Consulting Engineering Center (Sajdi & Partners) ## مركزالإستشارات الهندسيّة (سجدي وشركاه) Date: 17/5/2000 Ref.: 2000/103 M-S/Kume Sekkei Co., Ltd. Tokyo – Japan Attn. Mr. Tetsuro Nishimura Project – Manager <u>Subject</u> Site Investigation Report. Project Topographic & Geotechnical Surveys for T.C. Control Center / Aden - Yemen, Dear Sir, We are pleased to submit this report of geotechnical investigation of the subject project site. The work was executed in accordance with the agreement signed with you. Thanking you for your confidence looking forward for further cooperation. Best Regards, <u>Eng. Jamal F. Birjas</u> Yemen Branch Manager C. E. C ## **CONTENTS** | | | | <u>PAGE</u> | |------|------|---------------------------------|---------------------| | 1.0 | INT | RODUCTION | 1 | | | | WHY THIS INVESTIGATION? | 1 | | | | OBJECTIVES OF STUDY | 1 | | | 1.3 | SCOPE OF WORK | 2 | | 2.0 | SITI | E AND PROJECT DESCRIPTION | 2 | | | 2.1 | SITE DESCRIPTION | -
2-3 | | | | PROJECT DESCRIPTION | 3 | | | 2.3 | EXISTING FACILITIES | 3 | | 3.0 | ON- | SITE EXPLORATION AND TESTING | 3 | | | 3.1 | Boring | 3 - 4 | | | 3.2 | SAMPLING | 4 | | | 3.3 | STANDARD PENETRATION TEST (SPT) | 5 | | | 3.4 | SURVEYING | 5 | | 4.0 | LAB | ORATORY TESTING | 6 - 10 | | 5.0 | GEC | DLOGY &SURFACE CONDITIONS | 10 - 11 | | 6.0 | CAR | RRYING CAPACITY OF SOIL | 11 - 13 | | 7.0 | SETT | LEMENT ANALYSIS | 13 | | 8.0 | DYN | AMIC & SIESMIC FACTORYS. | 14 | | 9.0 | CON | CLUSIONS & RECOMMENDATIONS | 14-15 | | 10.0 | REF | ERENCES | 16 | | 11.0 | APP | ENDIX | 1 7 | ### 1.0 <u>INTRODUCTION.</u> ### 1.1 Why this Investigation? Investigation of the underground conditions at a site is prerequisite to the economical design of the substructure elements. It is also necessary to obtain sufficient information for feasibility and economic studies for a proposed project. Public building officials may require soil data together with the recommendations of the geotechnical consultant prior to the issuance of building permit. Elimination of the site exploration, which usually ranges from about 0.5 to 1.0 percent of total construction cost only, to find after construction has started that the foundation must be redesigned is certainly false economy. This is generally recognized, and it is doubtful if any major structures are currently designed without site investigation being undertaken. According to Bowles J.E., with the scarcity of building sites in urban areas and with considerable urban renewal and the accompanying backfill, often with no quality control, the underground conditions can have significant variation within a few meters in any direction. For these reasons, an adequate ground subsurface investigation is an essential preliminary to the execution of this important project. ### 1.2 Objectives of Study. The objective of the study is to describe, classify and test the soil strata at different locations to determine the surface and subsurface conditions with the mechanical, physical & chemical properties of soil strata in order to investigate the foundations problems to come up with most optimum solution that will sustain the loads with minimum cost. Another main objective is to make topographic map of the site. ### 1.3 Scope of Work. The scope of work consists of the following items to accomplish the objectives of the study. - 1. Making visit to site to collect information about present land, surface topography and surface drainage. - 2. Drilling two bore holes, at prescribed locations to 20m depth each. - 3. Performing the (SPT) test in both holes every 1.0 m. - 4. Collecting disturbed & undisturbed samples from all holes. - 5. Carrying out laboratory tests on the collected samples to measure the mechanical, physical & chemical properties of soil at the deep holes and the physical properties at the shallow holes - 6. Developing conclusions and recommendations for foundation design & construction. - 7. Prepare topographic maps for the site along with longitudinal and transverse sections. ## 2.0 SITE AND PROJECT DESCRIPTION. ### 2.1 Site Description. The site under concern it located at the crossing of the main road penetrating Al-Mansourah town in Aden city, and a secondary road in Al-Mansourah. It is empty part of a large plot used as a compound of primary health center that has been occupied in two places with two single story buildings. The empty area allocated for this project is close to the main road of Al-Mansourah. The area is almost flat, with many wild trees in it and on its periphery. Two small wooden poles & steel poles exists at the boundary of the plot which are used for electrical cables. The site can be reached through the secondary road crossing Al-Mansourah main road. ### 2.2 Project Description. The project is a two story building ,each story is $1000m^2$ which will be used as expansion of national tuberculoses control center. The project is a grant from Japan government to the government of Yemen. Most probably the building will be concrete structure. ### 2.3 <u>Existing Facilities.</u> The site is furnished with all municipal facilities, telephone cables, electrical supply, water manias and waste water network. These facilities exists at the two existing building in the plot and surrounding the specified project area but do not penetrate it. Location plan is attached. ## 3.0 ON-SITE EXPLORATION AND TESTING ### 3.1 Boring. During the period between 24th and 26th April 2000, we drilled two bore holes at the third points on the diagonal line connecting the west – South corner with the East – north corner. The location of the holes was predetermined in – situ by the client and our representative. The bore holes were drilled to a depth of 20m each. We drilled the holes using the Hollow – Stem Auger of 7 "out side diameter and 3.25" in side diameter. This technique of drilling was advanced up to the sandy gravel layer where it was ineffective to proceed with this, tricon pit percussion with water and GS stabilizing agent were used to the end of boring. GS was used to prevent the sides of bore hole from collapse under pressure of the under ground water. Drilling was executed using our ring type (Mobile drill, Model B-34) mounted on Mercedes truck. ### 3.2 Sampling. Samples of soil representing all strata were collected in three forms; - Undisturbed samples: which were taken utilizing the double split Shelby tube, with sampling length of 45cm, and thin wall cutting edge, that results in min. disturbance of samples. These samples were taken in the cohesive layers, - Semi-undisturbed samples: these samples were taken as out crop of the SPT sampler. These samples couldn't be considered true undisturbed because the ratio of cutting edge thickness to the open area of sampler is high, which will result in considerable disturbance to the samples, but these samples are good representative for some physical properties of soil such as gradation, Atterberg limits, specific gravityetc. - Disturbed samples: taken as an out crop of the Hollow Stem and percussion drillings. With percussion drilling, large gravel is reduced to 3/4" size and the sample is collected by screening and settling the return water carrying soil particles, location of bore holes are shown on the location plan. ## 3.3 Standard Penetration Test (SPT). During the drilling of bore holes, the drilling tools were removed at regular intervals, then split spoon was inserted. The sampler was first seated 15cm to penetrate any cutting and then driven an additional 30cm with blows of 63.5 kg monkey free falling 760mm. The number of blows required to derive the additional 30cm was recorded as the standard penetration Number (N). The results are tabulated in table (1). <u>Table No. (1):</u> <u>Standard Penetration Test (S.P.T).</u> | Depth | BH.1 | BH2 | Depth | BH.1 | BH.2 | |-------|------|-----|-------|------|------| | 1.0 | 11 | 10 | 11.0 | 21 | 17 | | 2.0 | 14 | 9 | 12.0 | 18 | 18 | | 3.0 | 13 | 14 | 13,0 | 16 | 17 | | 4.0 | 18 | 18 | 14.0 | 21 | 37 | | 5.0 | 17 | 14 | 15.0 | 34 | 48 | | 6.0 | 17 | 17 | 16.0 | 47 | 60 | | 7.0 | 16 | 18 | 17.0 | 57 | 60 | | 8.0 | 17 | 19 | 18.0 | 60 | 60 | | 9.0 | 18 | 16 | 19.0 | 60 | 60 | | 10.0 | 14 | 22 | - | - | - | ### 3.4 Surveying. Topographic survey was executed as chain and level survey. It aims at setting out the main features of the plot with the neighboring buildings and streets. Relative level of certain points were taken by ordinary level, the levels were related to an arbitrary bench mark with level equal 5.0m a.s.l (arbitrary). It was taken at the tile finish of building B (see attached drawing). The plot was divided into grids of 10 m X 10m with starting base line 5m away from the edge of Building A. Ų. ## 4.0 **LABORATORY TESTING.** Selected soil samples were tested to measure their geotechnical engineering properties, laboratory testing include: | - | Natural moisture content | (BS 1377); | |---|-------------------------------------|-----------------| | | Grain size distribution | (BS 1377); | | - | Specific gravity | (BS 1377); | | - | Atterberg limits (Liquid & Plastic) | (BS 1377); | | - | Shear tests | (ASTEM D-3080); | | - | Hydrometer analysis | (BS 1377); | | - | Chemical test | (BS 1377); | | - | Density Test | (BS 1377); | | - | Consolidation Test | (BS 1377); | | - | Permeability Test | (BS 1377); | Summary of results of Laboratory tests are presented in table 2,3,4,5. <u>Table No. (2)</u> Physical Properties of disturbed & semi disturbed samples. | Lifty | | | | | | ļ., | Τ | T | T | | T | | T | ~ | T | T | |---------------------|---------------|-----------|-----------|-----------|-----------|------------------|---------|----------|---------|------------|-------------|-------------|-------------|-------------|-------------|-------------| | Permeability | mm/sec. | | | | | 02 ~ 10-7 | | | | | | | | 67~ 10-3 | 01 ×/ | - | | Shear Parameters | C
KN/m² | | | | | | | | | | | | | 0
0 | 0.7 | 0 0 | | Shear Pa | οφ | | | | | | | | | | | | | 37 | 1,5 | 7 7 | | , | Sr. Gr. | | 2,772 | | 2 738 | 27.72 | | | | | 2 744 | 7.7.7 | | | | | | Atterberg
Limits | PI | | | | 83 | | | | | 6.1 | 7.0 | 44 | · · | | | | | Atte | j | | | | 36.4 | -
-
-
- | | | | 32.8 | 0.77 | 35.3 | 5.55 | | | | | er. | Clay % | | | | 66 | | | | | | 11.0 | 2 | | | | | | Hydrometer | Silt % | | | | 614 | | | | | | 593 | | | | | | | H | Sand % Silt % | | | | 28.7 | | | | | | 29.7 | | | | | | | 0. | 200 | 27.6 | | | 71.3 | | 757 | | | | 70.3 | | | 21.3 | | | | % Passing Sieve No. | 40 | 71.3 | | | 81.6 | | 84.5 | | | | 79.9 | | | 44.9 | | | | Passing | 10 | 90.2 | | | 87.2 | | 91.2 | | | | 90.1 | | | 73.2 | | | | % | 4 | 7.76 | | | 90.3 | | 97.2 | | | | 94.4 | | | 85.7 | | | | M.C | % | 11.3 | | | 21.3 | | 32.4 | | | | 32.1 | | | 24.7 | | 23.3 | | Depth | M | 0.0 - 0.5 | 0.5 - 1.0 | 1.0 - 1.5 | 1.5 - 2.8 | 2.8 - 5.0 | 5.0-5.5 | 5.5-7.5 | 7.5-9.5 | 9.5 - 12.0 | 12.0 - 12.5 | 12.5 – 15.0 | 15.0 – 16.3 | 16.3 – 17.8 | 17.8 - 19.0 | 19.0 - 20.0 | | Sample | Zo. | 1 | 2 | 3 | 4 | 5 | 9 | 7 | ∞ | 6 | 10 | 11 | 12 | 13 | 14 | 15 | | | Zo. | | | | | | | <u> </u> | *** | | | | | | | | Table No. (3) Physical Properties of disturbed & semi disturbed samples. | H. | BH. Sample | Depth | M.C | % | Passing | % Passing Sieve No. | 0. | H | Hydrometer | ter | Atter
Lin | Atterberg
Limits | Ç
E | Shear Pa | rameters | Shear Parameters Permeability | |-----|------------|-------------|------|------|---------|---------------------|------|--------|------------|----------------------|--------------|---------------------|---------|---|------------|-------------------------------| | No. | No. | M | % | 4 | 10 | 40 | 200 | Sand % | Silt % | Sand % Silt % Clay % | T.T | PI | Jr. Gr. | φ | C
KN/m² | mm/sec. | | | - | 0.0 - 0.3 | | | | | | | | | | | | Maria - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | 2 | 0.0 - 1.5 | | | | | | | | | 31.2 | 5.8 | | | | | | | 3 | 1.5 - 2.8 | 20.3 | 94.4 | 88.3 | 80.2 | 74.7 | 25.3 | 65.4 | 9.3 | | | 2.738 | | | | | | 4 | 2.8 - 3.5 | | | | | | | | | 34.3 | 7.2 | | | | | | | 5 | 3.5 – 5.5 | | | | | | | | | | | | | | 72×10^{-7} | | Ç | 9 | 5.5 – 8.5 | 33.4 | 90.0 | 97.2 | 85.3 | 73.6 | | | | | | | | | | | 1 | 7 | 8.5 - 11.0 | | | | | | | | | 35.1 | 7.8 | | | | | | | 8 | 11.0 - 13.0 | | | | | | | | | | | | | | | | | 6 | 13.0 - 15.0 | 32.8 | 96.2 | 91.3 | 84.2 | 77.1 | | | | | | | | | | | | 10 | 15.0 - 16.0 | | | | | | | | | | | | | | | | | 11 | 16.0 – 17.5 | | | | | | | | | | | | 34 | 0.0 | | | | 12 | 17.5 – 19.0 | 24.4 | 84.4 | 68.2 | 33.1 | 19.6 | | | | | | | | | | | | 13 | 19.0 - 20.0 | | | | | | | | | | | | 32 | 1.0 | | <u>Table No. (3):</u> Physical Properties of undisturbed samples. | | | | | | | | | | | , , , , , , | | | |-----|--------|--------------|------|------|-----------|------------------|------|--------|--------------------------|-------------|------------------|----------| | _ | Sample | Depth | M.C | | % Passing | assing Sieve No. | _ | | Hydrometer | r | Atterberg Limits | g Limits | | No. | No. | % | % | 4 | 10 | 40 | 200 | Sand % | Sand % Silt % Clav % | Clav % | TT | i e | | | 1 | 2.5 – 2.95 | 33.7 | 94.8 | 91.2 | 84.3 | 74.6 | | | | 34.8 | 89 | | - | 2 | 8.0 - 8.45 | 33.9 | 2.66 | 97.6 | 90.3 | 77.8 | 22.2 | 64.8 | 13.0 | | | | | 3 | 15.5 - 15.95 | 31.8 | 91.4 | 88.2 | 80.1 | 70.6 | | | | 32.1 | 0.5 | | : | 1 | 3.5 – 3.95 | 34.3 | 99.7 | 94.9 | 85.3 | 76.2 | 23.8 | 61.1 | 15.1 | 7 | ì | | 2 | 2 | 9.0 – 9.45 | 33.8 | 97.3 | 91.8 | 81.2 | 71.6 | | | 7.07 | 33.3 | 1-2 | | | 3 | 14.0 – 14.45 | 32.1 | 94.3 | 88.8 | 80.3 | 74.2 | 25.8 | 66.7 | 7.5 | 5.75 | 1 | | BH | Sample | Depth | M.C | | % Passing | % Passing Sieve No. | • | Bulk dens. | Uncom, | Triaxia | Triaxial Shear | Consolidation | ation | |-----|--------|--------------|------|------|-----------|---------------------|------|------------|-------------------------|---------|----------------|---------------|-------| | No. | No. | | % | 4 | 10 | 40 | 200 | KN/cm³ | Compression
ou KN/m² | • | ပ | EKNur | ర | | | - | 2.5 - 2.95 | 33.7 | 94.8 | 91.2 | 84.3 | 74.6 | 18.8 | 79 | 15 | 9,6 | 19200 | n 134 | | | 2 | 8.0 - 8.45 | 33.9 | 99.2 | 97.6 | 90.3 | 77.8 | 191 | 06 | | | 2 | 27.7 | | | 3 | 15.5 - 15.95 | 31.8 | 91.4 | 88.2 | 80.1 | 70.6 | 961 | 54 | | | | | | | 1 | 3.5 - 3.95 | 34.3 | 7.66 | 94.9 | 85.3 | 76.2 | 18.7 | 94 | 12 | 3.1 | 22100 | 116 | | 2. | 2 | 9.0 - 9.45 | 33.8 | 97.3 | 91.8 | 81.2 | 71.6 | 18.9 | 82 | 7 | | 201777 | 211.0 | | | 3 | 14.0 - 14.45 | 32.1 | 94.3 | 88.8 | 80.3 | 74.2 | 19.1 | 99 | | | | | Table No. (5): Chemical Analysis | | | Soil | | | Water | | 7 | |-----------|-------|-------------|------------------------|-----------|-------|---------------|---| | BH
No. | Depth | SO3=
(%) | Cl ⁻
(%) | BH
No. | Depth | SO3=
(PPM) | Cl ⁻
(PPM) | | 1 | 4.0 | 0.008 | 0.03 | | | | ` | | 2 | 9.0 | 0.030 | 0.090 | 2 | 7.0 | 105 | 2140 | ## 5.0 GEOLOGY &SUBSURFACE CONDITIONS Since Cambrian times thick sequences of sedimentary rocks have been deposited forming the upper part of the Arabian shield together with its Precambrian basement. In present geodynamics the Arabian shield is moving northwards separating itself from the large African shield and simultaneously being affected by the large Indian - Australian shield which is drifting eastwards and by this making the Arabian Peninsula dipping slightly towards the eastern Arabian Gulf leading to a present eastern inclination of the Arabian shield is of about 1 to 2 degrees. The southern basement flank of the Arabian shield is geologically formed by older Precambrian rock formations strongly stressed, broken, faulted and fissured with intruded dike swarms up to the subcrustal magma chamber of the The intruded volcanic material is forming volcanic lower crust. Those volcanic piles average more than 1200m in thickness forming the high Yemen lava plateau with alternating flows of basalt interbedded with acid effusive ingnimbrites that range in composition from rhyolite to comendite. These basalt flows of the Trap Series rest on shallow marine Mekj-zir sandstone and conglomerates considered in the inner part of the Paleocene and spread in the Pliocene/Pleistocene far into the coastal plain of the Aden region interwedged there with thick quaternary sediments of evaporate and marine. These in confirmation with the preliminary soil investigation might form the upper subsoil layers of the considered site in the Aden Airport area. +h In summary quite irregular subsoil conditions of geologically comparatively young origin and this under the influences of ongoing plate tectonic movements may have to be expected. Close inspection of soil samples retrieved from the two bore holes indicates almost a homogeneous layer of fine damp to dry, gray color fine silty sand up to a depth of 0.4m, this layer comprise the top soft soil. Underneath this layer a clayey silt layer extends to a depth of 16.0m, this layer is characterized by its stratification of sub layers 1.0 - 3.0m thickness each. The clay content in each sub layer differs slightly from others, but with general common characteristics such as dark brown Reddish color, stiff formation, low plasticity and medium compressibility and has some pea size gravel. This layer overly another stratified silty gravel – sand layer which is gray to light brown in color, with very dense formation, very low compressibility. ### 6.0 Carrying capacity of soil The analysis will consider shallow footing through theoretical and empirical approaches ### Theoretical approach: **<u>First</u>**: We will consider isolated footing dimensions of $2.0 \times 2.0 \text{m}^2$ at a depth of 1.5 m. The following Terzaghi equation corrected by schultz will be adopted to calculate the safe bearing capacity: Qull = $$(1 + 0.3 \text{ B/L}) \text{ CNc} + \gamma_1 D_1 \text{Nq} + (1 - 0.2 \text{ B/L}) \text{ By}_2$$ Ny/2 6 Where: The controlling stratum is at BH2, with $$\phi$$ = 12, C = 31 KN/m² Nc = 10.9, Nq = 3.42, N γ = 1.22 Qult = 544 KN/m² For a factor of safety = 3 Qall = 181 KN/m² **Second:** For strip footings with B = 1.0m at the same above conditions: $$\begin{array}{lll} Qult &=& 439.7KN/m^2 \\ Qall &=& 147KN/m^2 \quad For \ a \ factor \ of \ safety &=& 3 \end{array}$$ ### **Empirical Approach** From the standard penetration test; The average uncorrected (SPT vales to a depth = 5B below footing depth; i.e. to a depth = 10mm = 16 Taking into consideration the overburden effect and built up water pressure $$SPT$$ corrected = 13 Applying the following equation: Qall = $$(N/F2)(B+0.3/B)^2$$ Where: F2 = A factor dependent on B B = Width of footing N = Corrected SPT value $Qall = 162 \text{ KN/m}^2$ ## 7.0 <u>SETTLEMENT ANALYSIS</u> The following equation is applied to calculate the settlement under isolated and strip footings. $$\Delta H = (Cc + H/1 + e_0) \log (P_0 + \Delta P/\Delta P)$$ Where: Cc = Compressibility Index H = Thickness of affected layer by the applied load ΔP = Average applied load at center of affected layer e = Initial voids ratio P₀ = Over burden stress at center of affected layers. It we apply a load equal the safe bearing capacity calculated preciously Then for a $2.5m \times 2.5m$ isolated footing $$\Delta H = 6.7$$ cm For strip footing with B = 1.0m $$\Delta H = 3.4$$ cm ### 8.0 DYNAMIC & SIESMIC FACTORS. The clay silt soil has the following Dynamic characteristics. Poison's ratio $\mu = 0.38$ Shear modulus (G) = 7200 KN/m^2 Compression wave vc = 143 m/sec Compression wave vc = 143 m/sec. Shear wave = 61 m/sec ## 9.0 CONCLUSIONS AND RECOMMENDATIONS - 1. To enhance the soil strength and minimize the settlement, we recommend to design the building on strip footing. - 2. If strip footing are inadequate mainly in the middle area of the building, isolated square or rectangular footing are
recommended with width not exceeding 2.5m. - 3. To minimize the settlement and increase the soil carrying capacity, we recommend to make soil replacement under the footing. To increase the safe soil capacity to 2.0 Kg/cm², the soil replacement should be 1.5m below footing level, to increase the soil capacity to 1.8Kg/cm², the replacement should be to 1.2 m below bottom level of footings. - 4. Although the above figures are within the range of the calculated bearing capacity, but applying these figures without replacement will give high values of settlement, so the replacement is recommended to keep the safe bearing capacity in the range of 1.8 2.0 Kg/cm² with settlement less than 1.5 cm. Also soil replacement will enhance the soil underneath footing against dynamic loading. - 5. For soil replacement it is recommended to consider the following factors: - The soil used for replacement should be well graded granular material with max. size less than 4" and less then 10% should be passing sieve No. 200. - The width of replacement should be at least 30.0 cm out side the edges of footings from all sides. - The soil should be placed in layers less than 20.0 cm thickness and compacted to a minimum of 95% of max. dry density obtained in the laboratory. - 6. The soil is stiff but can be excavated with simple mechanical equipment such as backhoe. - 7. It is not recommended to use the excavated material in back fill operations around footings or directly below tiles. - 8. Due to the high concentration of chlorides, we recommend using ordinary Portland cement in amount not less than 425 kg/m3. ### 10. 0 REFERENCES - 1. ASTM 04.08 Soil and Rock; Dimension Stone; Geosynthetics. 1990. - 2. British Standard BS 5930 : 1981. Site Investigations. BSI London. - 3. British Standard 1377: 1975. Methods of testing soils for civil engineering purposes BSI London. - 4. Tomlinson M. J. Foundation Design and Construction. 4th ed. London. - 5. Peck. R, Hanson W, Thornburn. T. Foundation Engineering Willey and Sons. 1980. - 6. Wilun and Starzewski . Soil Mechanics in Foundation Engineering. London. 1975. - 7. Bowles J. Foundation Analysis and Design McGraw Hill. 1982. - 8. Tsytovich N. Soil Mechanics. Mir Publishers. Moscow. 1986. ## 11.0 APPENDIX | | | <u></u> | | | | | | | | |-------------|--------------------------|---|--------|---|---------------|-----------------------------|---|---|---| | CO | NSULTING ENGINEER | RING CEN | TER | | | | | | | | | | | | | ł | SOI | L CONSISTER | ICY TEST | | | JOE | | ••••• | | | G. E | Sam | ple Descriptio | n | | | | MPLE No.: Sample 4 | ********* | | | | | · | | | | SII | E: B. H. 1 | | | | <u></u> | | | | | | | | LIQU | ID LIN | 11T - P | LAST | IC - PLASTIC | ITY INDEX | <u> </u> | | | | | | Pla | stic Lir | nit | | Liquid L | imit | | | | Trial No. | *************************************** | 1 | | 2 | 1 | 2 | 1 | 2 | | | Dish No. | ************************ | 40 | | I | 26 | 7 | D | 14 | | | No. of Blows | ********************** | - | | _ | 1,2 | 21 | 32 | 40 | | 1 | Wt. Dish + Wet Soil | gr. | 28.9 | 0 | 31,02 | 47.95 | 38.13 | 41 ,5% | 46.18 | | 2 | Wt. Dish + Dry Soil | gr. | 28.3 | 4 | 30.33 | 44.50 | 33.65 | 37.7 6 | 40.77 | | 3 | Wt. of Dish | gr. | 26.3 | 4 | 27.88 | 35.61 | 21,54 | 27.09 | 25,23 | | 4 | Wt. of Water (1-2) | gr. | 0.5 | 6 | 0,69 | 3,45 | 4.48 | 3.8 0 | 5,41 | | 5 | Wt. of Dry Soil (2-3) | gr. | 2.0 | 0 | 2.45 | 8.89 | 1,2,11 | 10.67 | 15.54 | | 6 | % Moisture (4/ | 5 X 100) | 28.0 | 0 . | 28,2 | 38.8 | 37.00 | 35 .5 0 | 34.80 | | 7 | A verage Plastic Limit | % | 28 | 3.1 | ************* | **** | ····· | *************************************** | *************************************** | | | 더 | | | | FLO | W CURVE | | | | | | | | | | | | | | | | • | LS 39 E | | | | | | | | | | | 0 Y | | | | | | | | | | | E WE | | | | | | | | Ì | | | % EN | | | | | | | | | | | . ≥ E | | | | | | | | | | | 76 t | | | | | | | | | | | 10 |) | 15 | 20 | 25 | 30 35 40 | 45 50 | | | | | | | | NUM | BER | OF BIOWS | | | | | | | , | S | HRIN | KAG | E TEST | | | | | 1 | Shrinkge Dish No. | | gr. | | 8 | Vol. Shrinkage I | Dish (V) | ml | | | 2 | Wt. of Dish + Wet Soil | | gr. | | 9 | Vol. Dry Soil | (Vo) | ml | | | 3 | Wt. of Dish + Dry Soil | | gr. | | 10 | V - Vo = (8 - 9) | *************************************** | *************************************** | | | 4 | Wt. of Dish | ••••••••••• | gr. | *************************************** | 11 | v - Vo | (10 | 100 | | | 5 | Wt. of Water (2-3) | ***** | gr. | | ···· ‡··‡···· | $\frac{v - Vo}{Wo}$ x 100 = | (6 | (100) | | | 6 | Wt. of Soil (Wo) = (3-4) | *************************************** | gr | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 12 | Strinkage Limit | (7-11)% | | <u> </u> | | 7 | % Moisture (5/6 x 100) | *********** | | | 13 | Shrinkage Ratio | (6/6) | | | | Liqu
Lim | id = 36.4 | Pastic
Limit | = | 28. | | Plasticty
Index | 8.3 | Shrinka
Limit | ige = | | Soil | Mechanics Laboratory Te | sting : | (| CONSI | STEN | NCY TESTS | Sample | No. : | | | - | | | | | | | | | |-------------|---------------------------------------|-------------|---------|---------------|----------------------------------|--|---|----------| | | NSULTING ENGINEERING CE | NTER | | | - | . CONSISTE | NCY TEST | | | JOE | | | | G. E | Sam | ple Descriptio | on | | | | MPLE No.:9
E : B :: H: 1 | | | | | | | | | ŞIII | | | | | | | | | | | LIQ | | | | IC - PLASTIC | | | | | <u> </u> | | Plas | tic Lin | | | Liquid I | Limit | | | | Trial No. | 1 | | 2 | 1 | 2 | 1 | 2 | | ••••• | Dish No. | 15 | | 22 | J | Q | 12 | 34 | | | No. of Blows | _ | | - | 13 | 23 | 31 | 39 | | 1 | Wt. Dish + Wet Soil gr. | 27.47 | 3 | 3.28 | 68.23 | 53.58 | 43. 50 | 47.48 | | 2 | Wt. Dish + Dry Soil gr. | 27.09 | 3: | 2.58 | 60.68 | 48.89 | 38.18 | 40.87 | | 3 | Wt. of Dish gr. | 25.71 | 30 | 0.07 | 39.35 | 35.10 | 22,16 | 20.59 | | 4 | Wt. of Water (1-2) gr. | 0.38 | (| D . 70 | 7.55 | 4.69 | 5.32 | 6.61 | | 5 | Wt. of Dry Soil (2-3) gr. | 1.38 | | 2.51 | 21.33 | 13.79 | 16.02 | 20.28 | | 6 | % Moisture (4/5 X 100) | 27.50 | 2 | 7.90 | 35.40 | 34.00 | 33.20 | 32.60 | | 7 | A verage Plastic Limit % | 27.7 | | •••••• | | ************************************** | *************************************** | | | | 쯔 | | | FLO | W CURVE | | | | | | PERCENT MOISTURE | 13 | 20 | 25 | 30 35 40 | | | | | | | | | | 30 35 40
OF BIOWS | 15 50 | | | | | · · · · · · · · · · · · · · · · · · · | S | HRIN | KAG | E TEST | | | | | 1 | Shrinkge Dish No. | gr. | | 8 | Vol. Shrinkage D | ish (V) | ml | J | | 2 | Wt. of Dish + Wet Soil | gr. | | 9 | Vol. Dry Soil | (Vo) | m1 | | | 3 | Wt. of Dish + Dry Soil | gr. | | 10 | V - Vo = (8 - 9) | | *************************************** | • | | 4 | Wt. of Dish | gr. | | | | <i>(</i> 10 | ······· | | | 5 | Wt. of Water (2-3) | gr. | ······ | -1.1 | $\frac{v - V_0}{W_0} x \ 100 =$ | $\left(\frac{10}{6}\right)$ | x 100) | ļ | | 6 | Wt. of Soil (Wo) = (3-4) | gr | | 12 | Strinkage Limit | (7-11)% | | <u> </u> | | 7 | % Moisture (5/6 x 100) | | | 13 | Shrinkage Ratio | (6/6) | | | | Liqu
Lim | rid = 33.8 Pastic Limit | ₹7 | 27. | .7 | Plasticty = | 6.1 | Shrinka
Limit | ige = | CONSISTENCY TESTS Soil Mechanics Laboratory Testing: Sample No.: | CO | NSULTING ENGINEER | ING CEN | TER | | | | | | | |--------------|----------------------------|---------------------------------------|--------|-------------------------|----------------|---------------------------|-----------------|---|--------------| | | | | | | | S | OIL CONSISTE | ENCY TEST | | | | 3: 103/2000 | •••••• | | | G. E | Se Se | ımpie Descripti | ion | | | | MPLE No.:11 | ******* | | | | | , | | - | | SIT | E: 8, H, 1 | | | | | | | | | | | | LIQU | ID LIM | IT - P | LAST | IC - PLASTI | CITY INDE | X | | | | | | Plas | tic Lir | nit | | Liquid | Limit | | | ······ | Trial No. | **** | 1 | | 2 | 1 | 2 | 1 | 2 | | •••••• | Dish No. | | 20 | | Y | А | В | I | 2 | | | No. of Blows | ••••• | - | | _ | 11 | 20 | 29 | 38 | | 1 | Wt. Dish + Wet Soil | gr. | 23.21 | | 26.81 | 25.63 | 38.53 | 52.64 | 41.72 | | 2 | Wt. Dish + Dry Soil | gr. | 22,85 | | 26 . 37 | 23.07 | 35.07 | 46,22 | 36.51 | | 3 | Wt. of Dish | gr. | 21,54 | | 24.78 | 16.19 | 25.41 | 27.88 | 21.28 | | 4
 | Wt. of Water (1-2) | gr. | 0.36 | |).44 | 2.56 | 3.46 | 6.42 | 5,21 | | 5 | Wt. of Dry Soil (2-3) | gr. | 1.31 | | 1.59 | 6,88 | 9.66 | 18.34 | 15.23 | | 6 | | X 100) | 27.50 | | 27.70 | 37.20 | 35.80 | 35.00 | 34.200 | | 7 | A verage Plastic Limit | % | 27. | 6 | FIO | _
W CURVE | | | | | | PERCENT MOISTURE | | 13 | »
»
»
»
NUM | 25
BER | 30 35 4
OF BIOWS | 0 45 50 | | | | | | · · · · · · · · · · · · · · · · · · · | SI | HRIN | KAG | E TEST | | | | | 1 | Shrinkge Dish No. | | gr. | | 8 | Vol. Shrinkage | Dish (V) | ml | | | 2 | Wt. of Dish + Wet Soil | | gr. | | 9 | Vol. Dry Soil | (Vo) | ml | | | 3 | Wt. of Dish + Dry Soil | | gr. | | 10 | V - Vo = (8 - 9) |)) | *************************************** | | | 4 | Wt. of Dish | • | gr. | | 1.1 | <u>v - Vo</u>
Wo x 100 | _ (10 | * 100) | | | 5 | Wt. of Water (2-3) | | gr. | | | Wo X 100 | - (6 | x 100) | | | 6 | Wt. of Soil (Wo) = $(3-4)$ | 1 | gr | | 12 | Strinkage Limi | t (7-11)% | *************************************** | | | 7 | % Moisture (5/6 x 100) | | | | 13 | Shrinkage Rat | io (6/6) | | | | Liqu
Limi | | Pastic
Limit | = | 27 | | Plasticty =
Index | 7.7 | Shrinka
Limit | ge = | | Soil | Mechanics Laboratory Tes | ting : | C | ONSI | STEN | CY TESTS | Sample | No. : | | | Test | ted & Computed by: | | Ma | aterial l | Engine | er: |). N
 Date : | •••••• | | Ċ | ONSIII | TING | ENGINEERING | CENTER | |---|--------|---------|-------------|--------| | v | UNJUL | . I ING | CHUINCENING | CENIER | JOB: 2000/103 ### SOIL CONSISTENCY TEST Sample Description SAMPLE No.: ...4 ### LIQUID LIMIT - PLASTIC - PLASTICITY INDEX | | | Plastic | Limit | | Liquid | Limit | | |---|---------------------------|---------|-------|-------|----------------|--|--| | | Trial No. | 1 | 2 | 1 | 2 | 1 | 2 | | | Dish No. | 5 | 6 | ⋄ 23 | 24 | 28 | 29 | | | No. of Blows | _ | - | 11.00 | 20.00 | 31.00 | 42.00 | | 1 | Wt. Dish + Wet Soil gr. | 26.20 | 21.73 | 60.91 | 56.08 | 53.98 | 42.02 | | 2 | Wt. Dish + Dry Soil gr. | 25,20 | 20.68 | 53.09 | 49.67 | 49.39 | 36,33 | | 3 | Wt. of Dish gr. | 21.48 | 16.83 | 31.12 | 31.25 | 35.89 | 19.29 | | 4 | Wt. of Water (1-2) gr. | 1.00 | 1.05 | 7.82 | 6,41 | 4.59 | 5.69 | | 5 | Wt. of Dry Soil (2-3) gr. | 3,72 | 3.85 | 21.97 | 18.42 | 13.50 | 17.04 | | 6 | % Moisture (4/5 X 100) | 26(900 | 27.30 | 35.60 | 34.80 0 | 34.00 | 33.40 | | 7 | A verage Plastic Limit % | 27.1 | | | | F-11.00000000000000000000000000000000000 | * *********************************** | ### SHRINKAGE TEST | 1 | Shrinkge Dish l | No. | | gr. | | 8 | Vol. Shrinkage Dish | (V) | ml | | |------|-----------------|------------|--------|-----|-----|------|---------------------------------------|---|---|---| | 2 | Wt. of Dish + V | Vet Soil | | gr. | | 9 | Vol. Dry Soil | (Vo) | ml | | | 3 | Wt. of Dish + D | Ory Soil | | gr. | | 10 | V - Vo = (8 - 9) | *************************************** | | | | 4 | Wt. of Dish | | | gr. | | 11 | $\frac{v - V_0}{v} = x \cdot 100 = 0$ | (10 | 100 | | | 5 | Wt. of Water (2 | 2-3) | 8 | Γ. | - | **** | Wo X 100 = | (6 X | 100 <i>)</i> | | | 6 | Wt. of Soil (Wo | 0) = (3-4) | g | r | | 12 | Strinkage Limit (7 | - 11)% | | *************************************** | | 7 | % Moisture (5/ | /6 x 100) | | | | 13 | Shrinkage Ratio (6 | /6) | *************************************** | ************** | | Liqu | iid _ 30 | 4.3 | Pastic | _ | 27. | .1 | Plasticty _ | 7 2 | Shrinka | ge _ | | Liquid =
Limit = | 34.3 | Pastic = | 27.1 | Plasticty
Index = | 7,2 | Shrinkage ₌
Limit | |---------------------|------|----------|------|----------------------|-----|---------------------------------| | | - | | | | | | Soil Mechanics Laboratory Testing: **CONSISTENCY TESTS** Sample No.: Tested & Computed by: Material Engineer:Q.N...... Date: | CONSULTING ENGINEERING CENTER | CONSUL | TING | ENGINEERING | CENTER | |-------------------------------|--------|------|-------------|--------| |-------------------------------|--------|------|-------------|--------| JOB:2000/1.03..... SAMPLE No.: ...2.... SITE: .Bh2,..Depth..9.0.....9.45.... ### SOIL CONSISTENCY TEST Sample Description | LIQUID LIMIT | - PLASTIC | - PLASTICITY INDEX | |--------------|-----------|--------------------| |--------------|-----------|--------------------| | | | Plastic Limit Liquid Limit | | | | | • • • | |---|---------------------------|----------------------------|-------|-------|-----------------|-------|-----------| | | Trial No. | 1 | 2 | 1 | 2 | 1 | 2 | | | Dish No. | 3. | 4 | 23 | 24 | D | Н | | | No. of Blows | - | · | 12.00 | 20.00 | 28.00 | 35.00 | | 1 | Wt. Dish + Wet Soil gr. | 24.19 | 27.53 | 51.88 | 50.29 | 52.96 | 48.64 | | 2 | Wt. Dish + Dry Soil gr. | 23.75 | 26.82 | 46.51 | 45 .\$ 8 | 46.54 | 42.66 | | 3 | Wt. of Dish gr. | 22,08 | 24,10 | 31.12 | 31.25 | 27.09 | 24.32 | | 4 | Wt. of Water (1-2) gr. | 0.44 | 0.71 | 5.37 | 4.81 | 6.42 | 5.98 | | 5 | Wt. of Dry Soil (2-3) gr. | 1.67 | 2.72 | 15.39 | 14.23 | 19.45 | 18.34 | | 6 | % Moisture (4/5 X 100) | 26,30 | 26.10 | 34,90 | 33.80 | 33.00 | 32.60 | | 7 | A verage Plastic Limit % | 26.2 | | | ·A······ | * | \$ | CENT MOISTURE ## FLOW CURVE ### SHRINKAGE TEST | 1 | Shrinkge Di | sh No. | | gr. | | 8 | Vol. Shrinkage Disl | 1 (V) | ml | | |-------------|---------------|-----------------|---|-----|--------|-----|-------------------------------|---|------------------|------| | 2 | Wt. of Dish | + Wet Soil | ••••••• | gr. | •••••• | 9 | Vol. Dry Soil | (Vo) | ml | | | 3 | Wt. of Dish | + Dry Soil | *************************************** | gr. | | 10 | V - Vo = (8 - 9) | *************************************** | | | | 4 | Wt. of Dish | •••••••••••••• | | gr. | • | 11 | $\frac{v - V_0}{W_0}$ x 100 = | $\left(\frac{10}{2}\right)$ | 100 | | | 5 | Wt. of Wate | er (2-3) | | gr. | | *** | Wo X100 = | (6 ^ | 100) | | | 6 | Wt. of Soil (| $(W_0) = (3.4)$ | | gr | | 12 | Strinkage Limit (7 | 7 - 11) % | | | | 7 | % Moisture | (5/6 x 100) | | | | 13 | Shrinkage Ratio (6 | i/6) | | | | Liqu
Lim | iid = | 33,3 | Pastic
Limit | = | 26. | .2 | Plasticty Index | 7.1 | Shrinka
Limit | ge = | Soil Mechanics Laboratory Testing: **CONSISTENCY TESTS** Sample No.: Tested & Computed by : Material Engineer :Q.N....... Date : ## HYDROMETER TEST KIND OF MATERIAL SAMPLED AT : :Вн I ITEM No. DATE Sample 4 TESTED BY: ### • Hydrometer Type: % Passing sieve No. 10 = 87.2 Wt. Of sample = 100 ### • Readings | Time
minuets | Hydrometer
Reading
Corrected | %
Finner | Diameter mm. | |-----------------|------------------------------------|-------------|--------------| | 10 | 55 | 53.9 | 0.0337 | | 30 | 50 | 49.0 | 0.0205 | | 60 | 43 | 42.1 | 0.0 155 | | 1440 | 31 | 30.4 | 0.0035 | | 2880 | 20 | 19.6 | 0.0026 | | 4320 | 12 | 11. 7 | 0.0020 | % Clay in test = 11.7 % Clay in Sample = 9.9 Material Eng. O.N ## HYDROMETER TEST KIND OF MATERIAL SAMPLED AT : B H 1 ITEM No. DATE Sample 10 TESTED BY: ## Hydrometer Type: % Passing sieve No. 10 = 90.1 Wt. Of sample = 100 gm ### • Readings | Time
minuets | Hydrometer
Reading
Corrected | %
Finner | Diameter mm. | |-----------------|------------------------------------|-------------|--------------| | 10 | 60 | 58.8 | 0.0318 | | 30 | 52 | 51.0 | 0.0201 | | 60 | 45 | 44.1 | 0.0152 | | 1440 | 32 | 31.4 | 0.0035 | | 2880 | 20 | 19.6 | 0.0026 | | 4320 | 13 | 12.7 | 0.0021 | % Clay in test = 12.7 % Clay in Sample = 11.0 Material Eng. Q.N CEC *** C;E.C ### Sp.Gr. & ABSORPTION OF COARSE & FINE AGGREGATE **JOB** : 2000/103 SAMPLE No. :2 DATE LOCATION: BH 1 **OPERATOR** : | Sp.Gr. & ABSORPTION OF COARSE AGGREGATE | | | | | | | | | |---|--|-----|--------------|-------|--|--|--|--| | 1 | Wt. Of Dry sample (gr.) | (A) | 199.9 | | | | | | | 2 | Wt. Of Saturated surface of dry sample(gr.) | (B) | - | | | | | | | 3 | Wt. Of (Flask + Water + Sample) (gr.) | (C) | 937.3 | | | | | | | 4 | Wt. Of (Flask + Water till Mark) (gr.) | (D) | 809.5 | | | | | | | 5 | Sp. Gravity (dry sample) = $A/(B + D)$ - C | = | <u> </u> | - | | | | | | 6 | Sp. Gravity (Sat. surf. dry) = $B/(B + D)-C$ | = | | - | | | | | | 7 | Sp. Gravity (Apparent) = $A/(A + D) - C$ | = | | 2.772 | | | | | | 8 | % age of water absorption = $(B - A)/A \times 100$ | | | | | | | | Material Eng. Q.N ## Sp.Gr. & ABSORPTION OF COARSE & FINE AGGREGATE **JOB** : 2000/103 SAMPLE No. :10 DATE LOCATION: BH 1 **OPERATOR** : | | Result | | | | |---|--|-----|--------------|-------| | 1 | Wt. Of Dry sample (gr.) | (A) | 200.0 | | | 2 | Wt. Of Saturated surface of dry sample(gr.) | (B) | - | | | 3 | Wt. Of (Flask + Water + Sample) (gr.) | (C) | 936.6 | | | 4 | Wt. Of (Flask + Water till Mark) (gr.) | (D) | 809.5 | | | 5 | Sp. Gravity (dry sample) = $A/(B + D)-C$ | = | | - | | 6 | Sp. Gravity (Sat. surf. dry) = $B/(B + D)-C$ | = | | - | | 7 | Sp. Gravity (Apparent) $= A/(A + D) - C$ | = | <u></u> - | 2.744 | | 8 | % age of water absorption = $(B - A)/A \times 100$ | | | - | ### Sp.Gr. & ABSORPTION OF COARSE & FINE AGGREGATE JOB : 2000/103 SAMPLE No. :4 DATE LOCATION: BH 1 **OPERATOR** Sp.Gr. & ABSORPTION OF COARSE AGGREGATE Result Wt. Of Dry sample (gr.) 1 (A) 199.6 Wt. Of Saturated surface of dry sample(gr.) 2 (B) Wt. Of (Flask + Water + Sample) (gr.) 3 (C) 936.2 Wt. Of (Flask + Water till Mark) (gr.) 4 (D) 809.5 Sp. Gravity (dry sample) = A/(B + D)-C5 Sp. Gravity (Sat. surf. dry) = B/(B + D)-C= A/(A + D) - C7 Sp. Gravity (Apparent) 2.738 % age of water absorption = $(B - A)/A \times 100$ # Sp.Gr. & ABSORPTION OF COARSE & FINE AGGREGATE JOB : 2000/103 SAMPLE No. :14 **DATE** **OPERATOR** LOCATION: BH 1 | Sp.Gr. & ABSORPTION OF COARSE AGGREGATE | | | | | | | | |---|--|-----|-------------|-------|--|--|--| | 1 | Wt. Of Dry sample (gr.) | (A) | 200.4 | | | | | | 2 | Wt. Of Saturated surface of dry sample(gr.) | (B) | ** | | | | | | 3 | Wt. Of (Flask + Water + Sample) (gr.) | (C) | 940.9 | | | | | | 4 | Wt. Of (Flask + Water till Mark) (gr.) | (D) | 809.5 | - | | | | | 5 | Sp. Gravity (dry sample) = $A/(B + D)$ - C | = | | - | | | | | 6 | Sp. Gravity (Sat. surf. dry) = $B/(B + D)-C$ | = | | - | | | | | 7 | Sp. Gravity (Apparent) = $A/(A + D) - C$ | = | | 2.897 | | | | | 8 | % age of water absorption = $(B - A)/A \times 100$ | | | - | | | | ### **CONSOLIDATION TEST RESULTS** CONTRACT : | Borehole
Sample No. | Depth
m | Initial
Moisture
Content
º/o | initial
Bulk
Density
Kg/m ⁸ | \$. G. | Pressure
Range
kN/m² | Mv
m²/kN | Cv
Log t method
mm²/s | DESCRIPTION | |------------------------|------------|---------------------------------------|---|------------|----------------------------|-------------|-----------------------------|-------------| | B.H 2 | | |
| | | | | | | | 3.5-39 | 34.3 | 1.90 | 2699 | | | | | | sample | | | | ļ <u> </u> | | | | | | | | | | | | | | | C.E.C. ### **DIRECT SHEAR TEST** Project : Tested by Location : BH 1 Date . Sample 15 Area of Sample $= 36 \text{ cm}^2$ Ring factor 0.205 KN/div. Test Readings: Normal load 14.5 24.5 34.5 Test Results:- $\theta = 34^\circ$ Dial Reading 48 81 113.5 KN/m² ### **DIRECT SHEAR TEST** Project Location : BHI Tested by Date Sample 13 Area of Sample $= 36 cm^2$ Ring factor 0.205 KN/div. Test Readings: Normal load 14.5 24.5 34.5 Test Results:- Dial Reading 46 77.5 109 KN/m^2 ## DIRECT SHEAR TEST Project Location : BH 1 Tested by Date Sample 14 Area of Sample $=36 cm^2$ Ring factor 0.205 KN/div. Test Readings: Normal load 14.5 24.5 34.5 Dial Reading 47.5 80.5 113.5 Test Results:- C KN/m² ### DIRECT SHEAR TEST Project Location : BH2 Tested by Date Sample Area of Sample $= 36 cm^2$ 13 Ring factor 0.205 KN/div. Test Readings: Normal load 14.5 24.5 34.5 $\frac{Test \ Results:-}{\theta = 32}$ = 1.0 KN/m² 75 <u>Dial Reading</u> **44** | BH.: | 90. 2 | | L = % | ø em
4 em | | | |----------------|--------------------------|-------------|---------------|----------------|--------------------|-----------------| | Depti
Stres | n 9.0 9
s ring factor | | D.= 5. | y cm | σ3 (KN/m²) | Final load I
Reading | inal defor. | ALLI | Juit C | orrected | Deviator stress | | 130 | r caung | Reading | (mm) S | uain ar
das | ea (om-) | | | 200 | 7.8 | 63.6 | 73000 | 99.0 | | | | 400 | 120 | 5 7.4 | 5.44 | 382 | is comme | 279 17 11 | 3 | 8-2 | <u> </u> | 300 | | | | | | | | | | | | | | | | 200 | 100 | 00 200 | 300 | 700 E | 30 | 600 700
3 KN/m² | 900 | | | | | | | | | | C | 53 (KN/ | m²) | Fir | al I | oad
ing | | Fin
R | | | | | | Δ
(m | T
m | | |]]
 | nit
air | 1 | 1 : 1 : 1 : | 11111 | re
i (c | 111 | . L. L. | | De | vi:
/k | ato
N | r s
/m | tre
2) | \$8 | | |-----------------------------|---------|----------|-----|------------|--------------|-------|----------|---|-----------|-------|----------|---------------------------------------|----------|-------------|---------|-----|--------------|------------|----------|-------------|-------------|---------------|----------|---------|-------------|-----|-----------|----------|-----------|-----------|------------------|---| | | 100 | | | 5 5 | | | | 58 | | Б | | | 8 | 8 | i i | | . 0 | 17 | | | | , 9 | | 7 | | | 13 | 8 | | 7 | | | | | | | | 3 3 | Tro | | | ; | , 9 | 111 : | | | 6 | .: 11 | 9 | ه | . 6 | 89 | | | 9 | 7 | 9 | Ü | | | 10 | 7 | | | | | | | 200 | | l | 39 | | | é | 4 | 6 | | | | 6 | 4 | 6 | ٥ | • | ٩,3 | | | 9 | 9 | 2 | | | • | 3 2 | 1 7 | | | | | | | | | | | | | <u> </u> | | | | | | | | | 1 | | | | | |
! | | | | | | | | | | | |) - : - :
 <u>- ! :</u> | 1511
Til | ľ | | | | | | | | | | | | | | | | ÇΗ | | | | | | | | | | | .,. | | | | | | | | | | | | | | | | T | 3 1 2 2 | | | | 1 | di. | 171 | | | | | | | | | | | | | | H | .1 1 | | | | | 12. | 1 1 | | | 14. | Ţ | | ļ.,., | 4 | I | | | | | | | | | | | | | | | | 11 | | 1. | | | | | 1 - F1 | | | | 1111 | | | | | | ř | | | | | | | ŀ. | | | | | | - | | 71 | | | | | | .1. | | r:: | ند دا.
ا | 1 5 | | | | - | | | | | | | | | | | | | | ļ. <u>.</u> . | | | iiii
Des | | | | | | in H | | | | | | | | | - | | | | | ļ
 | : : : : : : : : : : : : : : : : : : : | | | | | !; ::
 | | - | | | | | | | | | | 1 1 | | 1 | | | | | | . 1 | | | | | | | | l r | -[| ļ | | | | | | | i i | | | - | | | 1 | | | | | - | | | | | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - | | | | | | | | | | | | | - | ļ. | | | | | | | | | | | | | 300 | | | | | 1: | | | | | | | | | - | | | | | | | - | <u> </u> | | | | | | | | | | | | | | | i d | | | | | | | | | | | | | - | ļ: | | | | - | | | | | | | | | | Ė | | | | | | | | | | | | | | | | | | - |
 -
 - | | | | | | | | | | 1 | | | | | | | | 200 | | | | | | 1 1 | | | | | | ÷ | | | | | ļ | ļ | | اند.
سسل | | - | ٠ | 1 | | 1 | | - | | 1 | | | | ا با | | | | | | | 11:
11: | | | - | 1: | 1 | | | وما | | 15 | <u> </u> | | | | | | | | | | | | 1 7 | I | | . : . | | | | | | | | | | | | | سيا
ا | | | | | | ļ. : | | | | | | | | | | | | | | | 1 | 100 | | | | | | ارسا | سنبه | سيند
ا | | | | | | 1 | | 1 | | 1 | | | .: | | | 1 | | | | | | | | | :
 | | | | | مينيسسس
ا | | . i | | | | 1 |
 | | | | | | | | | | | | | | | | | | if i | | | | · ' : | | | | | | | | | | | | | | 1 | | | 1 | | | | | | | | | | | | | | | + | | | | <u> </u> | 100 | | | 2.0c | :
 | | 7 | ,00 | <u> </u> | | | bo | | | | 500 | 15 | | | 60 o | | | 1 7 | 00 | | 17: | Ţ, | loc | chirch
chirch | 3 | ## PERMEABILITY TEST TYPE OF SOIL : - **JOB** :2000/103 SAMPLE NO. : (5) DATE: LOCATION : BH.1 • Test method: Falling head method. • Specimen size: D = 9.6cm, A 72.4cm² L = = 13.2cm, γ = 12.5 gr./cm³ • Water flow: Down ward Total time = 86400 Sec. Total discharge (Q) = 2583 mm³ Q $0.0299 \text{ mm}^3/\text{sec}$ Temp. = 20c° Rt. = 1 Difference in head (h) 165 cm i h/i = k 194 $= (q/i) \times (Rt/A) =$ 3.3×10^{-7} mm/sec. • REMARKS Material Eng. Q.N C. E. C ## PERMEABILITY TEST TYPE OF SOIL **JOB** :2000/103 SAMPLE NO. **:** (13) DATE: LOCATION : BH.1 Test method: Falling head method. Specimen size: D 9.6cm, A 72.4cm² L 13.2cm, γ gr./cm³ Water flow: Down ward Total time 600 Sec. Total discharge (Q) = 526710 mm³ Q 877.85 mm³/sec. Temp. 22c° = Rt. 1 Difference in head (h) 165 cm i h/i = 12.5 k $(q/i) \times (Rt/A) = 9.7 \times 10^{-3} \text{ mm/sec.}$ ## **REMARKS** Material Eng. Q.N C. E. C Finer 20 100 10 30 40 50 60 70 80 90 0 0.010 CLAY/SILT 0.074 0.100 0.149 INE. 0.300 0.420 SAND Sieve Size in mm 0.600 MEDIUM 0.800 1.000 1.190 2.000 COARSE 5.000 9.525 10.000 H H H 12.700 GRAVEL 19.050 25.400 COARSE 38.100 50.805 100.000 Graphical Representation of Soil Gradation Bore Hole no BH -1 (Depth 0.0 m to 0.5 m) Location:Al-Mansora Finer 100 20 30 50 40 10 60 70 80 90 0 0.010 CLAY/SILT 0.074 0.100 0.149 ANE. 0.300 0.420 SAND Sieve Size in mm 0.600 MEDIUM 0.800 1.000 1.190 2.000 COARSE 5.000 9.525 10.000 NE NE 12.700 GRAVEL 19.050 25.400 COARSE 38.100 50.805 100.000 Graphical Representation of Soil Gradation Bore Hole no BH -1 (Depth 1.5 m to 2.8 m) Location:Al-Mansora Finer 100 20 30 40 50 10 60 70 80 90 0.010 CLAY/SILT 0.074 0.100 0.149 HNE 0.300 0.420 SAND Sieve Size in mm 0.600 0.800 1.000 MEDIUM 1.190 2.000 COARSE 5.000 9.525 10.000 12.700 GRAVEL 19.050 25.400 COARSE 38.100 50.805 100.000 Graphical Representation of Soil Gradation Bore Hole no BH -1 (Depth 12.0 m to 12.5 m) Location:Al-Mansora Finer 100 10 20 30 40 50 60 6 80 90 0 0.010 CLAY/SILT 0.074 0.100 0.149 0.300 0.420 Sieve Size in mm 0.600 MEDIUM 0.800 1.000 1.190 2.000 COARSE 5.000 9.525 10.000 ANE. 12.700 GRAVEL 19.050 25.400 COARSE 38.100 50.805 100.000 Graphical Representation of Soil Gradation Bore Hole no BH -1 (Depth 5.0 m to 5.5 m) Location:Al-Mansora 199 Test Boring Log No.1 | | ,, | | | | | | |-----------------|-----------------------------|---|-------------------------------|-----------------|------------|---| | BORING NO. 1 | SHEET NO. 1/1 | DATE: April. 2000 | Ε: | REMARKS | loose | hard
Very dense | | | SHE | DAT | TIME | IDENTIFICATION | Silty Sand | Stratified clayey silt layers Each 1 - 3m Stratified silty gravel Sand | | TEST BORING LOG | | DRILLING METHOD: H. Stem Auger + Tricon Pit | | SYMBOL IDE | Sil | Stratified | | | nter | . Stem Auge | h - Aden | COLOR | Grey | Brown bo Bedish Cray Cray Light Brown | | | PROJECT: T.C.Control Center | THOD: H | LOCATION: Al Mansourah - Aden | MOIST.
COND. | Dry | Wet | | | ECT: T.C | ING MF | TION: A | THICK (m) | 0.5 | -2.8
 15.8 | | | PROJ | DRILL | LOCA | ELEV. | | 1 2 8 4 6 6 7 8 9 9 11 11 12 13 14 15 19 10 10 10 10 10 10 10 10 10 10 10 10 10 | Test Boring Log No.2 | BORING NO. 2 | SHEET NO. 1/1 | TIME: | REMARKS | loose | hard | Very dense | |-----------------|-----------------------------|-------------------------------|-----------------|------------|--|------------------------------| | TEST BORING LOG | | | IDENTIFICATION | Silty Sand | Stratified clayey silt layers
Each 1 - 3m | Stratified silty gravel Sand | | TEST BO | E | LOCATION: Al Mansourah - Aden | SYMBOL | | | S | | | nter | ovem Aug
1 - Aden | COLOR | Grey | Brown
to
Redish | Cray
Light
Brown | | | PROJECT: T.C.Control Center | LOCATION: Al Mansourah - Aden | MOIST.
COND. | Dry | Wet | Wet | | | CT: T.C. | TON: AI | THICK (m) | 0.3 | -2.9 - | 4.0 | | | PROJE | LOCA | ELEV. | | 1 2 8 4 6 9 11 11 12 12 12 12 12 12 12 12 12 12 12 | 17
18
19
20 | End of Excavation End of Excavation - S ostha 6 A XX 15:12:92 00:10 4 09:90 6 16min/Div(16min x1) 00:454 00:500 When the state of 10min/DIV(10min
x1) FUR's 66-05-06 00185 A va:40 4 調文が開 中午年 下午 4 22:00 FUN': 98-85-96 15:12:62 0 4 2 E O A MANUAL VOLUMEN XX Q 21:00 0 422 0 A 15:12:02 \$ Jeses 204 | 12. Condition of the Relevant Facilities | | |--|--| **Project Site** (Photo-1) Site View from South East (Photo-2) South Side of PHC Building (Photo-3) Main Gate to PHC (Photo-4) Main Gate to Mansourah PC (Photo-5) Drainage Pit (Photo-6) Geological Survey (Photo-7) Electrical Sub-Station # Aden PHC (Photo-8) Reference Lab. (Photo-9) Reference Lab. ### Aden Central Medical Storage (Photo-10) Storage Keeper Room (Photo-11) Medical Storage #### Maintenance Office (Photo-12) Maintenance of Medical Equipment (Photo-13) Parts Store (Photo-14) Workshop for Wooden Goods (Photo-15) Workshop for Metal Goods # National Tuberculosis Institute (NTI) (Photo-17) Corridor (Photo-16) Exterior (Photo-18) Reference Lab. (Photo-19) Meeting Room (Photo-20) Lecture Room (Photo-21) Bed Room (Photo-22) Laboratory (Photo-23) Preparation Room ### Taiz Sub Center (Photo-25) Entrance Hall (Photo-24) Main Entrance (Photo-26) Lecture Room (Photo-27) DOTS Room (Photo-28) Reference Lab. (Photo-29) Training Lab. (Photo-30) X-Ray Room (Photo-32) Corridor #### Hodeidah Sub Center (Photo-34) Entrance Hall (Photo-33) Exterior (Photo-35) Reference Lab. (Photo-37) X-Ray Room (Photo-38) Dark Room (Photo-39) Karte · Film Store (Photo-40) Consultation Roo (Photo-43)Tuberculosis Ward (Photo-44)Tuberculosis Room (Photo-42) Court Yard Aden Jumhuriyah Hospital (Photo-46) Exterior (Photo-45) Male Ward (Photo-47) Pantry (Photo-48) Preparatiuon Room (Photo-49) Consultation Room (Photo-50) Female Ward Pantry (Photo-51) Female Ward (Photo-52) Nurse Station # Mansourah Polyclinic (Photo-53) Main Entrance (Photo-54) Court Yard (Photo-55) Examination Room (Photo-56) DOTS Room ### Boreiga Polyclinic (Photo-57) Main Entrance (Photo-58) DOTS Room (Photo-59) DOTS Room (Photo-60) Medical Storage # Medan Polyclinic (Photo-61) Exterior (Photo-62) DOTS Room (Photo-63) Examination Room (Photo-64) Reference Lab. # Al Mu'lla Polyclinic (Photo-65) Exterior (Photo-66) DOTS Room (Photo-67) Sputum Examination Room (Photo-68) Consultation Room # Tawahi Health Unit (Photo-69) Court Yard & Treatment Room (Photo-70) Examination Room (Photo-71) Administration Office (Photo-72) Inoculation Room #### Khormaksal Health Unit (Photo-73) Main Entrance (Photo-74) Waiting Hall (Photo-75) Reference Lab. (Photo-76) Pharmacy ### Sheikh Othman Polyclinic (Photo-78) Waiting Hall (Photo-79) Reference Lab. (Photo-80) X-Ray Room # Sana Central Public Health Laboratory (Photo-81) Main Entrance (Photo-82) Laboratory (Photo-83) Laboratory (Photo-84) Laboratory ### Aden Healh Institute (Photo-85) Court Yard (Photo-86) Drawing Room (Photo-87) Computer Room (Photo-88) Dormitory Bed Room # アデン保健学校 (Photo-89) Exterior (Photo-90) Director Room (Photo-91) Lecture Room-1 (Photo-92) Lecture Room-2 # Survey of Infrastructure (Photo-93) Sewrage Treatment Plant (Photo-94) Sewrage Treatment Plant (Photo-95) Sewrage Treatment Plant (Photo-96) Sewrage Treatment Plant (Photo-97) Well near the Water Source (Photo-98) Same Left (Photo-99) Thermal Power Station (Photo-100) Garbage Dump # Appendix 13 References Reference Materials List #### 1.MOPD | No. | Title | Issued by | Issued on | Received | Pages | Nature | Language | |-------|--|-----------|-----------|-----------|--------|----------|----------| | MPD-1 | Statistical Year-Book, 1998 | MOPD/CSO | Apr-99 | 2000/5/3 | 408pp. | Original | E/A | | MPD-2 | Statistical Year-Book, 1996 | MOPD/CSO | Apr-97 | | | Copy | E/A | | MPD-3 | The Yemen First Five Year Plan(1996-2000) | MOPD | | | | Copy | E/A | | MPD-4 | Financial and Monetary Indicators | MOPD/CSO | 1997 | 2000/5/17 | 7pp. | Copy | E/A | | MPD-5 | Yemen in Figures, 1997 | MOPD/CSO | June,1998 | 2000/5/17 | 96pp. | Original | E/A | | MPD-6 | Population Estimates by Administrative and | MOPD/CSO | Dec.1996 | 2000/5/17 | 194nn | Oniginal | E/A | | MPD-0 | Geographical Subdivisions, 1994-2005 | MOPD/CSO | Dec, 1990 | 2000/3/17 | 124pp. | Original | E/A | #### 2.MOPH | No. | Title | Issued by | Issued on | Received | Pages | Nature | Language | |-------|--|-----------|-----------|-----------|-------|----------|----------| | MPH-1 | Health Sector Reform in the Republic of Yemen | МОРН | Dec-98 | 2000/4/30 | GOnn | Conv | E E | | MPH-1 | Volume 1: Strategy for Reform | MOPH | Dec-98 | 2000/4/30 | 60pp. | Copy | E | | MPH-2 | Annual Health Report, 1998 | MOPH | | 2000/4/30 | | Original | Α | | MPH-3 | National TB Control Programme: Annual Report, | MOPH/JICA | | | | Copy | E | | MPH-4 | Health Science Newsletter, Dec/1997 | | | | | Copy | E | | MPH-5 | Manual of the National TB Control Programme in the | MOPD/NTP | 1996 | 2000/4/18 | 02nn | Oniginal | E | | MPH-3 | Republic of Yemen | MOPD/NTP | 1990 | 2000/4/16 | 93pp. | Original | £ | #### 3.NTI | 011111 | | | | | | | | |---------------|--|-----------|-----------|-----------|-------|--------|----------| | No. | Title | Issued by | Issued on | Received | Pages | Nature | Language | | NTI-1 | Budget Allocation, 2000 | NTI | 2000/4/10 | 2000/4/20 | 1pp. | Copy | Α | | NTI-2 | Activities of NTI,1990-1995 | NTI | | 2000/4/20 | 1pp. | Copy | Α | | NTI-3 | Training of NTI,1996 and 1997 | NTI | | 2000/4/20 | 1pp. | Copy | Α | | NTI-4 | Training of NTI, July to November 1998 | NTI | | 2000/4/20 | 1pp. | Copy | Α | | NTI-5 | Budge and Income of NTI in 1998 | NTI/JICA | | 2000/4/20 | Зрр. | Copy | E | | NTI-6 | Plan of Operations: Yemen TB Control Project III | NTI/JICA | | 2000/4/29 | 1pp. | Copy | E | | NTI-7 | Chart Organization of Aden TB Center | NTI | | 2000/4/29 | 1pp. | Copy | E | | NTI-8 | Population/1998 | NTI | | 2000/4/29 | 1pp. | Copy | E | | NTI-9 | Health Monpower/1998-2 | NTI | | 2000/4/29 | 1pp. | Copy | E | | <i>NTI-10</i> | DOTS Population Coverage | NTI | | 2000/4/29 | 1pp. | Copy | E | | <i>NTI-11</i> | Health Manpower in TB Control(Salaries) | NTI | | 2000/4/29 | 1pp. | Copy | E | | NTI-12 | The Organograme of NTI | NTI | | 2000/4/29 | Зрр. | Copy | E | | <i>NTI-13</i> | Training Activities/1999 | NTI | | 2000/4/28 | 2pp. | Copy | E | | NTI-14 | Conversion Rate of Smear-Positive P.TB. Cases to Negative at 2,3 months of the | NTI | | 2000/4/28 | 2pp. | Copy | E | | NTI-15 | All Smear-Positive P.TB. Cases detected/1998/Dots | NTI | | 2000/4/28 | 4nn | Copy | E | |---------------|--|----------|---------|-----------|------|------|--------------| | 111-13 | Coverage related to all new Sm. | 1111 | | 2000/4/20 | 4pp | Сору | L | | <i>NTI-16</i> | Table shows new Sm.+,R.,T/l.,T/D. and O.+ recorded | NTI | | 2000/4/28 | 2pp. | Copy | \mathbf{E} | | NTI-17 | Q1/1998/New P.Sm.+ TB. cases/Non-Dots Tx. | NTI | | 2000/4/28 | 4pp. | Copy | E | | NTI-18 | CF./1999/DOTS/Gvs./Ds./Hfs./Data is from Districts | NTI | | 2000/4/28 | 4pp. | Copy | \mathbf{E} | | NTI-19 | イエメン結核対策プロジェクト()概要 | NTI/JICA | | 2000/4/30 | 4pp. | Copy | J | | NTI-20 | Guideline of Supervision and Quality Control for TB | NTI/JICA | Jun-98 | 2000/5/3 | 7nn | Conv | Е | | 1V11-2U | Laboratories | N11/JICA | Juii-30 | 2000/3/3 | 7pp. | Copy | Ľ | | NTI-21 | NTP TB Laboratory, 1999 | NTI/JICA | 1999 | 2000/5/3 | 3pp. | Copy | \mathbf{E} | | <i>NTI-22</i> | Schedule of the GTC Meeting 2000 | NTI/JICA | | 2000/5/3 | 1pp. | Copy | \mathbf{E} | | NTI-23 | Curriculum oh the Training Courses | NTI | | 2000/5/12 | 3pp. | Copy | E/A | | NTI-24 | プロ技協供与機材リスト2000年(案) | NTI/JICA | | 2000/5/13 | 1p. | Copy | E | | NTI-25 | NTP Training Courses and Meetings at Aden, Plan 2002 | NTI/JICA | | 2000/5/13 | 1p. | Copy | E/J | #### 4.Aden PHC | No. | Title | Issued by | Issued on | Received | Pages | Nature | Language | |--------|---|-----------------|-----------|----------|--------|----------|----------| | APH-1 | Health Statistics Aden, 1997 | Aden Health | | | | Copy | A | | APH-2 | Number of Graduates: Aden HIHS | HIHS | 1999 | 2000/5/5 | 1p. | Copy | A | | APH-3 | School Brochure: Aden HIHS | HIHS | 1996 | 2000/5/5 | 20pp | Original | E | | APH-4 | General Specifications for Building | MOC | 1977 | 2000/5/2 | ??? | Copy | E | | APH-5 | Aden PHC Office: Organization Charts | PHC | 1999 | 2000/5/5 | ??? | Copy | A | | APH-6 | DOTS Expansion Plan in the Southern and Eastern | NTP | | 2000/5/7 | 1p. | Copy | E | | APH-7 | Organization of Aden PHC Office | Aden PHC Office | 2000 | 2000/5/7 | 30pp. | Copy | A | | APH-8 | Organizational Skeleton for PHC, Aden Governorate | Aden PHC Office | | 2000/5/7 | 3pp. | Copy | E/A | | APH-9 | Health Statistics in Aden 1990-1999 | Aden Health | 2000 | 2000/5/7 | 121pp. | Copy | A | | APH-10 |) アデン州PHC事務所の研修内容 | PHC | | 2000/5/9 | 14pp. | Copy | Α | | | ′水質検査結果(アデン州PHC事務所) | PHC | | 2000/5/9 | 2pp. | Copy | Α | | APH-12 | ? アビヤン州保健職員・施設数 | PHC | | 2000/5/9 | 2pp. | Copy | Α | | APH-13 | 『アデン州PHC年次活動計画、1999年 | PHC | 1999 | 2000/5/9 | 38pp. | Copy | Α | | APH-14 | リアデン州財務資料 | Aden Health | | 2000/5/9 | 14pp. | Copy | Α | ### 5. TB CENTER: TAIZ, HODAIDAH | No. Title | Issue | d by Issued on | Received | Pages | Nature | Language | |--|--------------------|----------------|-----------|-------|----------|----------| | TBC-01 Annual Report of NTP/TAIZ, 1999 | Taiz TB | Center | 2000/5/10 | 23рр. | Copy | A/E | | TBC-02 Taiz TB Center, Budget 1998 | Taiz TB | Center | 2000/5/10 | 6pp. | Copy | Α | | TBC-03 Taiz TB Center, Plan for Implement | ation 2000 Taiz TB | Center | 2000/5/10 | 4pp. | Copy | E | | TBC-04 TB Registration Cards | Taiz TB | Center | 2000/5/10 | 4 pcs | Original | A | | TBC-05 Case Finding: Quarterly Report, 199 | 9
Hodaida | h TBC | 2000/5/13 | 1p. | Copy | E | | <i>TBC-06</i> WFP:食糧支給カード | Hodaida | h TBC | 2000/5/13 | 1p. | Original | Α | | TBC-07 Map of Hodaidah City | Hodaida | h TBC | 2000/5/13 | 1p. | Copy | E | # 6. Others | No. | Title | Issued by | Issued on | Received | Pages | Nature | Language | |---------------|--|-------------|-----------|-----------|--------|--------|----------| | ОТН-1 | Cost Sharing for Health Services | MOPH | Dec-97 | 2000/5/2 | 13pp. | Copy | E | | OTH-2 | Transformation of the 5 Year Plan | MOPH/HSRC | Jan-98 | 2000/5/2 | 36pp. | Copy | E | | ОТН-3 | Highlights on Planing of Human Resources | MOPH/CP | ? | 2000/5/2 | 10pp. | Copy | E | | OTH-4 | What about all these Teams, Councils, Committees? | HESAS | 1999/8/17 | 2000/5/2 | 4pp. | Copy | E | | | Donors Health Sectorial Committee | MOPH/HSC | 1999/4/24 | 2000/5/2 | 6pp. | Copy | E | | OTH-6 | Health Information of Yemen
The Cabinet's Decree 190.(13) of 1999 regarding the | | 1999/9/16 | 2000/5/2 | 12pp. | Copy | E | | ОТН-7 | Community Participation in the Health & Curative Services & Regulating the Work of the Central Public autonomous | MOF/MOPH | 1999/1/26 | 2000/5/2 | 17pp. | Copy | E | | OTH-8 | Members of the Health Sector Coordination Meeting | ~ | ~ | 2000/5/2 | 1pp. | Copy | E | | ОТН-9 | UNICEF:1999-2001 Country Program of Cooperation:
Volume 2 Program Plans of Operations | UNICEF | ? | 2000/5/2 | 54pp. | Copy | E | | OTH-10 | 保健セクター・ドナー会合 | MOPH/HSC | 2000/2/21 | 2000/5/2 | 2pp. | Copy | J | | OTH-11 | MSF/Doctors without Borders: Activities in the Republic of Yemen | MSF/Yemen | Jul-97 | 2000/5/2 | 4pp. | Copy | E | | OTH-12 | LISAID/Voman: Activity management Office | USAID/Yemen | 1997 | 2000/5/2 | 7pp. | Copy | E | | OTH-13 | Health Task Force Sub-Committee Meeting on Setting Standards | UNICEF | 1998/8/16 | 2000/5/2 | 4pp. | Copy | E | | OTH-14 | Health Services in the Republic of Vemen Handbook | MOPH/CSS | 1999/10/9 | 2000/5/2 | 7pp. | Copy | E | | OTH-15 | Yemen TB Control Project(III): PDM | MOPH/JICA | Nov-99 | 2000/5/2 | 8pp. | Copy | E/J | | OTH-16 | Health Sector Donors Co-ordination: Proposal on employment of trained health personnel | MSF/Yemen | Nov-99 | 2000/5/2 | 4pp. | Copy | E | | OTH-17 | , Points of Clarification about Management Structure for the HSR | MOPH/HSRC | Nov-99 | 2000/5/2 | 12pp. | Copy | E | | OTH-18 | NTCP of Republic of Yemen (9-22 April 1999) | MOPH/WHO | Apr-99 | 2000/5/2 | 13pp. | Copy | E | | OTH-19 | Cost-sharing of Medical Expenses by Local
Communities Act (First Draft, October 1997) | MOPH | Oct-97 | 2000/5/2 | 14pp. | Copy | E | | OTH-20 | MSF/Annual Report Yemen 1998 | MSF/Yemen | 1998 | 2000/5/3 | 39pp. | Copy | E | | OTH-21 | Yemen: Tourist Guide | MOCT | Jan-96 | 2000/5/3 | 115pp. | Copy | E | | OTH-22 | WHO: Joint Program Review Mission2000-2001 | WHO | 1999 | 2000/5/13 | 2pp. | Copy | E | | | ' 総合報告書: 結核対策プログラム管理(単発)/渡辺勝美 | JICAプロ技協 | 1999/8/5 | 2000/5/13 | 47pp. | Copy | J | | <i>OTH-24</i> | 業務報告書:イエメン共和国結核対策/下内 昭 | JICAプロ技協 | Apr-98 | 2000/5/13 | 13pp. | Copy | J | | OTH-25 | Summary Report on TB Laboratory Activities to NTCP in the Republic of Yemen/Ms.Mika Horie | JICAプロ技協 | Jul-98 | 2000/5/13 | 18pp. | Copy | E | | <i>OTH-26</i> | アデン共和国病院の結核病棟改修工事について/渡辺勝美 | JICAプロ技協 | Jul-98 | 2000/5/13 | 5 p p. | Copy | E | | | / 短期派遣専門家報告書(Draft)/江上由里子 | JICAプロ技協 | Mar-99 | 2000/5/13 | 29pp. | Copy | J/E | | | イエメン在住難民に対する結核対策について | JICAプロ技協 | Mar-99 | 2000/5/13 | 2pp. | Copy | J | | <i>OTH-29</i> | 業務報告書:イエメン共和国国家結核対策(III)/南川真理子 | JICAプロ技協 | 2000/4/3 | 2000/5/13 | 33pp. | Copy | J/E |