2-1. ABUTMENT

QUANTITY TABLE OF ABUTMENT

Tra On Bridge

Tra On Bridg		ĺ	· · · · · · · · · · · · · · · · · · ·	ABUTMENT	ABUTMENT	
	Item		UNIT	A1	A2	Total
A - ABUTME	ENT					
	NUMBER OF PILES		pile	17	17	34
	TOTAL LENGTH OF F	ILE φ 1500mn	m	1,343.0	1,343.0	2,686.0
•	CONCRETE CLASS D		m3	2,373.3	2,373.3	4,746.6
-		Dia 32	kg	2,272.7	2,272.7	4,545.4
PILES		Dia 28	kg	617.8	617.8	1,235.6
		Dia 25	kg	3,872.3	3,872.3	7,744.6
	REINFORCEMENT	Dia 22	kg	430.1	430.1	860.2
	·	Dia 16	kg	33.4	33.4	66.8
		Dia 10	kg	1,240.8	1,240.8	2,481.6
	Ţ	TOTAL	kg	8,467.1	8,467.1	16,934.2
	CONCRETE CLASS E		m3	674.3	674.3	1,348.6
i	REINFORCEMENT	Dia 25	kg	15,879.7	15,881.2	31,760.9
	 	Dia 22	kg	5,144.9	5,144.1	10,289.0
	·	Dia 20	kg	6,814.7	6,814.7	13,629.4
		Dia 18	kg	843.8	843.3	1,687.1
		Dia 16	kg	4,825.7	4,826.1	9,651.8
	<u></u>	Dia 14	kg	2,968.3	2,968.3	5,936.6
ABUTMENT	·	Dia 10	kg	87.4	87.4	174.8
		TOTAL	kg	36,564.5	36,565.1	73,129.6
	BLINDING STONE		m3	45.7	45. <i>7</i>	91.4
	LEAN CONCRETE C	LASS G	m3	22.8	22.8	45.7
	EXCAVATION		m3	136.1	485.0	621.1
	BACK FILL		m3	23.2	117.1	140.4
B - APPROA	CH SLAB				<u> </u>	
	CONCRETE CLASS E		m3	45.1	45.1	90.2
	LEAN CONCRETE C	LASS G	m3	13.1	13.1	26.3
	FORM		m2	20.4	20.4	40.8
	ASPHANTIC JOINT	FILLER T=20m	m3	0.4	0.4	0.8
		Dia 20	kg	3,421.6	3,421.6	6,843.2
	REINFORCEMENT	Dia 16	kg	3,402.3	3,402.3	6,804.6
		Dia 10	kg	255.8	255.8	511.6
		TOTAL	kg	7,158.7	7,158.7	14,317.4
C-SLOPE P	ROTECTION					
	STONE MASONRY T	=300mm	m3	890.7	970.0	1,860.7
SIDE SLOPE	BLINDING AGGREG	ATE T=100mm	m3	265.5	299.3	564.8
	GEOTEXTILE	· .	m2	864.1	858.5	1,722.6
	PVC PILE Φ 50mm D	IA. L=1000mm	m	466.4	 	542.8
	LENGTH OF FOOTII	NG .	m	149.9		306.0
	WOODEN PILE L=3.	0m	m	9,228.8		18,399.4
FOOTING	BLINDING		m3	151.1		163.4
	STONE MASONRY		m3	55.4	 	110.4
	EXCAVATION		m3	664.5	·	1,324.8
	BACK FILL		m3	273.4	<u> </u>	546.8

Tra On Bridge Item			Formula		:	Quantity
Abutment A1 1. Concrete (Class E)						
1) Paramet	V1 =	24.100 x	0.400 x	2.335	==	22.509 m3
2) Corbel	V2 =(x(0.300 + 22.100 +	0.600)x 22.700)x	1/2 x 1/2	0.300	3.024 m3
3) Wall	V3 =	24.100 x	1.500 x	4.640	=	167.736 m3
4) Footing	V4 =	24.100 x	9.200 x	2.000	=	443.440 m3
5) Wing Wall	V5-1 =(6.975 + 0.500 x 4.219 +	6.759)x 2 5.719)x	1/2 x 1/2 x	6.000 = 1.300	41.202 m3
	x	0.500 x	2		=	-6.460 m3
6) Wall Haunch	V6 = x	0.500 x 2	0.500 x	1/2 x	6.975	1.744 m3
7) Railing	V7 =(0.300 x 1/2 x 1/2 x 6.000 x	0.300 - 2 +(0.150 + 2	0.02 x 0.35 + 0.500 x	0.020 0.500) 0.05)	1.094 m3
2. Form					otal Abutment)	674.289 m3
1) Paramet	A1 = x	24.100 x 22.100	2.335 +(2.335 -	0.600)	94.617 m2
2) Corbel	A2 =(+	0.300 + 22.700)x	0.300 x 1/2	1.414)x(22.100	16.222 m2
3) Wall	A3 =(24.100 +	22.100)x	4.640	=	214.368 m2
4) Footing	A4 =(24.100 +	9.200)x	2.000 x	2 =	133.200 m2
5) Wing Wall	A5-1 =(6.975 + 4 4.219 +	6.759)x 5.719)x	1/2 × 1/2 ×	6.000 =	164.808 m2
	x	4 -	0.500 x	6.975 x	2.000 =	-18.864 m2
	A5-3 =	0.500 x	2.335 x	2	=	2.335 m2
	A5-4 =(×	1.040 +(0.500 x	1.300 +	1.300)0.5+	4.219)	7.097 m2
6) Wall Haunch	A6 =(0.300 +	$0.300^{2})^{0.5}x$	6.975 x	2 =	5.918 m2

Tra On Bridge Item				Formula				,	Quantity
7) Railing	A7-1 =(0.300 1/2 1/2	x x x	0.300 2 0.150	- +(+	0.02 0.35 0.500	x + x	0.020 0.500) 0.05)	
	X A7-2 =(+	2 0.050 0.480	+ +	0.150 0.020 2	x x	1.414 1.414	+ x	0.280	0.182 m2 12.944 m2
	х	6.000	X	2				Total ne Abutment)	632.827 m2
4. Lean Concrete	V =	24.300	x	9.400	x	0.1000		=	22.842 m3
5. Blinding Stone	V =	24.300	x	9.400	×	0.2000		=	45.684 m3
6.Excavation	кçav	ation Hig	ht=	0.500					
	V =(x	25.300 1/2		10.400 0.500		25.800	x	10.900)	136.085 m3
7.Back Fill	V = x	136.085 9.200		45.684 0.200		22.842	-	24.100 =	23.215 m3
							٠		
				÷		a.			
						÷			
									-
		· .					٠		
				.*		• .			
,			-						

Tra On Bridge Item			Formula			Quantity
Abutment A2 1. Concrete (Class E)						
1) Paramet	V1 =	24.100 x	0.400 x	2.335	=	22.509 m3
2) Corbel	V2 =(x(0.300 + 22.100 +	0.600)x 22.700)x	1/2 x 1/2	0.300	3.024 m3
3) Wall	V3 =	24.100 x	1.500 x	4.640	=	167.736 m3
4) Footing	V4 =	24.100 x	9.200 x	2.000	=	443.440 m3
5) Wing Wall	V5-1 =(6.975 + 0.500 x 4.236 +	6.776)x 2 5.736)x	1/2 x 1/2 x	6.000 =	41,253 m3
	X	0.500 x	2		=	-6.482 m3
6) Wall Haunch	V6 = x	0.500 x 2	0.500 x	1/2 x	6.975	1.744 m3
7) Railing	V7 =(0.300 x 1/2 x 1/2 x 6.000 x	0.300 - 2 +(0.150 +	0.02 x 0.35 + 0.500 x	0.020 0.500) 0.05)	1.094 m3
	*	0,000 X	2		Total Abutment)	674.318 m3
2. Form				,		
1) Paramet	A1 = x	24.100 x 22.100	2.335 +(2.335 -	0.600)	94.617 m2
2) Corbel	A2 =(+	0.300 + 22.700)x		1.414)x(22.100 =	16.222 m2
3) Wall	A3 =(24.100 +	22.100)x	4.640	=	214.368 m2
4) Footing	A4 =(24.100 +	9.200)x	2.000 x	2 =	133,200 m2
5) Wing Wall	A5-1 =(x	6.975 + 4	6.776)x	1/2 x	6.000	165.012 m2
	A5-2 =-(x	4.236 +		1/2 x 6.975 x	1.300 2.000 =	-18.952 m2
	A5-3 =	0.500 x	2.335 x	2	· =	2.335 m2
	A5-4 =(x	1.040 +(0.500 x	1.300 2 +	1.300 2)0.5+	4.236)	7.114 m2
6) Wall Haunch	A6 =(0.300 +	$0.300^{2})^{0.5}x$	6.975 x	2 =	5.918 m2
				·		

Tra On Bridge Item			Formula				Quantity
							Quartity
7) Railing	A7-1 =(x	0.300 x 1/2 x	0.300 - 2 +(0.02 0.35	х +	0.020 0.500)	
	x	1/2 x	0.150 +	0.500	x	0.05)	0.192 - 2
	x	2					0.182 m2
	A7-2 =(+	0.050 + 0.480 +	0.150 x 0.020 x	1.414 1.414	+ x	0.280 2)	
	x	6.000 x	2	2.111	^		12.944 m2
						Total	632,960 m2
				•	(On	e Abutment)	
4. Lean Concrete							
To the state of th	V =	24.300 x	. 9.400 x	0.1000		***	22.842 m3
5. Blinding Stone	V =	24 200	0.400	0.2000		· .	45.684 m3
	V =	24.300 x	9.400 x	0.2000		=	45.684 m3
6.Excavation	ксаv	ation Hight=	1.650			·	
				94 O#O		10.050.)	
	V =(x	25.300 x 1/2 x	10.400 + 1.650	26.950	X	12.050)	484.991 m3
7.Back Fill	V =	484.991 -	45.684 -	22.842	-	24.100	
; 	X	9.200 x	1.350			=	117.143 m3
		·					·
			÷				
		*				÷	
·					• .		
						•	
				-			
·							
			•	•			
	· .			•			
		·					
L							

LIST OF REINFORCEMENT

TRA ON

A1

S	IGN	DIACETER	LENGTH	NOS.	UNIT WEIGHT	PIECE WEIGHT	TOTAL WEIGHT	NOTE
A1	1	D14	2,611	289	1.208	3.155	911.9	
	2	D14	24,752	18	1.208	29.911	538.4	
	3	D14	720	196	1.208	0.870	170.6	
	4	D16	1,837	97	1.578	2.899	281.3	
	5	D14	690	97	1.208	0.834	80.9	
	6	D14	23,552	4	1.208	28.461	113.9	
F	1	D25	12,500	97	3.853	48.167	4,672.2	
	2	D25	9,000	96	3.853	34.680	3,329.4	
	3	D25	9,874	97	3.853	38.048	3,690.7	
ļ	4	D25	6,200	96	3.853	23.891	2,293.6	
ļ	5	D20	9,655	16	2.466	23.811	381.0	
	6	D20	25,200	16	2.466	62.147	994.4	
	7	D16	4,830	176	1.578	7.623	1,341.8	
	8	D20	28,700	37	2.466	70.779	2,618.9	
· · · · · · · · ·	9	D20	25,900	37	2.466	63.873	2,363.4	
W	1	D22	5,485	94	2.984	16.367	1,538.6	
	2	D22	6,955	97	2.984	20.754	2,013.2	
	3	D16	6,850	97	1.578	10.812	1,048.8	
	4	D14	1,822	221	1.208	2.202	486.6	
·	5	D16	24,856	20	1.578	39.231	784.7	
	6	D14	24,752	20	1.208	29.911	598.3	
	7	D16	1,860	97	1.578	2.936	284.8	
K	<u></u>	D22	6,605	8	2.984	19.710	157.7	······································
-	2	D22	3,085	18	2.984	9.206	165.8	
	3	D22	4,185	16	2.984	12.488	199.9	
	4	D25	9,619	38	3.853	37.065	1,408.5	
	- 5	D25	4,587	24	3.853	17.675	424.3	
	6	D22	6,405	36	2.984	19.113	688.1	
	7	D18	7,420	8	1.998	14.822	118.6	
	8	D16	6,745	10	1.578	10.646	106.5	
	9	D16	1,731	52	1.578	2.732	142.1	
	10	D16	2,370	2	1.578	3.741	7.5	
	11	D20	2,250	- 18	2.466	5.549	99.9	
ļ	12	D16	9,462	38	1.578	14.934	567.6	· · · · · · · · · · · · · · · · · · ·
	13	D18	6,335	36	1.998	12.655	455.6	
	14	D10	690	140	0.617	0.425	59.6	
	15	D22	6,170	10	2.984	18.412	184.2	
	16	D18	6,985	10	1.998	13.953	139.6	
<u> </u>	17	D16	2,460	10	1.578		38.9	······································
	18	D16	2,460	10	1.578		38.9	
\vdash	19	D10	6,620	2	2.984	19.754	39.6	
	20	D18	6,550	2	1.998		26.2	
	21	D25	3,954	4	3.853		61.0	
<u> </u>	22	D14	875	64	1.208	<u> </u>	67.7	
	23	D20	3,810	38	2.466		357.1	
	24	D16	2,227	52	1.578		182.8	
 	25	D10	6,609	8	2.984		157.8	
 	26	D18	6,494	8	1.998		103.8	
R	1	D10	4,500	10	0.617	2.774	27.8	
<u> </u>		1/10	7,500	- 10	0.017	TOTAL	36,564.5	
 		-					00,001.0	
—		1						***************************************
1			 			D25	15879.7	
		- 				D22	5144.9	
 		 				D20	6814.7	
Ͱ			 			D18	843.8	
	-		 			D16	4825.7	
<u> </u>	•	 	 			D10	2968.3	
-		+	+			D14	87.4	
1		+				- 510	36564.5	
-							30304.5	
1		1	1		1 .	·		

Tra On Bridge

	• • • • • • • • • • • • • • • • • • • •		
LIST O	F REIN	FORCEM	1ENT

A2

		, , , , , , , , , , , , , , , , , , , 	EMENT					A2
Sl	IGN	DIACETER	LENGTH	NOS,	UNIT WEIGHT	PIECE WEIGHT	TOTAL WEIGHT	NOTE
1	1	D14	2,611	289	1,208	3.155	911.9	
	2	D14	24,752	18	1.208	29.911	538.4	
	3	D14	720	196	1.208	0.870	170.6	
	4	D16	1,837	97	1.578	2.899	281.3	
	5	D14	690	97	1.208	0.834	80.9	
	6	D14	23,552	4	1.208	28.461	113.9	
	1	D25	12,500	97	3.853	48.167	4,672.2	
	2	D25	9,000	- 96	3.853	34.680	3,329.4	
	3	D25	9,874	97	3.853	38.048	3,690.7	
	4	D25	6,200	96	3.853	23.891	2,293.6	
	5	D20	9,655	16	2.466	23.811	381.0	
	6	D20	25,200	16	2.466	62.147	994.4	
	7	D16	4,830	176	1.578	7.623	1,341.8	
	8	D20	28,700	37	2.466	70.779	2,618.9	
	9	D20	25,900	37	2.466	63.873	2,363.4	
<u> </u>	1	D22	5,485	94	2.984	16.367	1,538.6	
	2	D22	6,955	97	2.984	20.754	2,013.2	
	3	D16	6,850	97	1.578	10.812	1,048.8	
	<u>4</u> 5	D14 D16	1,822	221 20	1.208 1.578	2.202 39.231	486.6 784.7	
	6	D16	24,856 24,752	20	1.208	29.911	598.3	
	- 0 -	D14 D16	1,860	20 97	1.208	29.911	284.8	·
		D10	6,605	8		19.710	157.7	
·	2	D22	3,085	18	2.984	9.206	165.8	·
	3	D22	4,185	16	2.984	12.488	199.9	
	4	D25	9,629	38	3.853	37.104	1,410.0	····
	5	D25	4,587	24	3.853	17.675	424.3	
	6	D22	6,405	36	2.984	19.113	688.1	
	7	D18	7,420	8		14.822	118.6	
•	8	D16	6,745	10		10.646	106.5	
	9	D16	1,731	52	1.578	2.732	142.1	
	10	D16	2,370	2	1.578	3.741	7.5	
	11	D20	2,250	18	2.466	5.549	99.9	
	12	D16	9,472	38	1.578	14.950	568.2	
	13	D18	6,335	36	1.998	12.655	455.6	
	14	D10	690	140	0.617	0.425	59.6	
	15	D22	6,150	10	2.984	18.352	183.6	**************************************
	16	D18	6,965	10	1.998	13.913	139.2	
	17	D16	2,457	10			38.8	
	18	D16	2,457	10	1.578	3.878	38.8	
	19	D22	6,599	. 2	2.984	19.692	39.4	
	20	D18	6,529	2	1.998		26.1	
	21 22	D25 D14	3,954 875	- 4 64	3.853 1.208	15.236 1.057	61.0 67.7	
	23	D14 D20	3,810	38		9.396	357.1	
	24	D16	2,227	5 <u>2</u>		3.515	182.8	
	25	D10	6,609	- 8		19.722	157.8	
	26	D18	6,494	8		12.972	103.8	·
	1	D10	4,500	10		2.774	27.8	
			2,000		0.017	TOTAL	36,565.1	
		1					3.5/-55.2	
_			İ					
						D25	15881.2	
						D22	5144.1	
						D20	6814.7	
						D18	843.3	
	··· · · · · · · · · · · · · · · · · ·					D16	4826.1	
						D14	2968.3	
	/AEIBN				ļ	D10		
		<u> </u>			L	1	36565.1	•

Tra On Bridg		Formula	Quantity
1 D:1-		A1,A2	
1. Pile			
	1)	Number of Pile	
	•	N = 17 = 17	17 Pi
	2)	Total Length of Bored Piles φ 1500	
·	2.5		10/00
		L = 17 × 79.000 = 1343.0	1343.0 m
	3)	Concrete Class D	
		$V = 0.750^{-2} \times \pi \times 1343.0 = 2373.277$	2373.3 m
	4)	Reiforcemento	
	4)		•
		D10 1240.8 D16 33.4	
		D22 430.1	
	•	D25 3872.3 D28 617.8	
		D32 2272.7	
		Total 8467.1	
	•	·	

Tra On Bridge Item	· · · · · · · · · · · · · · · · · · ·		ormula					Quantity
Approach Slab								
1. Concrete								
(Class E)	V1 =	23.040 x	6.000	x	0.300		=	41.472 m3
	V2 =(0.300 +	0.500)x	1/2 x	0,200		
	x	23.040			•		=	3.686 m3
	V3= = -	0.500 x	0.500	x	1/2 x	0.300		
	x	2					=	-0.075 m3
						Total		45.083 m3
2. Lean Concrete								
	V =	23.040 x	5.700	x	0.100		=	13.133 m3
3. Form								
	A1 =(0.300 +	0.500)x	23.040		=	18.432 m2
	A2 =	0.300 x	6.000				=	1.800 m2
	A 2 (0.100	0.500	.	1/2	0.000		
	A3 =(x	0.300 +	0.500)x	1/2 x	0,200	=	0.160 m2
						Tatal		20.2022
						Total		20.392 m2
	V -#	0.060	0.020	١	1/2	0.200		
4.Asphtic joint	V =((+	0.060 + 0.020 x	0.020 0.300)x)x	1/2 x 23.040	0.300	=	0.415 m3
		•						
~ D. L.		D10	255 0					
5.Re-bar		D10 D16	255.8 3402.3					
		D20 Total	3421.6 7079.7					7070 700 1
	•	10121	7079.7					7079.700 kg
						·		
							•	·
						•		
					•			
					1.			§ .
	·	. <u> </u>						

Bridge TRA ON Abutment A1

h1	h2	h3	h4	h5	h6	d1	d2
8.94	3.5	2.9	0.41	0.91	-0.29	24.1	12

Block	a	ь	Dh	R	r	L	Sxq	W	Masonry	Blinding
	(m)	(m)	(m)	(m)	(m)	(m)	(m2)	(m)	(m3)	(m3)
1	11.380	7.300	5.440	9.340	0.000	10.809	79.249		23.77	7.92
2	12.000	12,000	0.600	21.340	9.340	12.015	289.367		86.81	28.94
3	4.980	3.113	2.490	25.386	21.340	4.751	174.268		52.28	17.43
4	24.100	12.000	0.600				289.561		86.87	28.96
5	24.100	3.113	2.490				96.061		28.82	9.61
6	11.380	7.300	5.440	9,340	0.000	10.809	79.249		23.77	7.92
7	12.000	12.000	0.600	21.340	9.340	12.015	289.367		86.81	28.94
8	4.980	3.113	2.490	25.386	21.340	4.751	174.268		52.28	17.43
9			1.200				4.320	103.813		
Extra						-		91.108	441	147
	Wood p	oile	(m)	6229	i					
	Excava		(m3)	448						
Footing	Binding	3	(m3)	8.3						
		nasonry	(m3)	37.4						
	Back fil	I	(m3)	124.6	l	ength o	of footing	= .	104	m
	Geotex	tile	(m2)	536						
	PVC Pi	pe	(m)	52						
Side slope	Blindin	g	(m3)	147						
	Masoni	ry	(m3)	441						

Abutment A2

h1	h2	h3	h4	h5	h6	d1	d2
8.75	3.5	2.9	0.41	0.91	-0.29	24.1	12

Block	a	b	Dh	R	r	L	Sxq	W	Masonry	Blinding
	(m)	(m)	(m)	(m)	(m)	(m)	(m2)	(m)	(m3)	(m3)
1	11.000	7.063	5.250	9.031	0.000	10.446	74.060		22.22	7.41
2	12.000	12.000	0.600	21.031	9.031	12.015	283.543		85.06	28.35
3	4.980	3.113	2,490	25.078	21.031	4.751	171.965		51.59	17.20
4	24.100	12.000	0.600				289.561		86.87	28,96
5	24.100	3.113	2.490				96.061		28.82	9.61
6	11.000	7.063	5.250	9.031	0.000	10.446	74.060		22.22	7.41
7	12.000	12.000	0.600	21.031	9.031	12.015	283.543		85.06	28.35
8	4.980	3.113	2.490	25.078	21.031	4.751	171.965		51.59	17.20
9			1.200				4.320	102.843	37.02	8.23
Extra				-				90.138	470	153
	Wood	oile	(m)	6171						
	Excava	tion	(m3)	444						
Footing	Binding	3	(m3)	8.3						
	Stone n	nasonry	(m3)	37.0						<u> </u>
	Back fil	1	(m3)	123.4	1	Length c	of footing	=	103	m
	Geotex	tile	(m2)	530						
C. 41	PVC Pi		(m)	51						
Side slope	Blindin	g	(m3)	153					<u>. </u>	
	Mason	гу	(m3)	470						

NOTES:

- * INPUT VALUES: GRAY CELLS; TOTAL VALUES: BOLD NUMBERS
- * No. of Blocks : see drawing. Extra block used for calculation only.
- h_i: Elevations (see drawing)
- di: Distances (see drawing)
- a_i: Long edge of ellipse (or rectangle): a_i=Dh_i*slope_i
- b_i: Short edge of ellipse (or rectangle): b_i=Dh_i*slope_i
- Dhi: Height of cone (or truncated cone)
 - R_i: Average radius of lower ellipse: R_i=(Sa_i+Sb_i)/2
 - r_i : Average radius of upper ellipse: $r_i = (Sa_{i-1} + Sb_{i-1})/2$
 - L_i : Generatrix of cone : L_i =sqrt(Dh_i^2 +(R_i - r_i)²)
- Sxq_i : Area of cone's side (or plane before abutment):

 $Sxq_i=3.14/4*(R_i+r_i)*L_i$ for block 1,2,3,6,7,8

 $Sxq_i=a_i*sqrt(b_i^2+Dh_i^2)$ for block 4,5

 $Sxq_9=(1.8+1.8+Dh_9+2*Dh_9)*Dh_9/2$ for block 9

W: Length of masonry's footing: W9

 $W_9=2*3.14*R_3/4+a_5+2*3.14*R_8/4$, and

 $W_{Ex}=2*3.14*R_2/4+a_5+2*3.14*R_7/4$

 $Masonry_i = 0.3*Sxq_i$

Blinding_i = $0.1*Sxq_i$

Geotextile = $Sxq_3 + Sxq_5 + Sxq_8 + W_{Ex}*1$

PVC Pipe = $W_9/2$

Wood Pile = $W_9*0.8*25*3$

Excavation = W_9 *Sxq₉

Backfill = Excavation-W₉*Dh₉*1.1

QUANTITIES OF EARTHWORKS SLOPE PROTECTION OF 25M BEHIND HEAD WALL

ABUTMENT A1:

ABUTMENT				G-1 · 1		Blinding	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Block	В	L	S	Thick	Masonry	(T=0.1m)		
	m	m	m2	m	m3	m3		
10	12.16	25	304.11	0.30	91.23	30.41		
11	12.01	25	300.37	0.30	90.11	30.04		
12	5.57	25	139.20	0.30	41.76	13.92	Geotextile (m2)	
15	12,16	25	304.11	0.30	91.23	30.41	$= 2 \times (L + S12) =$	328
16	12.01	25	300.37	0.30	90.11	30.04	PVC pipe (m)	
17	5.57	25	139.20	0.30	41.76	13.92	$= 2 \times L/2 \times 1m =$	25
	Wood pile		(m)	=	3000.00			
	Blinding		(m3)	= _	4.00			
FOOTING	Stone maso	nry	(m3)	=	18.00			
	Excavation		(m3)	=	216.00		LENGTH OF FOOTING L= 50 M	
	Back fill		(m3)	=	150.00		·	
	Stone maso	nry	(m3)	=	354.97		j	
SIDE SLOPE	Blinding		(m3)	=	118.32]	
SIDE SLOPE	Geotextle		(m2)	=	328.39		<u>'</u>	
	PVC pile		(m)	=	25.00			

No	h	Dh	S	L	Tota.	l (m3)	
	m	m	m2	m	Excavation	Backfill	
5	0.91						$Excavation = 2 \times S \times L$
6	-0.29	1.2	4.32	25	216	150	Backfill = Excavation $-2 \times 25 \times Dh \times 1.1$

ABUTMENT A2:

<u>ABUTMENT</u>	AZ:							
D11.	В	L	s	Thick	Masonry	Blinding		
Block	. Р.	L	3	THUCK	wasoin y	(T=0.1m)		
	m	m.	m2	m	m3	m3		
10	11.74	25	293.48	0.30	88.05	29.35	Geotextile (m2)	
11	12.01	25	300.37	0.30	90.11	30.04	$= 2 \times (L + S12) =$	328
12	5.57	25	139.20	0.30	41.76	13.92	PVC pipe (m)	
15	11.74	25	293.48	0.30	88.05	29.35	$= 2 \times L/2 \times 1m =$	25
16	12.01	25	300.37	0.30	90.11	30.04		
17	5.57	25	139.25	0.30	41.78	13.93		
	Wood pile		(m)	=	3000,00		·	
	Blinding		(m3)	=	4.00			
FOOTING	Stone maso	nry	(m3)		18.00			
	Excavation		(m3)	=	216.00		LENGTH OF FOOTING L= 50 M	
	Back fill		(m3)		150.00			
	Stone maso	nry	(m3)	= :	439.85]	
SIDE SLOPE	Blinding		(m3)	=	146.62			
SIDE SLOPE	Geotextle		(m2)	-	328.39			
:	PVC pile		(m)	= .	25.00		1 ·	

QUANTITY TABLE OF PIER

Total	72.0	6252.0	11048.2	55587.2	4867.6	400.8	13571.6	74427.2	4104.8	247289.2	40445.6	74147.2	10899.2	21950.0	10797.6	155.0	405683.8	220.6	110.3	408.2	2788.5	8046.9	-
sou	2	2	2	. 2	2	2	2	2	2	7	2	7	2	7	7	7	2	2	2	2	2	2	
Subtotal	36	3,126	5,524	27,794	2,434	200	6,786	37,214	2,052	123,645	20,223	37,074	5,450	10,975	5,399	78	202,842	110	55	204	1,394	4,023	
Pier 6	9	462.0	816.4	4524.4	418.3	33.4	1154.4	6130.5	243.0	10429.4	1478.4	3813.7	721.6	2629.9	1202.0	17.9	20292.9	16.1	8.1			508.2	
Pier 5	9	462.0	816.4	4524.4	418.3	33.4	1154.4	6130.5	241.6	10171.8	1478.4	3813.7	721.6	2695.6	1497.4	29.8	20408.3	16.1	8.1			371.1	
Pier 4	9	639.0	1129.2	4848	380.3	33.4	1084.1	6345.8	541.6	41221.1	7154.6	10909.4	1281.6	162.0	0.0	0.0	60728.7	22.9	11.4	102.1	742.6	1153.9	
Pier 3	9	639.0	1129.2	4848	380.3	33.4	1084.1	6345.8	541.6	41221.1	7154.6	10909.4	1281.6	162.0			60728.7	22.9	11.4	102.1	651.6	1050.2	
Pier 2	9	462.0	816.4	4524.4	418.3	33.4	1154.4	6130.5	241.6	10171.8	1478.4	3813.7	721.6	2695.6	1497.4	29.8	20408.3	16.1	8.1			432.0	1
Pier 1	9	462.0	816.4	4524.4	418.3	33.4	1154.4	6130.5	243.0	10429.4	1478.4	3813.7	721.6	2629.9	1202.0		20275.0	16.1	8.1			508.2	200
TINN	pile	В	m3	kg	kg	kg	κ 8	kg	m3	kg	kg	kg	kg	kg	kg	kg	kg	m3	m3	m3	m3	m3	,
		BORED ϕ 1500mm		25	22	16	10	TOTAL		32	25	22	20	16	14	10	TOTAL	-	LASS G	TE CLASS G			
Item	NUMBER OF PILES	TOTAL LENGTH OF BORED \$ 1500mm	CONCRETE CLASS D			REINFORCEMENT			CONCRETE CLASS E	:			THEODOGNACHT	NEINFONCEMEINI				BLINDING STONE	LEAN CONCRETE CLASS G	BLINDING CONCRETE CLASS G	RIP RAP	EXCAVATION	
				PILE												PIER			·				1

Item	P1	F	ormula		1	Quantity
iten						
Pier						
1. Concrete (Class E)						
(Class E)	•					
	V1 =	11.400 x	2.300 x	0.800	=	20.976 m3
	***	44.400	< 000 \	172	2 200	
	V2 =(11.400 + 0.800	6.900)x	1/2 ×	2.300	16.836 m3
	X	0.000				10.000 III.
]	V3 =(0.700 x	π +	1.400 x	5.100)	
	x	5.900			***	51.208 m3
	V4 =	11.000 x	7.000 x	2.000	=	154.000 m3
	Y-3	11.000 ×	, 1000 X	2.000		2021000
					i i	
					Total	243.020 m3
					(One Pier)	
2. Form						·
	A1 =	11.400 x	0.800 x	2	=	18.240 m2
	40 -/	11 400	6.900)x	1/2 ×	0.800	
	A2 =(×	11.400 + 2.000	6.900)x	1/2 ×	U.800 =	14.640 m2
	A3 =	0.800 x	2.300 x	2	=	3.680 m2
	44 -/	0.800 +	$2.250^{2})^{0.5}x$	2.300 x	2 =	10.985 m2
	A4 =(0.800 +	2.250) X	2.300 X	2 -	10.505 11.2
	A5 =	6.900 x	2.300 -(0.700 x	π	
	+	1.400 x	5.100)		. =	7.191 m2
	A6 =(11.000 +	7.000)x	2 ×	2.000 =	72.000 m2
	Αο (11.000 +	7.000 /x	2	Total (flat)	126.736 m2
		2	÷			
	A7 =(1.400 x	π +	5.100 x	2)	06 500 2
·	X	5.900	•		Total (curve)	96.509 m2
					rotar (carve)	
3. Re-Bar					İ	
			10429.4			•
		D25 D22	1478.4 3813.7			
		D20	721.6			
		D16	2629.9			
		D14	1202.0 17.9			
		D10 TOTAL	20292.9			
		1011111			·	-
	·	•				
					it i	
				•		•
			÷			

Item	1		Formula			Quantity
4. Lean Concrete	V =	11.200 x	7.200 ×	0.1000	best s	8,064 m3
5. Blinding Stone	V	11.200 X	7.200 X	0.1000		0,004 1113
J. Dinang Stone	V =	11.200 x	7.200 ×	0.2000	# 0	16.128 m3
6.Excavation	:xcav	ation Height	3.561			
·	V =(x	12.200 x 1/2 x	8.200 + 3.561	15.761 x	11.761) =	508.164 m3
7.Back Fill	V =	508.164 ~	16.128 -	8.064 -	11.000	
· .	x	7.000 x	2.000 -(0.700 ² x	п	
	+	1.400 x	5.100)x	1.261	=	319.027 m3
					•	
	· .					
	·		r			
			·			
3		÷	• .			
			·			
	•					

	GN		LENGTH			PIECE WEIGHT O		NOTE
-	1	D25	11,985	32	3.853	46.200	1,478.4	
	2	D16	6,870	10	1.578	10.800	108.0	
	3	D16	3,463	10	1.578	5.470	54.7	
	3'	D16	3,491	10	1.578	5,510	55.1	
	4	D16	11,200	6	1.578	17.700	106.2	
	4'	D16	9,259	6	1.578	14.600	87.6	
	5	D16	2,710	8	1.578	4.280	34.2	
• • • • •	6	D0	0	0		0.000	0.0	
		D0	0	0	<u> </u>	0.000	0.0	
	. 7'	D0	0	0		0.000	0.0	
	8	D14	5,649	35	1.208	6.830	239.1	
	9	D14	4,890	20	1.208	5.910	118.2	
	10	D14	3,950	70	1.208	4.770	333.9	
	11	D14	3,191	40	1.208	3.860	154.4	
	12	D14 D0	0	0		0.000	0.0	
	13	D0	0	0		0.000	0.0	
	14	D0	0	0		0.000	0.0	
		1	0	0		0.000	0.0	
	15	D0	L.	110	1.208	3.240	356.4	
	16	D14	2,679			0.000	0.0	
	17	D0	0	0	(012			
	1	D32	9,696	112	6.313	61.200	6,854.4	
•	2	D16	16,318	44	1.578	25.800	1,135.2	
•	3	D16	3,479	64	1.578	5.490	351.4	
	1	D22	11,570	25	2.984	34.500	862.5	
	2	D22	15,087	47	2.984	45.000	2,115.0	
	3	D32	10,300	55	6.313	65.000	3,575.0	
	4	D22	7,570	37	2.984	22,600	836.2	
	5	D20	7,500	16	2.466	18.500	296.0	· · · · · · · · · · · · · · · · · · ·
	⊹6	D20	10,800	16	2.466	26.600	425.6	
	7	D16	4,698	94	1.578	7.420	697.5	
		D10	29,000	1	0.617	17.900	17.9	
							20,292.9	
								· •
								· · · · · · · · · · · · · · · · · · ·
						D32	10429.4	
						D28	0.0	
						D25	1478.4	
						D22	3813.7	
						D20	721.6	
						D16	2629.9	
		1 .				D14	1202.0	
					<u> </u>	D10	17.9	
						TOTAL	20292.9	
		† · · · ·						
					··································	<u>-</u> -		

Item	P2			F	ormula				1	Quantity
Pier 1. Concrete (Class E)										
	V1	==	11.400	x	2.300	×	0.800		=	20.976 m3
	V2	=	11.400	x	0.400	×	0.340		=	1.550 m3
· .	V 3	=(x	11.400 0.800	+	6.900)x	1/2	x	2.300 =	16.836 m3
	V4	=(x	0.700 ² 5.560	x	π	+	1.400	x	5.100)	48.257 m3
	V5	=	11.000	x	7.000	x	2.000			154.000 m3
2. Form									Total (One Pier)	241.619 m3
	A 1	=	11.400	x	0.800	x	2		===	18.240 m2
	A2	=	11.400	x	0.340	X	2		. =	7.752 m2
	A3	≂(x	11.400 2.000	+	6.900)x	1/2	x	0.800 =	14.640 m2
	A4	=	0.800	x	2.300	x	2		=	3.680 m2
	A5	=	0.400	x	0.340	x	2		=	0.272 m2
	A6	= (0.800	+	2.250	²) ^{0,5} x	2.300	x	2 =	10.985 m2
	A7	= +	6.900 1.400	x x	2.300 5.100	-(0.700	x	π =	7.191 m2
	A8	=(11.000	+	7.000	0)x	2	x	2.000 =	72.000 m2
			2						Total (flat)	134.760 m2
	A9	=(x	1.400 5.560	×	π	+	5.100	x	2) Total (curve)	90.948 m2
3. Re-Bar				D32 D25 D22 D20 D16	10171. 1478. 3813. 721. 2695.	4 7 6				
			Т	D14 D10 OTA	1497. 29.	4 8				
·						·				

	P2		
<u>Item</u>	Formula		Quantity
4. Lean Concrete	V = 11.200 x 7.200 x 0.1000	==	8.064 m3
5. Blinding Stone	V = 11.200 x 7.200 x 0.2000	==	16.128 m3
6.Excavation	xcavation Height 3.150		
	V = (12.200 x 8.200 + 15.350 x x 1/2 x 3.150	11.350)	431.963 m3
7.Back Fill	2	11.000	
	x 7.000 x 2.000 -(0.700 x + 1.400 x 5.100)x 0.850	n =	246.394 m3

S	GN	DIAMETER	CEMENT LENGTH	NOS.	UNIT WEIGHT	PIECE WEIGHT K	OTAL WEIGH	NOTE
<u> </u>	1	D25	11,985	32	3.853	46.200	1,478.4	
	2	D16	6,870	10	1.578	10.800	108.0	······································
	3	D16	3,463	6	1.578	5.470	32.8	
	3'	D16	3,491	6	1.578	5.510	33.1	
	4	D16	11,200	. 9	1.578	17.700	159.3	
	4'	D16	9,259	6	1.578	14.600	87.6	
		D16	2,710	8	1.578	4.280	34.2	
	5	_ i	1,310	4	1.578	2.070	8.3	
	6	D16		4	1.578	6.000	24.0	
	7	D16	3,803		1.578	6.050	24.2	
	7'	D16	3,831	4		6.830	239.1	
	8	D14	5,649	35	1.208		118.2	 ,
	9	D14	4,890	20	1.208	5.910		
	10	D14	3,950	35	1.208	4.770	167.0	
	11	D14	3,191	20	1.208	3,860	77.2	
	12	D14	4,929	35	1.208	5.960	208.6	
	13	D14	4,170	20	1.208	5.040	100.8	
	14	D14	2,315	35	1.208	2.800	98.0	
	15	D14	1,936	20	1.208	2.340	46.8	
	16	D14	2,679	110	1.208	3.240	356.4	
	17	D14	1,279	55	1.208	1.550	85.3	
	1	D32	9,336	112	6.313	58.900	6,596.8	
	2	D16	16,318	44	1.578	25.800	1,135.2	.,
	. 3	D16	3,479	64	1.578	5.490	351.4	
	1	D22	11,570	25	2.984	34.500	862.5	
	2	D22	15,087	47	2.984	45.000	2,115.0	
	3	D32	10,300	55	6.313	65.000	3,575.0	
_	4	D22	7,570	37	2.984	22.600	836.2	-
	5	D20	7,500	16	2.466	18.500	296.0	
	6	D20	10,800	16	2.466	26.600	425.6	
	$\frac{3}{7}$	D16	4,698	94			697.5	
	-	D10	48,400	1	·	29.800	29.8	
		1010	10,100				20,408.3	
		 						
				· · ·				
							· ·	
	<u> </u>					D32	10171.8	
						D28	0.0	
						D25	1478.4	
				-		D22	3813.7	
						D20	721.6	
						D16	2695.6	
			 			D14	1497.4	
		+		· 		D10	29.8	·····
						TOTAL	20408.3	
_					-	101/16	201000	
			 	<u></u>	1		<u>. </u>	

Item	P3 Formula	Quantity
TCH .		
Pier P3 1. Concrete (Class E)		
	$V1 = (1.500^{2} x \pi + 3.500 \times 3.000)$ $x 12.000 = $	210.823 m3
	V2 = 10.500 x 10.500 x 3.000 =	330.750 m3
:	Total (One Pier)	541.573 m3
2. Form		
	A1 = $\begin{pmatrix} 3.000 \\ x \end{pmatrix}$ $\begin{pmatrix} 3.000 \\ x \end{pmatrix}$ $\begin{pmatrix} 12.000 \\ x \end{pmatrix}$ + 3.500 x 2 $\begin{pmatrix} 2 \\ x \end{pmatrix}$ = Total (curve)	423.292 m2
	A2 = (10.500 + 10.500) x 2	126.000 m2
3. Re-Bar		
J. K. Dul	D32 41221.1 D25 7154.6 D22 10909.4	
	D20 1281.6 D16 162.0 TOTAL 60728.7	
4. Lean Concrete	$V = 10.700 \times 10.700 \times 0.1000 = $	11.449 m3
5. Blinding Stone	V = 10.700 x 10.700 x 0.2000 =	22.898 m3
6.Excavation	H =(4.98 + 6.820 + 8.700 + 5.060)	
	x 1/4 = 5.145 Excavation Height= 5.145	
	$V = (14.500 \times 2 - 2.150 \times 5.700)$,
	x = 5.145 x = 1/2	1050.210 m3
7.Rip Rap	V = 1050.210 - (22.898 + 11.449 + 10.500	
	х 10.500 x 3.000 + (1.500 х п	
	+ 3.500 x 5.100) x 1.345) =	651.598 m3
8.Blinding Concrete	$V = (14.500 \times 2.000 - 2.150 \times 5.700)$	
	x 0.500 x 1/2 =	102.061 m3

1	٠	~

C 1-1 D32 15,687 126 6.313 99.000 12,474.0 1-2 D32 15,687 126 6.313 99.000 12,474.0 2 D22 18,422 71 2.984 55.000 3,905.0 3 D22 17,794 52 2.984 53.100 2,761.2 4 D22 6,827 208 2.984 20.400 4,243.2 F-1 D32 16,820 42 6.313 106.000 4,452.0 2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4	SI	GN	DIAMETER	LENGTH	NOS,	UNIT WEIGHT	PIECE WEIGHT K	OTAL WEIGH	NOTE
2 D22 18,422 71 2.984 55.000 3,905.0 3 D22 17,794 52 2.984 53.100 2,761.2 4 D22 6,827 208 2.984 20.400 4,243.2 - 1 D32 16,820 42 6.313 106.000 4,452.0 2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 R D16 102,400 1 1.578 162.000 162.0 60,728.7	C	1- 1	D32	15,687					
2 D22 18,422 71 2.984 55.000 3,905.0 3 D22 17,794 52 2.984 53.100 2,761.2 4 D22 6,827 208 2.984 20.400 4,243.2 - 1 D32 16,820 42 6.313 106.000 4,452.0 2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 R D16 102,400 1 1.578 162.000 162.0 60,728.7		1- 2	D32	15,687	126	6.313	99,000	12,474.0	
3 D22 17,794 52 2.984 53.100 2,761.2 4 D22 6,827 208 2.984 20.400 4,243.2 F- 1 D32 16,820 42 6.313 106.000 4,452.0 2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 R D16 102,400 1 1.578 162.000 162.0		2	D22		. 71	2.984	55.000	3,905.0	
F- 1 D32 16,820 42 6.313 106.000 4,452.0 2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 R D16 102,400 1 1.578 162.000 162.0		3	D22		52	2.984	53.100	2,761.2	
2 D32 11,520 41 6.313 72.700 2,980.7 3 D32 16,756 42 6.313 106.000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 8 D16 102,400 1 1.578 162.000 162.0 60,728.7 0 60,728.7 0 60,728.7 9 0		4	D22	6,827	208	2.984	20.400	4,243.2	
3 D32 16,756 42 6.313 106,000 4,452.0 4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26,700 1,281.6 6 D32 7,562 92 6.313 47,700 4,388.4 R D16 102,400 1 1.578 162,000 162.0 60,728.7 D32 41221.1 D25 7154.6 D20 1281.6 D20 1281.6 D20 1281.6 D20 1281.6 D20 1281.6	i_	1	D32	16,820	42	6.313	106.000	4,452.0	
4 D25 11,174 166 3.853 43.100 7,154.6 5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4 2 D16 102,400 1 1.578 162.000 162.0 60,728.7 60,728.7 60,728.7 60,728.7 60,728.7 60,728.7 5 D25 7154.6		2	D32	11,520	41	6.313	72.700	2,980.7	
5 D20 10,812 48 2.466 26.700 1,281.6 6 D32 7,562 92 6.313 47.700 4,388.4		3	D32	16,756	42	6.313	106.000	4,452.0	
6 D32 7,562 92 6.313 47.700 4,388.4 D16 102,400 1 1.578 162.000 162.0 60,728.7 D32 41221.1 D25 7154.6 D20 1281.6 D16 162.0		4	D25	11,174	166	3,853	43.100	7,154.6	
R D16 102,400 1 1.578 162.000 162.0 60,728.7 60,728.7		5	D20	10,812	48	2.466	26.700	1,281.6	
D32 41221.1 D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0		6	D32	7,562	92	6.313	47.700		
D32 41221.1 D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0	₹		D16	102,400	1	1.578	162.000		
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0								60,728.7	
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0									
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0								į.	
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0									
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0									
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0									
D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0	٠.	. <u></u>							
D22 10909.4 D20 1281.6 D16 162.0							<u> </u>		
D20 1281.6 D16 162.0							1		
D16 162.0							· · · · · · · · · · · · · · · · · · ·		
		· · ·					1		
TOTAL 60728.7									
							TOTAL	60728.7	
							<u> </u>		

	P4	
Item	Formula	Quantity
Pier 1. Concrete (Class E)		
	$V1 = (1.500^{2} x $	210.823 m3
	$V2 = 10.500 \times 10.500 \times 3.000 = $	330.750 m3
	Total (One Pier)	541.573 m3
2. Form	. 2	
	A1 = $\begin{pmatrix} 3.000 & x & \pi & + & 3.500 & x & 2 \end{pmatrix}$ $\begin{pmatrix} x & 12.000 & & & & & & & & & & & & & & & & & &$	423.292 m2
	A2 = (10.500 + 10.500) x 2 x 3.000 = Total (flat)	126.000 m2
3. Re-Bar		
	D32 41221.1 D25 7154.6 D22 10909.4 D20 1281.6 D16 162.0 TOTAL 60728.7	
4. Lean Concrete	$V = 10.700 \times 10.700 \times 0.1000 =$	11.449 m3
5. Blinding Stone	$V = 10.700 \times 10.700 \times 0.2000 =$	22.898 m3
6.Excavation	H =(6.590 + 5.260 + 4.720 + 6.040) x 1/4 = 5.653	
	Excavation Height= 5.653	
	$V = (14.500 \times 2 - 2.150 \times 5.700) $ $\times 5.653 \times 1/2 = $	1153.904 m3
7.Rip Rap	V = 1153.904 - (22.898 + 11.449 + 10.500	
	х 10.500 x 3.000 + (1.500 x п + 3.500 x 5.100) x 1.853) =	742.633 m3
8.Blinding Concrete	+ 3.500 × 5.100) x 1.853) =	742.033 m3
o.binding Concrete	$V = (14.500 \times 2.000 - 2.150 \times 5.700)$ $\times 0.500 \times 1/2 =$	102.061 m3

I	4

			CEMENT	NOS.	DARC MEICHT	DICCE MEICHT	OTAL WEIGH	NOTE
		DIAMETER						NO1L
	1- 1	D32	15,687	126				
	1- 2	D32	15,687	126	6.313	99,000		
	2	D22	18,422	71	2.984	55,000	3,905.0	
	3	D22	17,794	52	2,984	53.100	2,761.2	
	4	D22	6,827	208	2.984		4,243.2	
-	1	D32	16,820	42	6.313	106.000	4,452.0	
	2	D32	11,520	41	6.313	72.700	2,980.7	
	3	D32	16,756	42	6.313	106.000	4,452.0	
	4	D25	11,174	166	3.853	43.100	7,154.6	
	5	D20	10,812	48	2.466	26.700	1,281.6	
	6	D32	7,562	92	6.313	47.700	4,388.4	
		D16	102,400	1	1.578	162,000	162.0	
			· · · · · · · · · · · · · · · · · · ·				60,728.7	
						D32	41221.1	
			·					
<u> </u>								
						D25	7154.6	
		<u> </u>				D22	10909.4	
						D20		
						D16	<u> </u>	
						TOTAL	60728.7	
						1011111	00.200	
-							<u> </u>	

Pier P5 1. Concrete (Class E)		P5	***************************************				
1. Concrete (Class E) V1 = 11.400 x 2.300 x 0.800	Item			rotmula			Quantity
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1. Concrete						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		V1 =	11.400 x	2.300 x	0.800	==	20.976 m3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		V2 =	11.400 x	0.400 x	0.340	=	1,550 m3
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			0.800	6.900 ·)x	1/2 ×		16.836 m3
2. Form $ \begin{array}{cccccccccccccccccccccccccccccccccc$			0.700 x	π +	1.400 ×		48.257 m3
2. Form A1 = 11.400 x 0.800 x 2 = 18.240 m2 A2 = 11.400 x 0.340 x 2 = 7.752 m2 A3 = (11.400 + 6.900)x 1/2 x 0.800		V5 =	11.000 x	7.000 x	2.000	#	154.000 m3
$A2 = 11.400 \times 0.340 \times 2 = 7.752 \text{ m2}$ $A3 = (11.400 + 6.900) \times 1/2 \times 0.800 = 14.640 \text{ m2}$ $A4 = 0.800 \times 2.300 \times 2 = 3.680 \text{ m2}$ $A5 = 0.400 \times 0.340 \times 2 = 0.272 \text{ m2}$ $A6 = (0.800^{2} + 2.250^{2})^{0.5} \times 2.300 \times 2 = 10.985 \text{ m2}$ $A7 = 6.900 \times 2.300 - (0.700^{2} \times \pi + 1.400 \times 5.100) = 7.191 \text{ m2}$ $A8 = (11.000 + 7.000) \times 2 \times 2.000 = 72.000 \text{ m2}$ $A9 = (1.400^{2} \times \pi + 5.100 \times 2) \times 6 \times 6 \times 7000 = 70.948 \text{ m2}$ $3. \text{ Re-Bar}$ $D32 = 10171.8 \times 1000 \times 10$	2. Form		·				241.619 m3
A3 =(11.400 + 6.900)x 1/2 x 0.800 x 2.000 = 14.640 m2 A4 = 0.800 x 2.300 x 2 = 3.680 m2 A5 = 0.400 x 0.340 x 2 = 0.272 m2 A6 =(0.800 + 2.250 2)05x 2.300 x 2 = 10.985 m2 A7 = 6.900 x 2.300 -(0.700 2 x π + 1.400 x 5.100) = 7.191 m2 A8 =(11.000 + 7.000)x 2 x 2.000 = 72.000 m2 A9 =(1.400 2 x π + 5.100 x 2) = 70.948 m2 A9 =(1.400 2 x π + 5.100 x 2) = 90.948 m2 3. Re-Bar D32 10171.8 D25 1478.4 D22 3813.7 D20 721.6 D16 2695.6 D14 1497.4 D10 29.8	·	A1 =	11.400 x	0.800 ≍	2	=	18.240 m2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		A2 =	11.400 x	0.340 x	2	=	7.752 m2
$A5 = 0.400 \times 0.340 \times 2 = 0.272 \text{ m2}$ $A6 = (0.800^{2} + 2.250^{2})^{0.5}x 2.300 \times 2 = 10.985 \text{ m2}$ $A7 = 6.900 \times 2.300 - (0.700^{2} \times \pi + 1.400 \times 5.100) = 7.191 \text{ m2}$ $A8 = (11.000 + 7.000)x 2 \times 2.000 = 72.000 \text{ m2}$ $A9 = (1.400^{2} \times \pi + 5.100 \times 2) \times 6 = 70.948 \text{ m2}$ $3. \text{ Re-Bar}$ $D32 = 10171.8 \text{ D25} = 1478.4 \text{ D22} = 3813.7 \text{ D20} = 721.6 \text{ D16} = 2695.6 \text{ D14} = 1497.4 \text{ D10} = 29.8$				6.900)x	1/2 ×		14.640 m2
$A6 = (0.800^{2} + 2.250^{2})^{0.5}x 2.300 $		A4 =	0.800 x	2.300 x	2	· =	3.680 m2
$A6 = (0.800 + 2.250)^{0.5}x 2.300 $	·	A5 =			2	=	0.272 m2
$A7 = 6.900 \times 2.300 - (0.700 \times \pi + 1.400 \times 5.100) = 7.191 \text{ m2}$ $A8 = (11.000 + 7.000) \times 2 \times 2.000 = 72.000 \text{ m2}$ $A9 = (1.400 \times \pi + 5.100 \times 2) \times 6$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times \pi + 5.100 \times 2)$ $X = (1.400 \times 1)$ $X = (1.400 $		A6 =($2.250^{2})^{0.5}x$		2 =	10.985 m2
$A9 = (1.400 ^{2} \times \pi + 5.100 \times 2) $ $\times 6 = Total (flat)$ $3. \text{ Re-Bar}$ $D32 10171.8 $ $D25 1478.4 $ $D22 3813.7 $ $D20 721.6 $ $D16 2695.6 $ $D14 1497.4 $ $D10 29.8 $ $D10 29.8 $						1	7.191 m2
$A9 = (1.400^{2} \times \pi + 5.100 \times 2) $ $\times 6 = 90.948 \text{ m2}$ $Total (curve)$ 3. Re-Bar $D32 10171.8$ $D25 1478.4$ $D22 3813.7$ $D20 721.6$ $D16 2695.6$ $D14 1497.4$ $D10 29.8$		A8 =(11.000 +	7.000)x	2 x	2.000 =	72.000 m2
A9 =(1.400 x π + 5.100 x 2) x 6 = 90.948 m2 Total (curve) 3. Re-Bar D32 10171.8 D25 1478.4 D22 3813.7 D20 721.6 D16 2695.6 D14 1497.4 D10 29.8		· · · · · · · · · · · · · · · · · · ·				Total (flat)	134.760 m2
D32 10171.8 D25 1478.4 D22 3813.7 D20 721.6 D16 2695.6 D14 1497.4 D10 29.8	The state of the s	•	1.400 x	π +	5.100 x	=	90.948 m2
D32 10171.8 D25 1478.4 D22 3813.7 D20 721.6 D16 2695.6 D14 1497.4 D10 29.8	3. Re-Bar						
D20 721.6 D16 2695.6 D14 1497.4 D10 29.8			D25	1478.4		· ·	
D10 29.8			D20 D16	721.6 2695.6			·
			D10	29.8			

Item	P5 Formula	Quantity
4. Lean Concrete	V = 11.200 x 7.200 x 0.1000 =	8.064 m3
5. Blinding Stone	V = 11.200 x 7.200 x 0.2000 =	16.128 m3
6.Excavation	Excavation Height= 2.800	
: 	V =(12.200 x 8.200 + 15.000 x 11.000) x 1/2 x 2.800 =	371.056 m3
7.Back Fill	V = 371.056 - 16.128 - 8.064 - 11.000	
	x 7.000 x 2.000 -(0.700 x n	•
	+ 1.400 x 5.100)x 0.500 =	188.524 m3
·		

	GN	REINFOR		NOS.	UNIT WEIGHT	PIECE WEIGHT C	TAL WEIGH	NOTE
- <u>31</u>	1	DIAMETER	11,985	32	3.853	46.200	1,478.4;	
	2	D16	6,870	10	1.578	10.800	108.0	
	3	D16	3,463	6	1.578	5.470	32.8	
	3'	D16	3,491	6	1.578	5,510	33.1	
	4	D16	11,200	9	1.578	17.700	159.3	
	41	D16	9,259	6	1.578	14.600	87.6	
	5	D16	2,710	8	1.578	4.280	34.2	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		D16	1,310	4	1.578	2.070	8.3	
	<u>6</u> 7	D16	3,803	4	1.578	6,000	24.0	
		D16	3,831	4	1.578	6.050	24.2	
		D16	5,649	35	1.208	6.830	239.1	
	8		4,890	20	1.208	5.910	118.2	
	9	D14	3,950	35	1.208	4.770	167.0	
	10	D14		20	1.208	3.860	77.2	
	11	D14	3,191	35	1.208	5,960	208.6	<u></u>
	12	D14 D14	4,929 4,170	20	1.208	5.040	100.8	
	13			35	1.208	2.800	98.0	
	14	D14	2,315	20	1.208	2.340	46.8	
	15	D14	1,936	110	1.208	3.240	356.4	
	16	D14	2,679	55	1.208	1.550	85.3	
	17	D14	1,279	112	6.313	58.900	6,596.8	···
		D32	9,336	44	1.578	25.800	1,135.2	
	2	D16	16,318		1.578	5.490	351.4	
	3	D16	3,479	64 25	2.984	34.500	862.5	
	1	D22	11,570	23 47	2.984	45.000	2,115.0	
	2	D22	15,087	55	6.313		3,575.0	
	3	D32	10,300	37	2.984		836.2	
	4	D22	7,570	3/ 16			296.0	
	5	D20	7,500	16	2.466		425.6	
	6	D20	10,800		1.578	 	697.5	
	7	D16	4,698	94 1		 	29.8	
		D10	48,400	\	0.017	29.800	20,408.3	
							20,400.5	
_				······································	i			
		<u> </u>			· · · · · · · · · · · · · · · · · · ·			
					<u> </u>			<u></u>
					<u> </u>	 		
					<u> </u>	D22	3813.7	
						D22	721.6	
-						D16	2695.6	
					 	D32	10171.8	
					ļ	D32	0.0	
		<u> </u>				D28	1478.4	
						D25	1497.4	
•		_				D14	29.8	
<u> </u>					<u> </u>	TOTAL	20408.3	
	· · · · · · · · · · · · · · · · · · ·				 	IOIAL	20400.5	

Item	P6 Formula	Quantity
Hell	·	Quantity
Pier P6 1. Concrete (Class E)		
	V1 = 11.400 x 2.300 x 0.800 =	20.976 m3
	V2 =(11.400 + 6.900)x 1/2 x 2.300 x 0.800 =	16.836 m3
	$V3 = (0.700^{2} x \pi + 1.400 $	51.208 m3
	V4 = 11.000 x 7.000 x 2.000 =	154.000 m3
	Total (One Pier)	243.020 m3
2. Form	A1 = 11.400 x 0.800 x 2 =	18.240 m2
	A2 =(11.400 + 6.900)x 1/2 x 0.800 x 2.000 =	14.640 m2
	$A3 = 0.800 \times 2.300 \times 2 = $	3.680 m2
	A4 = $(0.800^{2} + 2.250^{2})^{0.5}x + 0.800 \times 2 =$	3.821 m2
	$A5 = 6.900 \times 0.800 - (0.700^{2} \times \pi + 1.400 \times 5.100) = $	-3.159 m2
	A6 =(11.000 + 7.000)x 2 x 2.000 =	72.000 m2
	Total (flat)	109.222 m2
	A7 = $\begin{pmatrix} 1.400 & x & \pi & + & 5.100 & x & 2 \\ x & 5.900 & & & & = \end{pmatrix}$	96.509 m2
3. Re-Bar	Total (curve)	
	D32 10429.4 D25 1478.4 D22 3813.7 D20 721.6	
	D16 2629.9 D14 1202.0 D10 17.9	
	TOTAL 20292.9	

Item	P6 Formula	Quantity
au III		
4. Lean Concrete	V = 11.200 x 7.200 x 0.1000 =	8.064 m3
5. Blinding Stone	V = 11.200 x 7.200 x 0.2000 =	16.128 m3
6.Excavation	Excavation Height= 3.200	·
	V = (12.200 x 8.200 + 15.400 x 11.400) x 1/2 x 3.200 =	440.960 m3
7.Back Fill	V = 440.960 - 16.128 - 8.064 - 11.000	
	х 7.000 x 2.000 -(0.700 ² х п	
	+ 1.400 x 5.100)x 0.900 =	254.957 m3
		· .

1.0	"
	()

	IGN	REINFOR		NOS.	UNIT WEIGHT	PIECE WEIGHT (OTAL WEIGH	NOTE
3-	1	D25	11,985	32	3.853	46.200	1,478.4	
	2	D16	6,870	10	1.578	10.800	108.0	
	3	D16	3,463	10	1.578	5.470	54.7	
	3'	D16	3,491	10	1.578	5.510	55.1	
	4	D16	11,200	6	1.578	17.700	106.2	
	41	D16	9,259	6	1.578	14.600	87.6	
	5	D16	2,710	8	1.578	4.280	34.2	
	6	D10	0	0	-	0.000	0.0	
	7	D0	0	0		0.000	0.0	
			0	0	•	0.000	0.0	
		D0	~		1 200		239.1	
	8	D14	5,649	35	1.208	6.830		
	9	D14	4,890	20	1.208	5.910	118.2	
	10	D14	3,950	70	1.208	4.770	333.9	
	11	D14	3,191	40	1.208	3.860	154.4	
	12	D0	0	0	-	0.000	0.0	
	13	D0	0	0	-	0.000	0.0	
	14	D0	0	0		0.000	0.0	
	15	D0	0	0	-	0.000	0.0	
	16	D14	2,679	110	1.208	3.240	356.4	
	17	D0	0	0	-	0.000	0.0	
<u>'</u> -	1	D32	9,696	112	6.313	61.200	6,854.4	
	2	D16	16,318	44	1.578	25.800	1,135.2	
	3	D16	3,479	64	1.578	5.490	351.4	
	1	D22	11,570	25	2.984	34.500	862.5	
	2	D22	15,087	47	2.984	45.000	2,115.0	
	3	D32	10,300	55	6.313	65.000	3,575.0	
	4	D22	7,570	37	2.984	22,600	836.2	
	- 5	D20	7,500	16	2.466		296.0	
	6	D20	10,800	16	2.466	26.600	425.6	_ :
	7		4,698	94	1.578		697.5	
		D16					17.9	
		D10	29,000	<u>, , , 1</u>	0.617	17.900		
					,		20,292.9	
		1				<u> </u>		
	· · · · · · · · · · · · · · · · · · ·							
		-						
<u>:</u>								
	<u> </u>					D32	10429.4	
						D28	0.0	
						D25	1478.4	
						D22	3813.7	
						D20	721.6	
		1				D16	2629.9	
		-				D14	1202.0	
						D10	17.9	
						TOTAL	20292.9	*
						101110	20292.9	
					 	1	L	

Item		Formula	Quantity
Pile		P1,P2,P5,P6	
	1)	Number of Pile	
		N = 6 = 6	6 Pill
	2)	Total Length of Bored Piles φ 1500	
		$L = 6 \times 77.000 = 462.0$	462.0 m
:	3)	Concrete Class D	
		$V = 0.750^{-2} \times \pi \times 462.0 = 816.421$	816.4 m ³
	4)	Reinforcement	
		D10 1154.4	
		D16 33.4 D22 418.3	
		D25 4524.4 Total 6130.5	
nu.			
Pile	1\	`P3,P4 Number of Pile	
	1)	N = 9 = 9	9 Pill
	2)	Total Length of Bored Piles φ 1500	,
	2)	$L = 9 \times 71.000 = 639.0$	639.0 m
	3)	Concrete Class D	
	٠,	$V = 0.750^{-2} \times \pi \times 639.0 = 1129.206$	1129.2 m³
	4)	Reinforcement	
	-,	D10 1084.1	
	٠	D16 33.4 D22 380.3	
	٠	D25 4848.0 Total 6345.8	
·			
			in the second se
			1
	i		
1			

QUANTITY OF MISCELLANEOUS

It	em	Work Item	Unit	Quantity	Remarks
Ochonata	CLASS E	Parapet	m3	1061.84	
Concrete	CLA33 E	Lighting pole base	m3	0.62	
		Parapet	m2	901.61	
Form		Lighting pole base	m2	2.44	
	*	Total		904.05	
		Parapet	ton	41.183	
Re-bar		Lighting pole base	ton	0.221	
-		Total	ton	41.40	
Steel Railing			m	1065.60	
T intrins	Pole		set	7	
Lighting	Ріре Ф100		m	1065.60	
Devies	Pot		set	38	
Drainage	Ріре Ф180		m	135.90	

Item	Formula	Quantity
1. Parapet CLASS "E"		
	300 300 150 255 150 1175	
	$A = \{(0.300 \times 0.575 + 0.260 \times 0.150 + (0.125 + 0.275) \\ \times 0.150 \times 1/2 + 0.275 \times 0.050\} \times 2 \times 2 \\ = 1.021 \text{ m2}$	
	V = 1.021 × 260.000 × 4 = 1,061.84 m3	1,061.84 m3
2. Lighting CLASS "E"	200 - 200 -	
	$V = (0.200 \times 0.400 + 0.400 \times 0.900) \times 1/2 \times 0.4$ $\times 7 = 0.616 \text{ m}3$	0.616 m3

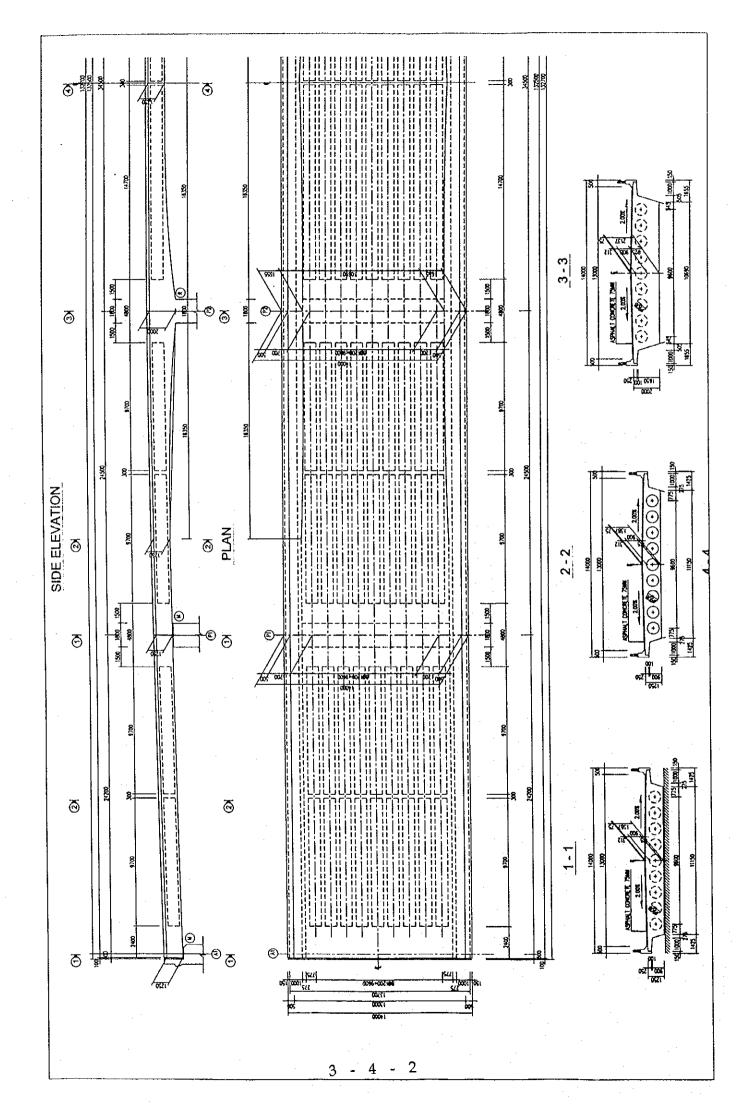
1. Parapet A = $(0.575 + 0.260 + 0.15 + 0.125 + 0.212 + 0.280) \times 2 \times 2 \times (28.050 + 25.200 + 37.200 + 25.200 +$	ltem	Formula	Quantity
A = $(0.575 + 0.260 + 0.15 + 0.125 + 0.212 + 0.280) \times 2 \times 2 \times (28.050 + 25.200 + 37.200 + 25.200 + 25.050) = 901.61 m2$ 2. Lighting $A = \{(0.900 + 0.400) \times 0.447 \times 1/2 + (0.400 + 0.200) \times 0.4 \times 1/2 \times 2 + 0.2 \times 0.400\} \times 4$	1. Parapet		
2 × 2 × (28.050 + 25.200 + 37.200 + 25.050) = 901.61 m2 2 Lighting $A = \{ (0.900 + 0.400) \times 0.447 \times 1/2 + (0.400 + 0.200) \times 0.4 \times 1/2 \times 2 + 0.2 \times 0.400 \} \times 4$		250 575	
$A = \{(0.900 + 0.400) \times 0.447 \times 1/2 + (0.400 + 0.200) \times 0.4 \times 1/2 \times 2 + 0.2 \times 0.400\} \times 4$		2 × 2 × (28.050 + 25.200 + 37.200 + 25.200 + 25.050)	901.61 m2
$A = \{(0.900 + 0.400) \times 0.447 \times 1/2 + (0.400 + 0.200) \times 0.4 \times 1/2 \times 2 + 0.2 \times 0.400\} \times 4$	2. Lighting		
\times 0.4 × 1/2 × 2 + 0.2 × 0.400} × 4			
		\times 0.4 × 1/2 × 2 + 0.2 × 0.400} × 4	2.442 m2
į į	:		

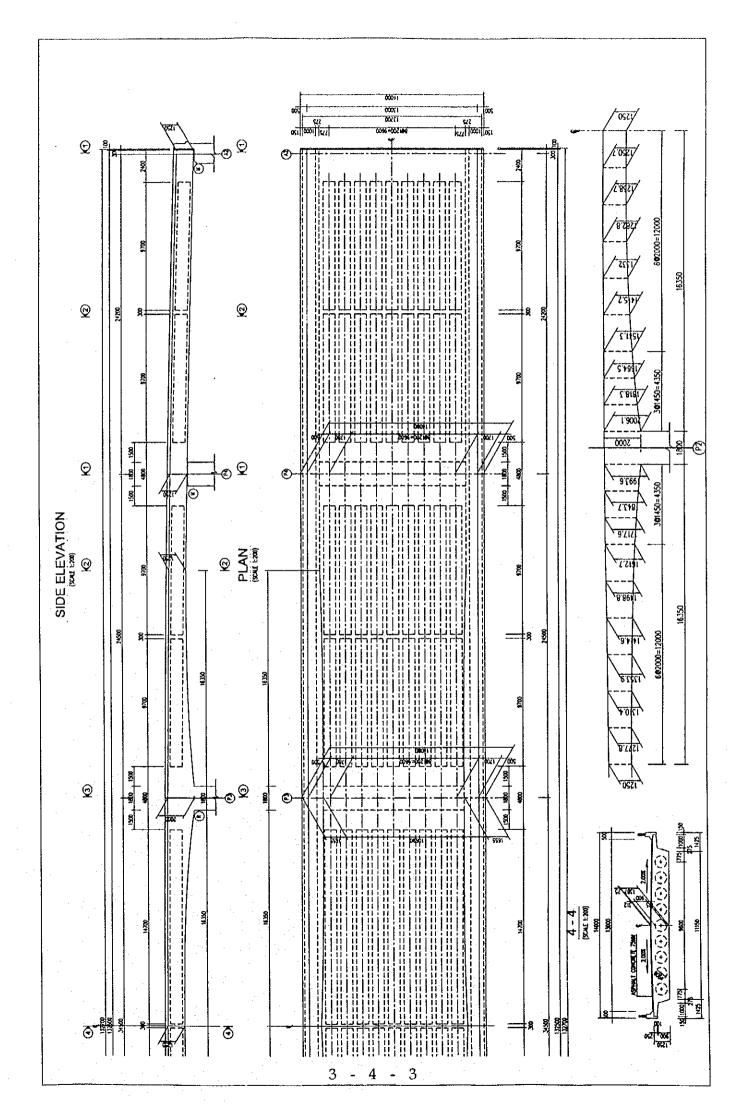
Item	Formula	Quantity
1. Drainage		
	TOTAL EACH	
	$EACH = 19 \times 2$	= 38 EACH
	PIPE $L1 = 0.98 \times 30 = 29.4$	
-	$L1 = 0.98 \times 30 = 29.4$ L2 = 14.40 + 8.00 + 23.10 + 7.80 + 23.20	
·	+ 7.90 + 14.20 + 7.90 = 106.50	
	Total	135.9 m
2. Steel railing	L = 260.000 x 4 = 1040.000	
	Length for abutment $L = 6.4 \times 4 = 25.60 \text{ m}$	
	L 0.4 X 4 25.00 M	
	TOTAL LENGTH	
	$L = 260.000 \times 1 \times 2 \times 2 + 25.600$	= 1065.600 m
3. Lighting	Each for one span	
÷	Each = 7	. [
	Total lighting poles	
	7 x 1	= 7 pole
	PVC pipe Φ100mm	= 1065.600 m
	1 vc pipe viconum	- 1005.000 Ht
		·
·		

Per 10m

			SC	HEDU	LE OF F	REINF	ORC	EMENT	OF RAIL	ING)		
								ENGT	UNIT	NO.		
BAR	SIZE DIMENSIONS (mm)							FEINGII	WEIGHT	OF	WEIGHT	REMARKS
MARK	(mm)	a	b	С	d	е	f	(mm)	(kg/m)	BARS	(kg)	
P1	14	250	701	212	747	70		1980	1,208	68	162.65	
P2	14	230	297	176	275	245		1223	1,208	68	100.46	
P3	14	10000						10000	1.208	11	132.88	
												ļ
<u></u>								ļ				
Total					<u> </u>						395.99	

Re-bar Lighting


Per BRIDGE


			SC.	HEDU	LE OF R	EINF	ORC	EMENT	(OF LIGHT	ING)		
BAR	SIZE		DIM	IENSIC	NS (mn	n)		ENGT	UNIT WEIGHT	NO. OF	WEIGHT	REMARK!
MARK	(mm)	a	b	с	d	е	f	(mm)	(kg/m)	BARS	(kg)	
P1	20	113	825	320		,		1258	2.466	3	9.31	
P2	16	113	380	488	280			1261	1.578	3	5.97	
P3	20	1000	300	1000				2300	2.466	2	11.34	
P4	16	282	285	282				849	1.578	. 2	2.68	
P5	16	208	285	208				701	1.578	2	2.21	
Total											31.51	

3.4. Interchange Bridge with NH.54

QUANTITY TABLE OF SUPERSTRUCTURE

	ITEMS			UNIT	QUANTITY
	CONCRETE CLASS C			m3	1674
4	ASPHALT CONCRETE 70mm			m2	1723
	WATER PROOFING 5mm			m2	1723
	CABLES 12S12.7		·	m	3185
	ANCHORAGE CABLES 12812	2.7		set	48
	SHEATHING CABLES 12S12.	7 Ф80/85mm		m	3185
	FILLING GROUT IN SHEATH	IING		m3	11
			D25	kg	17152
A- HOLLOW SLAB			D22	kg	7161
		16≤D≤25	D20	kg	23323
	REINFORCEMENT		D16	kg	55119
I			TOTAL	kg	102754
		D≤14		kg	27649
		TOTAL		kg	130403
	FORM WORK FOR SLAB			m2	2089
	SCAFFOLGING WORK FO	R HOLLOW		m2	. 2723
	SUPPORT WORK			m3	11682
	CONCRETE CLASS D			m3	69
B- PARAPET	REINFORCEMENT	D14		kg	10510
	FORM WORK			m2	454
C- RAILING				m	265
	LIGHTING POLES			poles	7
	CONCRETE CLASS E			m3	1
D- LIGHTING		D20		kg	145
D- LIGHTING	REINFORCEMENT	D16		<u> </u>	76
	PVC PILE F100MM			m3	265
	FORM WORK			m2	4
E- DRAINAGE	DRAINAGE			set	20
L DRIMITION	PVC PILE F200MM			m	62
F- EXPANSION JOII	NT 100MM		· · · · · · · · · · · · · · · · · · ·	m	20
G-BEARING (700x3	150x50)MM		·	set	10
H- ANCHORAGE B	AR Φ80MM			set	16

L CONCRETE:

<u>I-1. HO</u>	LLOW	SLAB:											
SEC.	Н	HI	H2	НЗ	H4	Lì	L2	L3	L4	D	S	L	, V
1-1	1250	250	370	1275.5	1387	1000	275	5575	11150	0	15.92	5.1	81.17
2-2	1250	250	370	1275.5	1387	1000	275	5575	11150	900	10.19	19.4	197.69
3-3	1250	250	370	1275.5	1387	1000	275	5575	11150	0	15.92	2.4	20.20
4-4	1250	250	370	1275.5	1387	1000	275	5575	11150	0	15.92	2.4	38.20
4'-4'	1250	250	370	1275.5	1387	1000	275	5575	11150	900	10.19	4.05	10.10
5-5	1250	250	370	1275.5	1387	1000	275	5575	11150	900	10.19	4.85	49.42
5'-5'	1250	250	370	1275.5	1387	1000	275	5575	11150	900	10.19		20.66
6-6	1277	250	370	1303.03	1414	1000	301.67	5548.3	11096.67	900	10.47	2	20.66
6'-6'	1277	250	370	1303.03	1414	1000	301.67	5548.3	11096.67	900	10.47	_	01.20
7-7	1310	250	370	1336.57	1447	1000	328.33	5521.7	11043.33	900	10.82	2	21.30
7'-7'	1310	250	370	1336.57	1447	1000	328.33	5521.7	11043.33	900	10.82	0.06	0.00
8-8	1328	250	370	1354.8	1465	1000	339.80	5510.2	11020.4	900	11.02	0.86	9.39
8'-8'	1328	250	370	1354.8	1465	1000	339.80	5510.2	11020.4	900	11.02		
9-9	1334	250	370	1360.88	1471	1000	343.80	5506.2	11012.4	900	11.08	0.3	3.32
9'-9'	1334	250	370	1360.88	1471	1000	343.80	5506.2	11012.4	900	11.08		
10-10	1354	250	370	1381.1	1491	1000	355.00	5495	10990	900	11.30	0.84	9.40
10'-10'	1354	250	370	1381.1	1491	1000	355.00	5495	10990	900	11.30		
11-11	1415	250	370	1442.63	1552	1000	381.67	5468.3	10936.67	900	11.96	2	23.26
11'-11'	1415	250	370	1442.63	1552	1000	381.67		10936.67		11.96		
12-12	1499	250	370	1527.17	1636	1000	408.33		10883.33		12.88	2	24.84
12'-12'	1499	250	370	1527.17	1636	1000	408.33		10883.33		12.88		
13-13	1613	250	370	1641.7	1750	1000	435.00	5415	10830		14.14	2	27.02
13'-13'	1613	250	370	1641.7	1750	1000	435.00	5415	10830		14.14		
14-14	1718	250	370	1747.09	1855	1000	454.33		10791.33		15.29	1.45	21.33
14'-14'	1718	250	370	1747.09	1855	1000	454.33		10791.33		15.29		
15-15	1844	250	370	1873.47	1981	1000	473.67		10752.67		16.68	1.45	23.18
15'-15'	1844	250	370	1873.47	1981	1000	473.67		10752.67	0	22.41		·
16-16	1994	250	370	2023.86	2131	1000	493.00	5357	10714		24.06	1.45	33.69
16'-16'	1994	250	370	2023.86	2131	1000	493.00	5357	10714		24.06		
17-17	2000	250	370	2030.1	2137	1000	505	5345			24.11	0.9	21.67
17'-17'	2000	250	370	2029.86	2137	1000	493.00	5357	10714	0.	24.13		
18-18	2006	250	370	2035.86	2143	1000	493.00	5357	10714		24.19	0.9	21.74
18'-18'	2006	250	370	2035.47		1000	473.67		10752.67		24.22		
19-19	1818	250	370	1847.47		1000	473.67	:	10752.67		22.11	1.45	33.60
19'-19'		250	370	1847.09		1000	454.33		10791.33		16.42		
20-20		250	370	1694.09		1000	454.33		10791.33		14.70	1.45	22.56
20'-20'		250	370	1693.7		1000	435.00	5415			14.70		
21-21	1541	250	370	1569.7		1000	435.00	5415			13.32	1.45	20.33
21'-21'		250	370	1568.63		1000	408.33		10936.67		13.44		
22-22	1415	250	370	1442.63		1000	408.33		10936.67			2	25.45
22'-22'	· · · · · · · · · · · · · · · · · · ·	250	370	1442.1	-	1000	381.67	5495			12.01		· · ·
23-23	 	250	370	1359.1		1000	381.67	5495			:	2	23.13
23'-23'	 	250	370	1358.57		1000	355.00		10990 11043.33		11.09		•
24-24	 	250	370	1309.57		1000	355.00				11.12	2	21.68
24'-24'		250	370	7			:	-	11043.33		10.56		
25-25	· · · · · · · · · · · · · · · · · · ·	250	370	1309.03		1000	328.33		11096.67		10.59	2	20.90
25'-25'		250	370	1285.03		1000	328.33	•	11096.67		10.31		
26-26	1	250		1284.54		1000	301.67				10.33	2	20.57
1	-		370	1276.54		1000	301.67	5573			10.24		
26'-26'	 	250	370	1276.5		1000	277.00	5575			10.21	1.85	18.87
27-27	1250	250	370	1275.5	1387	1000	277.00	5575	11150	900	10.19	1	

SEC.	н	HI	H2	Н3	H4	Lì	L2	L3	L4	D	S	L	V
27'-27'	1250	250	370	1275.5	1387	1000	275.00	5575	11150	0	15.92	0.15	2.39
28-28	1250	250	370	1275.5	1387	1000	275	5575	11150	0	15.92	0.15	2,37
			CONC	RETE CLA	SS C			•	1673.6		(m ³)		

I.2 PARAPET

CONCRETE CLASS E: $\sigma_{CK} = 24 \text{ Mpa}$ S = 150 x 300 + 500 x 125 + (350 + 500) x 150 / 2 + 300 x 300 - 20 x 20 = 260850 'mm²)

L = 24.5 x 4 + 34.5 = 132.5 (m)

V = 0.261 x 132.5 x 2 = 69.1253 (m³)

V = 69.13 (m³)

I-3. LIGHTING:

CONCRETE CLASS E $\sigma_{CK} = 24 \text{ Mpa}$ V = 0.078 x 7 = 0.546 (m^3) V = 0.546 (m^3)

1-4. ASPHALT CONCRETE OF 70 mm THICKNESS:

L = 132.5 (m) S = 13 x 132.5 = 1722.5 (m^2) S = 1723 (m^2)

I-5. WATER PROOFING OF 5 mm THICKNESS:

L = 132.5 (m) S = 13 x 132.5 = 1722.5 (m^2) S = 1723 (m^2)

II. FORM WORK-SUPPORT:

II-1. FORM WORK FOR SLAB:

	C_1 =	(0.25	+	1.005	+	0.941)	x	2	2	==	4.392	(m)
	D_1 =									=	11.15	(m)
	L_1 =	(49	-	0.9	-	16.35)	x	. 2	2	=	63.5	(m)
	S_1 =	(4.392	+	11.15)	x	63.5				=	986.92	(m^2)
	C2 =	(0.25	+	1.005	+	1.726)	x	2	2	=	5.962	(m)
	C_2 =	(4.392	+	5.962)	:	2				Œ	5.177	(m)
	D_2 =	(11.15	+	10.69)	:	2				=	10.92	(m)
	L_2 =	(16.35	+	16.35	x	2	+	16.35	i)	=	65.4	(m)
	S_2=(65.4	+	9.6)	x	5.177	+	10.92	х	65.4	=	1102.44	(m^2)
	$\Sigma S =$	S_1 + S_2 =	= '	986.9	+		1102.44			=	2089.36	(m^2)
						ΣS				=	2089.36	(m^2)
<u>II-2</u>	FORM WOR	K FOR HOL	LOW:									,
	N = (9.7)	. x	8	+	14.7	x	2)	x	. 9	=	963	(m)
	$L_3 = 0$.9 x π						=	2.827	(m)		
	$S_3 = 90$	53 x 2	8274	•				=	2723	(m^2)		
						S_3			· =	2723	(m^2)	
	•											
<u>11-3</u>	. FORM WOR	K FOR PAR	AVET:					٠.				
	C =	0.875 ± 0	0.15 ± 0	.05 + 0.1	25 + 0	.15xSQRT	$\Gamma(2) + 0.3$. =	1.7121	(m)	
	L =								= .	132.7	(m)	
	S_1	= 1.712	x	132.7	х	2			=	454.4	(m^2)	
						S_1			=	454.4	(m^2)	
<u>II-4</u>	. FORM WOR	K FOR LIG	HTING	:								
	$S_1 =$	ι0.2	+	0.4)	х	0.4	• :	2	=	0.12	(m^2)	
	$S_2 =$	10.2	x	0.4					=	0.08	(m^2)	
	S_3 =	10.4	+	0.9)	х	0.447	:	2	=	0.29	(m^2)	
	$\Sigma = (2 \times S_1)$	+ S_2 + £0	.12	x	2	+	0.08	+	0.291) x	7	
				•		ΣS			=	4.27	(m^2)	
<u>II-4</u>	. SUPPORT:											
	$H_tb = ($	5.6 + 6	.1 +	6.3	+	6.2 +	5.6) /	5		=	5.96	(m)
	R =	14	+	1	+	1				=	16	(m)
	L = (24)	1.5 x	4	+ 3	34.5) -	7.2	•	2.8	=	122.5	(m)
						V			=	11682	(m^3)	

M. CABLE:

III-1, CABLE 12S12.7:

REINF	CABLE	LENGTH	NUMBER	TOTAL LENGTH
KEINF	CABLE	mm	NONBER	М
C1	12S12.7	132488	4	529.952
C2	12S12.7	132678	4	530.712
C3	12S12.7	132801	16	2124.816
	T	OTAL		3185.5

III-2. SHEATHING OF CABLE 12S12.7 \$ 80/85 (mm):

L = 529.95 + 530.7 + 2124.8 = 3185.5 (m)

III-3. CABLE ANCHORAGES 12S12.7: 48 (SET)

III-4. CEMENT GROUT IN SHEATHING:

L = 529.95 + 530.7 + 2124.8 = 3185.5 (m) V= $(\pi \times 0.08 \times 0.08/4 - 12 \times \pi \times 0.0127 \times 0.0127/4) \times 3185.5$ = 11.17 (m³) V = 11.17 (m³)

IV.REINFORCEMENT:

IV-1. HOLLOW SLAB:

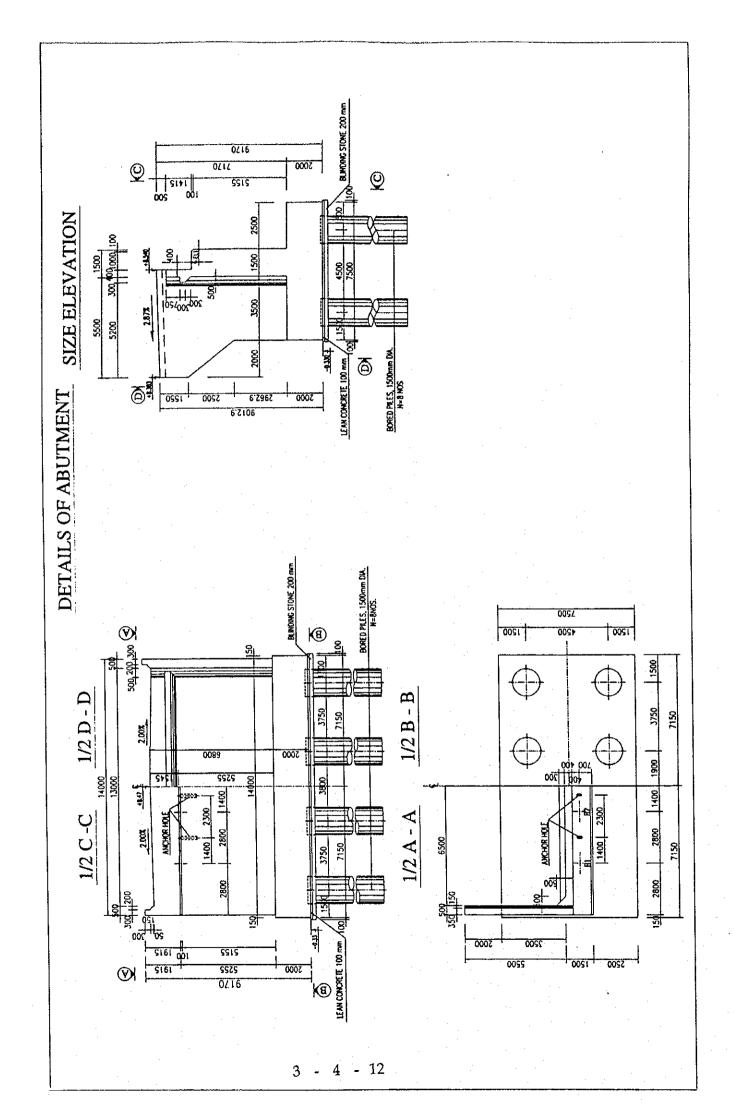
OW SLAB:						
REINF	DIA	LENGTH	NUMBER	UNIT WEIGHT	WEIGHT	REMARKS
No	(MM)	(MM)	· · · · · · · · · · · · · · · · · · ·	KG/M	KG	
A1	D20	12000	220	2.466	6510.6	· · · · · · · · · · · · · · · · · · ·
A2	D16	12000	220	1.578	4166.8	
A3	D16	9353	8	1.578	118.1	
A4	D16	8053	4	1.578	50.8	
A5	D16	7603	104	1.578	1248.0	
A6	D16	8903	104	1.578	1461.4	
A7	D16	6691	220	1.578	2323.3	
A8	D16	6111	110	1.578	1061.0	
A8'	D16	5945	110	1,578	1032.2	
A9	D25	12000	220	3.853	10172.9	
A10	D25	6766	110	3.853	2867.9	
A11	D16	12000	55	1.578	1041.7	
A12	D25	9698	110	3.853	4110.7	
A13	D16	9068	55	1.578	787.2	
A14	D12	7379	28	0.8881	183.4	
A15	D12	9079	32	0.888	257.9	
A16	D22	12000	135	2,984	4834.1	
A17	D16	12000	133			
A18	D22	10226	152	1.578	2500.1	
A19	D22	7143		2.984	457.7	
A20	D22		30	2.984	639.5	
A21	D22	8820	30	2.984	789.6	
<u> </u>		11277	8	2.984	269.2	
A22	D22	6568	4	2.984	78.4	
A23	D22	4130	4	2.984	49.3	·
A24	D22	3584	4	2.984	42.8	
A25	D16	10650	4	1.578	67.2	
A26	D16	7350	4	1.578	46.4	
A27	D16	4600	4	1.578	29.0	
A28	D16	8935	86	1.578	1212.8	
A29	D16	7215	86	1.578	979.3	
A30	D16	10422	4	1.578	65.8	
A31	D16	10892	4	1.578	68.8	
A32	D20	12000	360	2.466	10653.8	
A33	D16	12000	360	1.578	6818.4	
A34	D20	11703	8	2.466	230.9	
A35	D16	12000	86	1.578	1628.8	
A36	D16	12000	86	1.578	1628.8	·
A37	D20	8064	86	2.466	1710.3	
A38	D20	9784	43	2.466	1037.5	· ·
A39	D20	12000	43	2.466	1272.5	
A40	D20	2996	2	2.466	14.8	
A41	D20	7372	2	2.466	36.4	
A42	D20	8753	86	2.466	1856.4	
A43	D12	12000	220	0.888	2343.8	
A44	D12	7282	40	0.888	258.6	
A45	D12	7359	40	0.888	261.3	
A46	D12	7702	80	0.888	547.0	
A47	D16	2205	4	1.578	13.9	
A48	D16	888	250	1.578	350.4	·

REINF	DIA	LENGTH	NUMBER	UNIT WEIGHT	WEIGHT	REMARKS
No	(MM)	(MM)		KG/M	KG	
TI	D12	10817	1061	0.8878	10189.3	
T2	D16	1429	1061	1.5783	2393.0	
T2A	D16	2317	1061	1.5783	3880.1	
T/3	D12	11480	196	0.8878	1997.7	
T4	D16	11620	118	1.5783	2164.2	
T5	D12	11250	263	0.8878	2626.8	AVERAGE
Т6	D12	11020	14	0.8878	137.0	
T7	D16	1328	1062	1.5783	2226.0	
Т8	D16	1760	508	1.5783	1411.2	
Т9	D16	2152	526	1.5783	1786.6	AVERAGE
T10	D16	2544	28	1.5783	112.4	
C1	D16	3088	16	1.5783	78.0	
C2	D16	3398	. 64	1.5783	343,2	AVERAGE
C3	D16	3328	220	1.5783	1155.6	
C4	D16	3638	880	1.5783	5052.9	AVERAGE
C5 .	D12	3066	400	0.8878	1088.8	AVERAGE
C6	D12	3414	474	0.8878	1436.7	AVERAGE
C7 ·	D12	3755	1896	0.8878	6320.8	AVERAGE
C8	D16	4214	104	1.5783	691.7	
C9	D16	4789	416	1.5783	3144.4	
C10	D16	4320	52	1.5783	354.6	
C11	D16	4948	208	1.5783	1624.4	
	TOTAL				130403.1	KG
	D12				27649.2	KG
	D16				55118.7	KG
	D20				23323.2	KG
	D22				7160.6	KG
	D25				17151.5	KG

IV-2. PARAPET:

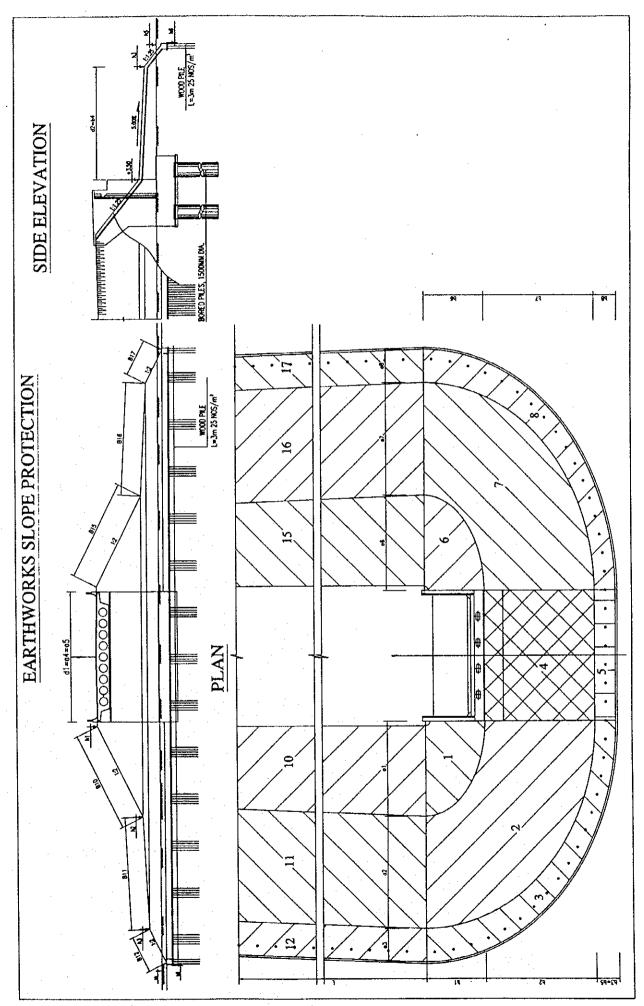
						<u> 1</u>
REMARKS	WEIGHT	UNIT WEIGHT	NUMBER	LENGTH	DIA	REINF
	KG	KG/M		(MM)	(MM)	No
	162.6	1.208	68	1980	D14	Pl
PER	100.5	1.208	68	1223	D14	P2
10M LONG	132.9	1.208	11	10000	D14	Р3
						1
<u> </u>						
KG	396.0	G	PER 10 M LON	7014		
l no	10509.8	132.7 x 2 (m)	ALL BRIDGE :	TOTAL D14		

IV-3. LIGHTING:


		· · · · · · · · · · · · · · · · · · ·				
REINF	DIA	LENGTH	NUMBER	UNIT WEIGHT	WEIGHT	REMARKS
No -	(MM)	(MM)		KG/M	- KG	
Pl	D20	1258	3	2.466	9.3	
P2 .	D16	1261	3	1.578	6.0	
P3	D20	2300	2	2.466	11.3	
P4	D16	849	2	1.578	2.7	
P5	D16	701	2	1.578	3.7	
T/\	TĀI	D20	I LIGHTING I	POLE	33.0	KG
TOTAL D20			ALL BRIDGE :	7	231	NO

V. PVC PILE:

V-1. LIGHTING:			P	C PILE	Ф 100mm						
	L	== .		132.7	+	132.7			=	265.4	(m)
•											
V-2. DRAINAGE SY	STEM:		P	/C PILE	Ф 200mm						
	L=		5.5	x	4				=	62	(m)
VI. LIGHTING POLI	E:		N						· =	7	(Poles)
UIT DATE DIC.			L		132.7		120.7			200	(1
VII. RAILING:					132.7	+ '	132.7		=	265.4	(m)
*											
VIII. DRAINAGE		=									
	DRAI	NAGE:			10	x	2		E	20	(Set)
IX. EXPANSION JOI	NT	•									
EXPANSION J	OINT 10	00 mm :			13	+	13	•	=	26	(m)
X. BEARING			C	700 x 350	x 50) (mm	ď					
		4	x	2	+	4 .	х	2	=	16	(Set)
XI. ANCHORAGE B	A D		Δ	NCHOP 4	AGE BAR Φ	80 mm					
M. AILCHORAGE B	AN	4	x		+		x	2	=	16	(Set)


QUANTITY TABLE OF ABUTMENT

	ITEMS			UNIT	ABUTA	MENT	TOTAL
	TIENS			ONII	A1	A2	TOTAL
A- ABUTME	NT						
	NUMBER OF PILES			PILE	8.0	8.0	16
	BORED PILES F15001	MM DIA. TOT	AL LENGTH	m	568.8	568.8	1138
	CONCRETE CLASS	D		m3	1005.2	1005.2	2010
		D28		kg	14850.4	14850.4	29701
PILE	REINFORCEMENT		D25	kg	32600.0	32600.0	65200
		16≤D≤ 2 5	D22	kg	3039.2	3039.2	6078
		Ì	D16	kg	267.2	267.2	534
			TOTAL	kg	35906.4	35906.4	71813
		D10	<u> </u>	kg	8716.0	8716.0	17432
	ŀ	TOTAL		kg	59472.8	59472.8	118946
	CONCRETE CLASS			m3	368.8	368.8	738
	00.101.010		D25	kg	8282.8	8282.8	16566
			D22	kg	3421.9	3421.9	684-
		16≤D≤25	D20		3934.0	3934.0	786
ABUTMENT	REINFORCEMENT	1020223	D18	kg	580.0	580.0	1160
ADUTMENT	REINFORCEMENT	·	D16	kg	3043.9	3043.9	6088
		TOTAL	D16	kg	19262.6	19262.6	38525
		TOTAL	7714	kg			
		5.44	D14	kg	1399.3	1399.3	279
		D≤14	D10	kg	140.9	140.9	28:
			TOTAL	kg	1540.2	1540.2	308
		TOTAL		kg	20802.8	20802.8	4160
	FORM			m2	302.4	302.4	.60
	SCAFFOLGING WOF	RK		m2	573.0	573.0	114
	SUPPORT			m3	8.4	8.4	1
	LEAN CONCRETTE	CLASS G		m3	9.8	9.8	. 2
, i	BLINDING STONE			m3	19.5	19.5	3
	EXCAVATION			m3	465.4	465.4	93
	FILLING			m3	217.4	217.4	43
B- APPROA	CH SLAB						
	CONCRETE CLASS	Е		m3	24.3	24.3	4
	LEAN CONCRETTE	CLASS G		m3	7.5	7. 5	1
	ASPHANTIC BIND	FILLER T=20N	ИΜ	m3	0.23	0.23	0.
	FORM			m2	82.6	82.6	16
*, .			D20	kg	1872.9	1872.9	374
		16≤D≤25	D16	kg	1932.3	1932.3	386
			TOTAL	kg	3805.2	3805.2	761
	REINFORCEMENT	D10		kg	136.9	136.9	27
		TOTAL		kg	3942.1	3942.1	788
C-SLOPE P	ROTECTION						
	STONE MASONRY	T=300MM		m3	734.3	734.3	146
	BLINDING AGGRE	 	1M	m3	245.1	245.1	49
	GEOTEXTILE		-	m2	600.0	600.0	120
•	PVC PILE 50MM DI	A., L=1000MW	· · · · · · · · · · · · · · · · · · ·	m	68.0	68.0	13
	EXCAVATION	TO TOO INTO	•	m3	592.0	592.0	118
	FILLING			m3	411.0	411.0	82
	TILLUING						
	WOODEN PILE L=3M						
FOOTING	WOODEN PILE L=3 BLINDING STONE	M		m m3	8219.0 11.0	8219.0 11.0	1643

Item			Formula				 	Quantity
l) Concrete							į	
•	* BackWall	74.00	1.40		0.40		0.00 1	
	v1 = *Frontwall	14.30 x	1.42	х	0.40	**	8.09 m3	
	v2 =	14.30 x {(5.26	+	5.40)/	2	
	x	1.50 -	0.10	^2/	2)/ }=	114.18 m3	
	^		0.15	-,	-	,	11110 110	
	* Corbel						İ	
	v3 =	0.30 x(0.30	+	0.60)/	2	
				x	13.30	=	1.80 m3	
	* Haunch						į	
	v4 =	6.6 7 x	0.50	X	0.50	/	2 x 2	
						=	1.67 m3	
	*Wingwall	0.50/	((8		/ FG		2	
	v5 ={ +	3.50 x(2.00 x(6.67 1.05	+	6.57 3.61)/	2 2 }	
•	Tr.	2.00 x(x	0.50	+ X	3.61 2)/ =	27.83 m3	
	* Parapet	^	0.50	^	4	-	27.00 1110	
	v7 =(0.50 x	0.30	+	0.20	^2		,
	_	0.15 ^2/	2)x	5.90	×	2	
				, .	•	= '	2.11 m3	
	*Footing						:	
	v6 =	14.30 x	7.50	x	2.00		:	
	-	8 x	pi	x	0.75	^2 x		
•						=	213.09 m3	
							Total	368.8 m3
!) Form		•						
÷	* BackWall	2.00	1.40		14.00			•
	a1 =	2.00 x	1.42	X	14.30 0.50	- \	. 3	
	-	1.42 x (0.50	+	0.50) x =	2 37.64 m2	
	* Frontwall				1	_	37.04 Inz	
	a2 =	14.3 x(5.26	+	5.398)		
	-(0.5 +	0.5) x	5.398	x	2	
	+	5.33 x		x	2	=	157.52 m2	
							į	
	* Corbel							
	a3 = {	0.3 + (0.3	^2+	0.3	^2)^	0.5}	
				×	13.3	=	9.63 m2	
	* Haunch	1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -						
	a4 =	, + (0.5	^2+	0.5	^2)^		
	4717: 11	, x	6.67	, x	2	=	9.43	
	*Wingwall	A • f	0.5	1.7	((5		6 E 7 3 4 4	ე. ე
4 A	a5 =	2 x {	3.5	x (6.67	+	6.57)x1/	
	+	+ 0.5 x (2 1.05	x (+	1.05 3.20	+	3.61)x1/ 2.96)	L \L
	T	0.0 X (0.5	. т Х	6.67		111.85 m2	
•	* Parapet	-	0.0	Α.	5.07	1	744.00 HIE	
	a5 = {	5.9 x(0.5	+	0.3	+	0,05	
		+	1.4142		0.15	+	0.05)	
		+	2	x	0.17875		2	
					a.	=	13.84 m2	
	*Footing				•			
	a 6 =	2 x(14.300	+	7.500)x	2.00	
							87.20 m2	
							Total	427.1 m2
0) C((.1.t)		4						
3) Scaffolding:	* H<=4m A2 ={	2 x(14.30		7.50)+	8 }	

ltem	i e		Formula					Quantity
						x	2. ≖	103.2 m2
	* 4m< H<=30m					•		
		1.3+2) + (5.5+	.1.5+2) + (0).5+2)	+ (5.5+1-1)		
•	+(1	4.3-2 × 1.5) +	(5.5-1+1)	r (0.5+	·2) + (5.5+	1.5+2)]	x (1.42+5.26)	410.9 m2
	,							
4) Support	= (9.01 -	1.55	+	4.96) x	2.00 /2	
		x	0.50	x	2		#	12.4 m3
_								
5) Lean Concrete	* Concrete class G	01 - (/	1420	_	0.2) x (7.50 +	
	v = +	0.1 x { (0.2) -	14.30 8	+ x	1/4 x pi		+-1	
	,	U.Z) -	·	^	1/ 1 A P		=	9,8 m3
	* Form							•
•	A =	0.1 x { (14.30	+	0.2)+(7.50	
		+	0.20)}x	2	:	=	4.44 m2
6) Blinding Stone								
	v =	0.2 × { (+	0.2) x (7.50 +	
	+	0.2)-	8	x	1/4 x pi	Χ .	1.50 ^2}	19.5 m3
7) D J Dil.								13.5 113
7) Bored Pile	* Concrete							
	=	8 x	1/4 x pi	x	1.50	x	1.50	
				x (71.00		0.10)=	1005.2 m3
·				·			**	
	* Excavation Leng	th					:	
	N<20:	. =			56.0		8 = :	448.0 m
	20 <n<< td=""><td>40:</td><td></td><td></td><td></td><td>) x</td><td>8 = : 8 = :</td><td>56.0 m 64.0 m</td></n<<>	40:) x	8 = : 8 = :	56.0 m 64.0 m
	40 <n:< td=""><td></td><td></td><td></td><td>8.6</td><td>) x</td><td></td><td>04.0 M</td></n:<>				8.6) x		04.0 M
	* Excavation Volu	me 8 x	1/4 x pi	×	1.50	¥	1.50	
	-	0 ^	1/1×p1	x	71.0			1003.7 m3
8)Earthworks	* Excavation for fo	oundation					i	
	=	2.15 /		6 x{ (9.50	x	16.30)	
	+(13.8 x		6)+(+	13.8)	
		× (16.30	+	20.	6)=	465.4 m3	
·	* Excess Soil = Lea	an Concrete	+ Blinding	Stone	+ Footing		ne + Pile Occupie	d Volume
	Pile Occupied			8 x 0 x	pi /4 0.400	X =	1.50 5.65 m3	•
•	Excess Soil	x	1.0	· ·	0.400	=	248.00 m3	
	LACC33 0011							
	* Back Fill						217.4 m3	
9) Approach Slab						•		
	* Concrete							·
	=	12.94 x {		00 x	0.30	•	0.00	i i
	+(0.30 +		0)/		2 x	0.20 } 0.3	
	-	0.50 x x	U.S	50 / 2	2	× =	24.25 m3	
	* Lean Concrete	^		2			21.25 11.0	
	= (0.30 +	0.3	28 +	5.20)		
	ì	х	12.94		0.1	=	7.5 m3	
	* Asphaltic Joint							
	= {	0.30 × (02 +	0.06)/	2	
	+	0.30 x	0.0	02 } x	12.94	= .	0.23	
·	• r-	•						
	* Form A = {	0.30 ×	n	50 + (0.50	+	0.30)	
1	A = {	2.00 x		30 + (20 } x		+	0.50 x	
	/ x	12.94	٠.	, ^		=	6.93	
		=						

3 - 4 - 15

QUANTITIES FOR EARTHWORKS SLOPE PROTECTION

Bridge INTERCHANGE 2

Abutment A1

 h1
 h2
 h3
 h4
 h5
 h6
 d1
 d2

 8.33
 3.5
 2.9
 1.12
 1.62
 0.42
 14
 12

Block	l a i	ь	Dh	R	r	i L I	Sxq	W	Masonry	Blinding
	(m)	(m)	(m)	(m)	(m)	(m)	(m2)	(m)	(m3)	(m3)
1	10,160	6.538	4.830	8.349	0.000	9.645	63.213		18.96	6.32
2	12,000	12,000	0.600	20.349	8.349	12.015	270.668		81.20	27.07
3	3.560	2,225	1.780	23.241	20.349	3.396	116.216		34.86	11.62
4	14.000	12.000	0.600	1			168.210		50.46	16.82
5	1 14,000 1	2.225	1,780	i i		1	39,891		11.97	3.99
6	10.160	6.538	4.830	8.349	0.000	ì 9,645	63.213		18.96	6.32
7	12.000	12,000	0.600	20.349	8.349	12.015	270.668		81.20	27.07
8	3.560	2.225	1.780	23.241	20.349	3.396	116.216		34.86	11.62
9	1		1,200	i		i	4.320	86.978	1	Ī
Extra	'			i		1		77.895	332	111
	WOOD PILE		(m)	1	5219	i			1	l
Footing	BLINDING		(m3)	V=0.1*0.8*86.978	7.0	1				i
_	STONE MASO	ONRY	(m3)	V1=0.6*0.6*86.978	31.3			1		
	1		!	1		Geotextile	(m2)	·	350	
	1 .					PVC Pipe	(m)	į i	43	i
	i i	ΣSxq (block 2,4,7	') (m2) !	710	Excavation	(m3)	l	376	1
	T i		ΣSxq	(m2)	1108	Filling	(m3)		261	İ
	1		1	1				1	İ	<u> </u>

Abutment A

A2

h1	h2	h3	h4	h5	h6	d1	d2	
8.33	3.5	2.9	1.12	1.62	0.42	14	12	

									and the second second	
Block	i a ı	b	. Dh	; R :	r	L	Sxq	W	Маѕолгу	Blinding
	(m)	(m)	! (m)	(m)	(m)	(m) !	(m2)	(m)	(m3)	(m3)
1	10.160	6.538	4,830	8.349	0.000	9.645	63.213		18.96	6.32
2	12.000	12.000	0.600	20.349	8.349	12.015	270.668		81.20	27.07
3	3.560	2.225	1.780	23.241	20.349	3.396	116.216		34.86	11.62
4	14.000	12.000	0.600				168.210		50.46	16.82
5	14.000	2.225	1.780	:-		1	39.891		11.97	3.99
6	10,160	6.538	4.830	· 8.349	0.000	9.645	63.213		18.96	6.32
7	12.000	12,000	0,600	20,349	8.349	12.015	270.668		81.20	27.07
8	3,560	2.225	1,780	23.241	20.349	3.396	116.216		34.86	11.62
9	1		1.200			1	4.320	86.978		
Extra	1		1			1		77.895	332	111
	WOOD PILE		(m)		5219	1]
Footing	BLINDING		(m3)	IV≃0.1*0.8*86,978	7.0	i				
J	STONE MASO	ONRY	(m3)	V1=0.6*0.6*86.978	31.3	1				
	i I		1 7 7 7	(Geotextile	(m2)		350	Ī
·	1					: PVC Pipe	! (m)		43	
	i	ΣSxq	(block 2,4,7	7): (m2)	710	Excavation	(m3)	1	376	
	 	:	ΣSχο	(m2)	1108	Filling	(m3)		261	
	1 1					1				I

NOTES:

• INPUT VALUES : GRAY CELLS ; TOTAL VALUES : BOLD NUMBERS

* No. of Blocks : see drawing. Extra block used for calculation only.

h_i: Elevations (see drawing)

d_i: Distances (see drawing)

 a_i : Long edge of ellipse (or rectangle) : a_i =Dh $_i$ *stope $_i$

 b_i : Short edge of ellipse (or rectangle) : $b_i \text{=} Dh_i \text{*slope}_i$

Dhi: Height of cone (or truncated cone)

Ri: Average radius of lower ellipse: Ri=(Sai+Sbi)/2

r₁: Average radius of upper ellipse: r₁=(Sa₊₁+Sb₊₁)/2

 L_i : Generatrix of cone : L_i =sqrt(Dh_i^2 +(R_i - r_i)²)

Sxq_i: Area of cone's side (or plane before abutment):

Sxqj=3.14/4"(Rj+rj)"Lj for block 1,2,3,6,7,8

Sxq_i=a_i*sqrt(b_i²+Dh_i²) for block 4,5

Sxqg=(1.8+1.8+Dhg+2*Dhg)*Dhg/2 for block 9

W: Length of masonry's footing: Wo

 $W_9 \!\!=\!\! 2^* \! 3.14^* R_0 \! / 4 \! + \! a_5 \! + \! 2^* \! 3.14^* R_0 \! / 4$, and

W_{Ex}=2*3.14*R₂/4+a₅+2*3.14*R₇/4

Masonry_i≈ 0.3*Sxq_i

Blinding_i = 0.1*Sxq_i

Geotextile = Sxq3 +Sxq5 +Sxq8 +WEx*1

PVC Pipe = Wy/2

Wood Pile = Wo*0.8*25*3

Excavation = We*Sxge

Filling = Excavation-W9*Dh9*1.1

INTERCHANGE 2 FLYOVER BRIDGE:

QUANTITIES OF EARTHWORKS SLOPE PROTECTION OF 25M BEHIND HEAD WALL

ABUTMENT A1:

Block	В	L	S	Thick	Masonry	Blinding (T=0.1m)	
	m ·	m	m2	m	m3	m3	
10	10.80	25	270.01	0.30	81.00	27.00	
11	12.01	25	300.37	0.30	90.11	30.04	•
12	4.00	25	100.06	0.30	30.02	10.01	Geotextile (m2)
15	10.80	25	270.01	0.30	81.00	27.00	$= 2 \times (L + S12) =$ 250
16	12.01	25	300.37	0.30	90.11	30.04	PVC pipe (m)
17	4.00	25	100.06	0.30	30.02	10.01	$=2 \times L/2 \times 1m =$ 25
Total			1340.89		402.27	134.09	
	0.80	25	20.00	0.10		4.00	
Footing	0.60	25	15.00	0.60	18.00		
	Wood	pile ((m) = 2x	L x B13	$3 \times 3 \times 25 =$	3000.00	

	No	h	Dh	S	L	T	otal (m3)	
		m	m	m2	m	Excavation	Filling	
	5	1.62						$Excavation = 2 \times S \times L$
ı	6	0.42	1.2	4.32	25	216	150	Filling = Excavation - $2 \times 25 \times Dh \times 1.1$

ABUTMENT A2:

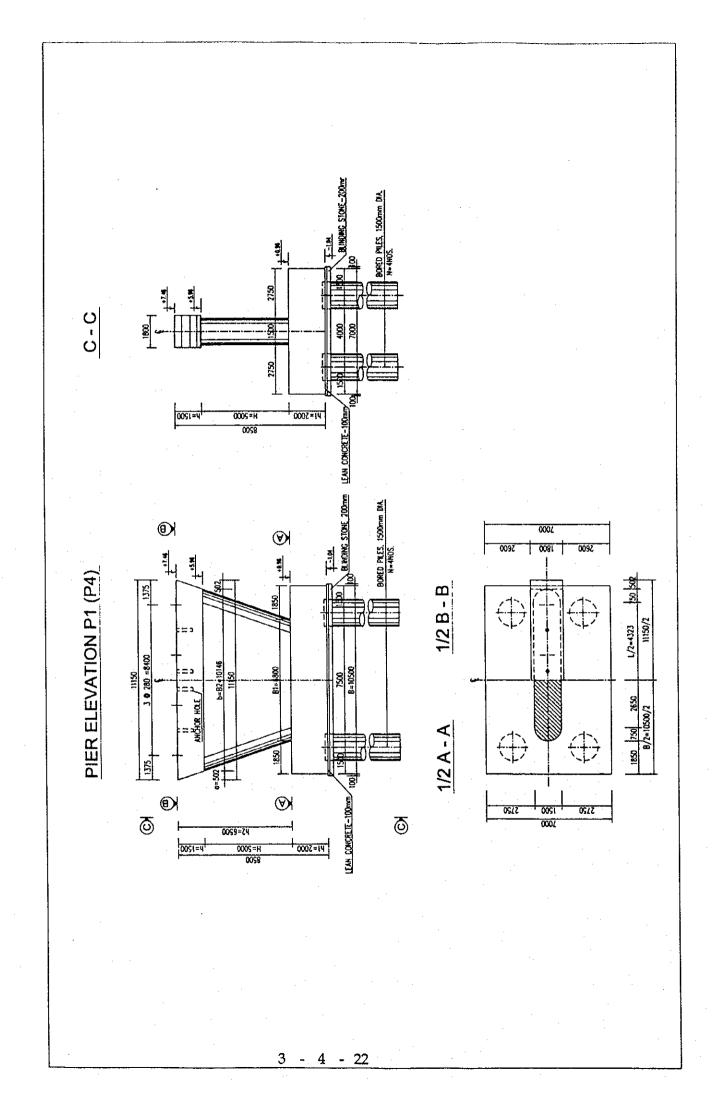
Block	В	L	S	Thick	Masonry	Blinding (T=0.1m)		
	m	m	m2	m	m3	m3		
10	10.80	25	270.01	0.30	81.00	27.00	·	
11	12.01	25	300.37	0.30	90.11	30.04		
12	4.00	25	100.06	0.30	30.02	10.01	Geotextile (m2)	4
15	10.80	25	270.01	0.30	81.00	27.00	= 2 x (L + S12) =	250
16	12.01	25	300.37	0.30	90.11	30.04	PVC pipe (m)	
17	4.00	25	100.06	0.30	30.02	10.01	$= 2 \times L/2 \times 1m =$	25
Total			1340.89		402.27	134.09		
	0.80	25	20.00	0.10		4.00		•
Footing	1			i				
	Wood	pile ((m) = 2x	L x B13	$3 \times 3 \times 25 =$	3000.00		

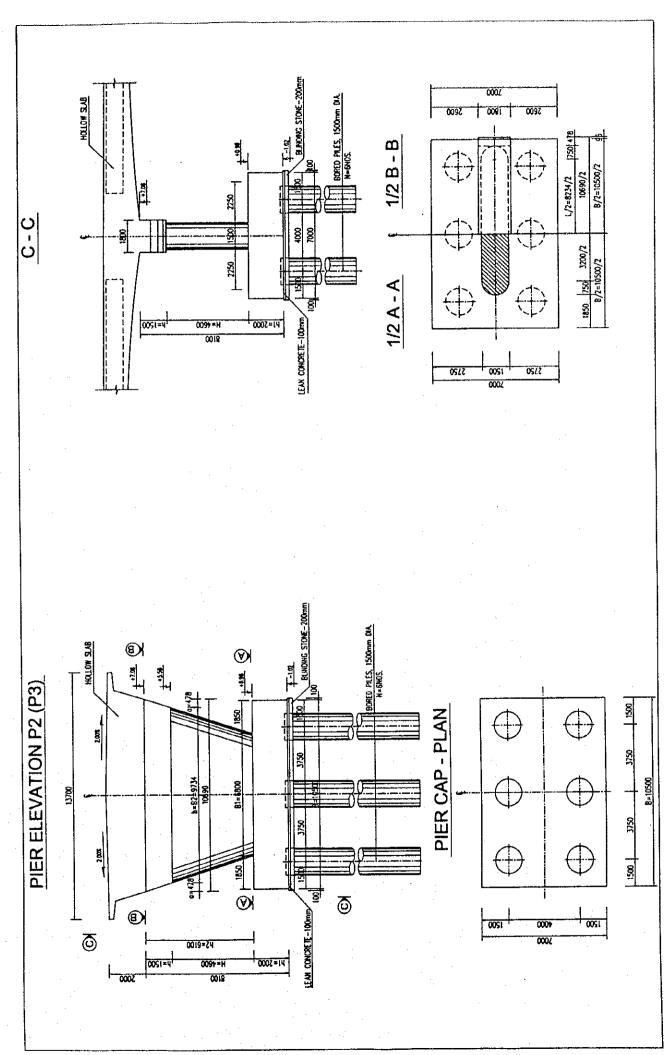
ſ	No	h	Dh	S	L	Т	otal (m3)	
		m	m	m2	m	Excavation	Filling]
Ī	5	1.62						$Excavation = 2 \times S \times L$
Ţ	6	0.42	1.2	4.32	25	216	150	Filling = Excavation - $2 \times 25 \times Dh \times 1.1$

LIST OF REINFORCEMENTS (FOR 1 ABUTMENT)

	DAMETER	LENGIH		UNITWEIGHT	WEIGHT	
TYPE	(mm)	(mm)	NUMBER	(kg/m)	(kg)	REMARK
A1	14	1803	167	.1.208	363.7	AVERACE
A2	14	14226	13	1.208	223.4	
A3	16	1837	52	1.578	150.7	
A4	14	14226	2	1.208	34.4	
A 5	14	720	56	1.208	48.7	
A6	16	760	56	1.578	67.2	
FI	25	10800	58	3.853	2413.5	
F2	25	7300	55	3.853	1547.0	
F3	25	8174	58	3.853	1826.7	
F4	25	4900	55	3.853	1038.4	
F5	20	8050	16	2.466	317.6	
F6	20	14750	16	2.468	582.0	
<i>1</i> 7	16	4670	81	1.578	596.9	
f8	20	18250	30	2.466	1350.1	
F9	20	15147	30	2.466	1120.6	
WI	22	7410	56	2.984	1238.2	
W2	22	5185	55	2.984	851.0	
w3	16	7205	56	1.578	636,7	
W4	16	14587	20	1.578	450.4	1
W5	14	1822	117	1.208	257.5	1
W6	14	15016	26	1.208	471.6	1
W7	16	1860	56	1.578	. 164.4	1
K1	22	6085	8	2.984	145.3	1
K2	22	2800	12	2,984	100.3	1
K3	22	3200	22	2.984	210.1	1
K4	25	9006	28	3.853	971.6	AVERAGE
K5	25	5787	16	3.853	356.8	1
K6	22	5185	24	2.984	371.3	1
K7	16	5120	4	1.578	32.3	1
K8	18	6900	10	1.578	108.9	1
K9	16	7280	8	1.578	91,9	1 .
K10	16	1754	46	1.578	127.3	1
KII	20	2250	14	2,466	17.7	1
K12	16	8850	28	1.578	391.0	AVERACE
K13	18	5115	24	1.998	245.3	
K14	10	756	208	0.617	97.0	1
K15	22	6051	18	2.984	325.0	AVERAGE
K16	25	2389	14	3.853	128.9	AVERAGE
	+	5981	18			AVERAGE
K17 K18	16	2389	14	1.998	215.1 52.8	
K19	20	3790	52	2,466	486.0	1
K20	10	726	56	0.617	25.1	1
K21	18	5882	2	1.998	23.5	1
	22	5952	2		1	┨
K22 K23	16	2251	56	2.984 1.578	35.5 163.4	-
	22	6085	8	2.984	145.3	-
K24		6015	8			
K25 R1	18	400~800	56	1.998	96.1 18.8	AVERACE
- KI	עו	1 400-000	1 30	0.617	1 10.0	USEINAGE
D10 :	140.9	(kg)		D20 :	3934.0 (kg)	
D14	1399.3	(kg)		022 :	3421.9 (kg)	
016 :	3043.9	(kg)		025 ;	8282.8 (kg)	4 - 4
D18 ;	580.0	(kg)			V-17	
		(kg)			•	
TOTAL :	20802.8	(A9)				

LIST OF REINFORCEMENT (FOR 1 APPROACH SLAB)


	DIAMETER	LENGTH OF BAR	U.WEICHT	- NUMBER	WEICHT
TYPE	(mm)	(mm)	(kg/m)	NUMBER	(Kg)
ASI	020	5850	2.466	126	1817.7
AS2	D16	6820	1.578	110	1149.1
AS3	016	6320	1.578	66	658.2
AS4	016	1200	1.578	66	125.0
AS5	D20	700	2.466	32	55.2
AS6	010	1580	0.617	32	31.2
AS7	010	519	0.617	330	105.7
			D20	1872.	9 kg
			D16	1932.	.3 kg
			010	135.	.9 kg
		:	TOTAL :	3942	.1 kg


LIST OF REINFORCEMENT (FOR 1 NOS BORED PILE L=71M)

TYPE	D(mm)	LENGTH OF	UNIT WEICTH	NUMBER	WEIGTH
		BAR (mm)	(kg/m)		(kg)
N1	028	12000	4.834	32	1856.3
N2	D25	12000	3.853	80	3698.9
N3	025	6100	3.853	16	376.1
. N4	022	4229	2.984	6	75.7
N5	022	4248	2.984	24	304.2
N5	010	152053	0.617	1	93.8
N7	D10	174681	0.617	1	107.9
N8	D10	1052968	0.617	1	649.7
ж9	D10	4105	0.617	94	238.1
NIO	016	1322	1.578	16	33.4
	D10	1089.5	kg	4	·
	D16	33.4	kg		
	022	379.9	kg		
	025	4075.0	kg		
	028	1856.3	kg		
	TOTAL	7434.1	kg		

QUANTITY TABLE OF PIERS

	ITEMS	····		UNIT	PIER	PIER	PIER	PIER	TOTAL
					P1	P2	P3	P4	
	NUMBER OF PILES	······		PILE	4.0	6.0	6.0	4.0	20
	TOTAL LENGTH OF BO	RED PILES	Ø 1500MI	m	300.0	450.0	450.0	300.0	1500
	CONCRETE CLASS D			m3	530.1	795.2	795.2	530.1	2651
		D28		kg	0.0	0.0	0.0	0.0	0
PILE			D25	kg	17666.0	26499.0	26499.0	17666.0	88330
	REINFORCEMENT	16≤D≤25	D22	kg	1622.4	2433.6	2433.6	1622.4	8112
			D16	kg	133.6	200.4	200.4	133.6	668
			TOTAL	kg	19422.0	29133.0	29133.0	19422.0	97110
		D10		kg	4524.0	6786.0	6786.0	4524.0	22620
		TOTAL		kg	23946.0	35919.0	35919.0	23946.0	119730
	CONCRETE CLASS E		m3	236.2	228.3	228.3	236.2	929	
		D28		kg	3929.0	7999.9	7999.9	3929.0	23858
	REINFORCEMENT		D25	kg	7606.0	4195.1	4195.1	7606.0	23602
			D22	kg	1872.9	1850.0	1850.0	1872.9	7446
		16≤D≤25	D20	kg	725.7	1694.0	1694.0	725.7	4839
•			D16	kg	2940.9	2961.8	2961.8	2940.9	11805
			TOTAL	kg	13145.5	10700.9	10700.9	13145.5	47693
			D12	kg	703.7	743.6	743.6	703.7	2895
PIER		D≤14	D10	kg	18.8	0.0	0.0	18.8	38
		1	TOTAL	kg	722.5	743.6	743.6	722.5	2932
		TOTAL		kg	17797.0	19444.4	19444.4	17797.0	74483
	FORM			m2	189.2	168.2	168.2	189.2	715
	SCAFFOLGING WOR	K		m2	306.4	287.2	287.2	306.4	1187
	SUPPORT			m3	84.8	57.6	57.6	84.8	285
	LEAN CONCRETE			m3	7.0	6.6	6.6	7.0	27
	BLINDING STONE	BLINDING STONE					13.3	14.0	55
	EXCAVATION			m3	520.3	516.5	516.5	520.3	2074
	FILLING		:	m3	347.7	343.8	343.8	347.7	1383

3 - 4 - 23

QUANTITY SURVEYING OF PIER

I, CONCRETE

1) BEAM

A1=1/2*a*h*2+b*h

V1=A1*1.8

2) COLUMN

 $A1=\pi^*1.5^2/4+(B1-1.5)^*1.5$

 $A2=\pi*1.5^2/4+(B2-1.5)*1.5$

V=1/2*(A1+A2)*H

3) FOOTING

A=B*7.0

 $V=A*2.0-1/4\pi*1.5^2*0.1*n$

II. FORM

1) BEAM

a1=1/2*a*h*2+b*h

A1=a1*2

 $A2=2*1.8*(a^2+h^2)^{1/2}$

 $A3=b*1.8-(L*1.5+\pi*1.5^2/4)$

A=A1+A2+A3

2) COLUMN

 $A=\pi*1.5*H+(B1+B2-1.5*2)*H$

3) FOOTING

A=(B+7)*2*2

III. SCAFFOLDING WORK

FRAMEWORK

1) H<4m

A=[(B+2)+(7+2)]*2*h1

2) 4m<H<30m

A=[(2*a+b+2)+(1.8+2)]*2*h2

IV. SUPPORT

ALLOWABLE LOAD

2.81*1.5+0.4=4.62tf/m2

4.62<8tf/m2

A1=1/2(2*H+h)*a*2

 $A2=B2*1.8-\{\pi*1.5^2/4+(B2-1.5)*1.5\}$

V1=A1*1.8

V2=A2*H

 $V3=\pi*1.5*H*(H/2)$

V=V1+V2+V3

V. LEANCONCRETE

1) CONCRETE

 $V = {7.2*(B+0.2)-1/4*\pi*1.5^2*n}*0.10$

2) FORM

A=(7.2+B+0.2)*2*0.10

VI. BLINDING STONE

 $V={7.2*(B+0.2)-1/4*\pi*1.5^2*n}*0.20$

VII. CAST-IN-PLACE-CONCRETE PILE

1) PILE DIMENTION

D=1.5m,Lm,nnos

2) CONCRETE

 $v1=1/4*\pi*1.5^2*L$ V1=v1*n

3) PILE HEAD TREAMENT

n(nos.)

4) EXCAVATION LENGTH

N<20(l1),20≤N≤40(l2),40≤N(l3) L1=56*n,L2=7*n,L3=12*n

5) EXCAVATED MATERIALS

v2=1/4*π*1.5²*(l1+l2+l3) V2=v2*n

VIII. EARTH WORK

1) EXCAVATION FOR FOUNDATION

B1=7+2.2=9.2m,B2=B+2.2 B3=B1+2*h,B4=B2+2*h,h=h1+h2 v1=1/6*h*{B1*B2+B3*B4+(B1+B3)(B2+B4)} v2=1/4*\pi*1.5^2*1.1*n V1=v1-v2

2) EXCESS SOIL

V = FOOTING v1=LEAN CONCRETE v2=BLINDING STONE v3=2.52*2*0.5=2.52m3(2.52 is column area) v4= $1/4*\pi*1.5^2*0.4*n$ V2=V+v1+v2+v3+v4

3) BACK FILL

V3=V1-V2

I.CONCRETE VOLUME

		P1	P2	Р3	P4
	h(m)	1.50	1.50	1.50	1.50
77.13.6	a(m)	0.50	0.48	0.48	0.50
BEAM	b(m)	10.15	9.73	9.73	10.15
	V1(m ³)	28.75	27.57	27.57	28.75
	n (nos.)	4	6	6	4
	H(m)	5.00	4.60	4.60	5.00
	B1(m)	6.80	6.80	6.80	6,80
	B2(m)	10.15	9.73	9.73	10.15
COLUMN	A1(m ²)	9.72	9.72	9.72	9.72
	A2(m ²)	14.74	14.12	14.12	14.74
	V(m³)	61.13	54.82	54.82	61.13
rooming	В	10.50	10.50	10.50	10.50
FOOTING	V(m ³)	146.29	145.94	145.94	146.29
TOTAL		236.2	228.3		236.2

II. FORM

II, I OIUII					
		P1	P2	P3	P4
	h(m)	1.50	1.50	1.50	1.50
·	a(m)	0.50	0.48	0.48	0.50
	b(m)	10.15	9.73	9.73	10.15
	L(m)	8.65	8.23	8.23	8.65
BEAM	A1(m ²)	31.94	30.64	30.64	31.94
	A2(m ²)	5.69	5.67	5.67	5.69
	A3(m ²)	3.53	3.40	3.40	3.53
	A(m²)	41.2	39.7	39.7	41.2
	H(m)	5.00	4.60	4.60	5.00
	B1(m)	6.80	6.80	6.80	6.80
COLUMN	B2(m)	10.15	7.80	7.80	10.15
٠.	A(m²)	93.29	75.04	75.04	93.29
POOTINIO	B(m)	10,50	10.50	10.50	10.50
FOOTING	A(m²)	70	70	7 0	70
TOTAL		204.5	184.7	184.7	204.5

III. SCAFFOLDING WORK

		P1(m ²)	P2(m ²)	P3(m²)	P4(m²)
В	(m)	10.50	10.50	10.50	10.50
a	(m)	0.50	0.48	0.48	0.50
b	(m)	10.15	9.73	9.73	10.15
h1	(m)	2.00	2.00	2.00	2.00
h2	(m)	6.50	6.10	6.10	6.50
H<4m		86	86	86	86
4m≤H≤30m		(=0.vi.a) 220.4	29 1. 201.2	201.2	220.4

IV.SUPPORT

		P1	P2	P3	P4
h	(m)	1.50	1.50	1.50	1.50
a	(m)	0.50	0.48	0.48	0.50
Н	(m)	5.00	4.60	4.60	5.00
B2	(m)	10.15	9.73	9.73	10.15
V1	(m ³)	9.67	9.21	9.21	9.67
V2	(m ³)	17.63	15.65	15.65	17.63
V3	(m ³)	58.90	49.86	49.86	58.90
V	(m^3)	86.2	74.7	74.7	86.2

V. LEAN CONCRETE-BLINDING STONE

		P1	P2	P3	P4
В	(m)	10.5	10.5	10.5	10,5
n	(nos.)	4	6	6	4
LEAN	concrete	7.0	6.6	6.6	7.0
	form	3.58	3.58	3.58	3.58
BLINDING S	STONE (m³)	14.0	13.3	13.3	14.0

VII.CAST-IN-PLACE-CONCRETE-PILE

		P1	P2	P3	P4
PILE	D(m)	1.5	1.5	1.5	1.5
DIMENTION	L(m)	75	75	7 5	75
	n(nos.)	4	6	6	4
CONCRETE	v1(m³)	132.5	132.5	132.5	132.5
CONCRETE	V1(m ³)	530.1	795.2	795.2	530.1
	N<20(l1)	56	56	56	56
. [L1(m)	224	336	336	224
EXCAVATION	20≤N≤40(l2)	7	7	7	7
LENGTH	L2(m)	28	42	42	28
	40≤N(l3)	12	12	12	12
	L3(m)	48	72	72	48
EXCAVATION	v2(m³)	132.5	132.5	132.5	132.5
MATERIALS	V2(m ³)	530.1	795.2	795.2	530.1

VIII. EARTH WORK

		P1	P2	P3	P4
	h1(m)	2	2	2	2
	h2(m)	0.5	0.5	0.5	0.5
EXCAVATION	h(m)	2.8	2.8	2.8	2.8
FOR	n(nos.)	4	6	. 6	4
FOUNDATION	B(m)	10.5	10.5	10.5	10.5
	B1(m)	9.2	9.2	9.2	9.2
	B2(m)	12.7	12.7	12.7	12.7
	B3(m)	14.8	14.8	14.8	14.8
	B4(m)	18.3	18.3	18.3	18.3
	v1(m ³)	528.1	528.1	528.1	528.1
·	v2(m³)	7.8	11.7	11.7	7.8
	V(m ³)	520.3	516.5	516.5	520.3
	FOOTING.V	146.29	145.94	145.94	146.29
	v1(m³)	7.0	6.6	6.6	7.0
EXCESS	v2(m ³)	14.0	13.3	13.3	14.0
SOIL	v3(m³)	2.52	2.52	2.52	2.52
	v4(m³)	2.8	4.2	4.2	2.8
	V2(m ³)	172.6	172.6	172.6	172.6
BACK FILL	V(m ³)	347.7	343.8	343.8	347.7

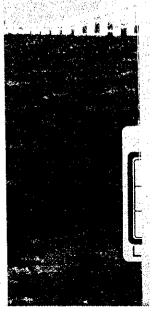
LIST OF REINFORCEMENT PEIR 1 & PIER 4 (FOR 1 PIER)

	DIAMETER	LENGTH	SKILPTO .	UNITWEIGHT	WEIGHT	REMARS
TYPE	(mm)	(mm)	NUMBER	(kg/m)	(kg)	KCMAKS
81	25	10882	8 .	3.853	335.4	
B2	25	10000	8	3.853	308.2	
83	12	1790	16	0.888	25.4	
84	16	10443	12	1.578	197.7	AVERAGE
B5	- 12	2020	15	0.888	28.7	
86	- 12	6788	81	0.888	488.2	
B7	12	3881	41	0.888	141.3	
88	12	5632	4	0.888	20.0	AVERACE
,C1	25	8280	116	3.853	3700.7	AVERACE
C2	16	20475	36	1.578	1163.1	AVERACE
C3	16	3778	132	1.578	786.9	
۴۱	28	14778	55	4.834	3929.0	
F2	22	11068	28	2.984	924.8	
F3	25	10199	83	3.853	3261.6	
F4	22	7565	42	2.984	948.1	
F5	20	10298	. 16	2.455	406.3	
F6	20	8095	16	2.466	319,4	
F7	16	4569	110	1.578	793.1	
R	10	. 30400	1	0.617	18.8	
TOTAL		17796.9 KG				
	D28	3929.0 KG				
	D25	7606.0 KG				
	! D22	1872.9 KG				
	020	725.7 KG		CC	ONCRETE : 236.2 N3	
	D16	2940.9 KG				
	012	703.7 KG				
	Dio	18.8 KC			٠	

LIST OF REINFORCEMENT PIER 2 & PIER 3 (FOR 1 PIER)

	DIAMETER	LENGTH		UNITWEICHT	WEICHT	REMARS
TYPE	(mm)	ं (तक्त)	NUMBER	(kg/m)	(kg)	KEWAN3
B1	12	10426	8	0.888	74.1	
82	16	9600	8	1,578	121.2	
83	12	1785	16	0.888	25.4	
84	16	10012	12	1,578	189.6	AVERACE
85	12	2020	16	0.888	28.7	
86	12	6748	77	0.888	461.4	
B7	12	3850	39	0.888	133.3	
88	12	5826	4 .	0.888	20.7	AVERACE
В9	20	2550	154	2.466	958.4	
C1	25	9386	116	3.853	4195.1	AVERACE
C2	16	20036	34	1.578	1075.0	AVERAGE
C3	16	3764	126	1.578	748.4	
f1 ·	- 28	15069	55	4.834	4006.4	
F2	22	11065	28	2.984	924.5	
F3	28	10199	81	4.834	3993.5	
F4	22	7565	41	2.984	925.5	
£5	20	10295	16	2.465	406.2	
F&	. 20	8095	16	2.466	319.4	
F7	16	4601	114	1,578	827.7	
TOTAL		19444.3 KG		-		
	D28	7999.9 KG				
	025	4195.1 KG		CONC	RETE : 228.3 M3	
	D22 ·	1850.0 KG				
	D20	1694.0 KG				
	D16	2961.8 KG				
	012	743.6 KG				

LIST OF REINFORCEMENT (FOR 1 NOS BORED PILE L=75M)


TYPE	D(mm)	LENGTH OF BAR (mm)	UNIT WEIGTH (kg/m)	NUMBER	WEIGTH (kg)
NI	D25	12000	3.853	84	3883.8
₩2	025	9875	3.853	14	532.7
н3	D22	4248	2.984	32	405.6
N4	010	152053	0.617	1	93.8
พ5	D10	182464	0.617	1	112.6
N6	010	1128994	0.617	- 1	696.6
N7	D10	4105	0.617	90	228.0
N8	016	1322	1.578	16	33.4
	D10	1131.0	kg		
	D16	33.4	kg		
	D22	405.6	kg		
	D25	4416.5	kg		
	TOTAL	5986.5	kg		

INTERCHANGE 2 FLYOVER BRIDGE

SUMMARY OF QUANTITY FOR INTERCHANGE 2 FLYOVER BRIDGE

					SUPER		MISCELLA	MISCELLANEOUS WORKS		
<u> </u>	ITEMS	LIND	ABUTMENTS	PIERS	STRUCTERE	DRAINAGE	IGHTING	2	PAVAMENT	TOTAL
								RAILING		
	CLASS C	m3			1674					1674
	CLASS D	m3	2010	2651						4661
CONCRETE	CLASSE	m3	786	626			1	69		1785
	CLASS G	m3	34	27						62
PC - STEEL	12 \$12.7	E			3185					3185
SHEATHING OF CAB	SHEATHING OF CABLES 12S12.7 Ф80/85mm	ω			3185					3185
ANCHORAGE CABLES 12S12.7	S 12S12.7	set			48					48
	25 <d≤32< td=""><td>kg</td><td>29701</td><td>23858</td><td>0</td><td></td><td></td><td></td><td></td><td>53559</td></d≤32<>	kg	29701	23858	0					53559
FIKON CO CONTO	16≤D≤25	kg	117948	144803	102754		221			365726
KEINLOKCEMEIN	DS14	kg	20786	25552	27649			10510		84497
	TOTAL	kg	168435	194213	130403		221	10510		503782
FORM WORK		т2	509	715	2089		4	454		3867
SCAFFOLDING WORK	Х	m2	1146	1187	2723					5056
SUPPORT		т3	<i>L</i> 1	285	11682		-			11984
EXPANSION JOINT	100M	m.	56							26
BEARING	700x350x50	set	8	8						16
ANCHORAGE BAR	Ф 80 mm	set	8	∞						16
	Ф 50 mm	æ	136							136
PVCPILE	Ф 100 mm	m					265			265
	Ф 200 mm	E				. 62				62
RAILING		m						287		287
LIGHTING POLE		aet					7			7
DRAINAGE		set				20				20
DAVENT	WATERPROOFING	m2							1723	1723
	ASPHALT CONCRETE	m2							1723	1723
GEOTEXTILE		m2	1200							1200
STONE MASONRY		m3	1469							1469
BLINDING AGGREGATE	TE	m3	490							490
BLINDING STONE		m3	66	55						94
WOODEN PILE, L=3M	4	E	8219							8219
FOOTING OF SLOPE PROTECTION	PROTECTION	Œ	274					-		274
EXCAVATION GROUND	QN	т3	2115	2074						4188
FILLING GROUND		m3	1257	1383						2640

