APPENDIX 8

MATERIALS RELATED TO "CHAPTER 8 PRELIMINARY DESIGN OF STATION AND STATION PLAZA"

8.1 Preliminary Design of Station Facilities

8.1.1 Examination of the Outline Plan for Improvement of Monumento Station (LRT Line 1)

OPreliminary Plan of Facilities Improvement at Monumento Station

Fig. 8.1.1 Preliminary Plan of Facilities Improvement at Monumento Station

OScope of Demolition at Monumento Station

Fig. 8.1.2 Scope of Demolition at Monumento Station

OMonumento Work Procedure Drawing (present)

Fig. 8.1.3 Monumento Work Procedure Drawing

Monumento Work Procedure Drawing (first stage)

A-A preliminary section

Fig. 8.1.4 Monumento Work Procedure Drawing

OMonumento Work Procedure Drawing (second stage)

Install turnouts at both ends of Monumento Station and run trains over the new structure single track (single platform) line (blue). Remove the east side platform and stair sections, etc. and construct the new structures (red).

8.1.2 Plan for Construction of Magallanes Station (NR/MCX) (Platform: Island Type)

1. Particulars of Magallanes Station Construction Plan

In planning the station passenger facilities, calculation shall be carried out upon setting the particulars of each facility.
(1) Projection of Future Users at Magallanes Station

Based on various data such as future population in the area around the station, the projected number of users at Magallanes Station (in 15 years) is approximately 133,700 boarding and alighting passengers per day. Projected numbers of passengers traveling in each direction per hour during the rush hour are as shown below. Moreover, the rush rate shall be 13%.

(2) Future Operating Plan

The hourly number of trains during rush hour shall be 18 each in the southbound and northbound directions, and each train shall consist of 10 electric cars.
(3) Track Structure and Work Conditions

Track structure in the area of new Magallanes Station construction is indicated below.

1) Track gradient: level
2) Distance between track centers: 4.0 m or more

Work conditions: considering that the existing PNR Magallanes Station will keep operating while the new Magallanes Station is being constructed, insert simple turnouts before and after PNR Magallanes Station and adopt single track operation (single platform) around the station.
(4) Passenger Facilities

1) Station building : ground station
2) Platform : island type, platform length R. L. - $1,100 \mathrm{~mm}$, distance between track center and platform edge $1,485 \mathrm{~mm}$
3) Track and platform level: B1
(5) Outline Plan of Station Facilities
4) Calculation of platform width

Platform width shall be calculated based on future boarding and alighting passengers assuming that 10 -car trains arrive and depart simultaneously in the southbound and northbound directions.

Therefore, required platform width $=$ required platform width on the southbound side + required platform width on the northbound side.
(1) Required platform width on southbound side (Magallanes \rightarrow Sucat)

- $B=B_{1}+B_{2}+\gamma$ $=0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma$

B : platform width
B_{1} : width occupied by passengers waiting to board trains
B_{2} : width occupied by passengers alighting from trains onto the platform
γ : necessary width for pillars and train refuge, etc.
Refuge width: $0.8 \mathrm{~m} \quad$ Pillars: 0.7 m
$\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$ (case of $\mathrm{P}_{\mathrm{b}} / \mathrm{n}<6.4 \ln$) or $13 \mathrm{n} / 3$ (case of $\mathrm{P}_{\mathrm{b}} / \mathrm{n}>6.4 \ln$)
P_{a} : peak boarding passengers per train (assuming an average of 1 electric train per hour during rush hour)

$$
\begin{aligned}
& \quad 5,700 \text { people } / 18 \text { trains } \fallingdotseq 320 \text { people } \\
& \mathrm{P}_{\mathrm{b}}: \text { peak alighting passengers per train (assuming an average of } 1 \\
& \\
& \quad \text { electric train per hour during rush hour) } \\
& \quad 3,400 \text { people } / 18 \text { trains } \fallingdotseq 190 \text { people } \\
& 1: 1 \text { train length }=20 \mathrm{~m} \\
& \mathrm{n}: \\
& \text { From the above } \mathrm{P}_{\mathrm{b}} / \mathrm{n}=190 / 10=19<6.4 \ln =6.4 \times 20.0 \times 10=1,280 \\
& \text { Therefore: } \mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln \\
& =0.2 \times(320 / 10)^{1 / 2}+2 \times 190 /(3 \times 20.0 \times 10)+0.8+0.7 \fallingdotseq 3.3 \mathrm{~m}
\end{aligned}
$$

(2) Required platform width on northbound side (Magallanes $\rightarrow \mathrm{D}$. Jose)

- $\mathrm{B}=\mathrm{B}_{1}+\mathrm{B}_{2}+\gamma$

$$
=0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma
$$

$\mathrm{P}_{\mathrm{a}}=1,500$ people $/ 18$ trains $\fallingdotseq 80$ people
$\mathrm{P}_{\mathrm{b}}=6,800$ people $/ 18$ trains $\fallingdotseq 380$ people
$\mathrm{P}_{\mathrm{b}} / \mathrm{n}=380 / 10=38<6.4 \mathrm{ln}=6.4 \times 20.0 \times 10=1,280$
Therefore: $\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$
$=0.2 \times(80 / 10)^{1 / 2}+2 \times 380 /(3 \times 20.0 \times 10)+0.8+0.7 \fallingdotseq 3.3 \mathrm{~m}$
(3) Required platform width = (1)required platform width on southbound side + (2)required platform width on northbound side
$=3.3+3.3=6.6 \fallingdotseq 7.0 \mathrm{~m}$
2) Calculation of platform width (calculation from structures on platforms, etc.)

In addition to the calculations indicated in 1), since platform width is also sometimes computed from the width of stairs and escalators on platforms and the distance between these structures and platform edges, examination of these items is carried out.

Required platform width:

- Distance with pillars on platforms shall be 1 m or more
- Distance with overpasses and underpasses, etc. shall be 1.5 m or more.

Therefore, on separate platforms, minimum distances will be as follows (see figure):

Platform width $=1.5 \mathrm{~m}+$ maximum width of structures on platforms

However, from the viewpoint of wheelchair use and safety, a minimum distance of 2.0 m is desirable, in which case the following expression will be adopted:

Platform width $=2.0 \mathrm{~m}+$ maximum width of structures on platforms

Fig. 8.1.7 Platform Width in Stairs Section

Fig. 8.1.8 Platform Width in ESC Section

(1) Maximum width of structures on platforms

a) Calculation of stair width and escalator width
i) Calculation of effective width of stairs and escalators

Calculate from the projected number of boarding and alighting passengers (per hour during rush hour) $=17,400$ people. It shall be assumed that 1 stairs (also for use in emergencies) and 2 escalators (1200 type, for 2 people, one escalator each going up and down) are installed on the platform.2 escalators (1200 type, for 2 people, one escalator each going up and down)

Boarding and alighting passengers: Transportation capacity of escalators: $6,750 \times 2$ units $=13,500$ people $/$ hour

Stair width
Necessary stair width (17,400-13,500 people/hour)/1,500 people/hour $=2.6 \mathrm{~m}>$ Minimum width 1.5 m
ii) Stair walls, handrail walls, etc. $\fallingdotseq 0.6 \mathrm{~m}$
iii) Maximum width of structures on platforms (decided according to the stair section)
$=$ Stair width + stair wall, handrail wall, etc.
$=$ Stair width $2.6 \mathrm{~m}+0.6 \mathrm{~m}=3.2 \mathrm{~m}$
iv) Platform width

Platform width $=2.0 \times 2+$ maximum width of structures on platforms

$$
=4.0+3.2=7.2 \fallingdotseq 7.5 \mathrm{~m}
$$

3) Calculation of platform length

Platform length $=$ rolling stock length \times number of cars + overrun allowance

$$
=20.0 \mathrm{~m} \times 10 \mathrm{cars}+10 \mathrm{~m}=210 \mathrm{~m}
$$

4) Required number of ticket barriers

Since passenger flow within stations often becomes blocked at ticket barriers, it is necessary to install enough ticket barriers to prevent this from happening.

The required number of ticket barriers is calculated from the number of boarding and alighting passengers and passing speed at the most congested time.
[Manned ticket barriers]

$$
\mathrm{N}=\frac{1}{\mathrm{~T}}\left(\frac{\mathrm{n}_{1}}{\mathrm{P}_{1}}+\frac{\mathrm{n}_{2}}{\mathrm{P}_{2}}\right)+\mathrm{A}
$$

N : number of ticket barriers
T : 1 hour (3,600 seconds)
n_{1} : boarding passengers per hour at most congested time
n_{2} : alighting passengers per hour at most congested time
P_{1} : passing number of boarding passengers per unit hour (1.0 person/second)
P_{2} : passing number of alighting passengers per unit hour (1.0 person/second)

A : standby barriers, 1 or more (depending on station conditions)
[Automatic ticket barriers]
$\mathrm{N}=\frac{\mathrm{n}_{1}}{40 \times \mathrm{S}}+\frac{\mathrm{n}_{2}}{40 \times \mathrm{S}}+\mathrm{A}$

N : number of automatic ticket barriers
n_{1} : boarding passengers per S minutes at most congested time
n_{2} : alighting passengers per S minutes at most congested time
40 : passing number of boarding passengers per one minute
S : More congested time (depending on line condition)
A : standby barriers (depending on station conditions)

Since automatic ticket barriers basically operate in a single direction, when calculating the required number of barriers, it is necessary to take other times into consideration.

Here, examination is based on the number of boarding and alighting passengers per hour during rush hour in consideration of the peak rate.
[Calculation]
Rush boarding passengers per hour $\quad 5,700+1,500=7,200$ people
Rush alighting passengers per hour $3,400+6,800=10,200$ people

Manned barriers $\quad \mathrm{Na}=1 / 3,600 \times(7,200 / 1.0+10,200 / 1.0)+1=4.9+1 \fallingdotseq 6$
Automatic barriers $\mathrm{Nb}=7,200 /(40 \times 60)+10,200 /(40 \times 60)+1=3+4.3+1 \fallingdotseq 9$

Therefore: In case of manned barriers: 6 barriers
In case of automatic barriers: $4 \mathrm{in}, 5$ out, 9 in total are required
5) Ticket issue facilities

Ticket issue facilities are divided into ticket windows and automatic vending machines, etc. However, it is preferable that short distance boarding tickets (inexpensive tickets) be purchased from vending machines.
[Required number of automatic vending machines]

$$
\mathrm{N}=\frac{\mathrm{n}}{0.0333 \times \mathrm{n}+667}
$$

N : required number of vending machines
n : estimated total number of sold tickets
$=$ daily number of boarding passengers (southbound 43,500 + northbound 11,600$) \times 0.5$ (estimate here: purchase rate of tickets on the day)
$=55,100 \times 0.5 \fallingdotseq 27,600$ tickets

$$
=27,600 /(0.0333 \times 27,600+667) \fallingdotseq 17.4 \fallingdotseq 18 \text { units }
$$

[Number of ticket windows]

$$
\begin{aligned}
\mathrm{N}= & \frac{\mathrm{n} \times 1.5}{\text { Tickets sold per hour } \times \text { effective time }} \\
& \mathrm{N}: \text { required number of ticket windows } \\
\mathrm{n}: & \text { estimated total number of sold tickets }=27,600 \text { tickets } \\
= & 27,600 \times 1.5 /(200 \times 16) \fallingdotseq 13 \text { windows }
\end{aligned}
$$

Since the purchase rate of tickets on the day is 50% and the numbers of automatic ticket vending machines and ticket windows are high at 18 and 13 respectively, it will be necessary to take steps (utilization of season tickets and coupon tickets, etc.) to cut down on the sale of tickets on the day.
6) Calculation of width of free corridors, stairs and escalators
(1) Width shall be 1.5 m or more in order to avoid hindrance to the smooth flow of passengers.
(2) The basis for calculation of width shall be 1 m per 2,000 people/hour.

The future projection of boarding and alighting passengers is 17,400 people (per hour in rush hour), but it is imagined that the number of station users
passing thpreliminary will be 10% of this figure. Moreover, the utilization rate of station front and rear entrances shall be 7:3.

Therefore, calculation of the number of front entrance users and width of the free corridor is carried out.
(1) Number of front entrance users

Front entrance users (per hour during rush) $=$ future boarding and alighting passengers (per hour during rush) \times use rate + number of people passing thpreliminary
$=17,400 \times 0.7+17,400 \times 0.1 \fallingdotseq 13,900$ people
(2) Calculation of free corridor width

Calculation of free corridor width $=$ users (per hour during rush) $/ 2,000$ people/H/m
$=13,900$ people $/ 2,000$ people $/ \mathrm{H} / \mathrm{m} \fallingdotseq 7.0=7.0 \mathrm{~m}$
7) Ticket windows and ticket barriers plan, and calculation of concourse area Concourse area (outside the inner compound) is calculated using the following expression by totaling the area in front of ticket windows and the flow area.
$\mathrm{A}=\mathrm{U}+\mathrm{T}$
A : required area
U : area in front of ticket windows
T : flow area
(1) Area in front of ticket windows

Area in front of ticket windows is the space required for boarding and alighting passengers to purchase boarding tickets, etc. This is refuge area necessary for people waiting to purchase tickets.

- $\mathrm{U}=\mathrm{B}_{1} \times \mathrm{L}_{1}$
B_{1} : total width of ticket windows
L_{1} : depth in front of ticket windows (3 m is assumed as standard)
a) Case of automatic ticket vending machines

Fig. 8.1.9 Preliminary Plan of Automatic Ticket Vending Machines

$$
\begin{aligned}
& \mathrm{B}_{1}: \text { required number of automatic ticket vending machines } \\
&=18(\text { from }(5) 5) \text { ticket issue facilities) } \\
& B_{1}=18 \times 0.5+(18-1) \times 0.4+(0.5+0.5)=16.8 \fallingdotseq 17.0 \mathrm{~m} \\
&=17.0 \times 3.0=51.0 \mathrm{~m}^{2}
\end{aligned}
$$

b) Case of ticket windows

Fig. 8.1.10 Preliminary Plan of Ticket Windows

$$
\begin{aligned}
& \mathrm{B}_{1}: \text { number of ticket windows } \\
&=13 \text { (from (5) 5) ticket issue facilities) } \\
& B_{1}=13 \times 2.0=26.0 \mathrm{~m} \\
&=26.0 \times 3.0=78.0 \mathrm{~m}^{2}
\end{aligned}
$$

(2) Flow area

Flow area is the concourse area required for the flow of boarding and alighting passengers.

- $\mathrm{T}=\mathrm{B}_{2} \times \mathrm{L}_{2}$
B_{2} : flow width (however, minimum width shall be 4 m)
$\mathrm{B}_{2}=\left(\mathrm{L}_{3} \times \mathrm{N}\right)+\mathrm{B}_{3}$
L_{3} : unit width of ticket collection windows
N : calculated number of ticket collection windows

In case of automatic passage from the required number of ticket windows in (5) 4), 4 entry, 5 exit $=9$ total shall also serve as guard windows: $\mathrm{L}_{3} \times \mathrm{N}=1.0 \mathrm{~m} \times 8$ units + guard window $1.15 \mathrm{~m} \fallingdotseq 9.2 \mathrm{~m}$
B_{3} : flow width correction value 2 m
$=9.2 \mathrm{~m}+2 \mathrm{~m}=11.2 \mathrm{~m} \fallingdotseq 12.0 \mathrm{~m}$

Fig. 8.1.11 Preliminary Plan of Automatic Barrier
L_{2} : depth in front of ticket collection windows
L_{2} shall be 3 m as standard, and depth in front of ticket collection windows shall be $0.5 \mathrm{~B}_{2}$ or more.
$3 \mathrm{~m}<0.5 \mathrm{~B}_{2}=0.5 \times 12.0=6.0 \mathrm{~m}$
$=12.0 \mathrm{~m} \times 6.0 \mathrm{~m}=72.0 \mathrm{~m}^{2}$
(Notes)
This examination of station facilities is based on the outline manual of station planning, and dimensions of facilities are calculated from generally adopted figures in Japan.

Fig. 8.1.12 Preliminary Plan of Magallanes Station Facilities

OTop View of PNR Magallanes Station

(The following diagram indicates preliminary dimensions, but the structure of foundations is unknown).

In the case where Magallanes Station is constructed underground (width 16.5 m) in the manner shown in the following diagram, in order to carry out sheathing works to enable excavation, there is a risk of interference with road bridge pillars (net interval 17.2 m). In future, detailed survey and design of the foundation structure will be necessary.

Fig. 8.1.13 Top View of PNR Magallanes Station

ONR/MCX Magallanes Station Work Procedure Drawing (first stage)

Fig. 8.1.14 NR/MCX Magallanes Station Work Procedure Drawing

ONR/MCX Magallanes Station Work Procedure Drawing (second stage)

Fig. 8.1.15 NR/MCX Magallanes Station Work Procedure Drawing

ONR/MCX Magallanes Station Work Procedure Drawing (third stage)

Fig. 8.1.16 NR/MCX Magallanes Station Work Procedure

8.1.3 Plan for Construction of Magallanes Station (NR/MCX) (Platform: Separate Type)

1. Particulars of Magallanes Station Construction Plan

In planning the station passenger facilities, calculation shall be carried out upon setting the particulars of each facility.
(1) Projection of Future Users at Magallanes Station

Based on various data such as future population in the area around the station, the projected number of users at Magallanes Station (in 15 years) is approximately 133,700 boarding and alighting passengers per day. Projected numbers of passengers traveling in each direction per hour during the rush hour are as shown below. Moreover, the rush rate shall be 13%.

(2) Future Operating Plan

The hourly number of trains during rush hour shall be 18 each in the southbound and northbound directions, and each train shall consist of 10 electric cars.
(3) Track Structure

Track structure in the area of new Magallanes Station construction is indicated below.

1) Track gradient: level
2) Distance between track centers: 4.0 m or more
(4) Passenger Facilities
3) Station building: ground station
4) Platform: separate type, platform length R. L. - 1,100 mm, distance between track center and platform edge $1,485 \mathrm{~mm}$
5) Track and platform level: B1
(5) Outline Plan of Station Facilities
6) Calculation of platform width Platform width shall be calculated based on future boarding and alighting passengers.
(1) Required platform width on southbound side (Magallanes \rightarrow Sucat)

- $B=B_{1}+B_{2}+\gamma$
$=0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma$
B : platform width
B_{1} : width occupied by passengers waiting to board trains
B_{2} : width occupied by passengers alighting from trains onto the platform
γ : necessary width for pillars and train refuge, etc.
Pillars: 0.5 m
$\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln \left(\right.$ case of $\left.\mathrm{P}_{\mathrm{b}} / \mathrm{n}<6.4 \ln \right)$ or $13 \mathrm{n} / 3$ (case of $\mathrm{P}_{\mathrm{b}} / \mathrm{n}>6.4 \ln$)
P_{a} : peak boarding passengers per train (assuming an average of 1 electric train per hour during rush hour)

5,700 people/ 18 trains $\fallingdotseq 320$ people
P_{b} : peak alighting passengers per train (assuming an average of 1 electric train per hour during rush hour)

3,400 people/ 18 trains $\fallingdotseq 190$ people
1 : 1 train length $=20.0 \mathrm{~m}$
n : cars per train $=10$ cars
From the above $\mathrm{Pb} / \mathrm{n}=190 / 10=19<6.4 \ln =6.4 \times 20.0 \times 10=1,280$
Therefore: $\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$

$$
=0.2 \times(320 / 10)^{1 / 2}+2 \times 190 /(3 \times 20.0 \times 10)+0.5 \fallingdotseq 2.3 \mathrm{~m}
$$

Required platform width on northbound side (Magallanes $\rightarrow \mathrm{D}$. Jose)

- $B=B_{1}+B_{2}+\gamma$

$$
=0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma
$$

$\mathrm{P}_{\mathrm{a}}=1,500$ people $/ 18$ trains $\fallingdotseq 80$ people
$\mathrm{P}_{\mathrm{b}}=6,800$ people $/ 18$ trains $\fallingdotseq 380$ people
$\mathrm{P}_{\mathrm{b}} / \mathrm{n}=380 / 10=38<6.4 \mathrm{ln}=6.4 \times 20.0 \times 10=1,280$
Therefore: $\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$

$$
=0.2 \times(80 / 10)^{1 / 2}+2 \times 380 /(3 \times 20.0 \times 10)+0.5 \fallingdotseq 2.3 \mathrm{~m}
$$

2) Calculation of platform width (calculation from structures on platforms, etc.) In addition to the calculations indicated in 1), since platform width is also sometimes computed from the width of stairs and escalators on platforms and the distance between these structures and platform edges, examination of these items is carried out.

Required platform width:

- Distance with pillars on platforms shall be 1 m or more
- Distance with overpasses and underpasses, etc. shall be 1.5 m or more.

Therefore, on separate platforms, minimum distances will be as follows (see figure):

Platform width $=1.5+$ maximum width of structures on platforms

However, from the viewpoint of wheelchair use and safety, a minimum distance of 2.0 m is desirable, in which case the following expression will be adopted:

Platform width $=2.0+$ maximum width of structures on platforms

Fig. 8.1.18 Calculation of Platform Width
(1) Maximum width of structures on platforms
a) Southbound platform
i) Calculation of stair width and escalator width

Calculate from the projected number of boarding and alighting passengers (per hour during rush hour) $=9,100$ people (boarding passengers $5,700+$ alighting passengers 3,400). It shall be assumed that 1 stairs (also for use in emergencies) and 2 escalators (800 type, for 1 person, one escalator each going up and down) are installed on the platform.

O2 escalators (800 type, for 1 person, one escalator each going up and down)

Boarding passengers: Deficient capacity per escalator $5,700-4,500=1,200$ people/hour
Alighting passengers: Transportation capacity of escalators: $4,500>3,400$

Stair width
Necessary stair width: $1,200 / 1,500$ people/hour $=0.8 \mathrm{~m}<$ Minimum width 1.5 m
ii) Stair walls, handrail walls, etc. $\fallingdotseq 1.0 \mathrm{~m}$
iii) Maximum width of structures on platforms (decided according to the stair section)
$=$ Stair width + stair wall, handrail wall, etc.
$=$ Stair width $1.5 \mathrm{~m}+1.0 \mathrm{~m}=2.5 \mathrm{~m}$
iv) Platform width

Platform width $=2.0+$ maximum width of structures on platforms

$$
=2.0+2.5=4.5 \fallingdotseq 5.0 \mathrm{~m}
$$

b) Northbound platform
i) Calculation of stair width and escalator width

Calculate from the projected number of boarding and alighting passengers (per hour during rush hour) $=8,300$ people (boarding passengers $1,500+$ alighting passengers 6,800). It shall be assumed that 1 stairs (also for use in emergencies) and 2 escalators (800 type, for 1 person, one escalator each going up and down) are installed on the platform.

O 2 escalators (800 type, for 1 person, one escalator each going up and down)

Boarding passengers: Transportation capacity of escalators: $4,500>1,500$
Alighting passengers: Deficient capacity per escalator $6,300-4,500=1,800$ people/hour

Stair width
Necessary stair width: 1,800/1,500 people/hour
$=1.2 \mathrm{~m}<$ Minimum width 1.5 m
ii) Stair walls, handrail walls, etc. $\fallingdotseq 1.0 \mathrm{~m}$
iii) Maximum width of structures on platforms (decided according to the stair section)
$=$ Stair width + stair wall, handrail wall, etc.
$=$ Stair width $1.5 \mathrm{~m}+1.0 \mathrm{~m}=2.5 \mathrm{~m}$
iv) Platform width

$$
\begin{aligned}
\text { Platform width }= & 2.0+\text { maximum width of structures on } \\
& \text { platforms } \\
= & 2.0+2.5=4.5 \fallingdotseq 5.0 \mathrm{~m}
\end{aligned}
$$

3) Calculation of platform length

Platform length $=$ rolling stock length \times number of cars + overrun allowance

$$
=20.0 \mathrm{~m} \times 10 \mathrm{cars}+10 \mathrm{~m}=210 \mathrm{~m}
$$

4) Required number of ticket barriers

Since passenger flow within stations often becomes blocked at ticket barriers, it is necessary to install enough ticket barriers to prevent this from happening.

The required number of ticket barriers is calculated from the number of boarding and alighting passengers and passing speed at the most congested time.
[Manned ticket barriers]

$$
\mathrm{N}=\frac{1}{\mathrm{~T}}\left(\frac{\mathrm{n}_{1}}{\mathrm{P}_{1}}+\frac{\mathrm{n}_{2}}{\mathrm{P}_{2}}\right)+\mathrm{A}
$$

N : number of ticket barriers
T : 1 hour (3,600 seconds)
n_{1} : boarding passengers per hour at most congested time
n_{2} : alighting passengers per hour at most congested time
P_{1} : passing number of boarding passengers per unit hour (1.0 person/second)
P_{2} : passing number of alighting passengers per unit hour (1.0 person/second)

A : standby barriers, 1 or more (depending on station conditions)
[Automatic ticket barriers]
$\mathrm{N}=\frac{\mathrm{n}_{1}}{40 \times \mathrm{S}}+\frac{\mathrm{n}_{2}}{40 \times \mathrm{S}}+\mathrm{A}$

N : number of automatic ticket barriers
n_{1} : boarding passengers per S minutes at most congested time
n_{2} : alighting passengers per S minutes at most congested time
40 : passing number of boarding passengers per one minute
$\mathrm{S}:$ More congested time (depending on line condition)
A : standby barriers (depending on station conditions)

Since automatic ticket barriers basically operate in a single direction, when calculating the required number of barriers, it is necessary to take other times into consideration.

Here, examination is based on the number of boarding and alighting passengers per hour during rush hour in consideration of the peak rate.

[Calculation]

$$
\begin{array}{ll}
\text { Rush boarding passengers per hour } & 5,700+1,500=7,200 \text { people } \\
\text { Rush alighting passengers per hour } & 3,400+6,800=10,200 \text { people }
\end{array}
$$

Manned barriers $\quad \mathrm{Na}=1 / 3,600 \times(7,200 / 1.0+10,200 / 1.0)+1=4.9+1 \fallingdotseq 6$
Automatic barriers $\mathrm{Nb}=7,200 \times(40 \times 60)+10,200 /(40 \times 60)+1=3+4.3+1 \fallingdotseq 9$

Therefore: In case of manned barriers: 6 barriers
In case of automatic barriers: $4 \mathrm{in}, 5$ out, 9 in total are required
5) Ticket issue facilities

Ticket issue facilities are divided into ticket windows and automatic vending machines, etc. However, it is preferable that short distance boarding tickets (inexpensive tickets) be purchased from vending machines.
[Required number of automatic vending machines]

$$
\mathrm{N}=\frac{\mathrm{n}}{0.0333 \times \mathrm{n}+667}
$$

N : required number of vending machines
n : estimated total number of sold tickets
$=$ daily number of boarding passengers (southbound 43,500 + northbound 11,600$) \times 0.5$ (estimate here: purchase rate of tickets on the day)
$=55,100 \times 0.5 \fallingdotseq 27,600$ tickets
$=27,600 /(0.0333 \times 27,600+667) \fallingdotseq 17.4 \fallingdotseq 18$ units
[Number of ticket windows]

$$
\mathrm{N}=\frac{\mathrm{n} \times 1.5}{\text { Tickets sold per hour } \times \text { effective time }}
$$

N : required number of ticket windows
n : estimated total number of sold tickets $=27,600$
$=27,600 \times 1.5 /(200 \times 16) \fallingdotseq 13$ windows

Since the purchase rate of tickets on the day is 50% and the numbers of automatic ticket vending machines and ticket windows are high at 18 and 13 respectively, it will be necessary to take steps (utilization of season tickets and coupon tickets, etc.) to cut down on the sale of tickets on the day.
6) Calculation of width of free corridors, stairs and escalators
(1) Width shall be 1.5 m or more in order to avoid hindrance to the smooth flow of passengers.
(2) The basis for calculation of width shall be 1 m per 2,000 people/hour.

The future projection of boarding and alighting passengers is 17,400 people (per hour in rush hour), but it is imagined that the number of station users passing thpreliminary will be 10% of this figure. Moreover, the utilization rate of station front and rear entrances shall be 7:3.

Therefore, calculation of the number of front entrance users and width of the free corridor is carried out.
(1) Number of front entrance users

Front entrance users (per hour during rush) $=$ future boarding and alighting passengers (per hour during rush) \times use rate + number of people passing thpreliminary
$=17,400 \times 0.7+17,400 \times 0.1 \fallingdotseq 13,900$
(2) Calculation of free corridor width

Calculation of free corridor width $=$ users (per hour during rush) $/ 2,000$ people/H/m

$$
=13,900 \text { people } / 2,000 \text { people } / \mathrm{H} / \mathrm{m} \fallingdotseq 7.0=7.0 \mathrm{~m}
$$

7) Ticket windows and ticket barriers plan, and calculation of concourse area Concourse area (outside the inner compound) is calculated using the following expression by totaling the area in front of ticket windows and the flow area.
$\mathrm{A}=\mathrm{U}+\mathrm{T}$
A : required area
U : area in front of ticket windows

T: flow area

(1) Area in front of ticket windows

Area in front of ticket windows is the space required for boarding and alighting passengers to purchase boarding tickets, etc. This is refuge area necessary for people waiting to purchase tickets.

- $\mathrm{U}=\mathrm{B}_{1} \times \mathrm{L}_{1}$
B_{1} : total width of ticket windows
L_{1} : depth in front of ticket windows (3 m is assumed as standard)
a) Case of automatic ticket vending machines

Fig. 8.1.19 Preliminary Plan of Automatic Ticket Vending Machines

$$
\begin{aligned}
B_{1}: & \text { required number of automatic ticket vending machines } \\
& =18(\text { from }(5) 5) \text { ticket issue facilities })
\end{aligned} \quad \begin{aligned}
& B_{1}=18 \times 0.5+(18-1) \times 0.4+(0.5+0.5)=16.8 \fallingdotseq 17.0 \mathrm{~m} \\
& =17.0 \times 3.0=51.0 \mathrm{~m}^{2}
\end{aligned}
$$

b) Case of ticket windows

Fig. 8.1.20 Preliminary Plan of Ticket Windows

$$
\begin{aligned}
& \mathrm{B}_{1}: \text { number of ticket windows } \\
&=13 \text { (from (5) 5) ticket issue facilities) } \\
& B_{1}=13 \times 2.0=26.0 \mathrm{~m} \\
&=26.0 \times 3.0=78.0 \mathrm{~m}^{2}
\end{aligned}
$$

(2) Flow area

Flow area is the concourse area required for the flow of boarding and alighting passengers.

- $\mathrm{T}=\mathrm{B}_{2} \times \mathrm{L}_{2}$
B_{2} : flow width (however, minimum width shall be 4 m)
$\mathrm{B}_{2}=\left(\mathrm{L}_{3} \times \mathrm{N}\right)+\mathrm{B}_{3}$
L_{3} : unit width of ticket collection windows
N : calculated number of ticket collection windows
In case of automatic passage from the required number of ticket windows in (5) 4), 4 entry, 5 exit $=9$ total shall also serve as guard windows: $\mathrm{L}_{3} \times \mathrm{N}=1.0 \mathrm{~m} \times 8$ units + guard window $1.15 \mathrm{~m} \fallingdotseq 9.2 \mathrm{~m}$
B_{3} : flow width correction value 2 m
$=9.2 \mathrm{~m}+2 \mathrm{~m}=11.2 \mathrm{~m} \fallingdotseq 12.0 \mathrm{~m}$

Fig. 8.1.21 Preliminary Plan of Automatic Barrier
L_{2} : depth in front of ticket collection windows
L_{2} shall be 3 m as standard, and depth in front of ticket collection windows shall be $0.5 \mathrm{~B}_{2}$ or more.

$$
3 \mathrm{~m}<0.5 \mathrm{~B}_{2}=0.5 \times 12.0=6.0 \mathrm{~m}
$$

$=12.0 \mathrm{~m} \times 6.0 \mathrm{~m}=72.0 \mathrm{~m}^{2}$

(Notes)

This examination of station facilities is based on the outline manual of station planning, and dimensions of facilities are calculated from generally adopted figures in Japan.

Outline of Facilities at Magallanes (NR/MCX) Station

Preliminary plan of platform B1

Preliminary plan of station facilities (1F)

Fig. 8.1.22 Outline of Facilities at Magallanes Station

OPreliminary Section of Magallanes (NR/MCX) Station

Fig. 8.1.23 Preliminary Section of Magallanes Station

Fig. 8.1.24 Preliminary Plan of Magallanes Station Faeilities

OTop View of PNR Magallanes Station

(The following diagram indicates preliminary dimensions, but the structure of foundations is unknown).

In the case where Magallanes Station is constructed underground (width 18.7 m) in the manner shown in the following diagram, road bridge pillars (net interval 17.2 m) will be interfered with.

Fig. 8.1.25 Top View of PNR Magallanes Station

8.1.4 Outline Plan for Improvement of Magallanes Station (LRT Line 3)

1. Particulars of Magallanes Station Construction Plan

In planning the station passenger facilities, calculation shall be carried out upon setting the particulars of each facility.
(1) Projection of Future Users at Magallanes Station

Based on various data such as future population in the area around the station, the projected number of users at Magallanes Station (in 15 years) is approximately 131,900 boarding and alighting passengers per day. Projected numbers of passengers traveling in each direction per hour during the rush hour are as shown below. Moreover, the rush rate shall be 13%.

(2) Future Operating Plan

The hourly number of trains during rush hour shall be 24 each on the inner circle and outer circle lines, and each train shall consist of 4 electric cars.
(3) Track Structure (existing)

Track structure in the area of new Magallanes Station construction is indicated below.

1) Track gradient: level
2) Distance between track centers: 3.4 m or more
(4) Passenger Facilities(existing)

Station building : elevated station
Platform : separate type, platform width 4.0-5.7 m, platform length 127 m , platform height R. L-900 mm, distance between track center and platform edge $1,380 \mathrm{~mm}$
Track and platform level : 2F
Free corridor : 3F
(5) Outline Plan of Station Facilities

1) Calculation of platform width

Platform width shall be calculated based on future boarding and alighting passengers.
(1) Required platform width on inner circle line (Magallanes \rightarrow Taft Ave.)

$$
\text { - } \begin{aligned}
\mathrm{B} & =\mathrm{B}_{1}+\mathrm{B}_{2}+\gamma \\
& =0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma
\end{aligned}
$$

B : platform width
B_{1} : width occupied by passengers waiting to board trains
B_{2} : width occupied by passengers alighting from trains onto the platform
γ : necessary width for pillars and train refuge, etc.
Here, bench: 0.4 m
$\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$ (case of $\mathrm{P}_{\mathrm{b}} / \mathrm{n}<6.4 \ln$) or $13 \mathrm{n} / 3$ (case of $\mathrm{P}_{\mathrm{b}} / \mathrm{n}>6.4 \ln$)
P_{a} : peak boarding passengers per train (assuming an average of 1 electric train per hour during rush hour)

0 people $/ 24$ trains $=0$ people
P_{b} : peak alighting passengers per train (assuming an average of 1 electric train per hour during rush hour)

8,200 people/24 trains $\fallingdotseq 340$ people
1 : 1 train length $=26.5 \mathrm{~m}$ (average)
n : cars per train $=4$ cars
From the above $\mathrm{P}_{\mathrm{b}} / \mathrm{n}=340 / 4=85<6.4 \ln =6.4 \times 26.5 \times 4 \fallingdotseq 678$
Therefore: $\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$
$=0.2 \times(0 / 4)^{1 / 2}+2 \times 340 /(3 \times 26.5 \times 4)+0.4 \fallingdotseq 2.1 \mathrm{~m}$
$<$ The existing platform width of 4.0 m is sufficient.
(2) Required platform width on outer circle line (Magallanes \rightarrow Shaw Blvd.)

- $B=B_{1}+B_{2}+\gamma$
$=0.2 \times\left(\mathrm{P}_{\mathrm{a}} / \mathrm{n}\right)^{1 / 2}+2 \mathrm{P}_{\mathrm{b}} / 31 \mathrm{n}+\gamma$
$\mathrm{P}_{\mathrm{a}}=8,600$ people/24 trains $\fallingdotseq 360$ people
$\mathrm{P}_{\mathrm{b}}=300$ people $/ 24$ trains $\fallingdotseq 10$ people $\mathrm{P}_{\mathrm{b}} / \mathrm{n}=10 / 4 \fallingdotseq 3<6.4 \mathrm{ln}=6.4 \times 26.5 \times 4 \fallingdotseq 678$ Therefore: $\mathrm{B}_{2}=2 \mathrm{P}_{\mathrm{b}} / 3 \ln$

$$
=0.2 \times(360 / 4)^{1 / 2}+2 \times 10 /(3 \times 26.5 \times 4)+0.4 \fallingdotseq 2.4 \mathrm{~m}
$$

$<$ The existing platform width of 4.0 m is sufficient.
2) Calculation of platform width (calculation from structures on platforms, etc.)

In addition to the calculations indicated in 1), platform width is also sometimes computed from the width of stairs and escalators on platforms and the distance between these structures and platform edges. However, since stairs and escalators are not installed on the existing platform, examination of these items is not necessary here.
3) Calculation of platform length

Platform length $=$ rolling stock length \times number of cars + overrun allowance $=26.5 \mathrm{~m} \times 4$ cars $+10 \mathrm{~m}=116 \mathrm{~m}$
< The existing platform length of approximately 127 m is sufficient.
4) Required number of ticket barriers

Since passenger flow within stations often becomes blocked at ticket barriers, it is necessary to install enough ticket barriers to prevent this from happening.

The required number of ticket barriers is calculated from the number of boarding and alighting passengers and passing speed at the most congested time.
[Manned ticket barriers]

$$
\mathrm{N}=\frac{1}{\mathrm{~T}}\left(\frac{\mathrm{n}_{1}}{\mathrm{P}_{1}}+\frac{\mathrm{n}_{2}}{\mathrm{P}_{2}}\right)+\mathrm{A}
$$

N : number of ticket barriers
T : 1 hour (3,600 seconds)
n_{1} : boarding passengers per hour at most congested time
n_{2} : alighting passengers per hour at most congested time
P_{1} : passing number of boarding passengers per unit hour (1.0 person/second)
P_{2} : passing number of alighting passengers per unit hour (1.0 person/second)

A : standby barriers, 1 or more (depending on station conditions)
[Automatic ticket barriers]

$$
\mathrm{N}=\frac{\mathrm{n}_{1}}{40 \times \mathrm{S}}+\frac{\mathrm{n}_{2}}{40 \times \mathrm{S}}+\mathrm{A}
$$

N : number of automatic ticket barriers
n_{1} : boarding passengers per S minutes at most congested time
n_{2} : alighting passengers per S minutes at most congested time
40 : passing number of boarding passengers per one minute
S : More congested time (depending on line condition)
A : standby barriers (depending on station conditions)

Since automatic ticket barriers basically operate in a single direction, when calculating the required number of barriers, it is necessary to take other times into consideration.

Here, examination is based on the number of boarding and alighting passengers per hour during rush hour in consideration of the peak rate. Moreover, because ticket barriers are installed separately for the inner and outer circle lines, examination is performed for each direction.
(1) Inner circle line

Rush boarding passengers per hour	0 people
Rush alighting passengers per hour	8,200 people

Manned barriers \quad Nas $=1 / 3,600 \times(0 / 1.0+8,200 / 1.0)+1 \fallingdotseq 2.3+1 \fallingdotseq 4$
Automatic barriers $\mathrm{Nbs}=0 /(40 \times 60)+8,200 /(40 \times 60)+1 \fallingdotseq 0+3.4+1 \fallingdotseq 5$
Therefore, in case of manned barriers: 4 barriers

In case of automatic barriers: 1 entry, 4 exit $=5$ barriers in total are necessary
< Since existing facilities consist of 1 entry and 2 exit barriers, it is necessary to install two new automatic barriers for exit use.
(2) Outer circle line

Rush boarding passengers per hour 8,600 people
Rush alighting passengers per hour 300 people

Manned barriers $\quad \mathrm{Nan}=1 / 3,600 \times(8,600 / 1.0+300 / 1.0)+1 \fallingdotseq 2.5+1 \fallingdotseq 4$
Automatic barriers $\mathrm{Nbn}=8,600 /(40 \times 60)+300 /(40 \times 60)+1 \fallingdotseq 3.6+0.1+1 \fallingdotseq 5$
Therefore, in case of manned barriers: 4 barriers
In case of automatic barriers: 4 entry, 1 exit $=5$ barriers in total are necessary
< Since existing facilities consist of 1 entry and 2 exit barriers, it is necessary to install two new automatic barriers for exit use
5) Ticket issue facilities

Ticket issue facilities are divided into ticket windows and automatic vending machines, etc. However, it is preferable that short distance boarding tickets (inexpensive tickets) be purchased from vending machines.

Since ticket issue facilities are separately installed for the inner circle and outer circle lines, examination is carried out for each direction.
(1) Inner circle line
[Required number of automatic vending machines]

$$
\mathrm{N}=\frac{\mathrm{n}}{0.0333 \times \mathrm{n}+667}
$$

N : required number of vending machines
n : estimated total number of sold tickets $=$ daily number of boarding passengers (inner circle line 200) \times
0.5 (estimate here: purchase rate of tickets on the day)
$=100$ tickets

$$
=100 /(0.0333 \times 100+667) \fallingdotseq 0.1 \fallingdotseq 1 \text { unit }
$$

[Number of ticket windows]

$$
\mathrm{N}=\frac{\mathrm{n} \times 1.5}{\text { Tickets sold per hour } \times \text { effective time }}
$$

N : required number of ticket windows
n : estimated total number of sold tickets $=100$
$=100 \times 1.5 /(200 \times 16) \fallingdotseq 1$ window
< Since three ticket windows already exist, these existing facilities are sufficient.
(2) Outer circle line
[Required number of automatic vending machines]
n : estimated total number of sold tickets $=$ daily number of boarding passengers (outer circle line 66,200) $\times 0.5$ (estimate here: purchase rate of tickets on the day) $\fallingdotseq 33,100$ tickets $\mathrm{N}=33,100 /(0.033 \times 33,100+667) \fallingdotseq 18.7 \fallingdotseq 19$ units
[Number of ticket windows]
n : estimated total number of sold tickets $=33,100$ $\mathrm{N}=33,100 \times 1.5 /(200 \times 16) \fallingdotseq 16$ windows
> Since only three ticket windows already exist, these existing facilities are insufficient.

Since the purchase rate of tickets on the day is 50% and the numbers of automatic ticket vending machines and ticket windows are high at 19 and 16 respectively, it will be necessary to take steps (utilization of season tickets and coupon tickets, etc.) to cut down on the sale of tickets on the day.

Improvement plan in this case
[Number of automatic ticket vending machines and ticket windows]
[Ticket windows] 8 shall be assumed.

$$
\mathrm{N}=\frac{\mathrm{n} \times 1.5}{\text { Tickets sold per hour } \times \text { effective time }}
$$

$$
\text { Therefore, } \begin{aligned}
\mathrm{n} & =\mathrm{N} \times \text { tickets sold per hour } \times \text { effective time } / 1.5 \\
& =8 \times 200 \times 16 / 1.5=17,100 \text { tickets }
\end{aligned}
$$

[Required number of automatic ticket vending machines]

$$
\begin{aligned}
& \mathrm{n}=33,100-17,100=16,000 \text { tickets } \\
& \mathrm{N}=16,000 /(0.0333 \times 16,000+667) \fallingdotseq 13.3 \fallingdotseq 14 \text { units }
\end{aligned}
$$

6) Calculation of width of free corridors, stairs and escalators
(1) Width shall be 1.5 m or more in order to avoid hindrance to the smooth flow of passengers.
(2) The basis for calculation of free corridor width shall be 1 m per 2,000 people/hour.
(3) The basis for calculation of the width of free corridor stairs, etc. shall be 1 m per 1,500 people/hour.
(4) Concerning corridors which contain a height difference, as a rule both upward and downward escalators shall be installed.

The future projection of boarding and alighting passengers is 17,100 people (per hour in rush hour), however, since ticket issue and inspection facilities are on 2 F and the free corridor is on 3 F , the number of people using the free corridor will be reduced due to users simply passing thpreliminary and passengers who take the wrong platform, etc. However, because the connecting corridor between NR/MCX Magallanes Station and the station plaza is only planned for construction on the north side of the existing station, it is thought that outer circle line users will use the free corridor for transit. Therefore, it is imagined that the number of station users passing thpreliminary will be 30% of the projected number of boarding and alighting passengers shown above.

Based on this, calculation of the width of the free corridor is carried out according to the number of front entrance users.

(1) Free corridor users

Free corridor users (per hour during rush) $=$ future boarding and alighting passengers (per hour during rush) \times use rate + number of people passing thpreliminary

$$
=17,100 \times 0.3+17,100 \times 0.1 \fallingdotseq 6,800
$$

(2) Calculation of free corridor width

Calculation of free corridor width $=$ users (per hour during rush) $/ 2,000$ people/H/m
$=6,800$ people $/ 2,000$ people $/ \mathrm{H} / \mathrm{m}=3.4 \mathrm{~m}$
$<$ The existing free corridor width of 5.0 m is sufficient.
(3) Installation of new escalators

The current station is equipped with elevators designed for wheelchair users, however, there are no escalators. Therefore, physically challenged persons shall use the elevators. Moreover, in order to promote future railway users, upward and downward escalators shall be installed between the pavement 1 F - ticket barriers and platforms 2 F - free corridor 3 F for both the inner circle and outer circle lines.

- Purpose of use, type, layout and number of escalators

Purpose of use : general use escalators
Type of escalators : 800 type, for 1 person, effective capacity 4,500 people/hour
Layout of escalators : parallel layout
Number of escalators : 1F-2F $\rightarrow 2$ units, 2F-3F $\rightarrow 2$ units, subtotal 4 units
Inner circle and outer circle line total: 8 units

- Capacity of escalators

The peak number of boarding passengers on the outer circle line at rush hour is 8,600 , however, when one considers that users are dispersed by the connecting corridor between NR/MCX Magallanes Station and its station plaza and the width of existing stairs is taken into account, escalators of the 800 type for use by one person (having a capacity of 4,500 people/hour) are considered to be sufficient.
7) Ticket windows and ticket barriers plan, and calculation of concourse area Concourse area (outside the inner compound) is calculated using the following expression by totaling the area in front of ticket windows and the flow area.

$$
\mathrm{A}=\mathrm{U}+\mathrm{T}
$$

A : required area
U : area in front of ticket windows
T : flow area
(1) Inner circle line
a) Area in front of ticket windows

Area in front of ticket windows is the space required for boarding and alighting passengers to purchase boarding tickets, etc. This is refuge area necessary for people waiting to purchase tickets.

- $\mathrm{U}=\mathrm{B}_{1} \times \mathrm{L}_{1}$
B_{1} : total width of ticket windows
L_{1} : depth in front of ticket windows (3 m is assumed as standard)
i) Case of automatic ticket vending machines

Fig. 8.1.27 Preliminary Plan of Automatic Ticket Vending Machines
B_{1} : required number of automatic ticket vending machines
$=1$ (from (5) 5) ticket issue facilities)
$\mathrm{B}_{1}=1 \times 0.5+(0.5+0.5)=1.5 \fallingdotseq 2.0 \mathrm{~m}$
$=2.0 \times 3.0=6.0 \mathrm{~m}^{2}$
ii) Case of ticket windows

Fig. 8.1.28 Preliminary Plan of Ticket Windows

$$
\begin{aligned}
\mathrm{B}_{1}: & \text { number of ticket windows } \\
& =1 \text { (from (5) 5) ticket issue facilities) } \\
& \mathrm{B}_{1}=1 \times 2.0=2.0 \mathrm{~m} \\
= & 2.0 \times 3.0=6.0 \mathrm{~m}^{2} \\
< & \text { Since there are three existing ticket windows and the depth } \\
& \text { before windows is } 3 \mathrm{~m} \text { or more, the existing facilities are } \\
& \text { sufficient. }
\end{aligned}
$$

b) Flow area

Flow area is the concourse area required for the flow of boarding and alighting passengers.

- $\mathrm{T}=\mathrm{B}_{2} \times \mathrm{L}_{2}$
B_{2} : flow width (however, minimum width shall be 4 m)
$\mathrm{B}_{2}=\left(\mathrm{L}_{3} \times \mathrm{N}\right)+\mathrm{B}_{3}$
L_{3} : unit width of ticket collection windows
N : calculated number of ticket collection windows
In case of automatic passage from the required number of ticket windows in (5) 4), 1 entry, 4 exit $=5$ total.
$\mathrm{L}_{3} \times \mathrm{N}=1.0 \mathrm{~m} \times 5$ units $=5.0 \mathrm{~m}$
B_{3} : flow width correction value 2 m
$=5.0 \mathrm{~m}+2 \mathrm{~m}=7.0 \mathrm{~m}>4.0 \mathrm{~m}$

Fig. 8.1.29 Preliminary Plan of Automatic Barrier (existing facilities dimensions)
L_{2} : depth in front of ticket collection windows L_{2} shall be 3 m as standard, and depth in front of ticket collection windows shall be $0.5 \mathrm{~B}_{2}$ or more.

$$
3 \mathrm{~m}<0.5 \mathrm{~B}_{2}=0.5 \times 7.0=3.5 \mathrm{~m}
$$

$=7.0 \mathrm{~m} \times 3.5 \mathrm{~m}=24.5 \mathrm{~m}^{2}$
< Since the depth in front of the existing automatic barrier is 5.7 m (greater than 3.5 m), the existing facilities are sufficient.
(2) Outer circle line
a) Area in front of ticket windows

Area in front of ticket windows is the space required for boarding and alighting passengers to purchase boarding tickets, etc. This is refuge area necessary for people waiting to purchase tickets.

- $\mathrm{U}=\mathrm{B}_{1} \times \mathrm{L}_{1}$
B_{1} : total width of ticket windows
L_{1} : depth in front of ticket windows (3 m is assumed as standard)
i) Case of automatic ticket vending machines

Fig. 8.1.30 Preliminary Plan of Automatic Ticket Vending Machines
B_{1} : required number of automatic ticket vending machines
$=14$ (from (5) 5) ticket issue facilities)
$\mathrm{B}_{1}=14 \times 0.5+(14-1) \times 0.4+(0.5+0.5)=13.2 \fallingdotseq 14.0 \mathrm{~m}$
$=14.0 \times 3.0=42.0 \mathrm{~m}^{2}$
ii) Case of ticket windows

Fig. 8.1.31 Preliminary Plan of Ticket Windows
B_{1} : number of ticket windows
$=8$ (from (5) 5) ticket issue facilities)
$\mathrm{B}_{1}=8 \times 2.0=16.0 \mathrm{~m}$
$=16.0 \times 3.0=48.0 \mathrm{~m}^{2}$
< Since there are only three existing ticket windows, improvement of facilities is necessary. As for the depth before windows, 3 m shall be secured.
b) Flow area

Flow area is the concourse area required for the flow of boarding and alighting passengers.

- $\mathrm{T}=\mathrm{B}_{2} \times \mathrm{L}_{2}$
B_{2} : flow width (however, minimum width shall be 4 m)
$\mathrm{B}_{2}=\left(\mathrm{L}_{3} \times \mathrm{N}\right)+\mathrm{B}_{3}$
L_{3} : unit width of ticket collection windows
N : calculated number of ticket collection windows
In case of automatic passage from the required number of ticket windows in (5) 4), 4 entry, 1 exit $=5$ total.
$\mathrm{L}_{3} \times \mathrm{N}=1.0 \mathrm{~m} \times 5$ units $=5.0 \mathrm{~m}$
B_{3} : flow width correction value 2 m
$=5.0 \mathrm{~m} \times 2 \mathrm{~m}=7.0 \mathrm{~m}$

Fig. 8.1.32 Preliminary Plan of Automatic Barrier (existing facilities dimensions)
L_{2} : depth in front of ticket collection windows L_{2} shall be 3 m as standard, and depth in front of ticket collection windows shall be $0.5 \mathrm{~B}_{2}$ or more.
$3 \mathrm{~m}<0.5 \mathrm{~B}_{2}=0.5 \times 7.0=3.5 \mathrm{~m}$
$=7.0 \mathrm{~m} \times 3.5 \mathrm{~m}=24.5 \mathrm{~m}^{2}$
< Since the depth in front of the existing automatic barrier is 5.7 (greater than 3.5), the existing facilities are sufficient.
$>$ Two automatic barriers shall be added.
8) Sign system

At Magallanes Station, since ticket issue facilities and barriers are on 2F and the free corridor is on 3F, people who take the wrong platform use the free corridor on 3 F . Therefore, in order to reduce the number of people who take the wrong platform, signs and guiding information shall be provided on the 1 F pavement to enable station users to distinguish between the inner circle and outer circle lines.
(Notes)
This examination of station facilities is based on the outline manual of station planning, and dimensions of facilities are calculated from generally adopted figures in Japan.

Moreover, since station drawings could not be obtained, the improvement plan here is limited to a preliminary examination.

Outline of Existing Facilities at Magallanes (Line 3) Station

Free corridor: height above ground approximately 15.3 m (0.9 steps), width 5.0 m
-Plat form ends: edge tile width 45 cm \square : plat form pillars $35 \times 35 \mathrm{~cm}$

- Plat form (2F): height above ground

 $\stackrel{5.5 \mathrm{~m}}{\longleftrightarrow}$

(1)~(3) : Ticket windows
(4): Ticket window (future)
(5): Women's toilets
(6): Men's toilets (2 urinals, 1 seat) Door width 80 , height difference 3.5 cm
(7): Disabled persons' toilets
(8): Automatic ticket vending machines (width 87, depth 70, height 170 cm)
Also, two public telephones

Preliminary plan of automatic barrier

Fig. 8.1.33 Outline of Existing Facilities at Magallanes Station

8.2 Materials of Economic and Financial Analysis

Financial Analysis for Deyelonent of Honument Station and the Station Plata (Unit:1000 Peso)

Operating Profit	2001 0	$\begin{array}{r}2002 \\ 0 \\ \hline\end{array}$	2003	2004 0	2005 0	$\begin{array}{r} 2006 \\ 30.551 \\ \hline \end{array}$	$\begin{array}{r} 2007 \\ 33.831 \\ \hline \end{array}$	$\begin{array}{r} 2008 \\ 41.375 \end{array}$	$\begin{array}{r} 2009 \\ 4 T .197 \end{array}$	2010 53.311			2013 73.546	2014 80.976	$\begin{array}{r}2015 \\ 88.778 \\ \hline\end{array}$
	0	0	8	$\stackrel{0}{0}$											
Operating Revenuc	0	0	0	0	0	105.615	110.895	116,439	122.261	128,375	134,793	161.533	148, 610	136.040	163.842
gaeratiog Expense	0	0	0	0	0	75.064	75.064	73,064	75,064	73. 064	75, 064	T5, 064	75, 954	75.064	75.064
Hajntenance Cost	0	0	6	0				35, 193	33,195	33. 195	33, 193	33.195	33.193	33, 195	
deareciation cost	0	0	0	0	0	41.869	11,869	41,869	11,869	41.869	41. 869	11,869	11.869	41, 369	41,869
Inveschent IStation).															
Investemt Tolal	33. 330	22.220	23.227	530,280	0	0	0	0	0	0	0	0	534	58.947	0
Losal Curreicy lotal	19.9988	${ }^{13} 3132$	${ }^{19,058}$	8	0	0		0	\bigcirc	0	8	0	481	0	0
foreign curremy rotal	13. 332	8,888	6. 169	530.280	0	0	0	0	0	0	0	0	53	58,947	0
Building	0	0	24.312	0	0	0	0	0	0	0		0	0	0	0
nocal currency	9	O	18.231	6	0	0	0	\%	\%	0	0	0	0	0	0
Foreign Currency	0	0	6.078	O	0	0	0	0	0	0	0	0	0	0	0
Iruck	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Local coirency	0	0	0	0	8	0	0	0	0	0	0	0	0	0	0
Foreign curremy	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Platiorl	0	0	381	0	0	0	0	0	0	0	0	0	0	0	0
tocal curtency	0	0	343	0	${ }_{0}^{6}$	0	0	0	0	8	8	0	0	0	0
foreign Currency	0	0	36	0	0	0	0	0	0	0	0	0	0	0	0
Elevator	0	0	0	368.121	0	0	0	0	0	0	0	0	0	0	
Local ciurency	0	0	-	¢	d	0	6	0	0	0	0	0	3	0	σ
Foseign currency	0	0	0	368, 421	0	0	-	0	0	0	0	0	0	0	0
Escalator		0	0.	88.000	0	8	0	0	0	0	0	0		0	0
Local Cufreticy	8	?	0		0	8	0	8	0	0	\bigcirc	8	0	0	6
						0	0	0	0	0		0	0	0	0
Ficker Yendimg Kachine	0	0	0	58.94]	0	0	0	0	0	0	0	0	0	58,947	
local currenty	0	0	8		0	0	0	0	0	0	0	0	0		0
foreign Curfency	0	0	0	58.947	0	-	0	0	0	0	0	0	0	38.947	
dutomatic Gate fare Hachine	0	0	0	14.912	0.	,	0	0	0	0	0	0	0	0	
${ }_{\text {local }}^{\text {coureign curcency }}$	0	0	0		${ }_{0}^{1}$	0	0	0_{0}^{0}	8	0	0	0	${ }_{0}$	9	0
Sthelter	0	0	534	0	0	0	0	0	0	0	0	0	534.	0	
Local Curremy	0	0	481	8	0	0	\bigcirc	0	0	8	0	0	481	0	0
Foreign Currency	0	0	53	0	0	0	0	0	0	0	0	0	53	0	0
Luginering 8 consulting	33, 330	22, 220.	0	0	0	0	0	0	0		0	0		0	
fosat ciurrency	19,9988	13.332 8.888	0	0	0	0	o	9	0	0	0	0	8	8	8

-Salvage value

Lnyetentenslation Plaza)						0	0	0	0	0	0	0	0	7,738	360
Inyestrent lotal	37,685	369.523	21, 800	87,626	80.248										
Local Curfency	19,011	35.674	21.800	54.897	47.969	0	0	0	0	0	0	0	0	6,964	36
Voreign Cusrency	12.644	8.449	-	32,729	32.279	0	0	0	0	0	0	0	0	774	324
Land	0	338. 100	0	0	0	0	0	0	0	0	0	0	0	0	0
local Curremy	0	358.400	0	0	0	4	0	0	0	0	0	0	0	0	0
foreign cureney	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pedestrian beck	0	0	0	79.858	79.888	0	0	0	0		0	0	0	0	0
hocal Curcency	0	0	0	47.933	47.933	0	0	0	0	0	0	0	0	0	9
Foreign Currency	0	0	0	31.955	31.955	0	0	0	0	0	0	0	0	0	0
Snvironiental lone	0	0	0	7.290	0	0	0	0	0	0	0	0	0	7.290	0
Local currency	8	0	0	6,567	0	0	0	0	0	0	\bigcirc	0	0	6. 561	0
Foreign Curfency	0	0	0	729	-	0	0	0	0	0	0	0	0	729	,
Sheiter	0	0	0	418	0	0	0	0	0	0	0	0	0	448	0
Local Curremey	0	0	0	703	0	0		0	0	0	\bigcirc	0	0	403	6
toreign currency	0	0	0	45	0	0	0	0	0	0	0	0	0	13	0
Light	0	0	0	0	360	0	0	0	0	0	0	0	0	0	360
Local curcency	0	\%	0	0	36	0	0	0	,	0	0	0	0	+	36
Foreion curreacy	0	0	0	0	324	0	0	0	0	0	,	0	0	0	324
Access Road	0	0	15.000	0	0	0	0	0	0	0	0	0	0	0	
Local Currency	0	0	13,060	0	9	0	0	0	(1)	0	0	0	0	0	0
Foreign Currency	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Pavement	0	0	6,800	0	0	0	0	0	0	0	0	0	0	0	
Local carrency	0	0	6.800	0	0	0	0	0	0	0	0	1	0	8	0
Foreigh currency	0	0	-	0	0	0	0	0	0	0	0	0	0	0	
Lnginering and Consulting	31.685	21.123	0	0	0.	0	0	0	0	0	0	0	0	0	0
[OCa 1 Eutremey	19.011	12.614	6	0	0	0	0	0	0	0	0	0	0	0	0
Foreign Currency	12,674	8.449	0	0	0%	0	0	0	0	0	0	0	0	0	0

-Salyage Value

ance Prodras	0									360	0	0	0	0	0
tinance															
Borrowing		0	0	471,333	-	0	0	59,481	7.738						
Repayment	72.379	72. 119	72.999	73,002	73. 002	22.278	22.278	22.278	22.280	24. 270	24.281	24,321	24.902	24.865	39,995
Balance	898.458	825.039	733.040	1,151,376	1,078,368	1.036.090	1.033 .812	1.071 .015	1.036.473	1.032.563	1.008, 282	983.960	949.059	934.994	894.199
Interest	16.263	38,438	30,606	27,401	19.483	11.564	11.254	. 11.606	12.348	12.047	11,717	11,387	11,631	10.62\%	10.210
Hee cash flow	20, 398	36,585	32.867	63.353	83, 429	152.521	163.816	174.990	136.360	184.666	184.985	183, 275	185.031	185. 191	133.913
Cumbalive ket Cashin dow	-160. 186	-123.560	-70,693	-3.100	18,289	230,816	394,632	569.622	755.972	940,638	1. 725.623	,310,398	. 19.929	, 681.120	2.135.333
Cash flow Statement															
Cashtin	138.840	147,442	136.473	637.290	175,911	186. 369	197, 347	268,353	228.756	221.343	220.983	220.983	220.983	220.983	220.983
doeratimp Proftit	96.970	105.572	114.603	124,087	134.045	144,300	155.178	167.065	179.108	179,114	179.17	119.114	179.174	179.114	179.171
bedrcciation	11.869	11.869	41.859	41.869	11.869	11.869	11.869	11.869	41.869	11,869	11.869	41,869	11.869	11.869	11.869
Borrowing	0	0	0	171, 33,3	0	0	0	59,481	7.735	360	0	0	0	$1{ }^{1}$	+ 0
Cash Qut	118.642	130.837	103.606	571.737	92.485	33.842	33, 532	93, 365	12. 366	36.677	33.998	35. 708	35, 952	33. 492	-232,930
nuestment	0	\bigcirc	0	171,333	0	0	0	59.481	7.138	368	0	0	${ }_{0}$	${ }^{3}$	-283,135
Int. During construction	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Repayment	72.379	72.479	72.999	73.002	73.602	22.278	22.278	22,278	22.280	24.270	24.281	24.321	24,902	24.865	39.995
1 nterest	46.263	38.438	30.606	27.19:	19.483	11,364	11,254	11,606	12.348	12.047	11.711	11.387	11.051	10.628	10,210
Financiat Anatys is for deyeloo															
Cash How lor DER	138,810	147,412	136.473	-305, 376	173.914	186.369	197.341	149.393	213,210	220,623	220.983	220.983	220,983	220. 983	301,118

Operalitit Prorit	2001	2002 0	$\begin{array}{r}2003 \\ \hline\end{array}$	2004 0	2003	2006 101.335	2007 108.179	2008 115,237	2009 122.863	2010 130.739	2011 1.385.493	2012 187.739	2013 166.900	2014 166.300	$\begin{array}{r}2015 \\ 176,380 \\ \hline\end{array}$
operatimg Revenue	0	0	0	0	0	136.438	143.261	130.339	157,943	165.842	1.420.575	182.842	191,983	201.382	211, 662
poprating expense	0	0	8	0	0	35, 082	33.082	33,082	3) 3.082	35.082	35.082	33.082	33, 082	35.082	35,082
Hamieramce cosi Deprecialion Cost	0	0	0	0	0	15.429 19.65	13.129 19.63	15.429	15.429 19.63	15.129 19.63	$\begin{aligned} & \begin{array}{l} 15.149 \\ 19.653 \end{array} \end{aligned}$	$\begin{aligned} & 15.459 \\ & \hline 19.429 \\ & \hline 196 \end{aligned}$	15,429 19.64.	$\begin{aligned} & 15.429 \\ & \hline 19.429 \end{aligned}$	
lnvestient (Station)															
neycsiment loral	14.230	9,300	24, 7172	212.211	0	0	0	0	0	0	0	0	0	89.303	28
cotal curremey lotal loreign Currecty lotal	8.550 5.700	3. 3.800	18.618 6.124	211,611	\%	0	0	0	0	0	0	0	\%	9.6536 79,667	$2{ }^{3}$
Building	0	0	24.312	0	0	0	0	0	0	0	0	0	0	0	0
Local curfency foreign currency	8	${ }_{0}^{\circ}$	18.234 6.078	0	0	0	0	0	0	0	8	${ }_{0}^{0}$	\%	\%	0
Iruck	0	0	0	12.000	0	0	0	0	0	0	0	0	0	0	0
Local currency	8	0	0	11.100	0	\%	0	\bigcirc	0	0	0	0	\bigcirc	0	0
lofeigh curremy	0	0	0	11,100	0	0	0	0	0	0	0	0	0	0	0
Platione	0	0	460	0	0	0	8	0	0	0	0	a	0	0	0
l.ocai Curreftey Ioreign Currency	8	0	414	0	0	0	0	0	0	0	0	0	0	8	0
Iferator	0	0	0	26,3i6	0	0	0	0	0	0	0	0	0	0	0
Local currency	0	0	0	${ }^{6}$	O	0	8	8	8	0	6	0	6	8	0
Foreign currency	0	0	0	26,316	0	0	0	0	0	0	0	0	0	0	-
Ltcalatof	0	0	0	76,000	0	0	0	0	0	0	O	0	0	0	0
Local currency	8	8	8		0	0	0	0	0	0	0	0	0	0	0
roreign Curremey	0	0	0	76,000	0	0	0	0	0	0	0	0	0	0	0
Iickel Yepdibg Hachine	0	0	0	78.597	8	0	0	0	0	0	0	0	0	78,597	0
Local currency	0	8	8			0	0	0	8	0	0	0	0	\%	0
Jareign Currency	0	0	0	78, 397	0	0	0	0	0	0	0	0	0	78.397	0
Aulomatic Gale iare Hachine	0	0	0	19.298	0	0	0	0	0	0	0	0	0	0	0
local currency	0	8	8		0	0	0	6	\bigcirc	0	0	0	8	-	6
foteign Currency	0	0	0	19,298	0	0	0	0	0	0	0	0	$\therefore 0$	0	0
Lngimering t Consult ing	14,250	9,500	a	0	0	0	0	0	0	0	0	0	0	0	0
(DCa) Guiriency	8.550	3, 600	0	0	0	6	0	0	6	0	0	8	8	0	0
roreign currency	5,700	3.800	0	0	0	0	0	0	0	0	0	0	0	0	0
-Salrage Yalue															
InvestemitStation Plaza)															
divestrent iotal	13.216	91. 160	31.020	58,639	17.96i										
local currency	T. ${ }^{\text {9360 }}$	81.936	31.020	38.396	${ }^{28,763}$										
foreign Currency	5.286	3,524	0	20.243	19,988										
	0	82.650	0	0	0.	0	0	0	0	0	0	0		0	
torat curremk	d	82,650	8	0	0	${ }^{6}$	0	6	6	0	0	0	0	\bigcirc	0
foreign Currency	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-
Pedestrian deck	0	0	0	17.933	47.933	0	0	0	0	0	0	0	0	0	0
iocal curremey	O	0	0	28.68	28.	0	0	0	0	0	0	0	0	0	$\%$
roreign Curremey	0	0	0	19.173	19.173	0	0	0	0	0	0	0	0	0	0
Environmental Zone	0	,	0	10.062	0	0	0	0	O	0.	0	0	0		
Local carrency	0	0	0	9.056	8	9	0	0	$\frac{1}{6}$	8	0	0	0	9.0356	0
Foreign currency	0	0	0	1,006	0	0	0	0	0	0	0	0	0	1.006	a
Shelter	0		0	644	0		0	0			0	0	0	. .644	0
local carrency	0	0	0	580	O	0	0]	6	0	0	0	0		0
「oreign Curremey	0	0	0	64	0	0	0	0	0	0	0	0	0	64	0
$\frac{\text { Light }}{\text { Local }}$	0	0	0	4	28	0	0	0	0	0	0	0	0	0	
Loeal courency	8	0	0	5	${ }^{3}$	0	8	0	0	8	${ }^{6}$	6	0	8	3
roreigh curfency	0	0	0	0	23	0	-	0	0	0	0	0	0	0	25
Access \% Koad	0	0	25,080		0	0	0			0	0	0	0	0	0
Local Currency	6	0	21.080	0	6	0	\bigcirc	0	0	0		0	0	0	0
foreion currency	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
$\frac{\text { Pavenent }}{\text { Dical }}$	0	0	9.940	0	0	0	0	0	0	0	0	0	0	0	
local carrency	8	0	9,946	0		0	0	0	0	0	6	0	0	0	0
fereign Currency	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Lngimering and Consult ing	13,216	8,810						0		0	0	0	0	0	0
Local currency	1.930	5. 288	8	0	0	0	8	0	0	0	0	9	6	O	0
foreign currency	3.286	3.324	0	0	0	0	0	0	0	0	0	0	0	0	0
-Salyage Yalue															
Pinamee Progran															
Borrowing	29, 102	114.410	80, 399	307.120	94.815		0	0		${ }^{\circ}$	0	20	0	89.303	28
Repayment				0		0	0	0	28.788	28.788	28,788	28,788	28.788	28,788	28,788
Balance	29.402	43.812	224.211	531, 331	626.146	626,146	626.146	626, 146	597.338	568, 569	\$39,781	310,992	482.204	542,119	513.938
	t. 233	13.450	24,607	36.270	16.834	54,626	54.626	54,626	44.626	50.308	45.989	41,671	37.333	35.277	30.959
Net Cash flay	b	0	0	0	0	66.383	73.206	80.284	59.102	71.317	330.368	96,953	110.413	122.088	
Cunulative net Cash low	0	0	0	0	0	66.383	139.589	289,84	278,976	350,292 ¢	656, 661	. 771.614	.888, 077	010,115	146,601
Cash flow Statement															
Cash in	29,402	114, 110	80.399	307.120	94.813	121,009	127.832	134.910	142.516	150.113	, 405.145	167, 113	176.554	27. 4.57	196.261
Operatimg profit	0	-		g		101.356	108.179	115,237	122.863	130.759	. 381.483	347.759	136. 980	166, 506	16, 17,1886
pepreciation						19,653	19.653	19.643	19.633	19,653	19,663	19,653	19.633	69,653	19,653
Borrowing	29. 402	114.110	80.399	307.120	94.815		0	-	-	-	-	0	0	89,303	28
Cash cut	29.402	114,410	80, 399	307.120	94.815	54,626	54.626	34.626	83.414	79.095	74,778	70.860	66. 141	153.368	39.776
nnestremt	${ }^{27.466}$	1069.960 13.450	35, 34.928	${ }^{270.850} 3$	77, 16.861		0	0			8	0	9	${ }^{89.303}$	28
min. During construction	1.936	13,450	24.607	36.278	16,834	0	0	0	0	0	0	0	0		0
Repayment	-			0			0	0	28.788	28,788	28,788	28.788	28.788	28,788	28.788
Interest						54.626	54,626	34,626	54.626	50,308	45,989	41,671	37.363	35,277	30,959
Cash Flow for fire	-27.466	-100.960	-55,792	-270.850	-47.961	121,009	127.832	134,970	142,316	150,4131.	. 405.146	167.43	176. 354	96,841	196, 205
FIRR 28.64\%															

