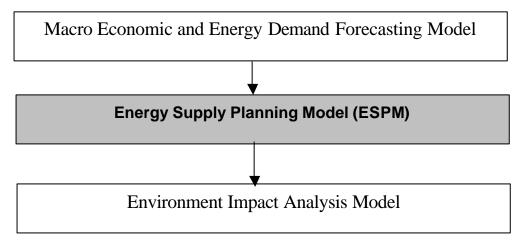
# 6. Energy Supply Planning Model

# 6.1 Purpose and Model Function


### 6.1.1 Purpose

The purpose of the supply-planning model is to optimize energy supply balance for energy policy decision-making. The future demand is prepared in the energy demand brecasting model. And shortage and surplus of the energy supply balance is processed in line with the prepared procedures (export for energy supply surplus and import for energy supply shortage). During that time, the energy balance was made up for converging to the maximum profit of energy supply side. The energy supply-planning model (ESPM) aims to optimize the objectives, concerning policy by using the energy prices and demand, estimated in the energy demand forecasting model.

### 6.1.2 Function

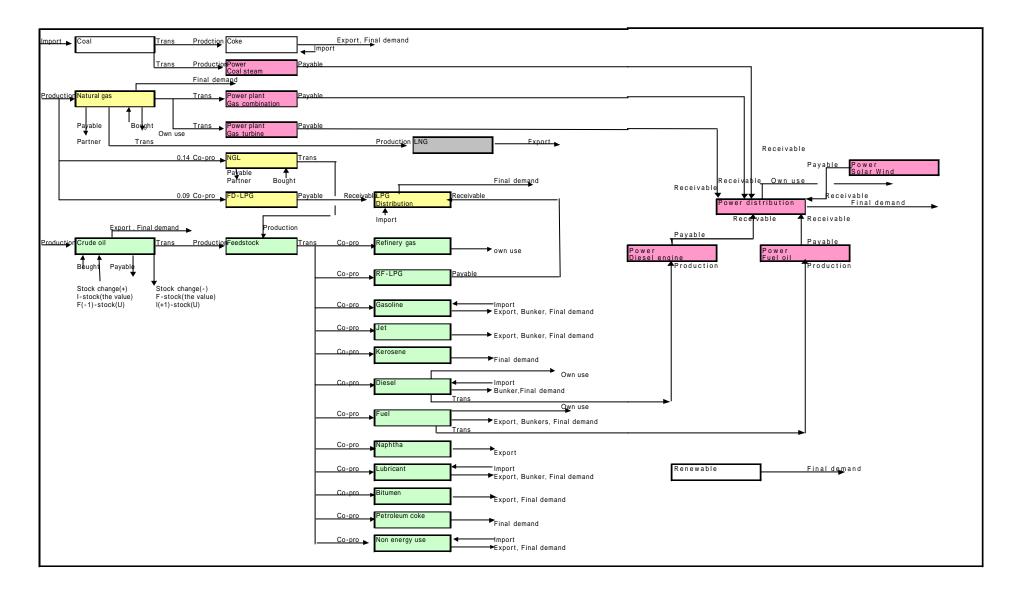
The function of the energy supply-planning model for the whole energy economic model is illustrated in Figure 6.1.1. The forecasting and analysis procedures in the energy economic model are performed in macro economic model, energy demand forecasting model, energy supply planning model and environmental impact analysis model.

Figure 6.1.1 Block Flow of Energy-Economic Model



# 6.2 Model Concept and Structure

### 6.2.1 Concept


The Energy Supply Planning Model consists of six EXCEL worksheets. The role of each worksheet is described in the table below. The data output from a worksheet, starting from the price and cost sheet, is processed to the sheet in the next row, which ends with the primary energy supply sheet.

| Sheet                             | Contents                                  |
|-----------------------------------|-------------------------------------------|
| Price and Cost sheet (PIM)        | Price and Cost are estimated in the sheet |
| Input sheet (LIM)                 | All data are input in the sheet           |
| LP model sheet (LPM)              | The sheet is handled by Solver.           |
| Energy balance sheet (EBT)        | The sheet is one of the outputs.          |
| Growth rate sheet (GRT)           | The sheet is growth rate of "EBT" sheet   |
| Primary energy supply sheet (PEC) | The sheet is one of the outputs.          |

Regarding ESPM, the model uses linear programming method (LP method) in LPM sheet. (Other sheets do not use LP method). The model in LPM sheet consists of an objective function, variables and constraints. The variables are prepared for all supply and consumption items per energy for targeted years. The constraints give some limitation to the variables. For each constraint, a feasible range for the variable is generated, and LP model searches the optimum solution in the range. The objective function is set in order to search the maximum profit by the LP model.

| Components                | Items               | Contents                                  |  |
|---------------------------|---------------------|-------------------------------------------|--|
| Constraints               | Upper limit         | Constraint supply and consumption items   |  |
|                           | Lower limit         | Constraint supply and consumption items   |  |
|                           | Balance constraints | Co-products balance, Material balance     |  |
|                           |                     | Transformation, Own use, Stock balance    |  |
| Variables                 | Initial-stock       |                                           |  |
|                           | Production          | Supply items                              |  |
|                           | Import              |                                           |  |
|                           | Bought              |                                           |  |
|                           | Receivable          | $\gamma$                                  |  |
|                           | Domestic demand     |                                           |  |
|                           | Export              | Consumption items                         |  |
|                           | Bunker oil          |                                           |  |
|                           | Payable             |                                           |  |
|                           | Finial stock        |                                           |  |
| <b>Objective function</b> | Prices & Cost       | Prices and cost                           |  |
|                           | Income              | Calculated by sales and its price         |  |
|                           | Expense             | Calculated by energy consumption and cost |  |
|                           | Profit              | Calculated by income and expense          |  |

 Table 6.2.2 Components of LP Model in ESPM



#### Figure 6.2.1 Energy Flow for Targeted Energies and Sectors of ESPM

# (1) Definition of Energies and Energy Conversion Sectors

Energies and energy conversion sectors in the model are defined in the table below. There are 30 different kinds of energies in 8 energy conversion sectors. Energy conversion sectors consume some types of energy and produce other types of energy.

| Conversion sector      | Consumption energies | Energies                                               |  |
|------------------------|----------------------|--------------------------------------------------------|--|
| Coal sector            |                      | Coal                                                   |  |
| Coke sector            | Coal                 | Coke                                                   |  |
| Crude oil sector       |                      | Crude oil                                              |  |
| NG sector              |                      | Natural Gas, NGL, LPG (FD), LNG                        |  |
| LPG sector             | LPG(FD), LPG(RF)     | LPG                                                    |  |
| <b>Refinery sector</b> | Crude oil            | Refinery feedstock, Refinery gas, LPG (RF),            |  |
|                        | NGL                  | Gasoline, Jet fuel, Kerosene, Diesel, Fuel oil, Naphth |  |
|                        |                      | Lubricants & additives, Bitumen, Petroleum coke, Non   |  |
|                        |                      | specified products                                     |  |
| Power sector           | Natural gas          | Power distribution, Hydro, Gas combined, Gas Turbine,  |  |
|                        | Diesel               | Diesel engine, Steam-coal                              |  |
|                        | Fuel oil             | Steam-Fuel oil, Solar-Wind-Others                      |  |
| Renewable              |                      | Renewable                                              |  |

 Table 6.2.4 Energies and Energy Conversion Sectors

LPG (FD) : field LPG, LPG(RF): Refinery LPG

Prepared LNG and Coal steam generator for the future plan

### (2) Definition of Supply Items and Consumption Items

The balance between supply and consumption is always maintained through a buffer, such as initial and final stocks. In other words, the total energy consumption, including stock volume, is completely met by the total energy supply. In the model, five items, including Initial-stock, Production, Import, Bought and Receivable, are defined as the supply side. Seven items, including Sales, Export, Bunker, Payable, Transformation, Energy own use and Final- stock, are defined as the consumption side. These items generated the following expression.

# Initial - Stock + production + Import + Bought + Receivable

-(Sales + Export + Bunker + Payable + Transformation + Own use + Final-Stock )= 0

And these items have upper limits and lower limits for generating their finite feasible area. The following table shows the relation of the above items (Variables), their upper limits and their lower limits.

| Side             | Variables      | Upper Limit        | Lower Limit           |
|------------------|----------------|--------------------|-----------------------|
| Supply Side      | Initial -Stock | Free               | Normally 0            |
|                  | Production     | Capacity           | Normally 0            |
|                  |                | Max production     | Normally 0            |
|                  | Import         | Max import         | Normally 0            |
|                  | Bought         | Max bought         | Max bought (*1)       |
|                  | Receivable     | Decided internally | Normally 0            |
| Consumption Side | Sales          | Domestic demand    | Domestic demand (*2)  |
|                  | Export         | Max export         | Normally 0            |
|                  | Bunkers        | Max Bunker sales   | Max Bunker sales (*3) |
|                  | Payable        | Free               | Normally 0            |
|                  | Transformation | Free               | Normally 0            |
|                  | Own use        | Free               | Normally 0            |
|                  | Final -Stock   | Free (*4)          | Normally 0            |

 Table 6.2.5 Components of Supply and Consumption in ESPM

(\*1) Enter Max bought for crude oil, but 0 for NG and NGL

(\*2) As Domestic demand is supplied preferentially, should enter the same value in Upper and Lower limit.

(\*3) As Bunker oil demand is supplied preferentially, should enter the same value in Upper and Lower limit.

(\*4) Enter 0 in final-stock of each year, but should enter 0 in Upper limit of final-stock in the previous year.

### (3) Constraints of Energy Balance

### 1) Energy Transformation Balance

Called "Transformation", some types of energy are converted to other types of energy. Energy transformation sectors calculate the conversion. The following table describes energy transformation sectors, and the energies are calculated in transformation balance expressions.

| Balance                | <b>Conversion sectors</b> | Utilized to                          |  |
|------------------------|---------------------------|--------------------------------------|--|
| Transformation balance | Coal                      | Raw material of coke, fuel for power |  |
|                        | Crude oil                 | Raw material of refinery             |  |
|                        | Natural gas               | Raw material of LNG, fuel for power  |  |
|                        | NGL                       | Raw material of refinery             |  |
|                        | Refinery feedstock        | Raw material of refinery             |  |
|                        | Diesel                    | Fuel for power                       |  |
|                        | Fuel oil                  | Fuel for power                       |  |

**Table 6.2.6 Energy Transformation Balance** 

### 2) Energy Own Use Balance

Some energy transformation sectors consume the energy that they produced. It is called "Energy own use". Natural gas sector, Refinery sector and Power generation (own use in power generation) and distribution (power loss in delivery) sectors have energy own use. The energy own use are calculated in an energy own use balance.

| Balance        | Sectors                       | Consumed energy         |
|----------------|-------------------------------|-------------------------|
| Energy own use | Natural gas production sector | Natural gas             |
|                | Refinery sector               | Refinery gas            |
|                |                               | Diesel                  |
|                |                               | Fuel oil                |
|                |                               | Lubricants & additives, |
|                | Electricity sector            | Generation loss         |
|                |                               | Distribution loss       |

# Table 6.2.7 Energy Sector Use Balance

# 3) Co-production Balance

Petroleum plants produce multiple products with some proportion of their yields. It is called "Co-products". Natural gas and Refinery plants have co-products in the model. The production of the co-products is calculated by multiplying main products and their yields. The following table shows co-products in Natural gas and Refinery plants. Co-production is calculated in a co-production balance.

| Balance       | Sector                        | Produced Energies      |
|---------------|-------------------------------|------------------------|
| Co-production | Natural gas production sector | Natural gas            |
|               |                               | NGL                    |
|               |                               | LPG (FD)               |
|               | Refinery sector               | Refinery Gas           |
|               |                               | LPG (RF)               |
|               |                               | Gasoline               |
|               |                               | Jet fuel               |
|               |                               | Kerosene               |
|               |                               | Diesel                 |
|               |                               | Fuel oil               |
|               |                               | Naphtha                |
|               |                               | Lubricants & additives |
|               |                               | Bitumen                |
|               |                               | Petroleum coke         |
|               |                               | Non specified products |

**Table 6.2.8 Co-production Balance** 

# 4) Receivable Balance

There are energies to be transferred without the purpose of energy transformation. The received energy is put in Receivable category of its sector. LPG sector receives LPG (FD), which is produced as co-production of Natural gas, and LPG (RF), which is produced as co-produced in Refinery plant. Power distribution sector receives power coming from each power generation sector; power is sold through the power distribution sector.

| Balance            | <b>Receivable Sectors</b> | Payable Sectors     |  |
|--------------------|---------------------------|---------------------|--|
| Receivable balance | LPG distribution          | LPG (FD)            |  |
|                    |                           | LPG (RF)            |  |
|                    | Power distribution        | Hydro power         |  |
|                    |                           | Gas combined        |  |
|                    |                           | Gas turbine         |  |
|                    |                           | Coal steam power    |  |
|                    |                           | Diesel engine power |  |
|                    | Fuel oil steam power      |                     |  |
|                    |                           | Solar, Wind, Others |  |

 Table 6.2.9
 Receivable Sectors and Payable Sectors

# 5) Payable Balance

There are energies to be transferred without the purpose of energy transformation. The paid energy is put in payable category of its sector. The energy to be paid to partners is set in its payable category. The following table shows the relation between the payable sectors and the receivable sectors.

| Balance         | Payable sector              | Receivable sector         |
|-----------------|-----------------------------|---------------------------|
| Payable balance | Crude oil                   | Partner                   |
|                 | Natural gas                 | Partner                   |
|                 | LPG (FD)                    | LPG sector                |
|                 | LPG (RF)                    | LPG sector                |
|                 | Power from Hydro            | Power distribution sector |
|                 | Power from Gas combined     | Power distribution sector |
|                 | Power from Gas turbine      | Power distribution sector |
|                 | Power from Coal Steam       | Power distribution sector |
|                 | Power from Diesel engine    | Power distribution sector |
|                 | Power from Fuel oil steam   | Power distribution sector |
|                 | Power from Solar-Wind-Other | Power distribution sector |

 Table 6.2.10 Payable Sector Balance

# 6) Stock Balance

Initial-stock and Final-stock categories are prepared for their energy stocks in the model. The final-stock of the current year equals to the initial-stock of the next year. Then, the following equation is formulated.

# The final-stock of the current year - the initial-stock of the next year = 0

The above equation is formulated in every year for every energy in the model.

(Example) Initial-stock & Final-stock have the same values detected by

| ſ | Initial-stock        | Initial-stock | Initial-stock        | Initial-stock        | Initial-stock        |
|---|----------------------|---------------|----------------------|----------------------|----------------------|
|   | 1 <sup>st</sup> year | 2nd year      | 3 <sup>rd</sup> year | 4 <sup>th</sup> year | 5 <sup>th</sup> year |
|   | Final-stock          | Final-stock   | Final-stock          | Final-stock          | Final-stock          |

#### (4) Definition of Objective Function

#### 1) Income Items

Income = Domestic sales value + Export value + Bunker value + Payable value

+ Transportation vale + Own use value + Final stock

#### 2) Expense Items

 $Expense=Production \ cost + Import \ cost + Bought \ cost + Received \ cost + Initial \ stock \ cost$ 

+ Tax

# 3) Profit Items

Profit = Income - Expense

### 6.2.2 Model Structure

### (1) Prices and Costs Estimation ("PIM" sheet)

The LP model uses some types of price and cost. Before calculation of the model, the prices and costs of energies should be set. The prices and costs estimation sheet (PIM) are prepared for the purposes. The basic method of the estimation is "Price net back method", in which primary energy and intermediate petroleum product prices are estimated by market prices of domestic energy demand.

### 1) Exogenous Variables

Crude oil price (\$/bbl), Coal price (\$/ton), WPI (1996=100) and Exchange rate (LE/\$) are used for estimating energy price and cost as exogenous variables in the model. The exogenous variables are estimated in a macro economic model. Also, energy import prices are calculated with the difference between domestic crude oil price and international crude oil price. Then, the difference between two crude oils is calculated in the **e**xogenous variable block.

### 2) Crude Oil

Partner cost is defined as "Plant cost \* Partner share". Plant cost is calculated as the following table. At first, the crude oil production cost in 1999 is estimated as 10 US\$/bbl. The calculation of crude oil plant cost starts with the crude oil production cost.

| Items                                           | Unit in 1999 | Comments             |
|-------------------------------------------------|--------------|----------------------|
| Estimated crude oil production cost, 10US\$/bbl | 10US\$/bbl   |                      |
| LE/bbl                                          | 34LE/bbl     | 10US\$*Exchange      |
| LE/TON                                          | 250LE/TON    | 34/0.159/0.85        |
| Plant cost                                      | 178LE/TON    | 250/(1+patner share) |
| Partner share cost                              | 70LE/TON     |                      |

 Table 6.2.11 Plant Cost Estimation of Crude Oil in "PIM" Sheet

Energy import cost is calculated as international crude oil price. And Bought cost is

calculated from the expression of "Production cost \*1.1". The consumption ratio of domestic production crude oil and bought crude oil is 0.8:0.2.

| G         | Н      | 1                        | J      | 1998  | 1999  | 2000  |                                                   |
|-----------|--------|--------------------------|--------|-------|-------|-------|---------------------------------------------------|
| Crude oil | Cost   | Partner cost             | LE/TON | 62.1  | 68.8  | 70.9  | Plant cost * Partners share                       |
| PC        |        | Plant cost               | LE/TON | 167.3 | 172.0 | 177.2 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2 |
|           |        | Other cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                               |
|           |        | Production cost          | LE/TON | 229.4 | 240.9 | 248.0 | Partners cost + Plant cost + Other cost           |
|           |        | Import cost              | LE/TON | 225.6 | 320.2 | 449.4 | International coal price * Exchange rate          |
|           |        | Bought cost              | LE/TON | 252.3 | 264.9 | 272.8 | Production cost *1.1                              |
|           |        | Average cost             | LE/TON | 234.0 | 245.7 | 253.0 | Production cost *0.8+ Bought cost *0.2            |
|           | Prices | ROI for Invoice          | %      | 20.0  | 20.0  | 20.0  |                                                   |
|           |        | TAX rate for Invoice     | %      | 0.0   | 0.0   | 0.0   |                                                   |
|           |        | Invoice price            | LE/TON | 280.8 | 294.8 | 303.6 | Average cost*(1+ROI/100+TAX/100)                  |
|           |        | ROI for Domestics        | %      | 60.0  | 70.0  | 70.0  |                                                   |
|           |        | TAX rate for Domest      | %      | 0.0   | 0.0   | 0.0   |                                                   |
|           |        | Sales price of Domestics | LE/TON | 374.3 | 417.6 | 430.1 | Average cost*(1+ROI/100+TAX/100)                  |
|           |        | ROI for Export           | %      | 60.0  | 100.0 | 100.0 |                                                   |
|           |        | Sales price of Export    | LE/TON | 374.3 | 491.3 | 505.9 | Average cost*(1+ROI/100)                          |
|           |        | ROI for Bunkers          | %      | 70.0  | 70.0  | 70.0  |                                                   |
|           |        | Sales price of Bunkers   | LE/TON | 397.7 | 417.6 | 430.1 | Average cost*(1+ROI/100)                          |
|           |        |                          |        |       |       |       |                                                   |

Table 6.2.12 Prices and Cost Estimation of Crude Oil in "PIM" Sheet

# 3) Natural Gas

Domestic market price in 1999 is 185LE/TON. Then, we can estimate plant cost and partner share cost in line with the following table.

| Tuble 0.2.15 Thank Cost Estimation of Futural Gas in This Sheet |              |                            |  |  |  |  |  |  |
|-----------------------------------------------------------------|--------------|----------------------------|--|--|--|--|--|--|
| Items                                                           | Unit in 1999 | Comments                   |  |  |  |  |  |  |
| Domestic market price in 1999                                   | 185LE/TON    |                            |  |  |  |  |  |  |
| Average cost (before ROI=15%)                                   | 160LE/TON    | 185/(1+0.2)                |  |  |  |  |  |  |
| Production cost                                                 | 157LE/TON    | 160=P*0.8+1.1*P*0.2        |  |  |  |  |  |  |
| Plant cost                                                      | 120LE/TON    | 157/(1+0.3): Partner share |  |  |  |  |  |  |
| Partner share cost                                              | 37LE/TON     |                            |  |  |  |  |  |  |

Energy import cost is calculated as international crude oil price / domestic crude oil price. Bought cost is calculated from the expression of "Production cost \* 1.1". The ratio of domestic natural gas and bought natural gas is 0.8:0.2.

| G           | Н      | l J                       | 1      | 1998  | 1999  | 2000  |                                                        |
|-------------|--------|---------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| Natural das | Cost   | Partner cost              | LE/TON | 32.7  | 34.4  | 35.4  | Plant cost * Partners share                            |
| PC          |        | Plant cost                | LE/TON | 111.5 | 114.7 | 118.1 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|             |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|             |        | Production cost           | LE/TON | 144.2 | 149.1 | 153.5 | Partners cost + Plant cost + Other cost                |
|             |        | Import cost               | LE/TON | 158.6 | 164.0 | 168.9 | Production cost *I-crude oil price / D-crude oil price |
|             |        | Bought cost               | LE/TON | 158.6 | 164.0 | 168.9 | Production cost *1.1                                   |
|             |        | Average cost              | LE/TON | 147.1 | 152.1 | 156.6 | Production cost *0.8+ Bought cost *0.2                 |
|             | Prices | ROI for Invoice           | %      | 15.0  | 15.0  | 15.0  |                                                        |
|             |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|             |        | Invoice price             | LE/TON | 169.2 | 174.9 | 180.1 | Average cost*(1+ROI/100+TAX/100)                       |
|             |        | ROI for Domestics         | %      | 15.0  | 15.0  | 15.0  |                                                        |
|             |        | TAX rate for Domestic     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|             |        | Sales price of Domestics  | LE/TON | 169.2 | 174.9 | 180.1 | Average cost*(1+ROI/100+TAX/100)                       |
|             |        | ROI for Export            | %      | 15.0  | 15.0  | 15.0  |                                                        |
|             |        | Sales price of Export     | LE/TON | 169.2 | 174.9 | 180.1 | Average cost*(1+ROI/100)                               |
|             |        | ROI for Bunkers           | %      | 15.0  | 15.0  | 15.0  |                                                        |
|             |        | Sales price of Bunkers    | LE/TON | 169.2 | 174.9 | 180.1 | Average cost*(1+ROI/100)                               |
|             |        | Slaes price of Domestic m | arket  | 175.0 | 187.0 | 200.0 |                                                        |

### 4) NGL

An assumption is set that NGL domestic price in 1999 equals to crude oil price of 10US\$/bbl

in 1999. Under the assumption, it is possible to calculate NGL plant cost and partner share cost.

| Table 0.2.15 Flant Cost Estimation of NGL in "Flive" Sheet |              |                          |  |  |  |  |  |  |  |
|------------------------------------------------------------|--------------|--------------------------|--|--|--|--|--|--|--|
| Items                                                      | Unit in 1999 | Comments                 |  |  |  |  |  |  |  |
| NGL domestic price (Assumption)                            | 10US\$/bbl   |                          |  |  |  |  |  |  |  |
| LE/bbl                                                     | 34LE/bbl     | 10US\$*Exchange          |  |  |  |  |  |  |  |
| LE/TON                                                     | 250LE/TON    | 34/0.159/0.85            |  |  |  |  |  |  |  |
| Plant cost                                                 | 190LE/TON    | 250/(1+0.32patner share) |  |  |  |  |  |  |  |
| Partner share cost                                         | 60LE/TON     |                          |  |  |  |  |  |  |  |

Table 6.2.15 Plant Cost Estimation of NGL in "PIM" Sheet

| Table 6.2.16 Prices and | <b>Cost Estimation</b> | of NGL in | "PIM" Sheet |
|-------------------------|------------------------|-----------|-------------|
|-------------------------|------------------------|-----------|-------------|

| G   | Н      |                          | J      | 1998  | 1999  | 2000  |                                                        |
|-----|--------|--------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| NGL | Cost   | Partner cost             | LE/TON | 55.5  | 58.7  | 60.5  | Plant cost * Partner share                             |
| PC  |        | Plant cost               | LE/TON | 178.5 | 183.5 | 189.0 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|     |        | Other cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|     |        | Production cost          | LE/TON | 234.0 | 242.2 | 249.4 | Partners cost + Plant cost + Other cost                |
|     |        | Import cost              | LE/TON | 257.4 | 266.5 | 274.4 | Production cost *I-crude oil price / D-crude oil price |
|     |        | Bought cost              | LE/TON | 257.4 | 266.5 | 274.4 | Production cost *1.1                                   |
|     |        | Average cost             | LE/TON | 238.6 | 247.1 | 254.4 | Production cost *0.8+ Bought cost *0.2                 |
|     | Prices | ROI for Invoice          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|     |        | TAX rate for Invoice     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|     |        | Invoice price            | LE/TON | 262.5 | 271.8 | 279.9 | Average cost*(1+ROI/100+TAX/100)                       |
|     |        | ROI for Domestics        | %      | 10.0  | 10.0  | 10.0  |                                                        |
|     |        | TAX rate for Domesti     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|     |        | Sales price of Domestics | LE/TON | 262.5 | 271.8 | 279.9 | Average cost*(1+ROI/100+TAX/100)                       |
|     |        | ROI for Export           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|     |        | Sales price of Export    | LE/TON | 262.5 | 271.8 | 279.9 | Average cost*(1+ROI/100)                               |
|     |        | ROI for Bunkers          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|     |        | Sales price of Bunkers   | LE/TON | 262.5 | 271.8 | 279.9 | Average cost*(1+ROI/100)                               |
|     |        |                          |        |       |       |       |                                                        |

### 5) LPG Distribution

LPG is produced in FD-LPG and RF-LPG and sent to LPG distribution. The variable cost of LPG distribution is the weighted average of the FD-LPG and RF-LPG.

Table 6.2.17 Prices and Cost Estimation of LPG Distribution in "PIM" Sheet

| G             | Н      |                           | J      | 1998  | 1999  | 2000  |                                                        |
|---------------|--------|---------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| LPG distribut | Cost   | Variable cost             | LE/TON | 198.6 | 205.3 | 211.4 | 0.8*FD-LPG invoice price + 0.2*RF-invoice price        |
| PC            |        | Plant cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Production cost           | LE/TON | 198.6 | 205.3 | 211.4 | Partner cost + Plant cost + Other cost                 |
|               |        | Import cost               | LE/TON | 218.4 | 225.8 | 232.6 | Production cost *I-crude oil price / D-crude oil price |
|               |        | Bought cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Average cost              | LE/TON | 198.6 | 205.3 | 211.4 | Production cost                                        |
|               | Prices | ROI for Invoice           | %      | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Invoice price             | LE/TON | 208.5 | 215.6 | 222.0 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Domestics         | %      | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | TAX rate for Domesti      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Sales price of Domestics  | LE/TON | 208.5 | 215.6 | 222.0 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Export            | %      | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | Sales price of Export     | LE/TON | 208.5 | 215.6 | 222.0 | Average cost*(1+ROI/100)                               |
|               |        | ROI for Bunkers           | %      | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | Sales price of Bunkers    | LE/TON | 208.5 | 215.6 | 222.0 | Average cost*(1+ROI/100)                               |
|               |        | Slaes price of Domestic n | narket | 200.0 | 213.7 | 228.6 |                                                        |

# 6) Gasoline

Petroleum products are separated to Co-products and By-products in the accounting system. The main petroleum products (gasoline, Jet fuel, kerosene, diesel, naphtha, lubricants & additives) are classified as Co-products. Others are By-products. Co-products can be added up to the full cost (variable cost and plant cost) of refinery plant, but By-products can not be added up to the full cost of refinery plant because their market prices are lower than their full cost. Usually, By-products are only added up to the variable cost.

| 1 aut 0.2.10       | Table 0.2.10 Fiant Cost Estimation of Kennery in Third Sheet |                                   |  |  |  |  |  |  |  |  |
|--------------------|--------------------------------------------------------------|-----------------------------------|--|--|--|--|--|--|--|--|
| Items              | Unit                                                         | Comments                          |  |  |  |  |  |  |  |  |
| Plant investment   | 3400 million LE                                              | 1000 million US\$                 |  |  |  |  |  |  |  |  |
| 6 Capacity         | 3 million TON                                                |                                   |  |  |  |  |  |  |  |  |
| Depreciation years | 10 years                                                     |                                   |  |  |  |  |  |  |  |  |
| Depreciation       | 340 million LE                                               |                                   |  |  |  |  |  |  |  |  |
| Fixed cost         | 239LE/TON                                                    | Depreciation/Capacity/Co-products |  |  |  |  |  |  |  |  |
| Plant cost         | 240LE/ton                                                    |                                   |  |  |  |  |  |  |  |  |

Table 6.2.18 Plant Cost Estimation of Refinery in "PIM" Sheet

# Table 6.2.19 Refinery Cost Distribution in "PIM" Sheet

| Energies              | Yields | By-Co | By-yields | Co-vields | PlantCost | VariableCos | t(Even) | VariableCos | st(Weighted) |
|-----------------------|--------|-------|-----------|-----------|-----------|-------------|---------|-------------|--------------|
| Refinery Gas          | 0.0000 | ΒY    | 0.0000    |           |           | 280         | 0.0     | 280         | 0.0          |
| RF-LPG                | 0.0160 | Ву    | 0.0160    |           |           | 280         | 4.5     | 280         | 4.5          |
| Gasoline              | 0.0730 | Co    |           | 0.0730    | 240.0     | 280         | 20.4    | 1120        | 81.8         |
| Jet fuel              | 0.0330 | Co    |           | 0.0330    | 240.0     | 280         | 9.2     | 280         | 9.2          |
| Kerosene              | 0.0450 | Co    |           | 0.0450    | 240.0     | 280         | 12.6    | 280         | 12.6         |
| Diesel                | 0.2060 | Co    |           | 0.2060    | 240.0     | 280         | 57.7    | 280         | 57.7         |
| Fuel oil              | 0.4590 | Ву    | 0.4590    |           |           | 280         | 128.5   | 140         | 64.3         |
| Naphtha               | 0.0940 | C 0   |           | 0.0940    | 240.0     | 280         | 26.3    | 280         | 26.3         |
| Lubricants & additive | 0.0090 | Co    |           | 0.0090    | 240.0     | 280         | 2.5     | 280         | 2.5          |
| Bitumen               | 0.0260 | Ву    | 0.0260    |           |           | 280         | 7.3     | 280         | 7.3          |
| Petroleum Coke        | 0.0050 | Ву    | 0.0050    |           |           | 280         | 1.4     | 280         | 1.4          |
| Non specified produc  | 0.0060 | Ву    | 0.0060    |           |           | 280         | 1.7     | 280         | 1.7          |
| Total                 | 0.972  |       | 0.512     | 0.460     |           | 3360        | 272.2   |             | 269.2        |
| Total=1.000           | 1.000  |       | 0.527     | 0.473     |           |             |         |             |              |

The above Plant cost (240LE/TON) is added up to Co-products (Gasoline, Jet fuel, Kerosene, Diesel, Naphtha, Lubricants & additives), but it is not added up by By-products. Variable cost is mainly crude oil price. Fuel oil can only be added up to half of variable cost. Then gasoline has to be added up to its variable cost and half of variable cost of fuel oil.

Variable cost of gasoline is 1,120LE/TON Variable cost of Fuel oil is 140LE/TON. Variable cost of Other is 280LE/TON.

### Table 6.2.20 Prices and Cost Estimation of Gasoline in "PIM" Sheet

| G        | Н      | 1                         | J      | 1998    | 1999    | 2000    |                                                        |
|----------|--------|---------------------------|--------|---------|---------|---------|--------------------------------------------------------|
| Gasoline | Cost   | Variable cost             | LE/TON | 1,115.7 | 1,170.0 | 1,204.8 | Feedstock invoice price *4                             |
| PC       |        | Plant cost                | LE/TON | 227.2   | 233.6   | 240.6   | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|          |        | Other cost                | LE/TON | 0.0     | 0.0     | 0.0     | 0.0                                                    |
|          |        | Production cost           | LE/TON | 1.343.0 | 1.403.7 | 1.445.4 | Partner cost + Plant cost + Other cost                 |
|          |        | Import cost               | LE/TON | 1,477.2 | 1,544.0 | 1,589.9 | Production cost *I-crude oil price / D-crude oil price |
|          |        | Bought cost               | LE/TON | 0.0     | 0.0     | 0.0     | 0.0                                                    |
|          |        | Average cost              | LE/TON | 1,343.0 | 1,403.7 | 1,445.4 | Production cost                                        |
|          | Prices | ROI for Invoice           | %      | 10.0    | 10.0    | 10.0    |                                                        |
|          |        | TAX rate for Invoice      | %      | 0.0     | 0.0     | 0.0     |                                                        |
|          |        | Invoice price             | LE/TON | 1.477.2 | 1.544.0 | 1.589.9 | Average cost*(1+ROI/100+TAX/100)                       |
|          |        | ROI for Domestics         | %      | 10.0    | 10.0    | 10.0    |                                                        |
|          |        | TAX rate for Domesti      | %      | 0.0     | 0.0     | 0.0     |                                                        |
|          |        | Sales price of Domestics  | LE/TON | 1,477.2 | 1,544.0 | 1,589.9 | Average cost*(1+ROI/100+TAX/100)                       |
|          |        | ROI for Export            | %      | 10.0    | 10.0    | 10.0    |                                                        |
|          |        | Sales price of Export     | LE/TON | 1,477.2 | 1,544.0 | 1,589.9 | Average cost*(1+ROI/100)                               |
|          |        | ROI for Bunkers           | %      | 10.0    | 10.0    | 10.0    |                                                        |
|          |        | Sales price of Bunkers    | LE/TON | 1,477.2 | 1,544.0 | 1,589.9 | Average cost*(1+ROI/100)                               |
|          |        | Slaes price of Domestic m | narket | 1.305.0 | 1.394.5 | 1.491.6 |                                                        |

## 7) Kerosene

In the model, kerosene is defined as Co-product. Then, kerosene is added up to plant cost as well as gasoline. Regarding the variable cost, gasoline is added up to its variable cost and part of variable cost of fuel oil. However, kerosene is added up to only its variable cost (feedstock invoice price).

| G        | Н      | J J                          |      | 1998  | 1999  | 2000  |                                                        |
|----------|--------|------------------------------|------|-------|-------|-------|--------------------------------------------------------|
| Kerosene | Cost   | Variable cost LE             | /TON | 278.9 | 292.5 | 301.2 | Feedstock invoice price                                |
| PC       |        | Plant cost LE/               | /TON | 227.2 | 233.6 | 240.6 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|          |        | Other cost LE/               | /TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|          |        | Production cost LE/          | /TON | 506.2 | 526.2 | 541.8 | Partners cost + Plant cost + Other cost                |
|          |        | Import cost LE/              | /TON | 556.8 | 578.8 | 596.0 | Production cost *I-crude oil price / D-crude oil price |
|          |        | Bought cost LE               | /TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|          |        | Average cost LE              | /TON | 506.2 | 526.2 | 541.8 | Production cost                                        |
|          | Prices | ROI for Invoice %            |      | 5.0   | 5.0   | 5.0   |                                                        |
|          |        | TAX rate for Invoice %       |      | 0.0   | 0.0   | 0.0   |                                                        |
|          |        | Invoice price LE/            | /TON | 531.5 | 552.5 | 568.9 | Average cost*(1+ROI/100+TAX/100)                       |
|          |        | ROI for Domestics %          |      | 5.0   | 5.0   | 5.0   |                                                        |
|          |        | TAX rate for Domesti %       |      | 0.0   | 0.0   | 0.0   |                                                        |
|          |        | Sales price of Domestics LE  | /TON | 531.5 | 552.5 | 568.9 | Average cost*(1+ROI/100+TAX/100)                       |
|          |        | ROI for Export %             |      | 5.0   | 5.0   | 5.0   |                                                        |
|          |        | Sales price of Export LE     | /TON | 531.5 | 552.5 | 568.9 | Average cost*(1+ROI/100)                               |
|          |        | ROI for Bunkers %            |      | 5.0   | 5.0   | 5.0   |                                                        |
|          |        | Sales price of Bunkers LE    | /TON | 531.5 | 552.5 | 568.9 | Average cost*(1+ROI/100)                               |
|          | 1      | Slaes price of Domestic mark | kot  | 504.0 | 538.6 | 576 1 |                                                        |

| Table 6.2.21 | Prices and | <b>Cost Estimation</b> | of Kerosene in | "PIM" Sheet |
|--------------|------------|------------------------|----------------|-------------|
|--------------|------------|------------------------|----------------|-------------|

#### 8) Diesel

In the model, diesel is defined as Co-product. Then, diesel is added up to plant cost as well as gasoline. Regarding the variable cost, gasoline is added up to its variable cost and part of variable cost of fuel oil. However, diesel is added up only its variable cost (feedstock invoice price).

Table 6.2.22 Prices and Cost Estimation of Diesel Oil in "PIM" Sheet

| G      | Н      | 1                         | J      | 1998  | 1999  | 2000  |                                                        |
|--------|--------|---------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| Diesel | Cost   | Variable cost             | LE/TON | 283.4 | 297.2 | 306.0 | Feedstock invoice price *(1+Own use yield)             |
| PC     |        | Plant cost                | LE/TON | 227.2 | 233.6 | 240.6 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|        |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|        |        | Production cost           | LE/TON | 510.6 | 530.8 | 546.6 | Partners cost + Plant cost + Other cost                |
|        |        | Import cost               | LE/TON | 561.7 | 583.9 | 601.3 | Production cost *I-crude oil price / D-crude oil price |
|        |        | Bought cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|        |        | Average cost              | LE/TON | 510.6 | 530.8 | 546.6 | Production cost                                        |
|        | Prices | ROI for Invoice           | %      | -50.0 | -50.0 | -50.0 |                                                        |
|        |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|        |        | Invoice price             | LE/TON | 255.3 | 265.4 | 273.3 | Average cost*(1+ROI/100+TAX/100)                       |
|        |        | ROI for Domestics         | %      | 10.0  | 10.0  | 10.0  |                                                        |
|        |        | TAX rate for Domesti      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|        |        | Sales price of Domestics  | LE/TON | 561.7 | 583.9 | 601.3 | Average cost*(1+ROI/100+TAX/100)                       |
|        |        | ROI for Export            | %      | 10.0  | 10.0  | 10.0  |                                                        |
|        |        | Sales price of Export     | LE/TON | 561.7 | 583.9 | 601.3 | Average cost*(1+ROI/100)                               |
|        |        | ROI for Bunkers           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|        |        | Sales price of Bunkers    | LE/TON | 561.7 | 583.9 | 601.3 | Average cost*(1+ROI/100)                               |
|        |        | Slaes price of Domestic r | narket | 504.0 | 538.6 | 576.1 |                                                        |

#### 9) Fuel Oil

In the model, fuel oil is defined as By-product. Then fuel oil does not add up to any plant cost. Regarding the variable cost, fuel oil market price is low. Hence, fuel oil can not be added up to the full variable cost. In the model, variable cost of fuel cost is half of feedstock invoice cost. By doing so, fuel oil can have market competitiveness as fossil energy.

| G        | <u>H</u> | <u> </u>                  | J      | 1998  | 1999  | 2000  |                                                        |
|----------|----------|---------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| Fuel oil | Cost     | Variable cost             | LE/TON | 142.1 | 149.0 | 153.5 | (Feedstock invoice price )/2*(1+Own use yield)         |
| PC       |          | Plant cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|          |          | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|          |          | Production cost           | LE/TON | 142.1 | 149.0 | 153.5 | Partners cost + Plant cost + Other cost                |
|          |          | Import cost               | LE/TON | 156.3 | 163.9 | 168.8 | Production cost *I-crude oil price / D-crude oil price |
|          |          | Bought cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|          |          | Average cost              | LE/TON | 142.1 | 149.0 | 153.5 | Production cost                                        |
|          | Prices   | ROI for Invoice           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|          |          | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|          |          | Invoice price             | LE/TON | 156.3 | 163.9 | 168.8 | Average cost*(1+ROI/100+TAX/100)                       |
|          |          | ROI for Domestics         | %      | 10.0  | 10.0  | 10.0  |                                                        |
|          |          | TAX rate for Domesti      | %      | 0.0   | 0.0   | 0.0   |                                                        |
|          |          | Sales price of Domestics  | LE/TON | 156.3 | 163.9 | 168.8 | Average cost*(1+ROI/100+TAX/100)                       |
|          |          | ROI for Export            | %      | 10.0  | 10.0  | 10.0  |                                                        |
|          |          | Sales price of Export     | LE/TON | 156.3 | 163.9 | 168.8 | Average cost*(1+ROI/100)                               |
|          |          | ROI for Bunkers           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|          |          | Sales price of Bunkers    | LE/TON | 156.3 | 163.9 | 168.8 | Average cost*(1+ROI/100)                               |
|          |          | Slaes price of Domestic r | narket | 182.0 | 194.5 | 208.0 |                                                        |

### Table 6.2.23 Prices and Cost Estimation of Fuel Oil in "PIM" Sheet

#### **10) Power Distribution**

Power distribution receives power from Hydro-power, Gas combined cycle, Coal fired thermal power, Diesel oil fired thermal power, Fuel oil fired thermal power and Solar-Wind-Other power generation. The weight of power in 1999 is the follows:

| Hydro power 0.2                                              |
|--------------------------------------------------------------|
| Gas combined cycle 0.4                                       |
| Coal fired thermal power                                     |
| Diesel oil fired thermal power 0.1                           |
| Fuel oil fired thermal power0.3                              |
| Solar-Wind-Other power 0.0                                   |
| Variable cost of power distribution sector is the invoice of |

Variable cost of power distribution sector is the invoice cost from these power generation. And fixed cost is not accounted because power distribution does not generate any fixed cost.

| G             | Н      |                           | J           | 1998  | 1999  | 2000  | 1                                                      |
|---------------|--------|---------------------------|-------------|-------|-------|-------|--------------------------------------------------------|
| Power distrib | Cost   | Variable cost             | LE/MWh      | 150.2 | 152.7 | 157.2 | Hydroinvoice *0.2+Gas combined invoice*0.4+Coal st     |
| PC            |        | Plant cost                | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Other cost                | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Production cost           | LE/MWh      | 150.2 | 152.7 | 157.2 | Partners cost + Plant cost + Other cost                |
|               |        | Import cost               | LE/MWh      | 165.2 | 167.9 | 172.9 | Production cost *I-crude oil price / D-crude oil price |
|               |        | Bought cost               | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Average cost              | LE/MWh      | 150.2 | 152.7 | 157.2 | Production cost                                        |
|               | Prices | ROI for Invoice           | %           | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | TAX rate for Invoice      | %           | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Invoice price             | LE/MWh      | 157.7 | 160.3 | 165.1 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Domestics         | %           | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | TAX rate for Domesti      | %           | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Sales price of Domestics  | LE/MWh      | 157.7 | 160.3 | 165.1 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Export            | %           | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | Sales price of Export     | LE/MWh      | 157.7 | 160.3 | 165.1 | Average cost*(1+ROI/100)                               |
|               |        | ROI for Bunkers           | %           | 5.0   | 5.0   | 5.0   |                                                        |
|               |        | Sales price of Bunkers    | LE/MWh      | 157.7 | 160.3 | 165.1 | Average cost*(1+ROI/100)                               |
|               |        | Slaes price of Domestic r | narket ( fo | 132.7 | 141.8 | 151.7 |                                                        |

### 11) Hydro Power

Variable cost of Hydro-power generation is zero. Yet, it is estimated that the plant cost of Hydro-power is high, compared to other types of power generation. Then it is estimated by using plant cost of other types of power generation.

| Generators                        | Unit in 1999 | Comments                   |
|-----------------------------------|--------------|----------------------------|
| Power fee in Egypt (for industry) | 132LE/MWh    |                            |
| Power production cost in Egypt    | 115LE/MWh    | 132/(1+0.15) ,0.15=ROI     |
| Variable cost of Gas combined     | 34LE/MWh     |                            |
| Variable cost of Coal steam       | 31LE/MWh     |                            |
| Variable cost of Gas turbine      | 62LE/MWh     |                            |
| Variable cost of Diesel engine    | 72LE/MWh     |                            |
| Variable cost of Fuel oil         | 43LE/MWh     |                            |
| Variable cost of Hydro            | 0LE/MWh      |                            |
| Plant cost of Gas combined        | 80LE/MWh     | Round number               |
| Plant cost of Coal steam          | 90LE/MWh     | Round number               |
| Plant cost of Gas turbine         | 70LE/MWh     | Round number               |
| Plant cost of Diesel engine       | 60LE/MWh     | Round number               |
| Plant cost of Fuel oil            | 80LE/MWh     | Round number               |
| Plant cost of Hydro               | 150LE/MWh    | Double of other plant cost |

 Table 6.2.25 Plant Cost Estimation of Power Generation in "PIM" Sheet

Using the above table, plant cost of hydro-power generator is estimated to be 150LE/MWh in 1999.

| G           | Н      |                          | J      | 1998  | 1999  | 2000  |                                                   |
|-------------|--------|--------------------------|--------|-------|-------|-------|---------------------------------------------------|
| Power Hydro | Cost   | Variable cost            | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                               |
| PC 1        |        | Plant cost               | LE/MWh | 144.1 | 148.2 | 152.6 | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2 |
|             |        | Other cost               | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                               |
|             |        | Production cost          | LE/MWh | 144.1 | 148.2 | 152.6 | Partners cost + Plant cost + Other cost           |
|             |        | Import cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                               |
|             |        | Bought cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                               |
|             |        | Average cost             | LE/MWh | 144.1 | 148.2 | 152.6 | Production cost                                   |
| ſ           | Prices | ROI for Invoice          | %      | 10.0  | 10.0  | 10.0  |                                                   |
|             |        | TAX rate for Invoice     | %      | 0.0   | 0.0   | 0.0   |                                                   |
|             |        | Invoice price            | LE/MWh | 158.5 | 163.0 | 167.8 | Average cost*(1+ROI/100+TAX/100)                  |
|             |        | ROI for Domestics        | %      | 10.0  | 10.0  | 10.0  |                                                   |
|             |        | TAX rate for Domesti     | %      | 0.0   | 0.0   | 0.0   |                                                   |
|             |        | Sales price of Domestics | LE/MWh | 158.5 | 163.0 | 167.8 | Average cost*(1+ROI/100+TAX/100)                  |
|             |        | ROI for Export           | %      | 10.0  | 10.0  | 10.0  |                                                   |
|             |        | Sales price of Export    | LE/MWh | 158.5 | 163.0 | 167.8 | Average cost*(1+ROI/100)                          |
|             |        | ROI for Bunkers          | %      | 10.0  | 10.0  | 10.0  |                                                   |
|             |        | Sales price of Bunkers   | LE/MWh | 158.5 | 163.0 | 167.8 | Average cost*(1+ROI/100)                          |
|             |        |                          |        |       |       |       |                                                   |

 Table 6.2.26 Prices and Cost Estimation of Hydro Power in "PIM" Sheet

### 12) Gas Combined Cycle

Variable cost of gas combined cycle is the natural gas invoice price with its efficiency. According to the power plant cost calculation table above, plant cost of gas combined cycle is estimated to be 80LE/MWh.

| G           | Н      | 1                        | J      | 1998  | 1999  | 2000  |                                                        |
|-------------|--------|--------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| Power Gas c | Cost   | Variable cost            | LE/MWh | 31.0  | 32.0  | 33.0  | Natural gas invoice price / Efficiency *(1+Own use vie |
| PC          |        | Plant cost               | LE/MWh | 77.6  | 79.8  | 82.2  | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|             |        | Other cost               | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|             |        | Production cost          | LE/MWh | 108.6 | 111.8 | 115.1 | Partners cost + Plant cost + Other cost                |
|             |        | Import cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|             |        | Bought cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|             |        | Average cost             | LE/MWh | 108.6 | 111.8 | 115.1 | Production cost                                        |
|             | Prices | ROI for Invoice          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|             |        | TAX rate for Invoice     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|             |        | Invoice price            | LE/MWh | 119.4 | 123.0 | 126.7 | Average cost*(1+ROI/100+TAX/100)                       |
|             |        | ROI for Domestics        | %      | 10.0  | 10.0  | 10.0  |                                                        |
|             |        | TAX rate for Domesti     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|             |        | Sales price of Domestics | LE/MWh | 119.4 | 123.0 | 126.7 | Average cost*(1+ROI/100+TAX/100)                       |
|             |        | ROI for Export           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|             |        | Sales price of Export    | LE/MWh | 119.4 | 123.0 | 126.7 | Average cost*(1+ROI/100)                               |
|             |        | ROI for Bunkers          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|             |        | Sales price of Bunkers   | LE/MWh | 119.4 | 123.0 | 126.7 | Average cost*(1+ROI/100)                               |
|             |        |                          |        |       |       |       |                                                        |

#### 13) Fuel Oil Fired Thermal Power

Variable cost of Fuel oil thermal power is the fuel oil invoice price with its efficiency. According to the power plant cost calculation table above, plant cost of Fuel oil thermal power is 80LE/MWh.

| G             | Н      | 1                        | J      | 1998  | 1999  | 2000  |                                                        |
|---------------|--------|--------------------------|--------|-------|-------|-------|--------------------------------------------------------|
| Power Fuel of | Cost   | Variable cost            | LE/MWh | 38.8  | 40.6  | 41.9  | Fuel oil invoice price / Efficiency *(1+Own use vield) |
| PC            |        | Plant cost               | LE/MWh | 79.8  | 82.1  | 84.5  | (Plant cost (-1) +Plant cost (-1)*(WPI/WPI(-1))/2      |
|               |        | Other cost               | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Production cost          | LE/MWh | 118.6 | 122.7 | 126.4 | Partners cost + Plant cost + Other cost                |
|               |        | Import cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Bought cost              | LE/MWh | 0.0   | 0.0   | 0.0   | 0.0                                                    |
|               |        | Average cost             | LE/MWh | 118.6 | 122.7 | 126.4 | Production cost                                        |
|               | Prices | ROI for Invoice          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|               |        | TAX rate for Invoice     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Invoice price            | LE/MWh | 130.4 | 135.0 | 139.0 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Domestics        | %      | 10.0  | 10.0  | 10.0  |                                                        |
|               |        | TAX rate for Domesti     | %      | 0.0   | 0.0   | 0.0   |                                                        |
|               |        | Sales price of Domestics | LE/MWh | 130.4 | 135.0 | 139.0 | Average cost*(1+ROI/100+TAX/100)                       |
|               |        | ROI for Export           | %      | 10.0  | 10.0  | 10.0  |                                                        |
|               |        | Sales price of Export    | LE/MWh | 130.4 | 135.0 | 139.0 | Average cost*(1+ROI/100)                               |
|               |        | ROI for Bunkers          | %      | 10.0  | 10.0  | 10.0  |                                                        |
|               |        | Sales price of Bunkers   | LE/MWh | 130.4 | 135.0 | 139.0 | Average cost*(1+ROI/100)                               |
|               |        |                          |        |       |       |       |                                                        |

 Table 6.2.28 Prices and Cost Estimation of Fuel Oil Fired Power in "PIM" Sheet

### (2) Energy Data Input and Formation ("LIM" sheet)

The following table is a sample of input format (for Crude oil). The input format is divided into a supply side and a consumption side. The supply items consist of Capacity, Initial stock, Production, Import, Bought and Receivable. The consumption items consist of Final demand, Export, Bunkers, Payable, Transformation, Energy sector use (Own use) and Final stock. Each input item has three lines--upper limit line, solution line and lower limit line. The input data are entered in the upper limit and the lower limit lines. The solution data come from LP matrix ("LPM" sheet) and are set in the solution lines.

### 1) Capacity

Production capacity of each energy is set in the upper limit. The lower limit of the production capacity usually has the value of 0. The operation rate to a production capacity is calculated by using the production capacity and its production volume.

(Operation rate = Production volume / Production capacity\*100)

### 2) Initial-Stock

The initial-stock usually has the value of 0. Especially, the initial-stock of the beginning of the year should have 0 or some value. When there is stock change with a(+) sign in the energy balance table, the value should be set in the initial-stock area. If the initial-stock does not have any value after the second year, the initial-stock should be set to "U", meaning infinite.

| ITEMS 1   | ITEMS 2     | SECTORS                  |             | UNIT             | 1998                     | 1999     | 2000     | 2001     | 2002           | 2003     | 2004     |
|-----------|-------------|--------------------------|-------------|------------------|--------------------------|----------|----------|----------|----------------|----------|----------|
| Crude oil | Supply      | Capacity of production   | Upper Limit | KTON             | 40,000.0                 | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0       | 40,000.0 | 40,000.0 |
|           |             |                          | Operation   | %                | 89.5                     | 97.6     | 100.0    | 99.8     | 98.1           | 96.3     | 94.1     |
|           |             |                          | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Initial-Stock=Stock Chan | Upper Limit | KTON             | U                        | U        | U        | U        | U              | U        | U        |
|           |             |                          | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Production=Indigenous(+  | Upper Limit | KTON             | 39,516.0                 | 39,496.0 | 40,034.0 | 40,532.0 | 40,999.0       | 41,441.0 | 41,865.0 |
|           |             | 1.00                     | Solution    | KTON             | 35,796.2                 | 39,053.0 | 40,000.0 | 39,906.7 | 39,251.8       | 38,502.7 | 37,657.2 |
|           |             |                          | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Import                   | Upper Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Bought                   | Upper Limit | KTON             | 6,060.0                  | 6.100.0  | 6,100.0  | 6,100.0  | 6,100.0        | 6,100.0  | 6,100.0  |
|           |             |                          | Solution    | KTON             | 6,060.0                  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0        | 6,100.0  | 6,100.0  |
|           |             |                          | Lower Limit | KTON             | 6,060.0                  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0        | 6,100.0  | 6,100.0  |
|           |             | Receivables=Transfer(+)  | Upper Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | fm Differences           | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Total                    | Upper Limit | KTON             | 45576.0                  | 45596.0  | 46134.0  | 46632.0  | 47099.0        | 47541.0  | 47965.0  |
|           |             |                          | Solution    | KTON             | 41856.2                  | 45153.0  | 46100.0  | 46006.7  | 45351.8        | 44602.7  | 43757.2  |
|           |             |                          | Lower Limit | KTON             | 6060.0                   | 6100.0   | 6100.0   | 6100.0   | 6100.0         | 6100.0   | 6100.0   |
| Crude oil | Consumption | Final Demand             | Upper Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Lower Limit | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Export                   | Upper Limit | KTON             | 2,934.0                  | 2.351.0  | 2,130.0  | 1.845.0  | 1,506.0        | 1,113.0  | 665.0    |
|           |             |                          | Solution    | KTON             | 2,934.0                  | 2,351.0  | 2,130.0  | 1,845.0  | 1,506.0        | 1,113.0  | 665.0    |
|           |             |                          | Lower Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Bunkers                  | Upper Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Lower Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Payable=Transfer(-),Part | Upper Limit |                  | U                        | U        | U        | U        | U              | U        | U        |
|           |             |                          | Solution    | KTON             | 13,280.4                 | 15,621.2 | 16,000.0 | 15,962.7 | 15,700.7       | 15,401.1 | 15,062.9 |
|           |             |                          | Lower Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Transformation=Transfor  | Upper Limit |                  | U                        | U        | U        | U        | U              | U        | U        |
|           |             |                          | Solution    | KTON             | 25,641.8                 | 27,180.8 | 27,970.0 | 28,199.0 | 28,145.1       | 28,088.6 | 28,029.3 |
|           |             |                          | Lower Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Energy Sector =Energy S  |             | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Solution    | KTON<br>KTON     | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Final Stack, Stack Chang | lloportingi | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Final-Stock=Stock Chanc  | Solution    | KTON             | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             |                          | Lower Limit |                  | 0.0                      | 0.0      | 0.0      | 0.0      | 0.0            | 0.0      | 0.0      |
|           |             | Total                    | Upper Limit |                  | 2934.0                   | 2351.0   | 2130.0   | 1845.0   | 1506.0         | 1113.0   | 665.0    |
|           |             | TUIdI                    | Solution    | KTON<br>KTON     | <u>2934.0</u><br>41856.2 | 45153.0  | 46100.0  | 46006.7  | 45351.8        | 44602.7  | 43757.2  |
|           |             | 66092                    | Solution    |                  | 41856.2                  | 45153.0  | 46100.0  | 46006.7  | 45351.8        | 44602.7  | 43757.2  |
| Crude oil | Prices      | Production cost          |             | KTON<br>KLE/KTON | 229.4                    | 240.9    | 248.0    | 255.1    | 262.0          | 268.9    | 275.7    |
|           | 11005       | Import cost              |             | KLE/KTON         | 229.4                    | 320.2    | 449.4    | 480.8    | 513.9          | 548.9    | 586.1    |
|           |             | Bought cost              |             | KLE/KTON         | 252.3                    | 264.9    | 272.8    | 280.6    | 288.2          | 295.8    | 303.3    |
|           |             | Invoice price            |             | KLE/KTON         | 280.8                    | 204.9    | 303.6    | 312.2    | 320.7          | 329.1    | 303.5    |
|           |             | Sales price of Domestics | 84.0        | KLE/KTON         | 374.3                    | 417.6    | 430.1    | 442.3    | 454.3          | 466.2    | 478.1    |
|           |             | Sales price of Export    |             | KLE/KTON         | 374.3                    | 417.6    | 505.9    | 520.4    | 434.3<br>534.5 | 548.5    | 562.5    |
|           | 1           | Sales price of Bunkers   |             | KLE/KTON         | 397.7                    | 491.5    | 430.1    | 442.3    | 454.3          | 466.2    | 478.1    |

 Table 6.2.29
 Data Input Formation of "ESPM"

### 3) Production

The upper limit and the lower limit of the production are set from the energy balance table. The upper limit and the lower limit of the production, as well as those of the capacity constrains the production variable in the model.

### 4) Import

For import area, the upper limit and lower limit are set from the energy balance table. But when the energy is short for the demand, the energy has to be imported. Then, the upper limit of import is usually set to "U" (Infinite), and the lower limit is set to 0. In the above sample of crude oil, every upper limit is set to 0 because crude oil is not permitted to be imported in the targeted years (In the future, though, it is possible to import crude oil).

### 5) Bought

For Bought area, the upper limit and lower limit of Bought are set from the energy balance table. The volume of natural gas and NGL from partners can be bought as much as the volume is paid to partners. Then the Bought of the two energies are decided automatically in the model. Usually it is set to "U" for upper limit of natural gas and NGL. However, in the case of crude oil, Bought is smaller than crude oil partner's share, setting the upper limit of crude oil bought to the value.

# 6) Receivable

The receivable is an area to receive energy transferred from other sectors. LPG distribution and Power distribution sectors have receivable energies. When the energy balance table has differences with a (+) sign or other resources (+), these are set in the receivable area.

### 7) Final Demand

In the final demand area, a final demand aggregated with industry, commercial, transportation, residential and government demands is set in the upper limit. When it is set to have domestic demand be supplied, the upper limit and the lower limit of the final domestic demand have to be set. And the future data for the final domestic demand come from the energy demand forecasting model.

### 8) Export

In the export area, the upper limit and the lower limit of the energy export are set. The Export as a solution of LP model is displayed in the second line of the area. It is set to a condition that the energies can be exported when the energies are surplus to domestic demand. Then upper limit of the export has to be set to 'U', and the lower limit has to be set to the values for the future years.

### 9) Bunker Oil

In the bunker oil area, the upper limit and the lower limit of the bunker oil demand are set. The bunker oil demand as a solution of LP model is displayed in the second line of the area. Bunker oil is strictly supplied. Then the upper limit and the lower limit of bunker oil have to be set to the same value.

### 10) Payable

In the payable area, the upper limit and the lower limit of the payable energies are set. The payable energies as a solution of LP model is displayed in the second line of the area. The actual data of Transfer(-), Partner(-) and difference(-) in the energy balance table are also set in the area. But the future energies for the partners are internally calculated in the LP model.

#### 11) Transformation

In the transformation area, the upper limit and the lower limit of the transformation energies are set. The limits do not give any constraints to the transformation in the LP model, and the transformation energies are internally calculated in the LP model. In the prepared model, the upper limit of Transformation is set to 'U', and the lower limit is set to 0.

#### 12) Energy Own Use

In the energy own use area, the upper limit and the lower limit of the energy own use are set. The upper and lower limits do not give any constraints to the energy own use, and the energy own use are internally calculated in the LP model. In the prepared model, the upper limit of Energy own use is set to 'U', and the lower limit is set to 0 for energy sectors with energy own use.

#### 13) Final-Stock

The final-stock usually does not have any value. Then the value of "U" (meaning infinite) is set in the area. When Stock change (-) in the energy balance table is described, the value should be put in the upper limit. And the final-stock in the final years has 0 in the upper limit because if the upper limit of the final-stock has a 0 value, the model sometimes has a final-stock as one of income items.

### 14) Price and Cost

Prices and cost data of Production cost, Import cost, Invoice cost, Sales price, Export price and Bunker oil price are connected to PIM sheet. And the data are revised in the PIM sheet.

### (3) Energy Balance Estimation (EBT sheet)

#### 1) Consumption

Domestic demand, Export, Bunker oil, Payable and Transformation are arranged as energy consumption items. The values of these items come from variables in the LPM sheet. The total consumption matches the total supply. If the total supply and the total consumption do not match, the LP model is not considered balanced.

Domestic demand, Export, Bunker oil and Payable in the consumption items may have values in the upper limit. Then, it is possible to analyze the values of Domestic demand, Export, Bunker oil and Payable, compared to the values in the upper limit.

A sufficient rate is defined by the following expressions. A sufficient rate of 100% means that the energy is supplied completely. Adversely, a sufficient rate of 0% means that the energy is not supplied at all even though the upper limit for the energy is set.

Domestic demand from LP model / Domestic demand in Upper limit \* 100. Export from LP model / Export in Upper limit \*100 Bunkers from LP model / Bunker in Upper limit \* 100 Payable from LP model / Payable in Upper limit \* 100

| ITEMS 1  | ITEMS 2       | SECTORS         | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|----------|---------------|-----------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Consumpt | Solution      | Domestic demand | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Export          | KTON | 2.934.0  | 2.351.0  | 2,130.0  | 1.845.0  | 1.506.0  | 1,113.0  | 665.0    | 155.0    |
|          |               | Bunkers         | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Payable         | KTON | 13,280.4 | 15.621.2 | 16,000.0 | 15,962.7 | 15,700.7 | 15,401.1 | 15,062.9 | 14.681.7 |
|          |               | Transformation  | KTON | 25.641.8 | 27.180.8 | 27.970.0 | 28.199.0 | 28.145.1 | 28.088.6 | 28.029.3 | 27.967.5 |
|          |               | Own use         | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Total           | KTON | 41,856.2 | 45,153.0 | 46,100.0 | 46.006.7 | 45,351.8 | 44,602.7 | 43,757.2 | 42.804.2 |
|          |               |                 |      |          |          |          |          |          |          |          |          |
|          | UpperLimit    | Domestic demand | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Export          | KTON | 2.934.0  | 2.351.0  | 2.130.0  | 1.845.0  | 1.506.0  | 1.113.0  | 665.0    | 155.0    |
|          |               | Bunkers         | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Payable         | KTON | U        | U        | U        | U        | U        | U        | U        | ι        |
|          |               |                 |      |          |          |          |          |          |          |          |          |
|          | Sufficient ra | Domestic demand | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Export          | %    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|          |               | Bunkers         | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Payable         | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                 |      |          |          |          |          |          |          |          |          |

 Table 6.3.30
 Consumption Items in "EBT" Sheet

#### 2) Supply

Initial-Stock, Production, Import, Bought, Receivable and Final-Stock are arranged as energy supply items. The final stock is considered as a consumption item. In the table, the final-stock is attributed as a supply item with a negative sign. By doing so, it is possible to easily analyze the difference between the initial-stock and the final-stock. The values in the solution lines of the supply come from variables in the "LPM" sheet.

The total supply agrees with the total consumption. If the total supply and the total consumption do not agree, the LP model is not considered balanced.

Production, Import, Bought and Receivable in the supply items may have upper limit values. Then, it is possible to analyze the values of Production, Import, Bought and Receivable, compared to the values in the upper limit.

A sufficient rate is defined by the following expressions. A sufficient rate of 100% means that the energy is supplied completely. Adversely, a sufficient rate of 0% means that the energy is not supplied at all even though the upper limit for the energy is set.

Production from LP model / Capacity in Upper limit \* 100. Production from LP model / Production in Upper limit \*100 Import from LP model / Import in Upper limit \* 100 Bought from LP model / Bought in Upper limit \* 100 Receivable from LP model / Receivable in Upper limit \* 100

Supply rate is defined by the following expressions. For example, a production supply rate of 100% means that all energy is supplied from production, and an import supply rate of

100% means that all energy is supplied from import.

Production rate = Production / Total supply \* 100 Import rate = Import / Total supply \* 100 Bought rate = Bought / Total supply \*100 Receivable rate = Receivable / Total supply \* 100

| ITEMS 1 | ITEMS 2       | SECTORS                | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|---------|---------------|------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Supply  | Solution      | Initial-Stock          | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Production             | KTON | 35,796.2 | 39,053.0 | 40,000.0 | 39,906.7 | 39,251.8 | 38,502.7 | 37,657.2 | 36,704.2 |
|         |               | Import                 | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Bought                 | KTON | 6,060.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  |
|         |               | Receivable fm Differer | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Final-Stock            | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Total                  | KTON | 41.856.2 | 45.153.0 | 46,100.0 | 46.006.7 | 45.351.8 | 44.602.7 | 43,757.2 | 42,804.2 |
|         | UpperLimit    | Canacity               | KTON | 40.000.0 | 40.000.0 | 40.000.0 | 40.000.0 | 40.000.0 | 40.000.0 | 40.000.0 | 40.000.0 |
|         |               | Production             | KTON | 39,516.0 | 39,496.0 | 40,034.0 | 40.532.0 | 40,999.0 | 41,441.0 | 41,865.0 | 42,276.0 |
|         |               | Import                 | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Bought                 | KTON | 6.060.0  | 6.100.0  | 6.100.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  | 6,100.0  |
|         |               | Receivables            | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         | Sufficient ra | Capacity               | %    | 89.5     | 97.6     | 100.0    | 99.8     | 98.1     | 96.3     | 94.1     | 91.8     |
|         |               | Production             | %    | 90.6     | 98.9     | 99.9     | 98.5     | 95.7     | 92.9     | 89.9     | 86.8     |
|         |               | Import                 | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Bought                 | %    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|         |               | Receivables            | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               |                        |      |          |          |          |          |          |          |          |          |
|         |               | Production rate        | %    | 85.5     | 86.5     | 86.8     | 86.7     | 86.5     | 86.3     | 86.1     | 85.7     |
|         |               | Import rate            | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               | Bought rate            | %    | 14.5     | 13.5     | 13.2     | 13.3     | 13.5     | 13.7     | 13.9     | 14.3     |
|         |               | Receivable rate        | %    | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|         |               |                        |      |          |          |          |          |          |          |          |          |

## Table 6.2.31 Supply Items in "EBT" Sheet

# 3) Profitability

Income, Expense and Profit are arranged in Profitability. The values of income and expense come from the LPM sheet. The profitability is calculated as Income – Expense.

The profitability of price and cost items are displayed below. The items come from the LPM sheet. And profit per unit is calculated in this sheet.

ROI (return on investment) is an index that shows the profitability on the total investment. In the model, however, ROI is calculated as profit per unit / production cost \* 100. Regarding energy issues, ROI is expected to be between 10% and 20% (The World Bank supports ROI with 15%).

| ITEMS 1       | ITEMS 2      | SECTORS                | UNIT      | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|---------------|--------------|------------------------|-----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Profitability | Profit       | Income                 | millionLE | 12,026.0 | 13,773.4 | 14,425.6 | 14,749.4 | 14,866.7 | 14,922.6 | 14,918.4 | 14,849.0 |
|               |              | Expense                | millionLE | 9,739.9  | 11,022.2 | 11,584.7 | 11,892.0 | 12,042.7 | 12,156.2 | 12,234.2 | 12,274.8 |
|               |              | Profit                 | millionLE | 2,286.2  | 2,751.2  | 2,840.9  | 2,857.4  | 2,823.9  | 2,766.4  | 2,684.2  | 2,574.2  |
|               |              |                        |           |          |          |          |          |          |          |          |          |
|               | Price & Unit | Sales price of Domest  | LE/TON    | 374.3    | 417.6    | 430.1    | 442.3    | 454.3    | 466.2    | 478.1    | 490.3    |
|               |              | Sales price of Export  | LE/TON    | 374.3    | 491.3    | 505.9    | 520.4    | 534.5    | 548.5    | 562.5    | 576.8    |
|               |              | Sales price of Bunkers | LE/TON    | 397.7    | 417.6    | 430.1    | 442.3    | 454.3    | 466.2    | 478.1    | 490.3    |
|               |              | Invoice cost           | LE/TON    | 280.8    | 294.8    | 303.6    | 312.2    | 320.7    | 329.1    | 337.5    | 346.1    |
|               |              | Import cost            | LE/TON    | 225.6    | 320.2    | 449.4    | 480.8    | 513.9    | 548.9    | 586.1    | 625.6    |
|               |              | Bought cost            | LE/TON    | 252.3    | 264.9    | 272.8    | 280.6    | 288.2    | 295.8    | 303.3    | 311.0    |
|               |              | Production cost        | LE/TON    | 229.4    | 240.9    | 248.0    | 255.1    | 262.0    | 268.9    | 275.7    | 282.7    |
|               |              | Profit per unit        | LE/TON    | 54.6     | 60.9     | 61.6     | 62.1     | 62.3     | 62.0     | 61.3     | 60.1     |
|               |              | ROI                    | %         | 23.8     | 25.3     | 24.8     | 24.3     | 23.8     | 23.1     | 22.2     | 21.3     |

Table 6.2.32 Profitability Items in "EBT" Sheet

#### (4) Growth Rate of Energy Balance ("GRT" sheet)

#### 1) Annual Growth Rate

The formula for the annual growth rate is defined as the following expression

IF Previous value Not = 0 or U

Then growth rate = ( Current value / Previous value -1 ) \*100

Else growth rate = 0

For example in GRT sheet

=IF(EBT!Gn=0,0, IF(EBT!Hn="U","U",(EBT!Hn/EBT!Gn-1)\*100))

n: line number

#### 2) Average Growth Rate in Actual Data (1994—1998)

The formula for the average growth rate in actual data is defined as the following expression

IF 1994 value Not = 0 or U

Then growth rate ={  $(1998 \text{ value} / 1994 \text{ value})^{(1/4)-1}$ }\*100

Else growth rate = 0

For example in GRT sheet

=IF(EBT!Gn=0,0,IF(EBT!Kn="U","U",((EBT!Kn/EBT!Gn)^(1/4)-1)\*100)) n: line number

#### 3) Average Growth Rate in Estimation Data (1998—2005)

The formula for the average growth rate in estimation data is defined as the following expression

IF 1998 value Not = 0 or U Then growth rate ={ (2005 value / 1998 value) ^(1/7)-1}\*100 Else growth rate = 0 For example in GRT sheet =IF(EBT!Kn=0,0,IF(EBT!Rn="U","U",((EBT!Rn/EBT!Kn)^(1/7)-1)\*100)) n: line number

#### 4) Average Growth Rate in Future Data (2000–2005)

The formula for the average growth rate in future data is defined as the following expression

IF 2000 value Not = 0 or U

Then growth rate ={  $(2005 \text{ value} / 2000 \text{ value})^{(1/5)-1}$ }\*100

# Else growth rate = 0 For example in GRT sheet =IF(EBT!Mn=0,0,IF(EBT!Rn="U","U",((EBT!Rn/EBT!Mn)^(1/5)-1)\*100)) n: line number

| Energy S | upply Plannii | ng Model (GRT     | list)            | ſ         | 2002  | 2003  | 2004  | 2005     | 1998     | 2005  | 2005 |
|----------|---------------|-------------------|------------------|-----------|-------|-------|-------|----------|----------|-------|------|
| ITEMS 1  | ITEMS 1       | ITEMS 2           | SECTORS          | UNIT      | 2001  | 2002  | 2003  | 2004     | 1994     | 1998  | 2000 |
| rude oil | Consumption   | Solution          | Domestic dema    | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0.   |
|          |               |                   | Export           | KTON      | -13.6 | -19.0 | -29.1 | -51.6    | -22.1    | -22.7 | -26. |
|          |               |                   | Bunkers          | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Pavable          | KTON      | 0.0   | -1.5  | -1.9  | -2.4     | 0.3      | 0.9   | -1   |
|          |               |                   |                  | KTON      | 1.0   | -0.1  | -0.2  | -0.2     | 4.2      | 0.6   | 0    |
|          |               |                   | Own use          | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Total            | KTON      | 0.0   | -1.3  | -1.7  | -2.1     | -0.4     | -0.1  | -1   |
|          |               |                   | Total            |           | 0.0   | 1.0   |       | 2.1      | 0.1      | 0.1   | ·    |
|          |               | UpperLimit        | Domestic dema    | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               | OpporEmit         | Export           | KTON      | -13.6 | -19.0 | -29.1 | -51.6    | -22.1    | -22.7 | -26  |
|          |               |                   | Bunkers          | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Payable          | KTON      | U.U   | U.U   | U.U   | 0.0<br>U | 0.0<br>U | U.U   |      |
|          |               |                   |                  | RION      |       |       |       | 0        |          | 0     |      |
|          |               | Sufficient rate   | Domestic dema    | 0/        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               | Sumclemmale       |                  | /0        |       |       | 0.0   |          |          |       |      |
|          |               |                   | Export           | %         | 0.0   | 0.0   |       | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Bunkers          | %         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Pavable          | %         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          | 0 1           | 0.1.1             |                  | 1/TON     |       |       |       |          |          | 0.0   |      |
|          | Supply        | Solution          | Initial-Stock    | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Production       | KTON      | 0.0   | -1.5  | -1.9  | -2.4     | -1.2     | -0.2  | -1   |
|          |               |                   | Import           | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Bought           | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 5.1      | 0.1   | 0    |
|          |               |                   | Receivable fm    |           | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Final-Stock      | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Total            | KTON      | 0.0   | -1.3  | -1.7  | -2.1     | -0.4     | -0.1  | -1   |
|          |               |                   |                  |           |       |       |       |          |          |       |      |
|          |               | UpperLimit        | Capacity         | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Production       | KTON      | 0.7   | 0.7   | 0.6   | 0.6      | -2.8     | 0.6   | 0    |
|          |               |                   | Import           | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Bought           | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 5.1      | 0.1   | 0    |
|          |               |                   | Receivables      | KTON      | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   |                  |           |       |       |       |          |          |       |      |
|          |               | Sufficient rate   | Capacity         | %         | 0.0   | -1.5  | -1.9  | -2.4     | -1.2     | -0.2  | -1   |
|          |               | Cambioni fato     | Production       | %         | -0.7  | -2.2  | -2.5  | -3.0     | 1.7      | -0.8  | -1   |
|          |               |                   | Import           | %         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Bought           | %         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Receivables      | %         | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               |                   | Receivables      | 70        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          |               | Supply rate       | Production rate  | %         | 0.0   | -0.2  | -0.3  | -0.3     | -0.7     | 0.0   | -0   |
|          |               |                   | Import rate      | %         | 0.0   | 0.2   | 0.0   | 0.0      | 0.0      | 0.0   | -0   |
|          |               |                   | Bought rate      | %         | 0.0   | 1.4   | 1.7   | 2.1      | 5.5      | 0.0   | 1    |
|          |               |                   | Receivable rate  |           | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.2   | 0    |
|          | -             |                   | Receivable fale  | /0        | 0.0   | 0.0   | 0.0   | 0.0      | 0.0      | 0.0   | 0    |
|          | Profitability | Profit            | Income           | millionLE | 2.3   | 1.0   | 0.6   | 0.1      | 0.6      | 2.8   | 1    |
|          | FIUITADIIITY  | FIUIL             | Expense          | millionLE | 2.3   | 1.0   | 1.2   | 0.1      | 2.7      | 2.8   | 1    |
|          |               |                   |                  |           |       |       |       |          |          |       |      |
|          |               |                   | Profit           | millionLE | 0.7   | -1.0  | -1.9  | -3.3     | -6.2     | 1.8   | -0   |
|          |               |                   |                  | LE TON    |       |       |       |          | 0.0      |       |      |
|          |               | Price & Unit cost | Sales price of D |           | 2.7   | 2.8   | 2.9   | 3.1      | 3.0      | 4.0   | 2    |
|          |               |                   | Sales price of E |           | 2.7   | 2.8   | 2.9   | 3.1      | -1.3     | 6.5   | 2    |
|          |               |                   | Sales price of E |           | 2.7   | 2.8   | 2.9   | 3.1      | 3.0      | 3.1   | 2    |
|          |               |                   | Invoice cost     | LE/TON    | 2.7   | 2.8   | 2.9   | 3.1      | 3.0      | 3.1   | 2    |
|          |               |                   | Import cost      | LE/TON    | 6.8   | 6.8   | 6.8   | 6.8      | -8.5     | 17.0  | 6    |
|          |               |                   | Bought cost      | LE/TON    | 2.7   | 2.8   | 2.9   | 3.1      | 3.0      | 3.1   | 2    |
|          |               |                   | Production cost  | LE/TON    | 2.7   | 2.8   | 2.9   | 3.1      | 3.0      | 3.1   | 2    |
|          |               |                   | Profit per unit  | LE/TON    | 0.7   | 0.4   | -0.3  | -1.2     | -5.8     | 1.9   | 0    |
|          |               |                   |                  |           |       |       |       |          |          |       |      |

### Table 6.2.33 Growth Rate Table of "EBT" Sheet

# (5) Primary Energy Consumption ("PEC" sheet)

#### 1) Indigenous Production

Indigenous productions in Egypt are Crude oil, Natural gas, NGL, FD-LPG, Hydro-power, Solar-Wind-Other power and Renewable energy. Other energies are not indigenous energies.

| ITEMS 1               | SECTORS                | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|-----------------------|------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Indigenous Production | Coal                   | KTON | 40.0     | 40.0     | 50.0     | 54.0     | 44.0     | 47.0     | 48.0     | 48.0     |
|                       | Coke                   | KTON |          |          |          |          |          |          |          |          |
|                       | Crude oil              | KTON | 35,796.2 | 39,053.0 | 40,000.0 | 39,906.7 | 39,251.8 | 38,502.7 | 37,657.2 | 36,704.2 |
|                       | Natural gas            | KTON | 10,698.7 | 12,082.2 | 12,427.4 | 12,791.2 | 13,174.2 | 13,575.2 | 13,996.2 | 14,435.2 |
|                       | NGL                    | KTON | 1,506.4  | 1,701.2  | 1,749.8  | 1,801.0  | 1,854.9  | 1,911.4  | 1,970.7  | 2,032.5  |
|                       | FD-LPG                 | KTON | 1,005.6  | 1,135.7  | 1,168.1  | 1,202.3  | 1,238.3  | 1,276.0  | 1,315.6  | 1,356.8  |
|                       | LPG distribution       | KTON |          |          |          |          |          |          |          |          |
|                       | LNG                    | KTON |          |          |          |          |          |          |          |          |
|                       | Feedstock              | KTON |          |          |          |          |          |          |          |          |
|                       | RF-Gas                 | KTON |          |          |          |          |          |          |          |          |
|                       | RF-LPG                 | KTON |          |          |          |          |          |          |          |          |
|                       | Gasoline               | KTON |          |          |          |          |          |          |          |          |
|                       | Jet fuel               | KTON |          |          |          |          |          |          |          |          |
|                       | Kerosene               | KTON |          |          |          |          |          |          |          |          |
|                       | Diesel                 | KTON |          |          |          |          |          |          |          |          |
|                       | Fuel oil               | KTON |          |          |          |          |          |          |          |          |
|                       | Naphtha                | KTON |          |          |          |          |          |          |          |          |
|                       | Lubricants & additives |      |          |          |          |          |          |          |          |          |
|                       | Bitumen                | KTON |          |          |          |          |          |          |          |          |
|                       | Petroleum Coke         | KTON |          |          |          |          |          |          |          |          |
|                       | Non specified products |      |          |          |          |          |          |          |          |          |
|                       | Power distribution     | GWh  |          |          |          |          |          |          |          |          |
|                       | Power Hydro            | GWh  | 15,000.0 | 15,282.0 | 15,550.0 | 15,804.0 | 16,047.0 | 16,278.0 | 16,500.0 | 16,713.0 |
|                       | Power Gas combined     | GWh  |          |          |          |          |          |          |          |          |
|                       | Power Coal steam       | GWh  |          |          |          |          |          |          |          |          |
|                       | Power Gas turbine      | GWh  |          |          |          |          |          |          |          |          |
|                       |                        | GWh  |          |          |          |          |          |          |          |          |
|                       |                        | GWh  |          |          |          |          |          |          |          |          |
|                       | Power Solar Wind Othe  |      | 25.0     | 67.0     | 445.0    | 914.0    | 1,289.0  | 2,048.0  | 3,407.0  | 3,500.0  |
|                       | Renewable              | KTON | 99.0     | 99.0     | 100.0    | 282.0    | 283.0    | 283.0    | 284.0    | 285.0    |
|                       |                        |      |          |          |          |          |          |          |          |          |

Table6.2.34 Indigenous Production in "PEC" Sheet

# 2) Partner's Share

Crude oil, Natural gas and NGL have partner's shares. Then, these energies have to pay some energy to the partners. The following is the partners' share in the Crude oil, Natural gas and NGL sectors.

 Table 6.2.35 Partner's Share in "PEC" Sheet

| ITEMS 1  | SECTORS                | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|----------|------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Partners | Coal                   | KTON |          |          |          |          |          |          |          |          |
|          | Coke                   | KTON |          |          |          |          |          |          |          |          |
|          | Crude oil              | KTON | 13,280.4 | 15,621.2 | 16,000.0 | 15,962.7 | 15,700.7 | 15,401.1 | 15,062.9 | 14,681.7 |
|          | Natural cas            | KTON | 3.134.7  | 3.624.7  | 3.728.2  | 3.837.4  | 3.952.3  | 4.072.6  | 4.198.9  | 4.330.6  |
|          | NGL                    | KTON | 468.5    | 544.4    | 559.9    | 576.3    | 593.6    | 611.6    | 630.6    | 650.4    |
|          | FD-LPG                 | KTON |          |          |          |          |          |          |          |          |
|          | LPG distribution       | KTON |          |          |          |          |          |          |          |          |
|          | LNG                    | KTON |          |          |          |          |          |          |          |          |
|          | Feedstock              | KTON |          |          |          |          |          |          |          |          |
|          | RF-Gas                 | KTON |          |          |          |          |          |          |          |          |
|          | RF-LPG                 | KTON |          |          |          |          |          |          |          |          |
|          | Gasoline               | KTON |          |          |          |          |          |          |          |          |
|          | Jet fuel               | KTON |          |          |          |          |          |          |          |          |
|          | Kerosene               | KTON |          |          |          |          |          |          |          |          |
|          | Diesel                 | KTON |          |          |          |          |          |          |          |          |
|          | Fuel oil               | KTON |          |          |          |          |          |          |          |          |
|          | Naphtha                | KTON |          |          |          |          |          |          |          |          |
|          | Lubricants & additives | KTON |          |          |          |          |          |          |          |          |
|          | Bitumen                | KTON |          |          |          |          |          |          |          |          |
|          | Petroleum Coke         | KTON |          |          |          |          |          |          |          |          |
|          | Non specified products |      |          |          |          |          |          |          |          |          |
|          | Power distribution     | GWh  |          |          |          |          |          |          |          |          |
|          | Power Hvdro            | GWh  |          |          |          |          |          |          |          |          |
|          | Power Gas combined     | GWh  |          |          |          |          |          |          |          |          |
|          | Power Coal steam       | GWh  |          |          |          |          |          |          |          |          |
|          | Power Gas turbine      | GWh  |          |          |          |          |          |          |          |          |
|          | Power Diesel engine    | GWh  |          |          |          |          |          |          |          |          |
|          | Power Fuel oil steam   | GWh  |          |          |          |          |          |          |          |          |
|          | Power Solar Wind Oth   | GWh  |          |          |          |          |          |          |          |          |
|          | Renewable              | KTON |          |          |          |          |          |          |          |          |
|          |                        |      |          |          |          |          |          |          |          |          |

# 3) Import

Some types of energy are imported from foreign countries. The imported energies are described in the following table.

| ITEMS 1 | SECTORS                | UNIT | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004     | 2005     |
|---------|------------------------|------|---------|---------|---------|---------|---------|---------|----------|----------|
| Import  | Coal                   | KTON | 1,574.1 | 1,913.5 | 1,950.0 | 1,996.7 | 2,061.6 | 2,119.2 | 2,183.0  | 2,252.0  |
|         | Coke                   | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Crude oil              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Natural gas            | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | NGL                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | FD-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | LPG distribution       | KTON | 733.0   | 715.2   | 862.4   | 1,018.7 | 1,186.7 | 1,364.0 | 1,556.4  | 1,770.2  |
|         | LNG                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Feedstock              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | RF-Gas                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | RF-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Gasoline               | KTON | 144.6   | 154.0   | 200.4   | 278.1   | 372.1   | 463.1   | 551.1    | 639.1    |
|         | Jet fuel               | KTON | 15.6    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Kerosene               | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Diesel                 | KTON | 1,820.7 | 1,740.4 | 2,118.5 | 2,671.0 | 3,356.0 | 4,115.0 | 4.955.0  | 5,887.0  |
|         | Fuel oil               | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Naphtha                | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Lubricants & additives | KTON | 90.0    | 85.8    | 89.5    | 97.0    | 108.0   | 118.0   | 128.0    | 139.0    |
|         | Bitumen                | KTON | 108.3   | 119.3   | 116.8   | 134.0   | 162.0   | 194.0   | 229.0    | 267.0    |
|         | Petroleum Coke         | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Non specified products |      | 246.1   | 372.7   | 379.7   | 389.0   | 400.0   | 411.0   | 422.0    | 433.0    |
|         | Power distribution     | GWh  | 0.0     | 80.3    | 1,503.1 | 2,917.9 | 4,516.0 | 7.848.3 | 11,447.4 | 16,479.7 |
|         | Power Hvdro            | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Gas combined     | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Coal steam       | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Gas turbine      | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Diesel engine    | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Fuel oil steam   | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Power Solar Wind Oth   | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         | Renewable              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.0      |
|         |                        |      |         |         |         |         |         |         |          |          |

Table 6.2.36 Import in "PEC" Sheet

### 4) Bought

Crude oil, Natural gas and NGL are bought from partners. All Natural gas from partners, all NGL from partners and part of crude oil paid to partners are bought back to the domestic market.

| ITEMS 1 | SECTORS                | UNIT | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|---------|------------------------|------|---------|---------|---------|---------|---------|---------|---------|---------|
| Bought  | Coal                   | KTON |         |         |         |         |         |         |         |         |
|         | Coke                   | KTON |         |         |         |         |         |         |         |         |
|         | Crude oil              | KTON | 6,060.0 | 6,100.0 | 6,100.0 | 6,100.0 | 6,100.0 | 6,100.0 | 6,100.0 | 6,100.0 |
|         | Natural gas            | KTON | 3,134.7 | 3.624.7 | 3,728.2 | 3.837.4 | 3,952.3 | 4,072.6 | 4,198.9 | 4,330.6 |
|         | NGL                    | KTON | 468.5   | 544.4   | 559.9   | 576.3   | 593.6   | 611.6   | 630.6   | 650.4   |
|         | FD-LPG                 | KTÓN | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | LPG distribution       | KTON |         |         |         |         |         |         |         |         |
|         | LNG                    | KTON |         |         |         |         |         |         |         |         |
|         | Feedstock              | KTON |         |         |         |         |         |         |         |         |
|         | RF-Gas                 | KTÓN |         |         |         |         |         |         |         |         |
|         | RF-LPG                 | KTÓN |         |         |         |         |         |         |         |         |
|         | Gasoline               | KTON |         |         |         |         |         |         |         |         |
|         | Jet fuel               | KTON |         |         |         |         |         |         |         |         |
|         | Kerosene               | KTÓN |         |         |         |         |         |         |         |         |
|         | Diesel                 | KTÓN |         |         |         |         |         |         |         |         |
|         | Fuel oil               | KTON |         |         |         |         |         |         |         |         |
|         | Naphtha                | KTON |         |         |         |         |         |         |         |         |
|         | Lubricants & additives | KTON |         |         |         |         |         |         |         |         |
|         | Bitumen                | KTON |         |         |         |         |         |         |         |         |
|         | Petroleum Coke         | KTÓN |         |         |         |         |         |         |         |         |
|         | Non specified products | KTON |         |         |         |         |         |         |         |         |
|         | Power distribution     | GWh  |         |         |         |         |         |         |         |         |
|         | Power Hvdro            | GWh  |         |         |         |         |         |         |         |         |
|         | Power Gas combined     | GWh  |         |         |         |         |         |         |         |         |
|         | Power Coal steam       | GWh  |         |         |         |         |         |         |         |         |
|         | Power Gas turbine      | GWh  |         |         |         |         |         |         |         | -       |
|         | Power Diesel engine    | GWh  |         |         |         |         |         |         |         |         |
|         | Power Fuel oil steam   | GWh  |         |         |         |         |         |         |         |         |
|         | Power Solar Wind Oth   |      |         |         |         |         |         |         |         |         |
|         | Renewable              | KTON |         |         |         |         |         |         |         | -       |
|         |                        | 1    |         |         |         |         |         |         |         |         |

 Table 6.2.37 Bought in "PEC" Sheet

# 5) Export

Coke, crude oil, kerosene, naphtha are exported. In the table, fuel oil is exported, but it is the surplus fuel oil from the domestic market.

| ITEMS 1 | SECTORS                | UNIT | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|---------|------------------------|------|---------|---------|---------|---------|---------|---------|---------|---------|
| Export  | Coal                   | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Coke                   | KTON | 246.0   | 464.0   | 464.0   | 464.0   | 464.0   | 464.0   | 464.0   | 464.0   |
|         | Crude oil              | KTON | 2,934.0 | 2,351.0 | 2,130.0 | 1,845.0 | 1,506.0 | 1,113.0 | 665.0   | 155.0   |
|         | Natural gas            | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | NGL                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | FD-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | LPG distribution       | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | LNG                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Feedstock              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | RF-Gas                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | RF-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Gasoline               | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Jet fuel               | KTON | 0.0     | 103.5   | 99.6    | 79.0    | 80.0    | 72.0    | 75.0    | 63.0    |
|         | Kerosene               | KTON | 0.0     | 147.0   | 286.0   | 420.0   | 548.0   | 571.0   | 640.0   | 703.0   |
|         | Diesel                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Fuel oil               | KTON | 1,079.7 | 1,311.8 | 1,098.8 | 682.1   | 157.9   | 0.0     | 0.0     | 0.0     |
|         | Naphtha                | KTON | 2,849.4 | 2,960.4 | 3,046.3 | 3,075.0 | 3,075.0 | 3,075.0 | 3,075.0 | 3,075.0 |
|         | Lubricants & additives | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Bitumen                | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Petroleum Coke         | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Non specified products | KTON | 38.0    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power distribution     | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Hydro            | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Gas combined     | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Coal steam       | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Gas turbine      | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Diesel engine    | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Fuel oil steam   | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Solar Wind Othe  | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Renewable              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         |                        |      |         |         |         |         |         |         |         |         |

 Table 6.2.38 Export in "PEC" Sheet

### 6) Bunker Oil

Some portion of gasoline, Jet fuel and diesel are brought for Bunker oil use.

| ITEMS 1 | SECTORS                | UNIT | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|---------|------------------------|------|---------|---------|---------|---------|---------|---------|---------|---------|
| Bunkers | Coal                   | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Coke                   | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Crude oil              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Natural gas            | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | NGL                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | FD-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | LPG distribution       | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | LNG                    | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Feedstock              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | RF-Gas                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | RF-LPG                 | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Gasoline               | KTÓN | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     | 0.1     |
|         | Jet fuel               | KTON | 412.0   | 336.0   | 357.0   | 378.0   | 370.0   | 371.0   | 362.0   | 368.0   |
|         | Kerosene               | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Diesel                 | KTÓN | 243.0   | 243.0   | 243.0   | 243.0   | 243.0   | 243.0   | 243.0   | 243.0   |
|         | Fuel oil               | KTON | 2,268.0 | 2,333.0 | 2,403.0 | 2,383.0 | 2,294.0 | 2,336.0 | 2,350.0 | 2,353.0 |
|         | Naphtha                | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Lubricants & additives | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Bitumen                | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Petroleum Coke         | KTÓN | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Non specified products | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power distribution     | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Hydro            | KTÓN | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Gas combined     | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Coal steam       | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Gas turbine      | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Diesel engine    | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Fuel oil steam   | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Power Solar Wind Othe  | GWh  | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         | Renewable              | KTON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|         |                        |      |         |         |         |         |         |         |         |         |
|         |                        |      |         |         |         |         |         |         |         |         |

 Table 6.2.39 Bunkers in "PEC" Sheet

### 7) Primary Energy Consumption

Primary energy consumption is defined as the following expression.

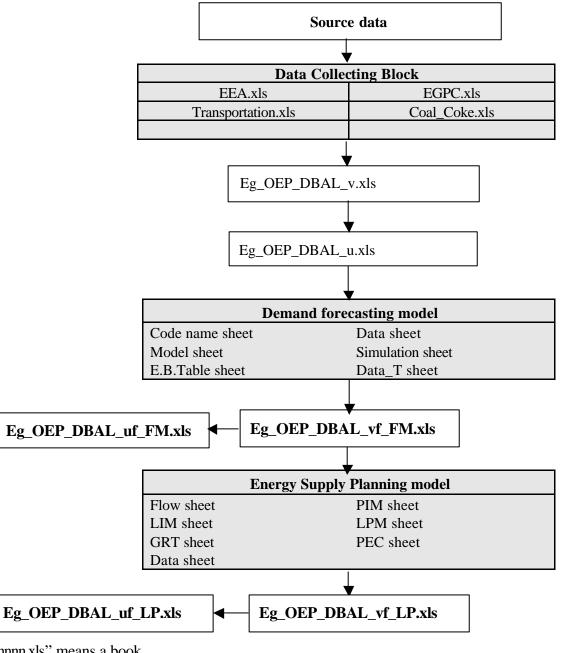
#### Indigenous production + Import + Bought - Partner - Export - Bunkers

In the following table, the energies with a plus sign are the net consumption in the domestic market and the energies with a minus sigh are the net export. The total from the energies after converting to toe is the primary energy consumption in Egypt.

| ITEMS 1             | SECTORS                | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|---------------------|------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Primary Energy Cons | Coal                   | KTON | 1,614.1  | 1,953.5  | 2,000.0  | 2,050.7  | 2,105.6  | 2,166.2  | 2,231.0  | 2,300.0  |
|                     | Coke                   | KTON | -246.0   | -464.0   | -464.0   | -464.0   | -464.0   | -464.0   | -464.0   | -464.0   |
|                     | Crude oil              | KTON | 25,641.8 | 27,180.8 | 27,970.0 | 28,199.0 | 28,145.1 | 28,088.6 | 28,029.3 | 27,967.5 |
|                     | Natural gas            | KTON | 10,698.7 | 12,082.2 | 12,427.4 | 12,791.2 | 13,174.2 | 13,575.2 | 13,996.2 | 14,435.2 |
|                     | NGL                    | KTON | 1,506.4  | 1,701.2  | 1,749.8  | 1,801.0  | 1,854.9  | 1,911.4  | 1,970.7  | 2,032.5  |
|                     | FD-LPG                 | KTON | 1,005.6  | 1,135.7  | 1,168.1  | 1,202.3  | 1,238.3  | 1,276.0  | 1,315.6  | 1,356.8  |
|                     | LPG distribution       | KTON | 733.0    | 715.2    | 862.4    | 1,018.7  | 1,186.7  | 1,364.0  | 1,556.4  | 1,770.2  |
|                     | LNG                    | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Feedstock              | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | RF-Gas                 | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | RF-LPG                 | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Gasoline               | KTON | 144.5    | 153.9    | 200.3    | 278.0    | 372.0    | 463.0    | 551.0    | 639.0    |
|                     | Jet fuel               | KTON | -396.4   | -439.5   | -456.6   | -457.0   | -450.0   | -443.0   | -437.0   | -431.0   |
|                     | Kerosene               | KTON | 0.0      | -147.0   | -286.0   | -420.0   | -548.0   | -571.0   | -640.0   | -703.0   |
|                     | Diesel                 | KTON | 1,577.7  | 1,497.4  | 1,875.5  | 2,428.0  | 3,113.0  | 3,872.0  | 4,712.0  | 5,644.0  |
|                     | Fuel oil               | KTON | -3,347.7 | -3,644.8 | -3,501.8 | -3,065.1 | -2,451.9 | -2,336.0 | -2,350.0 | -2,353.0 |
|                     | Naphtha                | KTON | -2,849.4 | -2,960.4 | -3,046.3 | -3,075.0 | -3,075.0 | -3,075.0 | -3,075.0 | -3,075.0 |
|                     | Lubricants & additives | KTON | 90.0     | 85.8     | 89.5     | 97.0     | 108.0    | 118.0    | 128.0    | 139.0    |
|                     | Bitumen                | KTON | 108.3    | 119.3    | 116.8    | 134.0    | 162.0    | 194.0    | 229.0    | 267.0    |
|                     | Petroleum Coke         | KTON | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Non specified products | KTON | 208.1    | 372.7    | 379.7    | 389.0    | 400.0    | 411.0    | 422.0    | 433.0    |
|                     | Power distribution     | GWh  | 0.0      | 80.3     | 1,503.1  | 2,917.9  | 4,516.0  | 7,848.3  | 11,447.4 | 16,479.7 |
|                     | Power Hydro            | GWh  | 15,000.0 | 15,282.0 | 15,550.0 | 15,804.0 | 16,047.0 | 16,278.0 | 16,500.0 | 16,713.0 |
|                     | Power Gas combined     | GWh  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Power Coal steam       | GWh  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Power Gas turbine      | GWh  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Power Diesel engine    | GWh  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Power Fuel oil steam   | GWh  | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
|                     | Power Solar Wind Othe  | GWh  | 25.0     | 67.0     | 445.0    | 914.0    | 1,289.0  | 2,048.0  | 3,407.0  | 3,500.0  |
|                     | Renewable              | KTON | 99.0     | 99.0     | 100.0    | 282.0    | 283.0    | 283.0    | 284.0    | 285.0    |
|                     |                        |      |          |          |          |          |          |          |          |          |

Table 6.2.40 Primary Energy Consumption in "PEC" Sheet

### 8) Primary Energy by TOE unit


The following table is the primary energy after converting to TOE unit. The energies are totaled to primary energy consumption.

| ITEMS 1           | SECTORS                | UNIT | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
|-------------------|------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|
| Primary Energy Co | nsiCoal                | KTOE | 1,287    | 1,414    | 1,438    | 1,466    | 1,496    | 1,530    | 1,567    | 1,609    |
|                   | Coke                   | KTOE | -311     | -385     | -380     | -376     | -371     | -367     | -363     | -359     |
|                   | Crude oil              | KTOE | 27.041   | 27.309   | 27.830   | 28.058   | 28.004   | 27.948   | 27.889   | 27.828   |
|                   | Natural das            | KTOE | 11.603   | 13.427   | 13.806   | 14.211   | 14.636   | 15.082   | 15.549   | 16.036   |
|                   | NGL                    | KTOE | 1.622    | 1.877    | 1,930    | 1.986    | 2.046    | 2.108    | 2.174    | 2.242    |
|                   | FD-LPG                 | KTOE | 1,104    | 1,278    | 1,314    | 1,353    | 1,393    | 1,436    | 1,480    | 1,526    |
|                   | LPG distribution       | KTOE | 756      | 799      | 968      | 1,134    | 1,299    | 1,460    | 1,619    | 1,779    |
|                   | LNG                    | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Feedstock              | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | RF-Gas                 | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | RF-LPG                 | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Gasoline               | KTOE | 34       | 147      | 221      | 307      | 410      | 511      | 608      | 705      |
|                   | Jet fuel               | KTOE | -479     | -486     | -496     | -497     | -489     | -481     | -474     | -468     |
|                   | Kerosene               | KTOE | 0        | -283     | -334     | -445     | -536     | -620     | -695     | -763     |
|                   | Diesel                 | KTOE | 1,131    | 1,446    | 1,776    | 2,185    | 2,669    | 3,175    | 3,704    | 4,260    |
|                   | Fuel oil               | KTOE | -3,532   | -4,024   | -3,404   | -2,979   | -2,383   | -2,271   | -2,284   | -2,287   |
|                   | Naphtha                | KTOE | -3.312   | -3.295   | -3.360   | -3.392   | -3.392   | -3.392   | -3.392   | -3.392   |
|                   | Lubricants & additives | KTOE | 96       | 103      | 110      | 119      | 130      | 141      | 152      | 164      |
|                   | Bitumen                | KTOE | 65       | 109      | 113      | 130      | 157      | 188      | 222      | 260      |
|                   | Petroleum Coke         | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   |                        | KTOE | 378      | 375      | 371      | 370      | 370      | 370      | 370      | 370      |
|                   | Power distribution     | KTOE | -4.607   | 7        | 129      | 251      | 388      | 675      | 984      | 1.380    |
|                   | Power Hydro            | KTOE | 1.290    | 1.314    | 1.337    | 1.359    | 1.380    | 1.400    | 1.419    | 1.437    |
|                   | Power Gas combined     | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Power Coal steam       | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Power Gas turbine      | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Power Diesel engine    | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Power Fuel oil steam   | KTOE | 0        | 0        | 0        | 0        | 0        | 0        | 0        | 0        |
|                   | Power Solar Wind Othe  |      | 2        | 6        | 38       | 79       | 111      | 176      | 293      | 344      |
|                   | Renewable              | KTOE | 19       | 20       | 20       | 56       | 57       | 57       | 57       | 57       |
|                   | Total                  | KTOE | 34.185.1 | 41.156.2 | 43.430.2 | 45.374.1 | 47.375.7 | 49.126.3 | 50.880.5 | 52.727.6 |
|                   |                        |      | 41 173   |          |          |          |          |          |          |          |

Table 6.2.41 Primary Energy Consumption by TOE Unit

# (6) Data Connection between ESPM and Energy Demand Forecasting Model

The energy economic model that includes all models built by OEP and JICA team is handled by the following data flow.





"nnnn.xls" means a book.

"mmm sheet" means a EXCEL sheet.

#### 6.3 Simulation Results of Base Case

#### **6.3.1 Preconditions**

#### (1) Prices and Costs Estimation

The LP model uses some types of price and cost. Before the calculation begins, we have to set the energy prices and costs. The price and cost estimation sheet (PIM) is prepared for this purpose. The tool of the estimation is "Price net back method", in which primary energy and intermediate petroleum product prices are estimated by final demand energy prices. For the estimation, several exogenous variables, such as Crude oil Price (\$/bbl), Coal Price (\$/ton), WPI (1996=100) and Exchange rate (LE/\$), are used. The exogenous variables are estimated in the macro economic model. The following is a typical price and cost estimation in PIM sheet of ESPM.

 Table 6.3.1 Exogenous Variables for Price and Cost Estimation

| G         | Н          |                            | J          | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  |
|-----------|------------|----------------------------|------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Exogenous | Trends     | Crude oil Price(Dubai spo  | \$/bbl     | 12.8  | 18.0  | 25.0  | 26.5  | 28.1  | 29.8  | 31.6  | 33.5  |
|           |            | Coal Price(Australlia FO   | \$/ton     | 30.0  | 25.0  | 25.0  | 25.0  | 25.0  | 25.0  | 25.0  | 25.0  |
|           |            | WPI (1996=100)             | 1996=100   | 106.1 | 111.9 | 118.1 | 124.4 | 130.8 | 137.3 | 144.0 | 151.1 |
|           |            | Exchange rate              | LE/\$      | 3.4   | 3.4   | 3.5   | 3.5   | 3.5   | 3.5   | 3.6   | 3.6   |
|           |            |                            |            |       |       |       |       |       |       |       |       |
|           | Growth r   | Crude oil Price            | %          | -31.8 | 40.5  | 38.9  | 6.0   | 6.0   | 6.0   | 6.0   | 6.0   |
|           |            | Coal Price                 | %          | -13.0 | -16.7 | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|           |            | WPI                        | %          | 5.0   | 5.4   | 5.5   | 5.4   | 5.1   | 5.0   | 4.9   | 4.9   |
|           |            |                            |            |       |       |       |       |       |       |       |       |
|           | Internatio | onal petroleum price / Don | nestic pet | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   | 1.1   |

| G           | Н      |                           | J      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  |
|-------------|--------|---------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Crude oil   | Cost   | Partner cost              | LE/TON | 62.1  | 68.7  | 70.6  | 72.5  | 74.4  | 76.2  | 78.1  | 80.0  |
| PC          |        | Plant cost                | LE/TON | 167.3 | 171.8 | 176.6 | 181.3 | 186.0 | 190.6 | 195.3 | 200.0 |
|             |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Production cost           | LE/TON | 229.4 | 240.5 | 247.2 | 253.8 | 260.3 | 266.8 | 273.4 | 280.1 |
|             |        | Import cost               | LE/TON | 225.6 | 320.0 | 448.7 | 479.7 | 512.5 | 547.2 | 584.1 | 623.3 |
|             |        | Bought cost               | LE/TON | 252.3 | 264.6 | 271.9 | 279.2 | 286.4 | 293.5 | 300.7 | 308.1 |
|             |        | Average cost              | LE/TON | 234.0 | 245.3 | 252.1 | 258.9 | 265.5 | 272.2 | 278.9 | 285.7 |
|             | Prices | ROI for Invoice           | %      | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  | 20.0  |
|             |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Invoice price             | LE/TON | 280.8 | 294.4 | 302.6 | 310.7 | 318.7 | 326.6 | 334.6 | 342.8 |
|             |        | ROI for Domestics         | %      | 60.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  |
|             |        | TAX rate for Domesti      |        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Sales price of Domestics  | LE/TON | 374.3 | 417.1 | 428.6 | 440.1 | 451.4 | 462.7 | 474.0 | 485.6 |
|             |        | ROI for Export            | %      | 60.0  | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 | 100.0 |
|             |        | Sales price of Export     | LE/TON | 374.3 | 490.7 | 504.3 | 517.8 | 531.1 | 544.3 | 557.7 | 571.3 |
|             |        | ROI for Bunkers           | %      | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  | 70.0  |
|             |        | Sales price of Bunkers    | LE/TON | 397.7 | 417.1 | 428.6 | 440.1 | 451.4 | 462.7 | 474.0 | 485.6 |
|             |        |                           |        |       |       |       |       |       |       |       |       |
| Natural gas | Cost   | Partner cost              | LE/TON | 32.7  | 34.4  | 35.3  | 36.3  | 37.2  | 38.1  | 39.1  | 40.0  |
| PC          |        | Plant cost                | LE/TON | 111.5 | 114.5 | 117.7 | 120.9 | 124.0 | 127.1 | 130.2 | 133.4 |
|             |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Production cost           | LE/TON | 144.2 | 148.9 | 153.0 | 157.1 | 161.2 | 165.2 | 169.2 | 173.4 |
|             |        | Import cost               | LE/TON | 158.6 | 163.8 | 168.3 | 172.8 | 177.3 | 181.7 | 186.2 | 190.7 |
|             |        | Bought cost               | LE/TON | 158.6 | 163.8 | 168.3 | 172.8 | 177.3 | 181.7 | 186.2 | 190.7 |
|             |        | Average cost              | LE/TON | 147.1 | 151.9 | 156.1 | 160.3 | 164.4 | 168.5 | 172.6 | 176.8 |
|             | Prices | ROI for Invoice           | %      | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
|             |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Invoice price             | LE/TON | 169.2 | 174.7 | 179.5 | 184.3 | 189.0 | 193.8 | 198.5 | 203.4 |
|             |        | ROI for Domestics         | %      | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
|             |        | TAX rate for Domesti      |        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|             |        | Sales price of Domestics  |        | 169.2 | 174.7 | 179.5 | 184.3 | 189.0 | 193.8 | 198.5 | 203.4 |
|             |        | ROI for Export            | %      | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
|             |        | Sales price of Export     | LE/TON | 169.2 | 174.7 | 179.5 | 184.3 | 189.0 | 193.8 | 198.5 | 203.4 |
|             |        | ROI for Bunkers           | %      | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  | 15.0  |
|             |        | Sales price of Bunkers    | LE/TON | 169.2 | 174.7 | 179.5 | 184.3 | 189.0 | 193.8 | 198.5 | 203.4 |
|             |        | Slaes price of Domestic r | narket | 175.0 | 186.1 | 198.1 | 210.0 | 221.9 | 234.2 | 246.8 | 260.0 |

| G             | Н      |                           | J      | 1998    | 1999    | 2000    | 2001    | 2002    | 2003    | 2004    | 2005    |
|---------------|--------|---------------------------|--------|---------|---------|---------|---------|---------|---------|---------|---------|
| LPG distribut | Cost   | Variable cost             | LE/TON | 198.6   | 205.0   | 210.7   | 216.4   | 221.9   | 227.5   | 233.0   | 238.7   |
| PC            |        | Plant cost                | LE/TON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Other cost                | LE/TON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Production cost           | LE/TON | 198.6   | 205.0   | 210.7   | 216.4   | 221.9   | 227.5   | 233.0   | 238.7   |
|               |        | Import cost               | LE/TON | 218.4   | 225.5   | 231.8   | 238.0   | 244.1   | 250.2   | 256.3   | 262.6   |
|               |        | Bought cost               | LE/TON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Average cost              | LE/TON | 198.6   | 205.0   | 210.7   | 216.4   | 221.9   | 227.5   | 233.0   | 238.7   |
|               | Prices | ROI for Invoice           | %      | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
|               |        | TAX rate for Invoice      | %      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Invoice price             | LE/TON | 208.5   | 215.3   | 221.3   | 227.2   | 233.0   | 238.8   | 244.7   | 250.7   |
|               |        | ROI for Domestics         | %      | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
|               |        | TAX rate for Domestic     | %      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Sales price of Domestics  | LE/TON | 208.5   | 215.3   | 221.3   | 227.2   | 233.0   | 238.8   | 244.7   | 250.7   |
|               |        | ROI for Export            | %      | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
|               |        | Sales price of Export     | LE/TON | 208.5   | 215.3   | 221.3   | 227.2   | 233.0   | 238.8   | 244.7   | 250.7   |
|               |        | ROI for Bunkers           | %      | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     | 5.0     |
|               |        | Sales price of Bunkers    | LE/TON | 208.5   | 215.3   | 221.3   | 227.2   | 233.0   | 238.8   | 244.7   | 250.7   |
|               |        | Slaes price of Domestic r | narket | 200.0   | 212.7   | 226.4   | 240.0   | 253.6   | 267.6   | 282.1   | 297.2   |
| Gasoline      | Cost   | Variable cost             | LE/TON | 1,115.7 | 1,168.5 | 1,200.8 | 1,233.0 | 1,264.7 | 1,296.2 | 1,328.0 | 1,360.5 |
| PC            |        | Plant cost                | LE/TON | 227.2   | 233.3   | 239.8   | 246.2   | 252.6   | 258.9   | 265.2   | 271.7   |
|               |        | Other cost                | LE/TON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Production cost           | LE/TON | 1.343.0 | 1,401.8 | 1.440.6 | 1,479.3 | 1.517.2 | 1.555.1 | 1,593.2 | 1.632.2 |
|               |        | Import cost               | LE/TON | 1,477.2 | 1,542.0 | 1,584.7 | 1,627.2 | 1,668.9 | 1,710.6 | 1,752.6 | 1,795.4 |
|               |        | Bought cost               | LE/TON | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Average cost              | LE/TON | 1,343.0 | 1,401.8 | 1,440.6 | 1,479.3 | 1,517.2 | 1,555.1 | 1,593.2 | 1.632.2 |
|               | Prices | ROI for Invoice           | %      | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    |
|               |        |                           | %      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        |                           | LE/TON | 1,477.2 | 1,542.0 | 1,584.7 | 1,627.2 | 1,668.9 | 1.710.6 | 1,752.6 | 1,795.4 |
|               |        | ROI for Domestics         | %      | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    |
|               |        | TAX rate for Domestic     |        | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     |
|               |        | Sales price of Domestics  |        | 1,477.2 | 1,542.0 | 1,584.7 | 1,627.2 | 1,668.9 | 1,710.6 | 1,752.6 | 1,795.4 |
|               |        | ROI for Export            | %      | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    |
|               |        | Sales price of Export     | LE/TON | 1,477.2 | 1,542.0 | 1,584.7 | 1,627.2 | 1,668.9 | 1,710.6 | 1,752.6 | 1,795.4 |
|               |        | ROI for Bunkers           | %      | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    | 10.0    |
|               |        |                           | LE/TON | 1,477.2 | 1,542.0 | 1.584.7 | 1,627.2 | 1,668.9 | 1.710.6 | 1,752.6 | 1.795.4 |
|               |        | Slaes price of Domestic r | narket | 1,305.0 | 1,387.9 | 1,477.3 | 1,565.8 | 1,654.9 | 1,746.1 | 1,840.5 | 1,939.1 |

Table 6.3.3 Price and Cost Estimation of LPG and Gasoline

# Table 6.3.4 Price and Cost Estimation of Kerosene and Diesel

| G        | Н      |                           | J      | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  |
|----------|--------|---------------------------|--------|-------|-------|-------|-------|-------|-------|-------|-------|
| Kerosene | Cost   | Variable cost             | LE/TON | 278.9 | 292.1 | 300.2 | 308.3 | 316.2 | 324.1 | 332.0 | 340.1 |
| PC       |        | Plant cost                | LE/TON | 227.2 | 233.3 | 239.8 | 246.2 | 252.6 | 258.9 | 265.2 | 271.7 |
|          |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Production cost           | LE/TON | 506.2 | 525.5 | 540.0 | 554.5 | 568.7 | 582.9 | 597.2 | 611.8 |
|          |        | Import cost               | LE/TON | 556.8 | 578.0 | 594.0 | 609.9 | 625.6 | 641.2 | 656.9 | 673.0 |
|          |        | Bought cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Average cost              | LE/TON | 506.2 | 525.5 | 540.0 | 554.5 | 568.7 | 582.9 | 597.2 | 611.8 |
|          | Prices |                           | %      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|          |        | TAX rate for Invoice      | %      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Invoice price             | LE/TON | 531.5 | 551.7 | 567.0 | 582.2 | 597.2 | 612.0 | 627.1 | 642.4 |
|          |        | ROI for Domestics         | %      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|          |        | TAX rate for Domesti      | %      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Sales price of Domestics  | LE/TON | 531.5 | 551.7 | 567.0 | 582.2 | 597.2 | 612.0 | 627.1 | 642.4 |
|          |        | ROI for Export            | %      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|          |        | Sales price of Export     | LE/TON | 531.5 | 551.7 | 567.0 | 582.2 | 597.2 | 612.0 | 627.1 | 642.4 |
|          |        | ROI for Bunkers           | %      | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|          |        | Sales price of Bunkers    | LE/TON | 531.5 | 551.7 | 567.0 | 582.2 | 597.2 | 612.0 | 627.1 | 642.4 |
|          |        | Slaes price of Domestic r |        | 504.0 | 536.0 | 570.5 | 604.7 | 639.1 | 674.4 | 710.8 | 748.9 |
| Diesel   | Cost   | Variable cost             | LE/TON | 283.4 | 296.8 | 305.0 | 313.2 | 321.2 | 329.2 | 337.3 | 345.6 |
| PC       |        | Plant cost                | LE/TON | 227.2 | 233.3 | 239.8 | 246.2 | 252.6 | 258.9 | 265.2 | 271.7 |
|          |        | Other cost                | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Production cost           | LE/TON | 510.6 | 530.1 | 544.8 | 559.4 | 573.8 | 588.1 | 602.5 | 617.2 |
|          |        | Import cost               | LE/TON | 561.7 | 583.1 | 599.3 | 615.4 | 631.2 | 646.9 | 662.8 | 679.0 |
|          |        | Bought cost               | LE/TON | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Average cost              | LE/TON | 510.6 | 530.1 | 544.8 | 559.4 | 573.8 | 588.1 | 602.5 | 617.2 |
|          | Prices |                           | %      | -50.0 | -50.0 | -50.0 | -50.0 | -50.0 | -50.0 | -50.0 | -50.0 |
|          |        |                           | %      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        |                           | LE/TON | 255.3 | 265.1 | 272.4 | 279.7 | 286.9 | 294.0 | 301.3 | 308.6 |
|          |        |                           | %      | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|          |        | TAX rate for Domesti      |        | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|          |        | Sales price of Domestics  | LE/TON | 561.7 | 583.1 | 599.3 | 615.4 | 631.2 | 646.9 | 662.8 | 679.0 |
|          |        | ROI for Export            | %      | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|          |        | Sales price of Export     | LE/TON | 561.7 | 583.1 | 599.3 | 615.4 | 631.2 | 646.9 | 662.8 | 679.0 |
|          |        | ROI for Bunkers           | %      | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|          |        | Sales price of Bunkers    | LE/TON | 561.7 | 583.1 | 599.3 | 615.4 | 631.2 | 646.9 | 662.8 | 679.0 |
|          |        | Slaes price of Domestic r | narket | 504.0 | 536.0 | 570.5 | 604.7 | 639.1 | 674.4 | 710.8 | 748.9 |

| G            | Н      | 1                         | J           | 1998  | 1999  | 2000  | 2001  | 2002  | 2003  | 2004  | 2005  |
|--------------|--------|---------------------------|-------------|-------|-------|-------|-------|-------|-------|-------|-------|
| Fuel oil     | Cost   | Variable cost             | LE/TON      | 142.1 | 148.8 | 153.0 | 157.1 | 161.1 | 165.1 | 169.2 | 173.3 |
| PC           |        | Plant cost                | LE/TON      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Other cost                | LE/TON      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Production cost           | LE/TON      | 142.1 | 148.8 | 153.0 | 157.1 | 161.1 | 165.1 | 169.2 | 173.3 |
|              |        | Import cost               | LE/TON      | 156.3 | 163.7 | 168.3 | 172.8 | 177.2 | 181.6 | 186.1 | 190.6 |
|              |        | Bought cost               | LE/TON      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Average cost              | LE/TON      | 142.1 | 148.8 | 153.0 | 157.1 | 161.1 | 165.1 | 169.2 | 173.3 |
|              | Prices | ROI for Invoice           | %           | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|              |        | TAX rate for Invoice      | %           | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Invoice price             | LE/TON      | 156.3 | 163.7 | 168.3 | 172.8 | 177.2 | 181.6 | 186.1 | 190.6 |
|              |        | ROI for Domestics         | %           | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|              |        | TAX rate for Domesti      | %           | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Sales price of Domestics  | LE/TON      | 156.3 | 163.7 | 168.3 | 172.8 | 177.2 | 181.6 | 186.1 | 190.6 |
|              |        | ROI for Export            | %           | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|              |        | Sales price of Export     | LE/TON      | 156.3 | 163.7 | 168.3 | 172.8 | 177.2 | 181.6 | 186.1 | 190.6 |
|              |        | ROI for Bunkers           | %           | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  | 10.0  |
|              |        | Sales price of Bunkers    | LE/TON      | 156.3 | 163.7 | 168.3 | 172.8 | 177.2 | 181.6 | 186.1 | 190.6 |
|              |        | Slaes price of Domestic n | narket      | 182.0 | 193.6 | 206.0 | 218.4 | 230.8 | 243.5 | 256.7 | 270.4 |
| Power distri | bCost  | Variable cost             | LE/MWh      | 150.2 | 152.5 | 156.7 | 160.9 | 165.0 | 169.1 | 173.3 | 177.5 |
| PC           |        | Plant cost                | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Other cost                | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Production cost           | LE/MWh      | 150.2 | 152.5 | 156.7 | 160.9 | 165.0 | 169.1 | 173.3 | 177.5 |
|              |        | Import cost               | LE/MWh      | 165.2 | 167.7 | 172.3 | 177.0 | 181.5 | 186.0 | 190.6 | 195.3 |
|              |        | Bought cost               | LE/MWh      | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Average cost              | LE/MWh      | 150.2 | 152.5 | 156.7 | 160.9 | 165.0 | 169.1 | 173.3 | 177.5 |
|              | Prices | ROI for Invoice           | %           | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|              |        | TAX rate for Invoice      | %           | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Invoice price             | LE/MWh      | 157.7 | 160.1 | 164.5 | 168.9 | 173.3 | 177.6 | 181.9 | 186.4 |
|              |        | ROI for Domestics         | %           | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|              |        | TAX rate for Domesti      |             | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   | 0.0   |
|              |        | Sales price of Domestics  | LE/MWh      | 157.7 | 160.1 | 164.5 | 168.9 | 173.3 | 177.6 | 181.9 | 186.4 |
|              |        | ROI for Export            | %           | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|              |        | Sales price of Export     | LE/MWh      | 157.7 | 160.1 | 164.5 | 168.9 | 173.3 | 177.6 | 181.9 | 186.4 |
|              |        | ROI for Bunkers           | %           | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   | 5.0   |
|              |        | Sales price of Bunkers    | LE/MWh      | 157.7 | 160.1 | 164.5 | 168.9 | 173.3 | 177.6 | 181.9 | 186.4 |
|              |        | Slaes price of Domestic r | narket ( fo | 132.7 | 141.1 | 150.2 | 159.2 | 168.3 | 177.6 | 187.2 | 197.2 |

 Table 6.3.5 Price and Cost Estimation of Fuel Oil and Power

#### (2) Partner's Shares

Partner shares increase year by year. In the base case, the partner shares of crude oil, natural gas and NGL are set as the same shares from 1999.

| Table 6.3.6 Partner's | Shares of the Base Case |
|-----------------------|-------------------------|
|-----------------------|-------------------------|

| ITEMS 2 | SECTORS     | 1998   | 1999   | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   |
|---------|-------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Shares  | Crude oil   | 0.3710 | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.4000 |
|         | Natural Gas | 0.2930 | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000 |
|         | NGL         | 0.3110 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.3200 | 0.3200 |
|         | FD-LPG      | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |

### (3) Efficiencies and Yields

In the base case, the following efficiencies and yields are used in the model. The yields in refinery are crude oil yields and NGL yields.

| fficiencies | Coke                | Coke / Coal                   | 0.7100  | 0.7100  | 0.7100  | 0.7100  | 0.7100  | 0.7100  | 0.7100  | 0.7100 |
|-------------|---------------------|-------------------------------|---------|---------|---------|---------|---------|---------|---------|--------|
|             | NGL                 | NGL / NG                      | 0.1408  | 0.1408  | 0.1408  | 0.1408  | 0.1408  | 0.1408  | 0.1408  | 0.1408 |
|             | FD-LPG              | FD-LPG / NG                   | 0.0940  | 0.0940  | 0.0940  | 0.0940  | 0.0940  | 0.0940  | 0.0940  | 0.094  |
|             | LNG                 | LNG/NG                        | 0.8900  | 0.8900  | 0.8900  | 0.8900  | 0.8900  | 0.8900  | 0.8900  | 0.890  |
| lields      | Refinery from crude | Refinery Gas                  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.000  |
|             | Crude oil           | RF-LPG                        | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.016  |
|             |                     | Gasoline                      | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.075  |
|             |                     | Jet fuel                      | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.030  |
|             |                     | Kerosene                      | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.040  |
|             |                     | Diesel                        | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.214  |
|             |                     | Fuel oil                      | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.462  |
|             |                     | Naphtha                       | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.102  |
|             |                     | Lubricants & additives        | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.009  |
|             |                     | Bitumen                       | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.028  |
|             |                     | Petroleum Coke                | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.005  |
|             |                     | Non specified products        | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.006  |
|             |                     | Crude oil                     | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.988 |
|             |                     |                               |         |         |         |         |         |         |         |        |
| rields      | Refinery from NGL   | Refinery Gas                  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.0000  | 0.000  |
|             | NGL                 | RF-LPG                        | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.016  |
|             |                     | Gasoline                      | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.0759  | 0.075  |
|             |                     | Jet fuel                      | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.0300  | 0.030  |
|             |                     | Kerosene                      | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.0400  | 0.040  |
|             |                     | Diesel                        | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.2140  | 0.214  |
|             |                     | Fuel oil                      | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.4620  | 0.462  |
|             |                     | Naphtha                       | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.1025  | 0.102  |
|             |                     | Lubricants & additives        | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.0090  | 0.009  |
|             |                     | Bitumen                       | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.0280  | 0.028  |
|             |                     | Petroleum Coke                | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.0050  | 0.005  |
|             |                     | Non specified products        | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.0060  | 0.006  |
|             |                     | NGL                           | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.9884 | -0.988 |
| lields      | Refinerv            | Diesel to Refinerv feed       | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.0160  | 0.016  |
| leius       | Ownuse              | Fuel oil to Refnery feed      | 0.0180  | 0.0180  | 0.0180  | 0.0180  | 0.0180  | 0.0180  | 0.0180  | 0.016  |
|             | 0                   | Refinery Gas to Refinery Gas  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.0000  | 1.000  |
|             | 1                   | Lubricants & additives to Lub | 0.0260  | 0.0260  | 0.0260  | 0.0260  | 0.0260  | 0.0260  | 0.0260  | 0.026  |
|             | 1                   | Natural Gas to Refinery feed  | 0.0098  | 0.0098  | 0.0098  | 0.0098  | 0.0098  | 0.0098  | 0.00200 | 0.002  |
|             | 1                   |                               |         |         |         |         |         | +       |         |        |

 Table 6.3.7 Efficiencies and Yields of the Base Case

# (4) Capacity

The current capacity data and incremental capacity information in future are not collected. We set the estimated capacity for past years and set the latest capacity for the future.

|                 |                        |     |          | 1        |          |          |          |          |          |          |
|-----------------|------------------------|-----|----------|----------|----------|----------|----------|----------|----------|----------|
| ITEMS 1         | SECTORS                |     | 1998     | 1999     | 2000     | 2001     | 2002     | 2003     | 2004     | 2005     |
| Coke            | Capacity of production |     | 2,000.0  | 2,000.0  | 2,000.0  | 2,000.0  | 2,000.0  | 2,000.0  | 2,000.0  | 2,000.0  |
|                 |                        |     | 68.2     | 74.9     | 76.2     | 77.7     | 79.3     | 81.1     | 83.1     | 85.2     |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Crude oil       | Capacity of production |     | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0 | 40,000.0 |
|                 |                        |     | 95.6     | 98.7     | 100.0    | 99.8     | 98.1     | 96.3     | 94.1     | 91.8     |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Natural gas     | Capacity of production |     | 20,000.0 | 20,000.0 | 20,000.0 | 20,000.0 | 20,000.0 | 20,000.0 | 20,000.0 | 20,000.0 |
|                 |                        |     | 52.2     | 60.4     | 62.1     | 64.0     | 65.9     | 67.9     | 70.0     | 72.2     |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Feedstock for I | Capacity of production |     | 30,000.0 | 30,000.0 | 30,000.0 | 30,000.0 | 30,000.0 | 30,000.0 | 30,000.0 | 30,000.0 |
|                 |                        |     | 95.5     | 97.2     | 99.1     | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Gas combined    | Capacity of production |     | 26,926.7 | 27,000.0 | 27,000.0 | 27,000.0 | 27,000.0 | 27,000.0 | 27,000.0 | 27,000.0 |
|                 |                        |     | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Gas turbine po  | Capacity of production |     | 6,265.3  | 7,000.0  | 7,000.0  | 7,000.0  | 7,000.0  | 7,000.0  | 7,000.0  | 7,000.0  |
|                 |                        |     | 48.3     | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |
| Diesel enaine a | Capacity of production |     | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    |
|                 |                        |     | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    |
|                 |                        |     | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    | 479.9    |
| Fuel oil steam  | Capacity of production |     | 17,809.7 | 19,590.7 | 21,549.7 | 23,704.7 | 26,075.2 | 28,682.7 | 31,551.0 | 34,706.1 |
|                 |                        | 1.1 | 100.0    | 100.0    | 100.0    | 100.0    | 100.0    | 92.1     | 83.0     | 75.0     |
|                 |                        |     | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      | 0.0      |

 Table 6.3.8 Plant Capacities of the Base Case

#### 6.3.2 Energy Balance of Base Case

After entering the above data, ESPM can compute the supply/demand balance. The calculation results are described on EBT sheet. And the following items are the checkpoints for this model.

Checkpoint 1 Domestic demand can be supplied or not. (Full supply or Partial supply)

Checkpoint 2 Does production capacity allowance exist or not.

Checkpoint 3 Domestic demand is supplied by production and/or import.

Checkpoint 4 Profit value increases or not.

#### (1) Contents of Base Case

#### 1) Price and Demand Data

The domestic energy market price and WPI trend are forecast in the macro economic model. The energy demand is forecast by the energy demand-forecasting model. The forecast value is input to the ESPM (Energy Supply Planning Model: LP model). The ESPM uses other data such as production capacity, efficiencies and yields, partner's shares, etc. These data also are input by referencing energy balance table.

#### 2) Preconditions

The base case has several preconditions under which all domestic energy demand must be supplied preferentially. When energy supply is in shortage, Egypt can import the energy; when energy supply is in surplus, Egypt can export the energy. The following are other preconditions of the base case.

| Items                  | Contents                                                                           |
|------------------------|------------------------------------------------------------------------------------|
| Price and Cost         | Energy prices and cost are forecast by net back method based on energy market      |
|                        | prices                                                                             |
| Crude oil production   | 40million ton flat (current capacity is extended)                                  |
| Crude oil Bought       | 6.1 million ton flat (current bought is extended)                                  |
| Natural gas production | 20million ton flat (current bought is extended)                                    |
| Natural gas Bought     | Partners' natural gas all return                                                   |
| Refinery capacity      | 30million ton flat of crude oil processed                                          |
| Petroleum products     | If petroleum product supply is in shortage, the energy sector can import enough    |
| import                 | energy to meet the demand                                                          |
| Petroleum products     | If petroleum product supply is in surplus, the energy sector can export enough     |
| Export                 | energy to meet the balance                                                         |
| Power distribution     | The current incremental power plan is set. If the generated power is in shortage   |
|                        | for the power demand, the power distribution sector can import enough power to     |
|                        | meet the demand.                                                                   |
| Hydro Power            | Hydropower is operated preferentially.                                             |
| Diesel engine          | Basically, diesel engine is an alternative power generator. But, in the model, the |
|                        | diesel generator is operated forcedly.                                             |

Table 6.3.9 Preconditions of the Base Case

| Gas combined generator   | Gas-combined is the most effective generator. The generator has an assumption to consume 60% of natural gas transformation to power. Another is consumed in Gas-turbine generator. |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fuel oil steam generator | In fact, several kinds of energy are consumed in fuel oil steam generator. But the generator consumes only fuel oil in the model.                                                  |

# (2) Supply Balance Forecast of Crude Oil

- + Under the current capacity of crude oil sector, there is no big problem with the crude oil supply. But in 2005, refinery plants are in full operation and the plants have no allowance.
- + The intentional export of crude oil decreases slightly, and the export can be supplied in the targeted years.
- + Profits in the crude oil sector increase nominally in order for the energy price to go up due to inflation.

|           | _             |               |                                |           |             |                    | -                  |                    |                    |                    |                    |        |
|-----------|---------------|---------------|--------------------------------|-----------|-------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------|
| ITEMS 1   | ITEMS 1       | ITEMS 2       | SECTORS                        | UNIT      | 1998        | 1999               | 2000               | 2001               | 2002               | 2003               | 2004               | 2005   |
| Crude oil | Consumpti     | Solution      | Domestic demand                | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.     |
|           |               |               | Export                         | KTON      | 2,934.0     | 2,353.7            | 1,981.8            | 1,532.6            | 993.1              | 348.0              | 0.0                | 0      |
|           |               |               | Bunkers                        | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0      |
|           |               |               | Pavable                        | KTON      | 13.989.5    | 15.802.7           | 15.941.0           | 16.000.0           | 16.000.0           | 16.000.0           | 16.000.0           | 16.000 |
|           |               |               | Transformation                 | KTON      | 26,844.0    | 27,450.3           | 28.029.7           | 28,567.4           | 29,106.9           | 29,752.0           | 30,100.0           | 30,100 |
|           |               |               | Own use                        | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | C      |
|           |               |               | Total                          | KTON      | 43,767.5    | 45.606.6           | 45,952.5           | 46,100.0           | 46,100.0           | 46,100.0           | 46,100.0           | 46,100 |
|           |               | UpperLimit    | Domestic demand                | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | C      |
|           |               |               | Export                         | KTON      | 2,934.0     | 2,353.7            | 1,981.8            | 1,532.6            | 993.1              | 348.0              | 0.0                | 0      |
|           |               |               | Bunkers                        | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                |        |
|           |               |               | Payable                        | KTON      | U           | U                  | U                  | U                  | U                  | U                  | U                  |        |
|           |               | Sufficient ra | Domestic demand                | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               | Cumolont 10   | Export                         | %         | 100.0       | 100.0              | 100.0              | 100.0              | 100.0              | 100.0              | 0.0                | 0      |
|           |               |               | Bunkers                        | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | C      |
|           |               |               | Payable                        | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | C      |
|           |               |               |                                |           |             |                    |                    |                    |                    |                    |                    |        |
|           | Supply        | Solution      | Initial-Stock                  | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0      |
|           |               |               | Production                     | KTON      | 37,707.5    | 39,506.6           | 39,852.5           | 40,000.0           | 40,000.0           | 40,000.0           | 40,000.0           | 40,000 |
|           |               |               | Import                         | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               | Bought                         | KTON      | 6,060.0     | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100  |
|           |               |               |                                | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               | Final-Stock                    | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               | Total                          | KTON      | 43,767.5    | 45,606.6           | 45,952.5           | 46,100.0           | 46,100.0           | 46,100.0           | 46,100.0           | 46,100 |
|           |               | UpperLimit    | Capacity                       | KTON      | 40,000.0    | 40,000.0           | 40,000.0           | 40,000.0           | 40,000.0           | 40,000.0           | 40,000.0           | 40,000 |
|           |               |               | Production                     | KTON      | 39,516.0    | 39,506.6           | 39,852.5           | 40,165.5           | 40,454.2           | 40,725.0           | 40,982.8           | 41,23  |
|           |               |               | Import                         | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               | Bought                         | KTON      | 6,060.0     | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100.0            | 6,100  |
|           |               |               | Receivables                    | KTON      | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                |        |
|           |               | Sufficient ra | Capacity                       | %         | 94.3        | 98.8               | 99.6               | 100.0              | 100.0              | 100.0              | 100.0              | 100    |
|           |               | Outficient 18 | Production                     | %         | 95.4        | 100.0              | 100.0              | 99.6               | 98.9               | 98.2               | 97.6               | 97     |
|           |               |               | Import                         | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               | Bouaht                         | %         | 100.0       | 100.0              | 100.0              | 100.0              | 100.0              | 100.0              | 100.0              | 10     |
|           |               |               | Receivables                    | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               | Cumplurate    | Draduction rate                | 0/        | 00.0        | 00.0               | 00.7               | 00.0               | 00.0               | 00.0               | 00.0               | 86     |
|           |               | Supply rate   | Production rate<br>Import rate | %<br>%    | 86.2<br>0.0 | <u>86.6</u><br>0.0 | <u>86.7</u><br>0.0 | <u>86.8</u><br>0.0 | <u>86.8</u><br>0.0 | <u>86.8</u><br>0.0 | <u>86.8</u><br>0.0 |        |
|           |               |               | Bought rate                    | %         | 13.8        | 13.4               | 13.3               | 13.2               | 13.2               | 13.2               | 13.2               | 13     |
|           |               |               | Receivable rate                | %         | 0.0         | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | 0.0                | (      |
|           |               |               |                                |           |             |                    |                    |                    |                    |                    |                    |        |
|           | Profitability | Profit        | Income                         | millionLE | 12,488.4    | 14,187.8           | 14,998.3           | 15,753.3           | 16,475.5           | 17,225.3           | 18,126.4           | 19,229 |
|           |               |               | Expense                        | millionLE | 10,118.1    | 11,355.7           | 12,069.2           | 12,757.9           | 13,445.4           | 14,187.7           | 15,005.1           | 15,918 |
|           |               |               | Profit                         | millionLE | 2,370.3     | 2,832.1            | 2,929.1            | 2,995.4            | 3,030.1            | 3,037.5            | 3,121.3            | 3,311  |
|           |               | Price & Unit  | Sales price of Domest          | LE/TON    | 372.1       | 426.1              | 449.5              | 473.6              | 499.1              | 526.7              | 557.0              | 590    |
|           |               |               | Sales price of Export          | LE/TON    | 372.1       | 501.2              | 528.8              | 557.2              | 587.2              | 619.6              | 655.3              | 69     |
|           |               |               | Sales price of Bunkers         | LE/TON    | 395.4       | 426.1              | 449.5              | 473.6              | 499.1              | 526.7              | 557.0              | 59     |
|           |               |               | Invoice cost                   | LE/TON    | 279.1       | 300.7              | 317.3              | 334.3              | 352.3              | 371.8              | 393.2              | 41     |
|           |               |               | Import cost                    | LE/TON    | 212.2       | 339.1              | 459.0              | 490.0              | 523.1              | 558.3              | 596.0              | 63     |
|           |               |               | Bought cost                    | LE/TON    | 250.8       | 270.3              | 285.1              | 300.4              | 316.6              | 334.1              | 353.4              | 37-    |
|           |               |               | Production cost                | LE/TON    | 228.0       | 245.7              | 259.2              | 273.1              | 287.8              | 303.7              | 321.2              | 340    |
|           |               |               | Profit per unit                | LE/TON    | 54.2        | 62.1               | 63.7               | 65.0               | 65.7               | 65.9               | 67.7               | 7′     |
|           |               |               | ROI                            | %         | 23.8        | 25.3               | 24.6               | 23.8               | 22.8               | 21.7               | 21.1               | 2′     |

#### (3) Supply Balance Forecast of Natural Gas

- + Under the current supply availability of natural gas, the operation rate is around 61% in 2005. This means that the natural gas sector can supply more natural gas to the down flow sectors.
- + If Egypt can build other gas combined power generators, under the current situation, the natural gas sector would have the availability with which natural gas can be supplied to other gas combined power generators.

| ITEMS 1    | ITEMS 1       | ITEMS 2       | SECTORS                                         | UNIT             | 1998           | 1999                  | 2000           | 2001           | 2002                | 2003           | 2004           | 2005           |
|------------|---------------|---------------|-------------------------------------------------|------------------|----------------|-----------------------|----------------|----------------|---------------------|----------------|----------------|----------------|
| -          | Consumpti     |               | Domestic demand                                 | KTON             | 3,309.0        | 3,487.9               | 3,692.9        | 3,922.3        | 4,175.3             | 4,453.3        | 4,759.3        | 5.097.6        |
| Natural ga | Consumpti     | Colution      | Export                                          | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Bunkers                                         | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Payable                                         | KTON             | 3,068.3        | 3,280.5               | 3,343.3        | 3,413.2        | 3,490.0             | 3,573.5        | 3,665.2        | 3,766.7        |
|            |               |               | Transformation                                  | KTON             | 6,882.5        | 7,164.2               | 7,164.2        | 7,164.2        | 7,164.2             | 7,164.2        | 7,164.2        | 7,164.2        |
|            |               |               | Own use                                         | KTON             | 280.5          | 283.0                 | 287.4          | 290.9          | 294.0               | 294.0          | 294.0          | 294.0          |
|            |               |               | Total                                           | KTON             | 13,540.3       | 14,215.6              | 14,487.8       | 14,790.6       | 15,123.5            | 15,485.0       | 15,882.7       | 16,322.4       |
|            |               |               |                                                 |                  |                |                       |                |                |                     |                |                |                |
|            |               | UpperLimit    | Domestic demand                                 | KTON             | 3,309.0        | 3,487.9               | 3,692.9        | 3,922.3        | 4,175.3             | 4,453.3        | 4,759.3        | 5,097.6        |
|            |               |               | Export                                          | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Bunkers                                         | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Payable to Partners                             | KTON             | U              | U                     | U              | U              | U                   | U              | U              | U              |
|            |               | 0 11 1        |                                                 | o/               | 100.0          | 100.0                 | 100.0          | 100.0          | 100.0               | 100.0          | 100.0          | 100.0          |
|            |               | Sufficient ra | Domestic demand                                 | %                | 100.0          | 100.0                 | 100.0          | 100.0          | 100.0               | 100.0          | 100.0          | 100.0          |
|            |               |               | Export<br>Bunkers                               | %<br>%           | 0.0            | 0.0                   | 0.0<br>0.0     | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               |                                                 | %                | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Payable                                         | /0               | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            | Supply        | Solution      | Initial-Stock                                   | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            | Oupply        | Colution      | Production                                      | KTON             | 10,472.0       | 10,935.0              | 11,144.5       | 11,377.4       | 11,633.5            | 11,911.5       | 12,217.5       | 12,555.7       |
|            |               |               | Import                                          | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Bought                                          | KTON             | 3,068.3        | 3,280.5               | 3,343.3        | 3,413.2        | 3,490.0             | 3,573.5        | 3,665.2        | 3,766.7        |
|            |               |               | Receivable                                      | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Final-Stock                                     | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Total                                           | KTON             | 13,540.3       | 14,215.6              | 14,487.8       | 14,790.6       | 15,123.5            | 15,485.0       | 15,882.7       | 16,322.5       |
|            |               |               |                                                 |                  |                |                       |                |                |                     |                |                |                |
|            |               | UpperLimit    | Capacity                                        | KTON             | 20,000.0       | 20,000.0              | 20,000.0       | 20,000.0       | 20,000.0            | 20,000.0       | 20,000.0       | 20,000.0       |
|            |               |               | Production                                      | KTON             | 11,872.0       | 12,894.2              | 13,898.2       | 14,989.7       | 16,182.7            | 17,491.1       | 18,932.9       | 20,532.1       |
|            |               |               | Import                                          | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Bought                                          | KTON             | U              | U                     | U              | U              | U                   | U              | U              | U              |
|            |               |               | Receivables                                     | KTON             | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               | Cufficient    | Canaaitu                                        | 0/               | 52.4           | E 4 7                 | 55.7           | 50.0           | 50.0                | 50.0           | 61.1           | 60.0           |
|            |               | Sufficient ra | Production                                      | %<br>%           | 52.4<br>88.2   | 54.7<br>84.8          | 55.7<br>80.2   | 56.9<br>75.9   | <u>58.2</u><br>71.9 | 59.6<br>68.1   | 64.5           | 62.8<br>61.2   |
|            |               |               | Import                                          | %                | 00.2           | 04.0                  | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 01.2           |
|            |               |               | Bought                                          | %                | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Receivables                                     | %                | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               |                                                 | 70               | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               | Supply rate   | Production rate                                 | %                | 77.3           | 76.9                  | 76.9           | 76.9           | 76.9                | 76.9           | 76.9           | 76.9           |
|            |               |               | Import                                          | %                | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               | Bought                                          | %                | 22.7           | 23.1                  | 23.1           | 23.1           | 23.1                | 23.1           | 23.1           | 23.1           |
|            |               |               | Receivable rate                                 | %                | 0.0            | 0.0                   | 0.0            | 0.0            | 0.0                 | 0.0            | 0.0            | 0.0            |
|            |               |               |                                                 |                  |                |                       |                |                |                     |                |                |                |
|            | Profitability | Profit        | Income                                          | millionLE        | 2,290.6        | 2,484.7               | 2,602.1        | 2,728.3        | 2,865.6             | 3,016.0        | 3,183.4        | 3,371.4        |
|            |               |               | Expense                                         | millionLE        | 1,997.0        | 2,167.1               | 2,269.5        | 2,379.6        | 2,499.3             | 2,630.5        | 2,776.5        | 2,940.5        |
|            |               |               | Profit                                          | millionLE        | 293.6          | 317.6                 | 332.6          | 348.7          | 366.3               | 385.5          | 406.9          | 430.9          |
|            |               | D             |                                                 |                  | 100.5          | 171.0                 | 170.0          | 10.1 -         | 100 -               | 101.5          | 000 i          | 000 -          |
|            |               | Price & Unit  |                                                 | LE/TON           | 169.2          | 174.8                 | 179.6          | 184.5          | 189.5               | 194.8          | 200.4          | 206.5          |
|            |               |               | Sales price of Export<br>Sales price of Bunkers | LE/TON<br>LE/TON | 169.2<br>169.2 | <u>174.8</u><br>174.8 | 179.6<br>179.6 | 184.5<br>184.5 | 189.5<br>189.5      | 194.8<br>194.8 | 200.4<br>200.4 | 206.5<br>206.5 |
|            |               |               | Invoice cost                                    | LE/TON<br>LE/TON | 169.2          | 174.8                 | 179.6          | 184.5          | 189.5               | 194.8          | 200.4          | 206.5          |
|            |               |               | Import                                          | LE/TON           | 158.6          | 174.8                 | 179.0          | 173.0          | 177.7               | 194.6          | 188.0          | 193.7          |
|            |               |               | Bought                                          | LE/TON           | 158.6          | 163.9                 | 168.4          | 173.0          | 177.7               | 182.6          | 188.0          | 193.7          |
|            |               |               | Production cost                                 | LE/TON           | 144.2          | 149.0                 | 153.1          | 157.3          | 161.5               | 166.0          | 170.9          | 176.1          |
|            |               |               |                                                 |                  | 177.4          |                       |                | 101.0          |                     | 100.0          |                |                |
|            |               |               | Profit per unit                                 | LE/TON           | 21.7           | 22.3                  | 23.0           | 23.6           | 24.2                | 24.9           | 25.6           | 26.4           |

 Table 6.3.11 Energy Balance of Natural Gas

# (4) Supply Balance Forecast of LPG

- + LPG supply is in shortage. Egypt is required to make a plan to produce additional LPG if possible.
- + When an energy sector imports energy, the profits shrink or turn negative because import costs are 10% higher than the domestic market price.

|            |               |               |                        |           |         | gy Bal  |         |         |                |         |                       |                   |
|------------|---------------|---------------|------------------------|-----------|---------|---------|---------|---------|----------------|---------|-----------------------|-------------------|
| EMS 1      | ITEMS 1       | ITEMS 2       | SECTORS                | UNIT      | 1998    | 1999    | 2000    | 2001    | 2002           | 2003    | 2004                  | 2005              |
| PG distrit | Consumpti     | Solution      | Domestic demand        | KTON      | 2,112.0 | 2,312.5 | 2,502.8 | 2,688.4 | 2,873.5        | 3,061.7 | 3,256.7               | 3,462.0           |
|            |               |               | Export                 | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0.0               |
|            |               |               | Bunkers                | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0.                |
|            |               |               | Payable                | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0.                |
|            |               |               | Transformation         | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0.                |
|            |               |               | Own use                | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0.                |
|            |               |               | Total                  | KTON      | 2,112.0 | 2,312.5 | 2,502.8 | 2,688.4 | 2,873.5        | 3,061.7 | 3,256.7               | 3,462.            |
|            |               | UpperLimit    | Domestic demand        | KTON      | 2.112.0 | 2,312.5 | 2.502.8 | 2.688.4 | 2,873.5        | 3.061.7 | 3.256.7               | 3,462             |
|            |               |               | Export                 | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               | Bunkers                | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               | Payable                | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               |                        |           |         |         |         |         |                |         |                       |                   |
|            |               | Sufficient ra |                        | %         | 100.0   | 100.0   | 100.0   | 100.0   | 100.0          | 100.0   | 100.0                 | 100               |
|            |               |               | Export                 | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               | Bunkers                | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               | Payable                | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | C                 |
|            | Supply        | Solution      | Initial-Stock          | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | C                 |
|            | Supply        | Solution      | Production             | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Import                 | KTON      | 672.3   | 596.5   | 698.6   | 789.1   | 871.3          | 947.1   | 1,023.8               | 1,105             |
|            |               |               | Bought                 | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | , 100             |
|            |               |               | Receivable fm FD-LP    | KTON      | 1,439.7 | 1,716.0 | 1,804.2 | 1,899.3 | 2,002.2        | 2,114.6 | 2,232.9               | 2,357             |
|            |               |               | Final-Stock            | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | <u>,00</u> .      |
|            |               |               | Total                  | KTON      | 2,112.0 | 2,312.5 | 2,502.8 | 2,688.4 | 2,873.5        | 3,061.7 | 3,256.7               | 3,462             |
|            |               |               |                        |           |         |         |         | _,      |                |         | -1                    |                   |
|            |               | UpperLimit    | Capacity               | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | 0                 |
|            |               |               | Production             | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | C                 |
|            |               |               | Import                 | KTON      | U       | U       | U       | U       | U              | U       | U                     |                   |
|            |               |               | Bought                 | KTON      | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | C                 |
|            |               |               | Receivables            | KTON      | 1,440.0 | U       | U       | U       | U              | U       | U                     |                   |
|            |               | Sufficient re | Conocity               | 0/        | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               | Sufficient ra | Capacity<br>Production | %<br>%    | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Import                 | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Bought                 | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Receivables            | %         | 100.0   | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | T COCIVADICS           | 70        | 100.0   | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   |                   |
|            |               | Supply rate   | Production rate        | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Import                 | %         | 31.8    | 25.8    | 27.9    | 29.4    | 30.3           | 30.9    | 31.4                  | 3                 |
|            |               |               | Bought                 | %         | 0.0     | 0.0     | 0.0     | 0.0     | 0.0            | 0.0     | 0.0                   | (                 |
|            |               |               | Receivable rate        | %         | 68.2    | 74.2    | 72.1    | 70.6    | 69.7           | 69.1    | 68.6                  | 68                |
|            |               |               |                        |           |         |         |         |         |                |         |                       |                   |
|            | Profitability | Profit        | Income                 | millionLE | 423.0   | 491.5   | 561.2   | 665.4   | 783.7          | 881.1   | 991.2                 | 1,118             |
|            |               |               | Expense                | millionLE | 415.7   | 480.2   | 549.4   | 622.7   | 702.1          | 789.9   | 889.0                 | 1,003             |
|            |               |               | Profit                 | millionLE | 7.3     | 11.3    | 11.8    | 42.7    | 81.6           | 91.2    | 102.2                 | 114               |
|            |               | Price & Unit  | Sales price of Domes   | LE/TON    | 200.3   | 212.6   | 224.2   | 247.5   | 272.7          | 287.8   | 304.4                 | 322               |
|            |               |               | Sales price of Domes   | LE/TON    | 200.3   | 212.6   | 224.2   | 247.5   | 272.7<br>249.0 | 287.8   | <u>304.4</u><br>277.9 | <u>322</u><br>294 |
|            |               |               | Sales price of Bunkers |           | 200.3   | 212.6   | 224.2   | 236.3   | 249.0          | 262.8   | 277.9                 | <u>294</u><br>294 |
|            |               |               | Invoice cost           | LE/TON    | 200.3   | 212.0   | 224.2   | 236.3   | 249.0          | 262.8   | 277.9                 | 29                |
|            |               |               | Import cost            | LE/TON    | 200.3   | 212.0   | 224.2   | 230.3   | 249.0          | 202.8   | 211.9                 | 30                |
|            |               |               | Bought cost            | LE/TON    | 209.8   | 0.0     | 2.34.9  | 0.0     | 200.9          | 0.0     | 0.0                   | (                 |
|            |               |               | Production cost        | LE/TON    | 190.7   | 202.4   | 213.6   | 225.0   | 237.2          | 250.2   | 264.7                 | 280               |
|            |               |               | Profit per unit        | LE/TON    | 3.5     | 4.9     | 4.7     | 15.9    | 28.4           | 230.2   | 31.4                  | 3                 |
|            |               |               | ROI                    | %         | 1.8     | 2.4     | 2.2     | 7.1     | 12.0           | 11.9    | 11.9                  | 1                 |

 Table 6.3.12 Energy Balance of LPG

#### (5) Supply Balance Forecast of Gasoline

- + Gasoline supply is in shortage in 1999, and gasoline supply continues to be in shortage in the target years.
- + Import rate (import / total supply) is 4.6% in 1999 and will be 13.1% in 2005.
- + Gasoline ROI is stable from 1999 to 2005. The range of its ROI is between 9% and 14%. As gasoline is added up to a half of fuel oil variable costs, the ROI of gasoline is calculated as less than 15%. If gasoline is not added up to a part of fuel oil costs, it is assumed that the ROI of gasoline is greater than 15%.

| -        |               |               |                                |              | - 8               |                     |         |                     |                   |                   |          |                   |
|----------|---------------|---------------|--------------------------------|--------------|-------------------|---------------------|---------|---------------------|-------------------|-------------------|----------|-------------------|
| ITEMS 1  | ITEMS 1       | ITEMS 2       | SECTORS                        | UNIT         | 1998              | 1999                | 2000    | 2001                | 2002              | 2003              | 2004     | 2005              |
| Gasoline | Consumpti     | Solution      | Domestic demand                | KTON         | 2.205.0           | 2,346.0             | 2,456.0 | 2.555.0             | 2,649.0           | 2,740.0           | 2.828.0  | 2,916.0           |
|          |               |               | Export                         | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Bunkers<br>Develue             | KTON         | 0.1               | 0.0                 | 0.0     | <u>0.0</u><br>0.0   | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Pavable<br>Transformation      | KTON<br>KTON | <u>0.0</u><br>0.0 | 0.0                 | 0.0     | 0.0                 | <u>0.0</u><br>0.0 | <u>0.0</u><br>0.0 | 0.0      | <u>0.0</u><br>0.0 |
|          |               |               |                                | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | <u>Own use</u><br>Total        | KTON         | 2.205.1           | 2.346.0             | 2.456.0 | 2.555.0             | 2.649.0           | 2.740.0           | 2.828.0  | 2.916.0           |
|          |               |               | TOLAI                          | NION         | 2,200.1           | 2,340.0             | 2,400.0 | 2,000.0             | 2,049.0           | 2,740.0           | 2,020.0  | 2,910.0           |
|          |               | UpperLimit    | Domestic demand                | KTON         | 2,205.0           | 2,346.0             | 2,456.0 | 2,555.0             | 2,649.0           | 2,740.0           | 2,828.0  | 2,916.0           |
|          |               |               | Export                         | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Bunkers                        | KTON         | 0.1               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Payable                        | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               | 0 11 1        |                                | a.(          | 100.0             | 100.0               | 100.0   |                     | 100.0             | 100.0             |          | 100.0             |
|          |               | Sufficient ra | Domestic demand                | %            | 100.0             | 100.0               | 100.0   | 100.0               | 100.0             | 100.0             | 100.0    | 100.0             |
|          |               |               | Export                         | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Bunkers                        | %            | 100.0             | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Pavable                        | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          | Supply        | Solution      | Initial-Stock                  | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          | Cubbit        | Coldion       | Production                     | KTON         | 2,149.7           | 2,238.9             | 2.294.8 | 2.349.0             | 2.404.5           | 2.469.2           | 2,513.7  | 2,534.5           |
|          |               |               | Import                         | KTON         | 55.4              | 107.1               | 161.2   | 206.0               | 244.5             | 270.8             | 314.3    | 381.5             |
|          |               |               | Boudht                         | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Receivable                     | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Final-Stock                    | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Total                          | KTON         | 2.205.1           | 2.346.0             | 2.456.0 | 2.555.0             | 2.649.0           | 2.740.0           | 2.828.0  | 2.916.0           |
|          |               |               | <b>0</b> <i>i</i>              |              |                   |                     |         |                     |                   |                   |          |                   |
|          |               | UpperLimit    |                                | KTON         | <u> </u>          | U                   | U       | U                   | <u> </u>          | U                 | U        | <u> </u>          |
|          |               |               | Production                     | KTON         | <u>U</u>          | U                   | U<br>U  | U                   | <u> </u>          | <u> </u>          | <u> </u> | <u> </u>          |
|          |               |               | Import<br>Bouaht               | KTON<br>KTON | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Receivables                    | KTON         | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | 10001/00/00                    |              | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               | Sufficient ra | Capacity                       | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Production                     | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Import                         | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Bought                         | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Receivables                    | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               |                                |              |                   |                     |         |                     |                   |                   |          |                   |
|          |               | Supply rate   | Production rate                | %            | 97.5              | 95.4                | 93.4    | 91.9                | 90.8              | 90.1              | 88.9     | 86.9              |
|          |               |               | Import rate                    | %            | 2.5               | 4.6                 | 6.6     | 8.1                 | 9.2               | 9.9               | 11.1     | 13.1              |
|          |               |               | Boucht rate<br>Receivable rate | %<br>%       | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | <u>0.0</u><br>0.0 |
|          |               |               | Receivable rate                | %            | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          | Profitability | Profit        | Income                         | millionLE    | 2.896.4           | 3.303.9             | 3.648.9 | 3.999.9             | 4.569.2           | 4.987.1           | 5.443.8  | 5.954.7           |
|          |               | . 1011        | Expense                        | millionLE    | 2.639.7           | 3.017.3             | 3.338.9 | 3.665.6             | 4.009.9           | 4.379.5           | 4.786.3  | 5.245.8           |
|          |               |               | Profit                         | millionLE    | 256.7             | 286.6               | 309.9   | 334.3               | 559.3             | 607.6             | 657.4    | 709.0             |
|          |               |               |                                |              |                   |                     |         |                     |                   |                   |          |                   |
|          |               | Price & Uni   | Sales price of Domes           |              | 1,313.5           | 1,408.3             | 1,485.7 | 1,565.5             | 1,724.9           | 1,820.1           | 1,925.0  | 2,042.1           |
|          |               |               | Sales price of Export          | LE/TON       | 1,313.5           | 1,408.3             | 1,485.7 | 1,565.5             | 1,649.9           | 1,741.0           | 1,841.3  | 1,953.3           |
|          |               |               | Sales price of Bunkers         |              | 1,313.5           | 1,408.3             | 1,485.7 | 1,565.5             | 1,649.9           | 1,741.0           | 1,841.3  | 1,953.3           |
|          |               |               | Invoice cost                   | LE/TON       | 1,313.5           | 1,408.3             | 1,485.7 | 1,565.5             | 1,649.9           | 1,741.0           | 1,841.3  | 1,953.3           |
|          |               |               | Import cost                    | LE/TON       | 1.313.5           | 1,408.3             | 1,485.7 | 1,565.5             | 1,649.9           | 1,741.0           | 1,841.3  | 1,953.3           |
|          |               |               | Bought cost                    | LE/TON       | 0.0               | 0.0                 | 0.0     | 0.0                 | 0.0               | 0.0               | 0.0      | 0.0               |
|          |               |               | Production cost                | LE/TON       | 1,194.1           | 1,280.3             | 1,350.6 | 1,423.2             | 1,499.9           | 1.582.7           | 1.673.9  | 1,775.7           |
|          |               |               | Profit per unit<br>ROI         | LE/TON<br>%  | 116.4             | <u>122.2</u><br>9.5 | 126.2   | <u>130.8</u><br>9.2 | 211.1             | 221.8             | 232.5    | 243.1             |
|          |               |               | RU                             | 70           | 9.7               | 9.5                 | 9.3     | 9.2                 | 14.1              | 14.0              | 13.9     | 13.7              |

Table 6.3.13 Energy Balance of Gasoline

# (6) Supply Balance Forecast of Kerosene

- + Kerosene has the surplus because the domestic demand goes down in future. In the base case, export of kerosene is assumed.
- + For energy supply planning, the consumption of surplus kerosene in the domestic market becomes a problem.

| ITEMS 1  | ITEMS 1       | ITEMS 2                 | SECTORS               | UNIT      | 1998         | 1999     | 2000     | 2001         | 2002     | 2003     | 2004     | 2005     |
|----------|---------------|-------------------------|-----------------------|-----------|--------------|----------|----------|--------------|----------|----------|----------|----------|
| Kerosene | Consumpt      | Solution                | Domestic demand       | KTON      | 1.074.0      | 977.6    | 881.7    | 791.0        | 707.4    | 631.5    | 563.5    | 503.0    |
|          |               |                         | Export                | KTON      | 0.0          | 301.1    | 365.7    | 493.4        | 615.6    | 735.3    | 839.4    | 926.6    |
|          |               |                         | Bunkers               | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Pavable               | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Transformation        | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Own use               | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Total                 | KTON      | 1.074.0      | 1,278.7  | 1,247.5  | 1,284.4      | 1,323.0  | 1.366.9  | 1,402.9  | 1,429.6  |
|          |               |                         |                       |           |              |          |          |              |          |          |          |          |
|          |               | UpperLimit              | Domestic demand       | KTON      | 1.074.0      | 977.6    | 881.7    | 791.0        | 707.4    | 631.5    | 563.5    | 503.0    |
|          |               |                         | Export                | KTON      | 0.0          | U        | U        | U            | U        | U        | U        | U        |
|          |               |                         | Bunkers               | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Pavable               | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         |                       |           |              |          |          |              |          |          |          |          |
|          |               | Sufficient ra           | Domestic demand       | %         | 100.0        | 100.0    | 100.0    | 100.0        | 100.0    | 100.0    | 100.0    | 100.0    |
|          |               |                         | Export                | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Bunkers               | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Pavable               | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         |                       |           | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | <u> </u> | 0.0      |
|          | Supply        | Solution                | Initial-Stock         | KTON      | 8.9          | 67.9     | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          | JUNNIV        | COMMON                  | Production            | KTON      | 1.133.0      | 1.210.8  | 1.247.5  | 1.284.4      | 1.323.0  | 1.366.9  | 1.402.9  | 1.429.6  |
|          |               |                         | Import                | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Boucht                | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Receivable            | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Final-Stock           | KTON      | -67.9        | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Total                 | KTON      | 1.074.0      | 1.278.7  | 1.247.5  | 1.284.4      | 1.323.0  | 1.366.9  | 1.402.9  | 1.429.6  |
|          |               |                         | TOLCI                 |           | 1.074.0      | 1,270.7  | 1,277.0  | 1,204.4      | 1,020.0  | 1.000.0  | 1,402.5  | 1,723.0  |
|          |               | UpperLimit              | Canacity              | KTON      |              | U        | U        |              |          | U        | U        |          |
|          |               | Opportantic             | Production            | KTON      | U            | U        | U        | <u> </u>     | <u> </u> | Ŭ        | <u> </u> | <u> </u> |
|          |               |                         | Import                | KTON      | <u> </u>     | <u> </u> | <u> </u> | <u> </u>     | <u> </u> | <u> </u> | <u> </u> | <u> </u> |
|          |               |                         | Boucht                | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Receivables           | KTON      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | I VECEIVADIES         | NION      | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Sufficient ra           | Capacity              | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | SUIICIEITT              | Production            | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Import                | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Bought                | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         |                       |           |              |          | 0.0      | 0.0          |          | 0.0      | 0.0      |          |
|          |               |                         | Receivables           | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               | Cupply mt-              | Draduction rate       | 0/        | 1055         | - 10     | 100.0    | 400.0        | 100.0    | 100.0    | 100.0    | 100.0    |
|          |               | SUDDIV rate             | Production rate       | %         | 105.5        | 94.7     | 100.0    | 100.0        | 100.0    | 100.0    | 100.0    | 100.0    |
|          |               |                         | Import rate           | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Bought rate           | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Receivable rate       | %         | 0.0          | 0.0      | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          | Drofit-L-11   | Drofit                  | la e e e e e          | million I | 000.4        | 704.0    | 700.0    | 050.0        | 040.0    | 005 5    | 4 0747   | 4 450 4  |
|          | Profitability | Profit                  |                       | millionLE | 602.4        | 721.6    | 792.6    | 852.9        | 919.2    | 995.5    | 1.074.7  | 1,156.4  |
|          |               |                         | Expense               | millionLE | <u>579.8</u> | 723.7    | 707.3    | 767.3        | 833.0    | 908.1    | 985.8    | 1,065.7  |
|          |               |                         | Profit                | millionLE | 22.6         | -2.1     | 85.4     | 85.6         | 86.2     | 87.4     | 88.9     | 90.8     |
|          |               | <b>D</b> ' <b>A</b> ''' | 0 1 1 10              |           |              |          | 0-0-0    | <b>607</b> 6 |          |          | 000 /    | c== -    |
|          |               | Price & Unit            |                       |           | 529.0        | 564.3    | 652.0    | 687.0        | 724.1    | 764.0    | 808.1    | 857.2    |
|          |               |                         | Sales price of Export | LE/TON    | 529.0        | 564.3    | 595.3    | 627.3        | 661.1    | 697.6    | 737.8    | 782.7    |
|          |               |                         | Sales price of Bunker |           | 529.0        | 564.3    | 595.3    | 627.3        | 661.1    | 697.6    | 737.8    | 782.7    |
|          |               | L                       | Invoice cost          | LE/TON    | 529.0        | 564.3    | 595.3    | 627.3        | 661.1    | 697.6    | 737.8    | 782.7    |
|          |               |                         | Import cost           | LE/TON    | 554.2        | 591.2    | 623.7    | 657.2        | 692.6    | 730.8    | 772.9    | 819.9    |
|          |               |                         |                       |           |              | 0.01     | 0.0      | 0.0          | 0.0      | 0.0      | 0.0      | 0.0      |
|          |               |                         | Bought cost           | LE/TON    | 0.0          | 0.0      |          |              |          |          |          |          |
|          |               |                         | Production cost       | LE/TON    | 503.8        | 537.4    | 567.0    | 597.4        | 629.6    | 664.4    | 702.7    | 745.4    |
|          |               |                         |                       |           |              |          |          |              |          |          |          |          |

Table 6.3.14 Energy Balance of Kerosene

# (7) Supply Balance Forecast of Diesel

- + Diesel has shortage of supply because the domestic demand goes up due to the increase in automobiles. The estimated share of diesel import in the base case is about 36% in 2005.
- + As an energy supply planning issue, providing diesel from other countries will become a problem.

|         |                          | -               | 1 able 6.3               | .15 EI                 | iergy D                 | alance           |                           |                         |                         |                         |                  |                         |
|---------|--------------------------|-----------------|--------------------------|------------------------|-------------------------|------------------|---------------------------|-------------------------|-------------------------|-------------------------|------------------|-------------------------|
| ITEMS 1 | ITEMS 1                  | ITEMS 2         | SECTORS                  | UNIT                   | 1998                    | 1999             | 2000                      | 2001                    | 2002                    | 2003                    | 2004             | 2005                    |
| Diesel  | Consumpti                | Solution        | Domestic demand          | KTON                   | 6.612.0                 | 7.000.3          | 7.412.5                   | 7.845.8                 | 8,307.6                 | 8.806.6                 | 9.353.0          | 9.957.9                 |
|         |                          |                 | Export                   | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Bunkers                  | KTON                   | 243.0                   | 243.0            | 243.0                     | 243.0                   | 243.0                   | 243.0                   | 243.0            | 243.0                   |
|         |                          |                 | Pavable                  | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Transformation Initial-S |                        | 121.0                   | 121.0            | 121.0                     | 121.0                   | 121.0                   | 121.0                   | 121.0            | 121.0                   |
|         |                          |                 | Ownuse                   | KTON                   | 453.1                   | 468.2            | 479.2                     | 489.6                   | 500.2                   | 512.6                   | 520.5            | 523.0                   |
|         |                          |                 | Total                    | KTON                   | 7.429.1                 | 7.832.6          | 8.255.7                   | 8.699.4                 | 9.171.8                 | 9.683.2                 | 10,237.5         | 10,844.9                |
|         |                          | UpperLimit      | Domestic demand          | KTON                   | 6,612.0                 | 7,000.3          | 7,412.5                   | 7,845.8                 | 8,307.6                 | 8,806.6                 | 9,353.0          | 9,957.9                 |
|         |                          |                 | Export                   | KTON                   | 0.0                     | U                | U                         | U                       | U                       | U                       | U                | L                       |
|         |                          |                 | Bunkers                  | KTON                   | 243.0                   | 243.0            | 243.0                     | 243.0                   | 243.0                   | 243.0                   | 243.0            | 243.0                   |
|         |                          |                 | Payable                  | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          | Sufficient ra   | Domestic demand          | %                      | 100.0                   | 100.0            | 100.0                     | 100.0                   | 100.0                   | 100.0                   | 100.0            | 100.0                   |
|         |                          |                 | Export                   | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Bunkers                  | %                      | 100.0                   | 100.0            | 100.0                     | 100.0                   | 100.0                   | 100.0                   | 100.0            | 100.0                   |
|         |                          |                 | Pavable                  | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         | Supply                   | Solution        | Initial-Stock            | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         | SUDDIV                   | SOIULION        | Production               | KTON                   | 6.060.8                 | 6.237.2          | 6.377.3                   | 6.509.4                 | 6.643.2                 | 6.801.5                 | 6.896.2          | 6.916.5                 |
|         |                          |                 | Import                   | KTON                   | 1,368.4                 | 1,595.4          | 1,878.4                   | 2,190.0                 | 2,528.5                 | 2,881.7                 | 3.341.2          | 3,928.4                 |
|         |                          |                 | Bouaht                   | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Receivable               | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Final-Stock              | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Total                    | KTON                   | 7.429.1                 | 7.832.6          | 8.255.7                   | 8.699.4                 | 9.171.8                 | 9.683.2                 | 10.237.5         | 10.844.9                |
|         |                          | Line and Sec. 9 | O-manit i                |                        |                         |                  |                           |                         |                         |                         |                  |                         |
|         |                          | UpperLimit      |                          | KTON                   | U                       | U                | U                         | U                       | U                       | U                       | U                |                         |
|         |                          |                 | Production               | KTON                   | U                       | <u> </u>         | <u> </u>                  | U                       | <u> </u>                | U                       | U                | <u> </u>                |
|         |                          |                 | Import<br>Bought         | KTON<br>KTON           | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Receivables              | KTON                   | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Trevelvables             | NON                    | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          | Sufficient ra   | Capacity                 | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Production               | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Import                   | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Bought                   | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Receivables              | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          | Sunnly rate     | Production rate          | %                      | 81.6                    | 79.6             | 77.2                      | 74.8                    | 72.4                    | 70.2                    | 67.4             | 63.8                    |
|         |                          |                 | Import rate              | %                      | 18.4                    | 20.4             | 22.8                      | 25.2                    | 27.6                    | 29.8                    | 32.6             | 36.2                    |
|         |                          |                 | Boucht rate              | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Receivable rate          | %                      | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 |                          |                        |                         |                  |                           | - 100 1                 |                         | 0.004.4                 |                  |                         |
|         | Profitabilit <sub></sub> | Profit          | Income                   | millionLE              | 3.943.7                 | 4.440.5          | <u>4.944.6</u><br>4.787.2 | 5.498.1                 | 6.117.5                 | 6.824.1                 | 7.642.3          | 8.604.2                 |
|         |                          |                 | Expense<br>Profit        | millionLE<br>millionLE | <u>3,811.9</u><br>131.8 | 4,295.3<br>145.2 | <u>4,787.2</u><br>157.4   | <u>5,328.0</u><br>170.0 | <u>5.933.9</u><br>183.6 | <u>6,624.8</u><br>199.3 | 7,428.2<br>214.1 | <u>8,376.6</u><br>227.6 |
|         |                          |                 |                          |                        |                         | 1-0.2            | 157.4                     | 170.0                   | 100.0                   | 133.5                   | 217.1            | 221.0                   |
|         |                          | Price & Unit    | Sales price of Domest    |                        | 554.2                   | 591.2            | 623.7                     | 657.2                   | 692.6                   | 730.8                   | 772.9            | 819.9                   |
|         |                          |                 | Sales price of Export    | LE/TON                 | 554.2                   | 591.2            | 623.7                     | 657.2                   | 692.6                   | 730.8                   | 772.9            | 819.9                   |
|         |                          |                 | Sales price of Bunkers   |                        | 554.2                   | 591.2            | 623.7                     | 657.2                   | 692.6                   | 730.8                   | 772.9            | 819.9                   |
|         |                          |                 | Invoice cost             | LE/TON                 | 251.9                   | 268.7            | 283.5                     | 298.7                   | 314.8                   | 332.2                   | 351.3            | 372.7                   |
|         |                          |                 | Import cost              | LE/TON                 | 554.2                   | 591.2            | 623.7                     | 657.2                   | 692.6                   | 730.8                   | 772.9            | 819.9                   |
|         |                          |                 | Bought cost              | LE/TON                 | 0.0                     | 0.0              | 0.0                       | 0.0                     | 0.0                     | 0.0                     | 0.0              | 0.0                     |
|         |                          |                 | Production cost          | LE/TON                 | 503.8                   | 537.4            | 567.0                     | 597.4                   | 629.6                   | 664.4                   | 702.7            | 745.4                   |
|         |                          |                 | Profit per unit          | LE/TON                 | 17.7                    | 18.5             | 19.1                      | 19.5                    | 20.0                    | 20.6                    | 20.9             | 21.0                    |
|         |                          |                 | ROI                      | %                      | 3.5                     | 3.4              | 3.4                       | 3.3                     | 3.2                     | 3.1                     | 3.0              | 2.8                     |

Table 6.3.15 Energy Balance of Diesel Oil

## (8) Supply Balance Forecast of Fuel Oil

+ Fuel oil is in surplus until 2004. In the base case, however, the surplus drains from 2005.

+ As an energy supply planning issue, whether fuel oil can be exported or not becomes a problem when an incremental plan for refinery plants is established. If fuel oil cannot be exported, fuel oil is consumed in the domestic market.

| ITEMS 1  | ITEMS 1       | ITEMS 2       | SECTORS                                        | UNIT             | 1998                  | 1999                   | 2000            | 2001            | 2002            | 2003            | 2004            | 2005                     |
|----------|---------------|---------------|------------------------------------------------|------------------|-----------------------|------------------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------------|
| Fuel oil | Consumpti     |               | Domestic demand                                | KTON             | 4.350.0               | 4.388.4                | 4,426.1         | 4,463.3         | 4,499.9         | 4,536.1         | 4,571.9         | 4.607.4                  |
|          | e en le amp a | Coldion       | Export                                         | KTON             | 1.366.0               | 1.664.4                | 1.220.0         | 1.049.3         | 917.4           | 668.7           | 272.3           | 0.0                      |
|          |               |               | Bunkers                                        | KTON             | 2,268.0               | 2,332.8                | 2,402.8         | 2,383.1         | 2,293.7         | 2,336.1         | 2,349.7         | 2,353.1                  |
|          |               |               | Payable                                        | KTON             | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Transformation to Pov                          | KTON             | 4,329.0               | 4,675.3                | 5,049.3         | 5,453.3         | 5,889.6         | 6,360.7         | 6,869.6         | 7,419.1                  |
|          |               |               | Own use                                        | KTON             | 538.1                 | 556.0                  | 569.0           | 581.4           | 593.9           | 608.7           | 618.0           | 621.0                    |
|          |               |               | Total                                          | KTON             | 12,851.1              | 13,617.0               | 13,667.2        | 13,930.4        | 14,194.6        | 14,510.3        | 14,681.6        | 15,000.6                 |
|          |               |               |                                                |                  |                       |                        |                 |                 |                 |                 |                 |                          |
|          |               | UpperLimit    | Domestic demand                                | KTON             | 4,350.0               | 4,388.4                | 4,426.1         | 4,463.3         | 4,499.9         | 4,536.1         | 4,571.9         | 4,607.4                  |
|          |               |               | Export                                         | KTON             | 1.366.0               | U                      | U               | U               | U               | U               | U               | l                        |
|          |               |               | Bunkers                                        | KTON             | 2,268.0               | 2,332.8                | 2,402.8         | 2,383.1         | 2,293.7         | 2,336.1         | 2,349.7         | 2,353.1                  |
|          |               |               | Payable Sales price o                          | KTON             | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               |                                                |                  |                       |                        |                 |                 |                 |                 | L               |                          |
|          |               | Sufficient ra | Domestic demand                                | %                | 100.0                 | 100.0                  | 100.0           | 100.0           | 100.0           | 100.0           | 100.0           | 100.0                    |
|          |               |               | Export                                         | %                | 100.0                 | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Bunkers                                        | %                | 100.0                 | 100.0                  | 100.0           | 100.0           | 100.0           | 100.0           | 100.0           | 100.0                    |
|          |               |               | Payable                                        | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               | 0.1.7         |                                                | 1/TON            |                       | 000 /                  |                 |                 |                 |                 |                 |                          |
|          | Supply        | Solution      | Initial-Stock                                  | KTON             | 0.0                   | 233.1                  | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Production                                     | KTON<br>KTON     | 13,084.2<br>0.0       | <u>13,383.8</u><br>0.0 | 13,667.2<br>0.0 | 13,930.4<br>0.0 | 14,194.6<br>0.0 | 14,510.3<br>0.0 | 14,681.6<br>0.0 | <u>14,683.7</u><br>316.9 |
|          |               |               | Import<br>Bouaht                               | KTON<br>KTON     | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Receivable Fm Differe                          | KTON             | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Final-Stock                                    | KTON             | -233.1                | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Total                                          | KTON             | 12,851.1              | 13,617.0               | 13,667.2        | 13,930.4        | 14,194.6        | 14,510.3        | 14,681.6        | 15,000.6                 |
|          |               |               | TUIAI                                          | RION             | 12,031.1              | 13,017.0               | 13,007.2        | 13,930.4        | 14,194.0        | 14,510.5        | 14,001.0        | 15,000.0                 |
|          |               | UpperLimit    | Capacity                                       | KTON             | U                     | U                      | U               | U               | U               | U               | U               | L                        |
|          |               | OpporEnnit    | Production                                     | KTON             | <u> </u>              | U                      | U               | U               | U               | <u> </u>        | U               | i                        |
|          |               |               | Import                                         | KTON             | 0.0                   | 0.0                    | 0.0             | U               | U               | U               | U               |                          |
|          |               |               | Bought                                         | KTON             | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Receivables                                    | KTON             | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               |                                                |                  |                       |                        |                 |                 |                 |                 |                 |                          |
|          |               | Sufficient ra | Capacity                                       | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Production                                     | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Import                                         | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Bought                                         | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Receivables                                    | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               |                                                |                  |                       |                        |                 |                 |                 |                 |                 |                          |
|          |               | Supply rate   | Production rate                                | %                | 101.8                 | 98.3                   | 100.0           | 100.0           | 100.0           | 100.0           | 100.0           | 97.9                     |
|          |               |               | Import rate                                    | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 2.1                      |
|          |               |               | Bought rate                                    | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               |               | Receivable rate                                | %                | 0.0                   | 0.0                    | 0.0             | 0.0             | 0.0             | 0.0             | 0.0             | 0.0                      |
|          |               | D ("          |                                                |                  | 0.000 -               | 0.070 -                | 0.007           | 0.000           | 0.001           | 0.5             | 0 - 0 - 1       |                          |
|          | Profitability | Profit        | Income                                         | millionLE        | 2,380.5               | 2,670.5                | 2,827.6         | 3,036.9         | 3,261.2         | 3,517.8         | 3,764.4         | 4,080.2                  |
|          |               |               | Expense                                        | millionLE        | 2,167.6               | 2,469.3                | 2,570.5         | 2,760.8         | 2,964.8         | 3,198.0         | 3,422.2         | 3,717.1                  |
|          |               |               | Profit                                         | millionLE        | 212.9                 | 201.2                  | 257.1           | 276.1           | 296.5           | 319.8           | 342.2           | 363.1                    |
|          |               | Price & Uni   | Soloo price of Demi                            |                  | 100.0                 | 196.1                  | 206.9           | 040.0           | 229.8           | 242.4           | 050.4           | 070 0                    |
|          |               | FIICE & UNI   | Sales price of Domest<br>Sales price of Export | LE/TON<br>LE/TON | 182.2<br>182.2        | <u>196.1</u><br>196.1  | 206.9<br>206.9  | 218.0<br>218.0  | 229.8           | 242.4           | 256.4<br>256.4  | 272.0                    |
|          |               |               |                                                | LE/TON<br>LE/TON | <u>182.2</u><br>182.2 | <u>196.1</u><br>196.1  | 206.9           | 218.0           | 229.8           | 242.4           | 256.4           | 272.0                    |
|          |               |               | Invoice cost                                   | LE/TON           | 182.2                 | 196.1                  | 206.9           | 218.0           | 229.8           | 242.4           | 256.4           | 272.0                    |
|          |               |               | Import cost                                    | LE/TON           | 182.2                 | 196.1                  | 206.9           | 218.0           | 229.8           | 242.4           | 256.4           | 272.0                    |
|          |               |               | Bought cost                                    | LE/TON           | 0.0                   | 0.0                    | 200.9           | 218.0           | 229.0           | 242.4           | 230.4           | 272.0                    |
|          |               |               | U U                                            | LE/TON           | 165.7                 |                        | 188.1           | 198.2           | 208.9           | 220.4           | 233.1           | 247.3                    |
|          |               |               |                                                |                  |                       |                        |                 |                 |                 |                 |                 |                          |
|          |               |               | Production cost<br>Profit per unit             | LE/TON           | 165.7                 | 178.3<br>14.8          | 188.1           | 196.2           | 208.9           | 220.4           | 233.1           | 247.0                    |

Table 6.3.16 Energy Balance of Fuel Oil

#### 6.4 Simulation Results by Scenario

#### 6.4.1 Scenario Setting

In order to find the problems related to future energy supply, it is needed to forecast future energy balance (2005) including the current energy policies. And the future policies and future plans should be examined for finding future energy supply problems. The base case of the energy supply planning model (ESPM) are prepared for the purpose.

. The following conditions are set for the base case of energy supply planning in Egypt. And the simulation results are shown in the following table.

| Items                | Unit | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   |
|----------------------|------|--------|--------|--------|--------|--------|--------|
| Crude oil Capacity   | KTON | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 |
| Natural gas Capacity | KTON | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 | 20,000 |
| Refinery Capacity    | KTON | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 | 35,000 |
| GCC Capacity         | GWh  | 27,000 | 27,000 | 27,000 | 27,000 | 27,000 | 27,000 |
| Power Capacity       | GWh  | 72,000 | 76,000 | 81,000 | 86,000 | 91,000 | 96000  |
| Power Demand         | GWh  | 63,686 | 67,655 | 72,031 | 76,888 | 82,333 | 88,481 |
| LPG Demand           | KTON | 2,503  | 2,688  | 2,874  | 3,062  | 3,257  | 3,463  |
| Gasoline Demand      | KTON | 2,456  | 2,555  | 2,649  | 2,740  | 2,828  | 2,916  |
| Diesel Demand        | KTON | 7,413  | 7,846  | 8,308  | 8,807  | 9,353  | 9,958  |

Table 6.4.1 Preconditions of the Base Case

 Table 6.4.2 Solutions of the Base Case

| Solution                       | Unit    | 2000   | 2001   | 2002   | 2003   | 2004   | 2005   |
|--------------------------------|---------|--------|--------|--------|--------|--------|--------|
| Crude oil production           |         | 39,853 | 40,000 | 40,000 | 40,000 | 40,000 | 40,000 |
| Natural gas Production         | KTON    | 13,625 | 14,423 | 15,289 | 16,230 | 17,250 | 18,355 |
| Refinery Production            | KTON    | 29,948 | 30,598 | 31,260 | 32,037 | 32,529 | 32,684 |
| GCC Generation                 | GWh     | 31,407 | 33,920 | 36,633 | 39,564 | 42,729 | 46,148 |
| Solar-Wind-Other<br>Generation | GWh     | 445    | 914    | 1,289  | 2,048  | 3,407  | 4,000  |
| Power shortage                 | GWh     | 0      | 0      | 0      | 0      | 0      | 0      |
| LPG Import                     | KTON    | 699    | 789    | 871    | 947    | 1,024  | 1,105  |
| Gasoline Import                | KTON    | 161    | 206    | 244    | 271    | 314    | 381    |
| Diesel Import                  | KTON    | 1,878  | 2,190  | 2,529  | 2,882  | 3,341  | 3,928  |
| Profit                         | Mill LE | 6,149  | 6,542  | 7,139  | 7,547  | 8,075  | 8,749  |

In the base case, LPG, Gasoline and Diesel are short for their demand and the energies are

imported to meet their demand. To decease the shortage of the energies are the important issues for Egypt energy policy. Egypt is supposed to be unable to produce crude oil more than the current level. However, fortunately natural gas has potential to be produced more than the current. And also, Egypt will have technologies to improve refinery plant yields and power plant efficiencies. Then the following scenarios are set for simulating the energy supply after improving the issues.

| Scenario   | Content                                                                             |  |  |  |
|------------|-------------------------------------------------------------------------------------|--|--|--|
| Base case  | Including the current energy policies.                                              |  |  |  |
| Scenario 1 | After improving the yields of refinery plants, what is the effect to energy supply? |  |  |  |
| Scenario 2 | Egypt cannot produce crude oil more than the current level. However, Egypt can buy  |  |  |  |
|            | crude oil from partners. How to utilize crude oil from partner?                     |  |  |  |
| Scenario 3 | After improving the yields, how to utilize crude oil from partner?                  |  |  |  |
| Scenario 4 | LNG business is planed in future. How much profit is it?                            |  |  |  |
| Scenario 5 | The roles of renewable energies are expected. How much profit is it?                |  |  |  |

Table 6.4.3 Scenario Setting for Energy Supply Policy

### 6.4.2 Simulation Results

## (1) Scenario 1: Improving Refinery Yields

For resolving the shortage of several energies, it can be considered to improve the technical changes. Technical changes in energy production and transformation sectors mean the efficiency improvement of crude oil production and natural gas, yields of refinery in future. For simulating the effects, the efficiencies and the yields should be changed in ESPM, and the model is run.

- 1) Data Setting
- (a) The yields of RF-LPG, Gasoline and Diesel are 10% up from 2001.
- (b) Efficiency of FD-LPG is 10% up from 2001
- (c) The yield of Fuel oil is 7% down and Naphtha is 11% down from 2001

#### 2) Results in 2005/06

Import of LPG, Gasoline and Diesel decreased little. But the domestic energy supply is not enough to their demand in 2005 as the following table.

| Solution             | Unit | Base Case | Scenario 1 | Rate |  |  |
|----------------------|------|-----------|------------|------|--|--|
| Crude oil production | KTON | 40,000    | 40,000     | 0    |  |  |

Table 6.4.4 Results of Scenario 1 (2005/06)

| Natural gas production | KTON       | 18,355 | 18,355 | 0    |
|------------------------|------------|--------|--------|------|
| GCC Generation         | KTON       | 46,148 | 46,148 | 0    |
| LPG import             | KTON       | 1,105  | 869    | -21% |
| Gasoline import        | KTON       | 381    | 128    | -66% |
| Diesel import          | KTON       | 3,928  | 3,237  | -18% |
| Profit                 | Million LE | 8,749  | 8,819  | 1%   |

## (2) Scenario 2 : Increase Crude Oil from Partners

For decreasing import of petroleum products, this scenario is assumed to increase crude oil from partners at 20% to 2000.

### 1) Data Setting

The data of crude oil from partners are changed to 7,320 KTON from 2001 to 2005 instead of 6100 KTON in 2000.

### 2) Results in 2005/06

(a) In Scenario 2, LPG, Gasoline and Diesel still have the supply shortage.

- (b) When crude oil from partners is increased more than 20%, the profit is decreased, it means that surplus petroleum products are increased.
- (c) Then, Egypt cannot make well-balance of petroleum products under the current demand structure of petroleum products.

| Solution               | Unit       | Base Case | Scenario 2 | Rate |
|------------------------|------------|-----------|------------|------|
| Crude oil production   | KTON       | 40,000    | 40,000     | 0    |
| Crude oil Bought       | KTON       | 6,100     | 7,320      | 0    |
| Natural gas production | KTON       | 18,355    | 18,378     | 0    |
| GCC Generation         | KTON       | 46,148    | 46,148     | 0    |
| LPG import             | KTON       | 1,105     | 1,092      | -1%  |
| Gasoline import        | KTON       | 381       | 293        | -23% |
| Diesel import          | KTON       | 3,928     | 3,681      | -6%  |
| Profit                 | Million LE | 8,749     | 8,858      | 1%   |

Table 6.4.5 Results of Scenario 2 (2005/06)

## (3) Scenario 3 : Increase Crude Oil from Partner and Yields

For decreasing import of petroleum products, this scenario is assumed to increase crude oil from partner at 20% to 2000 and yields at 10% up.

#### 1) Data setting

- (a). The yields of RF-LPG, Gasoline and Diesel are 10% up from 2001.
- (b). The efficiency of FD-LPG is 10% up from 2001
- (c) The yield of Fuel oil is 7% down; Naphtha is 11% down from 2001

- (d).The data of crude oil from partners are changed to 7,320 KTON from 2001 to 2005 instead of 6,100 KTON in 2000.
- 2) Results in 2005/06
- (a). In scenario 3, LPG and Diesel still have the supply shortage.
- (b). But Gasoline shortage is resolved.
- (c) Egypt should be tried to improve the yields of refinery plants, it will make more well-balance of petroleum products.

| Solution               | Unit       | Base Case | Scenario 3 | Rate  |  |  |  |
|------------------------|------------|-----------|------------|-------|--|--|--|
| Crude oil production   | KTON       | 40,000    | 40,000     | 0     |  |  |  |
| Crude oil Bought       | KTON       | 6,100     | 7320       | 20%   |  |  |  |
| Natural gas production | KTON       | 18,355    | 18,371     | 0     |  |  |  |
| GCC Generation         | KTON       | 46,148    | 46,184     | 0     |  |  |  |
| LPG import             | KTON       | 1,105     | 855        | -23%  |  |  |  |
| Gasoline import        | KTON       | 381       | 0          | -100% |  |  |  |
| Diesel import          | KTON       | 3,928     | 2,963      | -25%  |  |  |  |
| Profit                 | Million LE | 8,749     | 8,930      | 2%    |  |  |  |

Table 6.4.6 Results of Scenario 3 (2005/06)

#### (4) Scenario 4 : Installation of LNG Plant

This scenario makes a plan to install a LNG plant consumed Natural gas and makes foreign trade surplus increase.

- 1) Data setting
- (a) Natural gas capacity is increased at 10% up per year from 2001 to 2005.
- (b) LNG plant is operated with 5 million ton capacity from 2001 to 2005.

|             | I doit of | Till Dutu L | jetting for | Decilario |        |        |        |
|-------------|-----------|-------------|-------------|-----------|--------|--------|--------|
| Capacity    | Unit      | 2000        | 2001        | 2002      | 2003   | 20004  | 2005   |
| Natural gas | KTON      | 20,000      | 22,000      | 24,200    | 26,620 | 29,282 | 32,210 |
| LNG         | KTON      | 0           | 5000        | 5000      | 5000   | 5000   | 5000   |

 Table 6.4.7 Data Setting for Scenario 4

#### 2) Results in 2005/06

(a) The profit increases by installing LNG Plant.

| Base case  | 8,749 million LE in 2005 |
|------------|--------------------------|
| Scenario 4 | 9,533 million LE in 2005 |
| Balance    | + 784 million LE in 2005 |

(b) By exporting LNG, Egypt can increase the profit at level of 9% to the Base case.

| Solution               | Unit       | Base Case | Scenario 4 | Rate |
|------------------------|------------|-----------|------------|------|
| Crude oil production   | KTON       | 40,000    | 40,000     | 0    |
| Crude oil Bought       | KTON       | 6,100     | 6100       | 0    |
| Natural gas production | KTON       | 18,355    | 23,981     | 31%  |
| LNG production         | KTON       | 0         | 5000       |      |
| GCC Generation         | KTON       | 46,148    | 46,148     | 0    |
| LPG import             | KTON       | 1,105     | 470        | -57% |
| Gasoline import        | KTON       | 381       | 276        | -28% |
| Diesel import          | KTON       | 3,928     | 3,838      | -2%  |
| Profit                 | Million LE | 8,749     | 9,533      | 9%   |

#### Table 6.4.8 Results of Scenario 4 (2005/06)

## (5) Scenario 5 : Renewable Energies substitute LPG Import

Renewable energies is supplied with 285 kton in 2005, and the renewable energies substitute LPG domestic demand. As the results, it is expected that LPG import decreases.

### 1) Data setting

- (a). Renewable energies is supplied with 285 kton in 2005 and is consumed in residential sector.
- (b). LPG demand is decreased as much as the supply of renewable energy

## 2) Results in 2005/06

(a) The profit increases with substitution of renewable energy.

| Base Case  | 8,749 million LE in 2005 |
|------------|--------------------------|
| Scenario 4 | 8,818 million LE in 2005 |
| Balance    | + 69 million LE in 2005  |

(b) By the substitution, Egypt can get higher profit at 1% than the base case.

| Solution               | Unit       | Base Case | Scenario 5 | Rate |  |
|------------------------|------------|-----------|------------|------|--|
| Crude oil production   | KTON       | 40,000    | 40,000     | 0    |  |
| Crude oil Bought       | KTON       | 6,100     | 6,100      | 0    |  |
| Natural gas production | KTON       | 18,355    | 18,355     | 0    |  |
| Renewable production   | KTON       | 285       | 285        | 0    |  |
| LPG import             | KTON       | 1,105     | 822        | -26% |  |
| Profit                 | Million LE | 8,749     | 8,818      | 1%   |  |

| <b>Table 6.4.9</b> | Results | of Scenario | 5 | (2005/06) |
|--------------------|---------|-------------|---|-----------|
|--------------------|---------|-------------|---|-----------|

## 6.4.3 Comparison of Strategy Indicators

# (1) Comparison of the Base Case, and Scenario 1 to 5

The following table is the comparison with strategy indicators of the base case, and Scenario 1 to 5. The strategy indicators are value added, foreign trade and CO2 emission.

|                        | Value added        | Energy foreign trade | CO2 emission         |  |
|------------------------|--------------------|----------------------|----------------------|--|
| Scenarios              | in Energy sectors  | balance              | From all energies    |  |
|                        | (million LE)       | (million LE)         | (Million ton as CO2) |  |
| Base case              | 8,749              | -4,819               | 145.7                |  |
| Scenario 1 Yields      | 8,819              | -4048                | 145.7                |  |
| Scenario 2 Bought      | 8,858              | -4562                | 145.8                |  |
| Scenario 3Yield+Bought | 8,930              | -3763                | 145.8                |  |
| Scenario 4 LNG         | 9,533              | -1618                | 145.7                |  |
| Scenario 5 Renewable   | 8,818              | -4732                | 145.7                |  |
| Comments               | Profit in LP model | Energy Export        | CO2 emission         |  |
|                        | = Value Added      | - import - Bought    | From-En- model-LP    |  |

Table 6.4.10 Base Case and Scenario 1 to 5 (2005/06)

(a) Value added : Defined by profit in LP model

The value added of each scenario is higher than the base case. And the good conditions of the value added are Scenario 3 and 4.

(b) Foreign trade : Defined by 'Export-Import-Bought' Foreign trade of scenarios 3 and 4 are also the good conditions.

(c) CO2 emission : Come from Environmental model

CO2 emission of Scenario 2 and 3 is comparably rather high than other scenarios. But the increase is small.

## (2) Information for Energy Supply Policy

Scenario 3 and 4 are attractive Scenarios for Egypt, if the CO2 emission of the scenarios is permitted by the regulation of Egypt. The Scenario 3 and/or 4 should be selected as Egyptian energy policy in 2005.

The right column of '3+4' is one scenario that is implemented under the conditions of scenario 3 and scenario 4. The increase of crude oil from partners and LNG production are required in the scenarios 3 and 4. The energy policy will make the profit with 9.3% up to the

base case.

| Solution               | Unit       | Base Case | Scenario 3 | Scenario 4 | 3 + 4  |
|------------------------|------------|-----------|------------|------------|--------|
| Crude oil production   | KTON       | 40,000    | 40,000     | 40,000     | 38,205 |
| Crude oil Bought       | KTON       | 6,100     | 7320       | 6100       | 7,320  |
| Natural gas production | KTON       | 18,355    | 18,371     | 23,981     | 23,981 |
| LNG production         | KTON       | 0         | 0          | 5,000      | 5,000  |
| GCC Generation         | KTON       | 46,148    | 46,184     | 46,148     | 46,148 |
| LPG import             | KTON       | 1,105     | 855        | 470        | 169    |
| Gasoline import        | KTON       | 381       | 0          | 276        | 0      |
| Diesel import          | KTON       | 3,928     | 2,963      | 3,838      | 3,104  |
| Profit                 | Million LE | 8,749     | 8,930      | 9,533      | 9,566  |

 Table 6.4.11 Comparison of the Base Case and Scenarios 3 and 4 (2005/06)

## 7. Environmental Impact Analysis Model

# 7.1 Environmental Issues and Strategy

## 7.1.1 Environmental Issues

Environmental priorities in Egypt are the issues of air pollution, water pollution and land pollution. These three big issues are described in the Law Number 4 of 1994, the Environmental Law. Our main target here is to build Energy Economic Model to evaluate the effect of energy pricing and economic policies on energy situation and the environment in Egypt. Therefore, this study examines not only the energy consumption and the effects on economic activities but also the social and environmental protections. To keep the development sustainable in Egypt, the energy consumption must be compatible with economic activities and environmental protection activities. The environmental issue for fuel combustion, especially, is the air pollution. It is important to note that  $CO_2$ ,  $SO_2$  and  $NO_x$  emissions affect air pollution, and  $CO_2$  especially affects global environmental issues. Other notable issues include TSP (Total Suspended Particles), which is mainly caused by open burning of crops, transportation activities and industrial production activities.

Egypt is known as the first developing country to give a great attention to environmental problems because it understands the importance of environmental protection and it's the environment's effects on humans. The environment was seriously affected by rapid technological developments. The technological development may be adversely affected by the environmental problems it caused. In this regard, Egypt has undertaken comprehensive development policies to harmonize with the environment.

Established by Presidential Decree No. 631 of 1982 as a Cabinet affiliate, the Egyptian Environmental Affairs Agency (the EEAA) observes various environmental aspects and plays a great role in addressing national issues on the environment. The Agency's main tasks were to create and apply environmental policies in collaboration with the Scientific Research and Technological Academy.

According to "Environmental Auditing" (Energy Conservation & Environmental Protection project, May 1994), the EEAA adopted the following procedures to minimize pollution.

- Protecting the Nile River and waterways
- Recycling sanitary drainage of river navigation
- Prevention of air pollution by manufacturing cement and dust filters locally

- Determining the ratio of vehicle exhaustion
- Setting up an environmental monitoring network
- Extension of green lands and installation of the windshields
- Laying down a legislative base to control pollution

- Examination of the impact of location and facility activities on the environment before the issuance of building authorization

- Minimizing the use of pesticides and chemical fertilizers
- Adopting modern methods in irrigation
- Prohibiting land scooping, building of installations and facilities on arable lands
- Supplying museums with ultra-violet filters on show windows

- Propagating environmental awareness among citizens, stressing the importance of law on the environment

- Establishing an information center to gather information about dangerous materials manufactured locally and externally

- Participation in various festivals, exhibitions, symposia and gatherings
- EEAA projects are either financed locally or externally through foreign aids (Danish-Swiss Aid)
- Enacted major Presidential decrees on environmental protection

In 1992, the Government of Egypt (GOE) released the Egypt Environmental Action Plan. This plan examined the environmental impact of urbanization and industrialization and the traffic and industrial activities and identified thermal power generation as major sources of air pollution nationally and in the Greater Cairo metropolitan area. The plan recommended the limitations on the use of command and control measures and the need for greater reliance on market-related incentives to increase the use of cleaner fuels and technologies in vehicles and industry.

The following eight actions were recommended:

- 1) Phase out energy subsidies to slow the growth in energy consumption and increase incentives for energy efficiency
- 2) Introduce a gasoline tax to reduce energy consumption and provide a source of public funds
- 3) Reduce lead in gasoline to decrease loading to the environment
- 4) Adopt other vehicle policies related to emissions testing, traffic management and mass transit alternatives
- 5) Lower vehicle and auto part import duties to encourage ownership of cleaner car
- 6) Reduce the use of high sulfur fuels through phasing out fuel subsidies and creation of a sulfur tax

- 7) Refine and develop emissions standards and enforcement mechanism, and improve industrial zoning
- 8) Develop public awareness of air pollution issues and associated costs

The Environmental Law (Law Number 4 of 1994), issued in 1994 and was enacted in 1995, opened a new era of environmental issues in Egypt. Details will be discussed in a later section.

Table 7.1.1 shows major air pollution in the Greater Cairo area. Air pollution levels in the Greater Cairo area are above the U.S. health-based standards and the World Health Organization (WHO) guidelines. The data, the most recent of this kind, are from 1991-1992, and may not reflect the current situations.

Table 7.1.2 shows the ambient air pollution levels of sulfur dioxide in the Greater Cairo area. The levels are above the U.S. and the WHO health-based standards (U.S. standard: 80 microgram/m<sup>3</sup>; WHO guideline: 40-60 microgram/m<sup>3</sup>).

Table 7.1.3 shows the annual mean concentrations of total suspended particles (TSP) at various monitoring sites within the Greater Cairo area. The concentrations exceed the WHO guideline and the former U.S. standard for TSP by factor of about 5-10. As we see in later sections, PM10 concentrations are higher than the standards provided by the Environmental Law. These situations show that air pollutions in the Greater Cairo area are in a very serious situation.

| Pollutant          | Concentration |                   | U.S. Standard |                   | WHO Guidline |                     |
|--------------------|---------------|-------------------|---------------|-------------------|--------------|---------------------|
| Sulfur Dioxide     | 40-156        | annual mean       | 80            | annual mean       | 40-60        | annual mean         |
| Particulate matter | 349-857       | annual mean       | 75            | annual mean       | 60-90        | annual mean         |
| Nitrogen<br>Oxides | 90-750        | hourly mean       | 100           | annual mean       | 320          | hourly<br>mean(N2O) |
| Carbon<br>Monoxide | 1,000-18,000  | hourly mean       | 40,000        | hourly mean       | 10,000       | 8-hour mean         |
| Lead               | 0.5-10        | annual mean       |               | quartly mean      | 0.5-1.0      | annual mean         |
| Ozone              | 100-200+      | hourly<br>maximum | 235           | hourly<br>maximum | 150-200      | hourly mean         |

Table 7.1.1 Concentrations of Air Pollutants in Greater Cairo (microgram/m<sup>3</sup>)

(Source) "A Comparative Risk Analysis of the Environmental Problems Affecting Cairo, Egypt"

Table 7.1.2 Concentration of Sulfur Dioxide in Greater Cairo (microgram/m<sup>3</sup>)

| Year  |             | Cairo City  |          | Shoubra H  | El-Kheima   | Helwan |             |
|-------|-------------|-------------|----------|------------|-------------|--------|-------------|
|       | Residential | City Center | Suburban | Industrial | Residential |        |             |
| 1991- | 55          | 84          | 40       |            |             | 105    | mean        |
| 1992  | 76          | 127         | 54       |            |             | 171    | monthly max |
|       | 120         | 308         | 86       |            |             | 320    | 24-hr max   |
| 1990  |             |             |          |            | 96          |        | mean        |
|       |             |             |          |            | 176         |        | 24-hr max   |
| 1988  | 100         |             |          | 156        |             | 100    | mean        |
|       |             |             |          | 800        |             |        | 24-hr max   |
| 1993  |             |             |          | 104        |             |        | mean        |
| 1979  |             | 260         |          |            |             |        | mean        |
| 1978  |             |             |          | 67         |             |        | mean        |

(Source) "A Comparative Risk Analysis of the Environmental Problems Affecting Cairo, Egypt"

| Year |                | Cairo                          |             | Shoubra<br>El-Kheima            | Helwan  |             |
|------|----------------|--------------------------------|-------------|---------------------------------|---------|-------------|
|      | City<br>Center | City Centar<br>High<br>Traffic | Residential | Residentia<br>l high<br>traffic |         | Residential |
| 1991 | 448            | 661                            | 349         | 561                             |         | 857         |
| 1990 | 495            | 658                            | 375         |                                 |         |             |
| 1989 | 632            | 699                            | 548         | 602                             |         | 1100        |
| 1988 | 649            | 704                            | 602         | 548                             | 528,680 | 838         |
| 1987 | 646            | 641                            | 502         | 591                             |         | 1161        |
| 1983 |                | 548                            |             | 935                             | 567     | 714         |
| 1978 |                |                                |             | 495                             | 503     |             |

(Source) "A Comparative Risk Analysis of the Environmental Problems Affecting Cairo, Egypt"

# 7.1.2. Environmental Law and Strategy

On January 27, 1994, the Government of Egypt (GOE) issued the Environmental Law (Law Number 4 of 1994), which is said to be the first comprehensive environmental law in Egypt. It was enacted by Prime Minister's Decree No.338 of 1995, which was issued on February 18, 1995. Complying to the Environmental Law of 1994, the old Egyptian Environmental Affairs Agency was replaced to the new Egyptian Environmental Affaires Agency (the EEAA). According to this law, "The Agency shall formulate the general policy and lay down the necessary plans for the protection and promotion of environment and follow up the implementation of such plans in accordance with the competent administrative authorities. The Agency shall have the authority to implement some pilot projects".

The recent environmental policy in Egypt was based on the Environmental Law of 1994. The Egyptian Environmental Affaires Agency (the EEAA) is the main office to implement environmental policies in Egypt.

Before the Environmental Law of 1994 was issued, the Government of Egypt had made a number of decrees and regulations to preserve the environment in Egypt. Table 7.1.4 shows these laws and regulations that addressed air pollution problems. In respect to air pollution regulations, the following ministries and organizations have the responsibility. ("Environmental Auditing", Energy Conservation and Environment Protection Project, May 1994)

The EEAA Ministry of Health Supreme Committee for the Protection of Air from Pollution Ministry of Housing Ministry of Industry Local Governments

| Table 7.1.4 Laws | and Regulations fo | r Air Pollution Control |
|------------------|--------------------|-------------------------|
|                  |                    |                         |

| Law number/year                                                                                                                     | Suject of Law                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Presidential Decree 864-1969                                                                                                        | Establishes the Supreme Committee to protect air from<br>pollution, chaired by the Minister of Health. Its mandate is to<br>study sources air pollution, formulate a general policy for<br>preventing air pollution, and set standard and criteria for air<br>quality      |
| Minister of Health Decree 470-1971;<br>amended by decree 240-1979                                                                   | Set standard for ambient and worlplace air.<br>Includes:<br>Gases & Vapors (47 materials Annex II)<br>Dust & Suspended Matter (36 materials                                                                                                                                |
| Law number 106-1976; amended by law 30-<br>1975                                                                                     | Concerns building regulations and the distance between buildings, and apertures in rooms and units.                                                                                                                                                                        |
| Decree of Minister of Housing number 380-<br>1975                                                                                   | Specifies the general conditions for public buildings such as<br>commercial and industrial buildings and comprises rules for<br>ventilation and avoiding severe heat, cold and humudity.<br>Article 24 deals with fuenaces, chemneys and atalks. Many<br>other ministerial |
| Law number 3-1982; implemented by<br>Minister of Housing's decree 600-1982                                                          | An urban planning law that "designate areas and spaces for<br>roads, squares, gardens and gives specifications for industrial<br>areas"                                                                                                                                    |
| Law number 148-1959; amended by law 10-<br>196, 75-1981 and 107-1982                                                                | Concerns Civil Defense; Article 3 contains rules for protecting<br>the environment as applied to workshops, public utilities and<br>public buildings, and methods for dealing with natioal<br>desasters.                                                                   |
| Law 66-1973, amended by laws 210-1980<br>and 20-1983. Decree 291-1974 of the<br>Minister of Interior amended by decree 407-<br>1983 | Concerns traffic; chapter 5 of the law deals with traffic rules concerning car exhaust; it prohibits "heavy smoke".                                                                                                                                                        |
| Law 137-1981, implemeted by decree issued<br>by the Minister of manpower number 55-<br>1983                                         | For labor, this regislation determines the amount of fresh air<br>per person in the workplace, the suitable temperature and<br>humidity levels.                                                                                                                            |
| Law number 27-1981                                                                                                                  | For worlers in mines and quarries determining the amount of<br>lighting, ventilation and temperature inside the mines, and<br>rules to prevent the increase of cast and vapors.                                                                                            |
| Law number 52-1981, implemented by the decree issued by the Minister of Health number 1-1982                                        | To combat the hazards of smoking, smoking is prohibited in public transport and closed public places.                                                                                                                                                                      |
| Law 59-1960, implemented by the Minister<br>of health decrees 630-1962, 444-1972, 87-<br>1984                                       | Regulates use and protection from ionizing radiation, shows<br>how to avoid exosure to ionizing radiation and setting<br>maximum exposure limits.                                                                                                                          |
| Decree of the Minister of Industry number<br>380-1982                                                                               | Necessiates the use of protective equipment to prevent<br>pollution resulting from the use of technology in new<br>industrial projects.                                                                                                                                    |

(Source) "Environmental Audit", Energy Conservation and Environment Protection Project, May 1994.

In the field of air pollution, CAIP is a very important project that represents a major opportunity to implement several priority recommendations of the GOE's environmental management agenda. This project, which includes a pilot VET program, CNG, LPA and AQM, is given a very high priority.

## (1) Law Number 4 of 1994 (the Environmental Law)

The Environmental Law is composed of Preliminary Part, Part One, Part Two, Part Three, Part Four and Final Provisions.

Preliminary Part defines General Provisions, Egyptian Environmental Affaires Agency, Environmental Protection Fund and Incentives.

To implement the objectives of protecting and promoting the environment in Egypt, the EEAA was newly established and given the authority to implement the following items.

- 1) Preparing studies on the state of environment and formulating the national plan that include projects to protect the environment.
- 2) Laying down the criteria and conditions that owners of projects and establishments must observe before the start of construction and during the operation of the project.
- 3) Gathering, publishing, evaluating and utilizing national and international information on environmental conditions for environmental management and planning.
- 4) Participating in the preparation and implementation of national programs for environmental monitoring.
- 5) Compiling and publishing periodical reports on major environmental indicators.

The Prime Minister's Decree No. 338 of 1995 gives the EEAA Board of Directors the following authority.

- 1) Approve national plans to protect the environment.
- 2) Approve contingency plans to deal with environmental disasters.
- 3) Draft laws concerning the environment.
- 4) Approve experimental projects to be undertaken by the EEAA.
- 5) Approve experimental training policies and plans.
- 6) Set parameters to define pollution level. 7) Approve standards and procedures for assessing the environmental impact of projects.
- 8) Supervise the fund for protection and development of the environment.
- 9) Approve the organizational structure of the EEAA.
- 10) Approve the by-law and personnel regulations of the EEAA.
- 11) Consider all matters that the Chairman of the Board deems worthy to be presented, in line with the EEAA's scope of responsibilities.
- 12) Determine which resolution should be submitted to the Cabinet for approval. Any resolution submitted to the Cabinet by the Board of Directors must be accompanied by

the implementation cost study and the projected result study.

Another important outcome from the Environmental Law is a special fund named the "Environmental Protection Fund" in the EEAA. The fund provides eight categories of financial resources, including subsidized budget (allocated in the state budget to subsidize the fund), grants and donations (presented by national and foreign organizations for the purpose of protecting and promoting the environment and accepted by the Board of Directors of the EEAA) and fines and compensations (for damages caused to the environment).

This financial resource can be used to implement its objectives described below.

- 1) Confronting environmental disasters.
- 2) Experimental and pioneering projects in the field of protecting natural wealth and the environment from pollution.
- 3) Transfer of low cost technologies whose application was proven to be successful.
- 4) Financing the manufacture of model equipment, machinery and plants for handling environmental pollutants.
- 5) Establishing and operating Environmental Monitoring Networks.
- 6) Establishing and administering Nature Reserves in order to preserve natural wealth and resources.
- 7) Confronting pollution from unknown sources.
- 8) Financing the studies required to prepare environmental programmes, assessing environmental impact and determining the standards and criteria that must be observed in order to protect the environment.
- 9) Financing environmental protection projects undertaken by local administrative agencies and grass-roots organizations that are partially financed through popular participation.
- 10) Projects to combat pollution.
- 11) Disbursing rewards for outstanding achievements in the area of protecting the environment.
- 12) Consolidating the basic structure of EEAA and developing the activities.
- 13) Other objects aimed at protecting and developing the environment that are approved by the EEAA Board of Directors.

Part One, Three and Four are devoted to the protection of land environment, the protection of water environment and the penalties. Particularly important for the purpose of our study is Part Two, which deals with "Protection of Air environment from pollution". According to the report "Environmental Auditing", Part Two is summarized as follows.

Establishments covered by the law (industrial and tourist establishments, oil and power industries, and mining industry, etc.) need permits to build or operate. Their air pollutants may not exceed the emissions standards or the ambient standards.

Rapid transport vehicles shall meet the exhaust emission limits. Table 7.1.6 describes the standards defined by the Environmental Law.

Regulations ensure that construction waste and dust will not be dispersed.

Fuel burning for industrial, energy, construction, or any purpose may be excercised within permissible limits and with appropriate precautions and technologies. Air pollutants from fuel burning that are gaseous, solid, liquid or steam pollutants emitted by various establishments within given periods are likely to impact adversely on public health, animals, plants, material or property and interfere with everyone's daily life.

Extraction of crude oil, and its refining, will contain the impacts within permissible limits through efficient control measures and permits.

| POLLUTANT                       | MAXIMUM LIMIT             | EXPOSURE | Japanese |
|---------------------------------|---------------------------|----------|----------|
|                                 |                           | PERIOD   | Srandard |
| Sulphur Dioxide                 | 350                       | 1 hr     | 285      |
|                                 | 150                       | 24 hrs   | 114      |
|                                 | 60                        | 1 year   |          |
| Carbon Monoxide                 | 30 Milligrams/cubic meter | 1 hr     | 12.5     |
|                                 | 10 Milligrams/cubic meter | 8 hr     | 10       |
| Nitrogen Dioxide                | 400                       | 1 hr     |          |
|                                 | 150                       | 24 hrs   | 123      |
| Ozone                           | 200                       | 1 hr     | 128      |
|                                 | 120                       | 8 hr     |          |
| Suspended Particles Measured    | 150                       | 24 hrs   |          |
| as Black Smokes                 | 60                        | 1 year   |          |
| Total Suspended Particles (TSP) | 230                       | 24 hrs   |          |
|                                 | 90                        | 1 year   |          |
| Respirable Particles (Pm 10)    | 70                        | 24 hrs   | 100      |
| Lead                            | 1                         | 1 year   |          |

Table 7.1.5 Maximum Limit of Outdoor Air Pollutants (microgram /m<sup>3</sup>)

(Source) Law Number 4 of 1994

| 1. Vehicles currently in service:    |                                                                                  |  |  |  |  |  |
|--------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|--|
| Carbon Monoxide:                     | 7% in volume at the speed of (600-900 R.P.M.)                                    |  |  |  |  |  |
| Unburned Hydrocarbons:               | 1000 parts in a million, at the speed of (600-900 R.P.M.)                        |  |  |  |  |  |
| Smokes                               | 65% degree of opacity or the equivalent in other units, at minimum acceleration  |  |  |  |  |  |
| 2. New vehicles licensed as of 1995: |                                                                                  |  |  |  |  |  |
| Carbon Monoxide:                     | 4.5% in volume at the speed of (600-900 R.P.M.)                                  |  |  |  |  |  |
| Unburned Hydrocarbons:               | 900 parts in a million, at the speed of (600-900 R.P.M.)                         |  |  |  |  |  |
| Smokes                               | 50% degree of opacity or the equivalent in other units, at maximum acceleration. |  |  |  |  |  |

# Table7.1.6 Maximum Limit for Vehicle

(Source) Law Number 4 of 1994

|        | Table 7.1.7 Fermissible Lin                                                                         | nts of All Tonutants                   |
|--------|-----------------------------------------------------------------------------------------------------|----------------------------------------|
| S. No. | Kind of Activity                                                                                    | Maximum Limit for Emissions )          |
|        |                                                                                                     | (miceogram/m <sup>3</sup> from Exhaust |
| 1      | Carbon Industry                                                                                     | 50                                     |
| 2      | Coke Industry                                                                                       | 50                                     |
| 3      | Phosphates Industry                                                                                 | 50                                     |
| 4      | Casting and extraction of lead, zinc,<br>copper, and other non-ferrous<br>metallurgical industries. | 100                                    |
| 5      | Ferrous Industries                                                                                  | 200 Existing<br>100 New                |
| 6      | Cement Industry                                                                                     | 500 Existing<br>200 New                |
| 7      | Synthetic woods and fibers                                                                          | 150                                    |
| 8      | Petroleum and Oil Refining Industries.                                                              | 100                                    |
| 9      | Other Industries                                                                                    | 200                                    |

 Table 7.1.7 Permissible Limits of Air Pollutants

(Source) Law Number 4 of 1994

## (2) Cairo Air Improvement Project (CAIP)

The Cairo Air Improvement Project (CAIP) is funded by the United States Agency for International Development (USAID) and is implemented in partnership with the Egyptian Environmental Affairs Agency (EEAA) and the Organization for Energy Planning (OEP). Its goal is to plan and implement measures to reduce air pollutants, especially suspended particulates and lead, which have the most serious impacts on human health in the Greater Cairo area..

Four major activities of CAIP are VET, CNG, LPA and AQM.

The objective of VET, "Vehicle Emission Testing, Tune-Up, and Certification", is to improve the fuel efficiency of and reduce exhaust emissions from gasoline-fueled vehicles licensed in the Greater Cairo area through testing vehicle emissions, enhancing tune-up capabilities and initiating vehicle certification requirements.

The pilot VET program (a low-cost tune-up) is reported to have demonstrated a significant reduction of HC and CO emissions (35 and 62 %, respectively) and higher fuel efficiencies (averaging nearly 15 %). Key activities in the first year of the program were centered around establishing technical and policy foundations for controlling emissions from motor vehicles.

Overall goals of the VET component include:

1) Reducing vehicle emissions through achieving an 80% compliance rate among Cairo's fleet of private vehicles by the project end

2) Improving the average fuel efficiency of tuned-up vehicle by 10%

The objective of CNG, "Compressed Natural Gas", is to reduce the total suspended particulate emissions from diesel-fueled buses through expanded use of compressed natural gas in the fleet of public municipal buses.

Converting gasoline vehicles to CNG substantially reduces harmful emissions into the environment while saving an estimated fuel cost of 40%. Thousands of cars, mostly taxis and private sector mini-buses, are reported to be converting to CNG each year.

The goals of the CNG component include:

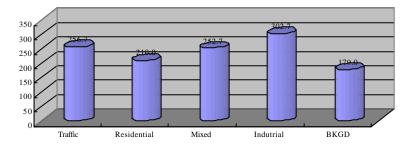
- 1) Procurement of pilot fleet of 50 CNG buses divided equally between the Cairo Transit Authority (CTA) and Greater Cairo Bus Company (GCSC)
- 2) Developing a plan for prototype large-scale conversion of diesel buses to natural gas buses
- 3) Developing a plan for large-scale CNG commercial fleet with sustainable resources
- 4) Building a state-of-the-art emission testing facility at Misr Petroleum Laboratory
- 5) Establishing comprehensive safety standards and regulations for the components and applications of CNG in vehicles and fuel stations
- 6) Developing a comprehensive natural gas applications training program for fleets

7) Offering technical support and consultation to private CNG fleets

The objective of LPA, "Lead Pollution Abatement", is to support the implementation of the Government of Egypt's Lead Smelter Action Plan. The goal of this plan is to relocate the lead smelters to industrial areas to reduce airborne lead emissions. Recent environmental studies established that lead was a major component of air pollution in Cairo. Polluting emissions have accumulated in the dust for decades since there are no regular heavy rainfalls to wash them away. Lead smelters in and around Cairo have been identified as a major source of lead exposure, and lead particulate emitted from smelters is in excess of the maximum permissible limits defined by the law.

When the activities contained in the smelter action plan are completed, the following results are expected to be achieved.

- 1) A 95% reduction of airborne lead emissions from lead smelter in workplace
- 2) Emission at lead smelters will be monitored to assure continued compliance with Egyptian environmental laws.
- 3) Within 5 years, all lead smelters will have been relocated from densely populated areas.


The objective of AQM, "Air Quality Monitoring Program", is to institute an air quality monitoring and analysis program for the Greater Cairo area, to collect baseline data and to measure the results from implementation of the Government of Egypt's intervention.

AQM measures Pb and particulate matter (PM) levels in the air in the Greater Cairo area. By August 1998, 36 stations were installed and operated on a continuous basis in the Greater Cairo area. The initial objective of AQM was an accurate and comprehensive determination of the current PM and Pb levels in the PM10 and PM2.5 size ranges. This baseline data will be used to judge the effectiveness of future programs to reduce particulate matter and lead in the ambient air.

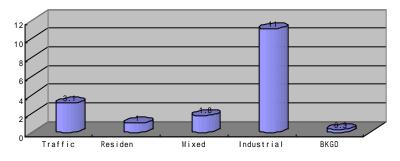

The goal of AQM is to achieve sustained operation of the monitoring effort to be able to demonstrate the improvement of air quality. Table 7.1.8 lists CAIP monitoring sites. Figure 7.1.1 illustrates the result of air monitoring in the Greater Cairo area.

Figure 7.1.1 shows that all of the monitoring site data are over PM10, the standard defined by the Law. Industrial zones and traffic zone indicate especially high level of PM in the air. Industrial zones include cement factories, foundries, smelters and other industries. The reason for the high exhaust in the traffic zones is the congested traffic activities of cars, trucks and buses. It is important to note that these data are derived from the 3 months period of a short-term monitoring activity. It may not be reasonable to make a definitive judgment on whether the data are exceeding the standard.





(Note) The Law No.4 PM10 standard is 70 mirogram/m<sup>3</sup> (24-hour average)



(Note) The Law No.4 PM10 standard is 1 mirogram/m<sup>3</sup> (Year average)

|                | -                      |                       |             |          |           |    |          |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
|----------------|------------------------|-----------------------|-------------|----------|-----------|----|----------|-------------|-----|--------|--------|---------|-------|-------|--------|--------|-----------|------|------|-----|------|---------|-------|----------|
|                |                        |                       |             |          |           |    |          |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| CAIP<br>Site # |                        | Start Of<br>Operation |             | UTM Co   | ordinates | РМ | <u>с</u> | AIP<br>PM10 | -   |        |        |         |       |       | quipme | ent at | DANIDA/EI | MP S | ites | 502 | NO2, | 2       | Pass. |          |
| (a)            | Site Name              | (1998)                | Site Type   | Northing | Easting   |    | PM10     |             | мет | SO2(C) | NOx(C) | PM10(1) | нс(с) | 03(C) | CO(C)  | мет    | PM10(24)  | TSP  | voc  |     | FP   | Filters | Slpr. | Dustfall |
| 1*             | El Qualaly<br>Square   | 1-Aug-98              | Traffic     | 330594   | 3326603   | x  | x        |             |     | x      | x      | x       |       |       | ,      |        |           | x    | x    |     |      |         |       |          |
| 2              | El Gemhoroya<br>Street | 8-Aug-98              | Traffic     | 330945   | 3326512   | х  | x        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 3*             | Kobry El Kobba         | 8-Aug-98              | Urban/Res   | 335190   | 3328951   | х  | Х        |             |     | х      |        |         |       | Х     |        | Х      |           |      |      |     |      |         |       |          |
| 4*             | Nasr City              | 27-Jun-98             | Residential | 338816   | 3325866   | х  | х        |             |     |        |        |         |       |       |        |        | х         |      |      | Х   | х    |         |       | х        |
| 5*             | Fum Al-Khalig          | Shelter               | Traffic     | 329358   | 3322702   |    | Х        |             |     | х      | х      |         | Х     |       | Х      |        | х         |      |      |     |      |         |       |          |
| 6              | Maadi/CAC              | 22-May-98             | Residential | 333471   | 3315496   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 7*             | Tebbin South           | 27-Aug-98             | Industrial  | 336948   | 3292317   | х  | х        |             |     |        |        |         |       |       |        |        |           | х    | х    | х   |      | Х       |       |          |
| 8              | Old Cairo/UHC          | 27-Jun-98             | Urban       | 329469   | 3321031   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 9              | Square                 | 23-Aug-98             | Traffic     | 330905   | 3326920   |    | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 10             | Maadi/CAIP             | 22-May-98             | Residential | 331076   | 3315847   | х  | х        |             | F   |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 11             | Giza/CEH               | 22-May-98             | Residential | 327125   | 3323063   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 12             | Darassa/AAU            | 19-Aug-98             | Urban       | 332644   | 3325152   |    | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 13*            | 6th October<br>City    | 27-Aug-98             | Residential | 298716   | 3313591   | х  | x        |             |     |        |        |         |       |       |        |        | x         |      |      | х   | x    |         |       |          |
| 14*            | 10th Ramadan<br>City   | 15-Aug-98             | Residential | 378586   | 3351235   | х  | х        |             |     |        |        |         |       |       |        |        | х         |      |      | х   |      |         | х     | х        |
| 15             | Bilbeis                | 22-May-98             | Background  | 358434   | 3356629   | х  | Х        |             | FS  |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 16             | Mokotam                | Approved              | Residential | 335413   | 3321420   |    | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 17             | Shobra<br>Kheima/ ADW  | 28-May-98             | Industrial  | 333190   | 3332439   | х  | x        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 18             | Shobra<br>Kheima/APC   | 15-Jun-98             | Industrial  | 332797   | 3332591   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 19             | Shobra<br>Kheima/TTI   | 9-Jun-98              | Industrial  | 332511   | 3332027   | хс | хс       |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 20             | Shobra<br>Kheima/MICAR | 9-Jun-98              | Industrial  | 334295   | 3332842   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 21             | Matarya                | 19-Aug-98             | Ind/Res     | 337635   | 3333406   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 22             | El Waily               | 1-Aug-98              | Ind/Res     | 333996   | 3330857   |    | х        | х           |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 23             | Tebbin/ES/UW           | 15-Jun-98             | Industrial  | 335006   | 3295144   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 24             | Tebbin/GM/DW           | 3-Jun-98              | Industrial  | 335342   | 3294703   | XC | XC       |             | F   |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 25             | Imbaba                 | 27-Aug-98             | Residential | 328829   | 3329039   |    | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 26             | Kaha                   | 27-Jun-98             | Background  | 326517   | 3350606   | х  | Х        |             | FS  |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 27             | 15th May City          | 3-Jul-98              | Residential | 342241   | 3299968   | х  | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 28             | Almaza                 | 26-Aug-98             | Residential | 340774   | 3329357   |    | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 29             | Basateen               | 23-Aug-98             | Ind/Res     | 331495   | 3318364   |    | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 30             | Giza/CYC               | 8-Aug-98              | Residential | 328339   | 3323867   |    | х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 31             | Tahrir Square          | 22-May-98             | Urban       | 329990   | 3324855   | х  | Х        |             | Р   |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 32             | Zamalek                | 21-Jun-98             | Residential | 328661   | 3326590   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 33             | Helwan                 | 22-May-98             | Residential | 338983   | 3302944   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 34             | El Massara             | 22-May-98             | Ind/Res     | 335395   | 3309097   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |
| 35             | Heliopolis             | 28-May-98             | Residential | 339733   | 3331676   | х  | Х        |             |     |        |        |         |       |       |        |        |           |      |      |     | L    |         |       |          |
| 36             | Abbasia                | 22-May-98             | Industrial  | 334658   | 3327037   | х  | Х        | х           |     |        |        |         |       |       |        |        |           |      |      |     |      |         |       |          |

### Table7.1.8 The CAIP Ambient Air Monitoring Network

Another monitoring system, Environmental Information and Monitoring Program, aims to establish national environmental monitoring programs for ambient air and coastal waters and to build environmental quality data and database system. This program was started in January 1996. The EEAA is the executing agency for the program, and Danida (Danish International Development Assistance) is the sponsor to provide the foreign contribution. As for the air pollution monitoring, data are collected using automatic on-line monitors and various sampling equipments. A total of 39 sites, of which 7 sites is collocated with CAIP monitoring sites, covering all of Egypt has been selected. Important indicators selected by EIMP are SO<sub>2</sub>, NO<sub>2</sub>, PM10, CO, O<sub>3</sub>, non-methane hydrocarbons (NMHC) and lead.

#### 7.2 Environmental Analysis Model and the Results

Through a strict estimation of 6 GHG and SO<sub>2</sub> emissions, the study addresses the relationships between the fuel combustion and the emitted gases and the effect on economic activities in Egypt.

#### 7.2.1 IPCC Guidelines for the Estimation of GHG Emissions

IPCC (Intergovernmental Panel on Climate Change) makes the guidelines for the GHG emissions calculation method for countries that does not have their own estimation method for GHG emissions. In IPCC guidelines, IPCC addresses following 6 GHGs: CO<sub>2</sub>, NO<sub>x</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO and NMVOC (non-methane volatile organic compounds) and the air pollution material SO<sub>2</sub> (Hereafter, SO<sub>2</sub> is included to GHG for shortening the word). These gases are emitted from the production, transformation, handling and consumption of energy commodities. Furthermore, these gases are by-products in industrial processes, mainly from utilization of a limestone (CaCO<sub>3</sub>) in the æment industry and the iron industry.

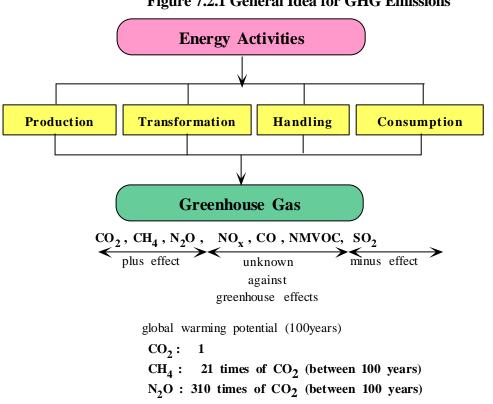



Figure 7.2.1 General Idea for GHG Emissions

(Source) "IPCC Guidelines for national Greenhouse Gas Inventories, 1996" and "Climate Change, 1995, the Science of Climate Change, 1995"

According to IPCC guidelines, there are four methods— "Tier 1", "Tiers 2,3" and two other methods (See Table 7.2.2). Each method has its own advantages and disadvantages. Many countries have been estimating their GHG emissions with "Tier 1" method mainly, supplemented with "Tier 2,3" and two other methods.

"Tier 1" method is a simple and transparent method for estimating GHG emissions because of the availability of energy data from the production to the consumption by energy sources in each country. Using more detailed fuel and technology information, "Tiers 2,3" method focuses the estimation of GHG emissions in stationary and mobile sources. But "Tier 1" method is better than "Tiers 2,3" method to understand overall environmental situation in each country.

#### Figure 7.2.2 Estimation Methodology of GHG Emissions by IPCC

### Simple Methods(Tier 1)

Emissions from all sources of combustion are estimated on the basis of quantities of fuel consumed and average emission factors.

Detailed Methods(Tiers 2/3)

Emission Estimations are based on detailed fuel/technology information covering stationary and mobile sources

Fugitive emissions from coal mining and handling

Emissions are generated as a result of the mining and handling of coal, primarily methane emissions from coal mining.

Fugitive emissions from oil and gas activities

Methane emissions from natural gas flaring and venting, and from natural gas production, transmission and distribution are the most important factor in this category.

(Note) "IPCC Guidelines for national Greenhouse Gas Inventories, 1996"

For the estimation of  $CO_2$  emission, the IPCC reference approach (Tier 1) was used because, as mentioned before, this approach of  $CO_2$  emission estimation is simple and internationally transparent.  $CO_2$  from energy activities can be estimated based on energy data, with a few adjustments--e.g., for carbon de-oxidized. IPCC guidelines show that, if possible, national inventories should be prepared using local emission factors and energy data because fuel quantities and emission factors may differ markedly between countries.

Excluding CO<sub>2</sub>, national inventories of SO<sub>2</sub>, NO<sub>x</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO and NMVOC require more detailed information. An accurate estimation of their emissions depends on the information of several interrelated factors, including combustion conditions, technology and emission control policies, as well as fuel characteristics.

#### 7.2.2 Flow Chart for the Estimation of GHG Emissions

In this study, GHG emission in Egypt was estimated as follows. First, "Energy Balance Table" was prepared based on the original Egyptian energy data made by OEP and "Emission Factors of GHGs". The Egyptian net calorific value for each energy source, depending on the IPCC calculation method, was used to calculate the emission factors of  $CO_2$ . IPCC data was used for the non- $CO_2$  emission factors, excluding  $SO_2$  and  $NO_x$ , because it is difficult at present to obtain sufficient information about the data needed for calculating non- $CO_2$  emission factors. The method used by the Science and Technology Agency (STA) of Japan was employed for  $NO_x$  emission factors. In November 1991, STA published a report called "NISTEP REPORT No.21" that analyzed  $SO_2$ ,  $NO_x$  and  $CO_2$ emissions in Asian countries. This study was a comprehensive study to estimate the environmental situations in Asia. The study team compared the  $SO_2$  and  $NO_x$  emission factors from this report with the IPCC emission factors in order to get more accurate estimation.

The study team developed "Environmental Analysis Model" for estimating the GHG emissions using "Energy Balance Table" and "Emission Factors of GHGs" mentioned earlier. This model is an Excel-based calculation sheet. Basically, the amounts of GHG emissions are obtained from multiplying energy consumption and emission factors for each energy source. At this time, the de-oxidized fraction of  $CO_2$  and the fuel combustion conditions of non- $CO_2$ , especially  $NO_x$ , were considered. This model has two parts--one for annual estimation of GHG emissions that details the structure of environmental situation, and the other for the estimation of GHG emissions in time series.

Therefore, we have two output sheets--one for the annual data sheet and the other for the time series data sheet. Also the outputs include GHG emission intensities per GDP and per Capita through dividing GHG emissions by GDP and the number of population.

These two tables and one model are included in one file and linked automatically with each

other. Therefore, when "Energy Balance Table" obtained through the result of simulation by Econometric Macro Model and LP Model is prepared for the estimation, the results of estimation of GHG emissions are recorded automatically on the Excel sheets.

When the situation changes, it should be reflected by adjusting data in "Environmental Analysis Model", which has emission factors of GHG and other prepositions.

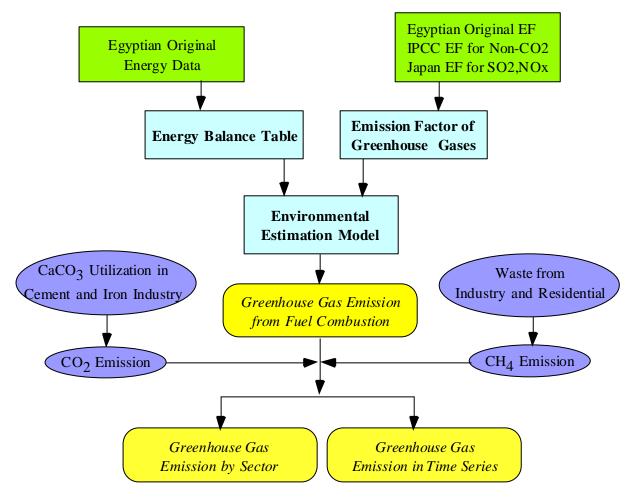



Figure 7.2.3 Flow Chart for the Estimation of GHG Emissions in Egypt

## 7.2.3 Energy Balance Table made by this Study

The study team made "Energy Balance Table" using Egyptian original energy data and internationally adopted calculation method to understand the energy situation in Egypt and to forecast the future energy situation using Econometric Macro Model and LP Model developed in this project. Although the detailed structure of "Energy Balance Table" is explained in Chapter 8, this section gives a brief explanation.

The table has 63 energy supply (production), transformation and consumption sectors (row) and 28 energy sources (column). Due to the lack of energy data, this table is not

filled out completely, but we can use this table for analyzing and forecasting energy demand and supply situation in Egypt.

Total Primary Energy Supply (See Table7.2.1) has production, import, export, marine bunkers, stock changes and, especially, partner share in Egypt. Next is the Transformation Sector, which includes the Power Generation Sector, the Coke Oven Coke Sector (Iron industry and others) and the Oil Refineries Sector. The Oil Refineries Sector shows only transformation from crude oil to oil products and does not include energy consumption in refining operation. This energy consumption is included in Energy Sector Use (Oil Refinery Use). The Total Final Consumption (Supply) is obtained by subtracting the energy supply in the Transformation Sector and Energy Sector Use from the energy supply in the Total Primary Energy Supply.

The Total Final Consumption consists of Industry Sector, Transport sector and Other Sectors, including Agriculture, Commercial, Residential, etc. Non-Energy Use means feedstock for Chemical and Fertilizer industries, in which Non-Energy Use is not burned and GHGs are not emitted.

|                                         |          | 00      | uiuiice  | `         | ,        | · ·     | ( )        | ,      |
|-----------------------------------------|----------|---------|----------|-----------|----------|---------|------------|--------|
| Item                                    | Coke_C   | COC     | NG       | Crude_Oil | NGL      | LPG     | Gasoline J | et     |
| Indigenous Production                   | 0.0      | 0.0     | 11,787.7 | 40,091.5  | 1,861.9  | 0.0     | 0.0        | 0.0    |
| Partners Share                          | 0.0      | 0.0     | -3,085.2 | -14,689.2 | -571.4   | 0.0     | 0.0        | 0.0    |
| From Partners                           | 0.0      | 0.0     | 3,016.4  | 6,194.9   | 255.9    | 0.0     | 0.0        | 0.0    |
| Import                                  | 1,321.2  | 0.0     | 0.0      | 0.0       | 0.0      | 595.1   | 93.9       | 0.0    |
| Export                                  | 0.0      | -324.8  | 0.0      | -3,948.2  | 0.0      | 0.0     | 0.0        | -112.9 |
| International Marine Bunkers/Aviation   | 0.0      | 0.0     | 0.0      | 0.0       | 0.0      | 0.0     | -0.2       | -397.5 |
| Stock Changes                           | 0.0      | 0.0     | 0.0      | -413.0    | 0.0      | 3.4     | 32.0       | 0.0    |
| Total Primary Energy Supply             | 1,321.2  | -324.8  | 11,718.8 | 27,236.1  | 1,546.4  | 598.5   | 125.7      | -510.4 |
| Transformation Sector                   | -1,321.2 | 1,008.0 | -7,748.1 | -27,236.1 | -1,546.4 | 518.6   | 2,335.1    | 951.3  |
| Public Electricity Plants               | 0.0      | 0.0     | -7,228.2 | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Autoproducer Electricity Plants         | 0.0      | 0.0     | 0.0      | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Coke Ovens                              | -1,321.2 | 1,008.0 | 0.0      | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Petrochemicals for Raw Materials/Energy | 0.0      | 0.0     | -519.9   | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Oil Refineries                          | 0.0      | 0.0     | 0.0      | -27,236.1 | -1,546.4 | 518.6   | 2,335.1    | 951.3  |
| Energy Sector Use                       | 0.0      | 0.0     | -270.0   | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Oil Refineries use                      | 0.0      | 0.0     | -270.0   | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Total Final Consumption (Supply)        | 0.0      | 594.0   | 3,666.3  | 0.0       | 0.0      | 2,101.5 | 2,377.0    | 443.1  |
| Total Final Consumption                 | 0.0      | 594.0   | 3,666.3  | 0.0       | 0.0      | 2,101.5 | 2,377.0    | 443.1  |
| Industry Sector                         | 0.0      | 594.0   | 1,969.8  | 0.0       | 0.0      | 76.5    | 0.0        | 0.0    |
| Non-specified (Industry)                | 0.0      | 0.0     | 1,969.8  | 0.0       | 0.0      | 76.5    | 0.0        | 0.0    |
| Transport Sector                        | 0.0      | 0.0     | 0.0      | 0.0       | 0.0      | 0.0     | 2,377.0    | 443.1  |
| Other Sectors                           | 0.0      | 0.0     | 246.6    | 0.0       | 0.0      | 2,025.0 | 0.0        | 0.0    |
| Agriculture                             | 0.0      | 0.0     | 0.0      | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Commercial                              | 0.0      | 0.0     | 0.0      | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |
| Residential                             | 0.0      | 0.0     | 246.6    | 0.0       | 0.0      | 2,025.0 | 0.0        | 0.0    |
| Non-Energy Use                          | 0.0      | 0.0     | 1,449.9  | 0.0       | 0.0      | 0.0     | 0.0        | 0.0    |

 Table 7.2.1 Brief Summery of Energy Balance Table (1997, Total)
 (Unit; KTOE)

(Source) OEP "Annual Energy Report" and the other data gathered by OEP

## Table 7.2.1 Brief Summery of Energy Balance Table (1997, Total)

#### (continued from the previous page)

|                                         |         |         |          |       |       |          | (Uni    | it; KTOE  |
|-----------------------------------------|---------|---------|----------|-------|-------|----------|---------|-----------|
| Item                                    | Kero    | Diesel  | Res_FO   | Lub   | Bitu  | Hydro    | Elec    | Total     |
| Indigenous Production                   | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 1,051.1  | 0.0     | 54,951.0  |
| Partners Share                          | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | -18,345.8 |
| From Partners                           | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 9,467.1   |
| Import                                  | 0.0     | 1,021.2 | 0.0      | 47.6  | 0.0   | 0.0      | 0.0     | 3,283.6   |
| Export                                  | 0.0     | 0.0     | -1,899.3 | 0.0   | -0.3  | 0.0      | 0.0     | -9,755.0  |
| International Marine Bunkers/Aviation   | 0.0     | -251.6  | -2,023.7 | -0.1  | 0.0   | 0.0      | 0.0     | -2,673.0  |
| Stock Changes                           | -34.8   | 10.7    | 25.3     | 0.0   | 0.0   | 0.0      | 0.0     | -267.3    |
| Total Primary Energy Supply             | -34.8   | 780.3   | -3,897.7 | 47.5  | -0.3  | 1,051.1  | 0.0     | 36,660.7  |
| Transformation Sector                   | 1,250.0 | 6,339.1 | 8,925.9  | 237.2 | 784.4 | -1,051.1 | 5,360.9 | -7,488.7  |
| Public Electricity Plants               | 0.0     | -221.7  | -3,986.2 | -11.7 | 0.0   | -1,051.1 | 5,360.9 | -7,137.9  |
| Autoproducer Electricity Plants         | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 0.0       |
| Coke Ovens                              | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | -313.2    |
| Petrochemicals for Raw Materials/Energy | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | -519.9    |
| Oil Refineries                          | 1,250.0 | 6,560.8 | 12,912.0 | 248.8 | 784.4 | 0.0      | 0.0     | 482.4     |
| Energy Sector Use                       | 0.0     | -465.8  | -577.4   | -6.8  | 0.0   | 0.0      | -193.1  | -1,513.1  |
| Oil Refineries use                      | 0.0     | -465.8  | -577.4   | -6.8  | 0.0   | 0.0      | 0.0     | -1,320.0  |
| Total Final Consumption (Supply)        | 1,258.7 | 6,563.4 | 4,505.2  | 305.2 | 753.3 | 0.0      | 4,556.0 | 27,538.9  |
| Total Final Consumption                 | 1,258.7 | 6,563.4 | 4,505.2  | 305.2 | 753.3 | 0.0      | 4,556.0 | 27,538.9  |
| Industry Sector                         | 3.3     | 2,215.1 | 3,681.9  | 90.4  | 753.3 | 0.0      | 1,898.8 | 11,606.0  |
| Non-specified (Industry)                | 3.3     | 2,215.1 | 3,375.8  | 90.4  | 753.3 | 0.0      | 1,898.8 | 10,705.8  |
| Transport Sector                        | 0.0     | 4,342.9 | 823.3    | 174.0 | 0.0   | 0.0      | 0.0     | 8,236.0   |
| Other Sectors                           | 1,255.4 | 5.3     | 0.0      | 40.8  | 0.0   | 0.0      | 2,657.2 | 6,247.1   |
| Agriculture                             | 88.0    | 5.3     | 0.0      | 40.8  | 0.0   | 0.0      | 183.3   | 317.4     |
| Commercial                              | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 161.9   | 161.9     |
| Residential                             | 1,167.5 | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 1,598.6 | 5,041.0   |
| Non-Energy Use                          | 0.0     | 0.0     | 0.0      | 0.0   | 0.0   | 0.0      | 0.0     | 1,449.9   |

(Unit. KTOF)

(Source) OEP "Annual Energy Report" and the other data gathered by OEP

The above table is one of the sheets in "Energy Balance Table" showing the energy balance of 1997. In this file, we have more than 28 sheets for each energy source and summery sheet, which is more detailed than this brief sheet.

## 7.2.4 Emission Factors of GHGs estimated by this Study

IPCC shows averaged international emission factors of CO<sub>2</sub>, expressed in TC/TJ. IPCC also shows the net calorific value of each energy source; TJ/T. T-CO<sub>2</sub>/T is obtained from the calculation of (TC/TJ \* TJ/T \* (44/12) / 1000). This number is the amount of CO<sub>2</sub>. emission per energy, expressed in natural ton. By adjusting each energy source with the net calorific value, which is the Egyptian original number, it is easy to obtain the Egyptian original emission factors expressed in T-CO<sub>2</sub>/TOE.

In this "Environmental Analysis Model", TC/TJ is used as the emission factors according to IPCC guidelines so that this numbers could be obtained from calculation of (T-CO<sub>2</sub>/T \* (12/44) / 41.868 \* 1000) (See Table 5.1.2). The difference between IPCC averaged emission factors and the Egyptian original emission factors is small, as the Egyptian numbers are smaller than the IPCC numbers due to the differences between the net calorific values of each energy source.

|                                  | ]     | IPCC Data |             |        | Egypt                  | ian data |        |
|----------------------------------|-------|-----------|-------------|--------|------------------------|----------|--------|
|                                  | TC/TJ | TJ/T      | T - C O 2/T | TOE/T  | T-CO <sub>2</sub> /TOE | T-C/TOE  | T-C/TJ |
| Coke Oven Coke                   | 29.50 | 29.31     | 3.1701      | 0.7000 | 4.5287                 | 1.2351   | 29.5   |
| Natural Gas                      | 15.30 | 46.55     | 2.6115      | 1.1110 | 2.3506                 | 0.6411   | 15.3   |
| Crude Oil                        | 20.00 | 41.09     | 3.0135      | 0.9950 | 3.0286                 | 0.8260   | 19.7   |
| Liquefied Petroleum Gases        | 17.20 | 47.31     | 2.9837      | 1.1250 | 2.6522                 | 0.7233   | 17.3   |
| Natural Gas Liquids              | 17.20 | 46.18     | 2.9124      | 1.1030 | 2.6405                 | 0.7201   | 17.2   |
| Naphtha                          | 20.00 | 45.01     | 3.3007      | 1.1030 | 2.9925                 | 0.8161   | 19.5   |
| Motor Gasoline                   | 18.90 | 44.80     | 3.1046      | 1.1030 | 2.8147                 | 0.7677   | 18.3   |
| Kerosene type Jet Fuel           | 19.50 | 44.59     | 3.1882      | 1.0860 | 2.9357                 | 0.8006   | 19.1   |
| Kerosene                         | 19.60 | 44.75     | 3.2160      | 1.0860 | 2.9614                 | 0.8076   | 19.3   |
| Gas/Diesel Oil                   | 20.20 | 43.33     | 3.2093      | 1.0660 | 3.0106                 | 0.8211   | 19.6   |
| Residual Fuel Oil                | 21.10 | 40.19     | 3.1094      | 0.9720 | 3.1989                 | 0.8724   | 20.8   |
| Lubricants                       | 20.00 | 40.19     | 2.9473      | 0.9720 | 3.0322                 | 0.8270   | 19.8   |
| Refinery Gas                     | 18.20 | 48.15     | 3.2132      | 1.1250 | 2.8562                 | 0.7790   | 18.6   |
| Petroleum Coke                   | 27.50 | 31.00     | 3.1258      | 0.7400 | 4.2241                 | 1.1520   | 27.5   |
| Non-specified Petroleum Products | 20.00 | 40.19     | 2.9473      | 0.9720 | 3.0322                 | 0.8270   | 19.8   |

Table 7.2.2 Emission Factor of CO<sub>2</sub>

(Note) TC/TJ and TJ/T in IPCC Data are the numbers estimated by IPCC, and we can find these data in IPCC guideline. T-CO<sub>2</sub>/T in IPCC Data is obtained from calculating the following calculation : (TC/TJ \* TJ/T \* (44/12)/1000). In order to obtain the Egyptian original emission factor, we must adjust IPCC numbers by the Egyptian original net calorific value of each energy source.

TOE/T in Egyptian Data is the net calorific value in Egypt. T-CO<sub>2</sub>/TOE is calculated from the following calculation: ((T-CO<sub>2</sub>/T) / (TOE/T)) and T-C/TOE from (T-CO<sub>2</sub>/TOE \* (12/44)). Finally, T-C/TJ is calculated from the following calculation : (T-C/TOE / 41.868 \* 1000), in which 41.868 is the conversion factor from KTOE to TJ.

(Source) "IPCC Guidelines for national Greenhouse Gas Inventories, 1996' and OEP "Annual Energy Report"

For non-CO<sub>2</sub> emission factors excluding SO<sub>2</sub> and NO<sub>x</sub>, the IPCC emission factors are used due to the lack of the sufficient information about non-CO<sub>2</sub> conditions. But for SO<sub>2</sub> and NO<sub>x</sub>, the IPCC emission factors are checked using the emission factors estimated by the Japanese study mentioned earlier. For SO<sub>2</sub>, the estimation is the sulfur content in each energy source in Egypt referring to the Japanese study and the emission factors obtained under the conditions that most of the sulfur content are changed to SO<sub>2</sub> and are released to the atmosphere. Therefore, this number is the Egyptian original emission factor (See Table 7.2.3). For NO<sub>x</sub>, after comparing IPCC method and the Japanese study, we adopted the Japanese study method because the Japanese method was more detailed than IPCC and gave us detailed data for estimation of NO<sub>x</sub> effect (See Table 7.2.4).

For CH<sub>4</sub>, N<sub>2</sub>O, CO and NMVOC emission factors, IPCC shows each emission factor by energy sectors and energy sources, with three big items--Solid, Gaseous, Liquid (See Table

|                | Sulphur    | Sulphur      | Abatement  | Calorific | SO2 Emission |
|----------------|------------|--------------|------------|-----------|--------------|
|                | content of | retention in | Efficiency | Value     | factor       |
|                | fuel       | ash          |            |           |              |
|                | (%)        | (%)          | (%)        | (TJ/kt)   | (T/TJ)       |
| Coke Oven Coke | 1.0000     | 20           |            | 29.3      | 0.5459       |
| Natural Gas    | 0.0100     | 0            |            | 46.5      | 0.0043       |
| L P G          | 0.1200     | 0            |            | 47.1      | 0.0510       |
| Gasoline       | 0.0400     | 0            |            | 46.2      | 0.0173       |
| Jet Kerosene   | 0.1600     | 0            |            | 45.5      | 0.0704       |
| Kerosene       | 0.0400     | 0            |            | 45.5      | 0.0176       |
| Diesel Oil     | 0.1600     | 0            |            | 44.6      | 0.0717       |
| Heavy Fuel Oil | 1.4000     | 0            |            | 40.7      | 0.6880       |
| Lub            | 0.1000     | 0            |            | 40.7      | 0.0491       |
| P-non          | 1.0000     | 15           |            | 40.7      | 0.4177       |

Table 7.2.3 Emission Factor of SO<sub>2</sub>

(Note)  $SO_2$  emission factor is obtained from the following calculating :

EF = 2 \* ((Sulfur content /100)/ Calorific Value \* 1000) \* ((100 - sulfur retention)/100) \*((100 - Abatement Efficiency)/100). Coefficient 2 means the converter from S to SO<sub>2</sub>.

Sulfur content is estimated according to the Japanese study. Calorific Value is the Egyptian number. Sulfur retention in ash and Abatement Efficiency comes from IPCC estimate.

Table 7.2.4 Emission Factor of NO<sub>x</sub>

|                    | COC     | NG      | LPG     | Gasoline | Jet     | kerosene | diesel  | HF0il   | Lub     | Non-Oil |
|--------------------|---------|---------|---------|----------|---------|----------|---------|---------|---------|---------|
|                    | T / T J | T/TJ    | T/TJ    | T/TJ     | T/TJ    | T / T J  | T/TJ    | T / T J | T/TJ    | T / T J |
| Industry Sector    | 0.14068 | 0.05350 | 0.05584 |          |         | 0.16407  | 0.21554 | 0.14350 | 0.14350 | 0.14350 |
| Transport Sector   |         |         |         | 0.68644  | 0.23093 | 0.60261  | 0.61392 | 0.67329 |         | 0.14350 |
| other sector       |         | 0.03750 | 0.01868 |          |         | 0.05476  | 0.07192 | 0.04793 | 0.04792 |         |
| Electricity Sector |         | 0.10509 |         |          |         |          | 0.61325 | 0.24573 | 0.24573 |         |
| Energy Sector      |         | 0.10509 |         |          |         |          | 0.61325 | 0.24573 | 0.24573 |         |

(Source) Calculated according to the Egyptian data and STA, Japan "NISTEP REPORT No.21"

#### Table 7.2.5 Emission Factor of Non-CO2

(Unit: Kg/TJ)

| CH <sub>4</sub> Emission Factor  | Total Solid | TotalGaseous | Total    | Liquid |
|----------------------------------|-------------|--------------|----------|--------|
| CI1 <sub>4</sub> Emission Pactor | Fossil      | Fossil       | Fos      | ssil   |
| Industry Sector                  | 10.0        | 5.0          | 2.0      |        |
| Transport Sector                 |             |              | Gasoline | Diesel |
|                                  | 10.0        | 50.0         | 20.0     | 5.0    |
| Other Sector                     | 300.0       | 5.0          | 10.0     |        |
| Electricity Sector               | 1.0         | 1.0          | 3.0      |        |
| Energy Sector (Refinery)         | 1.0         | 1.0          | 3.       | .0     |

| · · · · · · · · · · · · · · · · · · · |             |              |          |        |
|---------------------------------------|-------------|--------------|----------|--------|
| N <sub>2</sub> O Emission Factor      | Total Solid | TotalGaseous | Total 1  |        |
| 2                                     | Fossil      | Fossil       | Fos      |        |
| Industry Sector                       | 1.4         | 0.1          | 0.       |        |
| Transport Sector                      |             |              | Gasoline | Diesel |
|                                       | 1.4         | 0.1          | 0.6      | 0.6    |
| Other Sector                          | 1.4         | 0.1          | 0.       | 6      |
| Electricity Sector                    | 1.4         | 0.1          | 0.6      |        |
| Energy Sector (Refinery)              | 1.4         | 0.1          | 0.6      |        |
|                                       | Total Solid | TotalGaseous | Total    | Liquid |
| NO <sub>x</sub> Emission Factor       | Fossil      | Fossil       | Fossil   |        |
| Industry Sector                       | 300.0       | 150.0        | 200.0    |        |
| Transport Sector                      |             |              | Gasoline | Diesel |
|                                       | 300.0       | 600.0        | 600.0    | 800.0  |
| Other Sector                          | 100.0       | 50.0         | 100.0    |        |
| Electricity Sector                    | 300.0       | 150.0        | 200.0    |        |
| Energy Sector (Refinery)              | 300.0       | 150.0        | 200.0    |        |
|                                       | Total Solid | TotalGaseous | Total    | Liquid |
| CO Emission Factor                    | Fossil      | Fossil       | For      | -      |
| Industry Sector                       | 150.0       | 30.0         | 10       |        |
| Transport Sector                      | 150.0       | 50.0         | Gasoline | Diesel |
| F                                     | 150.0       | 400.0        | 8000.0   | 1000.0 |
| Other Sector                          | 2000.0      | 50.0         | 20       |        |
| Electricity Sector                    | 20.0        | 20.0         | 15       |        |
| Energy Sector (Refinery)              | 20.0        | 20.0         | 15       |        |
| ; ~~~~~ (                             | _0.0        |              |          |        |
|                                       | Total Solid | TotalGaseous | Total    | Liquid |
| NMVOC Emission Factor                 | Fossil      | Fossil       | Fos      | -      |
| Industry Sector                       | 20.0        | 5.0          | 0.       | 0      |
| Transport Sector                      |             | •            | Gasoline | Diesel |

| industry Sector          | 20.0  | 5.0 | 0.0      |        |
|--------------------------|-------|-----|----------|--------|
| Transport Sector         |       |     | Gasoline | Diesel |
|                          | 20.0  | 5.0 | 1500.0   | 200.0  |
| Other Sector             | 200.0 | 5.0 | 5.0      |        |
| Electricity Sector       | 5.0   | 5.0 | 0.0      |        |
| Energy Sector (Refinery) | 5.0   | 5.0 | 0.       | .0     |

(Source) "IPCC Guidelines for national Greenhouse Gas Inventories, 1996

# 7.2.5 CO<sub>2</sub> and CH<sub>4</sub> Emissions from Industrial Process and Wastes

Figure 7.2.6 shows the estimation of  $CO_2$  emissions from industrial process and  $CH_4$  emissions from industrial wastewater and sludge and solid waste disposal sites, in which  $CH_4$  emissions are estimated by the use of IPCC method. Because it was difficult to get the time series data for the same period of energy consumption, the estimation of  $CO_2$  emissions was based on the most recent annual data and  $CH_4$  emissions of the short-term database.

Cement industry and Iron & Steel industry are using limestone (CaCO<sub>3</sub>) for producing cement (CaO) and removing impurities in the sintering and blast furnace. According to the Japanese study titled "Study on CO<sub>2</sub> Emission", which was published by Environmental Agency of Japan in May 1992, CO<sub>2</sub> emission from cement production is 463.7 CO<sub>2</sub>-Kg/cement production T (See Table 5.1.6). And CO<sub>2</sub> emission from CaCO<sub>3</sub> utilized in Iron & Steel industry is 440 CO<sub>2</sub>-Kg/raw-steel-production T (See Table 7.2.6).

Cement production in FY 1998/99 in Egypt is 22.90Mt with an estimated  $CO_2$  emission of 10.62Mt. Raw steel production in FY 1998/99 is 5.15Mt with the  $CO_2$  emission of 0.31Mt on the presumption that the Egyptian iron industry consumes the same amount of CaCO3 as the Japanese iron industry (0.138 \* T-CaCO3/T-raw steel production). Total  $CO_2$  emission from industrial process is 10.93Mt (See Table 7.2.7).

|      | Cement     | Lime Stone  | CO <sub>2</sub>             | Cabon                   | CO <sub>2</sub> -EF/ | C - E F /           | CO <sub>2</sub> -EF/ | C - E F /                       |
|------|------------|-------------|-----------------------------|-------------------------|----------------------|---------------------|----------------------|---------------------------------|
|      | Production | Consumption | Emission                    | Emission                | Cem Prod             | Cem Prod            | Lime Cons            | Lime Cons                       |
|      | KT/FY      | KT/FY       | KT/FY                       | K T / F Y               | CO <sub>2</sub> -T/T | C - T / T           | CO <sub>2</sub> -T/T | C - T / T                       |
|      | А          | В           | С                           | D                       | E                    | F                   | Е                    | F                               |
|      |            |             | $C = B * C O_2 / C a C O_3$ | $D = B * C / C a C O_3$ | E = C / A * 1000     | F = D / A * 1 0 0 0 | E = C / B * 1000     | $F = D \ / \ B \ * \ 1 \ 0 \ 0$ |
| 1980 | 86,358     | 107,037     | 47,096                      | 12,844                  | 0.5454               | 0.1487              | 0.4400               | 0.120                           |
| 1981 | 84,002     | 100,653     | 44,287                      | 12,078                  | 0.5272               | 0.1438              | 0.4400               | 0.120                           |
| 1982 | 80,362     | 96,325      | 42,383                      | 11,559                  | 0.5274               | 0.1438              | 0.4400               | 0.120                           |
| 1983 | 79,799     | 95,279      | 41,923                      | 11,433                  | 0.5254               | 0.1433              | 0.4400               | 0.120                           |
| 1984 | 77,786     | 91,319      | 40,180                      | 10,958                  | 0.5166               | 0.1409              | 0.4400               | 0.120                           |
| 1985 | 72,500     | 83,003      | 36,521                      | 9,960                   | 0.5037               | 0.1374              | 0.4400               | 0.120                           |
| 1986 | 70,782     | 76,719      | 33,756                      | 9,206                   | 0.4769               | 0.1301              | 0.4400               | 0.120                           |
| 1987 | 74,344     | 78,458      | 34,522                      | 9,415                   | 0.4643               | 0.1266              | 0.4400               | 0.120                           |
| 1988 | 77,302     | 81,182      | 35,720                      | 9,742                   | 0.4621               | 0.1260              | 0.4400               | 0.120                           |
| 1989 | 80,123     | 84,617      | 37,231                      | 10,154                  | 0.4647               | 0.1267              | 0.4400               | 0.120                           |
| 1990 | 86,893     | 91,583      | 40,297                      | 10,990                  | 0.4637               | 0.1265              | 0.4400               | 0.120                           |

Table 7.2.6 CO<sub>2</sub> Emission Factor of Limestone (CaCO<sub>3</sub>)

(Note) CO2/CaCO3 means 44/100, and C/CaCO3 means 12/100

(Source) Environmental Agency, Japan "Study on CO<sub>2</sub> Emission" May, 1992 (Japanese language)

|                       | Production | Emissio | n of   |
|-----------------------|------------|---------|--------|
| 1999/98               | T/Year     | CO2     | С      |
|                       |            | CO2-MT  | CO2-MT |
| Iron & Steel Industry | 5,148,100  | 0.31    | 0.09   |
| Cement Industry       | 22,900,000 | 10.62   | 2.90   |
| Total                 |            | 10.93   | 2.98   |

Table 7.2.7 CO<sub>2</sub> Emission from Industrial Process

OEP has the calculated  $CH_4$  emissions from the industrial wastewater & sludge and solid waste disposal sites for the last several years. According to OEP data, the amount of  $CH_4$  emissions from industrial wastewater and sludge treatment fluctuated between 80.5 Kt and 100 Kt between 1990/91 and 1995/96. And  $CH_4$  emissions, released from solid waste

disposal sites, have increased from 113.02 Kt in 1990/91 to 126.18 Kt in 1995/96 and to 127.70 Kt in 1996/97. Adding these numbers, the total CH<sub>4</sub> emission is 210.18 Kt in 1995/96. This volume of methane can be converted to  $CO_2$  equivalent volume using global warming potential coefficient. The amount of CH<sub>4</sub> emission is equivalent to 4.41 MtCO<sub>2</sub> (See table 7.2.8).

These numbers for  $CO_2$  are neither small nor big because the recent  $CO_2$  emissions from fuel combustion are about 80 - 100 Mt, and the amount of  $CO_2$  from industrial process and waste reaches about 15.34 Mt, accounting for 15 - 19 % of the fuel combustion of  $CO_2$ .

|           |               |                                            |            | (                |        |            |
|-----------|---------------|--------------------------------------------|------------|------------------|--------|------------|
|           | Solid Waste   | Industrial Wastewater and Sludge Treatment |            |                  |        | C O 2      |
|           | Diposal Sites | Sub Total                                  | Wastewater | Sludge Treatment | TOTAL  | Equivalent |
| 1990/1991 | 113.02        | 80.50                                      | 32.20      | 48.30            | 193.52 | 4.06       |
| 1991/1992 | 115.62        | 89.60                                      | 36.10      | 53.50            | 205.22 | 4.31       |
| 1992/1993 | 118.28        | 89.80                                      | 36.20      | 53.60            | 208.08 | 4.37       |
| 1993/1994 | 121.00        | 85.70                                      | 34.00      | 51.70            | 206.70 | 4.34       |
| 1994/1995 | 123.78        | 99.70                                      | 39.20      | 60.50            | 223.48 | 4.69       |
| 1995/1996 | 126.18        | 84.00                                      | 33.70      | 50.30            | 210.18 | 4.41       |
| 1996/1997 | 127.70        |                                            |            |                  |        |            |

**Table 7.2.8 Methane Emission from Wastes** 

(Unit: Kt) (Unit: Mt)

(Source) OEP data

#### 7.3 Estimated GHG Emissions and the Implications

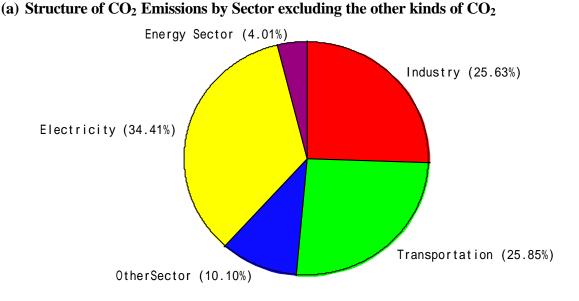
#### 7.3.1 Structure of GHG Emissions

In 1998/99, the fossil fuel consumption in Egypt is 1,457,404 TJ, and CO<sub>2</sub> emissions are 103.82 MtCO<sub>2</sub>, with 103.45 MtCO<sub>2</sub> of CO<sub>2</sub> converted from fuel combustion and 0.37 MtCO<sub>2</sub> of CO<sub>2</sub> from non-CO<sub>2</sub> emissions (CH<sub>4</sub> and N<sub>2</sub>O). CO<sub>2</sub> converted from non-CO<sub>2</sub> emissions means that the greenhouse gas effect potential of non-CO<sub>2</sub> is estimated as CO<sub>2</sub> emission effect or the amount of CO<sub>2</sub> equivalent for non-CO<sub>2</sub> gases.

The average CO<sub>2</sub> intensity is 71.23 TCO<sub>2</sub>/TJ, the largest intensity of which is 74.55 TCO<sub>2</sub>/TJ in the Industry Sector and the smallest intensity is  $60.10 \text{ TCO}_2$ /TJ in the Other Sector. This situation reflects the fact that the share of residual fuel oil, whose CO<sub>2</sub> emission factor is larger than that of any other oil products, is large in the Industrial Sector. In the Other Sector, share of natural gas, whose CO<sub>2</sub> emission factor is the smallest among fossil fuels, is large.

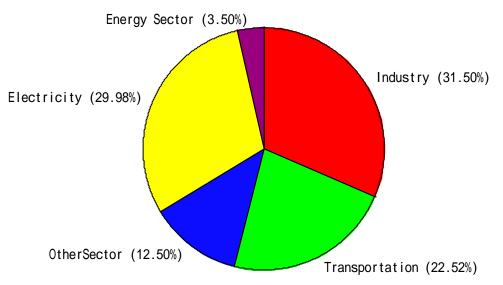
If  $CO_2$  from industrial process (limestone utilization) in 1998/99 and  $CO_2$  converted from CH<sub>4</sub> (originated from the waste treatment and disposal in 1995/96) are considered for the amount of  $CO_2$  emission, the total  $CO_2$  emission reaches about 118MtCO<sub>2</sub>, and  $CO_2$  intensity in the Industry becomes bigger than before (See Table 7.3.1).

|                | Energy        | CO <sub>2</sub> Emission |                      |                          | CO <sub>2</sub> Intensity     | CO <sub>2</sub> Intensity  |
|----------------|---------------|--------------------------|----------------------|--------------------------|-------------------------------|----------------------------|
| 1998           | Consumption   |                          | from Fuel            | from Non-CO <sub>2</sub> | per Energy                    | per Energy                 |
|                |               |                          |                      |                          | Consumption                   | Consumption                |
|                |               |                          |                      |                          | without other CO <sub>2</sub> | with other CO <sub>2</sub> |
|                | (LI)          | (MTCO <sub>2</sub> )     | (MTCO <sub>2</sub> ) | (MTCO <sub>2</sub> )     | (TCO <sub>2</sub> /TJ)        | (TCO <sub>2</sub> /TJ)     |
| Industry       | 356,923       | 26.61                    | 26.52                | 0.08                     | 74.55                         | 83.39                      |
| Transportation | 3 8 1 , 5 5 1 | 26.83                    | 26.68                | 0.15                     | 70.33                         | 70.33                      |
| OtherSector    | 158,591       | 10.48                    | 10.42                | 0.06                     | 66.10                         | 69.13                      |
| Electricity    | 5 0 3 , 4 2 9 | 35.73                    | 35.66                | 0.06                     | 70.97                         | 70.97                      |
| Energy Sector  | 56,910        | 4.17                     | 4.15                 | 0.01                     | 73.20                         | 73.20                      |
| Total          | 1,457,404     | 103.82                   | 103.45               | 0.37                     | 71.23                         | 83.11                      |


 Table 7.3.1 Fossil Fuel Consumption and CO2 Emissions in 1998/99

(Note) Other  $CO_2$  means the other kinds of  $CO_2$  and is the  $CO_2$  emissions from industrial process (1998/99), converted from  $CH_4$  from the waste treatment and disposal (1995/96). It is assumed to be the same level as 1998/99.

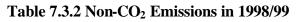
The Electricity Sector is the biggest  $CO_2$  emission sector, whose share is 34.41% of the total  $CO_2$  emission from fossil fuel combustion, followed by 25. 85% of the Transport Sector. The share of the Industrial Sector is the third, with 25.63%, which is almost the same share as the Transport Sector (See Figure 7.3.1).

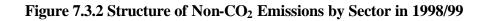

But the other kinds of  $CO_2$ , which are  $CO_2$  from industrial process and  $CH_4$  from waste, added to the  $CO_2$  emissions, its situation changes. The Industrial Sector becomes the largest  $CO_2$  emission sector (31.50%), followed by the Electricity Sector (29.98%). This change is a result of taking other kinds of  $CO_2$ , whose share is large enough to give an influence to the structure of  $CO_2$  emissions in Egypt, into the consideration. In case of estimation of  $CO_2$  emissions from industrial process, we used the efficient emission factors from the Japanese study that were obtained from the Japanese Cement and Iron industry. So, if we could obtain Egyptian original emission factors of  $CO_2$ , the weight of  $CO_2$ emissions from industrial process would be larger than this estimation (See Figure 7.3.1).

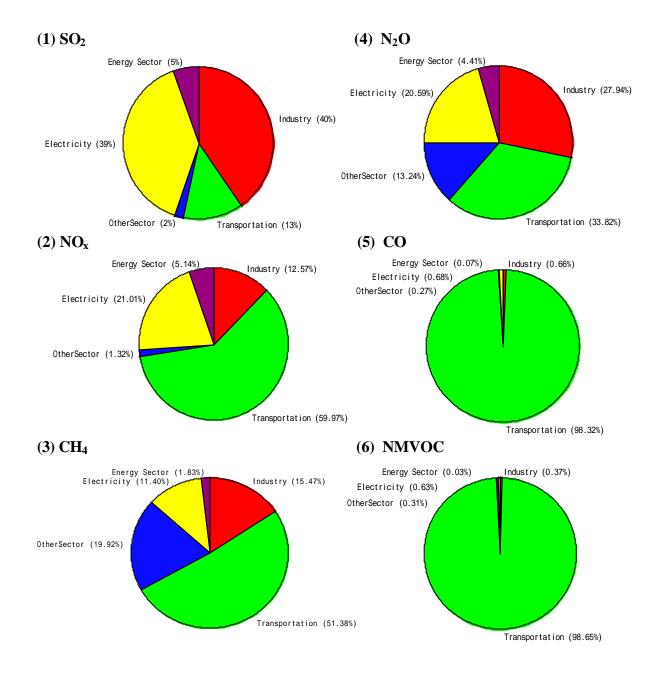
From the  $CO_2$  intensity and share, the countermeasure to improve the  $CO_2$  intensity in the Industrial Sector, including fuel efficiency and process improvement, is one of the very important energy and environmental policy targets in Egypt.



## Figure 7.3.1 Structure of CO<sub>2</sub> Emission by Sector in 1998/99





(Note) The other kinds of  $CO_2$  is  $CO_2$  emissions from industrial process (1998/99) and converted from  $CH_4$  from the waste treatment and disposal (1995/96). It is assumed to be the same level as 1998/99.

Non-CO<sub>2</sub> emissions are: SO<sub>2</sub>, 313 Kt(SO<sub>2</sub>); NO<sub>x</sub>, 383 Kt(NO<sub>x</sub>); CH<sub>4</sub>, 7.63 Kt(CH<sub>4</sub>); N<sub>2</sub>O, 0.68 Kt(N<sub>2</sub>O); CO, 1,343 Kt(CO); and NMVOC, 254 Kt(NMVOC). For SO<sub>2</sub>, the Industrial Sector and the Electricity Sector are two of the biggest emission sectors. For NO<sub>x</sub>, CH<sub>4</sub>, CO and NMVOC, the Transport Sector is the biggest emission sector. The Other Sector and the Energy Sector are playing a small role in the emissions of non-CO<sub>2</sub> (See Table 7.3.2).

|                | SO2                      | N O <sub>x</sub>         | СН <sub>4</sub>      | N <sub>2</sub> O     | C O             | NMVOC             |
|----------------|--------------------------|--------------------------|----------------------|----------------------|-----------------|-------------------|
| 1998           | Emission                 | Emission                 | Emission             | Emission             | Emission        | Emission          |
|                | ( K T S O <sub>2</sub> ) | ( K T N O <sub>x</sub> ) | (КТСН <sub>4</sub> ) | (KTN <sub>2</sub> O) | (KTCO)          | ( K T N M V O C ) |
| Industry       | 1 2 5 . 9 2              | 48.15                    | 1.18                 | 0.19                 | 8.87            | 0.95              |
| Transportation | 41.39                    | 229.75                   | 3.92                 | 0.23                 | 1320.88         | 250.76            |
| OtherSector    | 5.84                     | 5.04                     | 1.52                 | 0.09                 | 3.57            | 0.79              |
| Electricity    | 123.01                   | 80.50                    | 0.87                 | 0.14                 | 9.16            | 1.61              |
| Energy Sector  | 17.20                    | 19.70                    | 0.14                 | 0.03                 | 0.92            | 0.07              |
| Total          | 313.35                   | 383.14                   | 7.63                 | 0.68                 | 1 , 3 4 3 . 4 0 | 254.17            |







Non-CO<sub>2</sub> emission intensities per energy consumption are shown in Table 7.3.3. For SO<sub>2</sub>, the biggest intensity sector is the Industry Sector. The second biggest sector is not the Electricity Sector but the Energy Sector, due to the difference between energy consumption structures of the Electricity Sector and the Energy Sector. For NO<sub>x</sub>, CH<sub>4</sub>, N<sub>2</sub>O, CO and NMVOC, the biggest intensity sector is the Transport Sector. The second biggest sector differs for different non-CO<sub>2</sub> emission gases. For NO<sub>x</sub> emission, for example, the second biggest intensity sector is the Energy Sector, and for CH<sub>4</sub>, it is the Other Sector. For N<sub>2</sub>O, it is the Other Sector while it is the Industry Sector for CO. The second biggest intensity sector for NMVOC is the Other Sector.

|                | SO2                     | N O <sub>x</sub>        | СН 4                    | N <sub>2</sub> O        | СО        | NMVOC                   |
|----------------|-------------------------|-------------------------|-------------------------|-------------------------|-----------|-------------------------|
|                | Emission                | Emission                | Emission                | Emission                | Emission  | Emission                |
|                | (KgSO <sub>2</sub> /TJ) | (KgNO <sub>x</sub> /TJ) | (KgCH <sub>4</sub> /TJ) | (KgN <sub>2</sub> O/TJ) | (KgCO/TJ) | ( K g N M V O C / T J ) |
| Industry       | 352.8                   | 134.9                   | 3.31                    | 0.53                    | 24.9      | 2.7                     |
| Transportation | 108.5                   | 602.2                   | 10.28                   | 0.60                    | 3,461.9   | 657.2                   |
| OtherSector    | 36.8                    | 31.8                    | 9.58                    | 0.56                    | 22.5      | 5.0                     |
| Electricity    | 244.3                   | 159.9                   | 1.72                    | 0.28                    | 18.2      | 3.2                     |
| Energy Sector  | 3 0 2 . 3               | 346.1                   | 2.53                    | 0.48                    | 16.2      | 1.2                     |
| Total          | 215.0                   | 262.9                   | 5.24                    | 0.46                    | 921.8     | 174.4                   |

Table 7.3.3 Non-CO<sub>2</sub> Emission Intensity per Energy Consumption in 1998/99

Energy and Environmental Policy must include  $SO_2$  emission regulation policy, especially in the Industry Sector, and  $NO_x$  emission regulation policy, especially in the Transport Sector.

## 7.3.2 Historical Analysis of GHG Emissions

Between 1981/82 and 1998/99, the fossil energy consumption in Egypt increased by an annual growth rate of 4.89%, and  $CO_2$  emission from fossil energy consumption increased by an annual growth rate of 4.51%. So the elasticity value of  $CO_2$  to fossil energy consumption is 0.92. The reason why the elasticity value is under 1.00 is the structural change of fossil energy consumption or the change from energy sources with high intensity of  $CO_2$  to other energy sources with comparatively low intensity of  $CO_2$  (See Table 7.3.4).

Table 7.3.5 shows that the share of liquid fossil fuel was 89.0% in 1981/82 and the share of gaseous fossil fuel was only 8.2%. In 1998/99, the share of gaseous fossil fuel, whose  $CO_2$  emission factor was the lowest among fossil fuels, increased to 38.9%, and the share of liquid fossil fuel decreased to 60.0%.

In the Industrial Sector, there is a structural change from liquid fossil fuel to gaseous fuel

and electricity,  $CO_2$  emission factor of which is comparatively lower than that of liquid fossil fuel. The situations are observed in the Other Sector as well. These two sectors enjoy the reduction of  $CO_2$  intensity as result of structural change in energy consumption.

For the Transport Sector, such change has not happened. But in this sector, there happens to be another kind of structural change in liquid fossil fuel, from gasoline to diesel, whose  $CO_2$  emission factor is bigger than that of gasoline. Table 7.3.7 shows that the share of gasoline consumption was 37.1% and the share of diesel consumption was 46.3% in 1981/82. In 1998/99, the share of gasoline decreased to 26.7%, and that of diesel increased to 57.5%. The share of residual fuel oil also increased, from 2.5% to 7.9%.  $CO_2$  emission factor of residential fuel oil is bigger than that of gasoline and diesel. The structural changes of energy consumption increased the amount of  $CO_2$  emissions more than the growth of energy consumption in this period.

For the Electricity Sector and the Energy Sector, there happens to be a structural change from liquid fossil fuel to gaseous fossil fuel rapidly, especially in the field of generation, where the share of liquid fuel was 79.5%, up from 20.5% in 1981/82. In 1998/99, the situation was reversed. The share of gaseous fuel was 63.8%, and a share of liquid fuel was 36.2% (See Table 7.3.8). In the Energy Sector, the same phenomenon is recognized although the scale of change was smaller than the scale in the Electricity Sector. Thus, these transformation sectors have potentials to reduce  $CO_2$  emission, compared to the sectors that such structural changes have not happened.

For non-CO<sub>2</sub> emissions between 1981/82 and 1991/92, the changing tendencies of non-CO<sub>2</sub> emissions were almost identical with one another. After 1991/92, we can see that there are some differences for each non-CO<sub>2</sub> emission. The amount of SO<sub>2</sub> emissions was the lowest due to the fuel conversion from liquid fuel to gaseous fuel, because the emission factors of gaseous fuel were very small.

|                      | Fossil Fuel | $CO_2$               | Fossil Fuel | CO <sub>2</sub> |
|----------------------|-------------|----------------------|-------------|-----------------|
|                      | Consumption | Emision              | Consumption | Emision         |
|                      | (TJ)        | (MtCO <sub>2</sub> ) | 1981/8      | 2=100           |
| 1981/82              | 647,677     | 46.4                 | 100.0       | 100.0           |
| 1982/83              | 732,270     | 52.4                 | 113.1       | 112.9           |
| 1983/84              | 816,164     | 58.1                 | 126.0       | 125.2           |
| 1984/85              | 883,495     | 62.6                 | 136.4       | 134.9           |
| 1985/86              | 903,869     | 63.2                 | 139.6       | 136.2           |
| 1986/87              | 969,229     | 67.8                 | 149.6       | 146.0           |
| 1987/88              | 1,025,829   | 71.4                 | 158.4       | 153.9           |
| 1988/89              | 1,027,561   | 71.3                 | 158.7       | 153.7           |
| 1989/90              | 1,080,036   | 74.7                 | 166.8       | 161.0           |
| 1990/91              | 1,114,327   | 76.8                 | 172.0       | 165.6           |
| 1991/92              | 1,116,497   | 76.9                 | 172.4       | 165.7           |
| 1992/93              | 1,111,391   | 75.6                 | 171.6       | 162.9           |
| 1993/94              | 1,107,880   | 74.8                 | 171.1       | 161.2           |
| 1994/95              | 1,162,162   | 78.2                 | 179.4       | 168.4           |
| 1995/96              | 1,235,918   | 83.3                 | 190.8       | 179.4           |
| 1996/97              | 1,288,791   | 87.0                 | 199.0       | 187.4           |
| 1997/98              | 1,400,527   | 94.7                 | 216.2       | 204.1           |
| 1998/99              | 1,457,404   | 98.2                 | 225.0       | 211.6           |
| 1999/00              | 1,542,000   | 103.1                | 238.1       | 222.2           |
| 2000/01              | 1,639,367   | 109.3                |             | 235.4           |
| 2001/02              | 1,746,421   | 116.0                | 269.6       | 250.0           |
| 2002/03              | 1,864,156   | 123.5                |             | 266.0           |
| 2003/04              | 1,994,121   | 131.7                | 307.9       | 283.7           |
| 2004/05              | 2,137,586   | 140.7                | 330.0       | 303.2           |
| 2005/06              | 2,296,045   | 150.7                | 354.5       | 324.8           |
| Average Growth Rates | ļ,          |                      |             |                 |
| (1998/99)/(1981/82)  | 4.89        | 4.51                 | 4.89        | 4.51            |
| (2005/06)/(1998/99)  | 6.71        | 6.31                 | 6.71        | 6.31            |
| (2005/06)/(1981/82)  | 5.41        | 5.03                 | 5.41        | 5.03            |

Table 7.3.4 Comparison of Energy Consumption and CO<sub>2</sub> Emissions

 Table 7.3.5 Energy Consumption by Energy Source and the Share

|         | Liquid    | Solid  | Gaseous | Total     | Liquid | Solid   | Gaseous | Total |
|---------|-----------|--------|---------|-----------|--------|---------|---------|-------|
|         |           | (TJ)   |         |           |        | (Share; | %)      |       |
| 1981/82 | 576,253   | 18,071 | 53,353  | 647,677   | 89.0   | 2.8     | 8.2     | 100.0 |
| 1982/83 | 649,602   | 18,569 | 64,098  | 732,270   | 88.7   | 2.5     | 8.8     | 100.0 |
| 1983/84 | 715,538   | 17,596 | 83,030  | 816,164   | 87.7   | 2.2     | 10.2    | 100.0 |
| 1984/85 | 763,639   | 17,848 | 102,008 | 883,495   | 86.4   | 2.0     | 11.5    | 100.0 |
| 1985/86 | 735,941   | 18,754 | 149,175 | 903,869   | 81.4   | 2.1     | 16.5    | 100.0 |
| 1986/87 | 786,467   | 19,120 | 163,641 | 969,229   | 81.1   | 2.0     | 16.9    | 100.0 |
| 1987/88 | 812,409   | 20,846 | 192,574 | 1,025,829 | 79.2   | 2.0     | 18.8    | 100.0 |
| 1988/89 | 797,842   | 22,819 | 206,900 | 1,027,561 | 77.6   | 2.2     | 20.1    | 100.0 |
| 1989/90 | 828,275   | 22,719 | 229,042 | 1,080,036 | 76.7   | 2.1     | 21.2    | 100.0 |
| 1990/91 | 841,680   | 21,324 | 251,322 | 1,114,327 | 75.5   | 1.9     | 22.6    | 100.0 |
| 1991/92 | 826,235   | 25,310 | 264,951 | 1,116,497 | 74.0   | 2.3     | 23.7    | 100.0 |
| 1992/93 | 770,646   | 25,928 | 314,816 | 1,111,391 | 69.3   | 2.3     | 28.3    | 100.0 |
| 1993/94 | 730,883   | 29,853 | 347,144 | 1,107,880 | 66.0   | 2.7     | 31.3    | 100.0 |
| 1994/95 | 766,797   | 25,987 | 369,378 | 1,162,162 | 66.0   | 2.2     | 31.8    | 100.0 |
| 1995/96 | 838,784   | 21,383 | 375,751 | 1,235,918 | 67.9   | 1.7     | 30.4    | 100.0 |
| 1996/97 | 864,269   | 30,073 | 394,450 | 1,288,791 | 67.1   | 2.3     | 30.6    | 100.0 |
| 1997/98 | 968,926   | 24,870 | 406,730 | 1,400,527 | 69.2   | 1.8     | 29.0    | 100.0 |
| 1998/99 | 995,475   | 25,197 | 436,733 | 1,457,404 | 68.3   | 1.7     | 30.0    | 100.0 |
| 1999/00 | 1,014,699 | 25,524 | 501,777 | 1,542,000 | 65.8   | 1.7     | 32.5    | 100.0 |
| 2000/01 | 1,061,956 | 25,675 | 551,736 | 1,639,367 | 64.8   | 1.6     | 33.7    | 100.0 |
| 2001/02 | 1,113,477 | 25,828 | 607,116 | 1,746,421 | 63.8   | 1.5     | 34.8    | 100.0 |
| 2002/03 | 1,170,164 | 25,984 | 668,008 | 1,864,156 | 62.8   | 1.4     | 35.8    | 100.0 |
| 2003/04 | 1,232,447 | 26,143 | 735,532 | 1,994,121 | 61.8   | 1.3     | 36.9    | 100.0 |
| 2004/05 | 1,301,096 | 26,304 | 810,187 | 2,137,586 | 60.9   | 1.2     | 37.9    | 100.0 |
| 2005/06 | 1,376,992 | 26,467 | 892,586 | 2,296,045 | 60.0   | 1.2     | 38.9    | 100.0 |

|         |              | I   | ndusry Sect | or          |        | Transpo | ort Sector |        | Other   | Sector      |        |
|---------|--------------|-----|-------------|-------------|--------|---------|------------|--------|---------|-------------|--------|
|         | Liquid Solid |     | Gaseous     | Electricity | Energy | Liquid  | Energy     | Liquid | Gaseous | Electricity | Energy |
| 1981/82 | 51.7         | 6.2 | 7.0         | 30.9        | 4.2    | 94.2    | 5.8        | 56.7   | 0.1     | 39.7        | 3.5    |
| 1982/83 | 53.1         | 5.6 | 5.1         | 31.5        | 4.7    | 93.6    | 6.4        | 52.7   | 0.2     | 43.5        | 3.0    |
| 1983/84 | 51.3         | 4.9 | 5.9         | 33.5        | 4.4    | 93.9    | 6.1        | 49.4   | 0.4     | 47.0        | 3.3    |
| 1984/85 | 51.3         | 4.6 | 6.6         | 33.0        | 4.4    | 93.9    | 6.1        | 47.9   | 0.5     | 48.4        | 3.2    |
| 1985/86 | 48.3         | 5.0 | 7.5         | 34.5        | 4.7    | 93.5    | 6.5        | 47.9   | 0.6     | 48.1        | 3.4    |
| 1986/87 | 49.0         | 4.6 | 8.4         | 33.9        | 4.2    | 94.2    | 5.8        | 46.8   | 0.7     | 49.7        | 2.9    |
| 1987/88 | 46.2         | 4.7 | 10.0        | 35.2        | 3.9    | 94.4    | 5.6        | 45.0   | 0.7     | 51.6        | 2.2    |
| 1988/89 | 44.1         | 5.2 | 10.3        | 36.4        | 4.0    | 94.2    | 5.8        | 44.9   | 0.7     | 51.5        | 2.8    |
| 1989/90 | 45.3         | 4.8 | 11.8        | 34.1        | 4.0    | 94.4    | 5.6        | 44.4   | 0.8     | 52.1        | 2.2    |
| 1990/91 | 46.0         | 4.3 | 11.2        | 34.5        | 4.0    | 94.5    | 5.5        | 41.9   | 0.8     | 54.7        | 2.5    |
| 1991/92 | 44.7         | 5.1 | 11.3        | 35.0        | 3.9    | 94.4    | 5.6        | 38.8   | 1.0     | 57.8        | 2.4    |
| 1992/93 | 42.7         | 5.4 | 11.9        | 35.7        | 4.3    | 93.8    | 6.2        | 38.0   | 1.1     | 58.3        | 2.0    |
| 1993/94 | 42.1         | 6.1 | 12.8        | 34.5        | 4.5    | 93.7    | 6.3        | 36.7   | 1.2     | 59.5        | 2.0    |
| 1994/95 | 43.6         | 5.1 | 13.2        | 33.4        | 4.6    | 93.6    | 6.4        | 34.9   | 1.5     | 61.1        | 2.5    |
| 1995/96 | 45.7         | 4.0 | 12.7        | 33.1        | 4.5    | 93.9    | 6.1        | 34.1   | 1.8     | 61.8        | 2.4    |
| 1996/97 | 43.7         | 5.4 | 13.0        | 33.6        | 4.3    | 94.0    | 6.0        | 33.3   | 2.0     | 62.5        | 2.3    |
| 1997/98 | 44.3         | 4.2 | 13.8        | 33.5        | 4.2    | 94.2    | 5.8        | 31.8   | 2.4     | 63.8        | 2.     |
| 1998/99 | 41.6         | 4.3 | 15.2        | 34.9        | 4.0    | 94.1    | 5.9        | 31.0   | 2.9     | 64.0        | 2.     |
| 1999/00 | 41.3         | 4.1 | 15.8        | 34.8        | 4.0    | 94.5    | 5.5        | 29.4   | 2.9     | 65.7        | 1.9    |
| 2000/01 | 41.0         | 3.9 | 16.5        | 34.6        | 3.9    | 94.6    | 5.4        | 27.8   | 3.0     | 67.5        | 1.5    |
| 2001/02 | 40.7         | 3.7 | 17.3        | 34.5        | 3.9    | 94.8    | 5.2        | 26.3   | 3.0     | 69.1        | 1.0    |
| 2002/03 | 40.4         | 3.5 | 18.2        | 34.2        | 3.8    | 95.0    | 5.0        | 24.9   | 3.0     | 70.7        | 1.:    |
| 2003/04 | 40.1         | 3.2 | 19.0        | 34.0        | 3.6    | 95.2    | 4.8        | 23.5   | 2.9     | 72.2        | 1.4    |
| 2004/05 | 39.8         | 3.0 | 19.9        | 33.8        | 3.5    | 95.4    | 4.6        | 22.3   | 2.9     | 73.6        | 1.1    |
| 2005/06 | 39.6         | 2.8 | 20.7        | 33.5        | 3.3    | 95.5    | 4.5        | 21.1   | 2.8     | 75.0        | 1.     |

Table 7.3.6 Share of Energy Sources by Sector

### **Table 7.3.7 Share of Energy Sources**

## in Transportation Sector

|         | Gasoline | Jet | Diesel | Residua   | Lubricants | Others | Total |
|---------|----------|-----|--------|-----------|------------|--------|-------|
|         |          |     |        | lFuel Oil |            |        |       |
| 1981/82 | 37.1     | 9.1 | 46.3   | 2.5       | 2.3        | 2.7    | 100.0 |
| 1982/83 | 39.9     | 8.5 | 44.6   | 2.0       | 2.4        | 2.7    | 100.0 |
| 1983/84 | 39.8     | 9.2 | 44.6   | 1.8       | 2.4        | 2.2    | 100.0 |
| 1984/85 | 40.7     | 8.7 | 44.4   | 2.0       | 2.4        | 1.7    | 100.0 |
| 1985/86 | 40.8     | 8.2 | 45.1   | 2.5       | 2.3        | 1.1    | 100.0 |
| 1986/87 | 41.5     | 7.2 | 45.5   | 2.2       | 2.4        | 1.2    | 100.0 |
| 1987/88 | 40.6     | 7.7 | 45.9   | 2.4       | 2.4        | 1.0    | 100.0 |
| 1988/89 | 40.5     | 7.5 | 46.3   | 2.2       | 2.5        | 1.0    | 100.0 |
| 1989/90 | 39.4     | 9.2 | 45.5   | 2.7       | 2.5        | 0.8    | 100.0 |
| 1990/91 | 37.4     | 7.8 | 49.0   | 2.4       | 2.5        | 1.0    | 100.0 |
| 1991/92 | 36.3     | 7.9 | 50.0   | 2.4       | 2.3        | 1.1    | 100.0 |
| 1992/93 | 32.2     | 7.9 | 46.0   | 10.8      | 2.2        | 1.1    | 100.0 |
| 1993/94 | 31.9     | 7.2 | 48.3   | 9.5       | 2.3        | 0.9    | 100.0 |
| 1994/95 | 31.6     | 6.1 | 49.5   | 9.4       | 2.2        | 1.2    | 100.0 |
| 1995/96 | 29.6     | 6.6 | 50.8   | 9.8       | 2.1        | 1.1    | 100.0 |
| 1996/97 | 29.5     | 6.0 | 52.5   | 9.0       | 2.1        | 0.9    | 100.0 |
| 1997/98 | 28.9     | 5.4 | 52.7   | 10.0      | 2.1        | 0.9    | 100.0 |
| 1998/99 | 26.7     | 5.0 | 57.5   | 7.9       | 2.0        | 0.9    | 100.0 |
| 1999/00 | 25.9     | 4.9 | 58.5   | 7.8       | 2.0        | 1.0    | 100.0 |
| 2000/01 | 25.4     | 4.8 | 59.2   | 7.6       | 2.1        | 1.0    | 100.0 |
| 2001/02 | 24.9     | 4.6 | 60.0   | 7.3       | 2.2        | 0.9    | 100.0 |
| 2002/03 | 24.3     | 4.5 | 60.9   | 7.1       | 2.3        | 0.9    | 100.0 |
| 2003/04 | 23.7     | 4.3 | 61.8   | 6.9       | 2.4        | 0.9    | 100.0 |
| 2004/05 | 23.0     | 4.2 | 62.8   | 6.7       | 2.5        | 0.9    | 100.0 |
| 2005/06 | 22.2     | 4.0 | 63.8   | 6.4       | 2.6        | 0.9    | 100.0 |

## **Table 7.3.8 Share of Energy Sector**

#### in Transformation Sector

|         | Electrici | ty Sector | Energy | Sector  |
|---------|-----------|-----------|--------|---------|
|         | Liquid    | Gaseous   | Liquid | Gaseous |
| 1981/82 | 79.5      | 20.5      | 100.0  | 0.0     |
| 1982/83 | 76.2      | 23.8      | 100.0  | 0.0     |
| 1983/84 | 74.2      | 25.8      | 100.0  | 0.0     |
| 1984/85 | 70.9      | 29.1      | 100.0  | 0.0     |
| 1985/86 | 55.3      | 44.7      | 100.0  | 0.0     |
| 1986/87 | 56.9      | 43.1      | 100.0  | 0.0     |
| 1987/88 | 55.4      | 44.6      | 96.6   | 3.4     |
| 1988/89 | 52.9      | 47.1      | 92.9   | 7.1     |
| 1989/90 | 50.4      | 49.6      | 92.5   | 7.5     |
| 1990/91 | 47.4      | 52.6      | 87.9   | 12.1    |
| 1991/92 | 46.9      | 53.1      | 83.2   | 16.8    |
| 1992/93 | 33.5      | 66.5      | 84.6   | 15.4    |
| 1993/94 | 25.3      | 74.7      | 84.3   | 15.7    |
| 1994/95 | 25.0      | 75.0      | 84.5   | 15.5    |
| 1995/96 | 27.9      | 72.1      | 86.4   | 13.6    |
| 1996/97 | 29.4      | 70.6      | 84.3   | 15.7    |
| 1997/98 | 36.9      | 63.1      | 79.5   | 20.5    |
| 1998/99 | 36.2      | 63.8      | 76.7   | 23.3    |
| 1999/00 | 31.6      | 68.4      | 73.8   | 26.2    |
| 2000/01 | 31.1      | 68.9      | 71.1   | 28.9    |
| 2001/02 | 30.7      | 69.3      | 68.5   | 31.5    |
| 2002/03 | 30.3      | 69.7      | 65.9   | 34.1    |
| 2003/04 | 30.0      | 70.0      | 63.4   | 36.6    |
| 2004/05 | 29.6      | 70.4      | 61.0   | 39.0    |
| 2005/06 | 29.3      | 70.7      | 58.6   | 41.4    |

On the other hand, the growth curve of CO and NMVOC was higher than that of others because these emissions were generated almost exclusively in the Transport Sector. The second group of the growth curve was  $NO_x$  and  $CH_4$ , from the large share of the Transport Sector, with 60% for  $NO_x$  and 56% for  $CH_4$  in 1998/99.

The amount of SO<sub>2</sub> emissions has increased by 2.83% annually between 1981/82 and 1998/99. The shares of the Industry Sector and the Energy Sector decreased while the shares of the Transport Sector and the Electricity Sector increased. The share of the Electricity Sector decreased tentatively in the early 1990s due to the fuel conversion to gaseous fuel. The amount of NO<sub>x</sub> emissions has increased by 4.39% annually during the same period. In this case, only the share of the Transport Sector increased. For CH<sub>4</sub>, the amount of CH<sub>4</sub> increased by 4.23% annually during the same period. The shares of the Electricity Sector increased, but the increase of the Electricity Sector was very small. For N<sub>2</sub>O, the amount of N<sub>2</sub>O increased by 3.51% annually. The tendency of structural changes was almost the same as the other GHG emission field, but the scale in the Transport Sector was not so large. In the case of CO and NMVOC emissions, the amount of each gas emissions has reflected the energy consumption in the Transport Sector, whose shares were more than 98% of the total emission.

The policy on the Transport Sector to improve energy efficiency and/or set the emission standard is very important in reducing the non- $CO_2$  emissions because the non- $CO_2$  emissions are intimately related to the energy consumption in the Transport Sector.

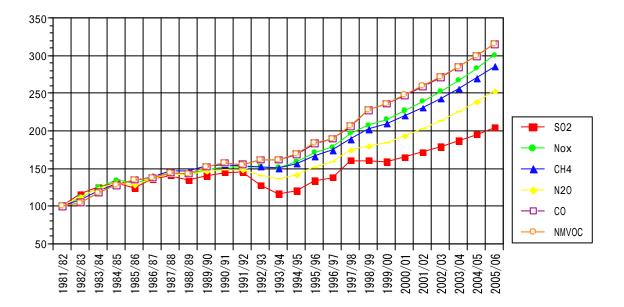



Figure 7.3.3 Index of Non-CO<sub>2</sub> Emissions (1981/82 = 100)

|                     | SO <sub>2</sub> | NO <sub>x</sub> | $CH_4$ | N <sub>2</sub> O | СО   | NMVOC |
|---------------------|-----------------|-----------------|--------|------------------|------|-------|
| (1998/99)/(1981/82) | 2.83            | 4.39            | 4.23   | 3.51             | 4.95 | 4.96  |
| (2005/06)/(1998/99) | 3.50            | 5.43            | 5.06   | 5.02             | 4.77 | 4.78  |
| (2005/06)/(1981/82) | 3.02            | 4.69            | 4.47   | 3.94             | 4.90 | 4.91  |

Table 7.3.9 The Growth Rate in each Non-CO<sub>2</sub> Emission

# Table 7.3.10 Share by Energy Sector in each Non-CO<sub>2</sub> Emission (1)

|         | $(SO_2)$ | )         |            |           |        |                      | (        | (NO <sub>x</sub> ) |            |           |        |                      |
|---------|----------|-----------|------------|-----------|--------|----------------------|----------|--------------------|------------|-----------|--------|----------------------|
|         | Industry | Transport | Other      | Electricy | Energy | Total                | Industry | Transport          | Other      | Electricy | Energy | Total                |
|         |          |           | (Share, %) |           |        | (KtSO <sub>2</sub> ) |          |                    | (Share, %) |           |        | (KtNO <sub>x</sub> ) |
| 1981/82 | 48.2     | 6.5       | 1.3        | 35.8      | 8.1    | 195.07               | 14.8     | 52.8               | 2.6        | 24.7      | 5.1    | 184.57               |
| 1982/83 | 47.5     | 5.5       | 1.3        | 37.5      | 8.2    | 226.16               | 15.3     | 50.2               | 2.6        | 26.0      | 5.9    | 204.34               |
| 1983/84 | 44.7     | 5.5       | 1.2        | 40.4      | 8.1    | 244.25               | 14.5     | 50.4               | 2.5        | 27.2      | 5.4    | 228.94               |
| 1984/85 | 45.0     | 5.6       | 1.3        | 39.8      | 8.3    | 255.46               | 14.3     | 50.8               | 2.5        | 27.0      | 5.4    | 248.30               |
| 1985/86 | 42.1     | 6.4       | 1.5        | 40.6      | 9.4    | 241.19               | 14.1     | 55.9               | 2.7        | 21.3      | 6.0    | 240.68               |
| 1986/87 | 42.5     | 5.8       | 1.4        | 42.0      | 8.3    | 265.48               | 15.1     | 54.5               | 2.7        | 22.5      | 5.3    | 252.47               |
| 1987/88 | 41.4     | 5.9       | 1.4        | 43.3      | 8.0    | 274.54               | 14.6     | 54.3               | 2.6        | 23.6      | 4.8    | 264.84               |
| 1988/89 | 40.7     | 6.0       | 1.5        | 43.9      | 8.0    | 263.09               | 14.3     | 54.1               | 2.6        | 23.9      | 5.1    | 263.62               |
| 1989/90 | 42.3     | 6.4       | 1.5        | 41.8      | 8.0    | 273.34               | 15.3     | 55.0               | 2.5        | 22.3      | 4.9    | 273.32               |
| 1990/91 | 44.1     | 6.4       | 1.4        | 40.7      | 7.4    | 282.38               | 15.1     | 55.6               | 2.3        | 22.3      | 4.7    | 281.58               |
| 1991/92 | 43.9     | 6.4       | 1.4        | 41.6      | 6.7    | 283.75               | 15.2     | 54.8               | 2.1        | 23.4      | 4.5    | 280.69               |
| 1992/93 | 44.2     | 13.4      | 1.6        | 33.2      | 7.6    | 249.56               | 14.5     | 57.2               | 2.0        | 20.8      | 5.6    | 281.73               |
| 1993/94 | 49.2     | 13.7      | 1.7        | 26.8      | 8.5    | 226.42               | 15.1     | 58.0               | 1.7        | 19.2      | 5.8    | 277.91               |
| 1994/95 | 49.3     | 13.9      | 1.8        | 26.7      | 8.3    | 234.44               | 15.0     | 57.9               | 1.6        | 19.4      | 6.1    | 292.85               |
| 1995/96 | 47.6     | 14.0      | 1.8        | 28.6      | 8.0    | 260.63               | 14.9     | 58.2               | 1.5        | 19.6      | 5.7    | 315.92               |
| 1996/97 | 46.3     | 13.4      | 1.8        | 31.2      | 7.3    | 269.15               | 14.8     | 57.9               | 1.5        | 20.2      | 5.6    | 329.10               |
| 1997/98 | 41.9     | 13.2      | 1.7        | 37.3      | 5.8    | 313.01               | 14.4     | 57.3               | 1.4        | 21.7      | 5.3    | 362.85               |
| 1998/99 | 40.2     | 13.2      | 1.9        | 39.3      | 5.5    | 313.35               | 12.6     | 60.0               | 1.3        | 21.0      | 5.1    | 383.14               |
| 1999/00 | 41.2     | 13.8      | 2.0        | 37.8      | 5.2    | 309.76               | 12.8     | 59.9               | 1.3        | 21.1      | 4.9    | 397.12               |
| 2000/01 | 40.2     | 13.8      | 2.0        | 39.2      | 4.8    | 321.72               | 13.0     | 59.5               | 1.2        | 21.6      | 4.7    | 418.17               |
| 2001/02 | 39.2     | 13.8      | 2.0        | 40.6      | 4.4    | 334.69               | 13.1     | 59.1               | 1.1        | 22.2      | 4.6    | 441.16               |
| 2002/03 | 38.2     | 13.7      | 2.0        | 42.0      | 4.0    | 348.63               | 13.3     | 58.6               | 1.0        | 22.7      | 4.4    | 465.98               |
| 2003/04 | 37.2     | 13.6      | 2.0        | 43.5      | 3.6    | 363.85               | 13.5     | 58.0               | 1.0        | 23.3      | 4.2    | 493.03               |
| 2004/05 | 36.2     | 13.6      | 2.0        | 44.9      | 3.3    | 380.49               | 13.8     | 57.5               | 0.9        | 23.8      | 4.0    | 522.56               |
| 2005/06 | 35.2     | 13.5      | 2.0        | 46.4      | 2.9    | 398.69               | 14.1     | 56.9               | 0.9        | 24.4      | 3.8    | 554.86               |

Table 7.3.10 Share by Energy Sector in each Non-CO<sub>2</sub> Emission (2)

## (CH<sub>4</sub>)

## $(N_2O)$

|         | Industry | Transport | Other      | Electricy | Energy | Total                | Industry | Transport | Other      | Electricy | Energy | Total                |
|---------|----------|-----------|------------|-----------|--------|----------------------|----------|-----------|------------|-----------|--------|----------------------|
|         |          |           | (Share, %) | ·         |        | (KtCH <sub>4</sub> ) |          |           | (Share, %) |           |        | (KtN <sub>2</sub> O) |
| 1981/82 | 13.9     | 50.0      | 24.1       | 9.9       | 2.1    | 4.19                 | 31.3     | 26.8      | 16.1       | 21.2      | 4.6    | 0.38                 |
| 1982/83 | 13.7     | 48.3      | 24.7       | 11.0      | 2.3    | 4.54                 | 31.7     | 25.0      | 15.9       | 22.5      | 5.0    | 0.42                 |
| 1983/84 | 13.0     | 49.2      | 24.0       | 11.6      | 2.2    | 5.03                 | 29.9     | 25.7      | 15.6       | 24.0      | 4.8    | 0.46                 |
| 1984/85 | 13.0     | 49.5      | 23.8       | 11.5      | 2.2    | 5.42                 | 29.7     | 26.1      | 15.7       | 23.7      | 4.8    | 0.49                 |
| 1985/86 | 12.4     | 50.7      | 24.5       | 10.1      | 2.3    | 5.59                 | 28.7     | 28.2      | 16.9       | 20.8      | 5.3    | 0.48                 |
| 1986/87 | 13.3     | 49.2      | 24.6       | 10.7      | 2.1    | 5.85                 | 29.8     | 26.8      | 16.7       | 21.9      | 4.7    | 0.52                 |
| 1987/88 | 13.7     | 49.2      | 24.0       | 11.1      | 1.9    | 6.14                 | 29.3     | 27.0      | 16.4       | 22.8      | 4.4    | 0.54                 |
| 1988/89 | 13.8     | 48.7      | 24.4       | 11.1      | 2.0    | 6.14                 | 28.9     | 27.0      | 16.8       | 22.7      | 4.5    | 0.53                 |
| 1989/90 | 14.6     | 49.6      | 23.3       | 10.5      | 1.9    | 6.42                 | 30.2     | 27.7      | 16.2       | 21.5      | 4.4    | 0.55                 |
| 1990/91 | 14.4     | 50.6      | 22.4       | 10.7      | 1.8    | 6.51                 | 30.5     | 28.3      | 15.5       | 21.5      | 4.2    | 0.56                 |
| 1991/92 | 15.3     | 50.6      | 21.1       | 11.3      | 1.8    | 6.42                 | 31.3     | 27.9      | 14.4       | 22.4      | 4.0    | 0.56                 |
| 1992/93 | 15.0     | 52.9      | 20.5       | 9.7       | 2.0    | 6.40                 | 31.3     | 30.6      | 14.7       | 18.7      | 4.7    | 0.53                 |
| 1993/94 | 16.3     | 53.6      | 19.4       | 8.7       | 2.1    | 6.31                 | 33.5     | 31.5      | 14.1       | 16.0      | 4.9    | 0.52                 |
| 1994/95 | 15.9     | 54.0      | 19.2       | 8.8       | 2.1    | 6.54                 | 33.0     | 31.8      | 14.0       | 16.2      | 5.1    | 0.53                 |
| 1995/96 | 14.9     | 55.1      | 18.8       | 9.1       | 2.1    | 6.97                 | 32.1     | 32.3      | 13.5       | 17.1      | 4.9    | 0.57                 |
| 1996/97 | 15.7     | 54.3      | 18.6       | 9.4       | 2.0    | 7.30                 | 32.5     | 31.7      | 13.3       | 17.9      | 4.6    | 0.60                 |
| 1997/98 | 15.0     | 54.4      | 18.2       | 10.5      | 1.8    | 7.92                 | 30.7     | 31.5      | 12.9       | 20.7      | 4.2    | 0.66                 |
| 1998/99 | 13.9     | 56.2      | 17.9       | 10.2      | 1.7    | 8.48                 | 28.1     | 33.9      | 13.1       | 20.9      | 4.1    | 0.68                 |
| 1999/00 | 14.2     | 56.2      | 17.8       | 10.2      | 1.6    | 8.80                 | 28.6     | 34.2      | 13.1       | 20.3      | 3.8    | 0.69                 |
| 2000/01 | 14.5     | 56.1      | 17.4       | 10.5      | 1.5    | 9.22                 | 28.6     | 34.1      | 12.8       | 20.9      | 3.7    | 0.73                 |
| 2001/02 | 14.8     | 56.0      | 16.9       | 10.8      | 1.5    | 9.68                 | 28.6     | 34.0      | 12.4       | 21.5      | 3.5    | 0.76                 |
| 2002/03 | 15.2     | 55.8      | 16.5       | 11.1      | 1.4    | 10.18                | 28.7     | 33.9      | 12.0       | 22.1      | 3.3    | 0.81                 |
| 2003/04 | 15.6     | 55.6      | 16.0       | 11.5      | 1.3    | 10.73                | 28.9     | 33.7      | 11.7       | 22.6      | 3.1    | 0.85                 |
| 2004/05 | 16.1     | 55.3      | 15.5       | 11.8      | 1.3    | 11.33                | 29.2     | 33.5      | 11.3       | 23.2      | 2.9    | 0.90                 |
| 2005/06 | 16.6     | 55.1      | 15.0       | 12.1      | 1.2    | 11.98                | 29.5     | 33.2      | 10.9       | 23.7      | 2.7    | 0.95                 |

 Table 7.3.10 Share by Energy Sector in each Non-CO2 Emission (3)

#### (CO)

### (NMVOC)

|         | Industry | Transport | Other      | Electricy | Energy | Total    | Industry | Transport | Other      | Electricy | Energy | Total   |
|---------|----------|-----------|------------|-----------|--------|----------|----------|-----------|------------|-----------|--------|---------|
|         |          |           | (Share, %) |           |        | (KtCO)   |          |           | (Share, %) |           |        | (KtNM.) |
| 1981/82 | 0.6      | 98.7      | 0.3        | 0.3       | 0.1    | 765.20   | 0.3      | 99.2      | 0.4        | 0.1       | 0.0    | 143.81  |
| 1982/83 | 0.6      | 98.6      | 0.3        | 0.4       | 0.1    | 801.36   | 0.3      | 99.2      | 0.4        | 0.2       | 0.0    | 150.54  |
| 1983/84 | 0.6      | 98.7      | 0.3        | 0.4       | 0.1    | 902.17   | 0.3      | 99.2      | 0.4        | 0.2       | 0.0    | 169.51  |
| 1984/85 | 0.6      | 98.7      | 0.3        | 0.4       | 0.1    | 978.73   | 0.3      | 99.2      | 0.4        | 0.2       | 0.0    | 183.94  |
| 1985/86 | 0.5      | 98.7      | 0.3        | 0.4       | 0.1    | 1,033.39 | 0.3      | 99.1      | 0.4        | 0.3       | 0.0    | 194.44  |
| 1986/87 | 0.6      | 98.6      | 0.3        | 0.5       | 0.1    | 1,051.03 | 0.3      | 99.0      | 0.4        | 0.3       | 0.0    | 197.69  |
| 1987/88 | 0.6      | 98.6      | 0.3        | 0.5       | 0.1    | 1,102.27 | 0.3      | 99.0      | 0.4        | 0.3       | 0.0    | 207.34  |
| 1988/89 | 0.6      | 98.5      | 0.3        | 0.5       | 0.1    | 1,092.46 | 0.3      | 98.9      | 0.4        | 0.4       | 0.0    | 205.52  |
| 1989/90 | 0.6      | 98.5      | 0.3        | 0.5       | 0.1    | 1,163.73 | 0.3      | 98.9      | 0.3        | 0.4       | 0.0    | 218.97  |
| 1990/91 | 0.6      | 98.6      | 0.3        | 0.5       | 0.1    | 1,204.72 | 0.3      | 98.9      | 0.3        | 0.4       | 0.0    | 226.73  |
| 1991/92 | 0.6      | 98.5      | 0.2        | 0.6       | 0.1    | 1,186.45 | 0.4      | 98.9      | 0.3        | 0.4       | 0.0    | 223.24  |
| 1992/93 | 0.6      | 98.5      | 0.2        | 0.5       | 0.1    | 1,236.13 | 0.3      | 98.8      | 0.3        | 0.5       | 0.0    | 232.83  |
| 1993/94 | 0.7      | 98.5      | 0.2        | 0.6       | 0.1    | 1,234.53 | 0.4      | 98.7      | 0.3        | 0.6       | 0.0    | 232.60  |
| 1994/95 | 0.6      | 98.5      | 0.2        | 0.6       | 0.1    | 1,290.23 | 0.4      | 98.8      | 0.3        | 0.6       | 0.0    | 243.12  |
| 1995/96 | 0.5      | 98.6      | 0.2        | 0.5       | 0.1    | 1,402.86 | 0.3      | 98.9      | 0.3        | 0.6       | 0.0    | 264.34  |
| 1996/97 | 0.6      | 98.5      | 0.2        | 0.6       | 0.1    | 1,448.40 | 0.4      | 98.8      | 0.3        | 0.6       | 0.0    | 272.85  |
| 1997/98 | 0.6      | 98.6      | 0.2        | 0.6       | 0.1    | 1,573.45 | 0.3      | 98.9      | 0.3        | 0.5       | 0.0    | 296.33  |
| 1998/99 | 0.5      | 98.7      | 0.2        | 0.5       | 0.1    | 1,739.50 | 0.3      | 99.0      | 0.2        | 0.5       | 0.0    | 327.73  |
| 1999/00 | 0.5      | 98.7      | 0.2        | 0.6       | 0.1    | 1,804.27 | 0.3      | 98.9      | 0.2        | 0.6       | 0.0    | 340.03  |
| 2000/01 | 0.5      | 98.6      | 0.2        | 0.6       | 0.1    | 1,887.74 | 0.3      | 98.9      | 0.2        | 0.6       | 0.0    | 355.77  |
| 2001/02 | 0.5      | 98.6      | 0.2        | 0.6       | 0.1    | 1,978.68 | 0.3      | 98.8      | 0.2        | 0.6       | 0.0    | 372.92  |
| 2002/03 | 0.5      | 98.6      | 0.2        | 0.6       | 0.0    | 2,074.70 | 0.3      | 98.8      | 0.2        | 0.6       | 0.0    | 391.02  |
| 2003/04 | 0.5      | 98.6      | 0.2        | 0.7       | 0.0    | 2,178.08 | 0.3      | 98.8      | 0.2        | 0.7       | 0.0    | 410.51  |
| 2004/05 | 0.6      | 98.5      | 0.2        | 0.7       | 0.0    | 2,289.76 | 0.3      | 98.7      | 0.2        | 0.7       | 0.0    | 431.57  |
| 2005/06 | 0.6      | 98.5      | 0.2        | 0.7       | 0.0    | 2,410.84 | 0.3      | 98.7      | 0.2        | 0.7       | 0.0    | 454.39  |

## 7.3.3 Relationship between Economic Growth, Population and GHG Emissions

Between 1981/82 and 1998/99, GDP in Egypt has increased by about 5.0% annually from 117.6 Billion LE to 268.3 Billion LE. By sector, the Electricity Sector has increased by 8.2% annually--the highest growth rate--followed the Industry Sector has increased by 6.0% annually. The annual growth rate in the Other Sector is 4.9%, and the Transport Sector, 4.3%, the Energy Sector, 2.4% (See Table 7.3.11).

During the same period, the amount of  $CO_2$  emissions has increased by 4.5% annually. The elasticity of  $CO_2$  to GDP is 0.91, which means the increase of  $CO_2$  emissions is smaller than the growth of GDP. The smallest elasticity is the Other Sector, followed by the Industry Sector and the Electricity Sector. The elasticity of the other two sectors is over 1.0--1.2 for the Transport Sector and 1.6 for the Energy Sector. This means that, in growing economic activities, the supply of oil increased and the transportation activity was reinforced without any marked change in energy consumption structure. Of course, in the Industry Sector, the Other Sector and the Electricity Sector, the production and consumption activities were reinforced, too. In this case, these activities were carried out through extending the consumption of electricity and gaseous fuels, which have less intensified  $CO_2$  emissions per GDP.

| Table 7.3.11 The Relations | ship between the Econor | nic Growth and GHGs Emissions                          |
|----------------------------|-------------------------|--------------------------------------------------------|
| (the Economic Growth)      | (Unit: Million LE)      | (CO <sub>2</sub> Emissions) (Unit: MtCO <sub>2</sub> ) |

|                      | Industry | Transport | Other   | Electricy | Energy | Total   | Industry | Transport | Other | Electricy | Energy | Total  |
|----------------------|----------|-----------|---------|-----------|--------|---------|----------|-----------|-------|-----------|--------|--------|
| 1981/82              | 24,685   | 8,959     | 72,082  | 1,254     | 10,779 | 117,759 | 14.32    | 11.66     | 6.92  | 11.37     | 2.16   | 46.42  |
| 1982/83              | 26,669   | 10,338    | 77,454  | 1,383     | 12,278 | 128,122 | 16.08    | 12.17     | 7.69  | 13.85     | 2.63   | 52.42  |
| 1983/84              | 28,382   | 10,721    | 82,645  | 1,596     | 13,874 | 137,218 | 16.92    | 13.71     | 8.27  | 16.45     | 2.75   | 58.10  |
| 1984/85              | 29,460   | 10,785    | 88,517  | 1,748     | 16,177 | 146,687 | 18.08    | 14.86     | 8.88  | 17.83     | 2.95   | 62.60  |
| 1985/86              | 30,984   | 11,475    | 92,885  | 1,992     | 15,951 | 153,287 | 17.12    | 15.70     | 9.39  | 17.81     | 3.20   | 63.23  |
| 1986/87              | 32,480   | 12,003    | 97,114  | 2,476     | 15,344 | 159,417 | 19.22    | 15.95     | 9.89  | 19.69     | 3.02   | 67.78  |
| 1987/88              | 34,740   | 12,615    | 102,604 | 2,645     | 14,945 | 167,549 | 19.94    | 16.73     | 10.12 | 21.64     | 3.01   | 71.44  |
| 1988/89              | 37,077   | 13,233    | 106,984 | 2,809     | 15,319 | 175,422 | 19.42    | 16.57     | 10.30 | 21.95     | 3.08   | 71.32  |
| 1989/90              | 39,446   | 12,334    | 113,950 | 2,977     | 15,135 | 183,842 | 21.52    | 17.67     | 10.26 | 22.12     | 3.16   | 74.73  |
| 1990/91              | 41,668   | 12,173    | 118,104 | 3,156     | 15,544 | 190,645 | 22.05    | 18.33     | 9.99  | 23.32     | 3.15   | 76.84  |
| 1991/92              | 42,214   | 12,417    | 120,515 | 3,298     | 15,824 | 194,268 | 22.32    | 18.05     | 9.24  | 24.27     | 3.06   | 76.93  |
| 1992/93              | 43,248   | 12,913    | 123,477 | 3,410     | 16,077 | 199,125 | 21.20    | 18.96     | 8.93  | 23.13     | 3.37   | 75.60  |
| 1993/94              | 45,105   | 13,301    | 128,264 | 3,550     | 16,672 | 206,892 | 21.98    | 18.92     | 8.26  | 22.17     | 3.47   | 74.80  |
| 1994/95              | 48,368   | 14,072    | 133,723 | 3,763     | 16,688 | 216,614 | 22.83    | 19.79     | 8.49  | 23.39     | 3.67   | 78.17  |
| 1995/96              | 51,772   | 14,945    | 140,076 | 3,962     | 16,688 | 227,443 | 24.08    | 21.57     | 8.82  | 25.01     | 3.78   | 83.26  |
| 1996/97              | 56,133   | 16,200    | 147,093 | 4,220     | 15,854 | 239,500 | 25.08    | 22.25     | 9.16  | 26.73     | 3.77   | 86.98  |
| 1997/98              | 60,869   | 17,302    | 153,565 | 4,469     | 16,948 | 253,153 | 26.72    | 24.21     | 9.71  | 30.23     | 3.87   | 94.74  |
| 1998/99              | 66,885   | 18,357    | 162,210 | 4,822     | 16,067 | 268,341 | 25.54    | 26.80     | 10.23 | 31.70     | 3.95   | 98.22  |
| 1999/00              | 72,758   | 19,288    | 169,636 | 5,164     | 16,174 | 283,021 | 26.93    | 27.80     | 10.52 | 33.97     | 3.92   | 103.14 |
| 2000/01              | 79,023   | 20,249    | 177,839 | 5,527     | 16,239 | 298,877 | 28.51    | 29.08     | 10.76 | 36.93     | 4.00   | 109.28 |
| 2001/02              | 85,409   | 21,171    | 185,891 | 5,892     | 16,373 | 314,736 | 30.31    | 30.48     | 11.00 | 40.18     | 4.07   | 116.04 |
| 2002/03              | 91,978   | 22,083    | 194,091 | 6,262     | 16,563 | 330,978 | 32.45    | 31.96     | 11.24 | 43.69     | 4.14   | 123.47 |
| 2003/04              | 98,808   | 23,016    | 202,634 | 6,644     | 16,715 | 347,817 | 34.89    | 33.56     | 11.49 | 47.55     | 4.20   | 131.68 |
| 2004/05              | 105,938  | 23,987    | 211,628 | 7,040     | 16,830 | 365,423 | 37.65    | 35.28     | 11.75 | 51.81     | 4.25   | 140.74 |
| 2005/06              | 113,393  | 25,009    | 221,144 | 7,449     | 16,965 | 383,959 | 40.79    | 37.15     | 12.02 | 56.49     | 4.30   | 150.74 |
| Average Growth Rates |          |           |         |           |        |         |          |           |       |           |        |        |
| (1998/99)/(1981/82)  | 6.04     | 4.31      | 4.89    | 8.24      | 2.38   | 4.96    | 3.47     | 5.02      | 2.33  | 6.22      | 3.62   | 4.51   |
| (2005/06)/(1998/99)  | 7.83     | 4.52      | 4.53    | 6.41      | 0.78   | 5.25    | 6.91     | 4.78      | 2.33  | 8.61      | 1.21   | 6.31   |
| (2005/06)/(1981/82)  | 6.56     | 4.37      | 4.78    | 7.71      | 1.91   | 5.05    | 4.46     | 4.95      | 2.33  | 6.91      | 2.91   | 5.03   |

(CO<sub>2</sub> Intensity per GDP) (Unit: KtCO<sub>2</sub>/MillionLE)

(Non-CO<sub>2</sub> Gases Intensity per GDP) (Unit: Kt/MillionLE)

|                      |          |           |       |           |        |       | • -   |                  |                 |                  |       |       |
|----------------------|----------|-----------|-------|-----------|--------|-------|-------|------------------|-----------------|------------------|-------|-------|
|                      | Industry | Transport | Other | Electricy | Energy | Total | SO2   | N O <sub>x</sub> | CH <sub>4</sub> | N <sub>2</sub> O | СО    | NMVOC |
| 1981/82              | 0.580    | 1.301     | 0.096 | 9.065     | 0.200  | 0.394 | 1.66  | 1.57             | 35.6            | 3.2              | 6.5   | 1.2   |
| 1982/83              | 0.603    | 1.177     | 0.099 | 10.017    | 0.214  | 0.409 | 1.77  | 1.59             | 35.5            | 3.3              | 6.3   | 1.2   |
| 1983/84              | 0.596    | 1.278     | 0.100 | 10.310    | 0.198  | 0.423 | 1.78  | 1.67             | 36.6            | 3.4              | 6.6   | 1.2   |
| 1984/85              | 0.614    | 1.378     | 0.100 | 10.202    | 0.182  | 0.427 | 1.74  | 1.69             | 36.9            | 3.4              | 6.7   | 1.3   |
| 1985/86              | 0.553    | 1.368     | 0.101 | 8.940     | 0.201  | 0.412 | 1.57  | 1.57             | 36.4            | 3.1              | 6.7   | 1.3   |
| 1986/87              | 0.592    | 1.329     | 0.102 | 7.953     | 0.197  | 0.425 | 1.67  | 1.58             | 36.7            | 3.2              | 6.6   | 1.2   |
| 1987/88              | 0.574    | 1.326     | 0.099 | 8.182     | 0.201  | 0.426 | 1.64  | 1.58             | 36.6            | 3.2              | 6.6   | 1.2   |
| 1988/89              | 0.524    | 1.252     | 0.096 | 7.813     | 0.201  | 0.407 | 1.50  | 1.50             | 35.0            | 3.0              | 6.2   | 1.2   |
| 1989/90              | 0.546    | 1.433     | 0.090 | 7.429     | 0.209  | 0.406 | 1.49  | 1.49             | 34.9            | 3.0              | 6.3   | 1.2   |
| 1990/91              | 0.529    | 1.505     | 0.085 | 7.390     | 0.203  | 0.403 | 1.48  | 1.48             | 34.2            | 2.9              | 6.3   | 1.2   |
| 1991/92              | 0.529    | 1.453     | 0.077 | 7.359     | 0.193  | 0.396 | 1.46  | 1.44             | 33.0            | 2.9              | 6.1   | 1.1   |
| 1992/93              | 0.490    | 1.469     | 0.072 | 6.784     | 0.210  | 0.380 | 1.25  | 1.41             | 32.1            | 2.7              | 6.2   | 1.2   |
| 1993/94              | 0.487    | 1.422     | 0.064 | 6.246     | 0.208  | 0.362 | 1.09  | 1.34             | 30.5            | 2.5              | 6.0   | 1.1   |
| 1994/95              | 0.472    | 1.406     | 0.063 | 6.216     | 0.220  | 0.361 | 1.08  | 1.35             | 30.2            | 2.5              | 6.0   | 1.1   |
| 1995/96              | 0.465    | 1.444     | 0.063 | 6.312     | 0.226  | 0.366 | 1.15  | 1.39             | 30.7            | 2.5              | 6.2   | 1.2   |
| 1996/97              | 0.447    | 1.373     | 0.062 | 6.335     | 0.238  | 0.363 | 1.12  | 1.37             | 30.5            | 2.5              | 6.0   | 1.1   |
| 1997/98              | 0.439    | 1.399     | 0.063 | 6.763     | 0.228  | 0.374 | 1.24  | 1.43             | 31.3            | 2.6              | 6.2   | 1.2   |
| 1998/99              | 0.382    | 1.460     | 0.063 | 6.574     | 0.246  | 0.366 | 1.17  | 1.43             | 31.6            | 2.5              | 6.5   | 1.2   |
| 1999/00              | 0.370    | 1.441     | 0.062 | 6.578     | 0.242  | 0.364 | 1.09  | 1.40             | 31.1            | 2.5              | 6.4   | 1.2   |
| 2000/01              | 0.361    | 1.436     | 0.061 | 6.681     | 0.246  | 0.366 | 1.08  | 1.40             | 30.8            | 2.4              | 6.3   | 1.2   |
| 2001/02              | 0.355    | 1.440     | 0.059 | 6.819     | 0.249  | 0.369 | 1.06  | 1.40             | 30.8            | 2.4              | 6.3   | 1.2   |
| 2002/03              | 0.353    | 1.447     | 0.058 | 6.976     | 0.250  | 0.373 | 1.05  | 1.41             | 30.8            | 2.4              | 6.3   | 1.2   |
| 2003/04              | 0.353    | 1.458     | 0.057 | 7.157     | 0.251  | 0.379 | 1.05  | 1.42             | 30.8            | 2.4              | 6.3   | 1.2   |
| 2004/05              | 0.355    | 1.471     | 0.056 | 7.360     | 0.252  | 0.385 | 1.04  | 1.43             | 31.0            | 2.5              | 6.3   | 1.2   |
| 2005/06              | 0.360    | 1.485     | 0.054 | 7.584     | 0.253  | 0.393 | 1.04  | 1.45             | 31.2            | 2.5              | 6.3   | 1.2   |
| Average Growth Rates |          |           |       |           |        |       |       |                  |                 |                  |       |       |
| (1998/99)/(1981/82)  | -2.43    | 0.68      | -2.44 | -1.87     | 1.21   | -0.43 | -2.04 | -0.55            | -0.70           | -1.39            | -0.01 | 0.00  |
| (2005/06)/(1998/99)  | -0.85    | 0.25      | -2.10 | 2.06      | 0.42   | 1.01  | -1.66 | 0.17             | -0.19           | -0.22            | -0.45 | -0.45 |
| (2005/06)/(1981/82)  | -1.97    | 0.55      | -2.34 | -0.74     | 0.98   | -0.02 | -1.93 | -0.34            | -0.55           | -1.05            | -0.14 | -0.13 |

 $CO_2$  intensity per GDP in the Industry Sector has decreased from 0.58 (KtCO<sub>2</sub>/MillionLE) to 0.38, and  $CO_2$  intensity in the Other Sector has decreased from 0.096 to 0.063. In the Electricity Sector,  $CO_2$  intensity has also decreased from 9.07 to 6.57. On the contrary,  $CO_2$  intensities in the Transport and Energy Sectors has increased from 1.30 to 1.46 and from 0.20 to 0.25, respectively. As the result, the average  $CO_2$  intensity per GDP has

been improved by -0.43 % annually between 1981/82 and 1998/99.

The intensity of non-CO<sub>2</sub> gases per GDP has been improved, too. The improvement in intensity of SO<sub>2</sub> is by -2.04 % annually between 1981/82 and 1998/99; NO<sub>x</sub> is -0.55 %; CH<sub>4</sub>, -0.70 %; N<sub>2</sub>O, -1.39 %; and CO, -0.01 %. The improvement in intensity of NMVOC is 0 % in the same period and there was no change.

Generally speaking on the relationship between GDP and  $CO_2$  emissions until the early 1990s, until when Egyptian economy seemed to be stagnated before the rapid recovery began. Reflecting this situation, the energy consumption was also stagnated. Oil consumption, especially, reached the ceiling at the end of 1980s. On the other hand, gaseous fuel consumption has steadily increased. After the early 1990s, energy consumption-both oil and gas-has increased steadily along the economic recovery.  $CO_2$  emission has reflected the economic activity through the changes of the fossil fuel consumption (See Figure 7.3.4 and 7.3.5).  $CO_2$  emissions have the intimate relations with the emission factors of GHGs, and the structural changes from oil to gas means the reduction of the emission factors of GHGs. As a result, the economic activity influenced the structural changes in the energy consumption sources caused the reduction of the  $CO_2$  emission factors.

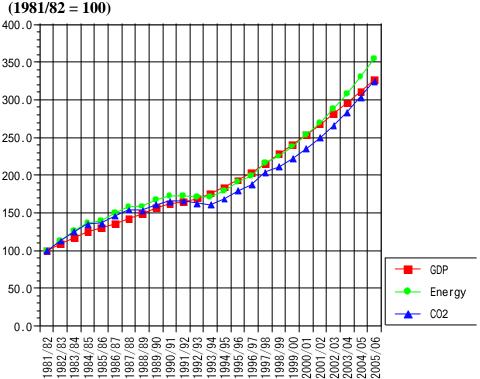



Figure 7.3.4 Index of GDP, Energy Consumption and CO<sub>2</sub> Emission

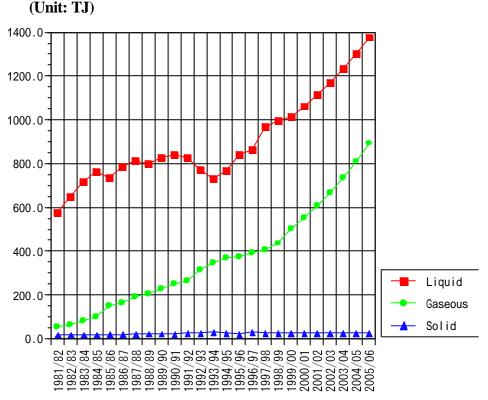
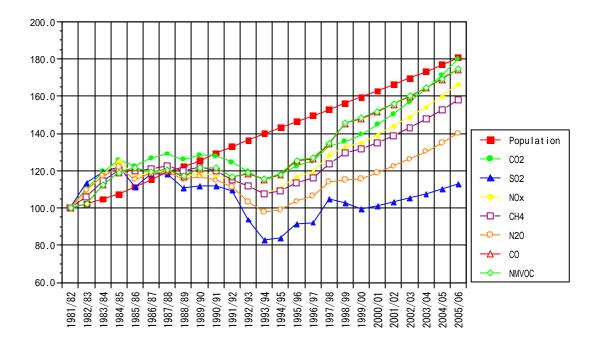



Figure 7.3.5 Energy Consumption by Energy Source

But this relationship does not mean that the structure will not be changed. In fact, after the early 1990s, the change in structure of energy consumption from oil to gas has become smaller than the change in earlier years, and  $CO_2$  intensity to GDP has been stabilized in the 1990s.


The relationship between GHG emissions and population is as follows. Between 1981/82 and 1998/99, the annual growth rate of population is 2.66%, which is higher than the growth rate of GHG emissions. The CO<sub>2</sub> growth rate is 1.80% annually while SO<sub>2</sub> is 0.17%, NO<sub>x</sub> is 1.69%, CH<sub>4</sub> is 1.53%, N<sub>2</sub>O is 0.83%, CO is 2.23%, NMVOC is 2.25% (See Table 7.3.12). Figure 7.3.6 shows that the population index curve ascends constantly along the x-axis, but the indices of GHG emissions fluctuates. The fluctuation is a clear reflection of the energy consumption mentioned earlier. GHG emissions have stagnated, reached the ceiling and decreased until the early 1990s, when GHG emissions began to increase although at different rates. SO<sub>2</sub> emissions increase is the smallest among all, and CO and NMVOC emissions increases are the highest (See Figure 7.3.6).

Assuming that the recent situation will continue during the foreseeable future (the Simulation Model), the elasticity of  $CO_2$  to GDP will be over 1.0 as shown in Table 7.3.11.

|                      | Population | CO <sub>2</sub>         | SO <sub>2</sub> | NO x     | CH <sub>4</sub> | N <sub>2</sub> O | CO       | N M V O C |
|----------------------|------------|-------------------------|-----------------|----------|-----------------|------------------|----------|-----------|
|                      | 1,000      | (TCO <sub>2</sub> /Cap) | (Kg/Cap)        | (Kg/Cap) | (Kg/Cap)        | (Kg/Cap)         | (Kg/Cap) | (Kg/Cap)  |
| 1981/82              | 42,024     | 1.105                   | 4.642           | 4.392    | 0.100           | 0.009            | 18.209   | 3.422     |
| 1982/83              | 43,024     | 1.218                   | 5.257           | 4.749    | 0.106           | 0.010            | 18.626   | 3.499     |
| 1983/84              | 44,056     | 1.319                   | 5.544           | 5.197    | 0.114           | 0.010            | 20.478   | 3.848     |
| 1984/85              | 45,130     | 1.387                   | 5.661           | 5.502    | 0.120           | 0.011            | 21.687   | 4.076     |
| 1985/86              | 46,766     | 1.352                   | 5.157           | 5.146    | 0.119           | 0.010            | 22.097   | 4.158     |
| 1986/87              | 48,439     | 1.399                   | 5.481           | 5.212    | 0.121           | 0.011            | 21.698   | 4.081     |
| 1987/88              | 50,138     | 1.425                   | 5.476           | 5.282    | 0.122           | 0.011            | 21.985   | 4.135     |
| 1988/89              | 51,307     | 1.390                   | 5.128           | 5.138    | 0.120           | 0.010            | 21.293   | 4.006     |
| 1989/90              | 52,701     | 1.418                   | 5.187           | 5.186    | 0.122           | 0.010            | 22.082   | 4.155     |
| 1990/91              | 54,437     | 1.412                   | 5.187           | 5.173    | 0.120           | 0.010            | 22.131   | 4.165     |
| 1991/92              | 55,893     | 1.376                   | 5.077           | 5.022    | 0.115           | 0.010            | 21.227   | 3.994     |
| 1992/93              | 57,331     | 1.319                   | 4.353           | 4.914    | 0.112           | 0.009            | 21.561   | 4.061     |
| 1993/94              | 58,738     | 1.274                   | 3.855           | 4.731    | 0.107           | 0.009            | 21.018   | 3.960     |
| 1994/95              | 60,138     | 1.300                   | 3.898           | 4.870    | 0.109           | 0.009            | 21.454   | 4.043     |
| 1995/96              | 61,520     | 1.353                   | 4.236           | 5.135    | 0.113           | 0.009            | 22.803   | 4.297     |
| 1996/97              | 62,886     | 1.383                   | 4.280           | 5.233    | 0.116           | 0.010            | 23.032   | 4.339     |
| 1997/98              | 64,263     | 1.474                   | 4.871           | 5.646    | 0.123           | 0.010            | 24.485   | 4.611     |
| 1998/99              | 65,637     | 1.496                   | 4.774           | 5.837    | 0.129           | 0.010            | 26.502   | 4.993     |
| 1999/00              | 67,015     | 1.539                   | 4.622           | 5.926    | 0.131           | 0.010            | 26.923   | 5.074     |
| 2000/01              | 68,422     | 1.597                   | 4.702           | 6.112    | 0.135           | 0.011            | 27.590   | 5.200     |
| 2001/02              | 69,859     | 1.661                   | 4.791           | 6.315    | 0.139           | 0.011            | 28.324   | 5.338     |
| 2002/03              | 71,326     | 1.731                   | 4.888           | 6.533    | 0.143           | 0.011            | 29.087   | 5.482     |
| 2003/04              | 72,824     | 1.808                   | 4.996           | 6.770    | 0.147           | 0.012            | 29.909   | 5.637     |
| 2004/05              | 74,353     | 1.893                   | 5.117           | 7.028    | 0.152           | 0.012            | 30.796   | 5.804     |
| 2005/06              | 75,915     | 1.986                   | 5.252           | 7.309    | 0.158           | 0.013            | 31.757   | 5.985     |
| Average Growth Rates |            |                         |                 |          |                 |                  |          |           |
| (1998/99)/(1981/82)  | 2.66       | 1.80                    | 0.17            | 1.69     | 1.53            | 0.83             | 2.23     | 2.25      |
| (2005/06)/(1998/99)  | 2.10       | 4.12                    | 1.37            | 3.26     | 2.89            | 2.86             | 2.62     | 2.62      |
| (2005/06)/(1981/82)  | 2.49       | 2.47                    | 0.52            | 2.14     | 1.93            | 1.41             | 2.34     | 2.36      |

 Table 7.3.12 The Population Growth and GHGs Intensity to Population





Intensity per GDP will stay in the same level as in 1998/99. In some cases, the intensity will be higher than the present level. Considering the near future tendency forecast in the Simulation Model, the environment-friendly policy as mentioned earlier will be needed in order to improve the situation of present and near future. At that time, the relationship between Egyptian economic activity, energy consumption and GHG emissions will be improved as the trend transfers the energy from oil to gas.