APPENDIX 6

MATERIALS RELATED TO "CHAPTER 5 THROUGH OPERATION POLICY"

6.1 Current Problems of through Operation between Different Railway Lines

6.1.1 Rail, Civil Engineering

Current Conditions of Railway Companies Operating in the Manila Metropolitan Area
 With respect to rail and civil engineering are as shown in Appendix 3, Table 3.1.4, 3.1.5, and 3.1.6.

As major characteristics of these railway companies, they use gauge (railway width) of 1,435 mm for LRT Line 1 and 3, overhead wire for electric trains, and train voltage is DC 750V. Furthermore, comparatively light body is used for the vehicles. MRT Line 2 is under construction for use on 1,435 mm gauge. It uses overhead wire in the same way as Line 1 and 3, but it uses train voltage of DC 1,500V, and the vehicle it uses is comparatively heavy. Lastly, PNR line features gauge of 1,067 mm, and non-electric trains are running.

Thus, railway companies operating in Manila metropolitan area can be grouped into three groups, Line 1 and 3, Line 2 and PNR line.

(2) Civil Engineering and Track Problems When Implementing Through Operation

The major items to be examined in terms of civil engineering and track when carrying out mutual through operation are as follows.

1) Items concerning structural dimensions (tunnel inside width, bridge flanges, etc.)

Unless car dimensions (width, length, height, axle arrangement (distance between bogy centers)) and jolting during running are held to set limits, rolling stock and structures will come into contact thus making it impossible to conduct mutual through operation. Moreover, running by rolling stock which is too small is not a problem between stations, however, since the gap between cars and platform edges increases and hinders the boarding and alighting of passengers, some sort of countermeasures are necessary. In reality, it is preferable to adopt the same dimensions on all rolling stock used in mutual through operation.

2) Items Related to Strength of Structures (Bridges, etc.)

The items in question are axle load and axle arrangement. Taking the stress generated when the axle load and arrangement of rolling stock to be used in mutual through operation are placed on a bridge, and comparing this with the allowable stress of the bridge in question, it is necessary to confirm running safety.

(3) Examination on Mutual Entry in Each Line

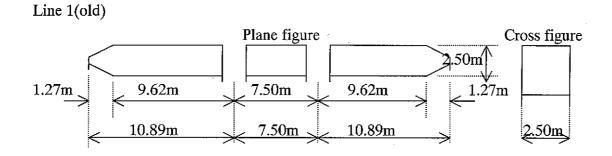
In Japan, through implementing mutual entry between different railway companies, good results have been obtained in increasing passengers, and easing congestion during rush hours. The following are results of examinations on railway and civil engineering in the case of mutual entry on the premises of current conditions of vehicles of railway companies operating in the Manila metropolitan area.

1) Vehicles

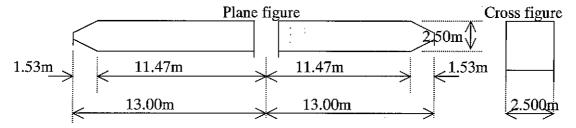
Fig. 6.1.1 show the form of vehicles and vehicle gauge to be used in the subsequent examinations.

According to this, width of the body and body gauge of vehicles operating in respective service sections are as follows.

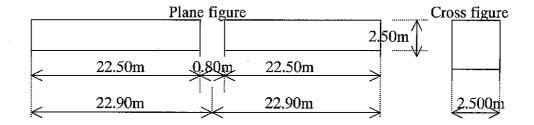
- Line 1 : Body width : 2.50 m
 Body gauge basic width : 2.860 m (including body jolt) (same as Line
 3)
- 2 Line 2 : Body width : 3.20 m
 Body gauge basic width : 3.478 m (including body jolt)


③ Line 3 : Body width : 2.50 mBody gauge basic width : 2.860 m (including body jolt)

According to materials obtained from PNR, body gauge basic width of PNR vehicles is 3.15 m.


2) Examinations on Center to Center Distance of the Adjacent Tracks

Since vehicles of PNR are the same as ordinary vehicles in Japan, expanded construction gauge was calculated as follows by using the equation of East Japan Railway Co.


 $2 \times W = 2 \times (23,100 \div R) \div 1,000$, whereby W is an expanded construction gauge per one side of the rail (23,100 ÷ R), Unit : mm

Line 1(new)

Line 2

Line 3

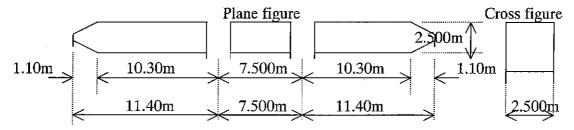
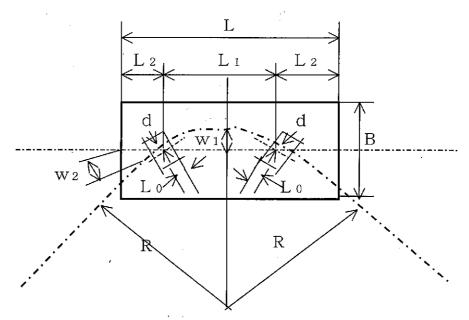
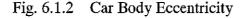




Fig. 6.1.1 Car Body Shape for the Calculation of Car Body Eccentricity

R : Curve radius, Unit : m

- R : Curve radius
- d : Bogie center eccentricity
- w₁: Body inside eccentricity
- w₂: Body outside eccentricity
- B : Body width
- L0 : Rigid wheel base
- L : Body length
- L_1 : Bogie center-to-center distance
- L₂ : Body width-bogie center-to-center distance

Calculation example 1 : Necessary track center distance at curve with minimum radius on Line 1

 $2 \times W = 2 \times (2 \ 3, \ 1 \ 0 \ 0 \div R) \div 1, \ 0 \ 0 \ 0 \\ = 2 \times (2 \ 3, \ 1 \ 0 \ 0 \div 1 \ 7 \ 0) \div 1, \ 0 \ 0 \ 0 \\ = 0. \ 2 \ 7 \ m \\ 3. \ 2 \ 0 \ m \\ (track center distance (basic width of (2W)) \\ of Line 1) \\ = 0. \ 0 \ 5 \ m - 0. \ 2 \ 7 \ m \\ = -0. \ 2 \ 2 \ m \\ = -0. \ 2 \ 2 \ m \\ = -0. \ 2 \ 2 \ m$

Calculation example 2 : Necessary track center distance at curve wit minimum radius Line 2

 $2 \times W = 2 \times (2 \ 3, \ 1 \ 0 \ 0 \div R) \div 1, \ 0 \ 0 \ 0$ = 2 × (2 3, 1 0 0 ÷ 1 7 5) ÷ 1, 0 0 0 = 0. 2 6 m 4. 4 0 m - 3. 1 5 m - 0. 2 6 m (track center distance (basic width of (2W) of Line 2) rolling stock gauge) = 1. 2 5 m - 0. 2 6 m = 0. 9 9 m

Calculation example 3 : Necessary track center distance at wire with minimum radius of Line 3

 $2 \times W = 2 \times (2 \ 3, \ 1 \ 0 \ 0 \div R) \div 1, \ 0 \ 0 \ 0 \\ = 2 \times (2 \ 3, \ 1 \ 0 \ 0 \div 3 \ 7 \ 0) \div 1, \ 0 \ 0 \ 0 \\ = 0. \ 1 \ 2 \ m \\ 3. \ 4 \ 0 \ m \\ (track center distance (basic width of (2W)) \\ of Line 3) \\ = 0. \ 2 \ 5 \ m - 0. \ 1 \ 2 \ m \\ = 0. \ 1 \ 3 \ m \\ = 0. \ 1 \ 3 \ m$

From the above, it may be said as follows on 'center to center distance of the adjacent tracks'.

- ① Vehicles of Line 1 and 3 can enter each railway. (on condition that 'center to center distance of the adjacent tracks' of PNR line is not changed and gauge is kept at 1, 435 mm.)
- ② Vehicles of Line 2 cannot enter the railway of Line 1 and 3 even in the through operation section because of shortage of 'center to center distance'. It can enter PNR line (on condition that there is no change in 'center to center distance of the adjacent tracks' of PNR line, and the gauge is kept at 1.435 m).

- ③ The vehicles of PNR can enter the main line of Line 1 and 3 (providing PNR does not change 'center to center distance of the adjacent tracks' and the gauge length is kept at 1,435 m).
- 3) Examination on Construction Gauge and Structure Width

According to the construction gauge of PNR line, separation from the track center is 1.65 m, and 4.42 m in height from the surface of the rail. With respect to vehicle body gauge (including body jolt), deflection from the track center at the height of 0.4 m (height of duct along Line 1) is 1.364 m, deflection from the track center at the height of 0.55 (digit flange of Line 2) is 1.412 m, and deflection from the track center at 0.7 m(platform of Line 1) from the rail surface is 1.454 m, and deflection from the track center at the height of 0.9 m (platform of Line 3) is 1.515 m.

From the above examinations, the following may be said with respect to construction gauge and structure width.

- Vehicles of Line 1 and 3 can enter railways of each company. But on Line 2, because of a big gap between the edge of the platform and the train, passengers may have difficulty when getting on and off the train.
 Concerning PNR line, construction gauge height of PNR is not sufficient when collection method by overhead wire is adopted (on condition that 'center to center distance of the adjacent tracks' is not changed by PNR, and the gauge is kept at 1.435 m).
- ② The vehicles of Line 2 cannot enter any railway of other service sections because track center of the vehicle comes into contact with the platform of Line 1 or 3, and marginal basic width of the body infringes the construction gauge of PNR.

Same as the case of Line 1 and 3, construction gauge height of PNR line is not enough when overhead wire is used for collection purpose (on condition that 'center to center distance of the adjacent tracks' is not changed by PNR, and the gauge is kept at 1.435 m).

③ The vehicles of PNR cannot enter other service sections because the body gauge of the vehicle contacts with the platform of Line 1 or 3. With respect to entry into Line2, when eccentric body deflection (W = 23, 100/R) is taken into consideration, the vehicle comes into contact with the flange of Line 2 at a

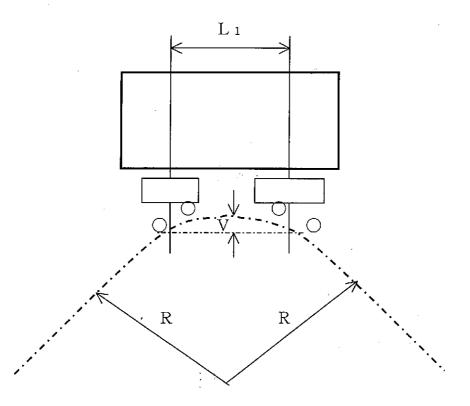
curve less than 607.89 m of curved radius. (on condition that 'center to center distance of the adjacent tracks' is not changed, and the gauge is kept at 1.435).

- 4) Examination on Longitudinal Curved Radius
 - ① Floating of vehicle body

Floating of the body can be examined by the following equation.

 $\alpha = 1/\text{Rg x (V/3.6)}^2$

- α : Vertical acceleration (gravity unit)
- R : Longitudinal curved radius (m)
- g : Gravitational acceleration (9.8 m/sec^2)
- V : Velocity (km/h)


Tolerance of α is said to be in the order of 0.1. By substituting "V=100 km/h" and $\alpha = 0.1$ in the above equation, R = 787m is obtained. Vertical curved radius of main line of each service section is as shown in Table 3.3.1 (tentative), and the minimum vertical curved radius is 1,000 m. The maximum speed in each section is less than 100 km/h, so there is no problem of floating body in each section.

② Construction gauge at the bottom of the body

The distance of the rail and the bottom of the body on the vertical curve where the distance becomes narrow can be expressed by the following equation.

 $V = (L_1)^2 \div (8R)$ (Refer to Fig. 6.3.)

Suppose $L_1 = 15.8 \text{ m}$ (center to center distance of cart of Line 2) and R = 1,000 m, $V = (15.8)^2 \div (8 \text{ x } 1.000) \rightleftharpoons 31 \text{ mm}$. According to construction gauge of the vehicle of Line 2, the distance between the bottom of the vehicle bottom and the rail is 75 mm, basically bottom gauge on Line 2 is not infringed.

- R : Longitudinal curve radius
- L_1 : Bogie center-to-center distance
- V : Difference in rail height in center between bogie center and bogie center

Fig.6.1.3 Difference in Rail Height According to Longitudinal Curve

5) Examinations on Load

Table6.1.1 shows maximum shearing power and maximum bending moment generated on a single beam when weight of vehicle (weight of the shaft only without taking into consideration of the beam itself, impact load, etc. E-16 is under the assumption of PNR) span by span. (Refer to attached material No.20 and No.21 for axis arrangement). According to this table, influence by Line 3 is the smallest both in shearing strength and bending moment, while influence of PNR vehicle is the largest.

Consequently, in respect to entry into other service section, the vehicles of Line 3 has the smallest problem, while the entry of the vehicle of Line 2 or PNR into Line 1 or Line 3 seems considerably difficult.

(4) Results of Examination

From the results of examinations of 6.1.1 concerning the rail and civil engineering, the following may be said about mutual entry of trains of railway companies, on the

premises of the existing vehicles, rails, and civil engineering facilities of the Manila metropolitan area.

- 1) It seems it is possible for the vehicles of Line 1 and 3 enter into other railways in the metropolitan area.
- 2) It seems that entry of the vehicles of Line 3 into Line 1 is easiest, subject to the condition that detailed examinations be made in Philippines on width of the structure, proof stress of the bridges, etc.
- 3) Concerning entry of the vehicles into Line 3, providing that detailed examination on width of structure as well as measures for reinforcing strength of the bridges are possible in Philippines, and that such reinforcement can be made locally, entry may by possible, although it may be difficult.
- 4) Entry of the vehicles of Line 1 and 3 into Line 2 is considered possible, providing some additional facilities (vehicles or platform) to help passengers get on or off the platform be arranged.
- 5) Entry of the vehicles of Line 2 or PNR to the other service sections is considered impossible.

Table 6.1.1Maximum Bending Moment and Shearing Force of Simple Girder by Load

···· ···,

)	Span(m)	Item	LINE-1(old)	LINE-1(new)	LINE-2	LINE-3	E-10
		Smax(tf)	15.97	16.17	25.70	13.71	28.52
5.000	4.300	Mmax(tfn)	13.58	13.14	20.88	11.48	22.27
		e(m)	0.450	0.525	0.525	0.475	0.099
		Smax(tf)	21.83	23.01	33.82	17.51	40.59
10.000	9,300	Mmax(tfm)	38.32	40.37	62.21	32.99	83,45
		e(m)	0.450	0,383	0.525	0.475	0.099
		Smax(tf)	28.06	29.65	45.17	23.38	54.45
15.000	14.000	Mmax(tfm)	11.47	83.95	122.11	62.13	164.84
		e(m)	1.214	1.100	1.300	1.401	0.08
		Smax(tf)	35.24	34.75	. 51.18	29.32	67.71
20.000	19.000	Minax(tfm)	135.17	136.48	204.95	111.07	288.72
		e(m)	0.325	1.100	1.300	0.475	0.18
	-	Smax(tf)	42.57	41.08	56.62	34.98	83.3
25.000	24.200	Mmax(tfin)	213.88	203.88	292.05	179.57	442.44
		e(m)	0.325	1.108	1.300	0.475	0.508
		Smax(U)	49.12	46.25	64.42	40.99	98,31
30,000	29.200	Minax(1fm)	307.01	283.58	3,0,54	264.06	033.0
		e(m)	1.425	1.109	1.302	1.402	0.363
		Smax(tf)	62.22	59.10	81.79	51.87	125.7
40.000	39.200	Mmax(tfm)	534,15	488.42	618.12	449.11	1128.88
		e(m)	0.375	1.098	1.735	0.370	.0.955
		Smax(tf)	75.18	70.48	95.12	62.74	150.71
50.000	48.700	Minax(tfin)	807.87	727.69	941.73	678.58	1698.22
		e(m)	0.478	1.224	1.551	1.572	0.27
-		Smax(tf)	88.78	82.05	111.73	74.30	176.1
60.000	58.700	Mmax(tfm)	1162.79	1055.56	1389.67	981.99	2386,06
		e(m)	0.088	1.028	1.300	0.736	0.208

Smax : Maximum shering force Mmax : Absolute maximum bending moment

 \mathbf{e} : Position of the absolute maximum bending moment (distance from the span center) $^{+}$

.....

(5) Civil Engineering and Track Problems in Railway Sections in Metro Manila

Railways in Metro Manila have been rationally constructed according to purpose and necessity, etc. on each line section, and there is thought to be no room for complaint concerning separate plans in the areas of civil engineering and track (track structure, design load, etc.).

As an example, maximum train speeds and track structure on PNR and urban railways are as indicated in Table 1, and when the contents of this are compared with Table 2 (Notification establishing detailed engineering criteria concerning ordinary railway facilities in Japan - taken from Ministry of Transport Notification No. 177, March 23, 1987), it can be said that adequate safety is secured on both lines. Also, concerning detailed design of civil engineering structures, this should be in accordance with the rolling stock considered to be most appropriate for use on the sections in question. Moreover, trains carrying passengers are currently in actual operation on existing structures.

However, operating problems and problems linked to future through operation which will aid the smooth movement of passengers are sometimes observed. Therefore, problems concerning railway lines in Metro Manila shall be identified not in the area of planning but with respect to operating safety on each line, cost cutting and the future implementation of through operation.

- 1) Current Operating Problems Concerning Civil Structures and Track
 - 1 Safety
 - a) There are no standards concerning track maintenance, and there are sections where it is difficult to implement maintenance which has a direct impact on train operating safety.
 - b) Not only are there no maintenance standards concerning civil structures, but since the whereabouts of drawings are unknown, problems will arise in structure maintenance and disaster restoration in the future.
 - c) There are some sections where dimensions of rolling stock (width, length, axle arrangement) and axle load are not unified; moreover, if even more diverse rolling stocks were to be adopted on the same sections, the impact of competing rolling stock bodies and structures and concentrated train loads would lead to future problems.
 - d) Track structure is safe in terms of design and standards, however, in reality, there are some sections where track is in a dangerous state because ballast is non-existent and sleepers are badly damaged.
 - e) On some sections, large-scale excavation work next to operating line has been left unfinished and unstable foundations create potential danger.

② Reduction of Construction Costs and Maintenance Costs

Since rolling stock dimensions (width, length, axle arrangement) and axle load are not unified and standardization of structures (compatibility of design drawings and forms) is impossible between lines, it is not possible to reduce structure design costs and fabrication costs of pre-cast members (for example, PC girders).

Line Name	Maximum Speed	Rail Type	Number of Sleepers (or fasteners)	Ballast Thickness (solid bed track should be displayed as such)
PNR	, 75km/h	JIS 37kg	1,600/1km (40/25m)	150~300mm
Line 3	65km/h	UIC 54	750 mm intervals (32.5/25 m)	Solid bed (viaduct)

Table6.1.2 Exam	ple of Track Structure	e in Metro Manila
-----------------	------------------------	-------------------

Table6.1.3	Lower Limits (of Track Structure or	ı Ordinary	Railways in Japan
------------	----------------	-----------------------	------------	-------------------

Design Passing Tonnage	Design Maximum Speed (km/h)	Rail Weight (kg/m)	Number of Sleepers	Ballast Thickness
	More than 110	50	39/25m	250
	More than 91-110	50	39/25m	200
More than 20 million tons/year	More than 71-90	50	39/25m	200
	70 or less	50	39/25m	200
	More than 110	50	37/25m	200
10,000,001,00,000,000,000,000	More than 91-110	50	37/25m	200
10,000,001-20,000,000 tons/year	More than 71-90	50	37/25m	200
	70 or less	50	37/25m	200
	More than 110	50	37/25m	200
5 000 001 10 000 000 to as have	More than 91-110	37	37/25m	200
5,000,001-10,000,000 tons/year	More than 71-90	37	37/25m	150
	70 or less	37	37/25m	120
	More than 110	50	37/25m	200
5 000 000 to an unar or los-	More than 91-110	37	37/25m	200
5,000,000 tons year or less	More than 71-90	30	34/25m	150
	70 or less	30	34/25m	120

6.1.2 **Power, Signals and Communications**

Railway lines currently in operation or under construction in Metro Manila have been constructed with equipment (including rolling) of differing standards according to line conditions at the time of construction.

Concerning power, signal and communications facilities, by unifying the specifications of train and ground equipment, major impact can be anticipated in terms of, for example, reduced construction costs, reduced maintenance costs, and easier training of maintenance staff, etc.

Problems concerning power, signals and communications in the case where run-through services are adopted between Line 1 and Line 3 are as follows.

: :

(1) Electric Car Line

Since both Line 1 and Line 3 use catenaries and a standard voltage of DC 750 V, there is basically no problem with implementing run-through services.

However, in future survey, adjustment of the following points is required with respect to rolling stock.

- 1) Maximum and minimum electric car line voltage (in particular, is rolling stock acceleration performance not affected by minimum voltage?)
- 2) Maximum and minimum height of electric car lines
- 3) Lateral bias of electric car lines

(2) Signal Facilities

It is necessary to install Line 3 signal on-train systems on Line 1 rolling stock, and vice versa.

It is necessary in future survey to examine the kind of equipment which needs to be installed on Line 1 rolling stock and Line 3 rolling stock.

(3) Communication Facilities

It is necessary to install direct telephone equipment between the Line 1 and Line 3 traffic command centers and power command centers.

6.2 Materials of Through Operation Policy

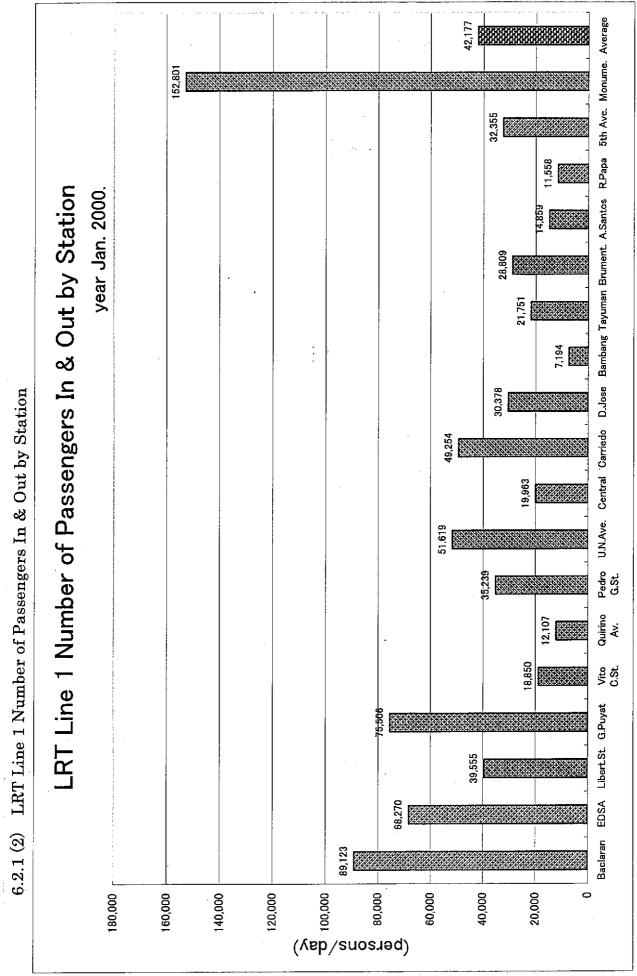
6.2.1	(1)	Passenger Transport Volume and In & Out (Line 1 & Line 3)
6.2.1	(2)	LRT Line 1 Number of Passengers In & Out by Station
6.2.1	(3)	LRT Line 3 Number of Passengers In & Out by Station
6.2.2	(1)	Line 1 Cross-sectional Transport Volume (Jan. 2000)
6.2.2	(2)	Line 1 Cross-sectional Transport Volume (Jan. 2000)
6.2.2	(3)	Line 3 Cross-sectional Transport Volume (March. 2000)
6.2.2	(4)	Line 3 Cross-sectional Transport Volume (March. 2000)
6.2.3	(1)	LRT Line 1 Track Layout
6.2.3	(2)	LRT Line 3 Track Layout
6.2.3	(3)	Through Operation of LRT Line 1 and Line 3 (Connection Point)
6.2.3	(4)	Connection of Line 1 Monumento Station and Line 3
6.2.3	(5)	Rough Vertical Cross Section of Link line in Through Operation Plan
6.2.3	(6)	Baclaran Rolling stock Depot of Line 1
6.2.3	(7)	North Avenu Rolling stock Depot of Line 3
6.2.4	(1)	Train Formation and Nominal Passenger Capacity
6.2.4	(2)	Maximum Transport Capacity by Line
6.2.4	(3)	Calculation of Acceleration Ratio of Line 1
6.2.4	(4)	Acceleration Curve, Deceleration Curve and Coarsting Curve
6.2.4	(5)	Calculation of Train Headway at Baclaran Station (Example)
6.2.4	(6)	Calculation of Train Headway at Taft Station (Example)
6.2.4	(7)	Calculation of Train Operation Time
6.2.5		Sectional kilometer of North Rail Line and MCX Line
6.2.6		North Rail/MCX Track Layout (Horizontal alignment) Plan 2
6.2.7	(1)	Rolling stock of North Rail/MCX : Plan 1 & 2
6.2.7	(2)	Rolling stock of North Rail/MCX : Plan 1 & 2
6.2.8		Calculation of Train Operation Time of North Rail/MCX: Plan 1 & 2
6.2.9	(1)	Transport Volume and Passenger kilometer, etc. by Each line
6.2.9	(2)	Train Operation Plan (Peak hour/one way)
6.2.10	(1)	Transport Plan of Line 1 (Case 1)
6.2.10	(2)	Transport Plan of Line 1 (Case 2)
6.2.10	(3)	Transport Plan of Line 3 (Case 1)
6.2.10	(4)	Transport Plan of Line 3 (Case 2)
6.2.10	(5)	Transport Plan of Line 1 and Line 3 (Case 3)
6.2.10	(6)	Transport Plan of Line 1 and Line 3 (Case 4)
6.2.11	(1)	Transport Plan of Line 2 (Case 1 & 2)
6.2.11	(2)	Transport Plan of Line 2 (Case 3 & 4)

Ap.6-14

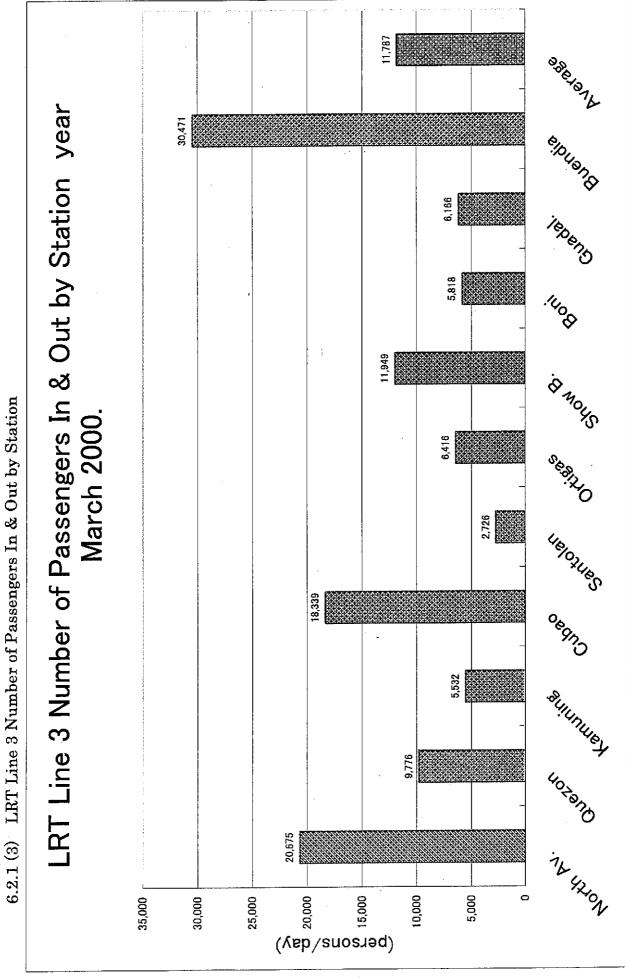
- 6.2.12 (1) Transport Plan of Line 4 (Case 1)
- 6.2.12 (2) Transport Plan of Line 4 (Case 2)
- 6.2.12 (3) Transport Plan of Line 4 (Case 3)
- 6.2.12 (4) Transport Plan of Line 4 (Case 4)
- 6.2.13 (1) Transport Plan of Line 6 (Case 1 & 2)
- 6.2.13 (2) Transport Plan of Line 6 (Case 3 & 4)
- 6.2.14 (1) Transport Plan of North Rail/MCX (Case 1)
- 6.2.14 (2) Transport Plan of North Rail/MCX (Case 2)
- 6.2.14 (3) Transport Plan of North Rail/MCX (Case 3)
- 6.2.14 (4) Transport Plan of North Rail/MCX (Case 4)
- 6.2.15 (1) Calculation of Train kilometer, etc. Line 1 (Case 1 & 2)
- 6.2.15 (2) Calculation of Train kilometer, etc. Line 3 (Case 1 & 2)
- 6.2.15 (3) Calculation of Train kilometer, etc. Line 1 and Line 3 (Case 3 & 4)
- 6.2.16 Calculation of Train kilometer, etc. Line 2 (Case 1~4)
- 6.2.17 (1) Calculation of Train kilometer, etc. Line 4 (Case 1 & 2)
- 6.2.17 (2) Calculation of Train kilometer, etc. Line 4 (Case 3 & 4)
- 6.2.18 Calculation of Train kilometer, etc. Line 6 (Case $1 \sim 4$)
- 6.2.19 (1) Calculation of Train kilometer, etc. North Rail & MCX (Case 1 & 2)
- 6.2.19 (2) Calculation of Train kilometer, etc. North Rail & MCX (Case 3 & 4)
- 6.2.20 (1) Analysis of North Rail & MCX Line's Transport Volume (Case 4)
- 6.2.20 (2) Analysis of North Rail & MCX Line's Transport Volume (Case 4)

6.2 Materials of Through Operation Policy

6.2.1 (1) Passenger Transport Volume and In & Out (Line 1 & Line 3) Year.2000.1.


· · ·			N	ĺ		O	JT	
Time	SB Total	ratio	NB Total	ratio	SB Total	ratio		
5:00~	7,234	3.6	4,001	2.3	7,234	3.6		2.3
6:00~	12,485	6.2	5,855	3.3	12,485	6.2		3.3
7:00~	15,812	7.8	9,392	5.3	15,812		9,392	5.3
8:00~	16,612	8.2	9,770	5.5	16,612		9,770	5.5
9:00~	15,324	7.5	9,861	5.6	15,324	7.5	9,861	5.6
10:00~	12,892	6.4	10,263	5.8	12,891	6.4	10,265	5.8
11:00~	12,331	6.1	10,125	5.7	12,331	6.1	10,125	5.7
12:00~	12,509	6.2	10,149	5.7	12,509	6.2	10,149	5.7
13:00~	13,776	6.8	12,518	7.1	13,776	6.8	12,518	7.1
14:00~	13,206	6.5	12,007	6.8	13,207	6.5	12,007	6.8
15:00~	12,827	6.3	12,849	7.3				7.3
16:00~	13,560	6.7	14,497	8.2	13,560	6.7	r ·	8.2
17:00~	13,758	6.8	15,981	9.0	13,759	6.8	-	9.0
18:00~	13,347	6.6	18,140	10.3	13,346	6.6	1 1	10.3
19:00~	9,464	4.7	13,350	7.6	1 '		· ·	7.6
20:00~	6,377	3.1	7,664	4.3		1	7,664	
21:00~	1,476	0.7	185	0.1	1,476		185	0.1
22:00~	1 0	0.0		0.0		0.0		0.0
Total	202,990	100.0	176,607	100.0	202,991	100.0	176,606	100.0
۲ ۲	Traonspor	rt Vol	ume =		379,597		(Persons	/Day)

Line 1 Average Ridership Summary Passengers IN & OUT


Note: Data of LRTA

Line 3			Yea	ar.2000.3.
Time	In	Out	Total	Ratio
5:00~	227	66	293	0.2
6:00~	2,027	1,178	3,205	2.7
7:00~	7,073	5,450	12,523	10.6
8:00~	6,739	7,703	14,442	12.3
9:00~	3,879	4,536	8,415	7.1
10:00~	2,836	2,932	- 5,768	4.9
11:00~	2,492	2,622	5,114	4.3
12:00~	2,306	2,340	4,646	3.9
13:00~	2,320	2,261	4,581	3.9
14:00~	2,737	2,659	5,396	4.6
15:00~	2,731	2,767	5,498	4.7
16:00~	3,721	3,321	7,042	6.0
17:00~	6,157	5,311	11,468	9.7
18:00~	6,497	6,875	13,372	11.3
19:00~	4,066	4,598	8,664	7.4
20:00~	2,211	2,788	4,999	4.2
21:00~	947	1,402	2,349	2.0
22:00~	3	90	93	0.1
Total	58,969	58,899	117,868	100.0
Tra	nsport Vol	lume	58,934	(pers/day)

Note: Data of SYSTRA

Ap.6-17

Ap.6-18

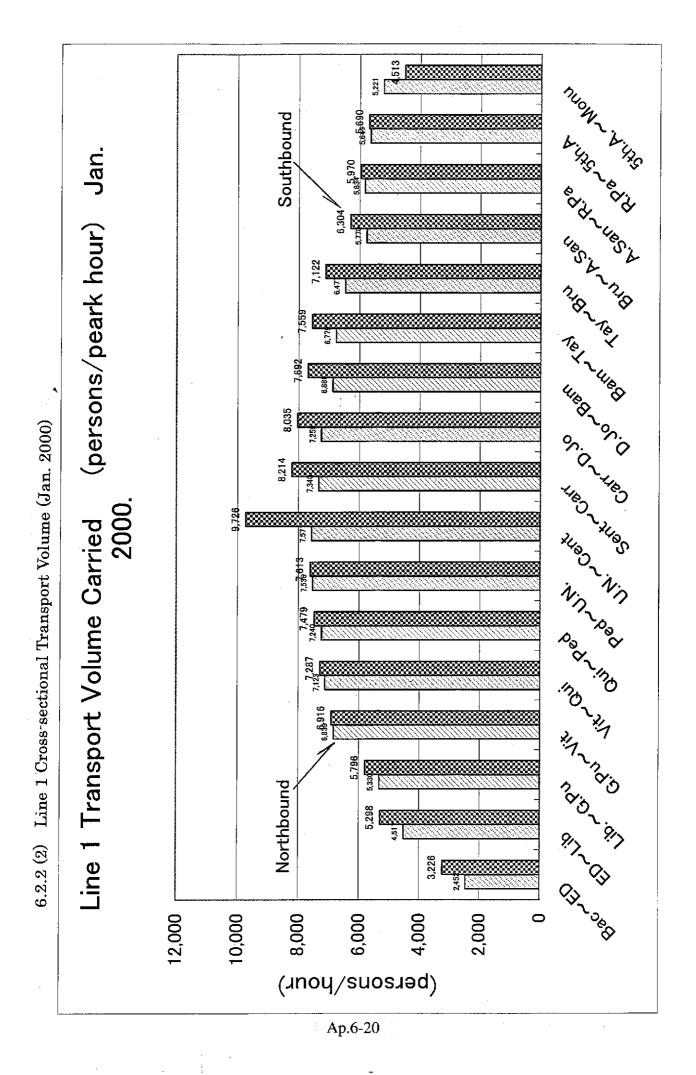
6.2.2 (1) Line 1 Cross-sectional Transport Volume (Jan. 2000)

	Total		176,605	2,017 6,956 9,696 7,212 12,182 10,219 2,552 7,626 12,287 3,913 4,918 10,116 81,952 176,605
~1.31	21	Monume.	I	81,952
2000.1.1~1.31	19	auino Avpedro 0.st U.N.Ave. Central Carriedo D.Jose Bambandīayumar Brument A Santos R.Papa 5th Ave. Monume.	3,841 11,607 10,255 3,577 10,908 4,375 872 2,887 1,174 4,922 1,983 3,429	10,116
	18	R.Papa	1,983	4,918
	17	A.Santos	4,922	3,913
(pa/day)	15	Brument.	1,174	12,287
()	14	Tayuman	2,887	7,626
Bound	13	Bambang	872	2,552
North	12	D.Jose	4,375	10,219
s out (11	Carriedo	10,908	12,182
ers In 6	10	Central	3,577	7,212
ssenge	9	U.N.Ave.	10,255	9,696
ummary - Passengers In & Out (North Bound)	7	Pedro G.St	11,607	6,956
ummar	g	Quirino Av	3,841	
ship Sı	ß	Vito C.St.	6,692	2.232
Biden	4	G.Puyat	25,706	719 2,008 2,232
Average Ridership Su		Libert.St. G.Puyat Vito C.St.o	13,479	719
LRT Line 1	2	n EDSA Li	32,414 13,479 25,706	0
LRT	-	Baclaran	38,484	
		Station	lu	Out

Transport Volume Carried (Persons/day) Northband

Section Bac~ED ED~Lib ib.~G.P[3.Pu~V] Vitr~QuQuiv_Peped~U.N.N.~Cerjent~Catarr~D.J.Jo~BaBam~TaTay~Bnruv~A.S\$San~R.fPa~5th (th.A.~Monu Section Bac~ED ED~Lib ib.~G.P[3.Pu~V] Vitr~QuQuiv_Peped~U.N.N.~Cerjent~Catarr~D.J.Jo~BaBam~TaTay~Bnruv~A.S\$San~R.fPa~5th (th.A.~Monu Sec. Tran.Vo.(p/day) 38.484 70.899 83,658 101,356 111,816 113,640 118,850 115,215 113,941 108,097 106,417 101,678 90,565 91,574 88,639 81,952 Average(/17 (pa/h) 2,264 4,170 4,921 6,577 6,685 6,958 6,991 6,777 6,702 6,359 6,260 5,981 5,387 5,214 4,821 Deark hour (pa/h) 2,452 4,517 5,330 6,833 7,123 7,240 7,536 6,886 6,777 5,770 5,834 5,647 5,221				ľ				ľ										
38,484 70,898 83,658 107,356 111 2,264 4,170 4,921 6,315 6 2,452 4,517 5,330 6,839 7	Section	Bac∼ED	ED~Lib	ib.~G.P.	3.Pu~Vilv	fit~Quid	hui∼Pe¢	ed~U.N.	N.~Cerl	ent~Cal	arr~D.J.	do~Baβ	am∼Tal	ay∼Bn	n~A.Sa	San~R.	Pa∼5th	th.A.~Monu
2.264 4,170 4,921 6.315 6.577 6.685 6.958 6.991 6.777 6.702 6.359 6.260 5.981 5.327 5.387 5.214 2.452 4.517 5.330 6.839 7.123 7.240 7.536 7.571 7.340 7.259 6.886 6.779 6.477 5.327 5.334 5.647	Sec Tran Vo.(p/day		70,898	83,658	107,356 1	11,816	13,640	18,291	18,850	115,215	113,941	108,097	06,417	01,678	90,565	91,574	88,639	81,952
2.452 4.517 5.330 6.839 7.123 7.240 7.536 7.571 7.340 7.259 6.886 6.779 6.477 5.770 5.834 5.647	Average(/17 (pa/h)		4,170	4,921	6,315	6,577	6,685	6,958	6,991	6,777	6,702	6,359	6,260	5,981	5,327	5,387	5,214	
	peark hour (pa/h)			5,330	6,839	7,123	7,240	7,536	7,571	7 340	7,259	6,886	6.779	6,477	5,770	5,834	5,647	

LRT Line 1 Average Ridership Summary - Passengers In & Out (South Bound)


	4		5	9	~	6	9	=	12	13	14	15	5	18	19	21	Total
t Vito C.St Ouinine Av Pedre G.St U.N.Ave. Central Carriede D.Jose Bambang Tayumar Brument A.Santos R.Papa 5th Ave Monume.	EDSA Libert.St. G.Puyat Vito C.St. Quining AvPedro G.St.	t Vito C.St Quirino AvPedro G.St	Quirino Av Pedro G.St	edro G.St		U.N.Ave.	Central	Carriedo	D.Jose E	3ambane	[ayumar	Brument	A.Santos	R.Papa	5th Ave.	Monume.	
2,052 1,618	1,618	2,052 1,618	1,618 7,284	7,284		10,266	5,441	14,488	10,584	2,928	9,050	14,091	5,637	4,522	18,642	70,849	7,284 10,266 5,441 14,488 10,584 2,928 9,050 14,091 5,637 4,522 18,642 70,849 202,991
7,874 4,631	4,631	7,874 4,631		9,392		9,392 21,402	3,733	3,733 11,676 5,200		842	2,188	842 2,188 1,257	387	135	168	1	202,990

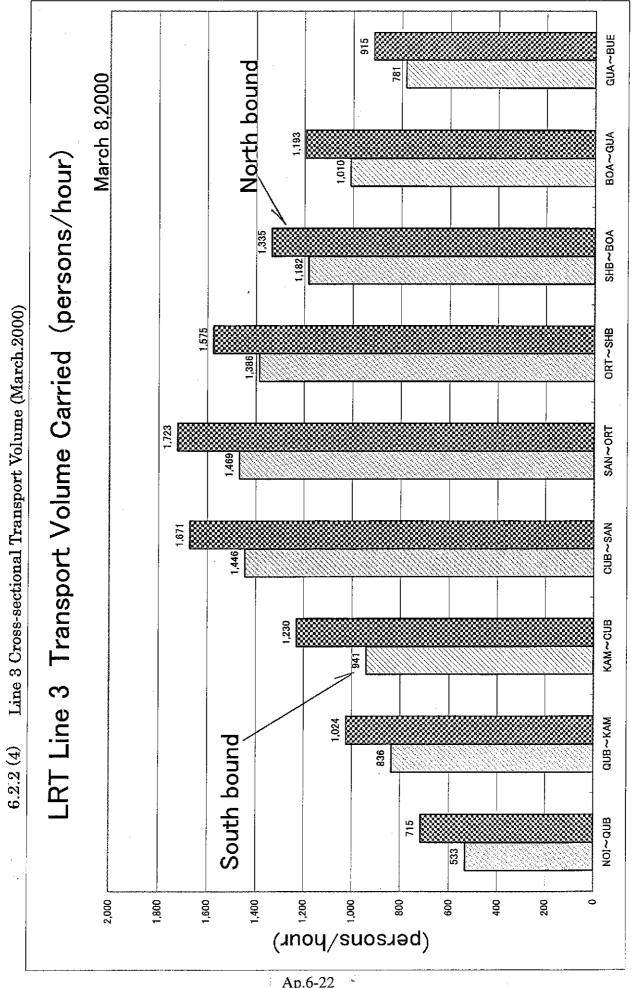
Transport Volume Carried (Persons/day) South Bound

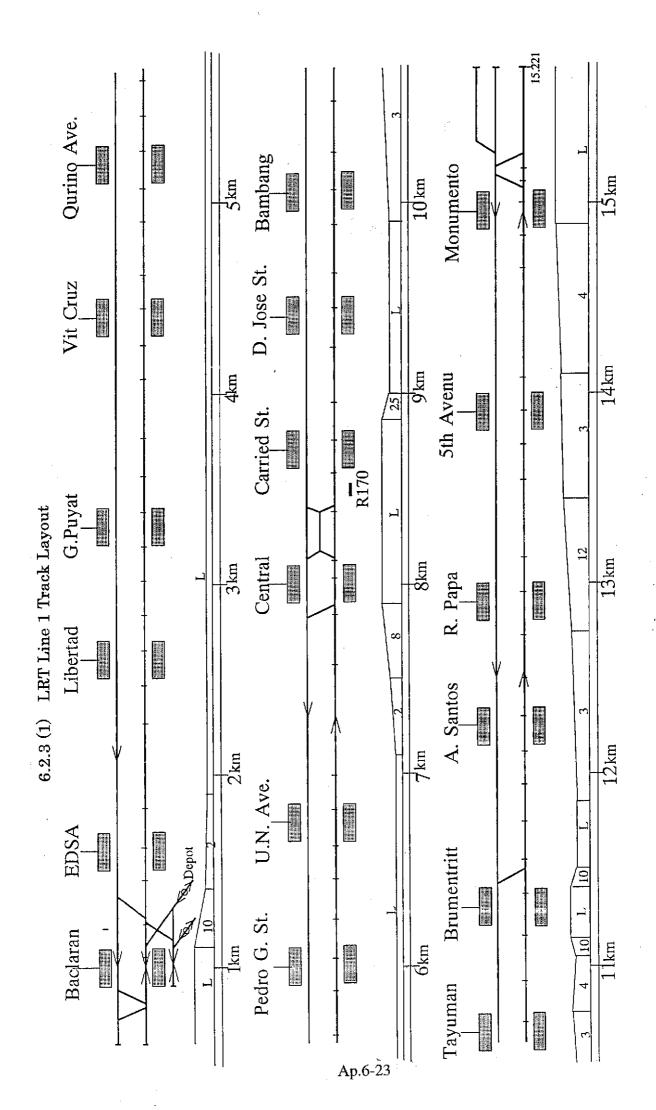
Section	Bac∼ED	Bac~ED ED~Lib Lib.~G.P.B.Pu~Vi	.ib.~G.P.	3.Pu∼Vi	5	Qui∼Ped	N.U~Pac	I.N.~Cer	ent~Ca	arr~D.J	Jo~Bai	<u>8am∼Ta</u>	Tay∼Bn	u~A.S₅	San∼R.	Pa∼5thti	it ~ Quipui ~ Pecped~U.N.N. ~ Cerlent ~ Calarr ~ D. J. Jo ~ Babam ~ TalTay ~ Briru ~ A.S&San ~ R.I Pa ~ 5th th.A. ~ Monu	
Sec.Tran.Vo.(p/day)	v) 50,640		83,164 90,973 108,567	108,567	114,389		119,510	152,667	128,938	126,126	120,742	118,656	111,794	98,960	93,710	89,323	17,402 119,510 152,667 128,938 126,126 120,742 118,658 111,794 98,960 93,710 89,323 70,849	
Average(/17 (pa/h)	h) 2,979	4,892	5,351 6,386	6,386	6,729	6,906	7,030	8,980	6,906 7,030 8,980 7,585 7,419 7,102 6,980	7,419	7,102	6,980		6,576 5,821	5,512	5,512 5,254	4,168	105,671
peark hour (pa/h)	h) 3.226	5,298	5,796	6,916	7,287	7,479	7,613	9,726	8,214	8,035	7,692	7,559	7,122	6,304	5,970	5,690	7.287 7.479 7.613 9.726 8,214 8.035 7.692 7.559 7,122 6,304 5.970 5.690 4.513 114,442	114,442

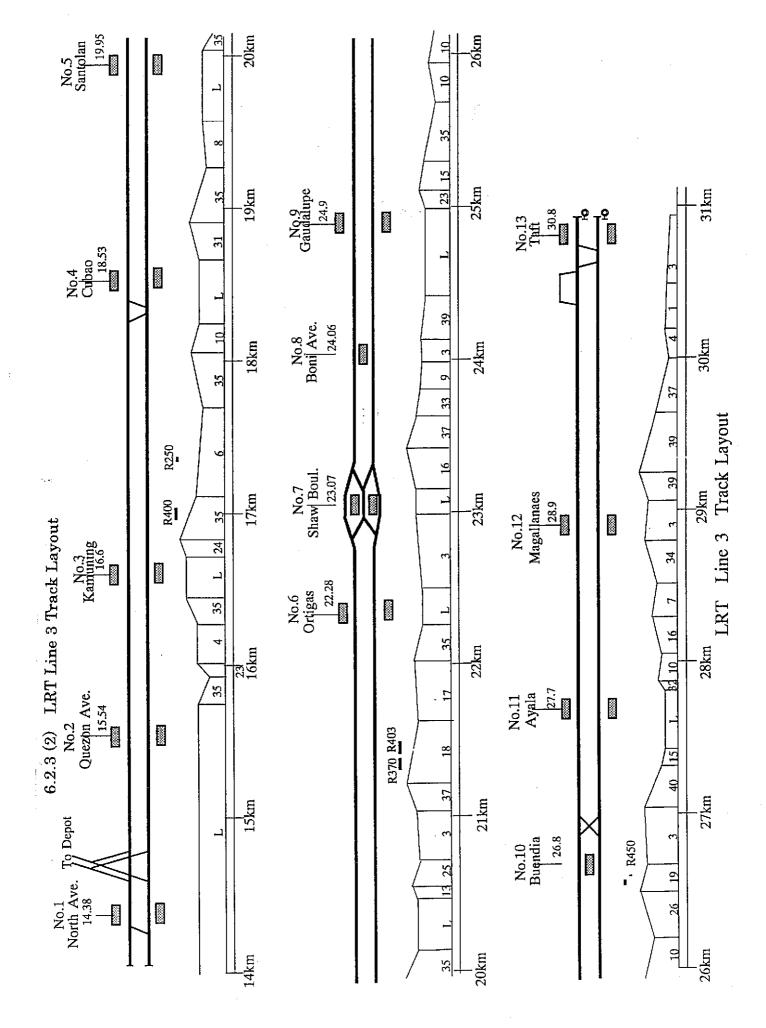
Note. By METRO TRANSIT ORGANIZATION, INC. Operations Department Operations Planning Off.

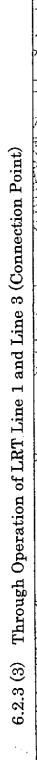
Transport Volume (persons/day)= 379,596

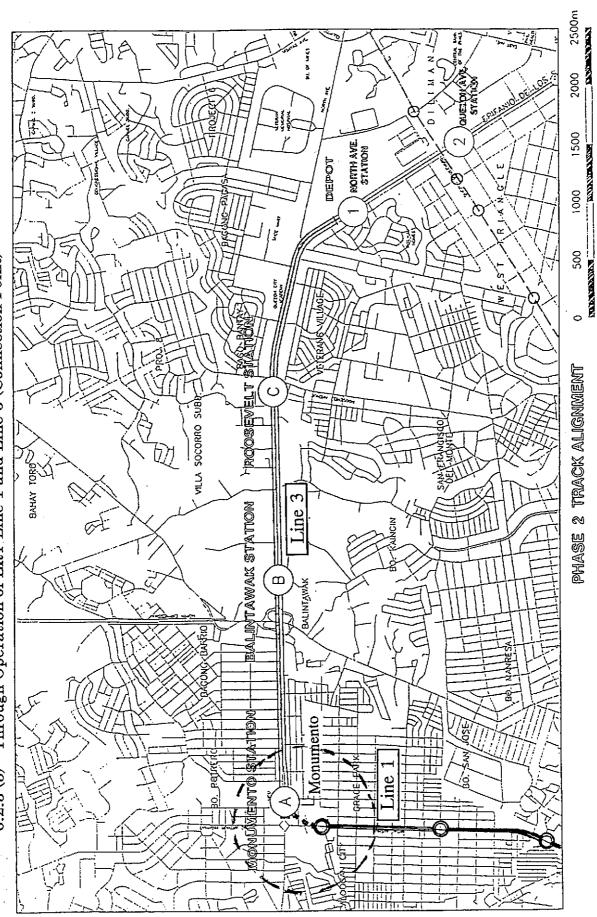
6.2.2 (3) Line 3 Cross-sectional Transport Volume (March. 2000)

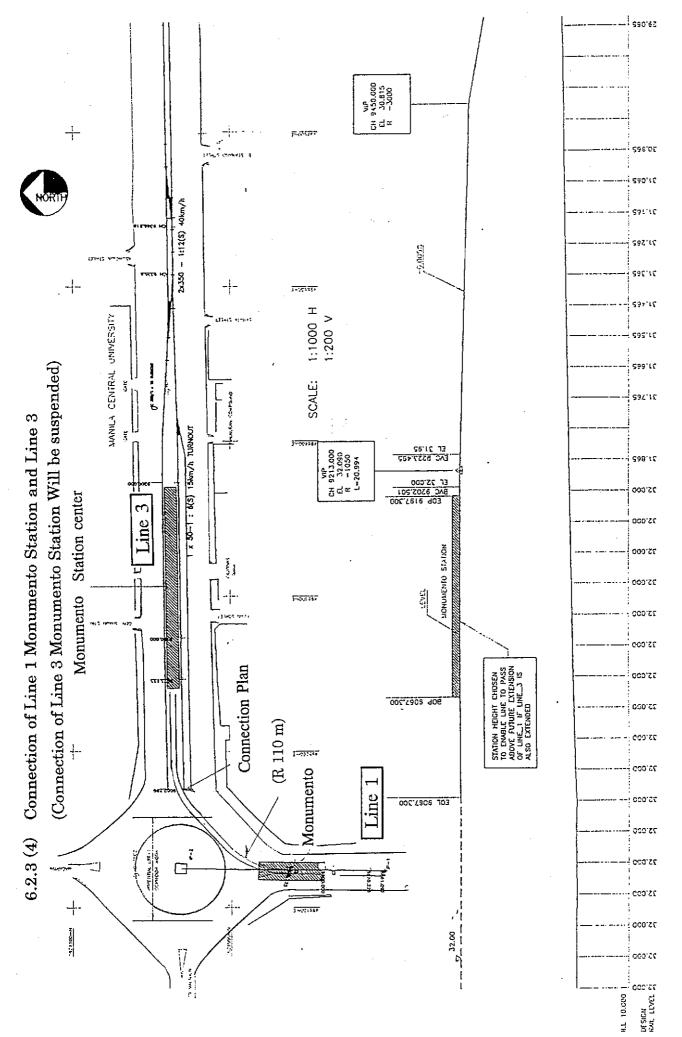

.

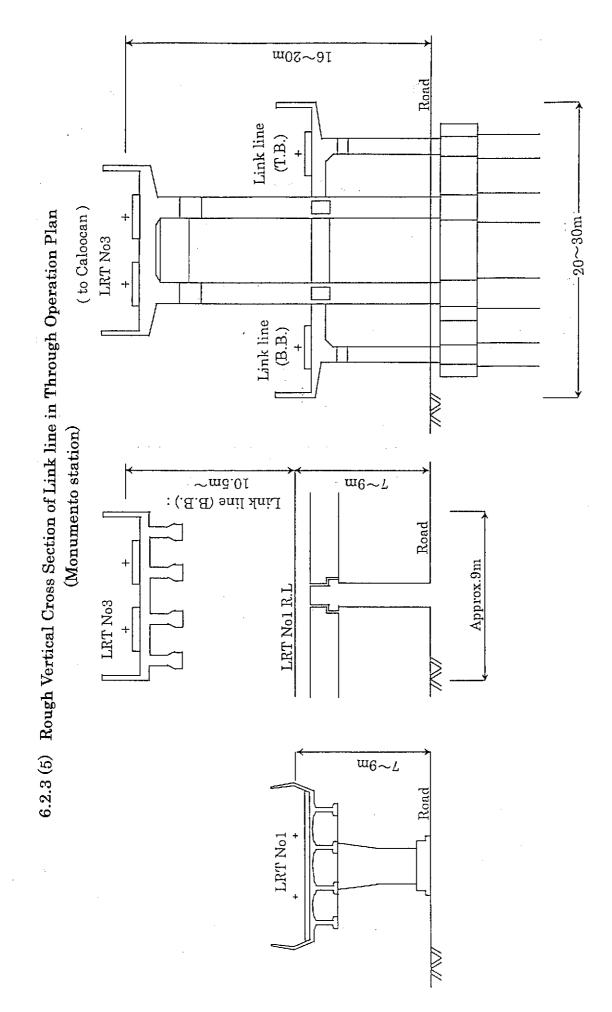

000.
larch 2
arried N
ime Cai
ort Volu
Transpol
Line 3
LRT

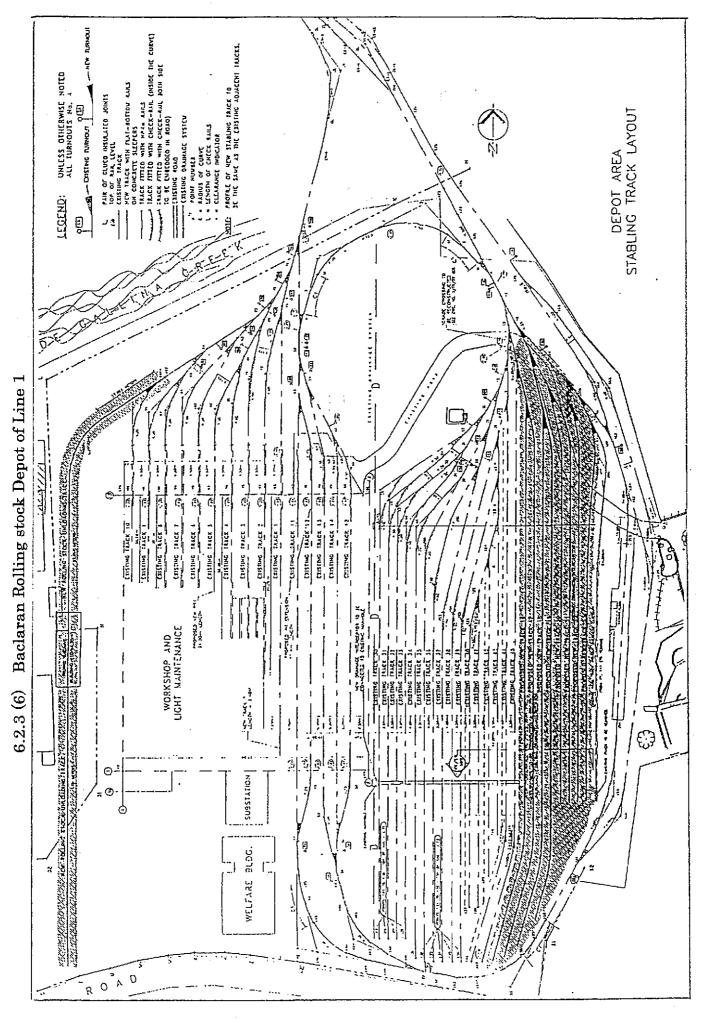

1	LRT Lin	ne 3 Trar	ransport Volume Carried	olume C		March 2000	<u>. 100.</u>			
Transport.	Direction	NOI~QUB	auB~KAM	KAM~CUB	CUB~SAN	SAN~ORT	DRT~SHE	SHB~BOA	30A∼GUA	NOI~QUBQUB~KAMKAM~CUBCUB~SANSAN~ORTDRT~SHESHB~BOADOA~GUAGUA~BUE
Volume. Carried	NOI→TAI	7,595	11,914	13,410	20,601	20,927	19,749	16,838	14,388	11,130
(Pers./day)	TAI→NOI	10,194	14,588	17,528	23,811	24,542	22,441	19,026	17,001	14,660
Pers./h	TAI→NOI	637	912	1,096	1,488	1,534	1,403	1,189	1,063	814
8:00~9:00	*1.23	715	1,024	1,230	1,671	1,723	1,575	1,335	1,193	915
Pers./h	NOI→TAI	475	745	838	1,288	1,308	1,234	1,052	899	696
8:00~9:00	*1.23	533	836	941	1,446	1,469	1,386	1,182	1,010	781
# Commercial time:5:30~21:30(16h)	ime:5:30~21	:30(16h)								:

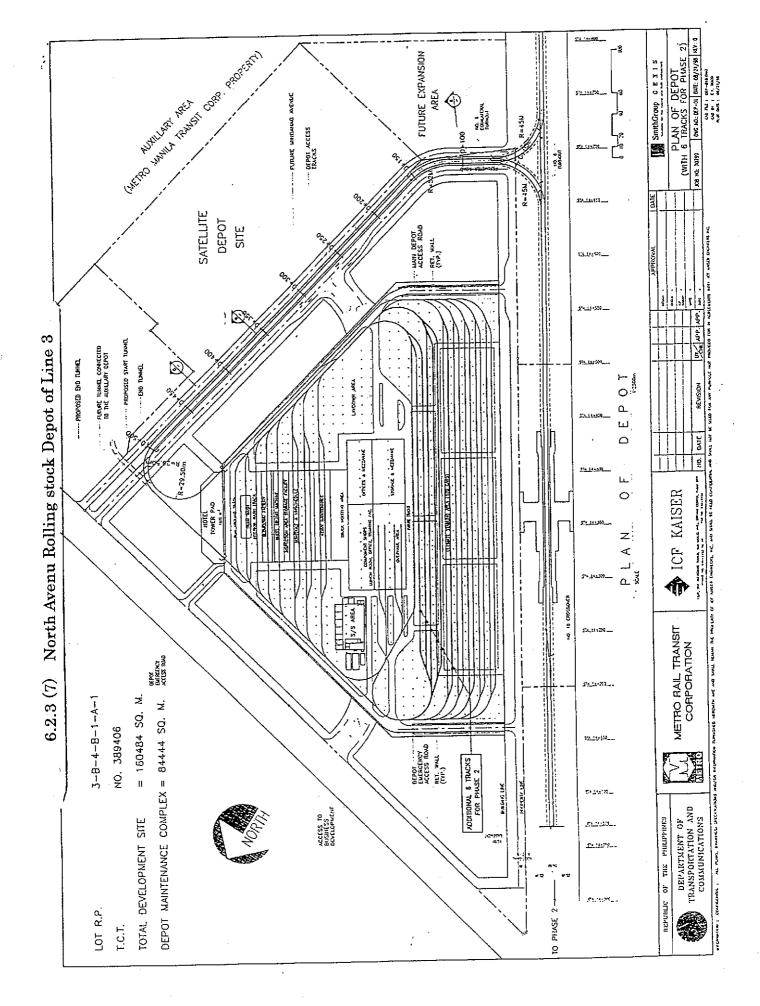

100.14


Note:By Sales Report : SYSTR (by O-D chart)









6 - <u>1</u> - -

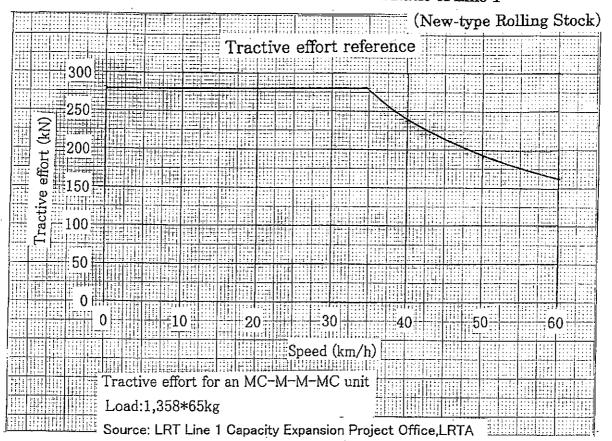
Ap.6-28--

lana		tein tein				
		Мс	м	М	Mc	Total
4	Seated	78 -	82	82	78	320
(person/m ²)	Standee	144	152	152	144	592
	Total	222	234	234	222	912
7	Standee	252	267	267	252	1,038
(person/m [*])	Total	330	349	349	330	1,358

6.2.4 (1) Train Formation and Nominal Passenger Capacity Line 1 Train formation and Number of Seat

Line 3 Train formation and Number of Seat

		Mc	М	Мс	Total	3Unit
4	Seated				74	222
(person/m ²)	Standee				160	480
	Total				234	702
7	Standee				280	840
(person/m ²)	Total				354	1,062
8	Standee		•		320	960
(person/mੈ)	Total				394	1,182

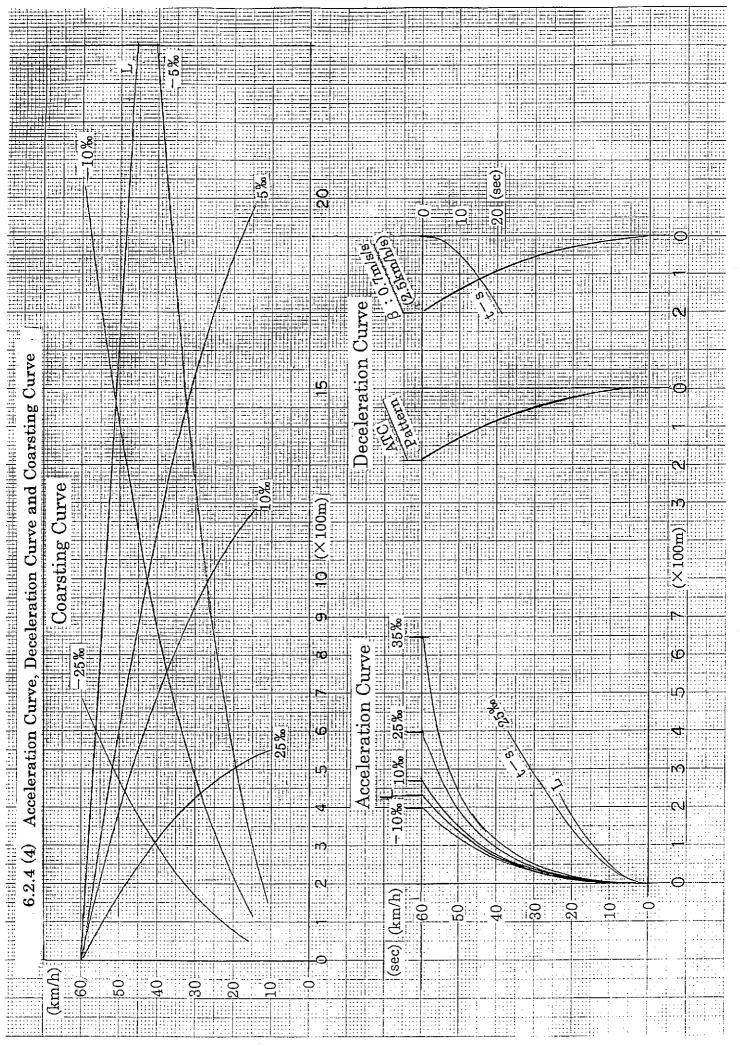

Line 2 Train formation and Number of Seat

		Mc	м	м	Мо	Total
4	Seated	54	62	62	54	232
(person/m ²)	Standee	193	206	206	193	798
	Total	247	268	268	247	1,030
7	Standee	338	360	360	338	1,396
(person/m ²)	Total	392	422	422	392	1,628

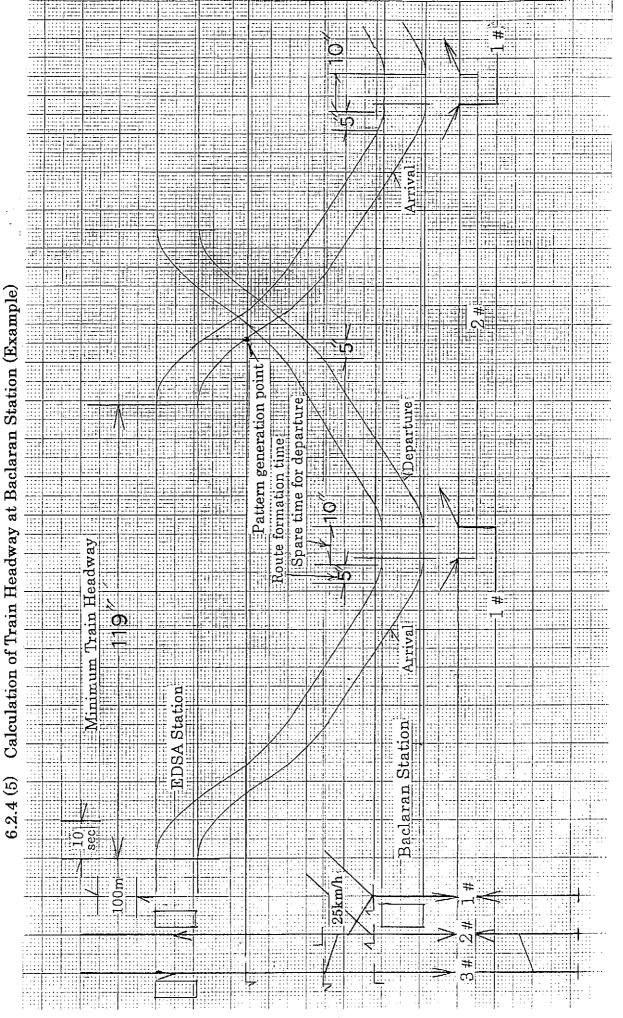
Source: LRT Line 1 Capacity Expansion Project Office, LRTA

Line
by
Capacity by
Transport
Maximum
6.2.4(2)

Line	LRT 1	LRT 3	# LRT 1 & 3	MRT 2	LRT 4	LRT 6	North Rail/MCX
Section	Baclaran~MonumentdTaft Ave.~North Ave Baclaran~Taft Ave. Recto~Santolan	Taft Ave.∼North Ave	Baclaran∼Taft Ave.	Recto~Santolan	uezon∼Bata.	Baclaran∼Niyog	Marilao~Cabuyao
(km)	13.95	16.40+5.40	35.75	13	12.52	10.9	63.2
Train Formation	4cars	3cars	4cars	4Unit	5Unit	4Unit	10car
Nom.Pas. 4 pa./m	912	702	912	1,030		912	1740
Capacity 7 pa./m	1,358	1,062	1,358	1,628		1358	2710
Train Head way (min:sec)	2:00	2:30	2:00	2:00	2:30	2:30	2:30
ditto (Phase 2)	1:30	I	1:30	1:30			
Max.No.of Trains(Train /I	30	24	30	30	24	24	24
ditto (Phase 2)	40	I	40	40			
Transport 4 pa./m	27,360	16,848	27,360	30,900		21,888	41,760
Capacity (p/h) 7 pa./m	40,740	25,488	40,740	48,840		32,592	65,040
ditto 4 pa./m	36,480	I	36,480	41,200			
(Phase 2) 7 pa./m	54,320	1	54,320	65,120			***
Note. # LRT 1 & 3 is Through Train Operation Plane	ough Train Operation	Plane					-


V	Tractiv	e effort	rr	α
(km/h)	(kN)	(kg)	(kgf/ton)	(km/h/s)
0	280	28,554	3.0	3.77
3	280	28,554	1.4	3.82
5	280	28,554	1.4	3.82
10	280	28,554	- 1.5	3.82
15	280	28,554	1.6	3.81
20	280	28,554	1.8	3.81
25	280	28,554	1.9	3.80
30	280	28,554	2.1	3.80
35	280	28,554	2.3	3.79
40	240	24,475	2.5	3.23
45	215	21,925	2.8	2.88
50	190	19,376	3.0	2.53
55	175	17,846	3.3	2.31
60	. 160	16,317	3.6	2.10

Line 1 New car: Tractive effort reference


Note: By LRTA Data

W(ton) = 37ton*4cars + 1,358pers*65kg = 236 ton

rr=1.32+0.0164V+{0.028+0.0078(n-1)}V^2/W

Ap.6-33

Ap.6-34 -

6.2.4 (6) Calculation of Train Headway at Taft Station (Example)

ł 11 THE Route formation time ji: -Minimum Train Headway 1 11124111111 Ē N. භ ඉ 5 †-i #1 ိုက် Pattern generation point H Departure E Spare time for departure 鲫 20 HH. 7 : hi i 111 H H i tri ile: 14 開 :H I. Arrival <u>tt</u> 5# aft station 肛 li: 1 C.L.C 1 2 1 (). 1.1 Eİ 詽臣 τĿ. 10sec ₿ 10m 1# 100m ΠĒ ΠĘ

		Line	1			i i	1	
No.	Station	(km)	(km)	Travel t	Dwell t.]	No.	Station
				(sec)	(sec)]		
18	Manumento	14.95					01	Monumento
17	5th Avenu	13.86	1.09	90	40		02	Balintawak
16	R. Papa St.	12.91	0.95	80	40		03	Roosevelt
			0.66	60				
15	A. Santos	12.25	0.93	80	40		1	North Avenue
14	Brumentritt St	11.32			40		2	Quezon Ave.
13	Tayuman	10.65	0.67	60	40		3	Kamuning
1.0	Dombony St	10.03	0.62	60	40			0
12	Bambang St.	10.03	0.65	60	40		4	Cubao
11	D. Jose St.	9.39	0.68	[′] 70	40		5	Santolan
10	Carriedo St.	8.70	0.00	70	40		6	Ortigas
	Central Station	7.98	0.73	70	40		,	Shaw blvd
	Central Station	1,50	1.21	100	40	:.	'	
8	U. N. Avenu	6,76	0.75	70	40		8	Boni
7	Pedro Gil. St.	6.01	0.75		40		9	Guadalupe
6	Quirino Avenu	5.21	0.79	70	40		10	Buendia
			0.83	70	40			Duchula
5	Vito Cruz St.	4.39	1.06	90	40		11	Ayala
4	Gil. Puyat	3.33			40		12	Magallanes
3	Libertad St.	2.60	0.73	70	40		13	Taft
			1.01	80				
	EDSA St.	1.59	0.59	80	40			
11	Baclaran	1.00						
1	Allowance			20				Allowance
	Total	(sec)		1,280	640			Total
Tota	I Travel Time	(sec)		1,9			Tota	l Travel Time
		(min)		3	2			
Sectio	n km	13.95	km				Sec+	ion km
	Time		min					el Time
Com	mercial speed		km/h				<u> </u>	mercial speed

6.2.4(7)Calculation of Train Operation Time (Through Train Operation Plan : Line 1 & Line 3)

			•
		Travel t.	Dwell t.
Through Train Operation	(sec)	3,000	1,200
Travel Time	(sec)	4,2	00
	(min)	7	0

21.8 km

38 min

34.4 km/h

Line 3 (km)

9,00

10,98

12.73

14.38

15.64

16.60

18.53

19,95

22.28

23.08

24.06

24.90

26.80

27,70

28.90

30.80

(sec)

(sec)

(min)

1.98

1.75

1.65

1.26

0.96

1.93

1.42

2.33

0.80

0.98

0.84

1.90

0,90

1.20

1.90

(km) Travel t. Dwell t.

140

130

120

100

80

140

110

170

80

80

70

140

80

90

140

50

2,280

38.D

1,720

(sec)

40

40

40

40

40

40

40

40

40

40

40

40

40

40

40

560

(sec)

Through Train Operation

11		1011
Section km	35.75	km
Travel Time	70	min
Commercial speed	30.6	km/h