133000000.00	BELOW
5.00	0.00	0.00	ABOVE
5.00	5.80	%213300000 . 00	BELOW
6.00	0.00	0.00	ABOVE
6.00	0.00	0.00	BELOW

*****LOADING INFORMATION*****

3P.NO	LOAD-kN	ST.DIST-m	COV.DIST-m	DD/IMP
1	382.90	0.00	5.33	D
1	72.50	0.00	5.33	I
2	382.90	0.00	5.33	D
2	72.50	0.00	5.33	I
3	382.90	0.00	5.33	D
3	72.50	0.00	5.33	I
4	382.90	0.00	5.33	D
4	72.50	0.00	5.33	I
5	382.90	0.00	5.33	D
5	72.50	0.00	5.33	I

CANT.CHR.D.MT LHS= 0 kNm CANT.CHR.IMP.MT.LHS = 0 kNm CANT.CHR.D.MT RHS= 0 kNm CANT.CHR.IMP.MT.RHS = 0 kNm

4AX.SHEARS AND MOMENTS. SF-kN BM-kNm

....

SPAN 1	NO.	SHEAR	HOG.MT	SAG.MT
		181.40	-0.01	0.00
		-277.08	-263.19	0.00
2		MAX.SPAN MNT=	192.55 kNm	AT A DISTANCE= 2.13 m
_		238.54 -217.91	-248.35 -190.55	0.00 0.00
3		MAX.SPAN MNT=	98.23001 kNm	AT A DISTANCE= 2.66 m
•		227.70	-194.73	0.00

Ð

	-227.70	-194.73	0.00
4	MAX.SPAN MNT=	120.82 kNm	AT A DISTANCE= 2.66 m
7	217.91 -238.54	-190.55 -248.35	0.00
5	MAX.SPAN MNT=	98.23001 kNm	AT A DISTANCE= 2.66 m
5	277.08 -181.40	-263.19 0.00	0.00 0.00
	MAX.SPAN MNT=	192.56 kNm	AT A DISTANCE= 3.19 m

9

COLUMN MOMENTS, kN.m

ł

COLUMN	COLUMN MOME	NTS
ROW	ABOVE	BELOW
1.00	0.00	0.00
2.00	0.00	-20.89
3.00	0.00	10.89
4.00	0.00	-10.89
5.00	0.00	20.89
6.00	0.00	0.00

'.O.S FOR DL= 1 ***F.O.S. FOR IMPL= 1 ***STRUCTURE INFORMATION*** NO.OF SPANS= 6

SPAN LTH-m	Iz- mm^4
5.44	6.940001E+09
	5.44 5.44 5.44 5.44 5.44

્રા

÷.

OLUMN OW	LENGTH(m)	2ND MOMENT OF AREA(mm^4)	
1.00	0.00	0.00	ABOVE
1.00	0.00	0.00	BELOW
2.00	0.00	0.00	ABOVE
2.00	5.80	%2133000000 . 00	BELOW
3.00	0.00	0.00	ABOVE
3.00	5.80	%2133000000.00	BELOW
4.00	0.00	0.00	ABOVE
4.00	0.00	0.00	BELOW
5.00	0.00	0.00	ABOVE
5.00	5.80	%2133000000.00	BELOW
6.00	0.00	0.00	ABOVE
6.00	5.80	%2133000000 . 00	BELOW
7.00	• 0.00	0.00	ABOVE
7.00	0.00	0.00	BELOW

****LOADING INFORMATION*****

		وی جنوعی میں اس کے میں جنوعی براد ہے		
P.NO	LOAD-KN	ST.DIST-m	COV.DIST-m	DD/IMP
1	382,90	0.00	5.44	D
1	72,50	0.00	5.44	I
2	382.90	0.00	5.44	D
2	72,50	0.00	5.44	I
3	382,90	0.00	5.44	D
3	72.50	0.00	5.44	I
4	382.90	0.00	5.44	D
4	72.50	0.00	5.44	I
5	382,90	0.00	5.44	D
5	72.50	0.00	5.44	I
6	382.90	0.00	5.44	D
6	72.50	0.00	5.44	I

NT.CHR.D.MT LHS= 0 kNm CANT.CHR.IMP.MT.LHS = 0 kNm NT.CHR.D.MT RHS= 0 kNm CANT.CHR.IMP.MT.RHS = 0 kNm

X.SHEARS AND MOMENTS. SF-KN BM-KNm

.....

'AN 1	NO.	SHEAR	HOG.MT	SAG.MT	
		181.25	0.00	0.02	
		-277.25	-269.65	0.00	
2		MAX.SPAN MNT=	196.27 kNm	AT A DISTANCE= 2.17	m
2		239.23	-254.21	0.00	

.....

	-217.09	-191.45	0.00	
2	MAX.SPAN MNT=	101.61 kNm	AT A DISTANCE= 2.72 m	a
3	225.58 -230.92	-194.83 -212.37	0.00 0.00	
4	MAX.SPAN MNT=	120.08 kNm	AT A DISTANCE= 2.72 m	n
4	230.92 -225.58	-212.37 -194.83	0.00 0.00	
5	MAX.SPAN MNT=	120.08 kNm	AT A DISTANCE= 2.72 m	n
5	217.09 -239.23	-191.46 -254.20	0.00 0.00	
6	MAX.SPAN MNT=	101.61 kNm	AT A DISTANCE= 2.72 m	n
U	277.25 ~181.25	-269.64 -0.00	0.00 0.00	
	MAX.SPAN MNT=	196.27 kNm	AT A DISTANCE= 3.26 1	m

COLUMN MOMENTS, kN.m

ł

COLUMN MOM	ENTS
ABOVE	BELOW
0.00	0.00
0.00	-21.91
0.00	10.81
0.00	0.00
0.00	-10.81
0.00	21.91
0.00	0.00
	ABOVE 0.00 0.00 0.00 0.00 0.00

	DNSULTANT (PVT) LTD. PROJECT NRW	JOB NO.
AND PLANNERS	د ENVIRONMENTAL ENGINEERS CALCULATIONS BY MOHD، LUTHEY	SHEET.12
	SCHEME KMU - GOTHTHATUWA RE COMPONENT & PUMP HOUSE	IDATE
ITEM	CALCULATIONS	OUT PUT
	FRAME 2 (ACCROSS THE RESERVOIR).
	-	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	382.9
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	<u>72.5</u> 5.442
	6.34E9	
	5.8	·····
•	2.13529	
	FRAME DESIGN BASED ON BSBIID- 3	
•	MAX. SUPPORT BM (-)VE = 376.84 TABLE 3.20 BS B10.	
	COLUMIN STRIP 75% = 282.0	53 lav.
	MIDDLE STELP 25% = 94.	21 11
4	MAX. SPAN BM $(+ve) = 290.6$	7 KNM.
		1
	COLUMN STRIP 55/ = 159.9 MIDDLE STRIP 45/ = 130.8	KNW.
	MIDDLE SIRIP 43, 210010	
	WIDTH OF COLUMN STRIP = 2x / = 2x	533
	14	- 4 -
-	$= \frac{2.665}{1000}$ M.	
	WINT OF MIRRY STRIP - FIRIA	C.L.E
•	WIDTH OF MIDDLE STRIP = $5.442 - 2.5 = 2.777 \text{m}.$	
		•
	REINFORCEMENT.	
	NEGATIVE - OVER THE SUPPORT	4 5 5
	TOP BAR.	
	$d = 250 - 40 - \frac{16}{2} = 202 \text{ mm},$	Ĩ
	BM = 282.63 KUM.	;
	l	
	$\frac{M}{bd^2} = \frac{282.63 \times 10^6}{2665 \times 202^2} = 2.6$	
	bd^2 2665 x 202 ²	
	100As - 0.72 - 11	
}	$\frac{100 A_{s}}{5d} = 0.72 \implies A_{s} = \frac{0.72}{100} \times 266$ $= 3876.0 \text{ M}$	202
		Anna la no
• • • •	$\frac{2}{3}A_{S} = 2584.0 \text{ mm}^{2} - \text{TIGOIDD} - 0000000000000000000000000000000000$	W 1333 76@200 OVER
	3 AS = 12 42.0 MM - 116(0200-01	101333 TIL0200 OVER
L	REST OF	COL. W 1333- COLUM

يہ ا

EYWATER CON	SULTANT (PVT) LTD.	PROJECT NRW)	JOB NO.
RASTRUCTURE & EI D PLANNERS	NVIRONMENTAL ENGINEERS	CALCULATIONS BY	MOHD, LUTHEY.	SHEET 13 OF
		SCHEME KML COMPONENT	2- GOTHTHATUWA RESERVOID	2 DATE
ITEM	<u> </u>	CALCULATIO		OUT PUT
	NEGATIVE ->	TOP BAR		····
	d =		2 b= 2777 mm.	
		94.21×106 2777 × 205	= 0.81	
da , y , da , d , e,	$\frac{100As}{bd} = bd$		177 x 205 = 1252.4 K	2. N/
	=	$\frac{1252.4}{2.777} =$	451.0 mm /m.	MIDDLE STR
:			150 c/c $\rightarrow A_{S} = 523.0$ N STRIP BOTON BAS	
	b = 2	1919 kNM。 665 mm 50-40- 注	- 204 (0 MM)	• • •
	$\frac{2q_{J}}{2} =$	159.9 × 106 2665 × 204°	= 1.44	
	$\frac{100A_{1}}{5d} =$	0,39 ⇒	$A_3 = 0.39 \times 2665 \times 2000$ = 2120.3 mm ²	ļ
•			$= \frac{2120.3}{2665} = 795.6$	
;	Prestut		12 @ 125 ck As = 904.0 Strip Bottom BAR	172 <u>0125</u> 0
-	M = 130	D.8 Kum.	d = 204 mm.	· · ·
		130.8×106 2777, × 2042		
	5 <u>4</u>	= 0.31 ->	$4_3 = 0.31 \times 2777 \times 204$ = 1756.2 mm	
	Pr		= 632.4 MIN / M. 175 -> As= 646.0 Mi	MIDDLE STR

.

· · · • • • • • - -

234

•

	TD. PROJECT NORW	JOB NO.
RASTRUCTURE & ENVIRONMENTAL ENGINE DPLANNERS	CALCULATIONS BY MOHD, LUTHEY,	SHEETOF
	SCHEME KMU-GOTHTHATUWA RESERVOIR COMPONENT SPUMP HOUSE,	DATE
ITEM	CALCULATIONS	OUT PUT
FRAME (\mathbb{D}	
MAXM SUP	PORT BM (-UE) = 386.09 KNM.	
	N STRIF 75% = 283.6 DNW. LE STRIP 25% = 96.5 KNW.	
MAXM, SP.	AN BM $(+VE) = 295.41$ km.	
	AN STRIP 55% = 163.0 KNW.	
נמוזא	DLE STRIP 45% = 133.4 "	
	DF COLVMN STRIP = 2665.0mm. DF MIDDLE STRLP = 5330-2665	
. REINFORCE	= 2665.0 MM	: :
NEGATIVE	OVER THE SUPPORT (TOP BAR)	• •
•	289.6 KNM.	
	250-40-16 = 202 mm. 2665.0 mm.	:
<u>M</u> 2012	$= \frac{289.6 \times 10^6}{2665.0 \times 202.0^2} = 2.66$	•
100As bd	$= 0.74 \rightarrow As = 0.74 \times 2665.0 \times 202$	• • •
	= 3983.6 mm ²	
	$4s = 2655.7 \text{ mm}^2 \text{ over } 1333.$ (M(D) M	0 w.
K A	= 1327.9 MM ² OVEN 1333. (REST)	o.
: Pi	201 DE TIGO 100 OVER 133.0 MM = 2010.000 / MID OF MIDDLE STRIP	PROVIDE
	T 16@200 OVER REST OF 1333.0	NIDTH &
	= 1005' 0 MM/M .	NIDDLE AREA
		OF COL. STRIP

	ISULTANT (PVT) LTD.	PROJECT NRW	JOB NO.
INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS AND PLANNERS		CALCULATIONS BY MOHD. LUTHEY	SHEET. 15OF
		SCHEME KMU- GOTHTHATUWA RESERVOIR COMPONENT & PUMP HOUSE.	DATE
ITEM		CALCULATIONS	OUT PUT
	NEGATIVE -	MIDDLE STRIP - TOP BAR	
		.	
1	M = 36	5 KNM.	
1	b = 2c	65.0 MM	
	d = 20	5.0 MM.	
	$\frac{N}{1} = -$	$\frac{96.5 \times 10^6}{2663.5 \times 205.0^2} = 0.86$	
	54	2663.0 × 205.07	
	in t		
E .	$\frac{100}{1-1}$	$0.23 \rightarrow A_{5} = 0.23 \times 2665.0 \times 205.0$	
		= 1256.5 MW2	
:		= 471.5 Mm /m	-
	0		MIDDUE STR
-	PRO	VISE_ TIO (150) de -> As = 523,0 m	
	D		TO@1500
ŧ	POSITIVE R		:
	COLUMIN S	TR'S BOTTOM GAR	
	= PX	163.0 KNM.	•
:	6 =	2665.0 WMA.	
	d =	204.0 WW.	
	<u></u>	$= \frac{163.0 \times 10^6}{2665.0 \times 204.0^2} = 1.47$	
	6d²	2665.0 × 204.02	:
- ' -			
	<u>100As</u> bd	$-= 0.4 \rightarrow A_{s} = 0.4 \times 2665.0 \times 204.0$	
	-	= 2174.6 mm2	•
<u>-</u>		= 816.0 NW- /m.	: Column str
:	Pen	$\frac{1}{2} = \frac{1}{2} = \frac{1}$	BOTTOM RA
		VIDE TI2@ 125 c/c -> As = 90410mm	T12@1250
		M- MIDDLE STRIP - BOTTOM BAR.	· <u>-</u>
		33.4 KNM.	
		65.0 mm, d= 204.0 mm.	
_			
	$\frac{m}{bd^2} = -$	$\frac{133.4 \times 10^6}{2665.0 \times 204.0^2} = 1.2$	
-	100As -	0.33 -> As = 0.33 × 2665.0 × 204.0	•
	bd		MIDDLE STRI
<i>.</i> .		= 1794.1 MM2 -> 673.2 Mm2	BOTTOM BAR
· · ·	PROV	110E 112@ 150 c/c -> As = 753.00mm	112@150 c

ł

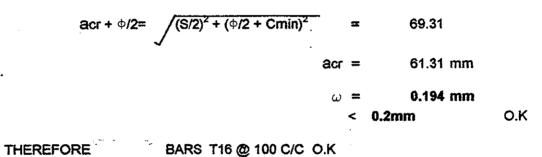
NFRASTRUCTURE & ENVIRONMENTAL ENGINEERS IND PLANNERS CALCULATIONS BY MOHD, LOTHF?		JOB NO.	
		SHEET. 16OF	
		SCHEME KMU - GOTHTHATUWA RESER COMPONENT & PUMP HOUSE.	RV0+C DATE
ITEM		CALCULATIONS	OUT PUT
	BB 8110: P $\frac{l}{d} = \frac{l}{d}$ FACTOR $\frac{M}{bd^{2}} = \frac{l}{d}$ MODIFICAT	DEFLECTION. ART 1: 1985 CLAUSE 3.7.8 & 3 26 CONTINUOUS SPANS = 0.9 FOR DROPS < $\frac{1}{3} \times SPA$.47 TON FACTOR = 1.2202. MABLE SPAN = 26 × 1.2202 × 0.9 × 20 = 5825.0 MM > 5442.0	A·6
		ECTION CRITERIA SATISFACTORY	

;

DESIGN OF CRACK.

BS 8007 : 1987

Reservoir Roof Slab DESIGN SURFACE CRACK WIDTH ω = 3acr.Em 1+2(acr - Cmin) (h-x) $\mathcal{E}m = \mathcal{E}1 - bt(h-x)(a'-x)$ $3\overline{\text{Es. As}(d-x)}$ SERVICE MOMENT M 75.9 KNM/M 40 (mm) 16.00 mm h(mm) = 250Cmin = Φ ≖ $d = h - Cmin - \Phi/2$ 202.00 mm ď = 35 N/mm² CONCRETE f cu = 460 N/mm² fy = REINFORCEMENT PROVIDED BAR DIAMETER Φ = 16 mm BAR SPACING S = 100 mm 2010.62 mm² Asp = 28 KN/mm² Ec = 200 KN/mm² Es = $\alpha e = Es/1/2Ec =$ 14.29 0.00995 ρ**=** $\alpha e.\rho =$ 0.142 THEREFORE $x = -\alpha e (\rho + \rho') + \int \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho') = \frac{1}{\alpha}$ 0.410 đ đ CONSIDERING $\rho' = 0$ THEREFORE 82.76 mm x = z = d - 1/3 x =174.41 mm 216.44 N/mm² fs = M= Asp.z $\mathcal{E}\mathbf{s} = \mathbf{f}\mathbf{s}$ 0.0010822 =


Es x 1000

$$\varepsilon_1 = (h-x) + \varepsilon_s = 0.001518$$

(d-x) $\varepsilon_m = 0.0013234$

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 40 mm $\omega = 3.acr. \varepsilon m = 0.159 mm$ < 0.2mm O.K

2) CRACK AT MIDWAY BETWEEN TWO BARS

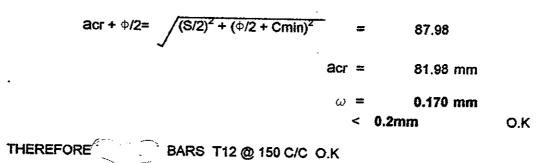
DESIGN OF CRACK.

BS 8007 : 1987

Reservoir Roof Slab - Middle strip Bottom DESIGN SURFACE CRACK WIDTH $\omega =$ 3acr.Em 1+2(acr - Cmin) (h-x) $\mathcal{E}\mathbf{m} = \mathcal{E}\mathbf{1} - \mathbf{bt}(\mathbf{h} - \mathbf{x})(\mathbf{a}' - \mathbf{x})$ 3Es. As(d-x)SERVICE MOMENT M 33.1 KNM/M = h(mm) = 250Cmin = 40 (mm) ϕ = 12.00 mm $d = h - Cmin - \Phi/2$ d = 204.00 mm CONCRETE f cu = 35 N/mm² 460 N/mm² fy =REINFORCEMENT PROVIDED BAR DIAMETER ϕ = 12 mm BAR SPACING S = 150 mm 753.98 mm² Asp =Ec =28 KN/mm² 200 KN/mm² Es = $\alpha e = Es/1/2Ec =$ 14.29 0.00370 ρ = $\alpha e.\rho =$ 0.053 THEREFORE $x = -\alpha e (\rho + \rho') + \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho') = \frac{1}{\alpha}$ 0.276 d đ CONSIDERING $\rho' = 0$ THEREFORE x = 56.39 mm z = d - 1/3 x =185.20 mm fs = M237.04 N/mm² Asp.z εs≃ fs 0.0011852 = Es x 1000

240

[9]


$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.001555$$

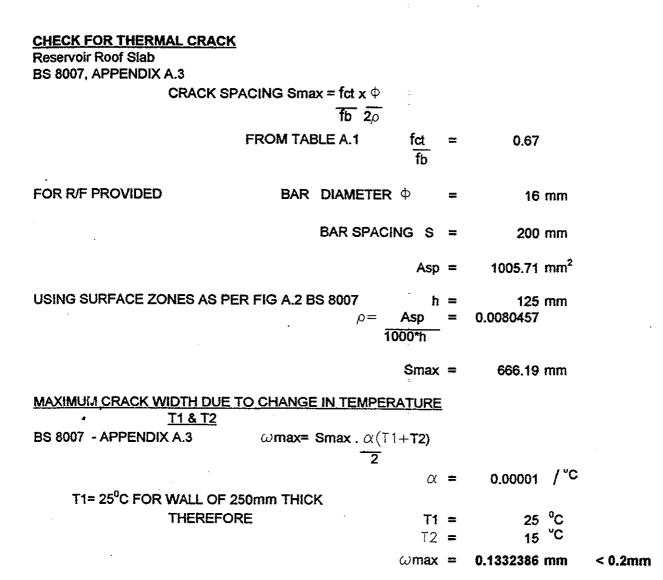
(d-x)
 $\mathcal{E}m = 0.0009932$

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 40 mm $\omega = 3.acr. \varepsilon m = 0.119 mm$ < 0.2mm O.K

2) CRACK AT MIDWAY BETWEEN TWO BARS

. . ____


CHECK FOR THERMAL CRACK Reservoir Roof Slab BS 8007, APPENDIX A.3 CRACK SP	ACING Smax = fct x Φ				
	$\overline{\mathbf{fb}}$ $\overline{2\rho}$				
	FROM TABLE A.1	$\frac{fct}{fb}$	=	0.67	
FOR R/F PROVIDED	BAR DIAMETER	ф	=	10 mm	
	BAR SPAC	NG S	æ	150 mm	
		Asp	=	523.81 mm ²	
USING SURFACE ZONES AS PE	ρ=	h Asp 000*h	=	125 mm 0.0041905	
		Smax	=	799.43 mm	
MAXIMUM CRACK WIDTH DUE TO CHANGE IN TEMPERATURE					
BS 8007 - APPENDIX A.3	ω max= Smax . α (T	1+ T2)			
T1= 25°C FOR WALL OF 2		α	=	0.00001 /°C	
THEREFOR			-		
INEREFU			=		
		12	=	15 🗸	
		ω max	=	0.1598864 mm	< 0.2mm

(21)

THERMAL CRACK OK

_

.

THERMAL CRACK OK

CEYWATER CONSULTANT (PVT) LTD.		PROJECT NRW.	JOB NO.	
INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS AND PLANNERS		CALCULATIONS BY MOHO, LUTHEY	SHEET 23.0F	
		SCHEME KAU-GOTTHATUWA RESERVOIR COMPONENT & PUMP HOUSE.	DATE	
ITEM		CALCULATIONS	OUT PUT	
• • • • • • •	DESIGN OF	STREING AREA SLAB.		
		DESIGN LOAD ON SLAG PART J : 1985.		
	. n	$= 1.4 G_{k} + 1.6 Q_{k}$ = 1.4 (4.8+1.8) + 1.6×10.0 = 25.24 $104/w^{2}$.	n= 26.22 kd/2	
		4 SPAN = 4.125 m. ESIGNED AS ONE WAY SPANNING, E-		
		2X2 EM = WI = 25:24 × 4:1252		
	:	$S_{i} = \overline{m_{i}} = m_{i} = m_{i} = \sqrt{m_{i}}$	·	
		$= \frac{50.06}{10} \frac{10}{10}$		
	SERVICE	<u>`</u>		
		$BM = \frac{16.6 \times 4.125^2}{2}$	SEPVICE BM	
	f	$= 35.3 \langle n_{\rm M} \rangle$	• • • •	
	REINFORC	EMENT. PARTI: 1985, CLAUSS 3.5.4 S		
	CLAUSE 3	3.4.4.		
		THICK MESS = 200 Mm. EFFECTIVE $d = 200 - 40 - \frac{12}{12}$ = 157 MM.	• • •	
	b	$\frac{1}{1000} = \frac{53.7 \times 10^6}{1000} = 2.26$		
) <u>C</u> E	$\frac{249}{24} = 0.63.$	· · · · · · · · · · · · · · · · · · ·	
		$A_{s} = 0.63 \times 1000 \times 1521$		
	Pec	= 970.2 NM ² DUDE T12 @ 100 4 -> $A_5 = 1130.0 MM2$	SLAB SOTTO	
· · ·		TRIBUTION BARS & SLAB TOP S BASED ON THERMAL CRACK		

i

		PROJECT NRW	JOB NO.	
INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS AND PLANNERS		CALCULATIONS BY MOHD, LUTHEY.	SHEET24.OF	
		SCHEME KNIL - GOTHTHATUWA RESERVO COMPONENT & PUMP HOUSE.	R	
ITEM		CALCULATIONS	OUT PUT	
<u> </u>	DEFLECTION			
	BS 8110 ; PA	ARTI: 1985, CLAUSE 3.5.7 &		
	TABLE : 3	-		
	BASIC	2 = 20 8/8 CONDITION	×.	
		CATION FACTOR FOR TENSION		
	REINFO	RCEMENT ->		
		$= \frac{5}{8} f_{y} \times \frac{A_{sree}}{A_{s}} \times \frac{1}{\beta_{1}} \longrightarrow \beta_{b} = 1.$	o .	
	-	$= \frac{5}{8} \times 460 \times \frac{970.2}{1130.0}$		
, 4	• · · · · · · · · · · · · · · · · · · ·	= 2468 NIMM ²		
	NOD.	FACTOR = 0.55 + (477 - 246.8) $120 (0.9 + 2.26)$;	
		= 1.157.		
		ELCATION FACTOR DUE TO TOP		
		(COMPRESSION AREA RET).		
		= 14 $\frac{100 \text{ As pro.}}{\text{bd}} \left(5 + \frac{100 \text{ As rou}}{\text{bd}} \right) \leq 1.$	5	
	CONS	AS = 1130.0 MW?.		
· · · · ·	MOD.	FACTOR = 1+ 100 x 1230.0) (3 100x 1)	30)	
		- 1·197		
	· · ALLOI	wable stan		
		$= 20 \times 157 \times 1197 \times 154$ = 4265.6 mm > 4125 mm	, DEFLECTIO	
		DEFLECTION OK.	ok.	
		245		

DESIGN OF CRACK.

BS 8007 : 1987

- . . .

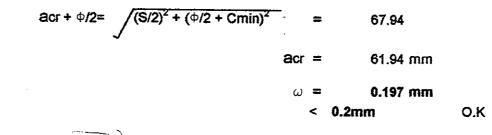
Staging Area Slab

$\frac{DESIGN SURFACE CRACK WIDTH}{DESIGN SURFACE CRACK WIDTH} \omega = 3 a cr.Em$						
$\frac{1+2(\frac{acr-Cmin}{h-x})}{(h-x)}$						
$\mathcal{E}\mathbf{m} = \mathcal{E}1 - \mathbf{b}\mathbf{t}(\mathbf{h} - \mathbf{x})(\mathbf{a}' - \mathbf{x})$						
3Es. As (d - x)						
SERVICE MOMENT M	-	35.3 KNM/M				
h (mm) = 200 Cmin = 40 (mm) Φ	~	12.00 mm				
$d = h - Cmin - \Phi/2 \qquad d$	*	154.00 mm				
CONCRETE f cu	-					
fy	=	460 N/mm ²				
REINFORCEMENT PROVIDED BAR DIAMETER C	-	12 mm				
BAR SPACING S	ų	100 mm				
A		4400.072				
Asp	=	1130.97 mm ²				
E\$	-	200 KWAIIII				
αe ≈ Es/,1/2Ec	÷	14.29				
Q	=	0.00734				
α ε .ρ	=	0.105				
THEREFORE $x = -\alpha e (\alpha + \alpha') + \alpha e^2 (\alpha + \alpha')^2 + 2\alpha e (\alpha + d' \alpha')$	=	0.365				
THEREFORE x = - $\alpha e (\rho + \rho') + \int \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho') \frac{1}{d}$		0.505				
CONSIDERING $\rho' = 0$						
THEREFORE x	=	56.21 mm				
z = d - 1/3 x	H	135.26 mm				
fs = <u>M</u> Asp.z	=	230.75 N/mm ²				
$\mathcal{E}S = fS$	5	0.0011538				

Es x 1000

246

<u>(</u>25)


$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.001696$$

(d-x)
 $\mathcal{E}m = 0.0013849$

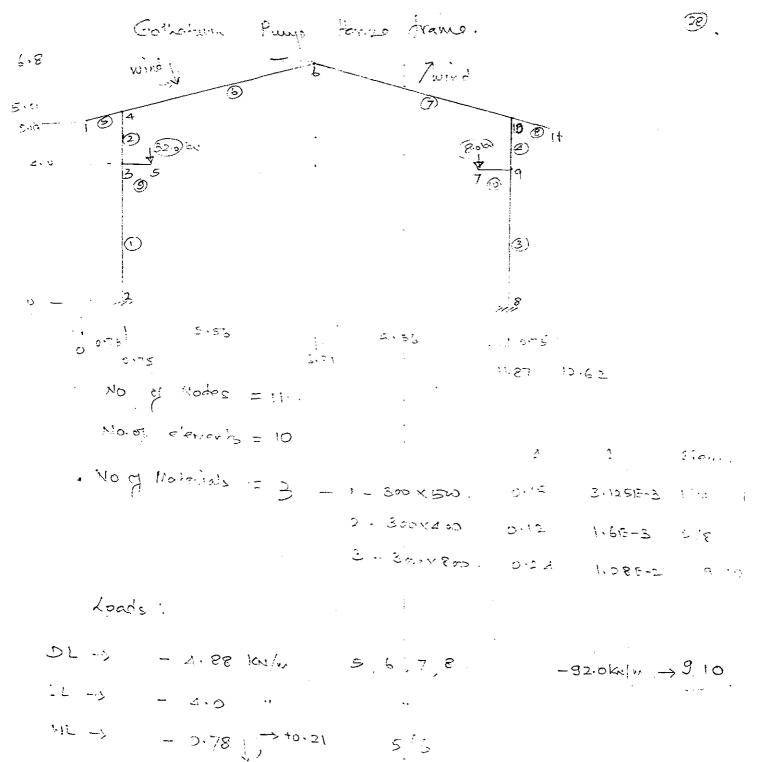
1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 40 mm $\omega = 3.acr. \mathcal{E}m = 0.166 mm$ < 0.2mm O.K

2) CRACK AT MIDWAY BETWEEN TWO BARS

.

•


THEREFORE BARS T12 @ 100 C/C O.K

27)

CHECK FOR THERMAL CRACK Staging area Slab BS 8007, APPENDIX A.3 CRACK SP	ACING Smax = fct x Φ \overline{fb} $\overline{2\rho}$	-			
	FROM TABLE A.1	fct fb	2	0.67	
FOR R/F PROVIDED	BAR DIAMETER	Φ	=	12 mm	
	BAR SPAC	NG S	=	100 mm	
		Asp	=	1131.43 mm ²	
USING SURFACE ZONES AS PI	ρ=	h Asp 000*h		100 mm 0.0113143	
		Smax	#	355.30 mm	
MAXIMUM CRACK WIDTH DUE <u>T1 & T2</u> BS 8007 - APPENDIX A.3	TO CHANGE IN TEMPER ω max= Smax . α (T				
	2			0.00001 / ^v C	
T1= 25°C FOR WALL OF	200mm THICK	α	=	0.00001 / °C	
THEREFO		T1	Ħ		
		Τ2	=	15 ^{°C}	
		ω max	=	0.0710606 mm	< 0.2mm

i

THERMAL CRACK OK

+ 0178 + 10020 7/8

(YONS

Node 5-2-32.0 j & Node 7, -32.0 j.

 MICROFEAP-P1
 DATE: 09-22-2000
 <DATA> P.1

 ROJECT : GOTHATUWA PUMP HOUSE ROOF FRAME
 FILENAME: GOTHFR1

 JTHORITY: KANDIAH SRIBALASKANDARAJAH
 ENGINEER: MOHD. LUTHFY

4	*****************************	**
+		ŧ
*	STRUCTURE DATA	*
ŧ		*
***	********************************	* *

ODE	ATE DATA (1-COOR	m)** 2-COOR	**BOU 1~B	INDARY 2-B	DATA** 3-B
1 2 3 4	0.00 0.75 0.75 0.75 0.75	5.19 0.00 4.00 5.40	L	L	F
5 6 7 8 9 10	1.40 6.31 11.22 11.87 11.87 11.87 11.87 12.62	$\begin{array}{r} 4.00 \\ 6.80 \\ 4.00 \\ 0.00 \\ 4.00 \\ 5.40 \\ 5.19 \end{array}$	L	Ĺ	F

-JELEMENT DATA**

TLEM	1-NODE	2-NODE	HINGE	MATERIAL
1	2	3		1
2	3	4		1
3	8	9		1
4	9	10		1
5	1	4		2
6	4	6		2
7	6	10		2
8	10	11		2
9	3	5		3
10	7	9		3

MATERIAL DATA

MATE	E-MODULUS	AXIAL-AREA	INERTIA
	(KN/m ²)	(m ²)	(m ⁴)
2	2.100D+07	1.500D-01	3.125D-03
	2.100D+07	1.200D-01	1.600D-03
	2.100D+07	2.400D-01	1.280D-02

LOAD CASE #1 : DEAD LOAD **UNIFORM LOAD DATA** ELEM 1-UNIFORM 2-UNIFORM (KN/m) (KN/m)

÷

OJE THO	CT : GOTHAT RITY: KANDIA	H SRIBALASKA	SE ROOF FRAME NDARAJAH	09-22	ENGINEER:	<pre><pre><pre><data> P.2 FILENAME: GOTHFR1 MOHD. LUTHFY</data></pre></pre></pre>
)AD	CASE #1 : DI FORM LOAD DA 1-UNIFORM (KN/m)	EAD LOAD				======================
5 6	0.000D+00	-4.880D+00 -4.880D+00				:
7 8 9	0.000D+00 0.000D+00	~4.880D+00 ~4.880D+00 ~9.200D+01				:
9 10	0.000D+00 0.000D+00	-9.200D+01 -9.200D+01				
*NOD	CASE #2 : LI AL FORCE DAT	[A**				
JDE	1-FORC (KN)	2-FORC (KN)	3~FORC (KN-m)			
 5 7	0.000D+00 0.000D+00	-3.200D+01 -8.000D+00	0.000D+00 0.000D+00			
-	CASE #2 : LI FORM LOAD DA 1-UNIFORM (KN/m)					:
5 6 7 8	0.000D+00 0.000D+00 0.000D+00 0.000D+00 0.000D+00	-4.000D+00 -4.000D+00 -4.000D+00 -4.000D+00 -4.000D+00		:		: : :
	CASE #3 : WI FORM LOAD DA 1-UNIFORM (KN/m)					

(141) 56)	(121)
+	-7.800D-01
2.100D-01	-7.800D-01
2.100D-01	7.800D-01
2.100D-01	7.800D-01
	2.100D-01

 MICROFEAP-P1
 DATE: 09-22-2000
 <COMB> P.1

 ROJECT : GOTHATUWA PUMP HOUSE ROOF FRAME
 FILENAME: GOTHFR1

 JTHORITY: KANDIAH SRIBALASKANDARAJAH
 ENGINEER: MOHD. LUTHFY

* * * * COMBINATION * * *

ISPLACEMENT COMBINATION <2D-FRAME SYSTEM>

1	JAD	FACTOR : 1.4/	1.6/0	
K	DE	1~DISP	2-DISP	3-DISP
		(m)	(m)	(Rad)
		(
		2 00255 04	1 01000 03	0 05400 02
	1	-3.8035D-04	1.9109D-03	-2.9549D-03
	2	0.0000D+00	0.0000D+00	1.8189D-03
	3	-2.8179D-03	-2.7450D-04	-1.5243D-03
	4	2.4209D-04	-3.1061D-04	-2.9837D-03
	5	-2.8179D-03	-1.2934D-03	-1.5865D-03
	6	5.0612D-03	-1.9776D-02	3.5858D-04
	7	1.0598D-02	2.6947D-05	-3.8868D-04
)	8	0.0000D+00	0.0000D+00	-3.7639D-03
	9	1.0598D-02	-2.3144D-04	-4.2067D-04
	10	9.8881D-03	-2.6955D-04	1.5712D-03
	11	1.0214D-02	8.9254D-04	1.5424D-03

STRESS COMBINATION <2D-FRAME SYSTEM>

ELEM		OR : 1 HINGE	.4/1.6/0 SECTION (m)	AXIAL F. (KN)	SHEAR (KN)	MOMENT (KN-m)
1	1	·	0.00 4.00	-2.1617D+02 -2.1617D+02	-2.7425D+01 -2.7425D+01	0.0000D+00 -1.0970D+02
2	1		$\begin{array}{c} 0.00 \\ 1.40 \end{array}$	-8.1249D+01 -8.1249D+01	-2.7425D+01 -2.7425D+01	-4.9209D+01 -8.7604D+01
3	1		$\begin{array}{c} 0.00 \\ 4.00 \end{array}$	-1.8226D+02 -1.8226D+02	2.7425D+01 2.7425D+01	9.5367D-06 1.0970D+02
4	1		$\begin{array}{c} 0.00 \\ 1.40 \end{array}$	-8.5739D+01 -8.5739D+01	2.7425D+01 2.7425D+01	7.4170D+01 1.1256D+02
5	2		$0.00 \\ 0.19 \\ 0.39 \\ 0.58 \\ 0.78$	-1.6600D-04 6.6879D-01 1.3377D+00 2.0067D+00 2.6756D+00	2.9325D-05 -2.3891D+00 -4.7782D+00 -7.1673D+00 -9.5564D+00	1.9729D-05 -2.3260D-01 -9.3040D-01 -2.0934D+00 -3.7216D+00

ŧ.

ER: M	HOHD.	LUTHF	Ϋ́
-------	-------	-------	----

-3.5529D+01

	HINGE		-3.9520D+01 -3.5029D+01 -3.0538D+01	4.4634D+01 2.6798D+01 8.9625D+00 -8.8733D+00	-1.4565D+01 3.6630D+01 6.2260D+01 6.2324D+01	
7 2		$ \begin{array}{r} 1.43 \\ 2.87 \\ 4.30 \\ 5.73 \\ 0.00 \\ \end{array} $	-3.9520D+01 -3.5029D+01 -3.0538D+01 -2.6047D+01	4.4634D+01 2.6798D+01 8.9625D+00 -8.8733D+00	-1.4565D+01 3.6630D+01 6.2260D+01 6.2324D+01	
72		2.87 4.30 5.73 0.00	-3.5029D+01 -3.0538D+01 -2.6047D+01	2.6798D+01 8.9625D+00 -8.8733D+00	3.6630D+01 6.2260D+01 6.2324D+01	
		4.30 5.73 0.00	-3.0538D+01 -2.6047D+01	8.9625D+00 -8.8733D+00	6.2260D+01 6.2324D+01	
		5.73 0.00	-2.6047D+01	-8.8733D+00	6.2324D+01	
		0.00				
			-2.7143D+01	A 5100D±00	0.00040.01	
82		1 40				
82					5.6019D+01	
82		2.87	-3.6125D+01	-3.1152D+01	2.4150D+01	
82		4.30	-4.0616D+01	-4.8987D+01	-3.3286D+01	
82		5.73	-4.5107D+01	-6.6823D+01	-1.1629D+02	
		0.00	2.6749D+00	9.5565D+00	-3.7215D+00	
		0.19	2.0060D+00			
		0.39	1.3370D+00	4.7783D+00	-9.3040D-01	
		0.58	6.6808D-01	2.3891D+00	-2.3261D-01	
	*	0.78	-8.6790D-04	3.1710D-05	-1.0788D-05	
93	1	0.00	0.0000D+00	1.3492D+02	-6.0490D+01	
		0.65	0.0000D+00	5.1201D+01	3.2330D-04	

10	3	$0.00 \\ 0.65$		-1.2800D+01 -9.6520D+01
SUPPOF	RT REACTIONS	<2D-FRA	ME SYSTEM>	

LOAD FACTOR : 1.4/1.6/0

NODE	1-REACTION (KN)	2-REACTION (KN)	3-REACTION (KN-m)	•
2 8	2.7425D+01 -2.7425D+01	2.1617D+02 1.8226D+02	0.0000D+00 0.0000D+00	:

33)

*************	+
+	*
* COMBINATION	ŧ
+	*
***************	*

SPLACEMENT COMBINATION <2D-FRAME SYSTEM> OAD FACTOR : 1.2/1.2/1.2

	μ	racion . 1.4/	-	
C	DE	1-DISP	2-DISP	3-DISP
		(m)	(m)	(Pad)
		(m)	(m)	(Rad)
-				
	1	1.3954D-03	1.7405D-03	-2.6576D-03
	2	0.0000D+00	0.0000D+00	1.1130D-03
	3	-9.2155D-04	-2.2683D-04	-1.5349D-03
	4	1.9551D-03	-2.5726D-04	-2.6828D-03
	5	-9.2155D-04	-1.2468D-03	-1.5839D-03
	6	5.8354D-03	-1.5928D-02	5.3372D-04
	7	9.8874D-03	2.1683D-04	-6.1427D-04
I	8	0.000D+00	0.0000D+00	-3.3875D-03
	9	9.8874D-03	-1.8714D-04	-6.4061D-04
	10	9.7227D-03	-2.1647D-04	9.8801D-04
	11	9.9272D-03	5.1259D-04	9.6693D-04

STRESS COMBINATION <2D-FRAME SYSTEM>

LOAD BLEM	FACTO MA H	R : 1.2/1.2/1 INGE SECTION (m)		SHEAR (KN)	MOMENT (KN-m)
1	1	0.00 4.00	-	-2.1721D+01 -2.1721D+01	-3.8147D-06 -8.6885D+01
2	1	$\begin{array}{c} 0.00\\ 1.40\end{array}$		-2.1721D+01 -2.1721D+01	-3.8602D+01 -6.9012D+01
3	1	$\begin{array}{c} 0.00\\ 4.00\end{array}$		2.2533D+01 2.2533D+01	-7.6294D-06 9.0131D+01
4	1	$0.00 \\ 1.40$		2.2533D+01 2.2533D+01	6.0569D+01 9.2114D+01
5	2	0.00 0.19 0.39 0.58 0.78	5.7353D-01 1.1468D+00 1.7201D+00	2.4110D-05 -2.0965D+00 -4.1931D+00 -6.2897D+00 -8.3863D+00	-4.8801D-06 -2.0412D-01 -8.1646D-01 -1.8370D+00 -3.2658D+00

MICROFEAP-P1

<COMB> P.2

DATE: 09-22-2000

FILENAME: GOTHFR1 ENGINEER: MOHD. LUTHFY

THORITY: KANDIAH SRIBALASKANDARAJAH ENGINEER: MOHD. LUTHFY RESS COMBINATION <2D-FRAME SYSTEM>

OJECT : GOTHATUWA PUMP HOUSE ROOF FRAME

AD EM	FACTOR : 1 MA HINGE		2 AXIAL F. (KN)	SHEAR (KN)	MOMENT (KN-m)
6	2	$\begin{array}{c} 0.00\\ 1.43\end{array}$	-3.5711D+01 -3.1862D+01	5.2650D+01 3.7003D+01	-7.2278D+01 -8.0244D+00
		2.87 -4.30 5.73	-2.8013D+01 -2.4164D+01 -2.0315D+01	2.1356D+01 5.7096D+00 -9.9371D+00	3.3801D+01 5.3199D+01 5.0169D+01
7	2	0.00 1.43	-2.2599D+01 -2.5983D+01	8.6875D-01 -1.2212D+01	5.0169D+01 4.2040D+01
		$2.87 \\ 4.30 \\ 5.73$	-2.9368D+01 -3.2752D+01 -3.6137D+01	-2.5292D+01 -3.8372D+01 -5.1452D+01	1.5162D+01 -3.0466D+01 -9.4843D+01
8	2	0.00 0.19 0.39 0.58 0.78	2.0179D+00 1.5138D+00 1.0096D+00 5.0550D-01 1.3622D-03	7.0057D+00 5.2542D+00 3.5028D+00 1.7514D+00 -6.2197D-05	-2.7282D+00 -1.5346D+00 -6.8206D-01 -1.7053D-01 -1.7561D-05
9	3	0.00 0.65	0.0000D+00 0.0000D+00	1.1016D+02 3.8400D+01	-4.8283D+01 -3.6955D-05
10	3	$0.00 \\ 0.65$	0.0000D+00 0.0000D+00	-9.6002D+00 -8.1360D+01	2.8610D-05 -2.9562D+01

PPORT REACTIONS <2D-FRAME SYSTEM>

AD DE	FACTOR : 1.2/1 1-REACTION (KN)	2-REACTION (KN)	3-REACTION (KN-m)
2	2.1721D+01	1.7863D+02	0.0000D+00
8	-2.2533D+01	1.4737D+02	0.0000D+00

 MICROFEAP-P1
 DATE: 09-22-2000
 <COMB> P.1

 NOJECT : GOTHATUWA PUMP HOUSE ROOF FRAME
 FILENAME: GOTHFR1

 JTHORITY: KANDIAH SRIBALASKANDARAJAH
 ENGINEER: MOHD. LUTHFY

**	******************	* *
+		*
+	COMBINATION	*
*		ŧ
**	*******************	*+

ISPLACEMENT COMBINATION <2D-FRAME SYSTEM> DAD FACTOR : 1/0/1.4 DDE 1-DISP 2-DISP 3-DISP

ODE	1-D12F	2-015P	o-DIOP (Dod)
	(m)	(m)	(Rad)
1	3.4915D-04	7.7273D-04	-1.2065D-03
2	0.0000D+00	0.0000D+00	5.6886D-04
3	-6.6371D-04	-1.1936D-04	-6.3993D-04
4	6.0338D-04	-1.3455D-04	-1.2195D-03
5	-6.6371D-04	-5.4295D-04	-6.5560D-04
6	2.3794D-03	-7.3098D-03	3.0891D-04
7	4.3164D-03	9.2420D-06	~1.8064D-04
8	0.0000D+00	0.0000D+00	-1.5205D-03
9	4.3164D-03	-1.1072D-04	-1.9631D-04
10	4.1569D-03	-1.2290D-04	4.7823D-04
11	4.2562D-03	2.3114D-04	4.7005D-04

STRESS COMBINATION <2D-FRAME SYSTEM>

JUAD JLEM	MA HI	/0/1.4 SECTION (m)	AXIAL F. (KN)	SHEAR (KN)	MOMENT (KN-m)
1	1	 0.00 4.00	-9.3992D+01 -9.3992D+01	-9.9159D+00 -9.9159D+00	-1.9073D-06 -3.9663D+01
2	1	$\begin{array}{c} 0.00 \\ 1.40 \end{array}$	-3.4192D+01 -3.4192D+01	-9.9158D+00 -9.9158D+00	-2.0228D+01 -3.4110D+01
3	1	$\begin{array}{c} 0.00 \\ 4.00 \end{array}$	-8.7193D+01 -8.7193D+01	1.0863D+01 1.0863D+01	-1.9073D-06 4.3450D+01
4	1	0.00	-2.7393D+01 -2.7393D+01	1.0863D+01 1.0863D+01	2.4015D+01 3.9223D+01
5	2	$0.00 \\ 0.19 \\ 0.39 \\ 0.58 \\ 0.78$	1.3198D-04 2.8719D-01 5.7424D-01 8.6130D-01 1.1484D+00	5.6088D-05 -1.0824D+00 -2.1648D+00 -3.2473D+00 -4.3297D+00	3.1404D-06 -1.0539D-01 -4.2154D-01 -9.4846D-01 -1.6861D+00

n	5	÷7
/	n	1
~	U	

		1+10	T * 000-10 + 01	T.00000101	0.11400100	
		2.87	-1.3077D+01	1.0228D+01	1.6673D+01	
		4.30	-1.1150D+01	2.1529D+00	2.5547D+01	
		5.73	-9.2224D+00	-5.9221D+00	2.2845D+01	
7	2	0.00	-1.0927D+01	-8.4844D-01	2.2845D+01	
		1.43	-1.2313D+01	-5.9293D+00	1.7988D+01	
		2.87	-1.3698D+01	-1.1010D+01	5.8474D+00	
		4.30	-1.5083D+01	-1.6091D+01	-1.3576D+01	
		5.73	-1.6469D+01	-2.1172D+01	-4.0282D+01	
8	2	0.00	8.2453D-01	2.7192D+00	-1.0589D+00	
		0.19	6.1816D-01	2.0394D+00	-5.9565D-01	
		0.39	4.1179D-01	1.3596D+00	-2.6473D-01	
		0.58	2.0542D-01	6.7981Ď-01	-6.6166D-02	
		. 0.78	-9.4719D-04	2.1517D-05	3.1579D-05	
0	2	0 00	0 00000+00	5 0800D+01	-1 04260+01	

		4				
9	3		0.00	0.0000D+00	5.9800D+01	-1.9436D+01
			0.65	0.0000D+00	3.9101D-04	9.1314D-05
10	3		0.00 0.65	0.0000D+00 0.0000D+00	8.0109D-05 -5.9800D+01	3.5763D-06 -1.9435D+01

UPPORT REACTIONS <2D-FRAME SYSTEM> OAD FACTOR : 1/0/1.4

ODE	1-REACTION	2-REACTION	3-REACTION
	(KN)	(KN)	(KN-m)
2 8	9.9159D+00	9.3992D+01	0.0000D+00
	-1.0863D+01	8.7193D+01	0.0000D+00

RESS COMBINATION <2D-FRAME SYSTEM> AD FACTOR : 1/0/1.4

0.00 -1.6931D+01 1.43 -1.5004D+01

(m)

EM MA HINGE SECTION

6

2

9-22-2000

MICROFEAP-P1	DATE:	0ġ
OJECT : GOTHATUWA PUMP HOUSE ROOF	FRAME	٠
THORITY: KANDIAH SRIBALASKANDARAJAH	[

AXIAL F.

· (KN)

.

SHEAR

~~~~

(KN)

2.6378D+01 -3.5796D+01

1.8303D+01 -3.7742D+00

 $\langle COMB \rangle P.2$ 

MOMENT

(KN-m)

\_\_\_\_\_

FILENAME: GOTHFR1 ENGINEER: MOHD. LUTHFY

بير ....

. . . .

4

258

•••

. . .

-- --

Ì

|                                 | NSULTANT (PVT) LTD. PROJECT NRW                 | JOB NO.                                |
|---------------------------------|-------------------------------------------------|----------------------------------------|
| FRASTRUCTURE & E<br>ID PLANNERS | CALCULATIONS BY MOHD, LUTHE                     | Y, SHEET.38OF                          |
|                                 | SCHEME KNU- GOTHTHATOWA<br>COMPONENT & PURP HOU | IDATE                                  |
| ITEM                            | CALCULATIONS                                    | OUT PUT                                |
|                                 | RESERVOIR BASE SLAB.                            |                                        |
|                                 | IN THIS ANAYSIS REGERVOIR STR                   | UCTURE                                 |
|                                 | SEPERATELY CONSIDERED IN CALC                   | ULATION                                |
|                                 | OF BEARING PRESSURE UNDER THE                   | BASE                                   |
|                                 | SLAB, PUMP HOUSE BASE SLAE /                    | MALVELD                                |
|                                 | Sereratel.                                      |                                        |
|                                 | TOTAL LOADS ON THE EASE SLAD                    |                                        |
|                                 | DEAD LOAD CHICKLE FOR # (6-0-2-                 | · 4 · 4·8)                             |
|                                 | = 13.2  km                                      | 1                                      |
|                                 | LIVE LOAD ON ROOF $= 2.5$ "                     | •                                      |
|                                 | SELF WEIGHT OF BASE SLAS = 01                   |                                        |
|                                 |                                                 | ·2 KN 1202                             |
|                                 | WATER LOXD (26.55-21.0) = 55                    |                                        |
|                                 | WATER 2070 (2005-21.0) EDG                      | - 5 - W                                |
|                                 | CONTRIBUTION COLUMN LOAD                        | ;<br>;                                 |
| :                               |                                                 | tu vi                                  |
| 1                               |                                                 |                                        |
| -<br>-<br>-                     | WHEN WATER AT FULL HEIGHT (                     | 2.6.55 NoL)                            |
|                                 | BEARING PRESSURE ON SOIL                        |                                        |
| .:                              | =(13.2+2.5+14.4+55.                             | 5 +1.0)                                |
|                                 | = <u>86.6</u> by Jun < 2.50                     |                                        |
|                                 |                                                 |                                        |
|                                 | ULTIMATE BP = 1.4 × 86.6                        |                                        |
| 1                               | = 121.24 las                                    | 1m2                                    |
|                                 |                                                 | -                                      |
| 2<br>2                          | BASE BLAB ANAYSED AS INVERTED                   | 5 FLOOR                                |
|                                 | SLAB FRAMING WITH COLUMN.                       |                                        |
|                                 | ULTIMATE LOAD DUE TO                            | :                                      |
| 1                               | SELF WEIGHT OF SLAS = 1.4×0.6×                  | 24.0                                   |
| ĺ                               | = 20.16 KN                                      |                                        |
|                                 | NET PRESSURE ON SLAB = 121-24                   | · ·                                    |
|                                 | = 101.08                                        |                                        |
|                                 | · · · · ·                                       |                                        |
|                                 | CONSIDER FRAME ON GRID 6 ON                     | 1.                                     |
| :                               | 707.0 2982.0 1210.7                             | · ···································· |
|                                 | contileur 5:242 Cantile                         | New.                                   |
|                                 | 9.594E10                                        |                                        |
|                                 | 5:55 5:55                                       |                                        |
|                                 | 2.133E9 2.133E9                                 |                                        |

•

I

\*.O.S FOR DL= 1 \*\*\*F.O.S. FOR IMPL= 1 \*\*\*STRUCTURE INFORMATION\*\*\* NO.OF SPANS= 1

| SPAN NO<br>1                | SPAN LTH-<br>5.44                                                   |                                  | Iz- mm^4<br>9.59400                                                 |                                  |
|-----------------------------|---------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------------|----------------------------------|
| ROW<br>1.00<br>2.00<br>2.00 |                                                                     | OF AI<br>%2:<br>%2:              | MOMENT<br>REA(mm^4)<br>0.00<br>133000000.00<br>0.00<br>133000000.00 | ABOVE<br>BELOW<br>ABOVE<br>BELOW |
| SP.NO<br>1<br>CANT.CHR.1    | LOAD-KN ST.<br>2932.00<br>D.MT LHS= 707 kJ<br>D.MT RHS= 1210.7      | DIST-m CO<br>0.00<br>Nm CANT.CHR | 5.44<br>.IMP.MT.LHS                                                 | D<br>= 0 kNm                     |
| SPAN NO.<br>1               | S AND MOMENTS.<br>SHEAR<br>1374.77<br>%-1557.23<br>MAX.SPAN MNT= 10 | HOG.MT<br>-726.10<br>%-1222.58   | SAG.M<br>0.00<br>B 0.0                                              | 00                               |

COLUMN MOMENTS, kN.m

| COLUMN |      | COLUMN | MOMENTS |
|--------|------|--------|---------|
| •      | ROW  | ABOVE  | BELOW   |
| :      | 1.00 | 0.0    | 19.10   |
|        | 2.00 | 0.0    | -11.88  |

|                                                          | SULTANT (PVT) LTD.        | PROJECT NRW                                                                                                                                       | JOB NO.               |  |  |
|----------------------------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS<br>AND PLANNERS |                           | CALCULATIONS BY MOHD LUTHEY.                                                                                                                      | SHEET. 40 OF          |  |  |
|                                                          |                           | SCHEME KMU-GOTHTHATUWA RESERVOIR<br>COMPONENT & PURIP HOUSE.                                                                                      | DATE                  |  |  |
| ITEM                                                     |                           | CALCULATIONS                                                                                                                                      | OUT PUT               |  |  |
|                                                          | Ma× <sup>™</sup> Br       | AT COLUMN LOCATION.<br>= 1222.58 W.M.                                                                                                             |                       |  |  |
|                                                          | COLUMN                    | STRIP 75% = 917.0 WW.                                                                                                                             |                       |  |  |
|                                                          | MIDDLE                    | STRIP 25/ = 305.6 "                                                                                                                               |                       |  |  |
|                                                          |                           | F MIDDLE STRIP = 2665 MM.                                                                                                                         |                       |  |  |
|                                                          | Max <sup>M</sup> SI       | PAN BM = 1025.03 knm.                                                                                                                             |                       |  |  |
|                                                          | COLUM                     | N STRIP 55/ = 563.8 KNM.                                                                                                                          |                       |  |  |
| 4                                                        | MIDDL                     | E STRIP 45% = 461.3 Knm.                                                                                                                          |                       |  |  |
|                                                          |                           | RIP (-)VE BM = S17.0 kNW,<br>b = 2665 WM,<br>$d = 600 - 50 - \frac{20}{2}$<br>= 540 Mm.<br>$-917.0 \times 10^{6} = 1.18$<br>$2665 \times 540^{2}$ |                       |  |  |
|                                                          | · <u>læAs</u><br>bd       | -= 0.32                                                                                                                                           |                       |  |  |
|                                                          | ·` A<br>F                 | $s = 0.32 \times 2665 \times 520 = 4605.1 \text{ mm}^{2}$ $100 = 1728.0 \text{ mm}^{2}$ $ROUIDE T20 @ 150745 = 2094.0 \text{ mm}^{2}/\text{m}.$   | PROVIDE<br>SOTTON BAR |  |  |
|                                                          |                           | THE BM $< 917.0$ kmm.                                                                                                                             | T20@150 c/c           |  |  |
|                                                          | For s                     | ELMPLICITY ADOPT T20@150C/C<br>BOTHWAY.                                                                                                           | •                     |  |  |
| -                                                        |                           | • • •                                                                                                                                             |                       |  |  |
|                                                          |                           |                                                                                                                                                   |                       |  |  |
|                                                          | • • • • • • • • • • • • • |                                                                                                                                                   |                       |  |  |

|                                   | NSULTANT (PVT) LTD.                                                                | JOB NO.       |
|-----------------------------------|------------------------------------------------------------------------------------|---------------|
| NFRASTRUCTURE & I<br>AND PLANNERS | ENVIRONMENTAL ENGINEERS<br>CALCULATIONS BY MOHD. 上いアHFY.                           | SHEET. AL. OF |
|                                   | SCHEME KXIU - GOTHTHATUWA RESER<br>COMPONENT & PURIS HOUSE .                       | DATE          |
| ITEM                              | CALCULATIONS                                                                       | OUT PUT       |
|                                   | PUNCHING SHEAR AT COLUMIN.                                                         |               |
| ···                               | ULTIMATE COLUMN LOAD = 739.5 km.                                                   |               |
|                                   | · ·                                                                                |               |
|                                   | 1.5d = 1.5x570 = 810 mm.                                                           |               |
|                                   | 15d 1.5d SHEAR AERIMIETER                                                          |               |
|                                   | $= 4(2\times 810 + 4\infty)$                                                       |               |
|                                   | = 8080 1484                                                                        |               |
|                                   | AREA WITHIN SHEAR PERIMETER                                                        |               |
|                                   | $= 2.02 \times 2.02$                                                               |               |
|                                   | = 4.08 m <sup>-1</sup> .                                                           | :<br>:        |
|                                   | : UPWARD FORCE = 4.08× 121.24<br>= $494.6$ kn.                                     |               |
|                                   |                                                                                    | ÷             |
| 1                                 |                                                                                    | <i>;</i>      |
| 1                                 | $\therefore$ PUNCHING LOAD = 739.5 - 494.6<br>= 244.9 km.                          |               |
|                                   |                                                                                    | •             |
|                                   | PUNCHING SHEAR STRESS                                                              | :             |
|                                   | $v = 244.9 \times 10$                                                              | -<br>-        |
|                                   | 042 X 0308                                                                         | ,             |
|                                   | $= 0.06 \text{ N/MM}^2$ .                                                          |               |
| •                                 | DESIGN SHEAR STRESS UC                                                             |               |
| · · · ·                           | $\frac{100 \text{As}}{\text{bd}} = \frac{100 \times 2094}{1000 \times 940} = 0.39$ |               |
| !                                 | VE = 0.51 N/M/2                                                                    |               |
| •                                 | $v < v_c$                                                                          | •<br>•        |
| ;                                 | ' NO SHEAR REINFORCEMENT                                                           |               |
|                                   | NECESSARY.                                                                         | <u>.</u>      |
| :                                 |                                                                                    |               |
|                                   |                                                                                    |               |
|                                   |                                                                                    |               |
|                                   |                                                                                    |               |
|                                   |                                                                                    |               |
|                                   |                                                                                    |               |
|                                   |                                                                                    |               |

,

## DESIGN OF CRACK.

BS 8007 : 1987

Reservoir Area Base Slab DESIGN SURFACE CRACK WIDTH  $\omega =$ 3acr.Em 1+2( acr - Cmin ) (h-x)  $\mathcal{E}\mathbf{m} = \mathcal{E}\mathbf{1} - \mathbf{b}\mathbf{t}(\mathbf{h} - \mathbf{x})(\mathbf{a}^{\prime} - \mathbf{x})$ 3Es. As (d - x) SERVICE MOMENT M 245.8 KNM/M h(mm) = 600Cmin = 50 (mm) 20.00 mm Φ =  $d = h - Cmin - \Phi/2$ 540.00 mm d **≠** 35 N/mm<sup>2</sup> CONCRETE f cu = 460 N/mm<sup>2</sup> fy =REINFORCEMENT PROVIDED BAR DIAMETER  $\Phi$ 20 mm = BAR SPACING S = 125 mm 2513.27 mm<sup>2</sup> Asp = 28 KN/mm<sup>2</sup> Ec = 200 KN/mm<sup>2</sup> Es = $\alpha e = Es/1/2Ec =$ 14.29 0.00465  $\rho =$  $\alpha e.\rho =$ 0.066 THEREFORE x = - $\alpha e (\rho + \rho') + \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \overline{\rho'}) = \frac{1}{2}$ 0.304 d đ **CONSIDERING**  $\rho' = 0$ THEREFORE 164.26 mm x = z = d - 1/3 x =485.25 mm fs = M201.55 N/mm<sup>2</sup> Asp.z  $\mathcal{E}s = \mathbf{fs}$ 0.0010077 z Es x 1000

$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.001169$$
  
(d-x)  
 $\mathcal{E}m = 0.0008336$ 

(2.3)

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 50 mm $\omega = 3.acr. \varepsilon m = 0.125 mm$ < 0.2mm

0.K

2) CRACK AT MIDWAY BETWEEN TWO BARS

$$acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2} = 86.64$$
  
 $acr = 76.64 mm$   
 $\omega = 0.171 mm$   
 $< 0.2mm$  O.K

THEREFORE REINFORCEMENT T20 @ 125 C/C O.K

:44

| CHECK FOR THERMAL CRACK<br>Reservoir Base Slab<br>BS 8007, APPENDIX A.3<br>CRACK SPAC | NG Sma         | $x = fct x \Phi$<br>$\overline{fb} \ \overline{2\rho}$ | •                  |               |                  |         |         |
|---------------------------------------------------------------------------------------|----------------|--------------------------------------------------------|--------------------|---------------|------------------|---------|---------|
| FF                                                                                    | ROM TAE        | BLE A.1                                                | fct<br>fb          | Ħ             | 0.67             |         |         |
| FOR R/F PROVIDED                                                                      | BAR            | DIAMETER                                               | ţΦ                 |               | 20               | ៣៣.     |         |
|                                                                                       |                | BAR SPAC                                               | ING S              | =             | 125              | mm      |         |
|                                                                                       |                |                                                        | Ası                | ) =           | 2514.29          | mm²     |         |
| USING SURFACE ZONES AS PER F                                                          | FIG A.2 E      | ρ=                                                     | ا<br>Asp<br>ا000*h | ן ≕<br>=<br>- | 250<br>0.0100571 | mm      |         |
|                                                                                       |                |                                                        | Smax               | <b>(</b> =    | 666.19           | mm      |         |
| MAXIMUM CRACK WIDTH DUE TO                                                            | CHANG          | E IN TEMPE                                             | RATUR              | E             |                  |         |         |
| •                                                                                     | ω <b>max</b> = | Smax . $\alpha(1)$                                     | 1+ <b>T2)</b>      |               |                  |         |         |
| 0                                                                                     |                |                                                        | 0                  | ( =           | 0.00001          | )°C     |         |
| T1= 42°C FOR WALL OF 600                                                              | nm THIC        | Ж                                                      | _                  |               |                  | 00      |         |
| THEREFORE                                                                             |                |                                                        |                    | 1 =<br>2 =    | 42<br>15         | °C<br>℃ |         |
|                                                                                       |                |                                                        |                    | _             | • -              | -       | < 0.9mm |
|                                                                                       |                |                                                        | $\omega$ ma:       | ( =           | 0.1898651        | 161673  | < 0.2mm |

THERMAL CRACK OK

| $\frac{1}{2} \frac{1}{2} \frac{1}$ |       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| SCHEME KNUD-GONTHARTUUA RESERVOR<br>COMPONENT & PUMP HOUSE.DATEITEMCALCULATIONSOUTPUMP HOUSE SASE SLAB JESIGN.LOADS:ULTIMATE COLUMN REACTION ATTHE<br>LEVEL OF STARING SLAB = 216.2 kd.<br>. SERVICE LOAD = 216.2 kd.<br>. SERVICE LOAD = 216.4 kd.<br>. SERVICE LOAD = 210.0 kd.<br>. SERVICE LOAD = 210.0 kd.<br>. SERVICE LOAD = 10.0 kd.<br>. SASE SLAS (0.6) = 14.4 kd.<br>. SASE SLAS (0.6) = 14.4 kd.<br>. SASE SLAS LIVE LOAD = 10.0 kd.<br>. SASE SLAS LIVE LOAD = 10.0 kd.<br>. SERVICE BLOCK WALLS (26.25-19.5) = 105.5 km/m.<br>. GSDEN THERE<br>. BLOCK WALL 4.0N HIGH = 243.3 the 13.2 kd.<br>. TOTAL WALL LOAD AS PRESSURE<br>. ON THE SECURE I = 33.00 kd.<br>. DOTAL COLUMN LOADS = 12X149.1 20 x 11.175<br>. E 33.00 kd.<br>. NOTAL COLUMN LOADS = 120 x 11.175<br>. E 8.0 kd.<br>. TOTAL COLUMN LOADS = 120 x 11.175<br>. E 8.0 kd.<br>. NOTAL PRESSURE ON THE GROUND = (16.6 H 4.4 HID + 33.06 H 8) = 82.06 kd.<br>. NOLTIMATE DRSIGN PRESSURE = 1.4 x 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | źOF   |
| TTEMCALCULATIONSOUTPUMP HOUSE SASE SLAS JESIGN.LOADS:ULTIMATE COLUMN REACTION AT THE<br>IEVEL OF STARING SLAS = 216.2 kl.<br>$\therefore$ SERVICE LOAD = 216.2<br>$1.46 - 6VE$ ;<br>$= 14.6 + 100$<br>$= 16.6 kg/k^{3}$ ,<br>$= 14.6 + k/w^{3}$ .STAGING AREA SLAB = $(4.84.1.8410)$<br>$= 16.6 kg/k^{3}$ ,<br>BASE SLAS (0.6) = 14.4 kg/w^{3}.<br>BASE SLAS LIVE LOAD = 10.0 kg/w^{3}.<br>RC WALLS (26.25-19.5) = 105.3 km/w.<br>$650 mg$ THE EROUND = 10.0 kg/w.<br>$10.4 kg/w^{3}$ .<br>$13.2 kg/w$ .<br>TOTAL WALL LOAD AS PRESSURE<br>$= 13.2 kg/w$ .<br>TOTAL WALL LOAD AS PRESSURE<br>$= 33.06 kg/w^{3}$ .PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.91}{20 \times 11.175}$<br>$= 8.0 kg/w^{3}$ .PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.91}{20 \times 11.175}$<br>$= 8.0 kg/w^{2}$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| LOADS: ULTIMATE COLUMN REACTION ATTHE<br>LEVEL OF STRENG SLAB = 216.2 ki.<br>SERVICE LOAD = $2162$<br>1.45 - 6VB;<br>= 14.5.1 km,<br>STRGING AREA SLAB = $(4.84.1.8410)$<br>EASE SLAG (0.6) = $14.4$ km/m <sup>2</sup> .<br>BASE SLAG LIVE LOAD = $10.0$ km/m <sup>2</sup> .<br>RC WALLS ( $26.25 - 18.5$ ) = $105.3$ km/m.<br>GSOWN TRUE<br>BLOCK WALL 4.000 HIGH = $4.23.3$<br>= 13.2 km/m.<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>$= (105.3 + 13.2) \times 2(20+11.175)$<br>= 33.0G km/m <sup>2</sup> .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12\times145.1}{20\times11.175}$<br>= 8.0 km/m <sup>2</sup> .<br>TOTAL PRESSURE ON THE GROONS<br>= (16.6 + 14.4 + 10 + 33.06 + 8)<br>= 82.06 km/m <sup>2</sup> $< 250.0 OK. ULTIMATE DESIGN PRESSURE= 1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T PUT |
| IEVEL OF STAGING SLAB = 216.2 km. SERVICE LOAD = 216.2 I.45-EVE: = 143.1 km. STAGING AREA SLAB = (4.84.1.8410) = 16.6 km/m3. BASE SLAB (0.6) = 14.4 km/m3. BASE SLAB LIVE LOAD = 10.0 km/m3. RC WALLS (26.25-19.5) = 105.3 km/m. SDWM THER BLOCK WALL 4.0M HIGH = 4X3.3 = 13.2 km/m. TOTAL WALL LOAD AS PRESENCE ON THE GROUND = (105.5 ±13.2.) X 2(20±11.175) = 20 × 11.175 = 33.05 km/m2. PREQSURE DUE TO TOTAL COLUMN LOADS = 12×143.1 = 0 × 11.175 = 8.0 km/m2. N TOTAL PRESENCE ON THE GROUND = (16.6 ± 14.4 ± 10 ± 33.06 ± 8) = 82.06 km/m2 < 250.0 N OLTIMATE DESIGN PRESSURE = 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |
| IEVEL OF STAGING SLAB = 216.2 kl. SERVICE LOAD = 216.2 I.45-EVE = 143.1 kl. STAGING AREA SLAB = (4.841.8410) = 16.6 kl/lkl, base sLAB (0.6) = 14.4 kl/lkl, BASE SLAB LIVE LOAD = 10.0 kl/lkl, BASE SLAB LIVE LOAD = 10.0 kl/lkl, RC WALLS (26.25-19.5) = 105.3 kl/lkl, SDUM THER BLOCK WALL 4.0W HIGH = 4X3.3 = 13.2 kl/w. TOTAL WALL LOAD AS PRESENCE ON THE EROIND = (105.3 ±13.2) × 2(20±11.175) = 20 × 11.175 = 33.0G kl/lkl. PREQSURE DUE TO TOTAL COLUMN LOADS = 12×143.1 = 0 × 11.175 = 8.0 kl/lkl TOTAL PRESENCE ON THE GROOND = (16.6±4.4±10±33.06±8) = 82.06 kl/lkl < 250.0 . Ok ULTIMATE DESIGN PRESENCE = 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| $SERVICE LOAD = \frac{216.2}{1.45-685}$<br>= 143.1 km,<br>STAGING AREA SLAB = (4.841.8410)<br>= 16.6 km/m <sup>2</sup> ,<br>base slab (0.6) = 14.4 km/m <sup>2</sup> ,<br>base slab Live LOAD = 10.0 km/m <sup>2</sup> ,<br>RC WALLS (26.25-19.5) = 105.3 km/m,<br>GSDmm THERE<br>BLOCK WALL 4.0m High = 4x3.3<br>= 13.2 km/m.<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE GEOUND<br>= (105.5 ± 13.2) x 2 (20±11.175)<br>20 x 11.175<br>= 33.0G km/m <sup>2</sup> .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = <u>12x145.1</u><br>20 x 11.175<br>= 8.0 km/m <sup>2</sup> .<br>TOTAL PRESSURE ON THE GROUND<br>= (16.6 ± 14.4 ± 10 ± 33.06 ± 8)<br>= 82.06 km/m <sup>2</sup> < 250.0<br>ok.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |
| = 143.1  km. STAGING AREA SLAB = (4.8+1.8+10)<br>= 16.6 km/m <sup>3</sup> .<br>BASE SLAG (0.6) = 14.4 km/m <sup>3</sup> .<br>BASE SLAG LIVE LOAD = 10.0 km/m <sup>3</sup> .<br>RC WALLS (26.25-19.5) = 105.5 km/m.<br>GSDWW THICK<br>BLOCK WALL 4.00 HIGH = 4.X.3.3<br>= 13.2 km/m.<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>= (105.3 + 13.2) × 2 (20+11.175)<br>= 20 × 11.175<br>= 33.05 km/m <sup>3</sup> .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = <u>12×148.11</u><br>= 0 × 11.175<br>= 8.0 km/m <sup>3</sup> .<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| $=16.6 \text{ Ky}/m^{3},$ $=16.6 \text{ Ky}/m^{3},$ $BASE SLAG (0.6) = 14.4 \text{ Ky}/m^{3},$ $BASE SLAG LIVE LOAD = 10.0 \text{ Kx}/m^{3},$ $RC WALLS (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $650 \text{ WALL } (26.25-19.5) = 105.3 \text{ Kx}/m,$ $151.2 \text{ Kx}/m,$ $105.3 \text{ High } = 24 \times 3.3$ $= 13.2 \text{ Kx}/m,$ $105.3 \text{ High } = 24 \times 3.3$ $= 13.2 \text{ Kx}/m^{3},$ $105.3 \text{ High } = 24 \times 3.3$ $= 12.3 \text{ Kx}/m^{3},$ $105.3 \text{ High } = 22.3 \text{ Kx}/m^{3},$ $105.3 \text{ Kx}/m^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |
| BASE SLAB (0.6) = 10.4 km/m <sup>2</sup> .<br>BASE SLAB LIVE LOAD = 10.0 km/m <sup>2</sup> .<br>RC WALLS (26.25-19.5) = 105.3 km/m.<br>GSD m There<br>BLOCK WALL 4.00 HIGH = 4x3.5<br>= 13.2 km/m.<br>TOTAL WALL LOAD AS PRESEVED<br>ON THE GROWND<br>= $(105.3 + 13.2) \times 2(20 + 11.175)$<br>ZO X 11.175<br>= 33.06 km/m <sup>2</sup> .<br>PREGSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.9.1}{20 \times 11.175}$<br>= 8.0 km/m <sup>2</sup> .<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| BASE SLAG LIVE LOAD = 10.0 km/m <sup>2</sup> .<br>RC WALLS (26.25-18.5) = 105.3 km/m.<br>GSDWW THICK<br>BLOCK WALL 4.010 HIGH = $4 \times 3.3$<br>= 13.2 km/m.<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>$= (105.3 + 13.2) \times 2(20 + 11.175)$<br>= 33.06 km/m <sup>2</sup> .<br>PREOSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.3.1}{20 \times 11.175}$<br>= 8.0 km/m <sup>2</sup> .<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| RC WALLS $(26\cdot25-19\cdot5) = 105\cdot3 \text{ kN/m}.$<br>GSDWW THER<br>BLOCK WALL 4.014 HIGH = 4x3.3<br>= 13.2 kv/m.<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE EROUND<br>= $(105\cdot3+13\cdot2)\times2(20+11\cdot175)$<br>= 20 × 11.175<br>= 33.05 kv/m <sup>2</sup> .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12\times143\cdot1}{20\times11\cdot175}$<br>= 8.0 kv/w <sup>2</sup> .<br>TOTAL PRESSURE ON THE GROUND<br>= $(16\cdot6+14\cdot4+10+33\cdot06+8)$<br>= $82\cdot06$ kv/m <sup>2</sup> < 250.0<br>ok.<br>ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |
| GSD WW THICK<br>BLOCK WALL 4.0W HIGH = $4 \times 3.3$<br>= $13.2 \text{ km}$ .<br>TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>= $(105.3 + 15.2) \times 2(20 + 11 + 175)$<br>20 × 11.175<br>= $33.06 \text{ km}/m^2$ .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $12 \times 143.1$<br>$20 \times 11.175$<br>= $8.0 \text{ km}/m^2$ .<br>() TOTAL PRESSURE ON THE GROUND<br>= $(16.6 + 14.4 + 10 + 33.06 + 8)$<br>= $82.06 \text{ km}/m^2 < 250.0$<br>OK.<br>ULTIMATE DESIGN PRESSURE<br>= $1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| = 13.2  kyw. TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>$= (105.3 \pm 13.2) \times 2(20\pm 11.175)$ $= 33.06 \text{ ky}\text{w}^{2}.$ PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 143.1}{20 \times 11.175}$<br>$= 8.0 \text{ ky}\text{w}^{2}.$ $\therefore \text{ TOTAL PRESSURE ON THE GROUND}$ $= (16.6 \pm 14.4 \pm 10 \pm 33.06 \pm 8)$ $= 82.06 \text{ ky}\text{w}^{2} < 250.0$ $\therefore \text{ OLTIMATE DESIGN PRESSURE}$ $= 1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| TOTAL WALL LOAD AS PRESSURE<br>ON THE GROUND<br>$= (105.3 + 13.2) \times 2(20 + 11 + 175)$ $= 33.06 \text{ Ky/m^2}.$ PREDSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.911}{20 \times 11.175}$<br>$= 8.0 \text{ KN/m^2}.$ $\therefore \text{ TOTAL PRESSURE ON THE GROUND}$ $= (16.6 + 14.4 + 10 + 33.06 + 8)$ $= 82.06 \text{ Ky/m^2} < 250.0$ $\therefore \text{ OK}.$ $\therefore \text{ ULTIMATE DESIGN PRESSURE}$ $= 1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       |
| ON THE GROUND<br>$= (105 \cdot 3 + 13 \cdot 2) \times 2(20 + 11 \cdot 175)$ $= 33 \cdot 05  5 \times 10^{-175}$ $= 33 \cdot 05  5 \times 10^{-75}$ $= 33 \cdot 05  5 \times 10^{-75}$ $= 12 \times 143 \cdot 10^{-75}$ $= 12 \times 143 \cdot 10^{-75}$ $= 100 \times 10^{-75}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| $= (105.3 + 13.2) \times 2(20+11.175)$ $= 33.06 \text{ Ky/m^2},$ $PREDSURE DUE TO TOTAL COLUMN$ $LOADS = \frac{12 \times 149.1}{20 \times 11.175}$ $= 8.0 \text{ KN/m^2},$ $\therefore \text{ TOTAL PRESSURE ON THE GROONS}$ $= (16.6 + 14.4 + 10 + 33.06 + 8)$ $= 82.06 \text{ Ky/m^2} < 250.0$ $\therefore \text{ OK},$ $\therefore \text{ ULTIMATE DESIGN PRESSURE}$ $= 1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |
| 20 × 11.175<br>= 33.06 $k_{\rm M}/m^2$ .<br>PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 14.9.1}{20 \times 11.175}$<br>= 8.0 $k_{\rm M}/m^2$ .<br>TOTAL PRESSURE ON THE GROUND<br>= (16.6 + 14.4 + 10 + 33.06 + 8)<br>= 82.06 $k_{\rm M}/m^2 < 250.0$<br>OK.<br>OK.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 149.1}{20 \times 11.175}$<br>= 8.0 km/m <sup>2</sup> .<br>TOTAL PRESSURE ON THE GROUND<br>= (16.6 + 14.4 + 10 + 33.06 + 8)<br>= 82.06 km/m <sup>2</sup> < 250.0<br>$\therefore$ OK.<br>ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| PRESSURE DUE TO TOTAL COLUMN<br>LOADS = $\frac{12 \times 149.1}{20 \times 11.175}$<br>= 8.0 km/m <sup>2</sup> .<br>TOTAL PRESSURE ON THE GROUND<br>= (16.6 + 14.4 + 10 + 33.06 + 8)<br>= 82.06 km/m <sup>2</sup> < 250.0<br>$\therefore$ OK.<br>ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| LOADS = $\frac{12 \times 149.1}{20 \times 11.175}$<br>= $8.0 \text{ kn}/\text{m}^2$ .<br>TOTAL PRESSURE ON THE GROONS<br>= $(16.6 + 14.4 + 10 + 33.06 + 8)$<br>= $82.06 \text{ kn/m}^2 < 250.0$<br>$\therefore \text{ OK}$ .<br>ULTIMATE DESIGN PRESSURE<br>= $1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |
| $= 8.0 \text{ KN}/\text{N}^{2}.$ $= 8.0 \text{ KN}/\text{N}^{2}.$ $= (16.6 + 14.4 + 10 + 33.06 + 8)$ $= 82.06 \text{ KN}/\text{M}^{2} < 250.0$ $\therefore \text{OK}.$ $\therefore \text{ ULTIMATE DESIGN PRESSURE}$ $= 1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| TOTAL PRESSURE ON THE GROUND<br>= $(16.6 + 14.4 + 10 + 33.06 + 8)$<br>= $82.06$ by $M^2 < 250.0$<br>OK.<br>OK.<br>= $1.4 \times 82.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |
| = (16.6 + 14.4 + 10 + 33.06 + 8)<br>= 82.06 $k_1/m^2 < 250.0$<br>$\therefore 0k$ .<br>$\therefore 0k$ .<br>= 1.4 x 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |
| = 82.06 by M2 < 250.0<br>OK.<br>ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| .'. ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| .". ULTIMATE DESIGN PRESSURE<br>= 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| = 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| = 1.4 × 82.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |
| = 114.9 KN M2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |
| PRESSURE DUE TO BASE SLAB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |
| = 0.6 ×24 ×1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |
| $= 20.16 \text{ km/m^{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |

|                                   | NSULTANT (PVT) LTD.                                                            | PROJECT NRW                                                                                                                                                                                                                   | JOB NO.                |
|-----------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| NFRASTRUCTURE & E<br>AND PLANNERS | NVIRONMENTAL ENGINEERS                                                         | CALCULATIONS BY MOHD. LUTHEY.                                                                                                                                                                                                 | SHEET. 4.6.0F          |
|                                   |                                                                                | SCHEME KMU - GOTHTHATUNA RESERVO<br>COMPONENT & PURIP HOUSE .                                                                                                                                                                 | IR DATE                |
| ITEM                              |                                                                                | CALCULATIONS                                                                                                                                                                                                                  | OUT PUT                |
|                                   | INVERTED FLO<br>2 RC WALLS<br>CONSIDER A<br>D 1563:2<br>4.125<br>7.2E10<br>6.5 | BASE SLAB ANALYSED AS<br>DOR SLAB FRAMING WITH COLUMN<br>TYPICAL STRIP $\rightarrow$ GRID'G'<br>2482.2<br>6.55<br>7.2E10<br>6.5<br>1.406E11<br>777                                                                            |                        |
| <b>a</b>                          | Col<br>Mi                                                                      | ENT<br>DRT MAX <sup>M</sup> GM = 1228.08 KNM.<br>LUMIN STRIP 75/ = 921.1 KNM<br>DDLE STRIP 25/ = 307.0 11<br>PAN HAM <sup>M</sup> GM = 904.82 KNM.                                                                            |                        |
|                                   | CC<br>MIDTH OF<br>WIDTH OF<br>AT SUPPORT<br>M = 9<br>b = 20                    | DDLE STRIP $55\% = 4.97.7$ km<br>DDLE STRIP $4.5\% = 4.07.2$ II<br>GLUMN STRIP = 2000. MM.<br>MIDDLE STRIP = 2000. MM.<br>T (-)VE RET<br>21.1 KMM.<br>200 MM.<br>500-50-20 = 540 MM.                                          |                        |
|                                   | in <u>loo As</u><br>bol                                                        | $\frac{921.1 \times 10^{6}}{2000 \times 540^{2}} = 1.58.$ $= 0.42 \implies A_{5} = 0.42 \times 2000 \times 540$ $= 4536.0 \text{ Mm}^{2}$ $= 2268.0 \text{ Mm}^{2} \text{ M}.$ ROULDE T20 @ 125 $\implies A_{5} = 25^{13.01}$ | BOTTOM BARS<br>T20@125 |
|                                   |                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                         |                        |
|                                   |                                                                                | 267                                                                                                                                                                                                                           |                        |

r.O.S FOR DL= 1 \*\*\*F.O.S. FOR IMPL= 1 \*\*\*STRUCTURE INFORMATION\*\*\* NO.OF SPANS= 2

| SPAN NO | SPAN LTH-m | $Iz-mm^4$    |
|---------|------------|--------------|
| 1       | 4.12       | 7.200001E+10 |
| 2       | 6.55       | 7.200001E+10 |
|         | •          |              |

| COLUMN | LENGTH(m) | 2ND MOMENT              |       |       |
|--------|-----------|-------------------------|-------|-------|
| ROW    |           | OF AREA( $mm^4$ )       |       |       |
| 1.00   | 0.00      | 0.00                    | ABOVE |       |
| 1.00   | 6.50      | <b>%9150001</b> 0000.00 |       | BELOW |
| 2.00   | 0.00      | 0.00                    | ABOVE |       |
| 2.00   | 6.50      | <b>%2133000000.00</b>   |       | BELOW |
| 3.00   | 0.00      | 0.00                    | ABOVE |       |
| 3.00   | 6.50      | %140600000000.00        |       | BELOW |

#### \*\*\*\*\*LOADING INFORMATION\*\*\*\*\*

| SP.NO | LOAD-kN | ST.DIST-m | COV.DIST-m | DD/IMP |
|-------|---------|-----------|------------|--------|
| 1     | 1563.20 | 0.00      | 4.13       | D      |
| 2     | 2482.20 | 0.00      | 6.55       | Ð      |

CANT.CHR.D.MT LHS= 0 kNm CANT.CHR.IMP.MT.LHS = 0 kNm CANT.CHR.D.MT RHS= 0 kNm CANT.CHR.IMP.MT.RHS = 0 kNm

MAX.SHEARS AND MOMENTS. SF-KN BM-KNm

\_\_\_\_\_

| SPAN NO | . SHEAR             | HOG.MT               | SAG.MT           |   |
|---------|---------------------|----------------------|------------------|---|
| -       | 511.53<br>%-1051.67 | -102.47<br>%-1216.51 | 0.00<br>0.00     |   |
|         | MAX.SPAN MNT=       | 241.09 kNm AT        | A DISTANCE= 1.44 | m |

1271.82 %-1228.08 0.00 %-1210.38 %-1026.88 0.00

MAX.SPAN MNT= 904.82 kNm AT A DISTANCE= 3.27 m

#### COLUMN MOMENTS, kN.m

2

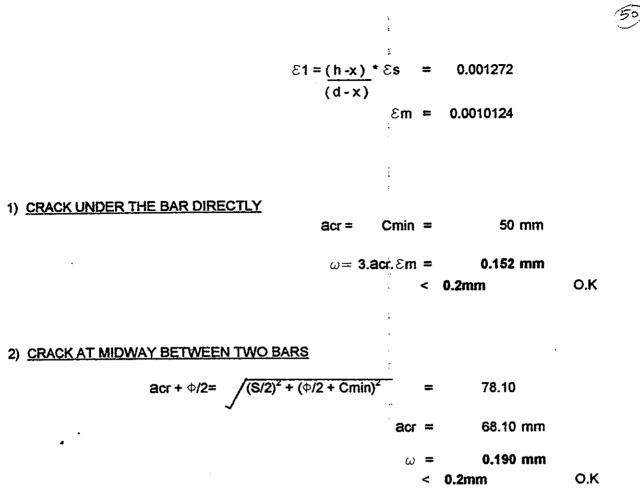
| COLUMN | COLUMN MON | IENTS    |
|--------|------------|----------|
| ROW    | ABOVE      | BELOW    |
| 1.00   | 0.00       | 102.47   |
| 2.00   | 0.00       | 11.57    |
| 3.00   | 0.00       | -1026.88 |

. . . . .

|                                                          | NSULTANT (PVT) LTD.                   | PROJECT NRW                                                                                                                                                                                                                                                                                                     | JOB NO.     |
|----------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS<br>AND PLANNERS |                                       | CALCULATIONS BY MOHD. LUTHEY.                                                                                                                                                                                                                                                                                   | SHEET. 48OF |
|                                                          |                                       | SCHEME KMU - GOTHTHATUWA RESERV<br>COMPONENT & PUMP HOUSE.                                                                                                                                                                                                                                                      | JOIR DATE   |
| ITEM                                                     |                                       | CALCULATIONS                                                                                                                                                                                                                                                                                                    | OUT PUT     |
|                                                          | $d = \frac{M}{bd^2} = \frac{M}{bd^2}$ | P BOTTOM BARS<br>307.0 KNM.<br>2000 MM.<br>570 MM.<br>$\frac{307.0 \times 10^6}{2000 \times 540^2} = 0.53.$<br>$2000 \times 540^2$<br>$= 0.15 \rightarrow A_{\rm S} = 0.15 \times 2000 \times 540$<br>(100                                                                                                      |             |
|                                                          | λοπιπ<br>••• <u>Ι(</u>                | $= 1620.0 \text{ WW}^{2}$ $= 1620.0 \text{ WW}^{2}$ $= 810.0 \text{ WW}^{2}/\text{W}$ IAL BARS AS PER BS 8007 $\int_{chil}^{0} = 0.35 \frac{1}{2}$ $\frac{35}{20A_{3}} = 0.35$ $= 0.35 \frac{1000 \times 600}{100}$ $= 2100.0 \text{ WW}^{2}.$ $T20 \otimes 125 \longrightarrow A_{3} = 2513.0 \text{ WW}^{2}.$ |             |
|                                                          | COLUMIN<br>STRIP TOF                  | STRIP TOP BARS & MIDDLI<br>BARS ADOPT 920 @125 C/C<br>( 921.1 KNM.                                                                                                                                                                                                                                              | E PROVIDE   |
|                                                          |                                       | HECK.<br>NG SHEAR AT COLUMNS<br>AL. (CALCE SIMILAR TO<br>RESERVOIR BASE SLAB)                                                                                                                                                                                                                                   |             |
|                                                          |                                       |                                                                                                                                                                                                                                                                                                                 |             |
|                                                          |                                       | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                           |             |
|                                                          |                                       | _26.9                                                                                                                                                                                                                                                                                                           |             |

د

-


### DESIGN OF CRACK

BS 8007 : 1987

Pump House Area Base Slab **DESIGN SURFACE CRACK WIDTH**  $\omega$  = 3acr.Em 1+2( acr - Cmin ) (h-x) $\mathcal{E}\mathbf{m} = \mathcal{E}\mathbf{1} - \mathbf{b}\mathbf{t}(\mathbf{h} - \mathbf{x})(\mathbf{a}' - \mathbf{x})$ 3Es. As(d-x)SERVICE MOMENT M 329 KNM/M Φ = 20.00 mm 50 (mm) Cmin = h(mm) = 600540.00 mm  $d = h - Cmin - \Phi/2$ d = 35 N/mm<sup>2</sup> CONCRETE f cu = I 460 N/mm<sup>2</sup> fy =REINFORCEMENT PROVIDED BAR DIAMETER  $\Phi$  = 20 mm 100 mm BAR SPACING S = 3141.59 mm<sup>2</sup> Asp = 28 KN/mm<sup>2</sup> Ec ≈ 200 KN/mm<sup>2</sup> Es ≠  $\alpha e = Es/1/2Ec =$ 14.29 0.00582 0 = 0.083 α**e**.p = THEREFORE x = - $\alpha e (\rho + \rho') + \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho') = \frac{1}{2}$ 0.333 đ đ CONSIDERING  $\rho' = 0$ THEREFORE 179.81 mm x = 480.06 mm z = d - 1/3 x =218.15 N/mm<sup>2</sup> fs = M Asp.z 0.0010907  $\mathcal{E}\mathbf{s} = \mathbf{f}\mathbf{s}$ =

Es x 1000

.....



THEREFORE REINFORCEMENT T20 @ 100 C/C O.K

.

\_ -

. .....

| CHECK FOR THERMAL CRACK<br>PUMP HOUSE BASE SLAB<br>BS 8007, APPENDIX A.3 |                           |                   |   |                         |
|--------------------------------------------------------------------------|---------------------------|-------------------|---|-------------------------|
| CRACK SPA                                                                | ACING Smax = fct x $\Phi$ |                   |   |                         |
|                                                                          | The 2p                    |                   |   |                         |
|                                                                          | FROM TABLE A.1            | f <u>ct</u><br>fb | = | 0.67                    |
| FOR BASE SLAB R/F PROVIDED                                               | BAR DIAMETER              | <b>१</b> Ф        | 8 | 20 mm                   |
|                                                                          | BAR SPACI                 | NG S              | = | 100 mm                  |
|                                                                          |                           | Asp               | = | 3142.86 mm <sup>2</sup> |

USING SURFACE ZONES AS PER FIG A.2 BS 8007

\_\_\_\_\_

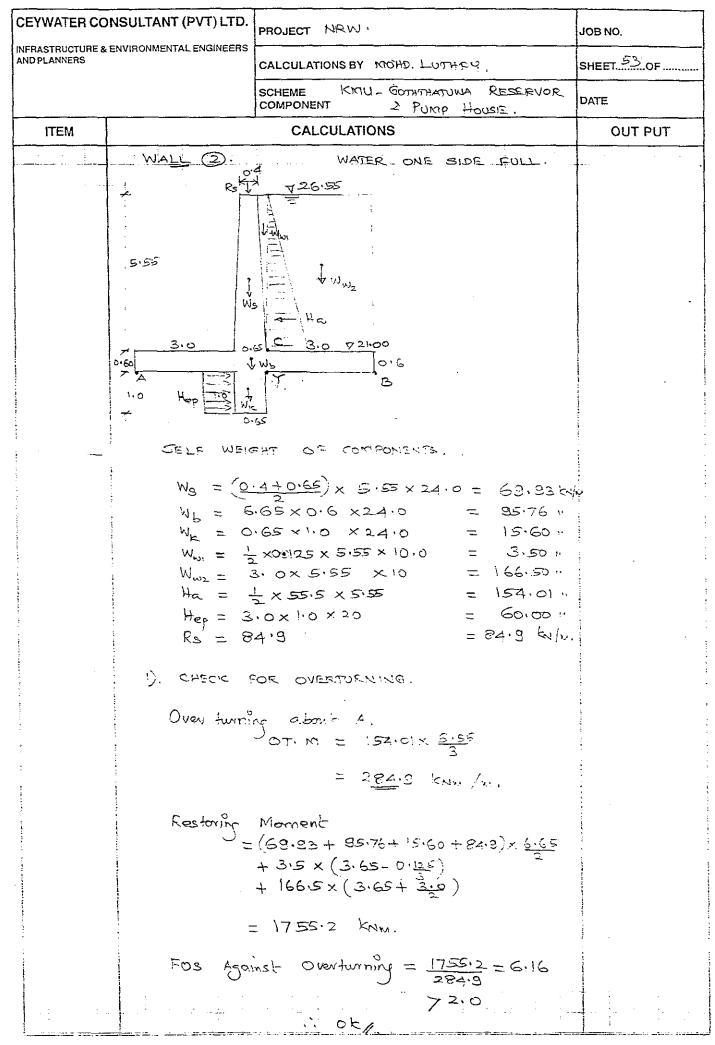
ł

 $\rho = Asp = 0.0125714$   $\overline{1000*250}$ Smax = 532.95 mm

| M/XIMUM CRACK WIDTH DUE TO CHANGE IN TEMPERATURE<br>T1 & T2  |   |                   |
|--------------------------------------------------------------|---|-------------------|
| BS 8007 - APPENDIX A.3 $\omega$ max= Smax . $\alpha$ (T1+T2) |   |                   |
| -2                                                           |   |                   |
| α                                                            | Ħ | 0.00001 /°C       |
| T1= 28 <sup>0</sup> C FOR GROUND SLAB WITH 600mm THICK       |   |                   |
| USE AS PER DESIGN CRITERIA T1                                | = | 35 <sup>0</sup> C |
| T2                                                           | 2 | 15 <sup>°C</sup>  |
| $\omega$ max                                                 | = | 0.13 mm O.K       |

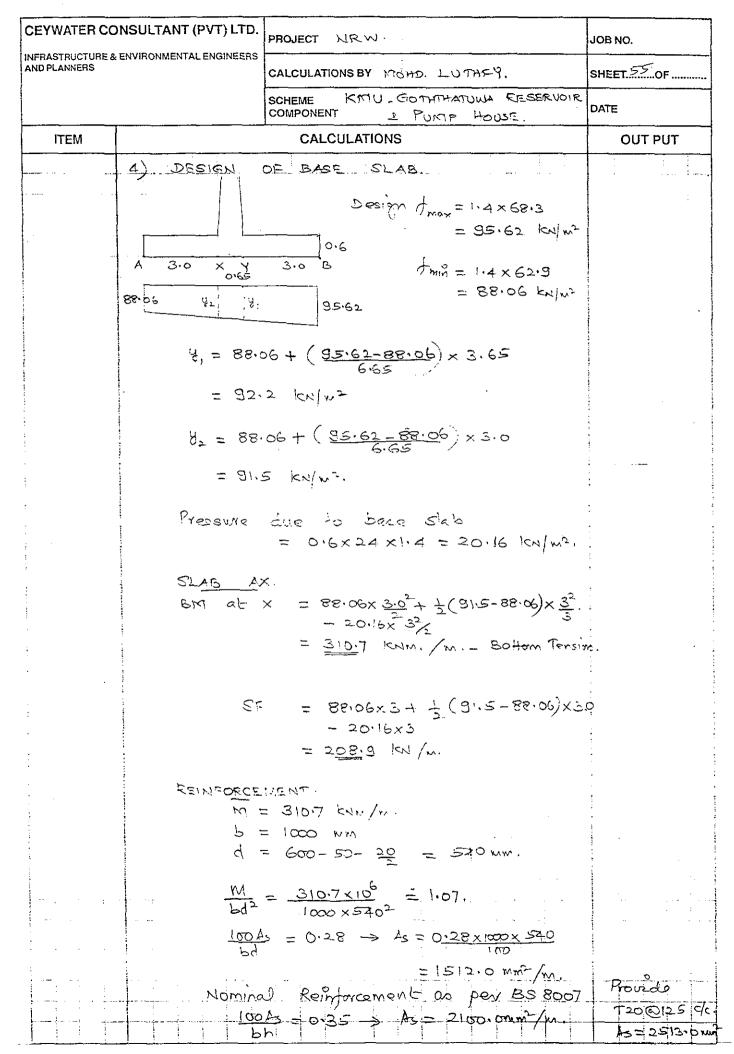
CONCRETE GRADE fcu = 30 N/mm^2 : HARACTERISTIC STRENGTH OF REINFORCEMENT fy = 460 N/mm^2 COLUMN BREADTH = 400 AND DEPTH = 400 mm DEPTH TO STEEL = 68 mm

AXIAL LOAD N = 740 kN MOMENTS = 46.15 & 0 kNm EFFECTIVE LENGTHS = 7.17 & 7.17 meters STRUCTURE IS UNBRACED


FOTAL STEEL AREA = 0 mm^2 = 0 %PROVIDE 8716INIMUM STEEL AREA REQUIRED = .4% OF B\*H = 640 mm^2MAIN BAR.

RESERVOIR AREA COLUMN

CONCRETE GRADE fcu =  $35 \text{ N/mm}^2$ CHARACTERISTIC STRENGTH OF REINFORCEMENT fy =  $460 \text{ N/mm}^2$ COLUMN BREADTH = 400 AND DEPTH = 400 mmDEPTH TO STEEL = 68 mm


AXIAL LOAD N  $\cdot$  = 740 kN MOMENTS = 46.15 & 0 kNm EFFECTIVE LENGTHS = 9.560001 & 9.560001 meters PROVIDE STL STRUCTURE IS UNBRACED MAIN BAR

TOTAL STEEL AREA = 505.99 mm<sup>2</sup> = .31 % MINIMUM STEEL AREA REQUIRED = .4% OF B\*H = 640 mm<sup>2</sup>



|                                                                                          | SULTANT (PVT) LTD.           | PROJECT NRW.                                                                                                              | JOB NO.                               |  |
|------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| INFRASTRUCTURE & ENVIRONMENTAL ENGINEERS<br>AND PLANNERS<br>CALCULATIONS BY Mさけり、上のTHFY、 |                              | SHEET. 5. OF                                                                                                              |                                       |  |
|                                                                                          |                              | SCHEME KMU-GOTHTHATUWA RESERVOIR<br>COMPONENT & PUMP HOUSE.                                                               | DATE<br>OUT PUT                       |  |
| ITEM                                                                                     |                              | CALCULATIONS                                                                                                              |                                       |  |
|                                                                                          | 2) SLIDING                   | · · · · · · · · · · · · · · · · · · ·                                                                                     | · · · · · · · · ·                     |  |
|                                                                                          | Total Ve                     | whical $Loads = 69.93 + 95.76 + 15.60 + 84.9 + 3.50 + 166.50$                                                             | · · · · · · · · ·                     |  |
|                                                                                          | Resisting                    | = 436.2.  kN./m. $= 436.2  tan 26 + 60.0$ $= 272.7  kn/m.$                                                                |                                       |  |
|                                                                                          |                              | $= \frac{272.7}{152.01} = 1.77 \times 1.50.$                                                                              |                                       |  |
|                                                                                          | 3). EARTU PR<br>From A,<br>T | ESSURE UNDER THE BATE.<br>= (1755.2 - 284.9)<br>= 3.371 m.                                                                |                                       |  |
|                                                                                          | : Eccentric                  | ilij of Loads<br>$e = \overline{x} - \frac{5.65}{2}$<br>= 3.371 - 3.325<br>= 0.044 of $b = 6.65$ = 1408                   |                                       |  |
|                                                                                          | Maximum                      | $= 0.046 < \frac{1}{6} = \frac{6.65}{6} = 1.108$<br>OE<br>Earth Pressure<br>= 436.2 (1) (x 0.046)                         |                                       |  |
|                                                                                          | · .                          | $= \frac{436.2}{6.65} \left( 1 + \frac{6 \times 0.046}{6.65} \right)$<br>= 68.3 kn/m <sup>2</sup> < 2.50.0<br>0k/         |                                       |  |
|                                                                                          | () m                         | $\frac{436\cdot 2}{6\cdot 65} \left( 1 - \frac{6 \times 0 \cdot 046}{6\cdot 65} \right)$<br>= 62.9 kN/w <sup>2</sup> > 0. | · · · · · · · · · · · · · · · · · · · |  |
|                                                                                          |                              |                                                                                                                           |                                       |  |

ļ



| DESIGN OF CRACK.                                              |      |                               | :<br>:                                |
|---------------------------------------------------------------|------|-------------------------------|---------------------------------------|
| BS 8007 : 1987                                                |      |                               | ÷.                                    |
| Reservoir Wall No. 2- Base Slab<br>DESIGN SURFACE CRACK WIDTH | ω=   | 3acr.Em                       |                                       |
|                                                               | 1    | +2( <u>acr - Cmi</u><br>(h-x) | <u>n)</u>                             |
|                                                               | Em = | €1 - bt (h - x)<br>3Es. As (c | · · · · · · · · · · · · · · · · · · · |

| SERVICE MOMENT M                                                                                                                                          | = | 222 KNM/M                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|
| h (mm) = 600 Cmin = 50 (mm) $\Phi$                                                                                                                        | Ħ | 20.00 mm                 |
| $d = h - Cmin - \Phi/2 \qquad d$                                                                                                                          | = | 540.00 mm                |
| CONCRETE f cu                                                                                                                                             | Ħ | 35 N/mm <sup>2</sup>     |
| fy                                                                                                                                                        | # | 460 N/mm <sup>2</sup>    |
| REINFORCEMENT PROVIDED BAR DIAMETER $\Phi$                                                                                                                | æ | 20 mm                    |
| BAR SPACING S                                                                                                                                             | = | 125 mm                   |
| Asp                                                                                                                                                       | 2 | 2513.27 mm <sup>2</sup>  |
| Ec                                                                                                                                                        | z | 28 KN/mm <sup>2</sup>    |
| Es                                                                                                                                                        | = | 200 KN/mm <sup>2</sup>   |
| $\alpha e = Es/1/2Ec$                                                                                                                                     | # | 14.29                    |
| م<br>م                                                                                                                                                    | = | 0.00465                  |
| α <b>e.</b> ρ                                                                                                                                             | a | 0.066                    |
| THEREFORE x = - $\alpha e (\rho + \rho') + \sqrt{\alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho')}$<br>$\overline{d}$<br>CONSIDERING $\rho' = 0$ | = | 0.304                    |
| ,                                                                                                                                                         | = | 164.26 mm                |
| z = d - 1/3 x                                                                                                                                             | = | 485.25 mm                |
| fs = M<br>Asp.z                                                                                                                                           | = | 182.03 N/mm <sup>2</sup> |
| $\varepsilon_{s} = \underline{fs}$ Es x 1000                                                                                                              | = | 0.0009102                |

$$\mathcal{E}1 = (\underline{h-x})^* \mathcal{E}s = 0.001056$$
  
(d-x)  
 $\mathcal{E}m = 0.0007204$ 

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 50 mm  $\omega = 3.acr. \mathcal{E}m = 0.108 mm$ < 0.2mm O.K

2) CRACK AT MIDWAY BETWEEN TWO BARS

· · · · · · ·

$$acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2} = 86.64$$
  
 $acr = 76.64 \text{ mm}$   
 $\omega = 0.148 \text{ mm}$   
 $< 0.2mm$  O.K

THEREFORE REINFORCEMENT T20 @ 125 C/C O.K

------

278

|                                       |               | JECT NRW                                                                        | JOB NO.                                                                                                         |
|---------------------------------------|---------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| ACCELCULATIONS BY MOHD. LUTHES.       |               | SHEET                                                                           |                                                                                                                 |
|                                       |               | DATE                                                                            |                                                                                                                 |
| ITEM                                  | I.,,,,,       | CALCULATIONS                                                                    | OUT PUT                                                                                                         |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       | SHEAR U       | $= 208.9 \times 10^3 = 0.387 \text{ N/mm}^2$ .                                  |                                                                                                                 |
|                                       | <b>.</b>      | 1000 × 540                                                                      |                                                                                                                 |
| · ·                                   | ·····         |                                                                                 | · · · · · ·                                                                                                     |
|                                       | -             | $T_{20} \bigcirc 125 \ clc.$                                                    |                                                                                                                 |
| 7                                     | 0ر            | = 0.544 N/MM-> J.                                                               |                                                                                                                 |
| - 1                                   | No sh         | ear Reinforcoment Necessary.                                                    |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
| •                                     | SLAB - BY.    | · · ·                                                                           |                                                                                                                 |
|                                       | Burg al U -   | $= 92.2 \times \frac{3^2}{2} + \frac{1}{2} (95.62 - 92.2) \times \frac{3^2}{2}$ | The second se |
|                                       |               |                                                                                 | <b>-1</b>                                                                                                       |
|                                       |               | - 1.4×166.5×3 - 20.16×3                                                         | •<br>•                                                                                                          |
|                                       |               | 5 /2                                                                            | •                                                                                                               |
|                                       |               | = - 15.21 knm/m. Top tension.                                                   | •                                                                                                               |
|                                       |               | Nominal                                                                         | •<br>:                                                                                                          |
| :                                     | Srean         | Nominal                                                                         | Top bar                                                                                                         |
| •                                     | Proo          | de T20 @125 c/c.                                                                | 12001250                                                                                                        |
|                                       |               |                                                                                 |                                                                                                                 |
| •                                     | 5). DESIGN OF | WALL STEM.                                                                      | •                                                                                                               |
|                                       | 5.4           |                                                                                 | :                                                                                                               |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       |               | - 1.4 × 152.01 = 215.6 KN.                                                      | :                                                                                                               |
|                                       |               | <u>5-55</u><br>3                                                                | -<br>-<br>-                                                                                                     |
| ÷                                     | 0.65          | 3                                                                               |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
|                                       | DW at         | $C = 215.6 \times \frac{5.55}{3} = 398.9 \  c_{NW} _{\gamma}$                   |                                                                                                                 |
|                                       | Sheav at      | C = 215.6 100 jm.                                                               |                                                                                                                 |
|                                       |               |                                                                                 |                                                                                                                 |
| · · · · · · · · · · · · · · · · · · · | Reinforcemen  |                                                                                 |                                                                                                                 |
| <u></u>                               | M = 3         | 38.9 KNM                                                                        | <u> </u>                                                                                                        |
|                                       | •             | $co < w_{M}$                                                                    | •<br>•                                                                                                          |
| · · · · · · · · · · · · · · · · · · · |               | 50 - 50 - 20 = 590.0  mm                                                        |                                                                                                                 |
|                                       |               | 398.9 ×10 <sup>6</sup> = 1.15                                                   |                                                                                                                 |
|                                       |               | 1082 × 0801                                                                     |                                                                                                                 |

I

|                                                                                     | PROJECT NRW.                                                            | JOB NO.     |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------|--|
| IFRASTRUCTURE & ENVIRONMENTAL ENGINEERS<br>NDPLANNERS CALCULATIONS BY MOHD、 LUTHEY. |                                                                         | SHEET 59 OF |  |
|                                                                                     | SCHEME KMU-GOTHTHATUWA RESERVOR<br>COMPONENT & PUMP HOUSE.              | DATE        |  |
| ITEM                                                                                | CALCULATIONS                                                            | OUT PUT     |  |
| 100 As =                                                                            | 0.31                                                                    |             |  |
| ьd                                                                                  | · •                                                                     |             |  |
| Minimum                                                                             | Required 100As = 0.35                                                   |             |  |
| · · · · · · · · · · · · · · · · · · ·                                               | $A_{s} = 0.35 \times 1000 \times 6.50$                                  |             |  |
|                                                                                     | Cal                                                                     |             |  |
|                                                                                     | $= 2275.0 \text{ mm}^{2}.$                                              |             |  |
| Prou                                                                                | $r_{20} = 2512.0 \text{ Mm}^2.$                                         | WALL RET.   |  |
|                                                                                     | AS 2 23 13.0 MINI .                                                     | T20@125 da  |  |
| Shear (                                                                             | $5 = \frac{215.6 \times 10^3}{200} = 0.365 \text{ N/MW}^2$              |             |  |
| 2                                                                                   | E = 0:54 N/MM? > U                                                      |             |  |
| × ,,                                                                                |                                                                         | :           |  |
| · · No                                                                              | _ shaan Reinforcoment Necessary.                                        |             |  |
|                                                                                     |                                                                         | -           |  |
| :                                                                                   |                                                                         |             |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     |                                                                         | •           |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     |                                                                         | •           |  |
|                                                                                     |                                                                         | :<br>·      |  |
|                                                                                     |                                                                         | -           |  |
|                                                                                     |                                                                         | •           |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     |                                                                         | •           |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     |                                                                         | -<br>-<br>- |  |
|                                                                                     |                                                                         |             |  |
|                                                                                     | na an an an an an <del>a</del> n an |             |  |
|                                                                                     | i                                                                       | -           |  |
|                                                                                     |                                                                         |             |  |
| · · · · · · · · · · · · · · · · · · ·                                               | · · · · · · · · · · · · · · · · · · ·                                   |             |  |
| · · · · · · · · · · · · · · · · · · ·                                               |                                                                         |             |  |
|                                                                                     |                                                                         | 1           |  |

## DESIGN OF CRACK.

BS 8007 : 1987

· \_....

Reservoir Wall No. 2- Wall StemDESIGN SURFACE CRACK WIDTH $\omega$  =

| $\frac{1+2(\frac{\text{acr}-\text{Cmin}}{(h-x)})}{(h-x)}$                                                                                                |   |                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|
| $\mathcal{E}\mathbf{m} = \mathcal{E}1 - \mathbf{b}\mathbf{t} (\mathbf{h} - \mathbf{x})(\mathbf{a}^{\prime} - \mathbf{x})$<br>3Es. As (d - x)             |   |                          |
| SERVICE MOMENT M                                                                                                                                         | = | 284.9 KNM/M              |
| h (mm) = 650 Cmin = 50 (mm) $\phi$                                                                                                                       | = | 20.00 mm                 |
| $d = h - Cmin - \Phi/2 \qquad d$                                                                                                                         | = | 590.00 mm                |
| CONCRETE f cu                                                                                                                                            | = | 35 N/mm <sup>2</sup>     |
| _ fy                                                                                                                                                     | = | 460 N/mm <sup>2</sup>    |
| REINFORCEMENT PROVIDED BAR DIAMETER $\phi$                                                                                                               | = | 20 mm                    |
| BAR SPACING S                                                                                                                                            | = | 125 mm                   |
| Asp                                                                                                                                                      | = | 2513.27 mm <sup>2</sup>  |
| Ec                                                                                                                                                       | - | 28 KN/mm <sup>2</sup>    |
| ES                                                                                                                                                       |   | 200 KN/mm <sup>2</sup>   |
| $\alpha$ e = Es/ 1/2Ec                                                                                                                                   | = | 14.29                    |
| Q                                                                                                                                                        | = | 0.00426                  |
| α <b>ε.</b> ρ                                                                                                                                            | H | 0.061                    |
| THEREFORE x = $-\alpha e (\rho + \rho') + \sqrt{\alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho')}$<br>$\overline{d}$<br>CONSIDERING $\rho' = 0$ | ± | 0.293                    |
|                                                                                                                                                          | = | 173.04 mm                |
| $z = d - 1/3 \times$                                                                                                                                     | Ŧ | 532.32 mm                |
| fs = M<br>Asp.z                                                                                                                                          | Ŧ | 212.95 N/mm <sup>2</sup> |
| $\mathcal{E}s = fs$<br>Es x 1000                                                                                                                         | Ŧ | 0.0010648                |

÷

3acr.Em

-281

-- -- --

(60

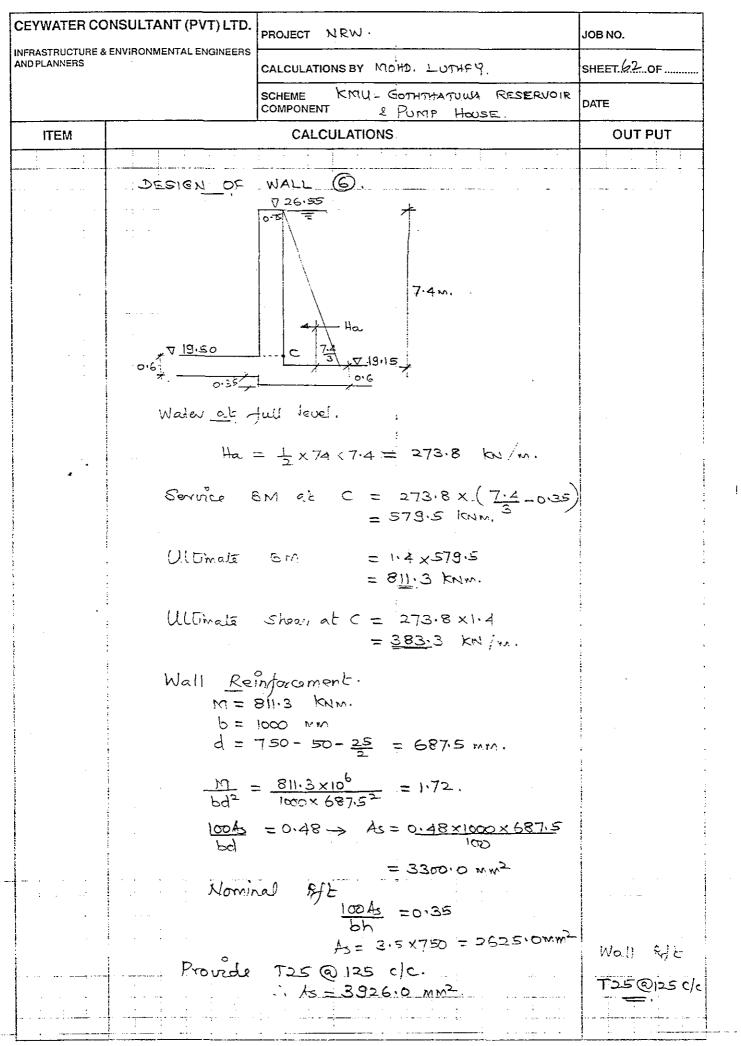
$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.001218$$
  
(d-x)  
 $\mathcal{E}m = 0.0008562$ 

1 - N - N

1) CRACK UNDER THE BAR DIRECTLY

 $acr \approx Cmin = 50 mm$   $\omega = 3.acr. \mathcal{E}m = 0.128 mm$ < 0.2mm O.K

## 2) CRACK AT MIDWAY BETWEEN TWO BARS


-----

$$acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2} = 86.64$$
  
 $acr = 76.64 mm$   
 $\omega = 0.177 mm$   
 $< 0.2mm$  O.K

THEREFORE REINFORCEMENT T20 @ 125 C/C O.K

- -

· -·· ·



### DESIGN OF CRACK.

.

BS 8007 : 1987

ļ

| Reservoir Wall No. 6 - Wall Stem<br>DESIGN SURFACE CRACK WIDTH $\omega = 3$ acr.Em                                                  |   |                          |
|-------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------|
|                                                                                                                                     |   |                          |
| $\frac{1+2(\frac{\operatorname{acr}-\operatorname{Cmin}}{(h-x)})}{(h-x)}$                                                           |   |                          |
|                                                                                                                                     |   |                          |
| S = S + b + b + v + (b + v) + (b + v)                                                                                               |   |                          |
| $\mathcal{E}\mathbf{m} = \mathcal{E}1 - \mathbf{b}\mathbf{x}(\mathbf{h} - \mathbf{x})(\mathbf{a}' - \mathbf{x})$<br>3Es. As (d - x) |   |                          |
| SES. AS (U · X)                                                                                                                     |   |                          |
| SERVICE MOMENT M                                                                                                                    | = | 579.5 KNM/M              |
| h (mm) = 750 Cmin = 50 (mm) $\Phi$                                                                                                  | = | 25.00 mm                 |
| $d = h - Cmin - \Phi/2 \qquad d$                                                                                                    | = | 687.50 mm                |
| CONCRETE f cu                                                                                                                       | = | 35 N/mm <sup>2</sup>     |
| fy                                                                                                                                  | = | 460 N/mm <sup>2</sup>    |
| REINFORCEMENT PROVIDED BAR DIAMETER $\Phi$                                                                                          | = | 25 mm                    |
| BAR SPACING S                                                                                                                       | = | 100 mm                   |
|                                                                                                                                     |   | 2                        |
| Asp                                                                                                                                 | = | 4908.74 mm <sup>2</sup>  |
|                                                                                                                                     |   |                          |
| Ec                                                                                                                                  | Ŧ | 28 KN/mm <sup>2</sup>    |
| Es                                                                                                                                  | = | 200 KN/mm <sup>2</sup>   |
| $\alpha e = Es/1/2Ec$                                                                                                               | = | 14.29                    |
|                                                                                                                                     |   | 1 Today C                |
| . ρ                                                                                                                                 | = | 0.00714                  |
|                                                                                                                                     |   |                          |
| α <b>ε.</b> ρ                                                                                                                       | = | 0.102                    |
| THEREFORE x = - $\alpha e (\rho + \rho') + \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho')$                               | _ | 0.361                    |
| $\frac{1}{d}$                                                                                                                       | - | 0.301                    |
| CONSIDERING $\rho' = 0$                                                                                                             |   |                          |
| THEREFORE X                                                                                                                         | = | 248.21 mm                |
| z = d - 1/3 x                                                                                                                       | = | 604.76 mm                |
| 2 - u - 1/3 X                                                                                                                       | - | 004.f0 Hilli             |
| fs = <u>M</u>                                                                                                                       | ŧ | 195.21 N/mm <sup>2</sup> |
| Asp.z                                                                                                                               |   |                          |
| $\mathcal{E}s = fs$                                                                                                                 | = | 0.000976                 |
| Es x 1000                                                                                                                           |   |                          |

÷

------

$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.001115$$
  
(d-x)  
 $\mathcal{E}m = 0.0009203$ 

. . .

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 50 mm  $\omega = 3.acr. \varepsilon m = 0.138 mm$ < 0.2mm O.K

.

2) CRACK AT MIDWAY BETWEEN TWO BARS

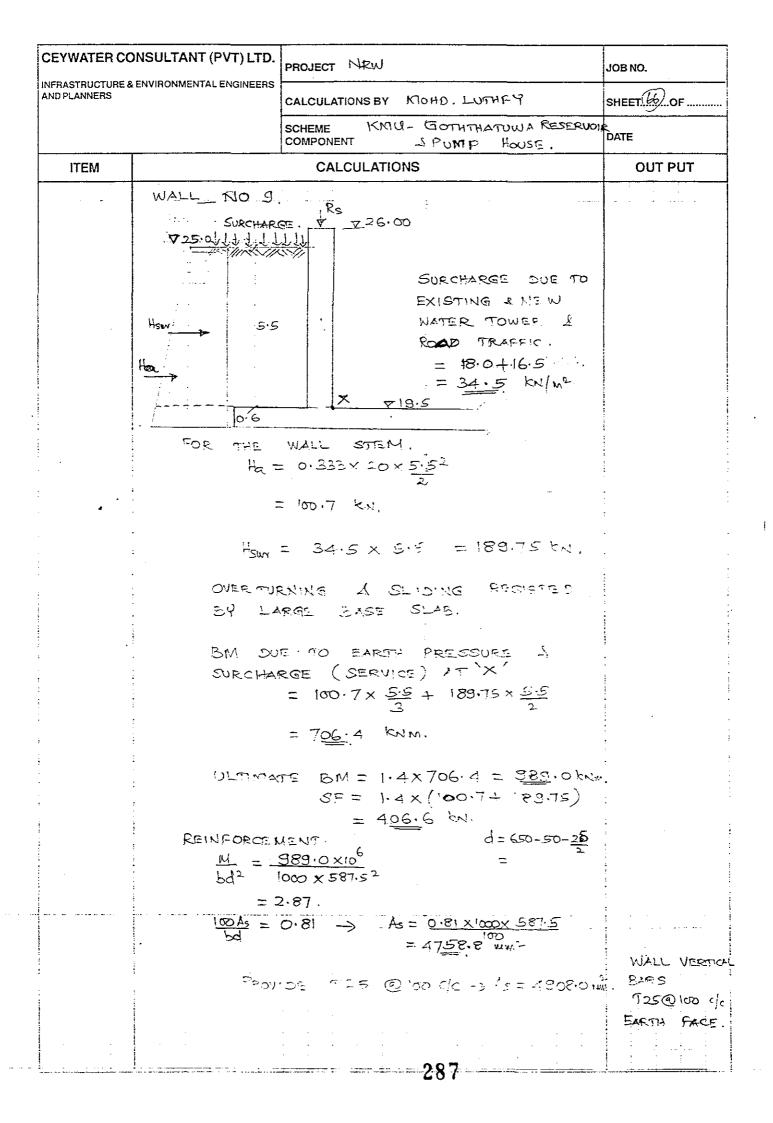
$$acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2} = 80.04$$
  
 $acr = 37.54 \text{ mm}$   
 $\omega = 0.174 \text{ mm}$   
 $< 0.2mm$  O.K

THEREFORE REINFORCEMENT T25 @ 100 C/C O.K

- - -

64)

| CHECK FOR THERMAL CRACK<br>Reservoir Wall 6 - Stem<br>BS 8007, APPENDIX A.3<br>CRACK SPA | CING Smax       | = fct x $\Phi$<br>fb $2\rho$ | -            |   |                         |         |
|------------------------------------------------------------------------------------------|-----------------|------------------------------|--------------|---|-------------------------|---------|
|                                                                                          | FROM TABLI      | EA.1                         | fct<br>fb    | = | 0.67                    |         |
| FOR R/F PROVIDED                                                                         | BAR D           | DIAMETER                     | φ            | B | 25 mm                   |         |
|                                                                                          | B               | BAR SPACIN                   | IG S         | H | 125 mm                  |         |
|                                                                                          |                 |                              | Asp          | ŧ | 3928.57 mm <sup>2</sup> |         |
| USING SURFACE ZONES AS PEI                                                               | R FIG A.2 BS    | ρ=                           |              |   | 250 mm<br>0.0157143     |         |
|                                                                                          |                 |                              | Smax         | 8 | 532.95 mm               |         |
| MAXIMUM CRACK WIDTH DUE T                                                                | O CHANGE I      | N TEMPER/                    | ATURE        |   |                         |         |
| BS 8007 - APPENDIX A.3                                                                   | ω <b>max= S</b> | max. $\alpha(T)$             | + <b>T2)</b> |   |                         |         |
|                                                                                          |                 | _                            | α            | æ | 0.00001 /°C             |         |
| T1≈ 42ºC FOR WALL OF 7                                                                   |                 |                              |              |   | •                       |         |
| THEREFOR                                                                                 | E               |                              | • •          | = |                         |         |
|                                                                                          |                 |                              | 12           | æ |                         |         |
|                                                                                          |                 |                              | ω <b>max</b> | = | 0.151892 mm             | < 0.2mm |


١

. .

THERMAL CRACK OK

- -

....



#### DESIGN OF CRACK

BS 8007 : 1987

1

- --

. . .

| $\frac{\text{Reservoir Wall No. 9 - Wall Stem}}{\text{DESIGN SURFACE CRACK WIDTH}}  \omega = \frac{3\text{acr.Em}}{1+2(\frac{\text{acr} - \text{Cmin}}{(\text{h} - x)})}$ |   |                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------|
| $\mathcal{E}m = \mathcal{E}1 - bt (h - x)(a' - x)$<br>3Es. As (d - x)                                                                                                     |   |                                                 |
| SERVICE MOMENT M                                                                                                                                                          | 2 | 706.4 KNM/M                                     |
| h (mm) = 650 Cmin = 50 (mm) $\phi$<br>d = h - Cmin - $\phi/2$ d                                                                                                           |   | 32.00 mm<br>584.00 mm                           |
| CONCRETE f cu                                                                                                                                                             |   | 35 N/mm <sup>2</sup><br>460 N/mm <sup>2</sup>   |
| REINFORCEMENT PROVIDED BAR DIAMETER $\Phi$ BAR SPACING S                                                                                                                  |   | 32 mm<br>100 mm                                 |
| Asp                                                                                                                                                                       | = | 8042.48 mm <sup>2</sup>                         |
| Ec                                                                                                                                                                        |   | 28 KN/mm <sup>2</sup><br>200 KN/mm <sup>2</sup> |
| $\alpha$ e = Es/ 1/2Ec                                                                                                                                                    | = | 14.29                                           |
| Q                                                                                                                                                                         | = | 0.01377                                         |
| α <b>ε.</b> ρ                                                                                                                                                             | # | 0.197                                           |
| THEREFORE x = - $\alpha e (\rho + \rho') + \int \alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho')$<br>$\overline{d}$<br>CONSIDERING $\rho' = 0$                   | = | 0.461                                           |
|                                                                                                                                                                           | = | 269.03 mm                                       |
| z = d - 1/3 x                                                                                                                                                             | = | 494.32 mm                                       |
| fs = M<br>Asp.z                                                                                                                                                           | # | 177.68 N/mm <sup>2</sup>                        |
| $\mathcal{E}s = \frac{fs}{Es \times 1000}$                                                                                                                                | = | 0.0008884                                       |

. . . . . . . .

.....

67)

$$\mathcal{E}1 = (\underline{h} - \underline{x})^* \mathcal{E}s = 0.001075$$
  
(d-x)  
 $\mathcal{E}m = 0.0009791$ 

1) CRACK UNDER THE BAR DIRECTLY

acr = Cmin = 50 mm  $\omega = 3.acr. \mathcal{E}m = 0.147 mm$ < 0.2mm O.K

1

.

2) CRACK AT MIDWAY BETWEEN TWO BARS

.

$$acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2} = 82.80$$
  
 $acr = 66.80 \text{ mm}$   
 $\omega = 0.180 \text{ mm}$   
 $< 0.2mm$  O.K

THEREFORE REINFORCEMENT T32 @ 100 C/C O.K

----

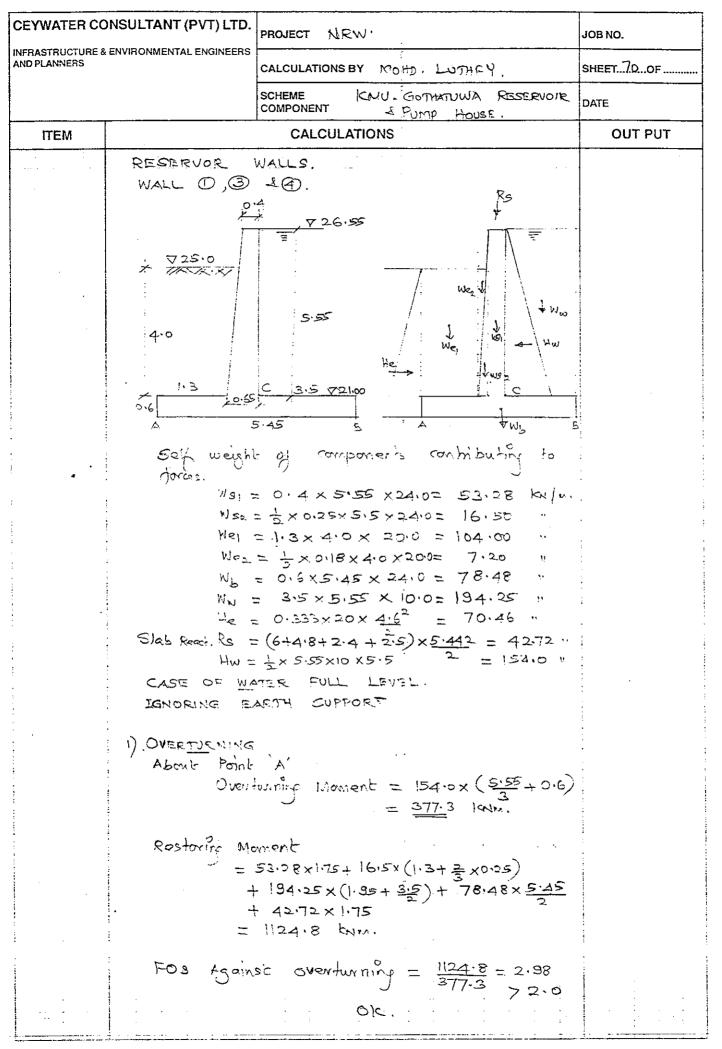
- - -

L

| CHECK FOR THERMAL CRACK<br>Wali No. 9<br>BS 8007, APPENDIX A.3<br>CRACK SF | PACING Smax = fct x $\Phi$<br>fb $\overline{2\rho}$ |              |                                |         |
|----------------------------------------------------------------------------|-----------------------------------------------------|--------------|--------------------------------|---------|
|                                                                            | FROM TABLE A.1 fct<br>fb                            | <b>=</b>     | 0.67                           |         |
| FOR R/F PROVIDED                                                           | bar diameter $\boldsymbol{\varphi}$                 | =            | <b>25</b> mm                   |         |
|                                                                            | BAR SPACING                                         | 6 =          | <b>10</b> 0 mm                 |         |
|                                                                            | A                                                   | sp =         | <b>4910.71</b> mm <sup>2</sup> |         |
| USING SURFACE ZONES AS PI                                                  |                                                     |              | 250 mm<br>0.0196429            |         |
|                                                                            | Sma                                                 | ax =         | 426.36 mm                      |         |
| MAXIMUM CRACK WIDTH DUE<br>T1 & T2                                         | TO CHANGE IN TEMPERATU                              | <u>RE</u>    |                                |         |
| BS 8007 - APPENDIX A.3                                                     | $\omega$ max= Smax . $\alpha$ (T1+T2)               | )            |                                |         |
|                                                                            |                                                     | α =          | 0.00001 / °C                   |         |
| T1= 42°C FOR WALL OF                                                       |                                                     |              | <u>,</u>                       |         |
| THEREFO                                                                    |                                                     | [ <b>1</b> = | · <b>L</b> V                   |         |
|                                                                            | 1                                                   | 2 =          | 15 <sup>°C</sup>               |         |
|                                                                            | $\omega$ ma                                         | ax =         | 0.1215136 mm                   | < 0.2mm |

ł

.


THERMAL CRACK OK

.

. ...

.

-----



- ---

.



#### DESIGN OF CRACK.

BS 8007 : 1987

ł

-----

Wall 1,3 & 4 Base Slab

|         | URFACE CRACK WIDT                                                          | <u>Η</u> ω=  | 3acr.Em                                        |               |   |                                               |
|---------|----------------------------------------------------------------------------|--------------|------------------------------------------------|---------------|---|-----------------------------------------------|
|         |                                                                            | -<br>1       | +2( $\frac{\text{acr} - \text{Cmin}}{(h - x)}$ | )             |   |                                               |
|         |                                                                            |              |                                                |               |   |                                               |
|         |                                                                            | € <b>m =</b> | E1 - bt (h - x)(a<br>3Es. As (d -              |               |   |                                               |
|         |                                                                            | SERVI        |                                                | M             | = | 91 KNM/M                                      |
|         | h (mm) = 600                                                               | Cmin =       | = 50 (m                                        | 1 <b>m)</b> ¢ | # | 20.00 mm                                      |
|         | $d = h - Cmin - \Phi/2$                                                    |              |                                                | d             | = | 540.00 mm                                     |
| [       |                                                                            |              | CONCRET                                        | E fcu<br>fy   |   | 35 N/mm <sup>2</sup><br>460 N/mm <sup>2</sup> |
|         | REINFORCEMENT PR                                                           | ROVIDED      | BAR DIAMETI                                    | ER Φ          | = | 20 mm                                         |
|         |                                                                            |              | BAR SPAC                                       | ING S         | = | 125 mm                                        |
|         |                                                                            |              |                                                | Asp           | = | 2513.27 mm <sup>2</sup>                       |
|         |                                                                            |              |                                                | Ec            | = | 28 KN/mm <sup>2</sup>                         |
|         |                                                                            |              |                                                | Es            |   | 200 KN/mm <sup>2</sup>                        |
|         |                                                                            |              | $\alpha$ e = Es                                | 5/ 1/2Ec      | H | 14.29                                         |
|         |                                                                            |              |                                                | Q             | = | 0.00465                                       |
|         |                                                                            |              |                                                | α <b>e</b> .ρ | = | 0.066                                         |
| THEREFO | ORE $x = -\alpha e (\rho + \rho') + \overline{d}$<br>CONSIDERING $\rho' =$ |              | + ρ') <sup>2</sup> +2αe (ρ                     | + d' ρ')<br>d | - | 0.304                                         |
|         |                                                                            |              | THEREFOR                                       | E x           | = | 164.26 mm                                     |
|         |                                                                            |              | z = d                                          | - 1/3 x       | = | 485.25 mm                                     |
|         |                                                                            |              | fs = M<br>Asp.z                                |               | = | 74.62 N/mm <sup>2</sup>                       |
|         |                                                                            |              | $\mathcal{E}s = fs$<br>Es x 10                 | 000           | = | 0.0003731                                     |

------

-- --

----

$$\mathcal{E}1 = (h-x)^* \mathcal{E}s = 0.000433$$
  
(d-x)  
 $\mathcal{E}m = 9.756E-05$ 

1) CRACK UNDER THE BAR DIRECTLY

-

.

.

acr = Cmin = 50 mm  $\omega = 3.acr. \mathcal{E}m = 0.015 mm$ < 0.2mm O.K

.

2) CRACK AT MIDWAY BETWEEN TWO BARS

$$acr + \Phi/2 = \sqrt{(S/2)^2 + (\Phi/2 + Cmin)^2} = 86.64$$
  
 $acr = 76.64 \text{ mm}$   
 $\omega = 0.020 \text{ mm}$   
 $< 0.2 \text{mm}$  O.K

.

-

THEREFORE REINFORCEMENT T20 @ 1250C/C O.K

1

-----

|                               | NSULTANT (PVT) LTD.         | PROJECT NRW                                                                                                                                                                                     | JOB NO.             |
|-------------------------------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| FRASTRUCTURE &<br>ND PLANNERS | ENVIRONMENTAL ENGINEERS     | CALCULATIONS BY MOHD, LUTHEY,                                                                                                                                                                   | SHEET 75 OF         |
|                               |                             | SCHEME KMU- GOTHTHATUWA RESERVOIR<br>COMPONENT & PUMP HOUSE,                                                                                                                                    | DATE                |
| ITEM                          |                             | CALCULATIONS                                                                                                                                                                                    | OUT PUT             |
|                               | JAG BY.                     |                                                                                                                                                                                                 |                     |
|                               | UK BM a                     | $E \Upsilon = 13.44 \times \frac{3.5^{2}}{2} + \frac{1}{2} (123.3 - 13.44) \\ \times 3.5 \times \frac{1}{2} \times 3.5 \\ = -166.5 \times \frac{3.5}{2} - 20.16 \times \frac{3.5^{2}}{3.5^{2}}$ |                     |
|                               |                             | = -108.2  kym - Top fiension                                                                                                                                                                    |                     |
|                               | Bw                          | 108, 2 × 127.4 (Slab Ax)                                                                                                                                                                        |                     |
|                               | Pro                         | Tro @ 125 cla.                                                                                                                                                                                  | Provide<br>7:001-50 |
|                               | 5) DEGIGN C                 | DE SLIFW.                                                                                                                                                                                       |                     |
|                               |                             | $4 - 1.4 \times 154.0$<br>= 215.6 bot.<br><u>5.55</u>                                                                                                                                           |                     |
|                               | -                           | $C = 215.6 \times \frac{5.95}{3} = 398.9 \text{ low}$                                                                                                                                           | <b>x</b>            |
|                               | st<br>Reindorom<br>M=<br>5= | = 398.9  ENTR.                                                                                                                                                                                  |                     |
|                               | <u>M</u><br>1004=<br>1004=  |                                                                                                                                                                                                 |                     |
| <u>.</u>                      |                             | $\frac{100 \text{ As}}{\text{bh}} = 0.35$ $\frac{100 \text{ As}}{\text{bh}} = 0.35 \times 1000 \times 650$ $= 2275 \cdot 0 \text{ mm}^2$                                                        | Wall<br>T200125     |
|                               |                             | Provide T20 @125 -> As=2512                                                                                                                                                                     |                     |

i

l

## DESIGN OF CRACK.

BS 8007 : 1987

| Wall 1.3 & 4 Wall StemDESIGN SURFACE CRACK WIDTH $\omega$ = 3acr.Em                                                                                   |                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| $\frac{1+2(\frac{acr - Cmin}{(h-x)})}{(h-x)}$                                                                                                         |                            |
|                                                                                                                                                       |                            |
| $\mathcal{E}\mathbf{m} = \mathcal{E}1 - \mathbf{b}\mathbf{t} (\mathbf{h} - \mathbf{x})(\mathbf{a}^{\prime} - \mathbf{x})$<br>3Es. As (d - x)          |                            |
| SERVICE MOMENT M =                                                                                                                                    | 284.9 KNM/M                |
| h (mm) = 650 Cmin = 50 (mm) Φ =                                                                                                                       | 20.00 mm                   |
| $d = h - Cmin - \Phi/2 \qquad d =$                                                                                                                    | 590.00 mm                  |
| CONCRETE f cu =                                                                                                                                       | 0                          |
| fy =                                                                                                                                                  | 460 N/mm <sup>2</sup>      |
| REINFORCEMENT PROVIDED BAR DIAMETER $\Phi$ =                                                                                                          | 20 mm                      |
| BAR SPACING S                                                                                                                                         |                            |
| Asp =                                                                                                                                                 | 2513.27 mm <sup>2</sup>    |
| Ec =                                                                                                                                                  | = 28 KN/mm <sup>2</sup>    |
| Es =                                                                                                                                                  | •                          |
| $\alpha e = Es/1/2Ec =$                                                                                                                               | 14.29                      |
| ρ =                                                                                                                                                   | 0.00426                    |
| ae.p =                                                                                                                                                | 0.061                      |
| THEREFORE x = - $\alpha e (\rho + \rho') + \sqrt{\alpha e^2 (\rho + \rho')^2 + 2\alpha e (\rho + d' \rho')} = \frac{1}{d}$<br>CONSIDERING $\rho' = 0$ | • 0.293                    |
| THEREFORE X =                                                                                                                                         | = 173.04 mm                |
| z = d - 1/3 x =                                                                                                                                       | = 532.32 mm                |
| fs = M =================================                                                                                                              | = 212.95 N/mm <sup>2</sup> |
| $\mathcal{E}s = fs$<br>Es x 1000                                                                                                                      | = 0.0010648                |

i.

\_ ----

$$\mathcal{E}1 = (\underline{h-x})^* \mathcal{E}s = 0.001218$$
  
 $(d-x)^* \mathcal{E}m = 0.0008562$ 

1) CRACK UNDER THE BAR DIRECTLY

•

.

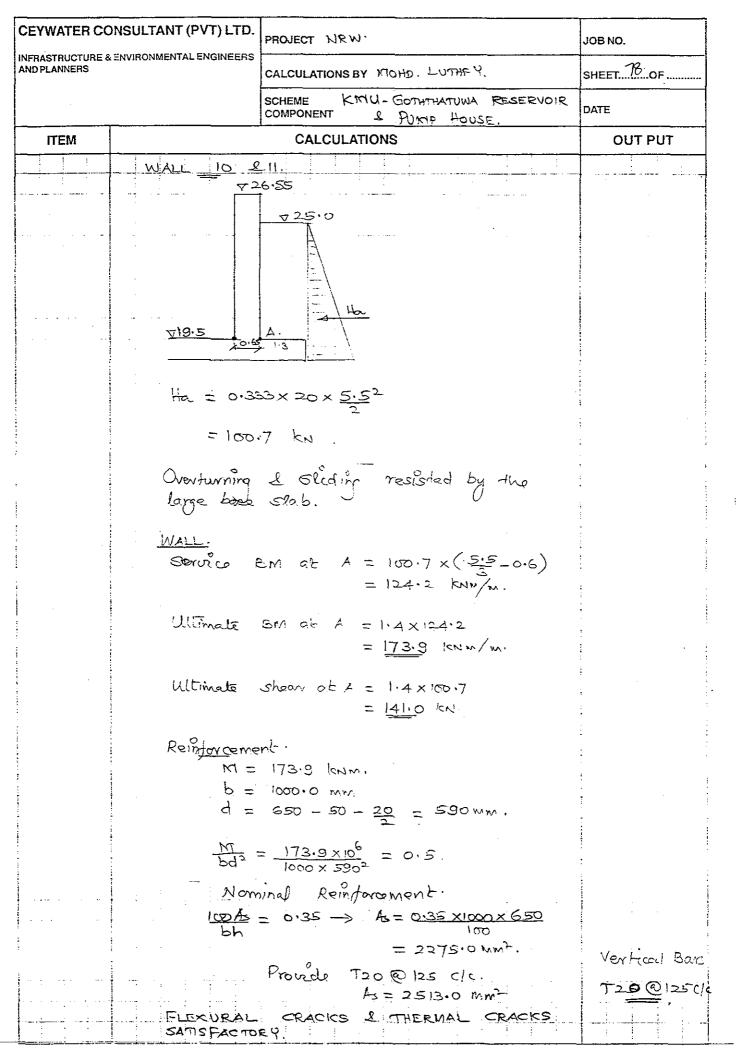
\_\_\_\_.

-

| acr =          | Cmin =  | 50 mm    |     |
|----------------|---------|----------|-----|
| ω <b>= 3.a</b> | cr.8m = | 0.128 mm |     |
| ÷              | <       | 0.2mm    | 0.K |

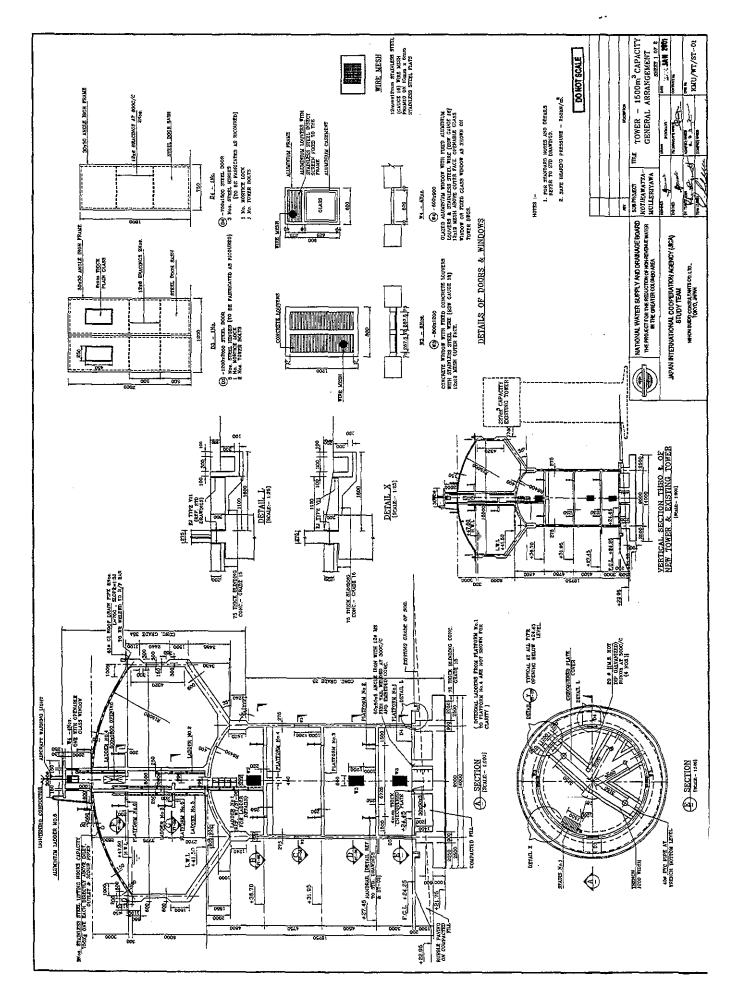
2) CRACK AT MIDWAY BETWEEN TWO BARS

-----


| $acr + \phi/2 = \sqrt{(S/2)^2 + (\phi/2 + Cmin)^2}$ |     | = | 86.64    |     |
|-----------------------------------------------------|-----|---|----------|-----|
|                                                     | acr | = | 76.64 mm |     |
|                                                     | ω   | = | 0.177 mm |     |
|                                                     |     | < | 0.2mm    | 0.K |

THEREFORE REINFORCEMENT T20 @ 125C/C O.K

......


\_\_\_\_\_

- . .. .



**GOTHATUWA NEW WATER TOWER** 

:



ļ

| PROJECT   |                       |                   |                              | ue water in the Greater Colombo Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ea                       |
|-----------|-----------------------|-------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| PART OF S | STRUCTURE             |                   | eriyaw                       | a -tower -1500 m^3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          |
| REF       |                       |                   |                              | CALCULATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | OUT PUT                  |
|           |                       |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           | Load cases            |                   | ~ .                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | 1 - 1.<br>2 - 1.  |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | 2 - 1.<br>3 - 1.  | 4w <sub>d</sub> . 1.         | 4w.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|           |                       |                   | 0wa.1.<br>4w <sub>d</sub> +1 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | 4 - 1.            | -+w3 + 1                     | .004                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          |
|           |                       | Wind speed        | z                            | 45 m/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
|           |                       | Wk                | Ξ                            | 1.53 kN/m <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
|           | Weight of shaft       |                   |                              | (1.5+16.5)xpix9.x0.275x24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|           | -                     |                   |                              | 3360 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
|           | Total dead load allow | ing for 50%       | =                            | 204*60+3350*1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dead load                |
|           | for platforms         | -                 | 2                            | 17265 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 204x60 kN                |
|           |                       |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1                        |
|           | Load case (2)         |                   |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | dead load         | =                            | 17265*1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|           |                       | acad load         | =                            | 24171 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
|           | moment @ foundatio    | n level           | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       |                   | =                            | (1.53*19.5*11.0*23.25+1.53*9.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I<br>5*15.25*10.125)*1.4 |
|           |                       |                   | =                            | 13750 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|           |                       | e                 | =                            | 13750/24171                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|           |                       | e                 | =                            | 0.57 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
|           |                       | e/D               | =                            | 0.57/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                          |
|           |                       | eru               | =                            | 0.0406 (<0.125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | 2                 |                              | $(24171/[(\pi/4)*14.00^2]) * (1+0.04)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106/0125                 |
|           |                       | f <sub>c</sub>    | =                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 100/0.120)               |
|           | 1                     |                   |                              | $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10( (0.125)              |
|           |                       |                   |                              | $\{24171/[(\pi/4)*14.00^2]\}$ * (1-0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00/0.125)                |
|           |                       | fç                | =                            | 208 or 106 kN/m² < 250*1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                        |
|           |                       | ۰ <i>۵</i>        | -                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           | Similiarly            | for load case (3) | ),                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
|           |                       | dead load         | =                            | 17265 kN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          |
|           | moment @ foundation   | on level          | =                            | 13750 kNm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                          |
|           |                       | e                 | =                            | 13750/17265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
|           |                       |                   | =                            | 0.8 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
|           |                       | e/D               | =                            | 0.80/14.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                          |
|           |                       |                   | _                            | 0.057 (20.125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |
|           |                       | -                 | =                            | 0.057 (<0.125)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57 (0 1 25)              |
|           |                       | f <sub>c</sub>    | =                            | ${17265/[(\pi/4)*14.00^{2}]} * (1+0.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (021.0770                |
|           |                       |                   |                              | $\frac{0}{120} = \frac{1}{120} = \frac{1}$ | 57/0125)                 |
|           |                       |                   |                              | {17265/[(π/4)*14.00 <sup>2</sup> ]} * (1-0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5770.125)                |
|           |                       | fc                | =                            | 163 or 61 kN/m <sup>2</sup> < 250*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          |

| PROJECT   |                      | Reduction of no                        | n-revenu   | e water in the Greater Col | ombo Area                  |
|-----------|----------------------|----------------------------------------|------------|----------------------------|----------------------------|
| ART OF ST | IRUCTURE             | kotikawatta-Mu                         | ılleriyawa | 1 -tower -1500 m^3         |                            |
| REF       |                      |                                        |            | CALCULATIONS               | OUT PUT                    |
|           | Loading case 4       | ······································ |            |                            |                            |
|           |                      |                                        |            |                            |                            |
|           | Load due to tank & w | ater                                   | =          | 34320 kN                   | 572×60 kN                  |
|           | Weight of shaft      |                                        | =          | 3360 kN                    | SLS                        |
|           | allowing 50% for p   |                                        |            |                            |                            |
|           | Total load at founda | rion level                             | =          |                            | kN .                       |
|           |                      |                                        |            | 39360 kN                   | XY                         |
|           |                      | 6 250 1.01/                            | ~~         | ī                          |                            |
|           | with safe bearing pr | A                                      | m 2 =      | 39360/250                  | ; <u>   ;</u> >            |
|           | ļ                    | A                                      | =          | 157,44 m2                  | × 'Y                       |
|           | 14.0 m dia base ma   | ix pressure fo                         | =          | 39360/(PIx14^2/4)          |                            |
| i         |                      | c pressure re                          | -          | 255 kN/m2                  |                            |
|           |                      |                                        | -          |                            |                            |
|           | vu @ 1.5d away from  | x-x                                    | =          | 255*(14^2-12.7^2)*p*1.     | 4/(p*4*12.7)               |
|           |                      |                                        | =          | 244.6 kN/m                 |                            |
|           |                      | vu                                     | =          | 244.6*10^3/(10^3*935)      | )                          |
|           |                      |                                        | =          | 0.26 N/mm2                 |                            |
|           | Provide Y25-200c/c   |                                        | =          | 2454 mm2/m                 |                            |
|           | vu @ 1.5d away from  | ч <b>у-у</b>                           | =          | 255*5.32*p*1.4/(p*4*5      | j.3)                       |
| 1         |                      |                                        | =          | 473 kN/m                   |                            |
| ļ         |                      | vu                                     | =          | 473.*10^3/935*10^3         |                            |
|           |                      |                                        | =          | 0.5 N/mm2                  |                            |
| }         | -                    | Ast                                    | Ξ          | 0.50*10^3*935/100          | }                          |
|           |                      |                                        | =          | 4675 mm2/m                 | r/f for shear predominates |
| 1         | Provide Y25-100c/c   |                                        |            | 4909 mm^y/m                |                            |
|           | Moment@ x-x          | Мхх                                    | =          | 255{(2.05^2/2)+( 0.414     | ا<br>4×2.05^2*2/2/3)}*1.4  |
|           |                      |                                        | =          | 957.19 kNm                 | }                          |
|           |                      | Ast                                    | =          | 2756 mm2/m                 |                            |
|           | provide Y25-150c/c   | bottom                                 | =          | 3273 mm2/m                 |                            |
|           | Moment@ center       | Mc                                     | =          | (255*9.9^2*1.4/20)- (2     | 255*2.05^2/2)              |
|           |                      |                                        | =          | 999.47 kNm                 |                            |
|           | 4                    | Ast                                    | =          | 2974 mm2/m                 |                            |
|           | Provide Y25-150c/a   | top                                    | =          | 3273 mm2/m                 |                            |

ļ

|                   |                                         | Reduction of non-revenue water in the Greater Colombo Area |            |                       |                           |              |          |  |  |
|-------------------|-----------------------------------------|------------------------------------------------------------|------------|-----------------------|---------------------------|--------------|----------|--|--|
| PART OF STRUCTURE |                                         | kotikawatta-Mulleriyawa -tower -1500 m^3                   |            |                       |                           |              |          |  |  |
| REF               |                                         |                                                            |            |                       | ·····                     |              | OUTPUT   |  |  |
|                   | RC wall which supports                  |                                                            | ·          | CALCOLA               | 110110                    |              | - 001101 |  |  |
|                   |                                         | thickness                                                  | =          | ź                     | 275 mm                    |              |          |  |  |
|                   |                                         | f                                                          | Ξ          | 39360*1               | .4*10 <sup>3</sup> /(π*90 | 00*275)      |          |  |  |
|                   |                                         |                                                            | =          |                       | .09 N/mm <sup>2</sup>     | ,            |          |  |  |
|                   |                                         |                                                            |            |                       |                           | 10 N/mm^2    |          |  |  |
|                   | Vertical r/f                            |                                                            |            | provide (             |                           |              |          |  |  |
|                   |                                         |                                                            | =          | 0.4*10 <sup>3</sup> * | 275/100                   |              |          |  |  |
|                   |                                         |                                                            | =          |                       | 100                       |              |          |  |  |
|                   |                                         | Provide V12-15                                             | iOc/c both | -                     |                           | 2 = 1508mm²) | o.k      |  |  |
|                   |                                         |                                                            |            | -                     |                           | 2            |          |  |  |
|                   | Hoop R/F                                |                                                            | =          | 0.25*10°              | *275/100 =                | 688 mm²      |          |  |  |
|                   |                                         | Provide V10-20                                             | 00c/c both | faces                 | ( = 392*2                 | 2 = 784mm²)  |          |  |  |
|                   | Distribution r/f for bo                 | 150                                                        | =          | 0.13*10 <sup>3</sup>  | *1000/100                 |              |          |  |  |
|                   | }                                       |                                                            | =          |                       | 300 mm²/m                 |              |          |  |  |
|                   |                                         | Provide V16-15                                             | 50c/c both | faces                 | ( = 1340r                 | nm²)         |          |  |  |
|                   |                                         | •                                                          |            |                       |                           |              |          |  |  |
|                   | Reinforcement of the<br>this is nominal | -                                                          |            |                       |                           | ונגון ו      |          |  |  |
|                   |                                         | (A <sub>st</sub> )-min                                     | , =        |                       | 0*2400/100                |              |          |  |  |
|                   |                                         |                                                            | =          |                       | $400 \text{ mm}^2$        |              |          |  |  |
|                   | Vention of fam been t                   |                                                            | Provide 5  |                       | 4mm²) Top &<br>*10^3/100  | DOTTOM       | o.k      |  |  |
|                   | Vertical r/f for base b                 | beam ( 0.4% )                                              | =          | 3600 mr               |                           |              |          |  |  |
|                   |                                         | provide V16-11                                             | -          |                       |                           | mm 2 )       | o.k      |  |  |
|                   |                                         | provide 910-11                                             |            | Tuces                 | (= 5656                   | 11132 )      | 0.0      |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |
|                   |                                         |                                                            |            |                       |                           |              |          |  |  |

| PROJECT | ••          |                                    |      | evenue water in the Greater Colo                               | mbo .    | Area                |           |
|---------|-------------|------------------------------------|------|----------------------------------------------------------------|----------|---------------------|-----------|
| ART OF  | STRUCTURE   | ikotikawatta-Mu                    | ller | iyawa -tower -1500 m^3                                         |          |                     |           |
| REF     |             |                                    |      | CALCULATIONS                                                   |          |                     | OUT PU    |
|         |             |                                    |      |                                                                |          |                     |           |
|         | Diversion   | + + 600.41                         | 00   |                                                                |          |                     | 600X      |
|         | Ring beam a | t top 600x11                       |      | mm<br>311,30x0.6x1.1                                           | -        | 205 44 kNi tongila  | 1100 deep |
|         |             | <i>N</i>                           |      | 205,46×10 <sup>3</sup> /(3141×2×1.1)                           | -        | 200,40 kin -tensile | 1100 dee  |
|         |             | l st                               |      | 29.73 N/mm <sup>2</sup>                                        |          |                     |           |
|         |             | -                                  |      | 29.73/200*10 <sup>3</sup>                                      |          |                     |           |
|         |             | 125                                |      | 1,49×10 <sup>-4</sup>                                          |          |                     |           |
|         |             | 0                                  |      | 2*600*1100/(3*200*10 <sup>3</sup> *3                           | 141~     | 2~1 1)              |           |
|         |             | еm                                 | -    | $3.18 \times 10^{-4}$ < $\epsilon_{st}$                        | 1-112    | LA1.1)              |           |
|         |             | nominal r/f is                     |      | •                                                              |          |                     |           |
|         |             | nominal 171 is                     |      | iominal = 1 f                                                  |          |                     |           |
|         |             |                                    | •    | φ                                                              |          |                     |           |
|         | 600 sec     | ction A <sub>st</sub> -min         | =    | Y20-100c/c                                                     | =        | 3141 mm^2/m         | o.k       |
|         | 200         | ck tank wall                       |      |                                                                |          |                     |           |
|         | SOUMM THE   |                                    | -    | 1237*0,3 kN/m                                                  | =        | 371 kN/m            |           |
|         |             | ~                                  |      | 371×10 <sup>3</sup> /(1340×2)                                  | -        | 072 100 10          |           |
|         |             | t st                               |      | $138 \text{ N/mm}^2$                                           |          |                     |           |
|         |             |                                    | -    | 100 10,000                                                     |          |                     |           |
|         |             | A <sub>st</sub> -min               | =    | 1*10 <sup>-5</sup> *150*10 <sup>3</sup> *(29+14)ø              |          |                     |           |
|         |             | 3,                                 | =    | 64.5 \$ - per face                                             |          |                     |           |
|         |             |                                    |      |                                                                |          |                     |           |
|         |             |                                    |      | $\phi(mm) = A_{st}(mm^2)$                                      |          | i i                 |           |
|         |             |                                    |      | 16 1032                                                        | <b>→</b> | ¥16-150c/c          |           |
|         |             |                                    |      |                                                                |          | 1340                |           |
|         |             |                                    |      |                                                                |          |                     |           |
|         |             | f <sub>st</sub>                    |      | 371*10 <sup>3</sup> /(1340*2)                                  |          |                     |           |
| 1       |             |                                    | =    | 138 N/mm <sup>2</sup><br>138/200*10 <sup>3</sup>               |          |                     |           |
|         |             | ε <sub>st</sub>                    |      | 6.92*10 <sup>-4</sup>                                          |          |                     |           |
|         |             |                                    |      |                                                                |          |                     |           |
|         |             | a <sub>cr</sub><br>W <sub>cr</sub> | =    | 3*85.6*6.92*10 <sup>-4</sup>                                   |          |                     |           |
|         | Crackwidt   |                                    | -    | 0.18 mm                                                        | <        | 0,2 mm              | o.k       |
|         | Cracitaria  |                                    |      | •.••                                                           |          |                     |           |
|         |             |                                    |      |                                                                |          |                     |           |
|         | Tank bott   | om ring beam o                     | t c  | onical top                                                     |          |                     | 600x140   |
|         |             |                                    |      |                                                                |          |                     | 1         |
| 1       | Tensile fo  | rce (F <sub>x</sub> )              | 5    | 1364×0.6×1.4                                                   |          |                     |           |
|         |             | <b>,</b> .                         | =    | : 1145 kN                                                      |          |                     |           |
|         |             | A <sub>st</sub> -min               | -    | = 1*10 <sup>-5</sup> *250*10 <sup>3</sup> *(49+14)φ<br>157.5 φ | →        | ¥25-125c/c          |           |
|         |             |                                    |      | τυν.υ ψ                                                        |          | hoop                |           |
| 1       |             |                                    |      |                                                                |          | ··· r               |           |

į

ſ

.

| ECT      |              | Reduction of non-revenue water in the Greater Colombo Area |      |                                 |                                            |                        |            |          |  |
|----------|--------------|------------------------------------------------------------|------|---------------------------------|--------------------------------------------|------------------------|------------|----------|--|
| OF       | STRUCTURE    | kotikawatta-M                                              | ulle | riyawa -tower -1!               | 500 m^3                                    |                        |            | ·····    |  |
|          |              |                                                            |      | CALCULATION                     | 19                                         |                        |            | OUT PU   |  |
| <u> </u> | <u> </u>     | f                                                          |      | 1145*10 <sup>3</sup> /(18       |                                            |                        |            | cover =  |  |
|          |              | , \$1                                                      |      | •                               | 2 N/mm <sup>2</sup>                        |                        |            | 50+10 =  |  |
|          | ł            | -                                                          |      | 129.82/200*                     |                                            |                        |            | 60mm     |  |
|          |              | ε <sub>st</sub>                                            |      |                                 | 10                                         |                        |            | loomm    |  |
|          |              |                                                            |      | 6.49*10 <sup>-4</sup>           |                                            |                        |            |          |  |
|          |              |                                                            |      |                                 | l mm                                       |                        |            |          |  |
|          | 1            |                                                            |      | 3*91*6.49*1                     |                                            |                        |            |          |  |
|          | Crackwidt    | th                                                         | <    | 0,18                            | 3 mm                                       | <                      | 0.2 mm     | o.k      |  |
|          |              |                                                            |      |                                 |                                            |                        |            |          |  |
|          | Maximum te   | nsion in conica                                            |      |                                 |                                            |                        | 071 0 1011 | 600 mm   |  |
|          | Ì            |                                                            |      | 1452x0.6                        |                                            |                        | 8/1.2 KN/M | section  |  |
|          |              | A <sub>st</sub> -min                                       | =    | 1*10 <sup>-5</sup> *250*1       | • •                                        | φ.                     |            |          |  |
|          |              |                                                            | =    | 145                             | φ                                          |                        |            | ļ        |  |
|          | ]            |                                                            |      | 1(                              | A (2)                                      |                        |            |          |  |
|          |              |                                                            |      |                                 | $A_{st}(mm^2)$                             |                        |            | 1        |  |
|          |              |                                                            |      | 16                              | 2320                                       | ``                     | V20 100    | 1-       |  |
|          |              |                                                            |      | 20                              | 2900                                       | <b>→</b>               | y20-100c,  | /c       |  |
|          |              |                                                            |      |                                 | 2.                                         |                        | hoop       |          |  |
|          |              |                                                            |      | 3141×2                          |                                            |                        |            |          |  |
|          |              | f <sub>st</sub>                                            | =    | 871.2×10 <sup>3</sup> /(3       |                                            |                        |            | run work |  |
|          |              |                                                            | =    | 133,60                          | 3 N/mm <sup>2</sup>                        |                        |            |          |  |
|          |              | Eet                                                        | =    | 133.68/200*                     | *10 <sup>3</sup>                           |                        |            |          |  |
|          |              | 3.                                                         |      | 6,93×10 <sup>-4</sup>           |                                            |                        |            |          |  |
|          |              | <b>P</b>                                                   |      | 2*600*1000                      | /(3*200*10                                 | ) <sup>3</sup> *3141*2 | )          |          |  |
|          |              | m                                                          |      | 3.18*10 <sup>-4</sup>           | /(                                         |                        | /          |          |  |
|          |              | <b>n</b>                                                   |      | 84,34                           | mm                                         |                        |            |          |  |
|          |              |                                                            |      | 3*84.34*(6.9                    |                                            | R*1∩ <sup>-4</sup> )   |            |          |  |
|          | Crackwidth   | WCr                                                        |      | 0.0) <del>- 0.70 - 0</del>      |                                            |                        | 0,2 mm     |          |  |
|          | CIECKWIGIN   |                                                            | -    | 0.0                             | <b>7</b> (11)                              | Ì                      | v,u mm     |          |  |
|          | Conical bott | om – near bot                                              | tom  | ring 1000mn                     | n thick                                    |                        |            |          |  |
|          |              | Q                                                          | =    | 288x1 4x1 0                     | 0 =                                        | 288                    | kN/m       |          |  |
|          |              |                                                            | =    | 288x1,4x1.0<br>-560,99x0.9      |                                            | -504 90                | kN/m       |          |  |
|          |              | ʻ×<br>F                                                    | =    | -134.71×0.9                     | =                                          | -1021 24               | kN/m       |          |  |
|          |              |                                                            |      | 288×10 <sup>3</sup> /(10        |                                            |                        |            | h=1000   |  |
|          | 1            | ۳u                                                         | =    |                                 | $1 \text{ N/mm}^2$                         |                        |            | d=       |  |
|          |              | A                                                          |      | 0.3<br>1*10 <sup>-5</sup> *250* |                                            | ነሐ                     |            | (1000-50 |  |
|          |              | Ast-min                                                    |      |                                 |                                            | JΨ                     |            | 10)      |  |
|          | •            |                                                            | Ξ    | 16                              | 5φ                                         |                        |            | =940mn   |  |
|          |              |                                                            |      | (                               | ۵ (ســــــــــ                             |                        |            |          |  |
|          |              |                                                            |      | φ(mm)<br>20                     | A <sub>st</sub> (mm <sup>2</sup> )<br>3300 | ,                      |            |          |  |
|          |              |                                                            |      | 20<br>25                        | 3300<br>4125                               | ~                      | y25-120a   | de la    |  |
|          |              |                                                            |      | 25                              | 4120                                       | <b>→</b>               | 720-1200   |          |  |

| PROJEC  | т           |                      |       | evenue water in the Greater Colombo Area                      |           |
|---------|-------------|----------------------|-------|---------------------------------------------------------------|-----------|
| PART OF | F STRUCTURE | kotikawatta-Mu       | uller | iyawa -tower -1500 m^3                                        | ·····     |
| REF     |             | i.                   |       | CALCULATIONS                                                  | OUT PUT   |
| ACD1    | Bottom dom  | e of tank            |       |                                                               | 001101    |
|         | Maximum co  | mpression,           |       |                                                               |           |
|         |             | ,<br>Fy              | =     | -2186*0,4 kN/m                                                |           |
|         |             |                      |       | -874.4 kN/m                                                   |           |
|         |             | ∴ <b>f</b> c         | =     | 874.4*10 <sup>3</sup> /(400*10 <sup>3</sup> )                 |           |
|         |             |                      | Ξ     | $2.2 \text{ N/mm}^2 < 35*0.35/1.4$                            |           |
|         |             |                      |       | = 8.75 N/mm <sup>2</sup>                                      | o.k       |
|         |             | 1 min                | _     | 1*10 <sup>-5</sup> *200*10 <sup>3</sup> *(35+14)∳             |           |
|         |             | A <sub>st</sub> -min | =     | 98 ¢                                                          |           |
|         |             |                      |       | ·                                                             |           |
|         |             |                      |       | $\phi(mm) = A_{st}(mm^2)$                                     |           |
|         |             |                      |       | 16 1568 <b>→</b> y16-125c/c                                   |           |
|         | Ding hasma  | at 9.0 dia rc sh     |       | ton                                                           | 750 x     |
|         | Ring Deam   |                      |       | 1642x0.75x1.24 = 1527.00 kN-compressive                       | 1240 sect |
|         |             |                      | _     |                                                               |           |
|         |             | ∴f <sub>c</sub>      | Ξ     | 1527×10 <sup>3</sup> /(750×1240)                              |           |
|         |             |                      | Ξ     | 1.64 N/mm <sup>2</sup>                                        | ok        |
|         |             |                      |       |                                                               |           |
|         |             | A _min               | _     | 1*10 <sup>-5</sup> *250*10 <sup>3</sup> *(49+14) <sub>0</sub> |           |
|         |             | N <sub>st</sub> -nut |       | 15.75 ∳ → ¥25-125c/c                                          |           |
|         | nominal lin | ks                   | =     | 0.0035*600*10 <sup>3</sup> /2 per face                        |           |
|         |             |                      | =     | 1050 mm <sup>2</sup> → Y16-150c/c links                       | o.k       |
|         |             |                      |       |                                                               |           |
| ,       |             |                      | 、     |                                                               |           |
| 1       | lank Inne   | r shaft (250 m       |       | 1*10 <sup>-5</sup> *125*10 <sup>3</sup> *30 <sub>9</sub>      |           |
|         |             | A <sub>st</sub> -min | =     | 37.5 ¢                                                        | ł         |
|         |             |                      | -     | $\phi(mm) = A_{st}(mm^2)$                                     | ļ         |
|         |             |                      |       | $10 \qquad 375$                                               |           |
|         |             |                      |       | 12 450 → Y10-150c/c (523mr                                    | $n^2$ )   |
|         |             |                      |       | both ways                                                     |           |
|         |             |                      |       |                                                               |           |
| 3       | ١           |                      |       |                                                               |           |

į



i

| ROJEC  |              |                  |       | evenue water in the Greater Colombo Area            |                                 | {      |
|--------|--------------|------------------|-------|-----------------------------------------------------|---------------------------------|--------|
| ART OI | STRUCTURE    | IKOTIKAWATTA-M   | uiler | yawa -tower -1500 m^3                               | <del></del>                     |        |
| REF    |              |                  |       | CALCULATIONS                                        | out                             | T PUT  |
|        |              |                  |       |                                                     |                                 |        |
|        | Circulart pl | atform inside t  | he t  | ower                                                |                                 |        |
|        |              |                  |       |                                                     |                                 |        |
|        |              | 1                |       |                                                     |                                 |        |
|        |              | < 1200 →         |       |                                                     |                                 |        |
|        | 250          |                  |       |                                                     |                                 | 1      |
|        | ∖            | ļ                |       |                                                     |                                 |        |
|        |              |                  |       |                                                     |                                 |        |
|        |              | }                | 1     |                                                     |                                 |        |
|        | 1            |                  |       |                                                     |                                 |        |
|        | Loading      | <b></b>          | _     | $= 1 N M_{\odot}^2$                                 |                                 |        |
|        |              | super            | =     | 5 kN/m <sup>2</sup><br>0.25*24 kN/m <sup>2</sup>    |                                 |        |
|        |              |                  |       | 11 kN/m <sup>2</sup>                                |                                 |        |
|        |              |                  |       | 5*1.6 + 6*1.4                                       |                                 |        |
|        |              | Oult             | -     | $16.4 \text{ kN/m}^2$                               |                                 |        |
|        |              |                  |       | $(11^{1}.2^{2})/2 + (11^{1}.2^{2}.2^{1}.2)/(2^{3})$ |                                 |        |
|        |              | MA/SIS           | -     | 13.2  kN/m                                          |                                 |        |
|        |              | V                |       | 16.4*1*1.2 + 16.4*1*2.2/2                           |                                 |        |
|        |              | • 0              |       | 37.72 kN                                            |                                 |        |
|        |              | <b>v</b>         |       | 37.72*10 <sup>3</sup> /194                          |                                 |        |
|        |              | 4                | =     | 0.19 N/mm <sup>2</sup>                              |                                 |        |
|        |              | Mult             | =     | 13.2*16.4/11                                        |                                 |        |
|        |              | -                | =     | 19.68 kN/m →                                        | Y12-100c/c                      | Ì      |
|        |              | ٧c               | =     | $0.71 \text{ N/mm}^2 > v_u$                         |                                 |        |
|        |              |                  |       |                                                     |                                 |        |
|        |              |                  |       |                                                     |                                 |        |
|        | Circulart p  | latform inside · | the   | e shaft                                             |                                 | .      |
|        |              |                  |       |                                                     |                                 |        |
|        |              | Uult             | =     | 5*1.6 + 0.3*24*1.4                                  | h=25                            | ,0     |
|        |              |                  | Ξ     | 18.08 kN/m <sup>2</sup>                             | d=                              |        |
|        |              | $M_{cant}$       | 2     | 18.08*1.5 <sup>2</sup> /2                           |                                 | -40-6) |
|        |              |                  | Ξ     | 20.34 kNm                                           |                                 | 4 mm   |
|        |              | 51               | =     |                                                     | Y12-200c/c(565mm <sup>2</sup> ) |        |
|        |              | Yst              |       | 2                                                   |                                 | ļ      |
|        |              | d                |       | 1.5*10 <sup>3</sup> /(7*2)                          |                                 |        |
|        |              |                  | 2     | 107 mm                                              |                                 | o.k    |
|        | ł            |                  |       |                                                     |                                 |        |

•

| PROJEC  | r          |                 |       |                              |         |          |                  |         |
|---------|------------|-----------------|-------|------------------------------|---------|----------|------------------|---------|
| PART OF | STRUCTURE  | kotikawatta-M   | uller | riyawa -tower -1500          | ) m^3   |          |                  |         |
| REF     |            | <u>.</u>        |       | CALCULATIONS                 |         |          |                  | OUT PU  |
|         | Tie beam a | t top platform  | lev   | el within the shaf           | †       |          | ****             |         |
|         |            | 1000            |       |                              |         |          |                  |         |
|         | 4          | <               |       | <u>→</u>                     |         | <b></b>  | · <b>_</b>       |         |
|         |            |                 |       |                              |         |          |                  |         |
|         | 200 个      |                 |       |                              |         | <b>^</b> | <b>†</b>         |         |
|         |            |                 |       |                              |         |          |                  |         |
|         |            |                 |       |                              |         |          |                  |         |
|         | Loading    |                 |       |                              |         |          |                  |         |
|         |            | slab            | =     | 0.25*24*1.4                  | ÷       | 8.4      | kN/m             |         |
|         |            | super           | =     | 2*1.6                        | =       | 3.2      | kN/m             |         |
|         |            | point load      | Ξ     | 100*1.6                      | =       | 160      | ĸN               |         |
|         |            | (allow for 10   |       | nes pt. Load)                |         |          |                  |         |
|         | Moment at  | centre          | =     | 11.6*8.25 <sup>2</sup> /8 +1 | .60*8.2 | 5/4      |                  |         |
|         |            |                 | =     | 429                          | (Nm     |          |                  | 450 x75 |
|         | 1          |                 |       |                              |         |          |                  | deep    |
|         |            | d               | ≥     | √[429*10 <sup>6</sup> /(0.1  | 56*25*  | 450)]    |                  |         |
|         |            |                 | ≥     | 495 1                        | nm      |          |                  |         |
|         |            | d               | =     |                              |         |          |                  |         |
|         |            |                 | =     | 690                          | nm      |          |                  |         |
|         | 450*750 E  |                 |       |                              | 2       |          | 2.               |         |
| 1       |            | A <sub>st</sub> | =     | 2069                         | mm²     | <b>→</b> | 5Y25 (=2454 mm²) |         |

i

| ELEMENT :                                          | LORD                            | QX                                                                                                                                                                                                                 | QT                                                                                                                                                                                | 2022                                                                                                                          | MT.                                                                                                                                                                                 | MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    |                                 |                                                                                                                                                                                                                    | 130815                                                                                                                                                                            | 32                                                                                                                            |                                                                                                                                                                                     | <b>E</b> ///                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1                                                  | 3                               |                                                                                                                                                                                                                    | - 5                                                                                                                                                                               | -13.11                                                                                                                        | - <u>9</u> 7%                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | 1151.67                                                                                                                                                                                                            | 1303.68                                                                                                                                                                           | -1841.18                                                                                                                      | -1611123                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| _                                                  | ÷                               |                                                                                                                                                                                                                    | +251.04                                                                                                                                                                           | -13.10                                                                                                                        | -97.18                                                                                                                                                                              | 1.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                                 | 2251.85                                                                                                                                                                                                            | 1303.57                                                                                                                                                                           | -1642.14                                                                                                                      | -1811.31                                                                                                                                                                            | 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 61                                                 | 3                               | .01                                                                                                                                                                                                                | 208.06                                                                                                                                                                            | -98.44                                                                                                                        | -144.78                                                                                                                                                                             | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1933.10                                                                                                                                                                                                            | 213.69                                                                                                                                                                            | -545.99                                                                                                                       | -1153.87                                                                                                                                                                            | .07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1.11                                               | 3                               | 01                                                                                                                                                                                                                 | 80.31                                                                                                                                                                             | -76.76                                                                                                                        | -23.98                                                                                                                                                                              | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1007.00                                                                                                                                                                                                            | 1379.40                                                                                                                                                                           | 281.77                                                                                                                        | -950.TT                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1 🗄 1                                              | 3                               | ÷.:1                                                                                                                                                                                                               | 49.78                                                                                                                                                                             | -18.00                                                                                                                        | 19.13                                                                                                                                                                               | . 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                                 | 1151.14                                                                                                                                                                                                            | 1140.11                                                                                                                                                                           | 818.87                                                                                                                        | -t186.54                                                                                                                                                                            | ÷, 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -41                                                | 3                               | 104                                                                                                                                                                                                                | 23.20                                                                                                                                                                             |                                                                                                                               | 38.18                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | 1193.13                                                                                                                                                                                                            | 2356.52                                                                                                                                                                           | 11-6.65                                                                                                                       | -119.66                                                                                                                                                                             | ::                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 311                                                | 3                               | • • •                                                                                                                                                                                                              | 19.01                                                                                                                                                                             | 91                                                                                                                            | ·                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | 1304.84                                                                                                                                                                                                            | 2298.20                                                                                                                                                                           | 1416.36                                                                                                                       | -498.59                                                                                                                                                                             | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 361                                                | 3                               | .00                                                                                                                                                                                                                | 21.72                                                                                                                                                                             | 5.30                                                                                                                          | 81.65                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | 1344.83                                                                                                                                                                                                            | 2153.43                                                                                                                                                                           | 1451.46                                                                                                                       | <del>-</del> 157.81                                                                                                                                                                 | $\phi\phi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 61                                                 | 3                               | .01                                                                                                                                                                                                                | 208.06                                                                                                                                                                            | -95.44                                                                                                                        | -144.79                                                                                                                                                                             | .03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1933.14                                                                                                                                                                                                            | 213.75                                                                                                                                                                            | -548.89                                                                                                                       |                                                                                                                                                                                     | .22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1-1                                                | 3                               | 02                                                                                                                                                                                                                 | 80.31                                                                                                                                                                             | -76.77                                                                                                                        | -23.98                                                                                                                                                                              | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 |                                                                                                                                                                                                                    | 1379.40                                                                                                                                                                           |                                                                                                                               | -983.77                                                                                                                                                                             | ,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| BLEMEUT                                            | LOAD                            |                                                                                                                                                                                                                    | 07                                                                                                                                                                                | 200                                                                                                                           |                                                                                                                                                                                     | Mikini                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                    |                                 |                                                                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 171                                                | 3                               | 12                                                                                                                                                                                                                 | 49 - 19                                                                                                                                                                           | -15.00                                                                                                                        | 19.19                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | فتر. 1151                                                                                                                                                                                                          | 1140.19                                                                                                                                                                           | 5.6.55                                                                                                                        | +1196.83                                                                                                                                                                            | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 242                                                | 3                               | .00                                                                                                                                                                                                                | 23.30                                                                                                                                                                             | -7.36                                                                                                                         | 15.18                                                                                                                                                                               | 199                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1193.13                                                                                                                                                                                                            | 2335.52                                                                                                                                                                           | 1208.85                                                                                                                       | -778.66                                                                                                                                                                             | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                    | 3                               | н.<br>Н                                                                                                                                                                                                            | 19.31                                                                                                                                                                             | 92                                                                                                                            | 43.12                                                                                                                                                                               | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1304.53                                                                                                                                                                                                            | 2298.20                                                                                                                                                                           | 1418.35                                                                                                                       | H498.90                                                                                                                                                                             | 01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 562                                                | 3                               | .01                                                                                                                                                                                                                | 21.73                                                                                                                                                                             | 5.30                                                                                                                          | 81.68                                                                                                                                                                               | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 1344.81                                                                                                                                                                                                            | 2153.44                                                                                                                                                                           | 1482.46                                                                                                                       | H157.61                                                                                                                                                                             | .65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>S</b> lement                                    | LOAD                            | Q2.                                                                                                                                                                                                                | <b>9</b> 2                                                                                                                                                                        | MM                                                                                                                            |                                                                                                                                                                                     | · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 4_1                                                | 3                               | . 66                                                                                                                                                                                                               | -58.93                                                                                                                                                                            | 1.68                                                                                                                          | 1.7.10                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    |                                 | 1317.32                                                                                                                                                                                                            | 1549.44                                                                                                                                                                           | 1364.68                                                                                                                       | -33.43                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 422                                                | j                               | 01                                                                                                                                                                                                                 | -58.93                                                                                                                                                                            | 2.68                                                                                                                          | 17.48                                                                                                                                                                               | , QQ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    | 5                               |                                                                                                                                                                                                                    |                                                                                                                                                                                   | 1364.67                                                                                                                       |                                                                                                                                                                                     | .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 |                                                                                                                                                                                                                    | Q1                                                                                                                                                                                | NZ                                                                                                                            | 277                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| C 25.211                                           | 1 (14                           |                                                                                                                                                                                                                    |                                                                                                                                                                                   |                                                                                                                               |                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                    | 10AL                            | 28<br>17007 <del>7</del>                                                                                                                                                                                           |                                                                                                                                                                                   | 27.                                                                                                                           |                                                                                                                                                                                     | 27.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                    |                                 | 1.1.1.1                                                                                                                                                                                                            | VOUE                                                                                                                                                                              |                                                                                                                               |                                                                                                                                                                                     | 2.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| RLEBARDOT<br>ARI                                   |                                 | . 12                                                                                                                                                                                                               | vons<br>-19.55                                                                                                                                                                    | - <u>2</u> -                                                                                                                  | 5.65                                                                                                                                                                                | EN.<br>196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                    |                                 | . 12                                                                                                                                                                                                               | vons<br>-19.55                                                                                                                                                                    |                                                                                                                               | 5.65                                                                                                                                                                                | 2.4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 481                                                | Ĵ.                              | 0007<br>.32<br>1163.39                                                                                                                                                                                             | VONÉ<br>-19.33<br>1474.96                                                                                                                                                         | 고등의<br>1110년 - 41년                                                                                                            | 5.83<br>-134.96                                                                                                                                                                     | FXU<br>. 30<br>. 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                    |                                 | 0007<br>.50<br>1163.39<br>.00                                                                                                                                                                                      | VONS<br>-19.33<br>1474.96<br>-16.68                                                                                                                                               | .84<br>1_08.49<br>.44                                                                                                         | 5.63<br>-134.96<br>1.94                                                                                                                                                             | FX7<br>.04<br>.01<br>.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 481<br>841                                         | с.<br>С                         | .15<br>.153.33<br>.60<br>1054.19                                                                                                                                                                                   | Vons<br>-19.33<br>1474.96<br>-16.68<br>1230.93                                                                                                                                    | .84<br>1108.49<br>144<br>1189.55                                                                                              | 5.63<br>-134.95<br>1.94<br>-121.75                                                                                                                                                  | FXI<br>.00<br>.01<br>.00<br>.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 481                                                | Ĵ.                              | - 10877<br>- 1163-33<br>- 009<br>1064-19<br>- 00                                                                                                                                                                   | Vons<br>-19.33<br>1474.96<br>-16.68<br>1230.93<br>-13.41                                                                                                                          | .84<br>1.18.49<br>.44<br>1189.58<br>.11                                                                                       | 5.63<br>-124.96<br>-121.70<br>-122.70<br>-76                                                                                                                                        | FXT<br>100<br>101<br>100<br>101<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 481<br>841<br>801                                  | j<br>j                          | 10007<br>.55<br>1163.39<br>.09<br>1064.19<br>.60<br>919.31                                                                                                                                                         | V005<br>-19.33<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31                                                                                                                | .84<br>1.08.49<br>.44<br>1089.55<br>.11<br>890.44                                                                             | 5.63<br>-134.96<br>-121.75<br>-122.75<br>-126.29                                                                                                                                    | FW1<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 481<br>841                                         | с.<br>С                         | VCCT<br>. 11<br>1163.39<br>.00<br>1064.19<br>.00<br>919.31                                                                                                                                                         | VONS<br>-19.33<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04                                                                                                      | .84<br>1_08.49<br>.44<br>1089.55<br>.11<br>890.44<br>13                                                                       | 5.63<br>-134.96<br>-122.78<br>-122.78<br>-76<br>-710.29<br>71                                                                                                                       | FW1<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 481<br>541<br>801<br>861                           | 0<br>0<br>0<br>0                | verr<br>. 1)<br>1163.39<br>.00<br>1064.19<br>.00<br>919.31<br>.93.46                                                                                                                                               | VONS<br>-19.35<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>730.33                                                                                            | .84<br>1108.49<br>.44<br>1089.55<br>.11<br>990.44<br>+.13<br>701.64                                                           | 5.63<br>-134.96<br>-124.96<br>-122.78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78<br>-78                                                                                | FW1<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 481<br>841<br>801                                  | j<br>j                          | VOOT<br>.55<br>1163.35<br>.09<br>1064.19<br>.00<br>929.31<br>                                                                                                                                                      | VONE<br>-19.55<br>1474.96<br>-16.68<br>1250.95<br>-13.41<br>975.31<br>-10.04<br>750.25<br>-8.04                                                                                   | .84<br>2108.49<br>.44<br>1089.55<br>.55<br>.51<br>.900.44<br>                                                                 | 5.63<br>-134.96<br>-121.78<br>-121.78<br>-724.29<br>-7.91<br>-7.91<br>-7.91<br>-7.20                                                                                                | FXU<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 481<br>541<br>801<br>861                           | ے<br>ان<br>ان                   | Veer<br>. 55<br>1163.35<br>.09<br>1064.19<br>.00<br>909.31<br>.193.46<br>.10<br>.10<br>.10                                                                                                                         | VONE<br>-19.55<br>1474.96<br>-18.68<br>1250.95<br>-13.41<br>975.31<br>-10.04<br>750.25<br>-8.24<br>818.75                                                                         | .84<br>2108.49<br>.44<br>1088.52<br>.44<br>.52<br>.44<br>.13<br>.001.84<br>.32<br>.013.94                                     | 5.63<br>-134.98<br>-121.78<br>-121.78<br>-121.78<br>-121.29<br>-2.28<br>-80.33                                                                                                      | FX1<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 481<br>541<br>601<br>861                           | 0<br>0<br>0<br>0                | 10007<br>1163.39<br>1064.19<br>.00<br>909.31<br>.1<br>193.40<br>.10<br>.10<br>.00                                                                                                                                  | VONE<br>-19.55<br>1474.96<br>-18.68<br>1250.95<br>-13.41<br>973.31<br>-10.64<br>750.35<br>-8.64<br>818.75<br>-19.35                                                               | .84<br>1108.49<br>.44<br>1089.51<br>.44<br>.51<br>990.44<br>101.64<br>.01.84<br>.84<br>.84                                    | 5.63<br>-134.98<br>1.24.98<br>-122.78<br>-122.78<br>-12.29<br>-2.28<br>-2.28<br>-2.28<br>-38<br>-38<br>-38<br>-38<br>-38<br>-38                                                     | FXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 481<br>541<br>801<br>861                           | ے<br>ان<br>ان                   | 10007<br>1163.39<br>1064.19<br>.00<br>909.31<br>.1<br>193.40<br>.10<br>045.11<br>.00                                                                                                                               | VONE<br>-19.55<br>1474.96<br>-18.68<br>1250.95<br>-13.41<br>975.31<br>-10.04<br>750.25<br>-8.24<br>818.75                                                                         | .84<br>1108.49<br>.44<br>1089.51<br>.44<br>.51<br>990.44<br>101.64<br>.01.84<br>.84<br>.84                                    | 5.63<br>-134.96<br>-124.96<br>-122.78<br>-122.78<br>-122.78<br>-123.29<br>-2.16<br>-2.16<br>-2.38<br>-3.85<br>-134.97                                                               | EXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 481<br>844<br>801<br>863<br>711<br>480             | ے<br>ج<br>ج                     | 10007<br>1163.39<br>1064.19<br>.00<br>919.31<br>.1<br>.00<br>.1<br>.00<br>1163.37                                                                                                                                  | V0005<br>-19.30<br>1474.90<br>-16.68<br>1230.93<br>-13.41<br>973.31<br>-10.04<br>730.33<br>-8.04<br>518.75<br>-19.35<br>1474.97                                                   | .84<br>1108.49<br>.44<br>1089.51<br>890.44<br>-13<br>701.64<br>32<br>0.2.94<br>.84<br>2008.49                                 | 5.63<br>-134.96<br>-124.96<br>-122.78<br>-122.78<br>-122.78<br>-123.29<br>-2.16<br>-2.16<br>-2.38<br>-3.85<br>-134.97                                                               | FXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 481<br>841<br>801<br>861<br>111                    | ے<br>ان<br>ان                   |                                                                                                                                                                                                                    | V005<br>-19.55<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>750.33<br>-91.34<br>518.75<br>-19.55<br>1474.97<br>-16.68                                         | .84<br>1108.49<br>.44<br>1089.55<br>.11<br>990.44<br>13<br>701.64<br>32<br>0.3.94<br>.84<br>1208.49<br>.44                    | 5.63<br>-134.96<br>1.94<br>-122.78<br>-722.78<br>-722.78<br>-722.8<br>-97.92<br>-97.92<br>-97.92<br>-97.92<br>-97.92<br>-97.92<br>-98.33<br>-134.97<br>-2.94                        | FXU<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.02<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 481<br>844<br>601<br>663<br>711<br>480             | ے<br>ج<br>ج                     | 10007<br>1163.39<br>1064.19<br>.00<br>919.31<br>.1<br>.00<br>.1<br>.00<br>1163.37                                                                                                                                  | V0005<br>-19.30<br>1474.90<br>-16.68<br>1230.93<br>-13.41<br>973.31<br>-10.04<br>730.33<br>-8.04<br>518.75<br>-19.35<br>1474.97                                                   | .84<br>1108.49<br>.44<br>1089.55<br>.11<br>990.44<br>13<br>701.64<br>32<br>0.3.94<br>.84<br>1208.49<br>.44                    | 5.63<br>-134.96<br>-124.96<br>-122.78<br>-122.78<br>-122.78<br>-123.29<br>-2.16<br>-2.16<br>-2.38<br>-3.85<br>-134.97                                                               | FW1<br>.04<br>.04<br>.04<br>.04<br>.04<br>.04<br>.04<br>.04<br>.04<br>.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 481<br>841<br>801<br>863<br>711<br>480             | ے<br>ج<br>ج                     | . 10007<br>. 1163.39<br>.000<br>1064.19<br>.000<br>919.31<br>.000<br>.000<br>1163.37<br>.000<br>1064.19                                                                                                            | VONS<br>-19.35<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>730.33<br>-8.34<br>518.75<br>-19.35<br>1474.97<br>-16.68<br>1230.94                               | .84<br>1.08.49<br>.44<br>1.69.55<br>990.44<br>+.13<br>32<br>5.13.94<br>5.13.94<br>2.05.49<br>1069.55                          | 5.83<br>-134.96<br>1.94<br>-121.78<br>-121.78<br>-121.28<br>-121.28<br>-2.18<br>-38.83<br>-134.97<br>-2.94<br>-22.76                                                                | FX1<br>.30<br>.01<br>.00<br>.01<br>.00<br>.01<br>.50<br>.01<br>.50<br>.01<br>.50<br>.01<br>.00<br>.02<br>.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 481<br>541<br>601<br>661<br>11<br>480<br>540       |                                 |                                                                                                                                                                                                                    | V005<br>-19.55<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>750.33<br>-91.34<br>518.75<br>-19.55<br>1474.97<br>-16.68                                         | .84<br>1108.49<br>.44<br>1089.55<br>.11<br>990.44<br>13<br>701.64<br>32<br>0.3.94<br>.84<br>1208.49<br>.44                    | 5.63<br>-134.96<br>1.94<br>-121.78<br>-121.78<br>-114.29<br>-2.16<br>-2.16<br>-2.16<br>-2.33<br>-134.97<br>-2.94<br>-122.76<br>.76                                                  | FXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 481<br>541<br>601<br>661<br>11<br>480<br>540       |                                 | 10007<br>1163.39<br>1163.39<br>1064.19<br>.00<br>919.31<br>.00<br>.00<br>1163.37<br>.00<br>1064.19<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0                                                          | V005<br>-19.35<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>750.33<br>-8.34<br>518.75<br>-19.35<br>1474.97<br>-16.68<br>1230.94<br>-13.41                     | .84<br>1108.49<br>.44<br>1089.55<br>990.44<br>-1089<br>-13<br>01.64<br>32<br>01.3.94<br>2008.49<br>.44<br>1069.55             | 5.83<br>-134.96<br>1.94<br>-121.78<br>-121.78<br>-121.78<br>-121.28<br>-2.18<br>-2.18<br>-38.83<br>-134.97<br>-2.94<br>-122.76                                                      | FXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 481<br>541<br>601<br>661<br>11<br>480<br>540       | 2<br>2<br>3<br>3<br>3<br>3<br>3 | 10007<br>1163.39<br>1163.39<br>1064.19<br>.00<br>919.31<br>.00<br>.00<br>1163.37<br>.00<br>1064.19<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0                                                          | V005<br>-19.55<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>750.53<br>-9.54<br>818.75<br>-19.55<br>1474.97<br>-16.68<br>1230.94<br>-13.41<br>973.52<br>-10.04 | .84<br>1108.49<br>.44<br>1089.55<br>990.44<br>-1089<br>-13<br>01.64<br>32<br>01.3.94<br>2008.49<br>.44<br>1069.55             | 5.63<br>-134.96<br>1.94<br>-121.78<br>-121.78<br>-114.29<br>-2.16<br>-2.16<br>-2.16<br>-2.33<br>-134.97<br>-2.94<br>-122.76<br>.76                                                  | FXV<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.02<br>.00<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 481<br>841<br>801<br>861<br>711<br>482<br>540      |                                 | veer<br>. 35<br>1163.39<br>.00<br>1064.19<br>.00<br>929.31<br>.00<br>.00<br>1163.37<br>.00<br>1064.19<br>.00<br>1064.19<br>.00                                                                                     | V005<br>-19.55<br>1474.96<br>-16.68<br>1250.93<br>-13.41<br>973.31<br>-10.04<br>750.53<br>-9.54<br>818.75<br>-19.55<br>1474.97<br>-16.68<br>1230.94<br>-13.41<br>973.52<br>-10.04 | .84<br>1.08.49<br>.44<br>1.08.51<br>99.14<br>1.04<br>0.13.84<br>1.04<br>1.05.49<br>.45<br>1.059.55<br>.11<br>740.44           | 5.83<br>-134.98<br>1.94<br>-121.78<br>-121.78<br>-121.78<br>-12.18<br>-2.18<br>-2.18<br>-2.18<br>-2.18<br>-134.97<br>-134.97<br>-134.97<br>-134.97<br>-134.97<br>-134.97<br>-134.97 | FXV<br>.36<br>.61<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.02<br>.00<br>.02<br>.00<br>.00<br>.00<br>.00<br>.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 481<br>541<br>601<br>601<br>11<br>480<br>540<br>80 | 2<br>2<br>3<br>3<br>3<br>3<br>3 | veer<br>. 35<br>1163.39<br>.00<br>1064.19<br>.00<br>919.31<br>.01<br>.02<br>1163.37<br>.00<br>1064.19<br>.00<br>1064.19<br>.00<br>1064.19<br>.00<br>1064.19<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.00<br>.0 | <pre>&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;&gt;</pre>                           | .84<br>1,08,49<br>.44<br>1089,55<br>.21<br>990,44<br>13<br>701,64<br>394<br>1008,49<br>.44<br>1069,55<br>.11<br>940,44<br>.44 | 5.63<br>-134.98<br>1.94<br>-121.78<br>-121.78<br>-121.29<br>-2.18<br>-2.18<br>-2.18<br>-34.87<br>-134.87<br>-134.87<br>-122.76<br>-122.76<br>-122.76<br>-122.76                     | FXV<br>.36<br>.61<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.02<br>.00<br>.02<br>.00<br>.02<br>.00<br>.02<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00<br>.01<br>.00 |

.

ELEMENT FORCES FORCE, LENGTH UNITS= KNS METE FORCE OR STRESS = FORCE/WIDTH/THICK, MOMENT = FORCE-LENGTH/WIDTH •

~

٠

| -91         | 3    | .11<br>339.04           | 7,74<br>318,32             | 14<br>311.29         | -1.81<br>-17.91             |                   |
|-------------|------|-------------------------|----------------------------|----------------------|-----------------------------|-------------------|
| 782         | ف    | .))<br>338.04           | 7.74<br>315.83             | 14<br>311.31         | -1.81<br>-17.81             |                   |
| ELEMENT     | LOAD | NG<br>TGGV              | QY<br>Vore                 | MA<br>FX             | <u></u>                     | MINY<br>Finy      |
| 741         | 3    | .01<br>65.19            | 415138<br>111.38           | 15<br>27.81          | .45<br>-86.12               | .i.<br>*          |
| 99 <u>0</u> | 3    | .01<br>139.17           | 4.26<br>151.95             | 14<br>-110.74        |                             | .11<br>01         |
| 961         | 3    | .00<br>147.30           | 1.68<br>150.54             | .00<br>-160.79       | ):<br>-82.8*                | .00<br>03         |
| 1 21        |      |                         | .)1<br>177.59              | .41<br>-189.77       | - <u></u> -<br>             | .00<br>+.08       |
| 1181        |      | +104<br>183.⊓9          | -4.74<br>352.68            | <u>::</u><br>D1.54   | :<br>-:::::                 | :<br>:::          |
| 1141        | 3    | .20<br>367.90           | -14.14<br>1052.70          | .14<br>-203.18       | -1,46<br>137,94             | 39                |
| 1201        | 3    | <u>91</u><br>-36.94     | 100.28<br>313.84           | 1.91<br>100.98       | 1.31<br>358.81              | .01<br>.50        |
| ÷.;_        |      |                         | -18.35<br>                 | 18<br>-7.71          | - 18<br>- 18<br>- 19        |                   |
| ъ.,         |      | <br>149.14              | 4.18<br>151.94             | 1%<br>-11 .74        | 71<br>-93194                | : 4               |
| 962         | 3    | 100<br>147.29           | 1.68<br>150.52             | -167                 | -104<br>-52.98              | .00<br>09         |
|             | 3    | .01<br>197.76           | .01<br>177.64              | -180.74              | -11                         | . 승관<br>2극        |
| 1.41        |      | 1.<br>_* <u>1</u> .19   | -4.14<br>10214             | " <u>-</u>           | »<br>14                     | 57                |
| 1142        | ć    | .80<br>367.72           | -14.18<br>1962.12          |                      |                             | 1<br>-1.15        |
| ·           | t    | 67                      | 100.10                     | 1.90                 | 1.11                        | <u>. 6 _</u>      |
| 1261        | ÷.   | 137.63<br>.97<br>144.43 | 313.18<br>28.25<br>1914.88 | -519.691<br>-519.69  | 388145<br>24172<br>-2145149 | 1.48<br>.02<br>09 |
| 13.1        | à    | -116<br>144178          | -14134<br>2497.58          | 3<br>6.03            | 31.465<br>-1392.3+          | .61<br>-1.91      |
| 1381        | 3    | 18<br>194191            | 1.34<br>8195.26            | -0170<br>-272-13     | 30.44<br>-1768.14           | <br>-1.15         |
| 1441        | 4    | -1.40<br>1709.40        | -357.63<br>2627.67         | -43.16<br>-1675.11   | 9.91<br>9138.19             |                   |
| 1262        | ز    | .20<br>184.01           | 28.23<br>1946.12           | 7.87<br>-808.40      | 24.74<br>-1246.87           | .05<br>-2.91      |
| 1302        | ذ    | 19<br>189.01            | 5400.04<br>-14.44          | 2 - 2 -<br>- 3 - 9 3 | 30.69<br>91393.19           | -5:35             |

į

# **GOTHATUWA DISTRIBUTION MAINS**

|                                       | Α         |            | В                 | С                             | D                  | E             | F          | G                      | [ н_            | 1                      | J                                      |
|---------------------------------------|-----------|------------|-------------------|-------------------------------|--------------------|---------------|------------|------------------------|-----------------|------------------------|----------------------------------------|
| 1                                     |           |            |                   |                               |                    | ·········     |            |                        |                 |                        |                                        |
| 2                                     | ł         |            |                   | GR                            | EATER              | COLOME        | 30 NRW     | PROJE                  | СТ              |                        |                                        |
| 3                                     |           |            |                   | <u> </u>                      |                    |               |            |                        |                 |                        |                                        |
| 4                                     | C         | )esi       | gn of Thi         | rust Blocks                   | s for Distr        | ibution Sy    | stems T.I  | <sup>o</sup> . 7.5 bar | (submerg        | ed conditi             | ons)                                   |
| 5                                     |           |            |                   |                               |                    |               |            |                        |                 |                        |                                        |
|                                       | Comp. B   | ·          | A. P.             |                               |                    | Check By:     |            |                        | 1               | Date:                  | 2/10/00                                |
| 6                                     |           | y.         |                   |                               |                    | Check Dy.     |            |                        | 1               |                        |                                        |
| L                                     | ļ         |            |                   | 1                             |                    | <u></u>       |            | 1                      |                 |                        |                                        |
| 8                                     |           |            | APPROA            | CH                            |                    | <u> </u>      |            | <u> </u>               | <u> </u>        | +                      |                                        |
| 10                                    |           |            | AFFICE            |                               |                    | <u> </u>      | <u> </u>   |                        |                 | -                      |                                        |
| 11                                    | An unha   | i<br>alanı | ced thrus         | t is develop                  | ed wheney          | /er there is  | a change   | in directio            | n of a pres     | sure pipe.             | This thrust                            |
| 12                                    |           |            |                   | mic forces                    |                    |               |            |                        |                 |                        |                                        |
| 13                                    |           |            |                   | internal pr                   |                    |               |            |                        |                 |                        |                                        |
| 14                                    | only sta  | tic f      | orce will I       | be consider                   | ed for calc        | ulation of u  | Inbalance  | d force. Th            | ne design is    | s based on             | the                                    |
| 15                                    |           |            |                   | ed unbalanc                   |                    |               |            |                        |                 |                        | ssing                                  |
| 16                                    |           |            |                   | which in tu                   |                    |               |            |                        |                 |                        |                                        |
| 17                                    | All thrus | st bl      | ocks and          | required re-                  | strained le        | ngths are o   | lesigned f | or fully sub           | omerged co      | onditions.             |                                        |
| 18                                    |           |            |                   | 1100                          |                    | <u> </u>      | ļ          |                        |                 | - <u> </u>             |                                        |
| 19                                    | Z. HUR    | 120        | NTAL BE           | INDS                          | l                  | +             | i          |                        | l<br>           | <u> </u>               |                                        |
|                                       | 2.1 DA    | ٢٨         |                   |                               | 1                  | <u>+</u>      | <u> </u>   |                        | +               |                        | +                                      |
| 22                                    |           | ~          | <u></u>           |                               | [                  | +             | <u>i</u>   | +                      |                 |                        |                                        |
| · · · · · · · · · · · · · · · · · · · | Pipe m    | ateri      | al                |                               | <u> </u>           | +             |            | DI/PVC                 |                 |                        |                                        |
|                                       |           |            |                   | Pressure, p                   | in N/sq.mi         | <u>່</u><br>ກ |            |                        | Max Hyd         | Irostatic Te           | st Press.                              |
|                                       |           |            | soil p in k       |                               |                    | 1             | 1          | : 20                   |                 | 1                      | 1                                      |
|                                       |           |            | vater w ir        |                               |                    | 1             | <u> </u>   | : 9.81                 |                 |                        |                                        |
| 27                                    |           |            |                   | tion " <del>0</del> " in d    | egrees             |               |            | : 30                   |                 |                        | 1                                      |
| 28                                    | Factor    | of sa      | afety             |                               | 1                  |               |            | : 1.5                  | B               |                        |                                        |
| 29                                    |           |            |                   |                               |                    |               |            |                        | 1               | 40                     |                                        |
|                                       |           | LCL        | <b>JLATION</b>    | S                             | 1                  |               |            |                        |                 | <u> </u>               |                                        |
| 31                                    |           |            |                   |                               | <u> </u>           | <u> </u>      |            | F                      | I T             | $\geq$                 |                                        |
| 32                                    |           | tatic      | force F =         | = <u>(π/4*D<sup>2</sup>xp</u> | <u>)</u> kN        |               |            |                        |                 | 1                      |                                        |
| 33                                    |           |            | ·<br>•            | 1000                          |                    |               |            |                        |                 |                        |                                        |
| 34                                    |           |            | 1 771             |                               | ( <b>*</b> ) ) ] ] |               |            |                        |                 | F                      |                                        |
| 35                                    |           | nce        |                   | T 2*F*sin(α                   |                    |               | <u> </u>   |                        | ┿╍╌┵╂┨╴         | r<br>                  |                                        |
| 36                                    |           |            | α                 | = angle of t                  |                    | grees         |            |                        | PLAN            |                        | -                                      |
| 38                                    |           | nst        | ant for na        | ssive resist                  | ance k =           | (ρ-ω)*(1-     | ÷          |                        | - [             |                        |                                        |
| 39                                    |           | man        |                   | 33140 103131                  |                    | (1-sinθ)      |            |                        |                 | _ <del></del>          |                                        |
| 40                                    |           |            | :                 | <u> </u>                      | =                  | -+            |            |                        | C               | 3. <sub>,</sub>        |                                        |
| 41                                    | _         | _          |                   |                               |                    |               | 1          |                        | 1 .             | N                      |                                        |
| 42                                    |           |            |                   | n, passive p                  |                    |               |            |                        |                 |                        |                                        |
| 43                                    |           |            |                   | ormly throu                   | ×                  |               | of the     | v                      |                 |                        | <u>_</u>                               |
| 44                                    |           | bloc       | k based o         | on effective                  | depth of (         | c+D/2).       |            |                        |                 |                        | ==+                                    |
| 45                                    |           |            |                   | :<br>- L#(-) D/O              | 1<br>\             |               | ·          |                        |                 |                        |                                        |
| 46                                    |           | e pr       | essure, q         | = k*(c+D/2                    | <u>) kiv/sq m</u>  |               | ·          |                        |                 | <b>┲</b> ─т            | <b>┭</b> ∖                             |
| 47                                    |           | ore        | :<br>area regu    | ired for the                  | thrust blo         | <br>ck=       |            | _ <del></del> <u></u>  | _               | ₽₩                     | <u></u> }                              |
| 40                                    |           | 016        |                   | i cu ior uie                  |                    | =(T/(q))      | f sa m     | hydrostati             | c thrust T      | L 1<br>passive force Q | , <del>  </del>                        |
| 50                                    |           |            | -+                |                               |                    | <u>(((M))</u> | <u></u>    | 1                      | SECTIO          |                        | <u></u>                                |
| 5                                     |           |            |                   |                               | >11                | 0 9           | 0          |                        | _ <u>SECTIO</u> | <u>ייש</u><br>ו        | ······································ |
| 52                                    | 2 Clear   | cove       | er c <u>shall</u> | be taken as                   |                    |               | 5 m and u  | i shall be t           | aken as =       | 0.5*D                  |                                        |
| 53                                    |           |            |                   |                               |                    |               |            |                        |                 |                        |                                        |
| 54                                    |           |            |                   |                               | -                  |               |            |                        |                 |                        | <u></u>                                |
| 5!                                    |           |            | i                 |                               |                    |               |            |                        |                 |                        |                                        |
| 50                                    |           |            | 1                 |                               |                    |               | ·          |                        |                 |                        |                                        |
| 5                                     |           |            |                   |                               |                    | _ <u>_</u>    |            |                        |                 |                        |                                        |
| 5                                     |           |            |                   |                               |                    | _             | <u> </u>   |                        |                 |                        |                                        |
| 6                                     |           |            |                   |                               |                    |               | <u> </u>   |                        | _ <u> </u>      |                        |                                        |
| 6                                     |           |            |                   |                               |                    |               |            |                        |                 |                        |                                        |
| 6                                     |           |            | _                 |                               | 1                  | -             |            |                        |                 |                        |                                        |

ļ

|                                                                                                                                                                                                                                                                                                                                       | A                                                                                                                                                                                            | В                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | С                                                                                                                                                    | D                                                                                                                                                                      | E                                                                                                                          | F                                                                                                             | G                                                                                                            | н                                                                                                             | 1                                                                                                             | J                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|---------------------------------------|
| 1                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 2                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | GR                                                                                                                                                   | EATER                                                                                                                                                                  | COLOME                                                                                                                     | BO NRW                                                                                                        | PROJEC                                                                                                       | Ţ                                                                                                             |                                                                                                               | [                                     |
| 3                                                                                                                                                                                                                                                                                                                                     | L                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 4                                                                                                                                                                                                                                                                                                                                     | Des                                                                                                                                                                                          | ign of Thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ust Block                                                                                                                                            | s for Distr                                                                                                                                                            | ibution Sy                                                                                                                 | stems T.P                                                                                                     | . 7.5 bar (                                                                                                  | submerge                                                                                                      | d conditio                                                                                                    | ns)                                   |
| 5                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 6                                                                                                                                                                                                                                                                                                                                     | Comp. By:                                                                                                                                                                                    | A. P.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                      |                                                                                                                                                                        | Check By:                                                                                                                  |                                                                                                               | _                                                                                                            |                                                                                                               | Date:                                                                                                         | 2/10/00                               |
| 7                                                                                                                                                                                                                                                                                                                                     | l                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        | l                                                                                                                          |                                                                                                               |                                                                                                              | 1                                                                                                             |                                                                                                               | ]                                     |
| 63                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            | _                                                                                                             |                                                                                                              | }                                                                                                             |                                                                                                               |                                       |
| 64                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               | ······                                                                                                       |                                                                                                               |                                                                                                               |                                       |
| 65                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 66                                                                                                                                                                                                                                                                                                                                    | 2.3 RESUL                                                                                                                                                                                    | .TS <u>.</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>                                                                                                                                             |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 67                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              | in af ah ava                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | 44 - E-11                                                                                                                                                              |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 68<br>69                                                                                                                                                                                                                                                                                                                              | On the bas<br>blocks, for                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        | ng table gi                                                                                                                | ves lateral                                                                                                   | surface are                                                                                                  | eas require                                                                                                   | a for the tr                                                                                                  | nrust                                 |
| 70                                                                                                                                                                                                                                                                                                                                    | DIOCKS, IOI                                                                                                                                                                                  | umerent pi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | pe ulamete                                                                                                                                           | <i></i>                                                                                                                                                                |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               | <u> </u>                                                                                                      |                                       |
| 71                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              | ,,                                                                                                            |                                                                                                               |                                       |
| 72                                                                                                                                                                                                                                                                                                                                    | D                                                                                                                                                                                            | c+D/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | q                                                                                                                                                    | Late                                                                                                                                                                   | ral Area re                                                                                                                | quired in                                                                                                     | sq.m                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 73                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                           | m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kN/m <sup>2</sup>                                                                                                                                    | 11 <sup>1</sup> / <sub>4</sub>                                                                                                                                         | <b>22</b> <sup>1</sup> / <sub>2</sub>                                                                                      | 45                                                                                                            | 90                                                                                                           |                                                                                                               |                                                                                                               |                                       |
| 74                                                                                                                                                                                                                                                                                                                                    | 50                                                                                                                                                                                           | 0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31,29                                                                                                                                                | 0.01                                                                                                                                                                   | 0.03                                                                                                                       | 0.05                                                                                                          | 0.10                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 75                                                                                                                                                                                                                                                                                                                                    | 90                                                                                                                                                                                           | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 42.20                                                                                                                                                | 0.03                                                                                                                                                                   | 0.07                                                                                                                       | 0.13                                                                                                          | 0.24                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 76                                                                                                                                                                                                                                                                                                                                    | 100                                                                                                                                                                                          | 1.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 0.04                                                                                                                                                                   |                                                                                                                            | 0.16                                                                                                          | 0.29                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 77                                                                                                                                                                                                                                                                                                                                    | 150                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      | 0.09                                                                                                                                                                   | 0.18                                                                                                                       | 0.35                                                                                                          | 0.65                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 78                                                                                                                                                                                                                                                                                                                                    | 200                                                                                                                                                                                          | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 0.16                                                                                                                                                                   | 0.31                                                                                                                       | 0.61                                                                                                          | 1.13                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 79                                                                                                                                                                                                                                                                                                                                    | 250                                                                                                                                                                                          | 1.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 0.24                                                                                                                                                                   |                                                                                                                            | 0.93                                                                                                          | 1.72                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 80<br>81                                                                                                                                                                                                                                                                                                                              | 300<br>350                                                                                                                                                                                   | 1.15<br>1.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46.44<br>47.45                                                                                                                                       | 0.34                                                                                                                                                                   |                                                                                                                            | 1.31<br>1.75                                                                                                  | 2.42                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 82                                                                                                                                                                                                                                                                                                                                    | 500                                                                                                                                                                                          | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 0.45                                                                                                                                                                   | 1.71                                                                                                                       | 1.75                                                                                                          | 5.23<br>6.19                                                                                                 |                                                                                                               |                                                                                                               |                                       |
| 83                                                                                                                                                                                                                                                                                                                                    | 600                                                                                                                                                                                          | 1 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 1.19                                                                                                                                                                   | 237                                                                                                                        | 4.64                                                                                                          | 8.57                                                                                                         |                                                                                                               |                                                                                                               |                                       |
| 84                                                                                                                                                                                                                                                                                                                                    | 800                                                                                                                                                                                          | 1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                      | 1,96                                                                                                                                                                   |                                                                                                                            | 7 66                                                                                                          | 14 15                                                                                                        |                                                                                                               |                                                                                                               |                                       |
| 85                                                                                                                                                                                                                                                                                                                                    | T                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                |                                                                                                                            |                                                                                                               | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                      |                                                                                                               |                                                                                                               | · · · · · · · · · · · · · · · · · · · |
| 00                                                                                                                                                                                                                                                                                                                                    | i                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        | -                                                                                                                          |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 86                                                                                                                                                                                                                                                                                                                                    | Estimated                                                                                                                                                                                    | size of th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rust block                                                                                                                                           | <u>s</u>                                                                                                                                                               |                                                                                                                            |                                                                                                               |                                                                                                              | ·····                                                                                                         |                                                                                                               |                                       |
| 86<br>87                                                                                                                                                                                                                                                                                                                              | <u>Estimated</u>                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                      |                                                                                                                                                                        |                                                                                                                            |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 86<br>87<br>88                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                              | Dir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nensions                                                                                                                                             | of thrust I                                                                                                                                                            | olocks in r                                                                                                                |                                                                                                               |                                                                                                              |                                                                                                               |                                                                                                               |                                       |
| 86<br>87<br>88<br>89                                                                                                                                                                                                                                                                                                                  | Estimated<br>D mm                                                                                                                                                                            | Dir<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nensions<br>1/4                                                                                                                                      | of thrust I<br>22                                                                                                                                                      | 1/2                                                                                                                        | 4                                                                                                             | 5                                                                                                            | g                                                                                                             | 0                                                                                                             |                                       |
| 86<br>87<br>88<br>89<br>90                                                                                                                                                                                                                                                                                                            | D mm                                                                                                                                                                                         | Dir<br>11<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H                                                                                                                                 | of thrust I<br>22<br>B                                                                                                                                                 | 1/2<br>H                                                                                                                   | 4<br>B                                                                                                        | 5<br>H                                                                                                       | g<br>B                                                                                                        | 0                                                                                                             |                                       |
| 86<br>87<br>88<br>89<br>90<br>91                                                                                                                                                                                                                                                                                                      | D mm<br>50                                                                                                                                                                                   | Dir<br>11<br>B<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nensions<br>1/4<br>H<br>0,12                                                                                                                         | of thrust I<br>22<br>B<br>0.17                                                                                                                                         | 1/2<br>H<br>0.17                                                                                                           | 4<br>B<br>0.23                                                                                                | 5<br>H<br>0.23                                                                                               | 9<br>B<br>0.32                                                                                                | 0<br>H<br>0.32                                                                                                |                                       |
| 86<br>87<br>88<br>89<br>90                                                                                                                                                                                                                                                                                                            | D mm                                                                                                                                                                                         | Dir<br>11<br>B<br>0.12<br>0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0.12<br>0.18                                                                                                                 | of thrust I<br>22<br>B<br>0.17<br>0.26                                                                                                                                 | 1/2<br>H<br>0.17<br>0.26                                                                                                   | 4<br>B<br>0.23<br>0.36                                                                                        | 5<br>H<br>0.23<br>0.36                                                                                       | g<br>B                                                                                                        | 0<br>H<br>0.32<br>0.49                                                                                        |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>93<br>94                                                                                                                                                                                                                                                                              | D mm<br>50<br>90<br>100<br>150                                                                                                                                                               | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>0.12<br>0.18<br>0.20<br>0.30                                                                                                      | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42                                                                                                                 | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42                                                                                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59                                                                        | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59                                                                       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80                                                                        | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80                                                                        |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>93<br>94<br>95                                                                                                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200                                                                                                                                                        | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.30<br>0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40                                                                                         | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56                                                                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56                                                                           | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78                                                                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78                                                               | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06                                                                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06                                                                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96                                                                                                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250                                                                                                                                                 | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.30<br>0.40<br>0.49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.30<br>0.40<br>0.49                                                                         | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69                                                                                                 | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69                                                                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96                                                        | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96                                                       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31                                                        | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31                                                        |                                       |
| 86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300                                                                                                                                          | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.30<br>0.40<br>0.49<br>0.58                                                                 | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82                                                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82                                                           | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15                                                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15                                               | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56                                                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56                                                |                                       |
| 86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98                                                                                                                                                                                                                                                                  | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350                                                                                                                                   | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67                                                                 | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94                                                                                 | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94                                                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32                                        | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32                                       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80                                        | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80                                        |                                       |
| 86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97                                                                                                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500                                                                                                                            | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93                                                 | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94                                                                                 | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.21                                           | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32                                        | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32                               | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56                                                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49                                |                                       |
| 86<br>87<br>88<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>90<br>100<br>101                                                                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>600<br>800<br>800                                                                                                       | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93<br>1,09<br>1,40                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32<br>1.83<br>2.15<br>2.77       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102                                                                                                                                                                                                                                 | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>509<br>600<br>809<br>809<br>NOTE:- Th                                                                                          | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93<br>1,09<br>1,40                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32<br>1.83<br>2.15<br>2.77       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103                                                                                                                                                                                                                    | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>600<br>800<br>800<br>800<br>NOTE:- Th                                                                                   | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93<br>1,09<br>1,40                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32<br>1.83<br>2.15<br>2.77       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104                                                                                                                                                                                                             | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>600<br>800<br>800<br>NOTE:- Th                                                                                          | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93<br>1,09<br>1,40                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32<br>1.83<br>2.15<br>2.77       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105                                                                                                                                                                                                            | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>8                                                               | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>0,93<br>1,09<br>1,40                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.32<br>1.83<br>2.15<br>2.77       | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106                                                                                                                                                                                                     | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>800<br>NOTE:- Th<br>3.TEES                                                                                              | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.69<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mensions<br>1/4<br>H<br>0,12<br>0,18<br>0,20<br>0,30<br>0,40<br>0,49<br>0,58<br>0,67<br>6,93<br>1,09<br>1,49<br>ble indicato                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.93                                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.54<br>1.38                   | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77                | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77               | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.30<br>5.05                | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.54<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80                |                                       |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>90<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107                                                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>500<br>800<br>NOTE:- Th<br>3.TEES<br>3.1 CALCU                                                                          | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>e above ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>ble indicato                         | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.98<br>es the prace                                         | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.54<br>1.98<br>stically feas          | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>ible minim  | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>97<br>98<br>99<br>97<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109                                                                                                                                                        | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>500<br>500<br>800<br>800<br>NOTE:- Th<br>3.TEES<br>3.1 CALCL<br>In the case<br>balanced b                                      | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1 | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.48<br>ble indicate                 | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.54<br>1.54<br>1.98<br>es the prace<br>tic force F                  | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>stically feas                  | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>ible minim  | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86           87           88           89           90           91           92           93           94           95           96           97           98           99           100           101           102           103           104           105           106           107           108           109           110 | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>5                                                                             | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1 | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.48<br>ble indicate                 | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.54<br>1.54<br>1.98<br>es the prace<br>tic force F                  | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>stically feas                  | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>ible minim  | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>90<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>101<br>101<br>101<br>101<br>101<br>101<br>101<br>101                                                                                                           | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>5                                                                             | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40<br>1.40      | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>ble indicate<br>ble indicate         | of thrust I<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.54<br>1.54<br>1.98<br>es the prace<br>tic force F<br>shown in 1    | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>stically feas                  | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>ible minim  | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>111                                                                                                                                                     | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>800<br>8                                                               | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>e above ta<br>JLATIONS<br>of tees, fu<br>y the thrus<br>he same p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.49<br>1.49<br>ble indicate<br>ble indicate | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.98<br>as the prace<br>tic force F<br>shown in 1<br>s above | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>Stically feas<br>ctically feas | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>sible minim | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113                                                                                                                                                    | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>600<br>800<br>NOTE:- Th<br>3.TEES<br>3.1 CALCL<br>In the case<br>balanced b<br>Following t<br>Area requir                      | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>e above ta<br>JLATIONS<br>of tees, fu<br>y the thrus<br>he same p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.49<br>1.49<br>ble indicate<br>ble indicate | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.98<br>as the prace<br>tic force F<br>shown in 1<br>s above | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>stically feas                  | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>sible minim | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113<br>114                                                                                                                                             | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>600<br>800<br>NOTE:- Th<br>3.TEES<br>3.1 CALCL<br>In the case<br>balanced b<br>Following t<br>Area requir                      | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>e above ta<br>JLATIONS<br>of tees, fu<br>y the thrus<br>he same p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.49<br>1.49<br>ble indicate<br>ble indicate | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.98<br>as the prace<br>tic force F<br>shown in 1<br>s above | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>Stically feas<br>ctically feas | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>sible minim | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |
| 86<br>87<br>88<br>89<br>90<br>91<br>92<br>93<br>94<br>95<br>96<br>97<br>98<br>99<br>100<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>109<br>110<br>111<br>112<br>113                                                                                                                                                    | D mm<br>50<br>90<br>100<br>150<br>200<br>250<br>300<br>350<br>600<br>800<br>800<br>800<br>800<br>NOTE:- Th<br>3.TEES<br>3.1 CALCU<br>In the case<br>balanced b<br>Following t<br>Area requir | Dir<br>11<br>B<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.40<br>e above ta<br>JLATIONS<br>of tees, fu<br>y the thrus<br>he same p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nensions<br>1/4<br>H<br>0.12<br>0.18<br>0.20<br>0.30<br>0.40<br>0.49<br>0.58<br>0.67<br>0.93<br>1.09<br>1.49<br>1.49<br>ble indicate<br>ble indicate | of thrust 1<br>22<br>B<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.31<br>1.54<br>1.98<br>as the prace<br>tic force F<br>shown in 1<br>s above | 1/2<br>H<br>0.17<br>0.26<br>0.29<br>0.42<br>0.56<br>0.69<br>0.82<br>0.94<br>1.54<br>1.98<br>Stically feas<br>ctically feas | 4<br>B<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>sible minim | 5<br>H<br>0.23<br>0.36<br>0.40<br>0.59<br>0.78<br>0.96<br>1.15<br>1.32<br>1.83<br>2.15<br>2.77<br>.um diment | 9<br>B<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>3.39<br>5.95<br>sions to su | 0<br>H<br>0.32<br>0.49<br>0.54<br>0.80<br>1.06<br>1.31<br>1.56<br>1.80<br>2.49<br>2.60<br>2.80<br>it the type | of bend                               |

|                                                                                                                 | A                              | В                | С              | D                                     | E            | F            | G                                      | Н             | 1               | J           |
|-----------------------------------------------------------------------------------------------------------------|--------------------------------|------------------|----------------|---------------------------------------|--------------|--------------|----------------------------------------|---------------|-----------------|-------------|
| 1                                                                                                               |                                |                  | <u> </u>       |                                       |              |              |                                        |               |                 |             |
| 2                                                                                                               |                                |                  | GR             | EATER                                 | COLOME       |              | PROJEC                                 | 1             |                 |             |
| 4                                                                                                               | Desi                           | gn of Thru       | ust Blocks     | for Distri                            | bution Sy    | stems T.P    | . 7.5 bar (                            | submerg       | ed conditi      | ons)        |
| 5                                                                                                               |                                |                  |                |                                       |              |              | <u>``</u>                              |               |                 |             |
| 6                                                                                                               | Comp. By:                      | A. P.            | 1              |                                       | Check By:    |              |                                        |               | Date:           | 2/10/00     |
| 7                                                                                                               |                                |                  | J              | L                                     |              |              |                                        |               |                 | ]           |
| 118                                                                                                             |                                |                  |                |                                       |              |              |                                        |               | <u> </u>        |             |
| 119<br>120                                                                                                      |                                |                  |                |                                       |              |              |                                        |               | F               |             |
| 121                                                                                                             | 3.2 RESUL                      | rs               |                |                                       |              |              |                                        |               |                 |             |
| 122<br>123                                                                                                      | D                              | a 1 D/2          |                | A                                     |              |              |                                        |               | <u></u>         | F           |
| 123                                                                                                             | mm                             | c+D/2<br>m       | q<br>kN/m²     | Area<br>sq m                          | B<br>m       | H<br>m       |                                        | <b>←</b>      |                 | <u> </u>    |
| 125                                                                                                             | 50                             | 0.78             | 31.29          | 0.07                                  |              | 0.27         |                                        |               |                 |             |
| 126                                                                                                             | 90                             | 1.05             | 42.20          | 0.17                                  | 0.41         | 0.41         |                                        |               |                 |             |
| 127<br>128                                                                                                      | 100<br>150                     | 1.05             | 42.40          | 0.21                                  | 0.46         | 0.46         |                                        | <u>↓</u>      |                 | <u> </u>    |
| 120                                                                                                             | 200                            | 1.10             | 44.42          | 0.40                                  | 0.89         | 0.89         |                                        | G.            |                 |             |
| 130                                                                                                             | 250                            | 1.13             |                | 1.22                                  | 1.10         | 1.10         | ······································ |               |                 |             |
| 131<br>132                                                                                                      | 300<br>350                     | 1.15<br>1.18     | 46.44<br>47.45 | 1.71<br>2.28                          |              | 1.31         |                                        |               | <u>     </u>    | \           |
| 132                                                                                                             | 500                            | 1.10             |                | <u> </u>                              |              |              | °                                      | <b>-</b>      | ┼╱┯┟            | <u>}</u> =+ |
| 134                                                                                                             | 600                            | 1.30             |                | 6.06                                  | 2.48         | 2.46         |                                        |               |                 |             |
| 135<br>136                                                                                                      | 900                            | 1.40             | 56.53          | 10.00                                 | 3 18         | 3 16         |                                        | $10^{-}$      | ╊╴╧┼┼╸          | <b>┭</b> ∖  |
| 137                                                                                                             |                                | <u>.</u>         |                |                                       | <br>i        |              | <u> </u>                               | <u> </u> /    |                 | ╧┼╤═╋╌╌     |
| 138                                                                                                             |                                |                  |                |                                       | i            |              | hydrostatic th                         | vust F        | passive force Q | 3           |
| 139                                                                                                             | 4.VERTICA                      |                  |                |                                       | <u> </u>     |              | <b> </b>                               | ļ             |                 |             |
| 141                                                                                                             | 4.7 - 10/                      |                  |                |                                       | <u> </u>     | <u> </u>     | •                                      | GL —          |                 |             |
| the second se | 4.1 DESIG                      | N APPRO          | АСН            |                                       |              |              |                                        |               |                 |             |
| 143                                                                                                             | In the case                    | of vertical      | upward he      | end unbal                             | anced thru   | st T acts    | ΤΤ                                     | Sina A        | 1               |             |
|                                                                                                                 | upwards as                     |                  |                |                                       |              |              |                                        |               | 🕈 TCosα         |             |
|                                                                                                                 | place, this                    |                  | have to be     | balanced                              | using eithe  | r of the     |                                        |               | <u> </u>        |             |
|                                                                                                                 | following m<br>(1) provisio    |                  | ist block so   | that its w                            | eight plus f | the soil     |                                        | <sup>8</sup>  | <u> </u>        | -           |
| 149                                                                                                             | overburden                     | on top ba        | lances the     | vertical fo                           | rce compo    | nent TSino   | 1<br>(                                 |               | <u>N</u>        |             |
|                                                                                                                 | (2) provisio<br>restrained     |                  |                |                                       |              |              |                                        | $\frac{1}{7}$ | ╡┽╻┈            |             |
| 151                                                                                                             |                                | ุ่มการ สเอก<br>! | g uie pipeli   |                                       |              |              |                                        | $+ \square$   | ╧╋╧╋            |             |
| 153                                                                                                             | For larger                     |                  |                |                                       |              |              | <u> </u>                               |               |                 |             |
|                                                                                                                 | impractical                    |                  |                | vely large                            | thrust bloc  | k is require | ed                                     |               |                 |             |
| 150                                                                                                             |                                | ale anust.       |                | :                                     |              |              |                                        |               |                 |             |
|                                                                                                                 | Therefore                      |                  |                |                                       |              |              |                                        |               |                 |             |
|                                                                                                                 | 3 on both sid<br>9 thrust bloc |                  |                |                                       |              |              |                                        |               |                 |             |
|                                                                                                                 | ) available s                  |                  |                |                                       |              |              |                                        |               |                 | ~           |
| 16                                                                                                              |                                |                  |                |                                       |              |              |                                        |               |                 |             |
| 162                                                                                                             |                                | 1                | !              |                                       | ·            |              |                                        |               |                 |             |
| 164                                                                                                             | 4                              | i                |                |                                       | *            |              |                                        |               |                 |             |
| 16                                                                                                              |                                |                  |                | -                                     |              |              |                                        |               |                 |             |
| 16                                                                                                              |                                | 1                | ·              | <u> </u>                              | -            | <u> </u>     |                                        |               |                 |             |
| 16                                                                                                              | 8                              | ·/               |                | · · · · · · · · · · · · · · · · · · · |              |              | 1                                      |               |                 |             |
| 16                                                                                                              |                                |                  |                |                                       | -            |              |                                        |               |                 |             |
| 17                                                                                                              |                                |                  |                | 1                                     | -            |              |                                        |               |                 |             |
| 17                                                                                                              |                                | 1                |                |                                       | <u> </u>     | <u> </u>     |                                        | _             |                 |             |

ļ

|                   | A                          | 8                        | С                                     | D                   | E                                            | F                                         | G                                     | н                     | 1                                            | J        |
|-------------------|----------------------------|--------------------------|---------------------------------------|---------------------|----------------------------------------------|-------------------------------------------|---------------------------------------|-----------------------|----------------------------------------------|----------|
| 1                 |                            |                          |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
| 2                 |                            |                          | GR                                    | EATER               | COLOME                                       | 30 NRW                                    | PROJEC                                | Т                     |                                              |          |
|                   | <br>Dec                    | ign of Thr               | ust Blocks                            | s for Distr         | ibution Su                                   |                                           | P. 7.5 bar (s                         | ubmerge               | d conditio                                   |          |
| 4                 |                            |                          |                                       |                     |                                              |                                           | . 7.5 Dai (s                          | subilicige            |                                              |          |
|                   | Comp. By:                  | A. P.                    |                                       |                     | Check By:                                    |                                           |                                       | ſ                     | Date:                                        | 2/10/00  |
| 6                 |                            |                          |                                       | 1                   |                                              |                                           |                                       | L                     |                                              |          |
| 173               |                            | =                        |                                       |                     |                                              |                                           | :                                     |                       |                                              |          |
| 174               |                            |                          |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
| 175               |                            |                          |                                       |                     |                                              |                                           | ferent vert                           |                       |                                              |          |
| 176<br>177        | Dmm                        | 11<br>B                  | 1/4<br>H                              | 22<br>              | 1/2<br>H                                     | 4<br>                                     | 5<br>H                                | 9<br>B                | <u>и</u><br>Н                                |          |
| 178               | 50                         | 0.08                     | 0.08                                  | 0.09                | 0.09                                         | 0.10                                      | 0.10                                  | 0.13                  | 0.13                                         |          |
| 179               | 90                         | 0.14                     | 0.14                                  | 0.16                | 0.16                                         | 0.18                                      | 0.18                                  | 0.23                  | 0.23                                         |          |
| 180               | 100                        |                          | 0.15                                  | 0.18                |                                              | 0.20                                      | 0.20                                  | 0.25                  | 0.25                                         |          |
| 181<br>182        | 150<br>200                 | 0.23                     | 0.23                                  | 0.26                | 0.26                                         | 0.30                                      | 0.30                                  | 0.38                  | 0.38                                         |          |
| 183               | 200                        |                          | 0.30                                  | 0.35                |                                              | 0.40                                      | 0.40                                  | 0.50                  | 0.50                                         |          |
| 184               | 300                        | 0.45                     | 0.45                                  | 0.53                |                                              | 0.60                                      | 0.60                                  | 0.75                  | 0.75                                         |          |
| 185               | 350                        | 0.53                     |                                       | 0.61                |                                              | 0.70                                      | 0.70                                  | 0.88                  | 0.88                                         |          |
| 186               | 500                        | 0.75<br>0.90             | 0.75                                  | 0.88                | No. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.   |                                           | 1.60                                  | 1.25                  | 1.25                                         |          |
| 187<br>188        | 600<br>800                 | 120                      | 0.90<br>1.20                          | 1.05<br>1.40        | 1.55<br>1.40                                 | 97776223000000000000000000000000000000000 | 1 20<br>1 60                          | 1.50<br>2.00          | 1.50<br>2.00                                 |          |
| 189               |                            | <br>                     |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
| the second second | 5. VERTIC                  | AL DOWN                  | WARD BE                               | ND                  |                                              |                                           |                                       |                       |                                              |          |
| 191               |                            |                          |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
|                   | As in the ca<br>both sides |                          |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
|                   | in place usi               |                          |                                       |                     |                                              |                                           |                                       | / to keep u           |                                              |          |
| 195               | <u> </u>                   |                          |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
| 196               |                            |                          |                                       |                     |                                              |                                           |                                       | -                     |                                              |          |
| 197<br>198        | 6. REQUIR                  | ED LENG                  | THS FOR I                             | RESTRAIN            | JT                                           |                                           |                                       |                       |                                              |          |
|                   | The length                 | of pipeline              | required to                           | be restra           | ined on ea                                   | ch side of t                              | he bend is                            | aiven by:             |                                              |          |
| 200               |                            |                          |                                       |                     |                                              |                                           |                                       | 3                     |                                              |          |
|                   | L = P*A*(1-                | -Cos α)/μ*(              | We+Ww+                                | Np)                 |                                              |                                           |                                       | ·····                 |                                              |          |
| 202<br>203        |                            | l onath of               | rostroinod                            | iointo on o         |                                              | f the band                                | (                                     |                       |                                              |          |
| 203               |                            | Length of<br>Internal Pr |                                       |                     | acii side o                                  |                                           | ( 11 )                                | <u> </u>              |                                              |          |
| 205               | A =                        | Cross-sec                | tional area                           | of the pipe         | e in sq mm                                   | L                                         |                                       |                       |                                              |          |
| 206               | α=                         | Bend defie               | ection in de                          | grees               |                                              |                                           |                                       |                       |                                              |          |
| 207               |                            | Coefficien               |                                       |                     |                                              |                                           |                                       | <u>=</u>              | 0.3                                          | <u> </u> |
| 208<br>209        |                            | Weight of<br>Weight of   |                                       |                     |                                              |                                           |                                       |                       |                                              |          |
| 210               |                            | Weight of                |                                       |                     |                                              | ar or hihe)                               |                                       |                       |                                              |          |
| 211               |                            |                          | ·····                                 |                     |                                              |                                           |                                       |                       |                                              |          |
| 212               |                            |                          |                                       |                     |                                              |                                           |                                       |                       | <u>;                                    </u> |          |
| 213<br>214        | D mm                       | P                        | A                                     | We                  | Ww                                           | Wp                                        | 44 474                                |                       | L45                                          | 90       |
| 214               | 50                         | N<br>0.75                | 1963                                  | 0.75                | 0.02                                         | <b></b>                                   | 11 1/4<br>0 12                        | 22 1/2<br>0,49        |                                              |          |
| 216               | 90                         |                          |                                       |                     |                                              |                                           | 0.22                                  | 0. <b>4</b> 5<br>0.86 |                                              |          |
| 217               | 100                        | 0.75                     | 7854                                  | 1.50                | 0.08                                         |                                           | 0.24                                  | 0.95                  | 4.85                                         | 12.44    |
| 218               | 150                        |                          | 17671                                 |                     | <u> </u>                                     |                                           | 0.35                                  | 1.39                  |                                              |          |
| 219               | 200<br>250                 |                          |                                       | <u>3.00</u><br>3.75 |                                              |                                           | 0.46                                  | 1.80<br>1.96          |                                              |          |
| 220<br>221        | 250                        | 0.75                     |                                       | 4.50                |                                              | 0.52                                      |                                       | 1.96<br>2.29          |                                              |          |
| 222               | 350                        |                          |                                       |                     |                                              |                                           | 100 Miles and 100 Miles and 100 Miles | 2.60                  |                                              |          |
| 223               | 500                        | 0.75                     | 196350                                | 7.50                | 1.96                                         | 0.98                                      | 0.90                                  | 3.58                  | 26.32                                        | 46.99    |
| 224               | 600                        |                          | 282743                                |                     |                                              |                                           |                                       | 4.09                  |                                              |          |
| 225               | 800                        | 0.75                     | 502655                                | 12.00               | 5.03                                         | 1.73                                      | 1.29                                  | 5.10                  | 45.36                                        | 67.01    |
| 226<br>227        |                            |                          | · · · · · · · · · · · · · · · · · · · |                     |                                              | ļ                                         |                                       |                       |                                              |          |
| لككا              | L                          | ·                        | <u> </u>                              |                     | <u>.                                    </u> | <u> </u>                                  | <u> </u>                              | <u> </u>              | . <u></u>                                    | 1        |

I

|            | A               | B          | C (          | D            | E          | F                                     | G                                       | Н                                     | 1                                     | []         |
|------------|-----------------|------------|--------------|--------------|------------|---------------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------|------------|
|            |                 |            |              |              |            |                                       |                                         |                                       |                                       |            |
| 2          |                 |            | GRI          | EATER        | COLOMB     | O NRW                                 | PROJEC                                  | T                                     |                                       |            |
| 3          |                 |            |              |              |            |                                       |                                         | <u>.</u>                              |                                       |            |
| 4          | Des             | ign of Thr | ust Blocks   | for Distri   | bution Sys | stems T.P                             | . 7.5 bar (                             | submerge                              | d conditi                             | ons)       |
| 5          |                 |            |              |              |            |                                       |                                         |                                       | · · · · · · · · · · · · · · · · · · · |            |
|            | Comp. By:       | A. P.      |              | ſ            | Check By:  | · · · · · · · · · · · · · · · · · · · |                                         |                                       | Date:                                 | 2/10/00    |
| 6<br>7     |                 |            |              | ļ            | -ncon DJ:  |                                       | l                                       |                                       |                                       |            |
| ↓ inter    |                 |            |              |              |            |                                       |                                         |                                       | 1                                     |            |
| 228<br>229 |                 |            |              |              |            |                                       |                                         |                                       |                                       | <u> </u>   |
|            | 7. THRUST       | BLOCKS     |              | PS           |            |                                       |                                         | <b>_</b>                              |                                       | <u> </u>   |
| 231        | 7. 111(031      | DLOOKS     |              |              |            |                                       |                                         |                                       |                                       | <u> </u>   |
|            | The same (      | design con | cent is appl | lied to size | the thrust | blocks for                            | tapers in                               | the case o                            | ftapers r                             | esultina   |
|            | differentilal   |            |              |              |            |                                       | taporo, m                               |                                       |                                       |            |
| 234        | differ official | 1          |              |              |            |                                       |                                         | · · · · · · · · · · · · · · · · · · · |                                       |            |
| 235        | Taper siz       | e in mm    | Force F      | c+D/2        | P I        | А                                     | Thrust B                                | lock size                             |                                       | <u>.</u>   |
| 236        | d1              | d2         | kN           |              | kN/sq m    | sqm                                   | Hm                                      | Bm                                    | {                                     |            |
| 1          | uPVC            | <u> </u>   |              |              |            |                                       |                                         |                                       |                                       |            |
| 238        | 110             | 90         | 2.35619      | 1.06         | 42.60      | 0.06481                               | M. 1. 18.25                             |                                       |                                       |            |
| 239        | 225             | 160        | 14.7409      | 1.11         | 44.92      | 0.3679                                | 0.61                                    | 0.61                                  | <u> </u>                              | <u> </u>   |
| 240        | 160             | 110        | 7.95216      | 1.08         | 43.61      | 0.20245                               | 0.45                                    | 0.45                                  | Į                                     |            |
| 241        | DI              |            |              |              | 0.00       |                                       |                                         |                                       |                                       | -          |
| 242        | 250             | 150        | 23.5619      | 1.13         | 45.43      | 0.56776                               | 0.75                                    | 9.75                                  |                                       |            |
| 243        | 300             | 150        | 39.7608      | 1.15         | 46.44      | 0.92692                               | 0.98                                    | 0.96                                  |                                       |            |
| 244        | 300             | 200        | 29.4524      | 1.15         | 46.44      | 0.70493                               | 0.84                                    | § 84                                  |                                       |            |
| 245        | 300             | 250        | 16.1988      | 1.15         |            |                                       |                                         | ~~~~                                  | · · · · · · · · · · · · · · · · · · · |            |
| 246        | 400             | 200        | 70.6858      | 1.20         |            |                                       |                                         |                                       |                                       | i          |
| 247        | 400             | 250        | 57.4322      | 1.20         |            |                                       |                                         |                                       | 7                                     |            |
| 248        | 400             | 300        | 41.2334      | 1.20         |            | ÷                                     |                                         |                                       | %                                     |            |
| 249        | 450             | 300        | 66.268       | 1.23         |            |                                       |                                         |                                       | ·····                                 | .i         |
| 250        |                 | 400        | 25.0346      | 1.23         |            |                                       |                                         | ******                                | ~                                     |            |
| 251        | 500             | 300        | 94.2478      | 1.25         |            |                                       |                                         | ~~~~~                                 | 7                                     | . <u>.</u> |
| 252        | 500             | 400        | 53.0144      | 1.25         |            | <u> </u>                              | _9/1/////////////////////////////////// |                                       | <u>n</u>                              |            |
| 253        |                 | 450        | 27.9798      | 1.25         |            |                                       |                                         |                                       | 77                                    |            |
| 254        |                 | 300        | 159.043      |              |            |                                       |                                         | ~~~~~                                 | <u></u>                               |            |
| 255        |                 | 400        | 117.81       | 1.30         |            |                                       |                                         |                                       | <u></u>                               |            |
| 256        |                 | 500        | 64.7953      |              |            |                                       |                                         |                                       |                                       |            |
| 257        |                 | 500        | 141.372      |              |            |                                       |                                         |                                       |                                       |            |
| 258        | 700             | 600        | 76.5763      | 1.35         | 54.51      | 1.78958                               | 3                                       | 134                                   | <u> </u>                              | •          |

ł

ł