Checking Stress at service stage Load Combinations for Checking Stress at service stage

	700	11 NOTTANIAMOO	11	COM	COMBINATION 12	12	COM	COMBINATION 13	113
	I on the	NIOTT WALL	Factor	Load type	vpe	Factor	Load type	ype	Factor
		الله الله الله الله الله الله الله الله	100	Girder Selfweight G_DC	zht G_DC	1.00	Girder Selfweight G_DC	ght G_DC	1.00
	Clinder Selfweight S D	Sur C_D	100	Slah+Dia. Selfweight S_D	veight S_D	1.00	Slab+Dia. Selfweight S_D	veight S_D	1.00
	State Dailing DW	Triging 1	1.00	Surface + Railings DW	ngs DW	1.00	Surface + Railings DW	ngs DW	1.00
	Sunace Man	1163 CT	080	Max. Live Load LL MAX	d LL MAX	00.0	Max. Live Load LL_MAX	H LL_MAX	0.00
	Min Live Load LL MIN	a ce_amax	0.00	Min. Live Load LL_MIN	TL_MIN	0.80	Min. Live Load LL_MIN	ILL_MIN	00:0
	Max Impact IM MAX	M MAX	0.80	Max. Impact IM_MAX	M_MAX	0.00	Max. Impact IM_MAX	M_MAX	0.00
	Min Impact IM MIN	Z	0.00	Min. Impact IM_MIN	MIN	08.0	Min. Impact IM_MIN	MIN_	0.00
	Prestress PS)	1.00	Prestress PS		1.00	Prestress PS		1.00
Cockos	EX	V(T)	M(T.m)	N(T)	V(T)	M(T.m)	N(T)	V(T)	M(T.m)
35511011	75,50						-		
SEC.1	633.99	32.24	7.68	633.99	20.06	-5.35	633.99	20.41	-1.10
SEC-2	633.99	30.06	-18.01	633.99	18.26	-27.21	633.99	18.62	-26.79
SEC.3	644.24	17.56	74.65	641.24	4.35	27.33	644.24	6.43	27.71
SEC 4	653.03	18.10	93.26	653.03	4.99	36.10	653.03	7.41	37.05
SEC-5	661.26	16.20	123.20	661.26	3.12	45.14	661.26	6.49	18.61
SEC-6	661.23	13.25	189.62	661.23	3.44	92.58	661.23	6.77	96.26
SEC-7	656.44	1.27	221.06	656.44	-8.94	115.73	656.44	-3.83	120.96
SEC-8	661.23	-3.44	189.62	661.23	-13.25	92.58	661.23	-6.77	96.26
SEC-9	661.26	-3.12	123.20	661.26	-16.20	15.14	661.26	61.9-	18.61
SEC-10	653.03	-1.99	93.26	653.03	-18.10	36.10	653.03	-7.41	37.05
SEC-11	641.24	-4.35	74.65	644.24	-17.56	27.33	644.24	-6.43	
SEC-12	633.99	-18.26	-18.01	633.99	-30.06	-27.21	633.99	-18.62	`.;
SEC-13	633.99	-20.06	3.20	633.99	-32.24	-5.35	633.99	-20.41	-1.10

Stress checking at service stage (AASHTO 5.9.4.2)

		COMBIN	COMBINATION 11			COMBINATION 12	ATION 12			COMBIN	COMBINATION 13	
Section	$\sigma_i(T/m^2)$	Checking	$\sigma_b(T/m^2)$ Checking	Checking	$\sigma_{\rm t}({ m T/m}^2)$	Checking	$\sigma_{\rm b}({ m T/m}^2)$	Checking	$\sigma_1(T/m^2)$	Checking	$\sigma_{ m P}({ m L/m}^2)$	Checking
SEC-1	387.71	8 Y	367.90	ÖK	375.93	OK	389.74	Ϋ́	379.78	Q	382.61	Q X
SEC-2	387.31	OX	434.91	Š	379.00	Š	450.91		379.38	ð	450.18	O X
SEC-3	640.99	OK	425.95	ð	601.79	Α	523.06		602.11	Ŋ	522.29	O X
SEC-4	664.22	O X	396.12	Α̈́	616.93	š	513.15		617.71	ð	511.21	OK
SEC-5	696.12	Š	343.40	S S	631.70	X	502.47		634.56	ŏ	495.39	O K
SEC-6	750.35	O XO	210.28	8 8	670.54	X	406.88		673.58	ŏ	399.41	OX
SEC-7	771.83	OK	142.56	ð	685.25	ð	355.81		689.55	OK	345.22	O X
SEC-8	750.35	O X	210.28	Š Š	670.54	ŏ	406.88		673.58	Š	399.41	O X
SEC-9	696.12	Q	343.40	Š	631.70	S S	502.47		634.56	Š	495.39	Q X
SEC-10	664.22	OK	396.12	S S	616.93	Š	513.15	_	617.71	Ş	511.21	OK
SEC-11	640.99	Š	425.95	ŏ	601.79	Š	523.06	S S	602.11	ŏ	522.29	O X
SEC-12	387.31	X	434.91	Š	379.00	Š	450.91	Ş	379.38	Ş	450.18	Q X
SEC-13	383.66	Š	375.41	Š	375.93	Ş	389.74	S S	379.78	S S	382.61	Š
1.5												

Horizontal Shear at the interface between girder and deck slab (AASHTO 5.8.4):

	SEC.1	SEC-2	SEC-3	SEC-4	SEC-5	SEC-6	SEC-7	SEC-8	SEC-9	SEC-10	SEC-11	SEC-12	SEC-13
Section						1707	1703	1782	1657	1542	1475	1155	1076
d _s (mm)	1076	1155	1475	1542	/691	70/1	2	70.77					
Interface Shear(N):		9	Oacocc	110471	165110	73982	0	-73982	-165110	-210674	-239289	-320848	-349173
Girder Selfweight G_DC	349173	202200	153657	130138	108891	18396	0	-18396	168891-	-139138	-153657	-207799	-218990
Slab+Dia. Selfweight S_D	218990	66//07	750551	68669	30604	21850	-37563	-21850	-30604	69989-	0#698-	-149699	-163783
Surface + Railings DW	165/85	105162	359001	98500	89510	59694	17050	30638	31034	22344	19122	3279	3218
Max. Live Load LL_MAX	109036	02401	10122	20207	-31034	-30638	-47050	-59694	-89510	-98500	-102638	-105463	-109036
Min. Live Load LL_MIN	-5218	5/76-	22.07.0	2050E	29538	19699	15526	10110	10241	7373	6310	1082	1062
Max. Impact IM_MAX	35982	54805	0.000	7373	10211	-10110	-15526	-19699	-29538	-32505	-33870	-34803	-35982
Min. Impact IM_MIN	-1062	7801-	0100-	C/C/-	17766	103500	25013	103179	-263330	-388764	151151	-673986	-727666
Total	876964	818612	616394	/84646	75057	120277	921001	153855	-123652	-549487	-616394	-818612	+96928
Min	727666	673986	151151	388764	263330	6/*COT	201001-	1000	1 101	1862	71117	2848	3061
Art required (mm2)	3061	2848	2107	1862	1401	999	710	000		7001	3		
6		2076	2072	100	477	924	924	924	924	924	3695	3695	3695
Area of Stirrups (mm*)	5695	2000	0000	6	00x9r1CD	(D)148/300)	(D14@300)	(D14 6300)	(D149300)	(D14§300)	(D14@150)	(D144/150)	(D[4&I20)
	(D14@150)	(0018+101)	facientian.	1	22.2	6371	6371	6371	6371	6371	6371	6371	6371
Area of Dowel bars (mm ²)	6371	6371	63/1	1/60	02/1	1 /20	200		(0)21 B (0) C (0)	(12) 181 5(1)	(D21&15(D)	(D21@150)	(1)24 4:150)
	(1)24 @ 150)	(D24ē150)	(1)246/15(1)	(1)248	(D24@150)	(D24@150)	(1)248150)	(051947(1)	(0519470)	7005	75001	10066	10066
Total Connector Area (mm ²)	10066	10066	10066	7295	7295	7295	2,727	CK7/	C67/	C47/	2000		•
	Š	OK	ŏ	X	OK	OK.	OK	OK.	OK	OK	ΟĶ	OK	OK
Checking													

Design of Deck Slab

Sumary of Bending Moment:

Bending Moment due to Live Load:

- (a) Continuous Slab
 - 1) Effective Span Length

1.700 m

2) Load

10.000 T

- 3) Impact Factor IM
- 33%
- 4) Positive Moment
- M=0.8*(1+IM)*(0.12S+0.07)

2.92 T.m/m

- 5) Negative Moment
- M=-(1+IM)*(0.15S+0.125)*

-5.05 T.m/m

- (2) Cantilever Slab
 - 1) Effective Span Length

0.100 m < 0.5 m --> ignore

2) Load

10.000 T

- 3) Impact Factor IM
- 33%
- 4) Negative Moment

M = 0.00 T.m/m

Bending Moment due to Self-weight of Slab:

Section

Α

В

С

Bending Moment (T.m)

-0.152

0.152

-0.150

Bending Moment due to Asphalt Concrete:

Section

A -0.050 В 0.050 C -0.030

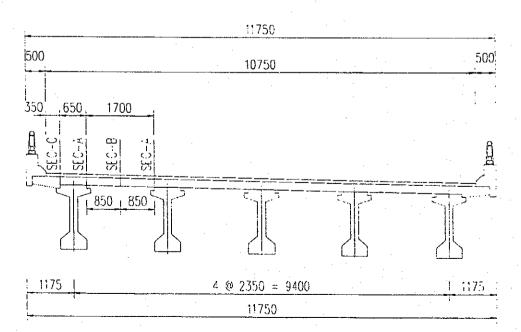
Bending Moment due to Parapet & Railings:

Section

Α

В

С


Bending Moment (T.m)

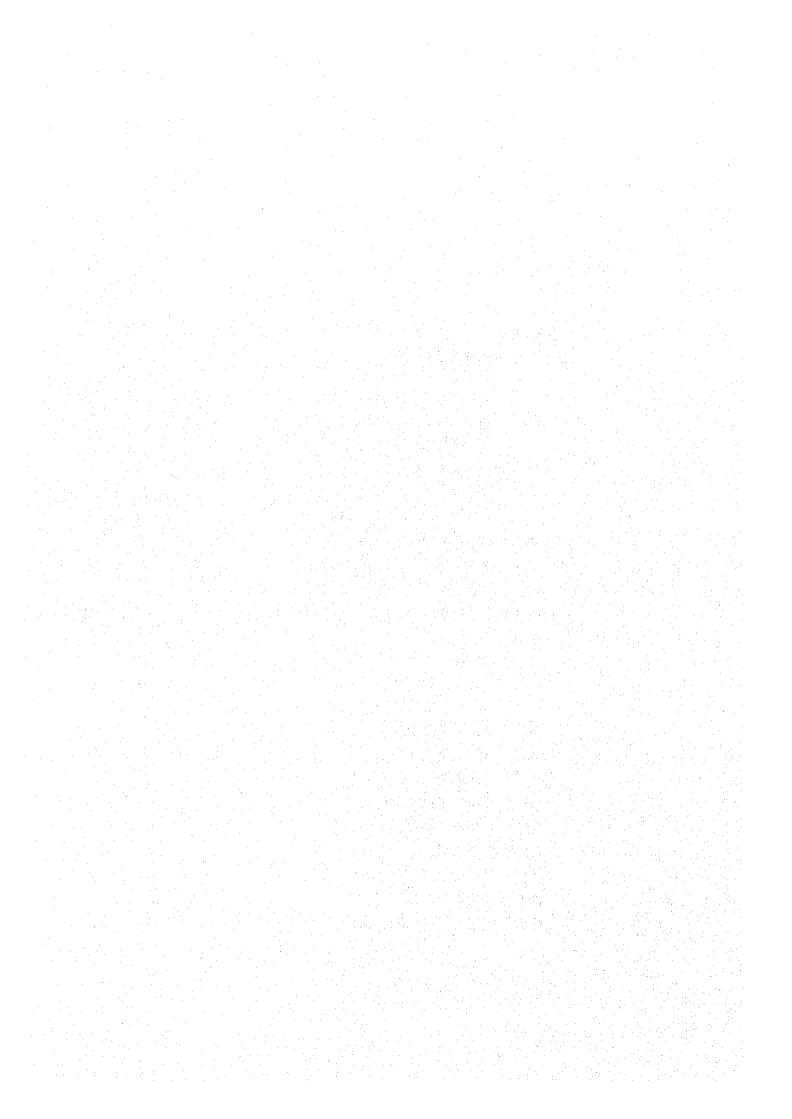
Bending Moment (T.m)

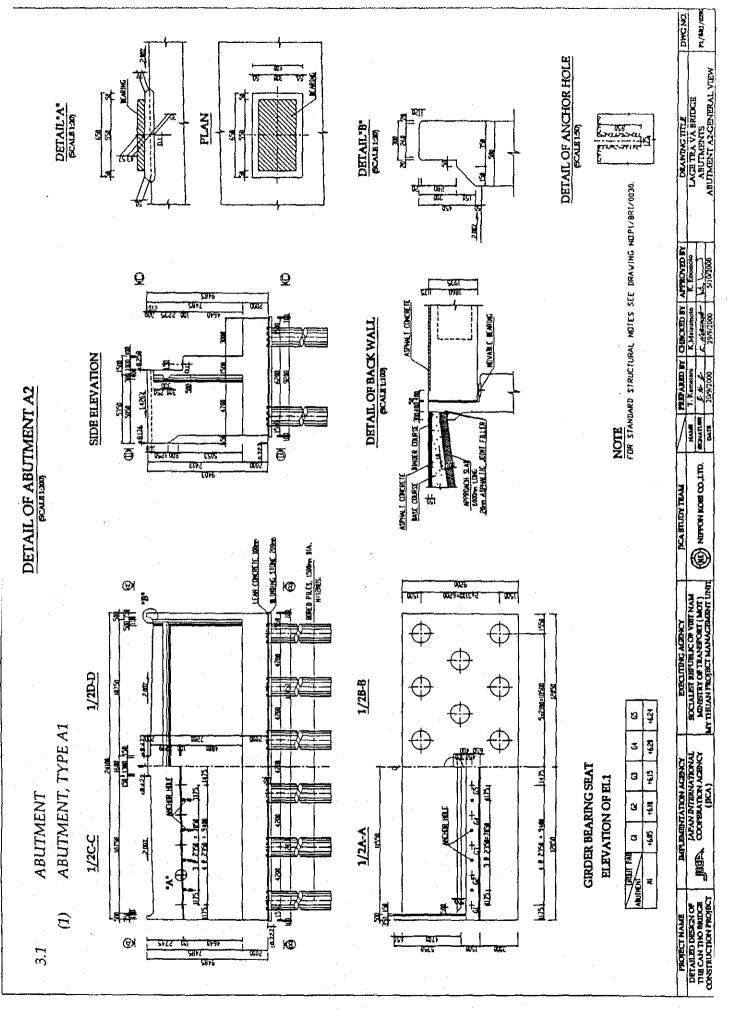
0.000

0.000

-0.424

Checking Nominal Flexural Strength of Deck Slab (Article 5.7.3.2.2 AASHTO)


				Section A	Section B	Section C
	Sectional Properties	bepth of Slab Width of Slab	H ds	210 mm 1000 mm	210 mm 1000 mm	210 mm 1000 mm
		Area of Tensile Reinforcement	A_{st}	1885 mm ²	1885 mm²	1885 mm^2
		Distance from extreme compressive fibre to centroid of Tensile Reinforcement Area of Compressive Reinforcement	d _{st} A _{sc}	162 mm 0 mm²	162 mm 0 mm²	162 mm 0 mm²
		Distance from extreme compressive fibre to centroid of Compressive Reinforcement dsc	ر د.	min 8 †	148 mm	
TT 0.	Calculation of Mr	Stress block factor	β	0.76	0.76	0.76
140		Distance from extreme compressive fibre to the Neutral Axis Depth of equivalent stress block Nominal Resistance Floxural Resistance factor	o Min	28 mm 22 mm 111,144,141 N.mm	28 mm 22 mm 111,144,141 N.mm	28 mm 22 mm 111,144,141 N.mm
		Factored Resistance	Mr	100,029,726 N.mm	100,029,726 N.mm	100,029,726 N.mm
	Checking	Factored Bending Moment due to External Loads	Mu	91,089,350 N.mm ÖK	53,663,150 N.mm OK	7,617,528 N.mm OK



Chapter 3

DESIGN SUMMARY OF SUBSTRUCTURES & FOUNDATIONS

3.1		ABUTMENT	II - 3 - 2
	(1)	ABUTMENT, TYPE A1	II - 3 - 2
	(2)	ABUTMENT, TYPE A2	II - 3 - 9
	(3)	ABUTMENT, TYPE A5	II - 3 -17
	(4)	ABUTMENT, TYPE A6	II – 3 - 24
	<i>(5)</i>	ABUTMENT, TYPE A8	II - 3 - 31
	(6)	ABUTMENT, TYPE A2-DP	II - 3 - 38
	(7)	ABUTMENT, TYPE A3-DP	II - 3 - 45
	(8)	ABUTMENT, TYPE A7-DP	II - 3 - 52
_	(9)	ABUTMENT, TYPE A9-DP	II – 3 – 59
3.2		PIERS	II - 3 - 66
	(1)	PIER, TYPE P2	II - 3 - 66
	(2)	PIER, TYPE P5	II - 3 - 76
	(3)	PIER, TYPE P8	II - 3 - 85
	(4)	PIER, TYPE P9	II - 3 - 95
	(5)	PIER, TYPE P11	II - 3 - 105
	(6)	PIER, TYPE P15	II - 3 - 115
	(7)	PIER, TYPE P16	II - 3 - 124
•	(8)	PIER, TYPE P3-DP	II - 3 - 133
	(9)	PIER, TYPE P6-DP	II - 3 - 142
	(10)	PIER, TYPE P9-DP	II - 3 – 152
	(11)	PIER, TYPE P12-DP	II – 3 - 162

2. LOAD COMBINATIONS LARGE TRAVA ABUTMENT A2 (H=9.2 M)

... !!

-0.01 m

Abutment DC 1487 T

Ŀ			Pz			¥			My		Notes
SON	llems	ו≃ו	n<1	5	n=1	N 1	14	n=1	n<1	- <u>\$</u>	
	Permanent load		{					···· -			
_	Superstructure - DC (n=0.9,1.25)	330	297	413		•		182,	163	227	
8	2 Wearing surface - DW (n=0.65,1.5)	33	21	50				18	12	27	
ო	Abutment - DC (n=0.9,1.25)	1,487	1,338	1,859				-17	-15	-21	
4	Horizontal earth pressure - EH (n=0.9,1.35)				525	379	872	1,610	1,163	2,674	
s	Horizontal earth pressure - EAE (n=0.9,1.35)	-		-	099	487	1,074	2,023	1,495	3,295	
ဖ	6 Vertical earth pressure - EV (n=0.9,1.35)	1,076	896	1,452				-2,259	-2,033	-3,050	
	Transient Loads										
7	Live load - LL(n= 0.5, 1.75)	157	79	275			·	86	43	151	
<u> </u>	a- Main load	104	52	182				22	29	100	
	b- Sub load	53	27	83	-			29	15	51	
80	Dynamic load allowance - (M (n=0.5,1.75)	52	26	91				28	14	50	
	a- Main load	34	17	09				19	6	33	
	b- Sub load	17	6	31		-		10	5	17	
6	Live load surcharge - LS (n=0.9,1.35)				9	43	5	276	200	459	The state of the s
9	10 Braking force - BR (n=0.5,1.75)				19	0	33	190	95	333	25% of Japanese Load - p1
=	11 Friction force - FR (n=1)										f=0.05
	a- Dead load				0			0			
	b- Dead load + Live load				0			0			
12	12 Earthquake - EO (n=1)				215			675			12% of Dead load

Load combinations	Pz	Ť	My
	4139	1005	850
2	2,625	972	1,260
3	4,139	389	-1,586
4	3,878	1,398	1,764
,	2,729	1,398	2,708

Combination 1	1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b)
Combination 2	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)
Combination 3	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b)
Combination 4	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ
Combination 5	0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ

LARGE TRAVA - A2

Pile Type

 $Dia = 1500 \text{ mm} \quad Length = 58.0 \text{ m}$

Bearing Capacity

Qs = 12756 kN

Qult = 18057 kN

Longitudinal direction

Load Combination	Displacemen	ntδ(mm)	Bearing Ca	pacity (kN)	Uplift Capacit	ty (kN)	Remarks
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable	
Strength I-1	12.2	30	4616	7963	2149	-5757	OK
Strength I-2	12	30	3468	7963	823	-5757	OK
Strength 1-3	3.6	30	3470	7963	3295	-5757	OK
Extremme Event I-1	17.2	20	5056	7963	1282	-5757	O.K
Extremme Event I-2	17.8	20	4396	7963	64	-5757	OK

WALL

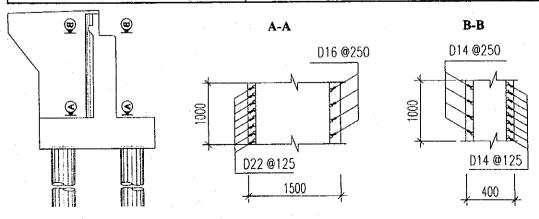
Section A-A

(h = 150 cm, b = 100 cm)

	M	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 30 cm 2 (D=2.2cm)	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm)	4 Nos)
1	460	612			OK	ρ s = As/Ac =	0.0020
2	434	578			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	203	270	1363	1422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	590	785			OK	c/de =	0.04
5	598	795			OK	c/de < 0.42	O.K

Section B-B

(h = 40 cm, b = 100 cm)


Section D-D		(11-10	ciii, o	100 0111)			
	М	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 12 cm 2 (D=1.4cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm.	, 4 Nos)
1	54	72			OK	ρ s = As/Ac =	0.0031
						ρ min = 0.03 f'c/fy =	0.0018
			98	98		$\rho_s > \rho_{min}$	O.K
						c/de =	0.05
						c/de < 0.42	O.K

FOR SERVICE LIMIT STATE

Cracking

	М	fsa	fs	0.6·f'y	fsa < 0.6 · f'y
Combination	(kN·m)	(MPa)	(MPa)	(MPa)	
l	72.28	159.4	98.8	229.5	OK

	Actual		A	llowable		Remark
fc tensile	=	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	=	3.03 (MPa)	ОК
fc compress	= .	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	ОК
fs	=	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK

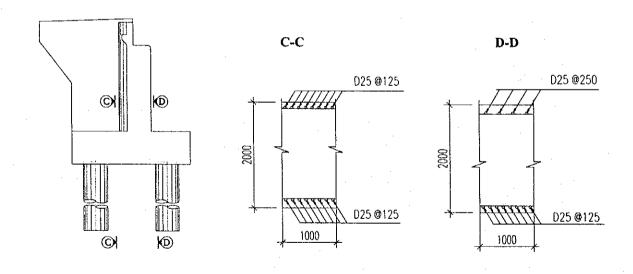
FOOTING

B abutment

24.10 (m)

SECTION C-C TOP FIBRE

(h = 20)	0 cm,	b =	100 cm	}
----------	-------	-----	--------	---


	М	1.33M	1.2Mcr	Mr= ϕ Mn	1.33M <	As = 39 cm 2 (D=2.5cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm)	, 8 Nos)
1	346	460	-		OK	ρ s = As/Ac =	0.0020
2	847	1126			OK	ρ min = 0.03 fc/fy =	0.0018
3	0	0	2422	2363	OK	ρ s > ρ min	O.K
4	734	977			OK	c/de =	0.00
5	1187	1578			ОК	: c/de < 0.42	O.K

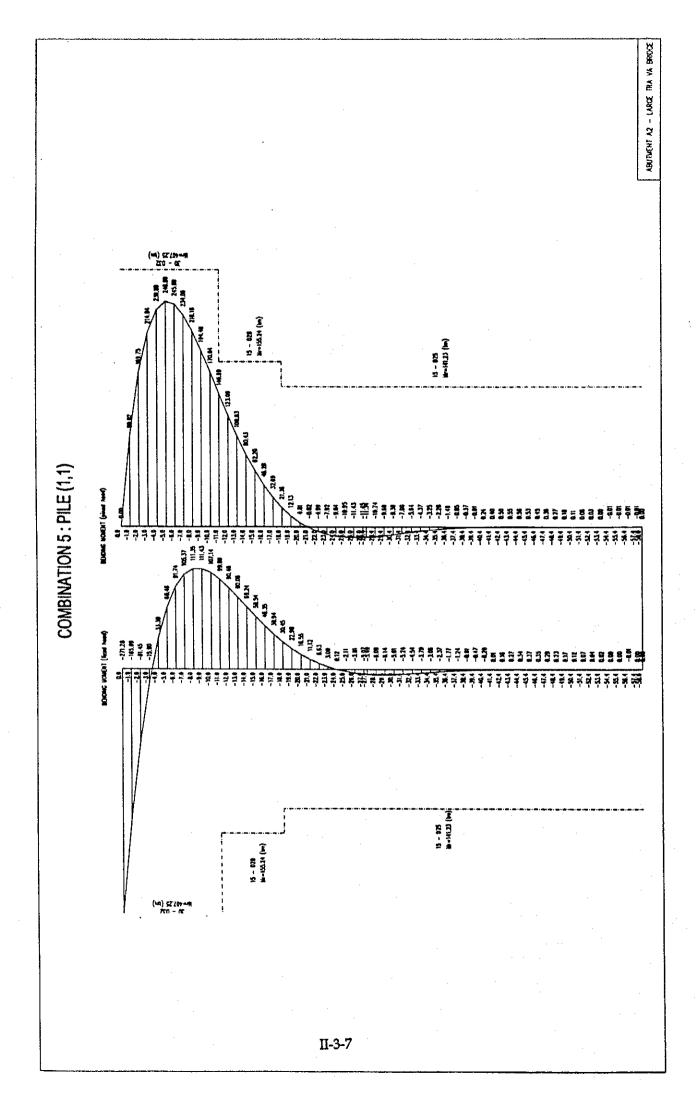
SECTION C-C BOTTOM FIBRE (h = 200 cm, b = 100 cm)

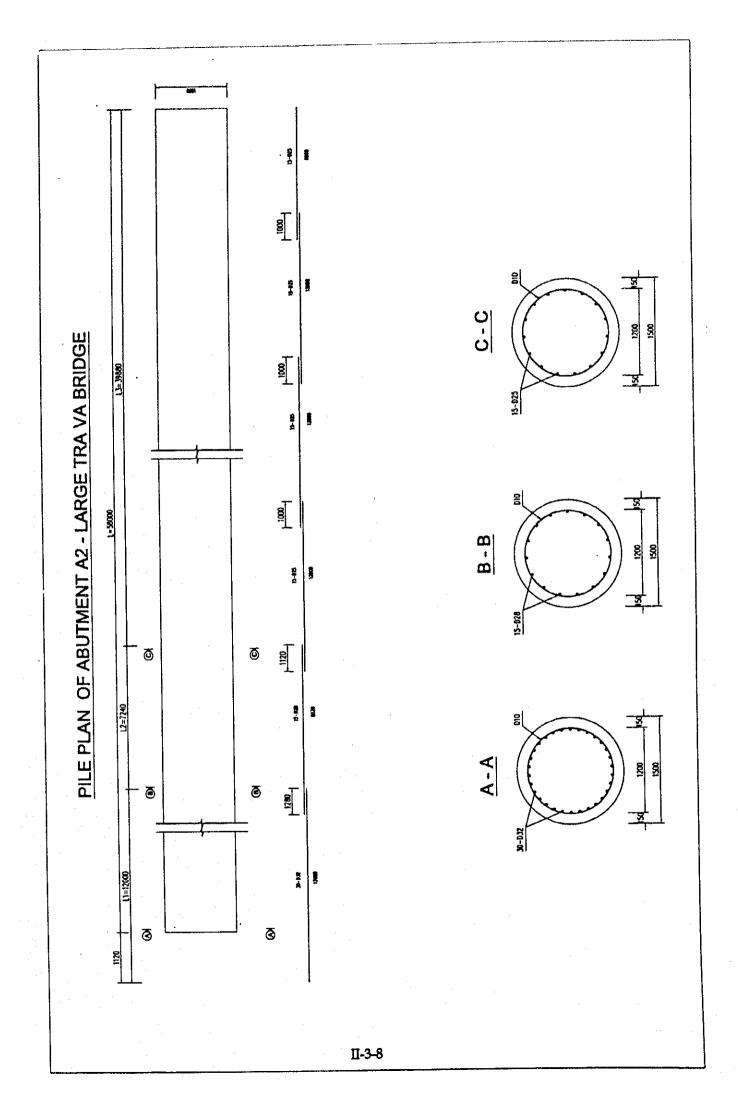
ODOTION C C DO			(200	·	100 0,		
	M	1.33M	1.2Mcr	Mr=¢ Mn	1.33M <	As = 39 cm 2 (D=2.5cm)	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm.	8 Nos)
1	1085	1443			OK	ρ s = As/Ac =	0.0020
2	664	883			OK	ρ min = 0.03 fc/fy =	0.0018
3	571	760	2422	2363	OK	$\therefore \rho s > \rho \min$	O.K
4	1282	1705			OK	c/de =	0.00
5	1080	1436			OK	: c/de < 0.42	O.K

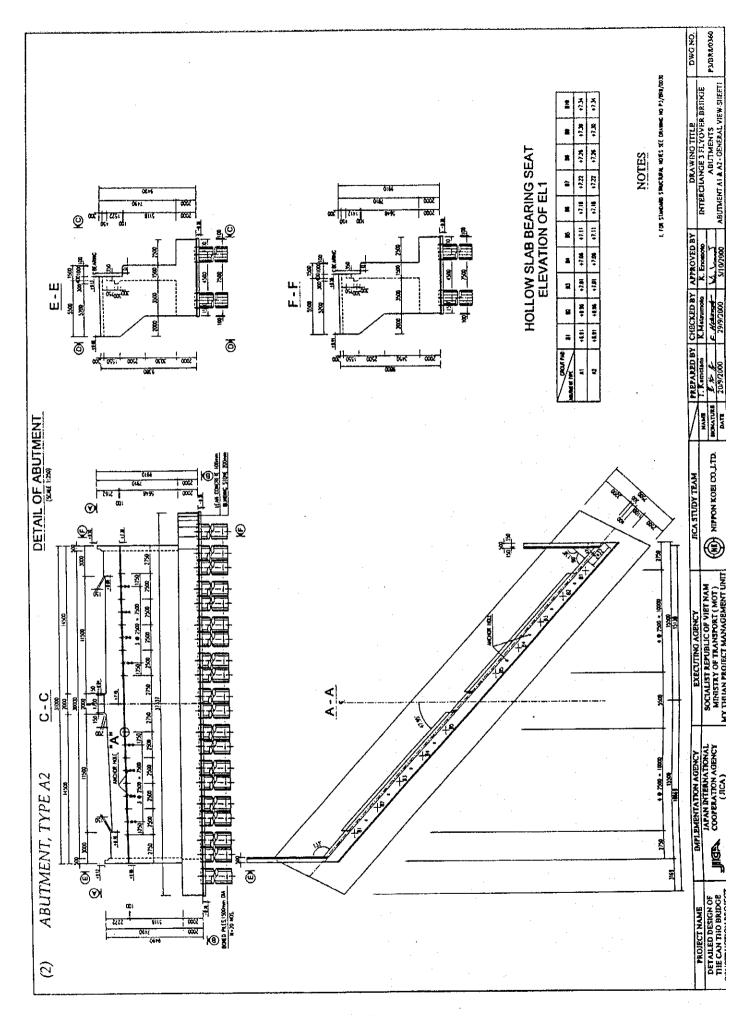
SECTION D-D BOTTOM FIBRE

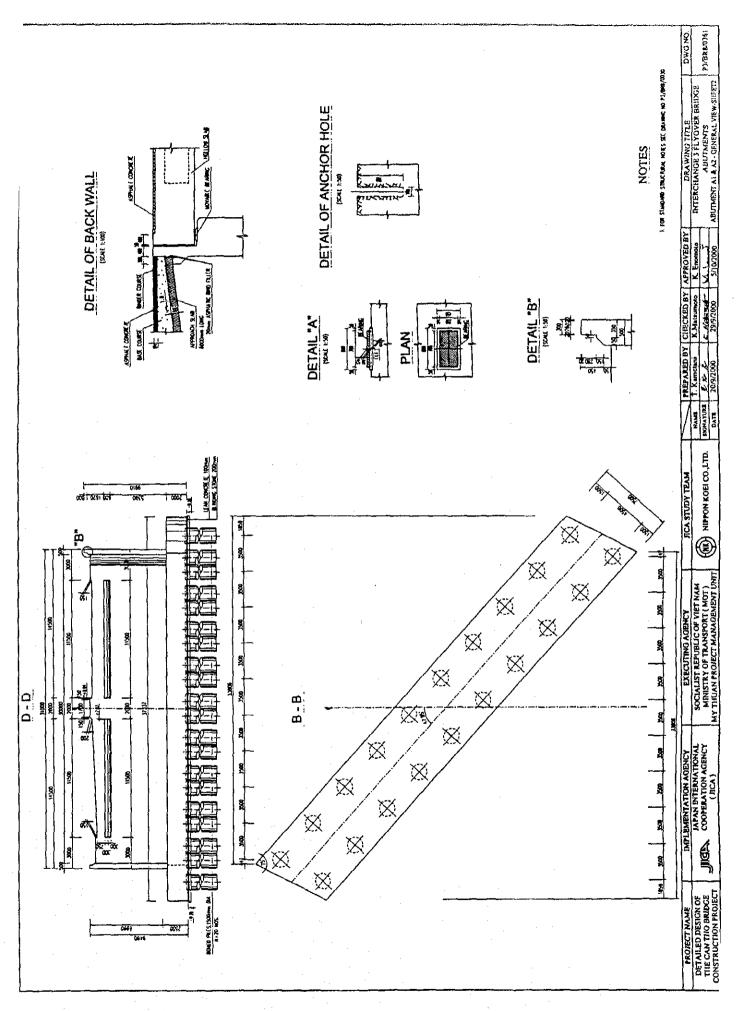
SECTION D-D BOTTOM FIBRE			(11 - 200				
	M	1.33M	1.2Мст	Mr=φMn	1.33M <	As = 39 cm 2 (D=2.5cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm	, 4 Nos)
1	1448	1926			OK	ρ s = As/Ac =	0.0020
2	1096	1458			OK	ρ min = 0.03 f'c/fy =	0.0018
3	1020	1356	2422	2422	OK.	ρ s > ρ min	O.K
4	1612	2145		•	OK	c/de =	0.02
5	1443	1919			OK	: c/de < 0.42	O.K

PILE (1,1) SECTION


NOMINAL PESISTANCES


NOMINAL RESIS	JANGES	Z=0 m		2=	=11m	Z=	18m	Remark
	-	Atual	Allowable	Atual	Allowable	Atual	Allowable	
Reinforcement	(mm)		D32	16	5-D28	16-	D25	
Area As	(cm2)		1.27	9	8.52	78	.54	
Combination 1	P (kN)	2149	6508	2149	11765	2149	30277	OK
Combination 1	M (kN·m)	2081	6303	1035	5665	221	3110	OK
Combination 2	P (kN)	823	2044	823	2163	823	21643	OK
Comoniation 2	M (kN·m)	1945	4829	1000	2629	211	5545	OK
Combination 3	P (kN)	3295	20793	3295	29652	3295	34301	OK
Comomation 5	M (kN·m)	1100	6942	400	3600	95	990	OK
Combination 4	P (kN)	1282	2240	1282	2480	1282	22726 •	O.K
Combination 4	M (kN·m)	2806	4903	1439	2783	303	5373	O.K
Combination 5	P (kN)	65	97	65	68	65	300	O.K
Combination 5	M (kN·m)	2661	3994	1439	1522	299	1385	O.K


STRESS				S () (D-)		
	Stress of reinfor	Stress of reinforcement δ s (MPa)		Stress of concrete δ c (MPa)		
	Actual	Allowable	Actual	Allowable	Remark	
Combination 1	135.3	220.6	8.41	12.26	OK	
Combination 2	177.8	220.6	7.97	12.26	OK	
	-57.8	220.6	4.43	12.26	OK	
Combination 3	252.1	294.2	11.49	14.71	OK	
Combination 4		294.2	10.88	14.71	OK	
Combination 5	292.8	294.2	10.00	1 11/1		


STRESS OF PILE CAP

STREET OF THE	Actual (MPa)		Allowable (MPa)	Remak
Vertical Bearing Pressure	σ cv =	2.86	σ ca=0.5x σ ck = 11.77	OK
Vertical Punching Shear	τc =	0.25	$\tau a = 0.88$	OK
Horizontal Bearing Pressure	σ ch =	6.92	σ 'ca=0.3x σ ck = 7.06	OK
Horizontal Bearing Pressure	τ c =	0.48	$\tau a = 0.88$	OK

2. LOAD COMBINATIONS - NH91 ABUTMENT

0.09 m

e II

2718 T

Abutment DC

0.5 m

25% of Japanese Load - p1 12% of Dead load Notes f=0.2500 2 0 O ž $D_{toun} = 2.5m$ 0 <u>!</u> 424 4,633 78 301 5,708 220 795 23 850 -5,777 <u>^</u> 305 34 216 2,015 2,589 9 က 346 -3,851 243 ž Σ 339 52 240 2,790 3,504 -4,279 126 479 486 4 1,516 0 0 <u>[</u> 1,511 1,861 173 69 2 844 657 75 20 Ň Ϋ́Η 910 1,143 39 0 404 0 <u>n</u> 156 848 3,398 2,880 550 5 610 2,447 1,920 33 ۲× 5 2,133 678 104 2,718 314 104 ij Horizontal earth pressure - EAE (n=0.9,1.35) Horizontal earth pressure - EH (n=0.9,1.35) Vertical earth pressure - EV (n=0.9,1.35) Dynamic load allowance - IM (n=0.5,1.75) Live load surcharge - LS (n=0.9,1.35) Wearing surface - DW (n=0.65,1.5) Superstructure - DC (n=0.9,1.25) Permanent load 10 | Braking force - BR (n=0.5,1.75) Trasient Loads Abutment - DC (n=0.9,1.25) Items Live load - LL(n= 0.5,1.75) b- Dead load + Live load 11 | Friction force - FR (n=1) . Earthquake - EO (n=1) a- Dead load Nos **О** Q ო ဆ

			***************************************	5 100	
My	1596	2132	-3172	3340	5019
Ŧ	1752	1684	664	2458	2458
Pz	8012	5044	8012	7414	5177
Load combinations	• • • • • • • • • • • • • • • • • • •	2	8	4	ſ

1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BH + 1FR(b)	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BH - 1FR(b)	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1FO	0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ	
Combination 1	Combination 2	Combination 3	Combination 4	Combination 5	

NH.91 BI.C - A1

Pile Type

 $Dia = 1500 \text{ mm} \quad Length = 57.0 \text{ m}$

Bearing Capacity

Qs = 15760 kN

Qult = 21062 kN

Longitudinal direction

Load Combination	Displaceme	nt δ (mm)	Bearing Ca	pacity (kN)	Uplift Capaci	ty (kN)	Remarks
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable	
Strength I-1	12.7	30	5236	9493	2621	-6737	OK
Strength I-2	12.4	30	3834	9493	1112	-6737	OK
Strength I-3	3,6	30	4101	9493	3756	-6737	OK
Extremme Event I-1	18.2	20	5665	9493	1606	-6737	O.K
Extremme Event I-2	18.8	20	4865	9493	212	-6737	OK

WALL

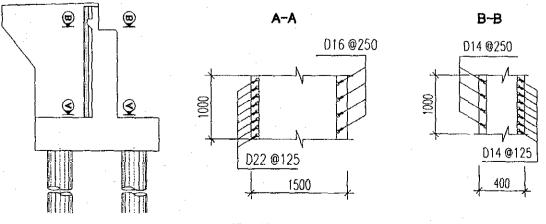
Section A-A

(h = 150 cm, b = 100 cm)

		_ \ = _====	<u>-</u> ,	,			
	M	1.33M	1.2Mcr	Mr=φ Mn	1.33M <	As = 30 cm 2 (D=2.2cm)	8 Nos)
Combination	(kN·m)	(kN·m)	$(kN \cdot m)$	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm.	4 Nos)
1	522	695			OK	ρ s = As/Ac =	0.0020
2_	370	492		·	OK	ρ min = 0.03 fc/fy =	0.0018
3	94	125	1363	1422	OK	ρ s > ρ min	O.K
4	555	738	•	ļ	OK	c/de =	0.04
5	556	739		}	OK	c/de < 0.42	O.K

Section B-B

(h = 40 cm, b = 100 cm)


	M	1.33M	1.2Мсг	$M_{\rm I} = \phi M_{\rm I}$	1.33M <	As = 12 cm 2 (D=1.4cm	, 8 Nos)
Combination	(kN·m)	(kN m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm)	4 Nos)
1	54	72			OK	$\rho_s = A_s/A_c =$	0.0031
	<u>[</u>					ρ min = 0.03 f'c/fy =	0.0018
			98	98		$\rho_s > \rho_{min}$	O.K
						c/de ≃	0.05
						c/de < 0.42	O.K

FOR SERVICE LIMIT STATE

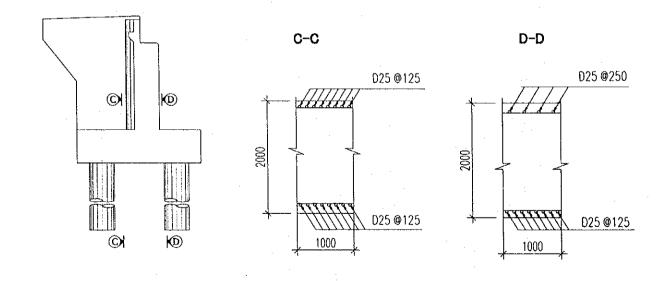
Cracking

	M	fsa	fs	0.6·fy	fsa < 0.6 · f'y
Combination	(kN·m)	(MPa)	(MPa)	(MPa)	
1	72.28	159.4	98.8	229.5	OK

Actual		A	llowable		Remark
fc tensile =	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	=	3.03 (MPa)	OK
fc compress =	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs =	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK

FOOTING

B abutment


45.53 (m)

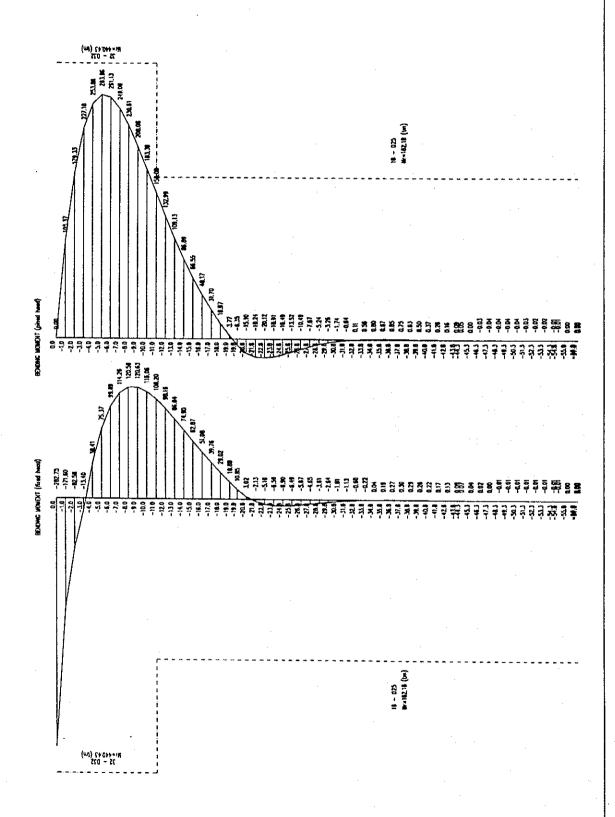
SECTION C-C TOP FIBRE

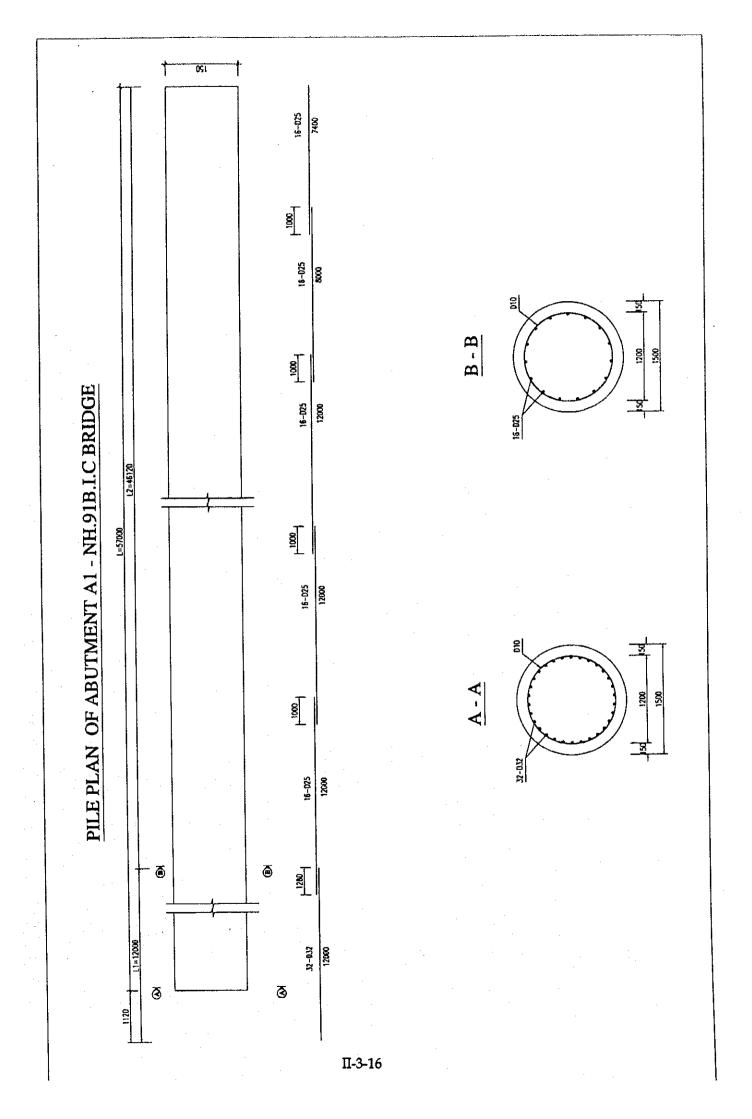
SECTION C-C TO) P FIBRE		(n == 200	cm, o-	(100 cm)		
	M	1.33M	1.2Mcr	Mr≃ φ Mn	1.33M <	As = 39 cm 2 (D=2.5cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm)	, 8 Nos)
1	310	412			OK	ρ s = As/Ac =	0.0020
2	867	1153			OK	ρ min = 0.03 fc/fy =	0.0018
3	0	0	2422	2334	OK	ρs > ρ min	O.K
4	755	1005			OK	c/de =	0.00
5	1263	1679			OK	∴ c/de < 0.42 ———	O.K

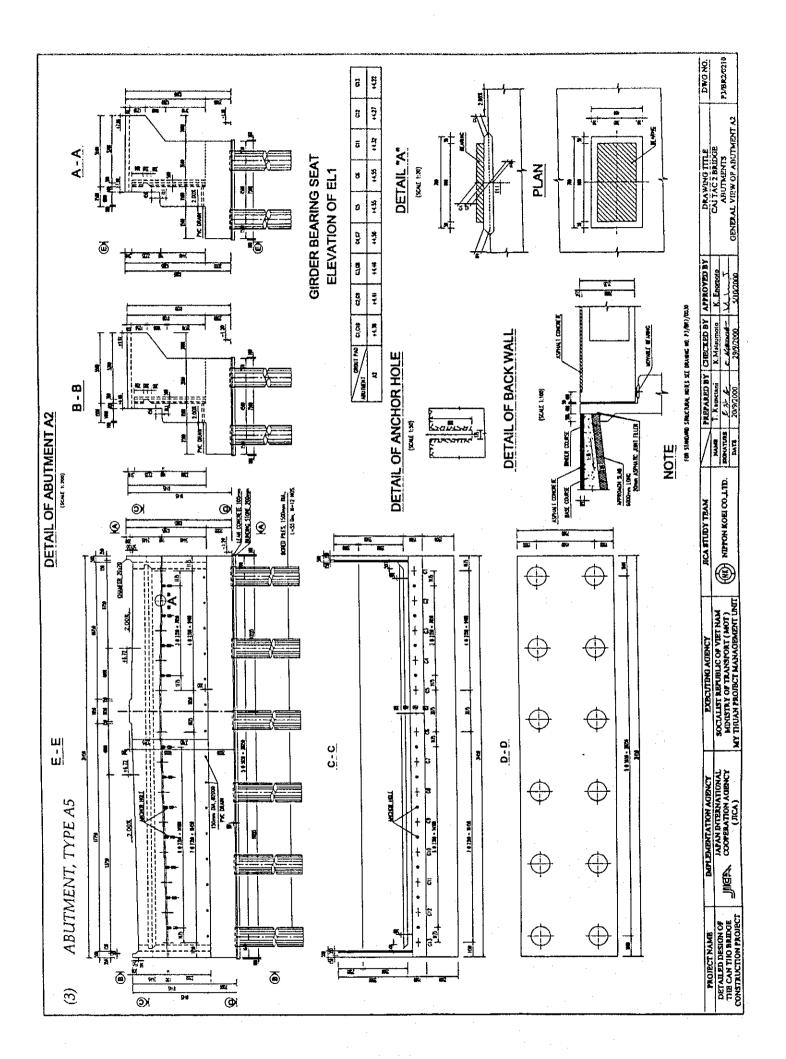
SECTION C-C BO	OTTOM FIBR	E	(h = 200)	cm, b =	100 cm)	·	
	M	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm,	8 Nos)
1	1201	1597			OK	$\rho_{\rm S} = A_{\rm S}/A_{\rm C} =$	0.0020
2	341	454			OK	$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
3	702	934	2422	2334	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	1389	1848			OK	c/de =	0.00
5	1143	1520			OK	c/de < 0.42	O.K

SECTION D-D BOT	TOM FIBR	E .	(h = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr= ϕ Mn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm,	4 Nos)
1	728	968			OK	ρ s = As/Ac =	0.0020
2	364	484			OK	ρ min = 0.03 fc/fy =	0.0018
3	478	636	2422	2383	OK	ρs > ρ min	O.K
4	822	1093			OK	c/de =	0.02
5	764	1017			OK	c/de < 0.42	O.K

PILE (1,1) SECTION NOMINAL RESISTANCES


NOWINAL RESIST		Unit	Z:	=0 m	Z=	=11m	Remark
			Atual	Allowable	Atual	Allowable	
Reinforcem	ent	mm	32	-D32	16	-D25	
Area As		cm2	25	57.36	7	8.54	
Combination 1	P	kN	2621	8380	2621	13965	OK
Comomunon .	M	kN·m	2160	6906	1104	5885	OK
Combination 2	P	kN	1112	2964	1112	3320	OK
Comomunion 2	M	kN·m	2021	5387	1061	3169	OK
Combination 3	P	kN	3756	22193	3756	29901	OK
Comomanon	M	kN∙m	1168	6902	419	3332	OK
Combination 4	P	kN	1606	2953	1606	3255	O.K
Combination	М	kN∙m	2928	5383	1549	3139	O.K
Combination 5	P	kN	212	331	213	218	O.K
Compination 5	<u>м</u>	kN∙m	2773	4319	1549	1590	O.K


STRESS


31 KE33	Stress of reinfor	rcement δs (MPa)	Stress of con-	crete δ c (MPa)	Remark
	Actual	Allowable	Actual	Allowable	
Combination 1	119.0	220.6	8.45	12.26	OK
Combination 2	163.8	220.6	8.02	12.26	OK
Combination 3	-62.8	220.6	4.77	12.26	OK
Combination 4	237.5	294.2	11.61	14.71	OK
Combination 5	281.5	294.2	10.96	14.71	OK

STRESS OF PILE CAP				
	Actual (MPa)		Allowable (MPa)	Remak
Vertical Bearing Pressure	σ ev =	3.21	σ ca=0.5x σ ck = 17.65	OK
Vertical Punching Shear	τc =	0.28	$\tau a = 0.88$	OK
Horizontal Bearing Pressure	$\sigma \mathrm{ch} =$	8.03	σ 'ca=0.3x σ ck = 10.59	OK
Horizontal Bearing Pressure	τ c =	0.50	$\tau a = 0.88$	OK

2. LOAD COMBINATIONS CAITAC2 ABUTMENT A2 (H=8M)

Abutment DC 1736 T e.= 0.03 m e.=

									•		
			Pz			Η×			Σ		Notes
Nos	ltems	1=[ī	7	1=1	N<1	1×4	<u>1=1</u>	net	٦ <u>٠</u>	
	Permanent load										
7	Superstructure	768	691	096		-		461	415	576	
، ا	1	76	63	145				58	38	87	
1 6	Abutment - DC (n=0.9.1.25)	1,736	1,562	2,170				47	42	59	
	Horizontal earth pressure - EH (n=0.9,1.35)				217	373	858	1,378	995	2,288	
ľ					649	480	1,057	1,730	1,279	2,819	
, G	Vertical earth pressure - EV (n=0.9,1.35)	1,243	1,119	1,678				-2,489	-2,240	-3,360	
	Transient Loads										
1	1 ive load - 11 (n= 0 5.1.75)	333	166	585				200	100	349	
-	a- Main load	185	93	324				111	56	195	
	b- Sub load	147	74	258				88	44	155	
α	Dynamic load allowance - IM (n=0.5,1.75)	110	55	192				99	33	115	
<u>, </u>		61	31	107				37	18	64	
<u> </u>	b- Sub load	49	24	85				29	15	51	
0	 -				68	64	113	272	196	452	
, 6	~ } ~				. 59	30	104	576	288	1,008	25% of Japanese Load - p1
: ∓	- -										f=0.05
:	+				0			0			
	h. Dead load + Live load		i		0			0			
5	. !				295			917			12% of Dead load

	LOAD COMBINATION TABLE	BLE	
Load combinations	Pz	Hx	My
-	5728	1075	1574
2	3,435	971	395
8	5,728	319	-1,989
*	5,174	1,494	1,971
មា	3,656	1,494	2,863

1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b)	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.3LS - 1.75DM - 1.70(9)	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BH + 1.FR(0) + 1EQ	0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BH + 1FH(0) + EQ
Combination 1	Combination 2	Combination 3	Combination 4	Combination 5

CAI TAC2 Bridge-A2

Pile Type

Dia = 1500 mm

Length = 55.0 m

Bearing Capacity

Qs = 14281 kN

 $Qult = __ 19583 \text{ kN}$

Longitudinal direction

Load Combination	Displaceme	ntδ(mm)	Bearing Ca	pacity (kN)	Uplift Capacit	Remarks	
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable	
Strength I-1	13.4	30	6194	8787	3168	-6188	OK
Strength I-2	11.8	30.	4048	8787	1566	-6188	OK
Strength I-3	2.6	30	4955	8787	4407	-6188	
Extremme Event I-1	18.5	20	6267	8787	2189	-6188	O.K
Extremme Event I-2	19	20	5290	8787	686	-6188	OK

WALL

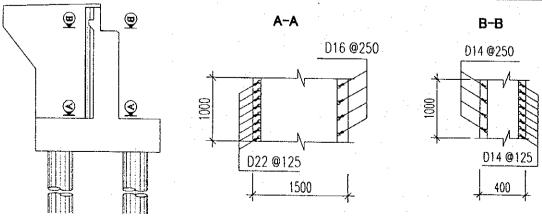
Section A-A

(h = 150 cm, b = 100 cm)

a. u	M	1.33M	1.2Mcr	Mr=φMn	1	As = 30 cm 2 (D=2.2cm,	
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm,	4 Nos)
1	333	442			OK	ρ s = As/Ac =	0.0020
2	257	342			OK	ρ min = 0.03 fc/fy =	0.0018
3	48	64	1363	1422	OK	ρ s > ρ min	O.K
4	364	485			OK	c/de =	0.04
5	375	498			OK	c/de < 0.42	O.K

Section B-B

(h = 40 cm, b = 100 cm)

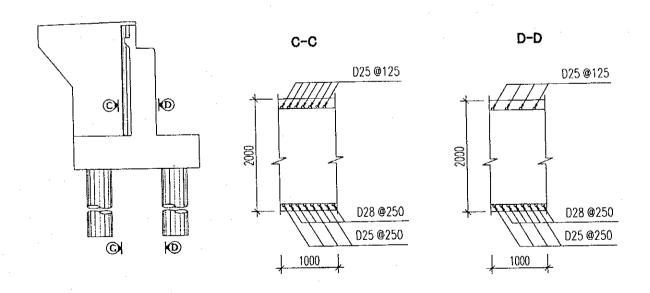

Combination	M (kN·m)	1.33M (kN·m)	1.2Mcr (kN·m)	Mr=φMn (kN·m)	1.33M < 1.2Mcr or Mr	As = 12 cm 2 (D=1.4cm, A's = 6 cm 2 (D=1.4cm,	
1	54	72			OK	ρ s = As/Ac =	0.0031
	<u> </u>	· ·				ρ min = 0.03 fc/fy =	0.0018
	1		98	98		∴ ps>pmin	O,K
	ļ					c/de =	0.05
	<u> </u>					c/de < 0.42	O.K

FOR SERVICE LIMIT STATE

Cracking

Combination	M (kN·m)	fsa (MPa)	fs (MPa)	0.6·f'y (MPa)	fsa < 0.6·f'y
1	72.28	159.4	98.8	229.5	OK

Actual			Allowable		Remark
fc tensile =	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0}$	5 =	3.03 (MPa)	OK
fc compress =	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs =	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK


B abutment

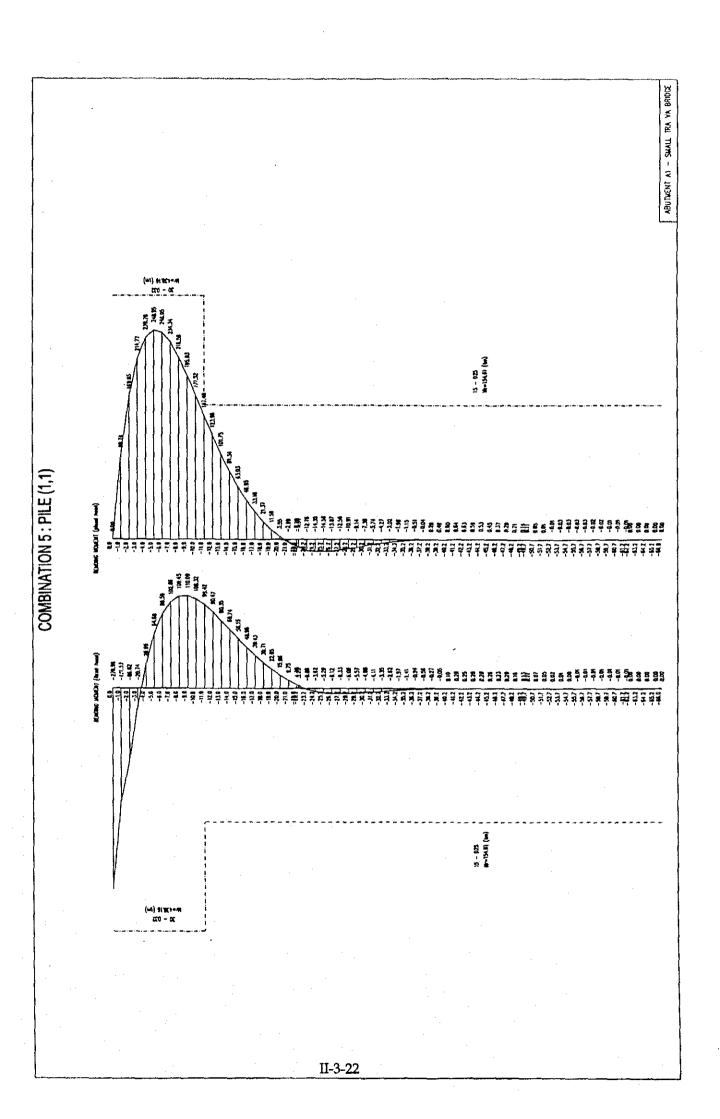
31.36 (m)

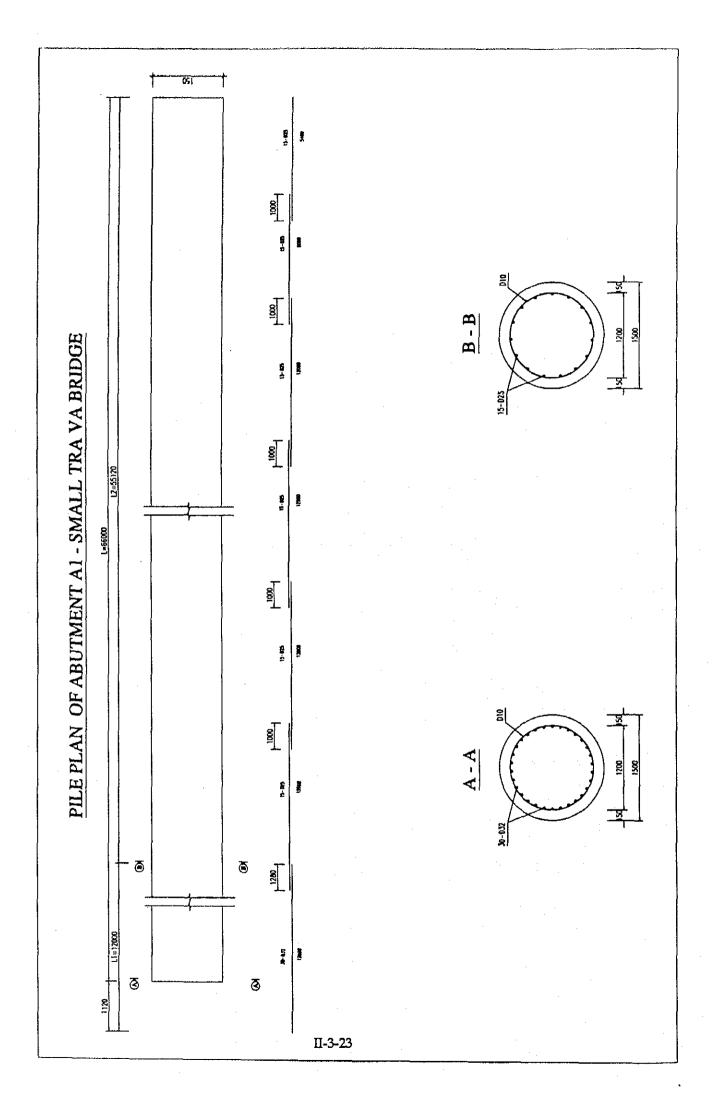
(h = 200 cm, b = 100 cm)SECTION C-C TOP FIBRE As = 39 cm2(D=2.5cm, 8 Nos) $Mr = \phi Mn | 1.33M <$ 1.2Mcr 1.33M M A's = 44 cm 2 (D=2.7cm, 8 Nos)1.2Mcr or Mr (kN·m) (kN·m) (kN·m) (kN·m) Combination 0.0020 ρ s = As/Ac = OK 0 0 0.0018 OK ρ min = 0.03 fc/fy = 622 468 2 $\rho_s > \rho_{min}$ O.K OK 2344 2422 0 0 3 -0.01 c/de = OK 392 295 4 O.K ... c/de < 0.42OK 1145 5 861

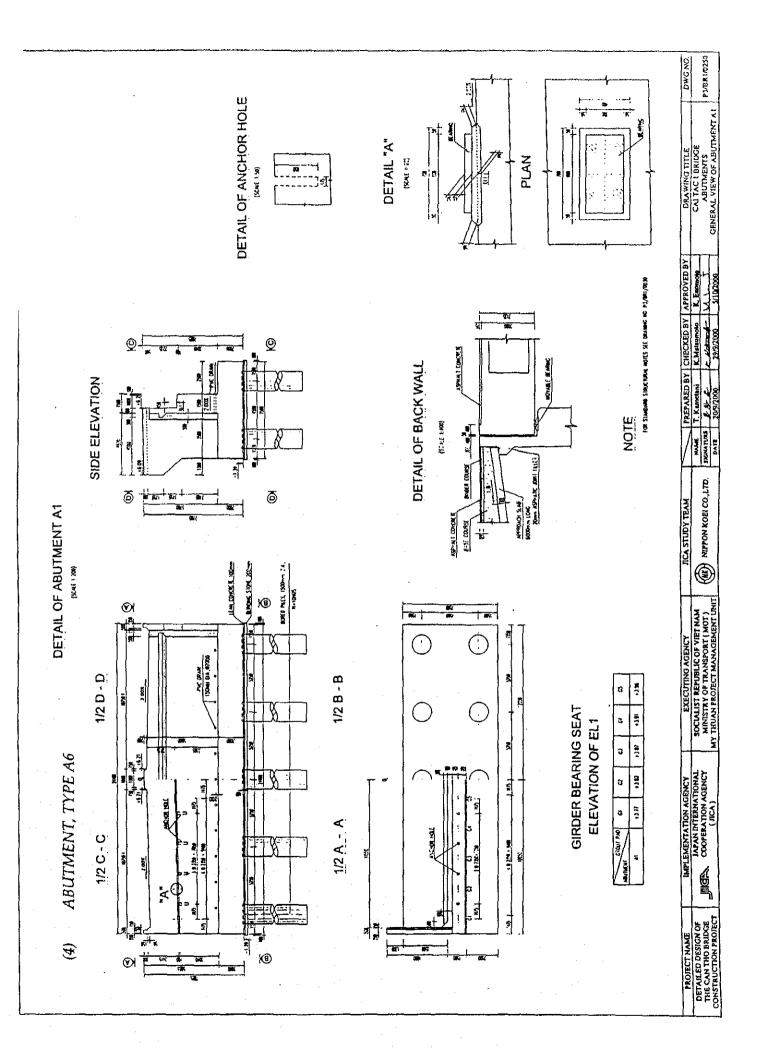
SECTION C-C BO	TTOM FIBR	E	(h = 200)	cm, b =	100 cm)		
SECTION C-C DO	M	1.33M		$Mr = \phi Mn$		As = 44 cm 2 (D=2.7cm,	
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm,	
Combination	1792	2383	· · · · · · · · · · · · · · · · · · ·		OK	$\rho_s = A_s/A_c =$	0.0022
<u></u>	939	1249			OK	ρ min = 0.03 fc/fy =	0.0018
2	1239	1648	2422	2677	OK	$\therefore \rho_s > \rho_{min}$	O.K
	1825	2427			OK	c/de =	0.01
<u> </u>	1493	1986			ОК	c/de < 0.42	O.K

SECTION D-D B	OTTOM FIBRI	E	(h = 200)	cm, b=	100 cm)		
SECTION D-DD	ТМТ	1.33M	1.2Mcr	$Mr = \phi Mn$		As = 44 cm 2 (D=2.7cm,	
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Мсг or Mr		
Comomation	1191	1584	(44, 44, 44, 44, 44, 44, 44, 44, 44, 44,		OK	ρ s = As/Ac =	0.0020
	766	1018			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	915	1216	2422	2422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	1207	1606			OK	c/de =	0.02
	1043	1387			OK	c/de < 0.42	O.K

PILE (1,1) SECTION NOMINAL RESISTANCES


		Unit	Z	=0 m	Z=	=11m	Remark
			Atual	Allowable	Atual	Allowable	
Reinforcen	nent	mm	mm 30-D32		16	5-D25	
Area As	;	cm2	241.27		78.54		
Combination 1	P	kN	3168	10622	3168	16718	OK
	М	kN•m	2118	7102	1111	5862	OK
Combination 2	P	kN	1566	4532	1566	6687	OK
	M	kN·m	1979	5728	1004	4284	OK
Combination 3	P	kN	4407	26385	4407	31823	OK
	M	kN∙m	1009	6037	330	2382	OK
Combination 4	P	kN	2189	4111	2189	5435	O.K
	M	kN∙m	2977	5591	1544	3834	O.K
Combination 5	P	kN	686	1068	686	725	O.K
	М	kN∙m	2839	4415	1544	1630	O.K


STRESS


	Stress of reinfor	cement δs (MPa)	Stress of con-	Remark	
	Actual	Allowable	Actual	Allowable	Kemaik
Combination 1	-109.2	220.6	8.42	12.26	OK
Combination 2	148.6	220.6	8.06	12.26	OK
Combination 3	-64.0	220.6	4.75	12.26	OK
Combination 4	230.7	294.2	12.14	14.71	OK
Combination 5	283.3	294.2	11.63	14.71	OK

STRESS OF PILE CAP

0116200 01 1122 0111				
	Actual (MPa)		Allowable (MPa)	Remak
Vertical Bearing Pressure	σ cv =	3.55	σ ca=0.5x σ ck = 17.65	OK
Vertical Punching Shear	τc =	0.31	$\tau a = 0.88$	OK
Horizontal Bearing Pressure	σch =	8.14	σ 'ca=0.3x σ ck = 10.59	OK
Horizontal Bearing Pressure	τc =	0.51	$\tau a = 0.88$	OK

2. LOAD COMBINATIONS - CALTAC 1 ABUTMENT A1(H=7.6M)

Abutment DC 1313 T e. 0.00 m e. 08 m

<u>_</u> :			ρz			Η×			My			Mx		Notes
Nos Nos	tems	n=1	n<1	n>1	n=1	N<1	1>1	n=1	n<1	n>t	n=1		1<0	
	Permanent load													
~	Superstructure - DC (n=0.9,1.25)	669	629	874				420	378	524				
8	Wearing surface - DW (n=0.65,1.5)	70	45	104				42	27	63				
ო	Abutment - DC (n=0.9,1.25)	1313	1,182	1,641				-2	-1	.2				
4	Horizontal earth pressure - EH (n=0.9,1.35)				358	254	607	1,027	729	1,740				
က	Horizontal earth pressure - EAE (n=0.9,1.35)				576	426	939	1,652	1,221	2,691				
ဖ	Vertical earth pressure - EV (n=0.9,1.35)	893	804	1,205				-1,786	-1,607	-2,411				
	Transient Loads									-				
7	Live load - LL(n= 0.5,1.75)	271	136	474				163	81	285	422	211	738	
	a- Main load	217	109	380		•		130	65	228	570	285	997	
	b- Sub load	54	27	94				32	16	57	-148	-74	-260	
æ	Dynamic load allowance - IM (n=0.5,1.75)	06	45	158		-		54	27	95	141	02	246	
	a- Main load	72	36	127				43	22	76	190	98	332	,
	b- Sub load	18	6	31				11	5	19	-49	-24	-86	
6	Live load surcharge - LS (n=0.9,1.35)				44	31	74	189	134	319				
10) Braking force - BR (n=0.5,1.75)				24	12	43	263	132	461				25% of Japanese Load - p1
7	Friction force - FR (n=1)													f=0.05
	a- Dead load				0			٥						
	b- Dead load + Live load		•		0			0						
12	Earthquake - EQ (n=1)				250			804						12% of Dead load

	Mx	984.2	0	984	281	281
	My	1073,1	855	-1,044	2,229	2,851
LUAD CUMBINATION LABLE	Нх	723.8	681	243	1,275	1,275
LOAD COMB	P2	4456.7	2,660	4,457	4,005	2,840
	Load combinations	1	2	Е	4	Ş

1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ 0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ 1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b) 1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b) 0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a) Combination 3 Combination 5 Combination 2 Combination 1 Combination 4

CAI TAC 1 Bridge -A1

Pile Type

Dia = 1500 mm Len

Length = 51.0 m

Bearing Capacity

Qs = 12505 kN

Qult = 14891 kN

Longitudinal direction

Load Combination	Displaceme	nt δ (mm)	Bearing Ca	pacity (kN)	Uplift Capaci	ty (kN)	Remarks
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable	
Strength I-1	10.2	30	4521	6512	3226	-5492	OK
Strength I-2	9.3	30	3193	6512	1811	-5492	OK
Strength I-3	0.7	30	4803	6512	2945	-5492	OK
Extremme Event I-1	14.7	20	4848	6512	2497	-5492	O.K
Extremme Event I-2	15.4	20	4123	6512	1041	-5492	OK

WALL

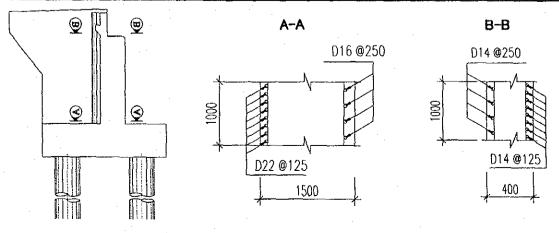
Section A-A

(h = 150 cm, b = 100 cm)

	M	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 30 cm 2 (D=2.2cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm	4 Nos)
1	237	315			OK	ρ s = As/Ac =	0.0020
2	206	274			OK	$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
3	57	75	1363	1422	OK	ρ _s > ρ _{min}	O.K
4	283	377			OK	c/de =	0.04
5	293	390			OK	c/de < 0.42	O.K

Section B-B

(h = 40 cm, b = 100 cm)


Dection D		(11 10	· , · ·	roo om ,			
	M	1.33M	1.2Mcr	Mr≈φ Mn	1.33M <	As = 12 cm 2 (D=1.4cm	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm)	4 Nos)
1	54	72			OK	ρ s = As/Ac =	0.0031
				,		$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
	·		98	98		$\therefore \rho_s > \rho_{min}$	O.K
<u>.</u>			1			c/de =	0.05
	1	·		ļ		c/de < 0.42	O.K

FOR SERVICE LIMIT STATE

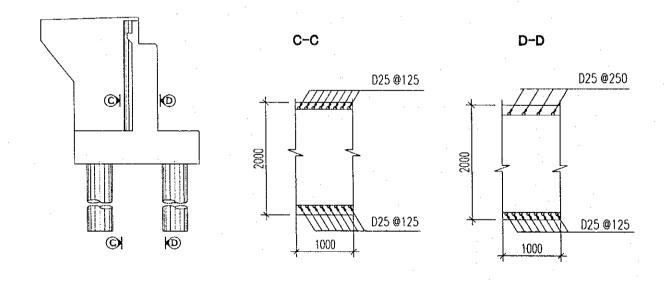
Cracking

Combination	M (kN·m)	fsa (MPa)	fs (MPa)	0.6 · f y (MPa)	fsa < 0.6 · f y
1	72.28	159.4	98.8	229.5	OK

Actual		Al	lowable		Remark
fc tensile =	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	= .	3.03 (MPa)	ОК
fc compress =	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs =	4.92 (MPa)	fsa = 0.6fy	=	229,48 (MPa)	OK

FOOTING

B abutment


24.10 (m)

SECTION C-C TOP FIBRE

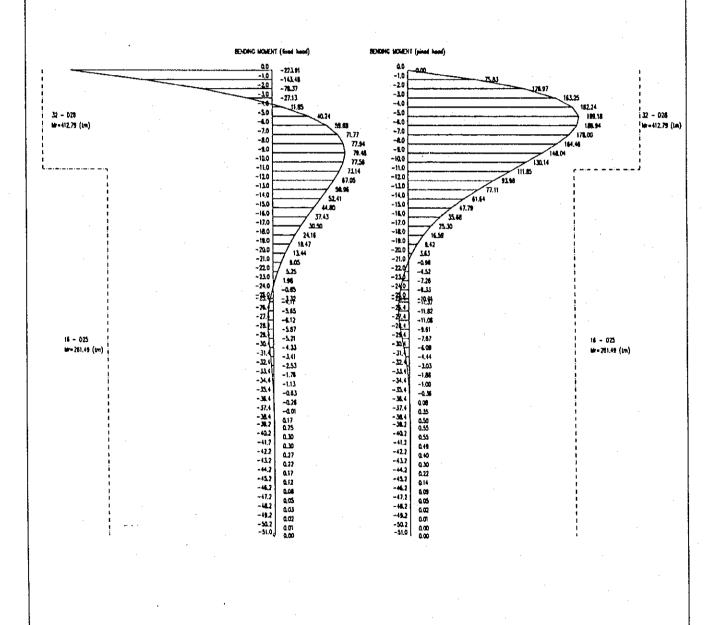
SECTION C-C T	OL FIRKE		(n = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr= ϕ Mn	1.33M <	As = 39 cm 2 (D=2.5cm)	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm.	8 Nos)
1	0	0			OK	ρ s = As/Ac =	0.0020
2	377	502			OK	ρ min = 0.03 fc/fy =	0.0018
3	12	. 16	2422	2363	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	198	263			OK	c/de =	0.00
5	697	926			OK	: c/de < 0.42	O.K

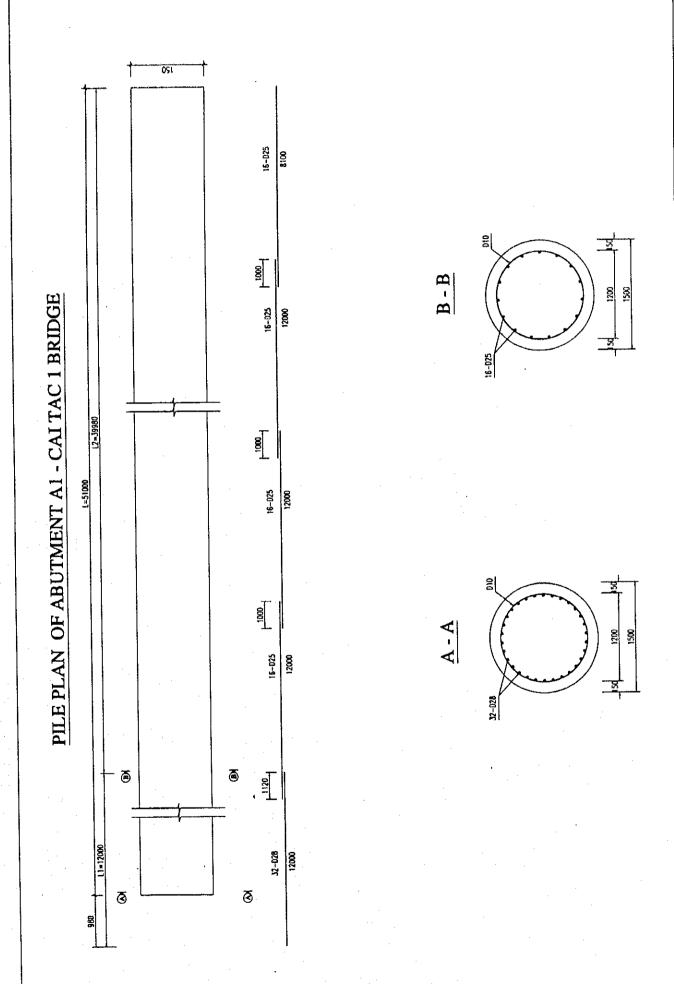
SECTION C-C BOT	TOM FIBR	E	(h = 200)	cm, b=	100 cm)		
	M	1.33M	1.2Mcr	Mr= φ Mn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm,	8 Nos)
1	928	1234			OK	ρ s = As/Ac =	0.0020
2	482	641			ОК	ρ min = 0.03 fc/fy =	0.0018
3	1045	1390	2422	2363	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	1064	1415			OK	c/de =	0.00
5	868	1155			OK	c/de < 0.42	O.K

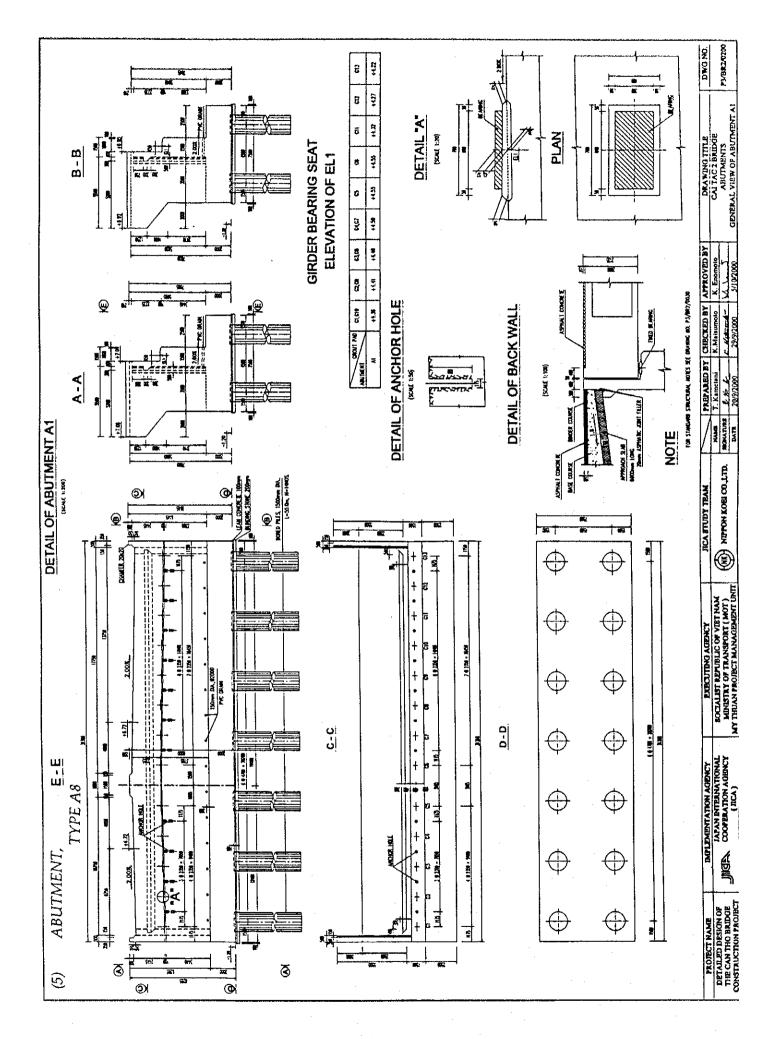
SECTION D-D B	OTTOM FIBR	E	(h = 200)	cm, $b=$	100 cm)		
	M	1.33M	1.2Mcr	Mr=φ Mn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm,	4 Nos)
1	662	881			OK	$\rho_s = A_s/A_c =$	0.0020
2	464	617			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	721	958	2422	2422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	730	971		-	OK	c/de =	0.02
5	657	873			OK	. c/de < 0.42	O.K

PILE (1,1) SECTION NOMINAL RESISTANCES

		Unit	Z	=0 m	Z	= 1m	Remark
			Atual	Ailowable	Atual	Allowable	
Reinforcem	nent	mm	32	-D28	16	-D25	
Area As		cm2	19	7.04	7	8.54	
Combination 1	P	kN	3226	9889	3226	19832	OK
	M	kN·m	2138	6552	945	5811	OK
Combination 2	P	kN	1811	5398	1811	12396	OK
	M	kN·m	1838	5478	840	5754	OK
Combination 3	P	kN	2945	17198	2945	31210	OK
	M	kN∙m	1174	6856	259	2745	OK
Combination 4	P	kN	2497	4598	2497	10284	O.K
	M	kN∙m	2829	5210	1316	5421	O.K
Combination 5	P	kN	1041	1600	1041	2029	O.K
	M	kN∙m	2635	4048	1316	2564	O.K


STRESS


	Stress of reinfor	cement δs (MPa)	Stress of con-	crete δ c (MPa)	D 1 -
	Actual	Allowable	Actual	Allowable	Remark
Combination 1	111.6	220.6	8.94	12.26	OK
Combination 2	138.4	220.6	7.92	12.26	OK
Combination 3	-69.8	220.6	5.24	12.26	OK
Combination 4	227.1	294.2	12.25	14.71	OK
Combination 5	277.6	294.2	11.60	14.71	OK


STRESS OF PILE CAP

	Actual (MPa)		Allowable (MPa)	Remak
Vertical Bearing Pressure	$\sigma cv =$	2.74	σ ca=0.5x σ ck = 17.65	OK
Vertical Punching Shear	τc =	0.24	t a = 0.88	OK
Horizontal Bearing Pressure	$\sigma ch =$	6.94	σ 'ca=0.3x σ ck = 10.59	OK
Horizontal Bearing Pressure	₹ c =	0.43	$\tau a = 0.88$	OK

COMBINATION 5: PILE (1,1)

2. LOAD COMBINATIONS CAITAC2 ABUTMENT AI (H=8M)

0 60 m

Abutment DC 1718 T e. 0.02 m

25% of Japanese Load - p1 12% of Dead load f=0.05 Notes 1,008 115 155 54 2,288 2,819 349 195 2 5 452 87 -3,281 2 96 288 100 33 9 ÷ 415 1,279 4 88 39 995 -2,188 26 ž ž 00 1 363 272 576 1,730 200 11 28 43 1,378 88 99 37 29 161 -2,431 Ë 858 1,057 113 104 ě 373 480 49 30 Ž ž 379 517 649 68 59 Į 324 258 192 107 145 2.148 1,639 582 82 096 2 1,093 166 93 74 55 63 1,546 8 24 691 ž $P_{\mathbf{Z}}$ 1,214 110 333 185 5 € 1,718 147 89/ 97 Ī Horizontal earth pressure - EAE (n=0.9,1.35) Horizontal earth pressure - EH (n=0.9,1.35) Dynamic load allowance - IM (n=0.5,1.75) Vertical earth pressure - EV (n=0.9,1.35) Live load surcharge - LS (n=0.9,1.35) 2 | Wearing surface - DW (n=0.65,1.5) Superstructure - DC (n=0.9, 1.25) Transient Loads Permanent load 10 | Braking force - BR (n=0.5,1.75) Abutment - DC (n=0.9,1.25) Live load - LL(n= 0.5,1.75) b- Dead load + Live load 11 | Friction force - FR (n=1) Earthquake - EQ (n=1) a- Main load a- Main load b- Sub load b- Sub load a- Dead foad Nos

	LOAD COMBINATION TABLE	4BLE	
Load combinations	Pz	Hx	My
-	5666	1075	164
2	3,393	971	1,04
3	5,668	319	-1,94
4	5,113	1,579	2,49
·	3,614	1,579	3,35

9

1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ 0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ 1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b) 1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b) 0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a) Combination 5 Combination 3 Combination 2 Combination 4 Combination 1

Bridge name

CAI TAC2 Bridge-A1

Pile Type

Dia = 1500 mm

Length = 55.0 m

Bearing Capacity

Qs = 14281 kN

Qult = 19582 kN

Longitudinal direction

Load Combination	Displaceme	nt δ (mm)	Bearing Ca	pacity (kN)	Uplift Capaci	ty (kN)	Remarks
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable	
Strength I-1	10.5	30	5045	8787	2893	-6188	OK
Strength 1-2	9,4	30	3256	8787	1497	-6188	OK
Strength I-3	2.4	30	4146	8787	3792	-6188	OK
Extremme Event I-1	15.5	20	5176	8787	1987	-6188	O.K
Extremme Event I-2	15.8	20	4305	8787	758	-6188	OK

WALL

Section A-A

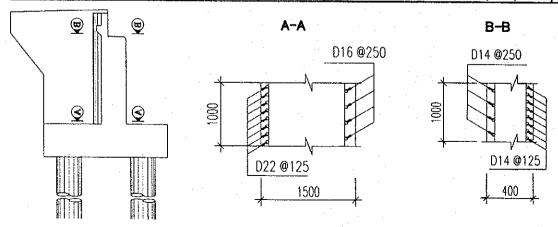
(h = 150 cm, b = 100 cm)

	1 1	1.0014	1 01 4		1		
	M	1.33M	1.2Мсг	Mr=φMn	1.33M <	As = 30 cm 2 (D=2.2cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm,	4 Nos)
· 1	333	443			OK.	ρ s = As/Ac =	0.0020
2	257	342			OK	$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
3	49	65	1363	1422	OK	ρs > ρ min	O.K
4	364	484			OK	c/de =	0.04
5	375	498			OK	c/de < 0.42	O.K

Section B-B

(h = 40 cm, b = 100 cm)

		(···· , · ·	100 0111 /			
	M	1.33M	1.2Mcr	Mr=φ Mn	1.33M <	As = 12 cm 2 (D=1.4cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm.	, 4 Nos)
1	54	72	-		OK	ρ s = As/Ac =	0.0031
						$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
·			98	98		ρ s > ρ min	O.K
						c/de =	0.05
	<u> </u>					c/de < 0.42	O.K


FOR SERVICE LIMIT STATE

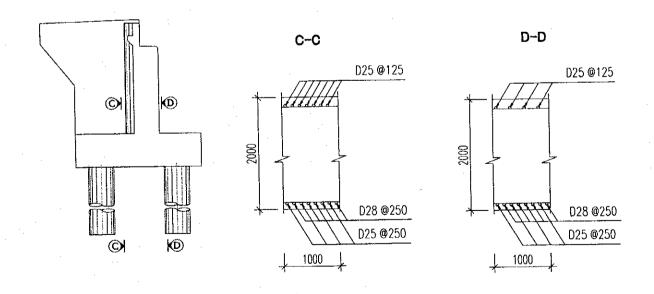
Cracking

Combination	M (kN·m)	fsa (MPa)	fs (MPa)	0.6·fy (MPa)	fsa < 0.6 · f'y
1	72.28	159.4	98.8	229.5	OK

Stress

	Actual		. A	lowable	е .		Remark
fc tensile	=	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	= "		3.03 (MPa)	ОК
fc compress	=	1.34 (MPa)	fca = 0.4fc	=		9.41 (MPa)	OK
fs	=	4.92 (MPa)	fsa = 0.6fy	=		229.48 (MPa)	OK

FOOTING


B abutment

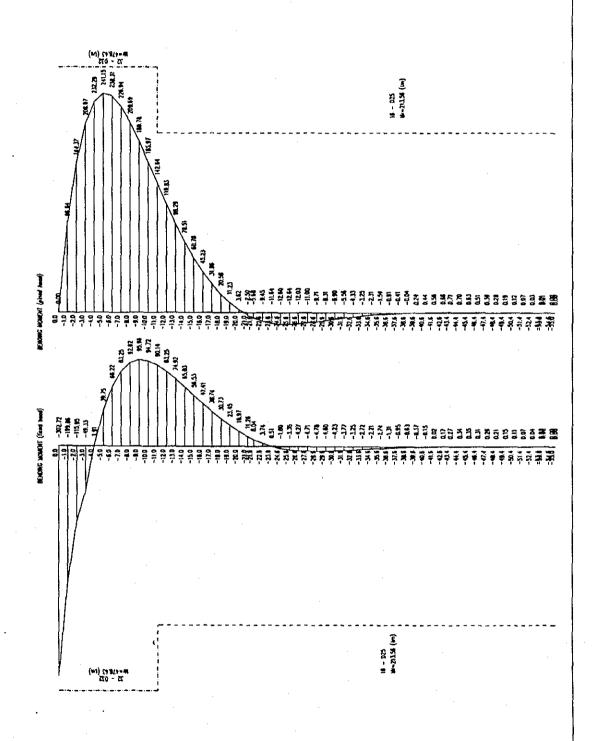
31.36 (m)

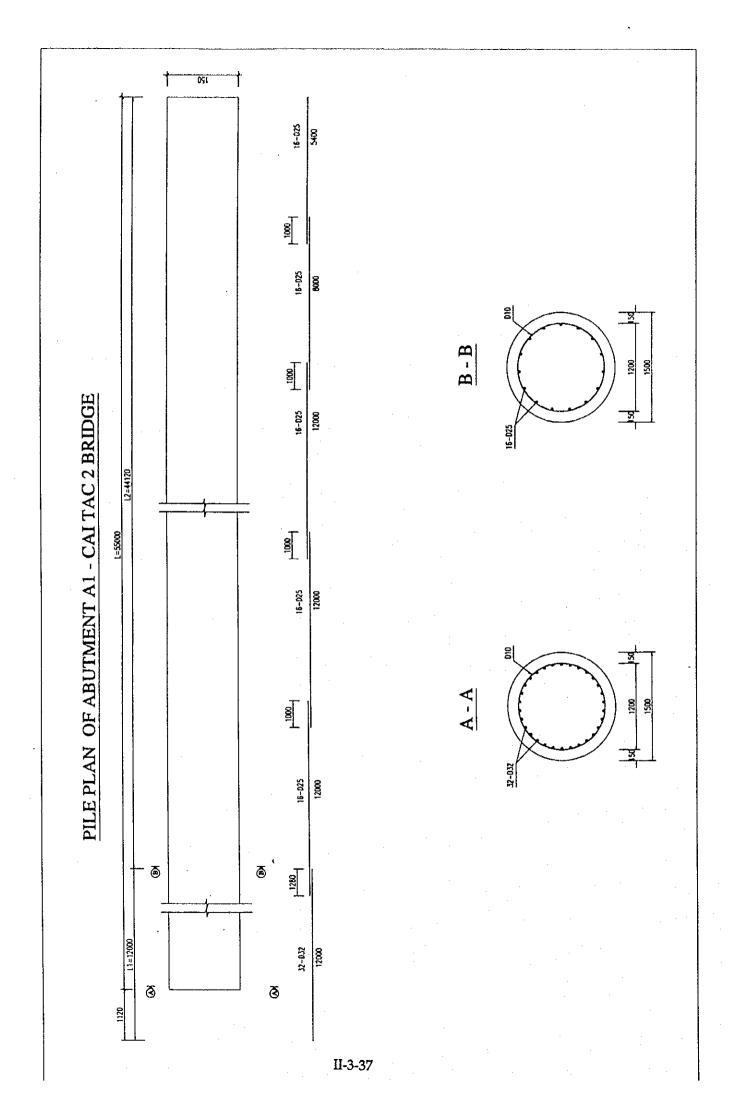
(h = 200 cm, b = 100 cm)SECTION C-C TOP FIBRE As = 39 cm 2 (D=2.5cm, 8 Nos) $Mr = \phi Mn | 1.33M <$ 1.2Mcr 1.33M M A's = 44 cm 2 (D=2.7cm, 8 Nos)(kN·m) 1.2Mcr or Mr (kN·m) (kN·m) (kN·m) Combination 0.0020 ΟK $\rho_s = A_s/A_c =$ 0 $\rho \min = 0.03 \text{ fc/fy} =$ 0.0018 OK 499 664 2 O.K ρ s > ρ min — OK 0 2422 2344 0 3 -0.01 c/de = OK 512 4 385 c/de < 0.42 ---O.K OK 829 1102 5

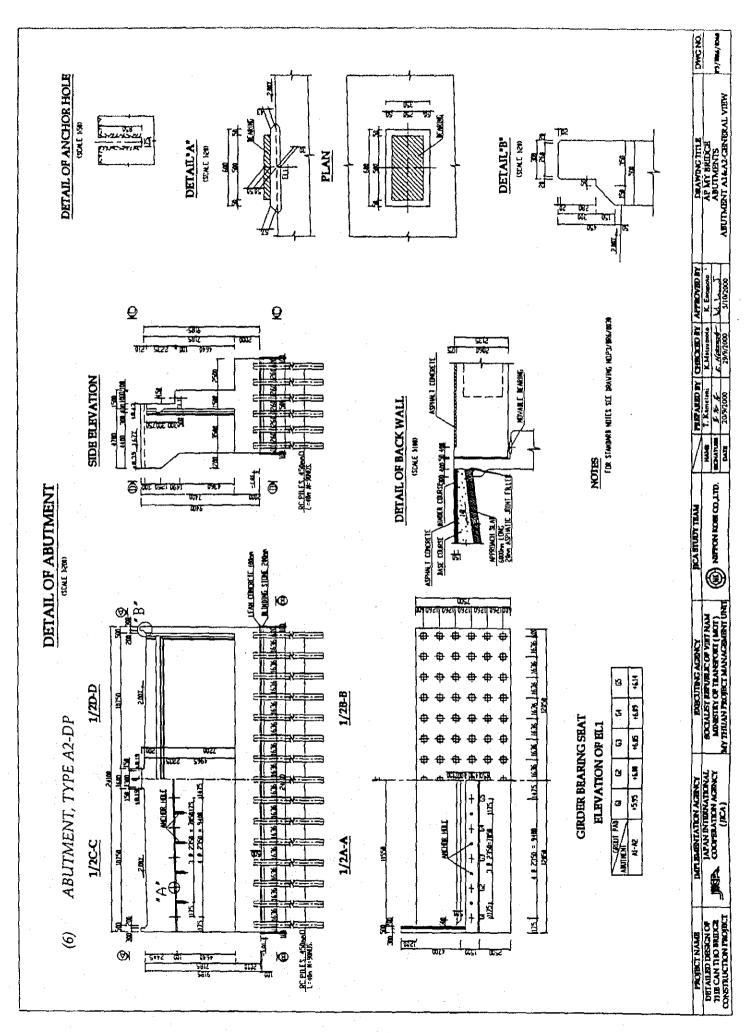
TTOM FIBR	E	(h = 200)	cm, b=	100 cm)		
M	1.33M	1.2Mcr	Mr=φMn	1.33M <		
(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm)	8 Nos)
	3291			OK	$\rho_{\rm S} = A_{\rm S}/A_{\rm C} =$	0.0022
	2369			OK	ρ min = 0.03 f'c/fy =	0.0018
		2422	2677	OK	ρ _S > ρ min	O.K
			Ì	OK	c/de =	0.01
				OK	c/de < 0.42	O.K
	M (kN·m) 2475 1781 2073 2533	(kN·m) (kN·m) 2475 3291	M (kN⋅m) 1.33M (kN⋅m) 1.2Mcr (kN⋅m) 2475 3291 1781 2369 2073 2758 2533 3369	M 1.33M 1.2Mcr Mr=φMn (kN·m) (kN·m) (kN·m) (kN·m) (kN·m) (kN·m) (2475 3291 1781 2369 2073 2758 2422 2677 2533 3369	M 1.33M 1.2Mcr Mr=φMn 1.33M < 1.2Mcr or Mr (kN·m) (kN·m) (kN·m) 1.2Mcr or Mr OK OK OK OK OK OK OK O	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

SECTION D-D B	OTTOM FIBR	E	(h = 200)	cm, b=	100 cm)		
BECTION D D D	M	1.33M	1.2Mcr	$Mr = \phi Mr$	1.33M <	As = 44 cm 2 (D=2.65cm,	
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm,	4 Nos)
1	934	1243			OK	ρ s = As/Ac =	0.0022
7	589	783	-		OK	ρ min = 0.03 f'c/fy =	0.0018
3	734		2422	2726	OK	$\rho_s > \rho_{min}$	O.K
<u> </u>	964				OK	c/de =	0.03
	823				OK	c/de < 0.42	O.K

PILE (1,1) SECTION NOMINAL RESISTANCES


		Unit	Z	=0 m	Z=	=11m	Remark
			Atual	Allowable	Atual	Allowable	
Reinforcem	ent	mm	32	-D32	16	-D25	
Area As		cm2	25	7.36	7	8.54	
Combination I	P	kN	2893	10027	2893	18002	OK
	М	kN·m	2073	7184	952	5926	OK
Combination 2	P	kN	1497	4681	1497	8896	OK
	М	kN·m	1908	5968	860	5111	OK
Combination 3	P	kN	3792	27617	3792	31953	OK
	M	kN·m	811	5905	283	2382	OK
Combination 4	Р	kN	1987	3685	1987	6049	O.K
	М	kN∙m	3039	5637	1399	4259	O.K
Combination 5	P	kN	758	1198	758	1135	O.K
	M	kN·m	2969	4692	1399	2094	O.K


STRESS


	Stress of reinfor	cement δs (MPa)	Stress of con-	crete δc (MPa)	Remark
	Actual	Allowable	Actual	Allowable	Kemark
Combination 1	-101.6	220.6	8.07	12.26	OK
Combination 2	136.4	220.6	7.55	12.26	OK
Combination 3	-52.0	220.6	3.84	12.26	OK
Combination 4	233.3	294.2	12.04	14.71	OK
Combination 5	278.0	294.2	11.77	14.71	OK

STRESS OF PILE CAP

	Actual (MPa)		Allowable (MPa)	Remak
Vertical Bearing Pressure	σ cv =	2.93	σ ca=0.5x σ ck = 17.65	OK
Vertical Punching Shear	Tc =	0.26	$\tau a = 0.88$	OK
Horizontal Bearing Pressure	σ ch =	7.37	σ 'ca=0.3x σ ck = 10.59	OK
Horizontal Bearing Pressure	tc =	0.46	$\tau a = 0.88$	OK

2. LOAD COMBINATIONS LARGE TRAVA ABUTMENT A2 (H=9.2 M) Abutment DC 1487 T 6.= -0.01 m 6.= 0.55 m

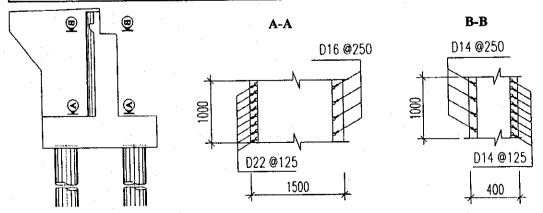
			Pz	-		ž			Μ		Notes
Sos	Rems	II.	ž	150	1=0	Ž.	-	n=1	2	ē	
<u> </u>	Permanent load										
<u> `</u> -	Superstructure - DC (n=0.9,1.25)	330	297	413	-			182	163	227	
2	2 Wearing surface - DW (n=0.65,1.5)	33	21	50				18	12	27	
က	3 Abutment - DC (n=0.9,1.25)	1,487	1,338	1,859	V			-17	-15	-21	
4	Horizontal earth pressure - EH (n=0.9,1.35)	-			525	379	872	1,610	1,163	2,674	
S					099	487	1,074	2,023	1,495	3,295	
9	6 Vertical earth pressure - EV (n=0.9,1.35)	1,076	998	1,452				-2,259	-2,033	-3,050	
	Translent Loads										
7	Live load - LL(n= 0.5,1.75)	, 157	79	275				86	43	151	
<u> </u>	a- Main load	104	52	182				25	29	100	
	b- Sub load	53	27	66				29	15	15	
8	Dynamic load allowance - IM (n=0.5,1.75)	52	56	91				28	14	05	
	a- Main load	34	17	09	•			19	6	EE	
	b- Sub load	17	6	31				10	5	11	
ō	Live load surcharge - LS (n=0.9,1.35)				09	43	100	276	200	459	
우	10 Braking force - BR (n=0.5,1.75)				19	10	33	190	95	333	25% of Japanese Load - p1
=	11 Friction force - FR (n=1)				_						f=0.05
	a- Dead load				0			0			
	- b- Dead load + Live load				0			0			
12	12 Earthquake - EO (n=1)				215			675			12% of Dead load

Load combinations	Pz	ž	χχ
	4139	1005	850
2	2,625	972	1,260
3	4,139	389	-1,586
4	3,878	1,398	1,764
5	2,729	1,398	2,708

Combination 1	1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b)
Combination 2	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)
Combination 3	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b)
Combination 4	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ
Combination 5	0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ

WALL

Section A-A		(h = 150 ⋅	cm, b=	100 cm)			
	M	1.33M	1.2Mcr	$Mr = \phi Mn$	1.33M <	As = 30 cm 2 (D=2.2cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm)	4 Nos)
1	460	612			OK	ρ s = As/Ac =	0.0020
2	434	578			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	203	270	1363	1422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	590	785			OK	c/de =	0.04
	598	795			OK	c/de < 0.42	O.K

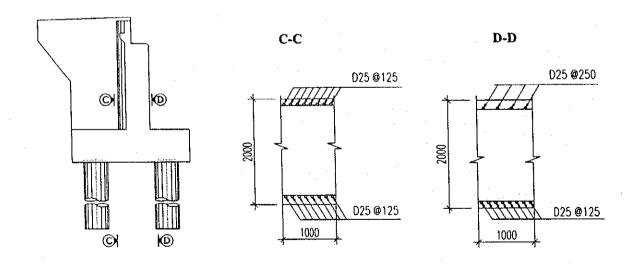

Section B-B		(h = 40)	cm, b=	100 cm)			
	M	1.33M	1.2Mcr	Mr=φ Mn	1.33M <	As = 12 cm 2 (D=1.4cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm,	4 Nos)
1	54	72	<u> </u>		OK	ρ s = As/Ac =	0.0031
						ρ min = 0.03 fc/fy =	0.0018
			98	98		$\therefore \rho_s > \rho_{min}$	O.K
						c/de =	0.05
						c/de < 0.42	O.K

FOR SERVICE LIMIT STATE

Cracking

Combination	M (kN·m)	fsa (MPa)	fs (MPa)	0.6 · f y (MPa)	fsa < 0.6 · f'y
1	72.28	159.4	98.8	229.5	OK

Stress Remark Allowable Actual $fr = 0.63 \cdot (fc)^{0.5}$ OK 3.03 (MPa) fc tensile 1.31 (MPa) OK 9.41 (MPa) 1.34 (MPa) fca = 0.4fcfc compress fsa = 0.6fy229.48 (MPa) OK 4.92 (MPa)


B abutment

24.10 (m)

SECTION C-C T	OP FIBRE		(h = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr≂¢Mn	1.33M <	As = 39 cm 2 (D=2.5cm, 8	Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm, 8	Nos)
1	346	460	·····		OK	ρ s = As/Ac =	0.0020
2	847	1126			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	0	0	2422	2363	OK	$\therefore \rho_s > \rho_{min}$ — C).K
4	734	977			OK	c/de =	0.00
5	1187	1578			ОК	c/de < 0.42 C).K

SECTION C-C B	OTTOM FIBR	E	(h = 200)	cm, b =	100 cm)		
	М	1.33M	1.2Mcr	Mr= ϕ Mn	1.33M <	As = 39 cm 2 (D=2.5cm, 8	Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm2 (D=2.5cm, 8	Nos)
1	1085	1443			OK		0.0020
2	664	883			OK	ρ min = 0.03 fc/fy =	0.0018
3	571	760	2422	2363	OK	ρs > ρ min O	.K
4	1282	1705			OK	c/de =	0.00
5	1080	1436			OK	:. c/de < 0.42 O).K

SECTION D-D BO	OTTOM FIBRI	E	(h = 200)	cm, b=	100 cm)		
	M	1.33M	1.2Mcr	Mr= Ø Mn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN m)	$(kN \cdot m)$	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm,	4 Nos)
1	1448	1926			OK	ρ s = As/Ac =	0.0020
2	1096	1458			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	1020	1356	2422	2422	OK	$\rho_s > \rho_{min}$	O.K
4	1612	2145	·.		OK	c/de =	0.02
5	1443	1919			OK	. c/de < 0.42	O.K

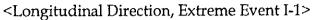
Abutment Type A-2

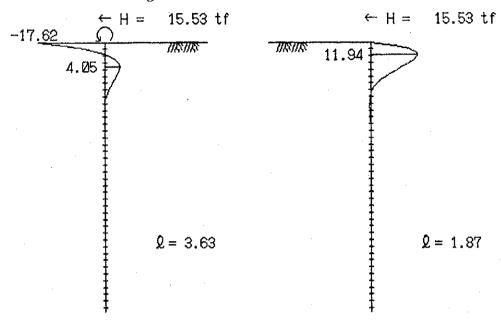
STABILITY CALCULATION

Longitudinal direction

	Displacen	nent δ (mm)	Bearing (Capacity (T)	Uplift C	apacity (T)	Remarks
Load Combination	Actual	Allowable		Allowable		Allowable	ICHIMINS
Strength - I-1	5.1	30	61.10	112	30.87	-89	O.K
Strength - 1-2	5.0	30	47.02	112	11.32	-89	O.K
Strength - I-3	1.8	30	54.27	112	37 <i>.</i> 71	-89	O.K
Extremme Event - I-1	7.2	20	68.41	112	17.77	-89	O.K
Extremme Event - I-1	7.3	20	62.61	112	-1.96	-89	O.K

PILE SECTION


Checking stress

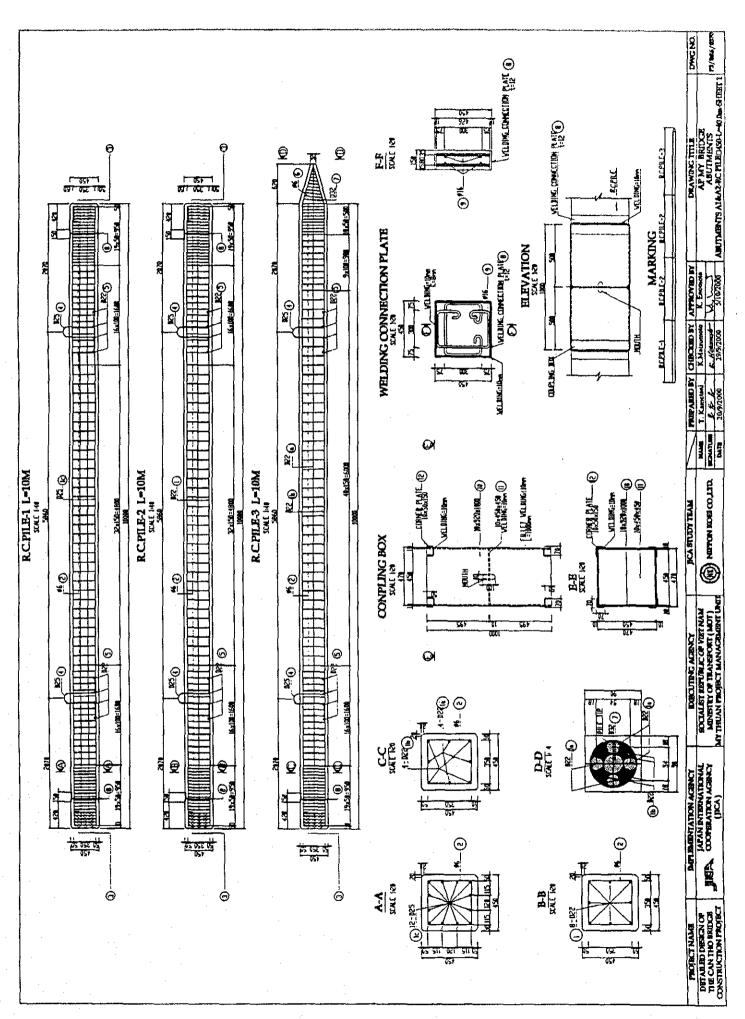

I d Cambination	σs (k	g/cm2)	σc (k	(g/cm2)	Remark
Load Combination	Actual	Allowable	Actual	Allowable	
Combination 1	1279.9	2250	98.1	125	OK
Combination 2	1532.4	2250	92.4	125	OK
Combination 3	-625.3	2250	47.5	125	OK
Combination 4	2180.1	3000	133.1	150	OK
Combination 5	2491.9	3000	130.5	150	OK

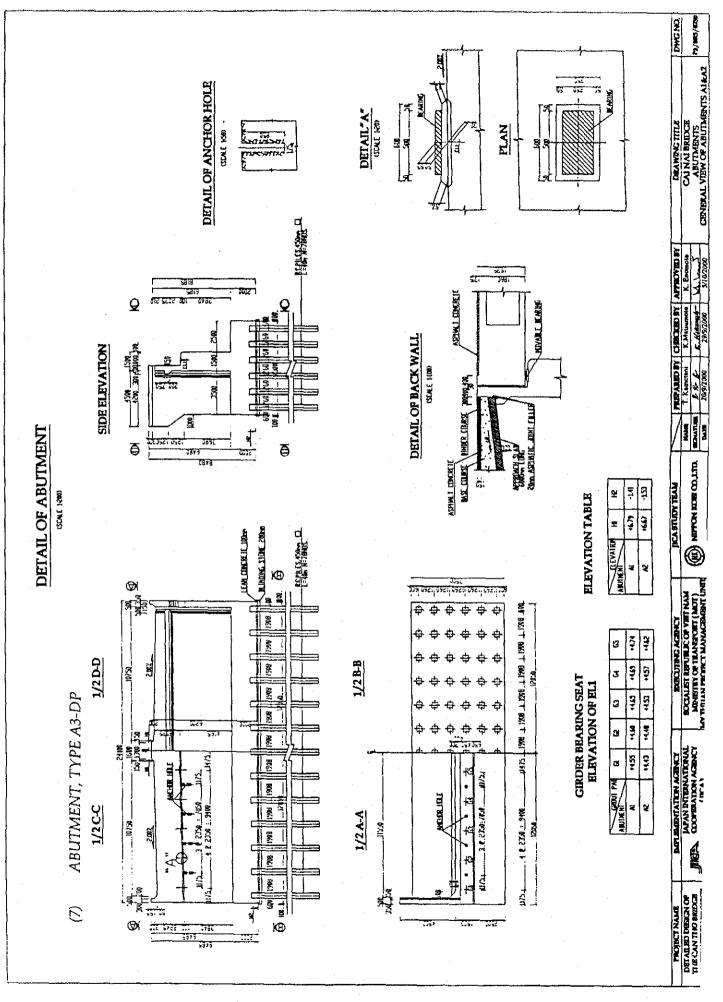
Notes:

σs Stress of reinforcement (kg/cm2)

σ c Stress of concrete (kg/cm2)

(Pile Head: Rigid)


(Pile Head: Hinge)


<Longitudinal Direction, Strength I>

(Pile Head: Rigid)

(Pile Head: Hinge)

2. LOAD COMBINATIONS - SMALL TRA VA ABUTMENT A1 (H=8,2M)

E 090

11 0

0.05 m

II.

Abutment DC 1390 T

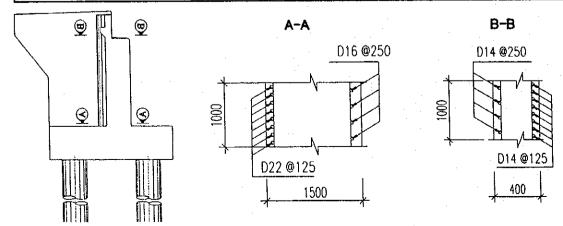
			Pz			Ή			My		Notes
SON	Rems	n=1	n<1	n>1	n=1	N<1	n>1	n=1	n<1	n>1	
	Permanent load										
-	Superstructure - DC (n=0.9,1.25)	698	332	461				221	199	277	
2	Wearing surface - DW (n=0.65,1.5)	63	41	98				38	25	57	
က	Abutment - DC (n=0.9,1.25)	1,390	1,251	1,738				83	57	79	
4	Horizontal earth pressure - EH (n=0.9,1.35)				417	301	693	1,140	823	1,894	
2	Horizontal earth pressure - EAE (n=0.9,1.35)				524	387	853	1,432	1,058	2,333	
9	Vertical earth pressure - EV (n=0.9,1.35)	984	886	1,329				-1,969	-1,772	-2,658	
	Transient Loads										
7	Live load - LL(n= 0.5,1.75)	192	96	337				115	28	202	
	a- Main load	130	65	228				78	39	137	-
	b- Sub load	62	31	109				37	19	65	
8	Dynamic load allowance - IM (n=0.5,1.75)	63	32	111				38	19	67	
	a- Main load	43	21	75				56	13	45	
	b- Sub load	21	10	36				12	9	22	
9	Live load surcharge - LS (n=0.9,1.35)				54	39	68	220	159	365	
10	Braking force - BR (n=0.5,1.75)				24	12	43	244	122	427	25% of Japanese Load - p1
=	Friction force - FR (n=1)										f=0.05
	a- Dend load				0			0			
	b- Dead load + Live load				0		•	0			
12	12 Earthquake - EQ (n=1)				210			611			12% of Dead load

Load combinations	Pz	ž	My
-	4070	824	707
2	2,510	782	766
က	4,070	297	-1,422
4	3,751	1,164	1,261
5	2,638	1,164	2,016

Combination 1	1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b)
Combination 2	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)
Combination 3	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b)
Combination 4	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ
Combination 5	0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ

WALL Section

Section A-A		(n = 150)	cm, D-	100 cm)			
	M	1.33M	1.2Мст	$Mr = \phi Mn$	1.33M <	As = 30 cm 2 (D=2.2cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1,2Mcr or Mr	A's = 8 cm 2 (D=1.6cm	, 4 Nos)
1	325	432			OK	$\rho_{\rm S} = A_{\rm S}/A_{\rm C} =$	0.0020
2	283	377			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	96	128	1363	1422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	395	525			OK	c/de =	0.04
5	402	534			OK	c/de < 0.42	O.K


Section B-B		(h = 40)	cm, b=	100 cm)		· .	
	M	1.33M	1.2Мсг	Mr=φMn	1.33M <	As = 12 cm 2 (D=1.4cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm,	4 Nos)
1	54	72			OK	ρ s = As/Ac =	0.0031
						ρ min = 0.03 fc/fy =	0.0018
<u></u>			98	98		ρ s > ρ min ——	O.K
						c/de =	0.05
ļ						c/de < 0.42	O.K

FOR SERVICE LIMIT STATE Cracking

	M	fsa	fs	0.6·fy	fsa < 0.6 · f y
Combination	(kN·m)	(MPa)	(MPa)	(MPa)	
1	72.28	159.4	98.8	229.5	OK

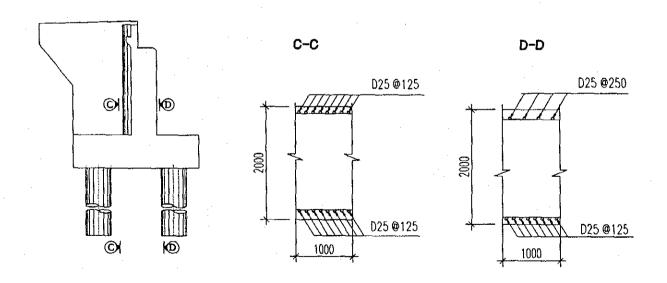
Stress

	Actual		A	llowable		Remark
fc tensile	=	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	= ,	3.03 (MPa)	OK.
fc compress	<u>-</u>	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs	=	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK

FOOTING

B abutment

24.10 (m)


SECTION C-C TOP FIBRE (h = 200 cm, b = 100 cm)

SECTION C-C I	OI FIDRE		(11 - 200	cm, o-	300 CIII)		
	M	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 39 cm 2 (D=2.5cm)	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm)	, 8 Nos)
]	172	229			OK	ρs = As/Ac =	0.0020
2	690	918	· · · · · · · · · · · · · · · · · · ·		OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	0	0	2422	2363	OK	$\rho_s > \rho_{min}$	O.K
4	550	731			OK	c/de =	0.00
_ 5	1009	1342			OK	c/de < 0.42	O.K

SECTION C-C BOTTOM FIBRE (h = 200 cm, b = 100 cm)1.33M $Mr = \phi Mn | 1.33M <$ As = 39 cm 2 (D=2.5cm, 8 Nos.)M 1.2Mcr Combination $(kN \cdot m)$ (kN·m) $(kN \cdot m)$ $(kN \cdot m)$ 1.2Mcr or Mr A's = 39 cm 2 (D=2.5cm, 8 Nos)1156 1538 OK 0.0020 ρ s = As/Ac = 2 615 818 OK ρ min = 0.03 fc/fy =

0.0018 3 714 950 OK ...ρs>ρmin ----2422 2363 O.K 4 1274 1695 OK c/de = 0.00 5 1038 1380 OK c/de < 0.42 O.K

SECTION D-D BOTTOM FIBRE (h = 200 cm, b = 100 cm) $Mr = \phi Mn | 1.33M <$ M 1.33M 1.2Mcr As = 39 cm 2 (D=2.5cm, 8 Nos)(kN m) Combination (kN·m) $(kN \cdot m)$ (kN·m) 1.2Mcr or Mr A's = 20 cm 2 (D=2.5cm, 4 Nos)1 852 1133 OK ρ s = As/Ac = 0.0020 2 593 788 OK $\rho \min = 0.03 \text{ fc/fy} =$ 0.0018 3 630 838 2422 2422 OK .. ρs > ρ min --O.K 4 911 1211 OK c/de = 0.02 5 804 1069 OK c/de < 0.42 O.K

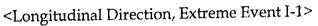
Abutment Type A-3

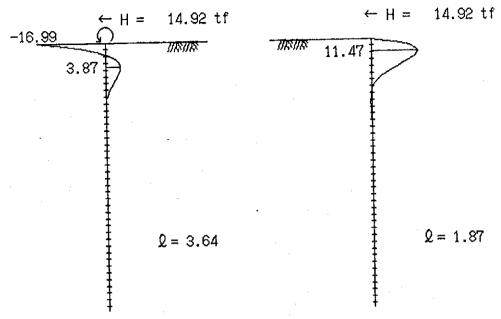
STABILITY CALCULATION

Longitudinal direction

Load Combination	Displacen	nent δ (mm)	Bearing (Capacity (T)	Uplift C	apacity (T)	Remarks	
Loan Combination	Actual	Allowable	P_{max}	Allowable	P_{min}	Allowable	Remarks	
Strength - I-1	4.9	30	66.57	111	37.79	-88	O.K	
Strength - I-2	4.6	30	46.64	111	17.72	-88	O.K	
Strength - I-3	1.6	30	61.27	111	43.09	-88	O.K	
Extremme Event - I-1	6.9	20	70.64	111	25.53	-88	O.K	
Extremme Event - I-1	7.0	20	62.80	111	4.84	-88	O.K	

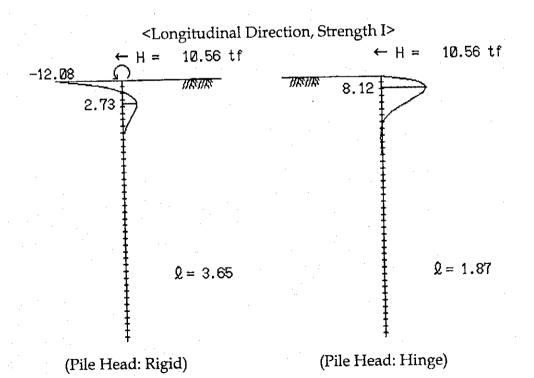
PILE SECTION

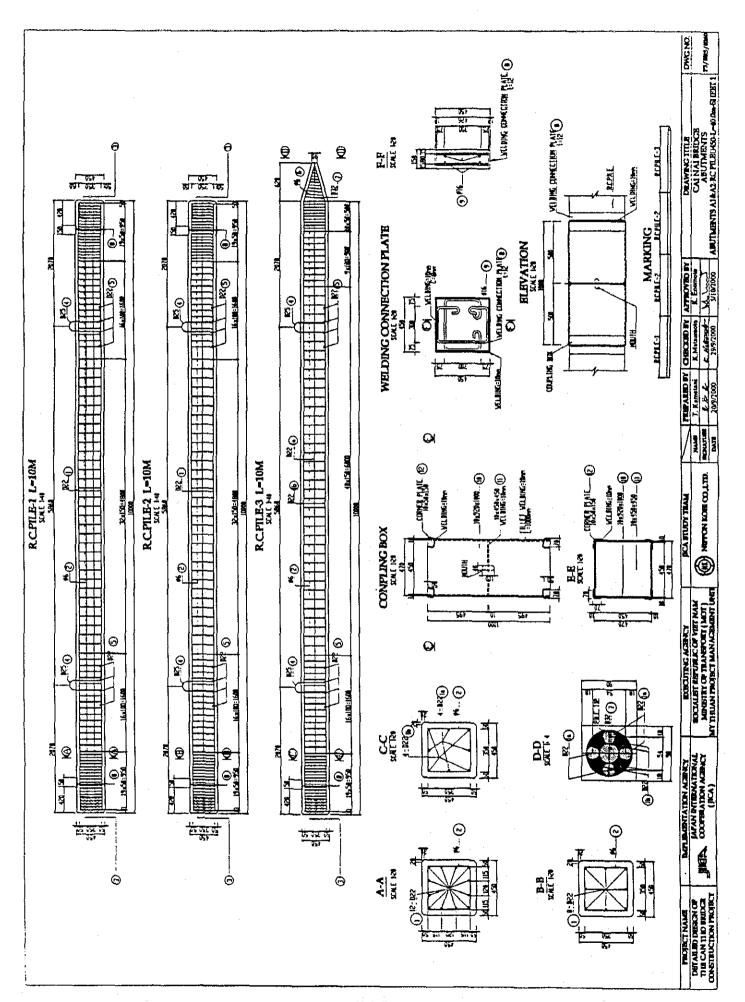

Checking stress

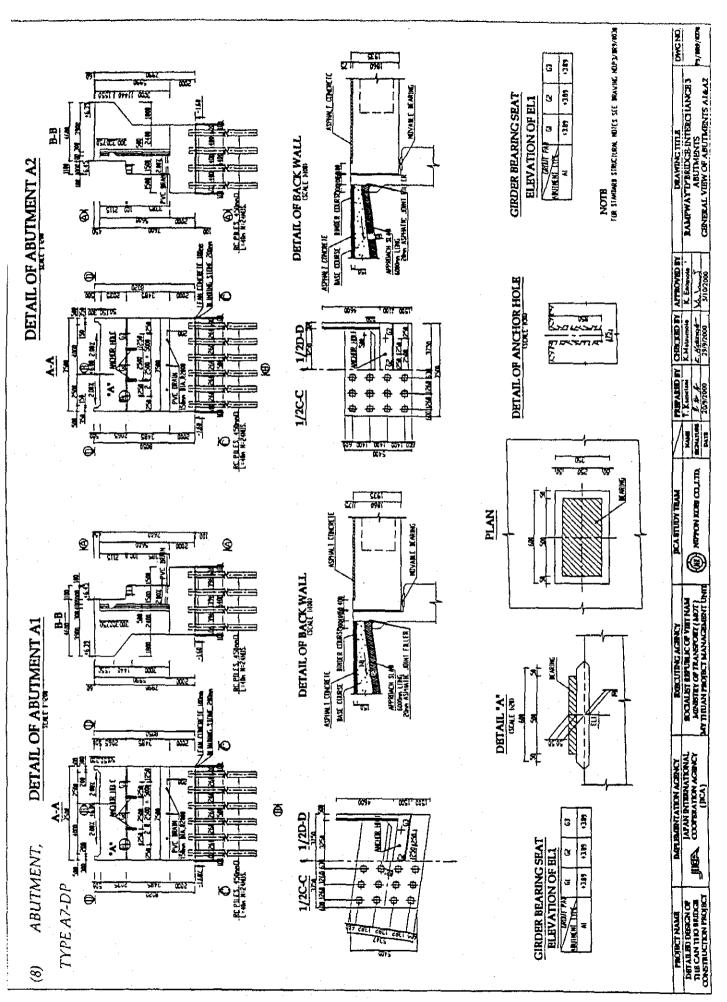

Load Combination	σs (k	g/cm2)	σc (k	(g/cm2)	Remark
	Actual	Allowable	Actual	Allowable	
Combination 1	1342.3	2250	105.3	125	OK
Combination 2	1657.3	2250	98.2	125	OK
Combination 3	-674.0	2250	50.4	125	OK
Combination 4	2479.1	3000	145.9	150	OK
Combination 5	2913.5	3000	143.4	150	OK

Notes:

 σ s Stress of reinforcement (kg/cm2)


σ c Stress of concrete (kg/cm2)




(Pile Head: Rigid)

(Pile Head: Hinge)

II-3-51

11-3-52

2. LOAD COMBINATIONS RAMWAYD ABUTMENT A1 (H=7.6M)

Abutment DC 362 T e₂= -0.11 m e₂= 0.45 m

			Ρz			¥			My		Notes
Š	Rems	n=1	n<1	n>1	1=1	N<1	1	n=1	P<1	_ -<-	
<u>.</u>	Permanent load										
-	Superstructure - DC (n=0.9,1.25)	136	122	170				61	55	11	
~	Wearing surface - DW (n=0.65,1.5)	30	20	45				14	6	20	
6	Abutment - DC (n=0.9,1.25)	362	326	453				-40	-36	-50	
4	Horizontal earth pressure - EH (n=0.9,1.35)				112	81	185	283	204	469	
2	Horizontal earth pressure - EAE (n=0.9,1.35)				140	104	228	355	262	578	
ဖ	Vertical earth pressure - EV (n=0.9,1.35)	195	175	263				-292	-263	-395	
	Transient Loads										
7	Live load - LL(n= 0.5,1.75)	84	42	148				38	19	99	
	a- Main load	71	36	125				32	16	99	
	b- Sub load	13	9	23				9	3	10	
8	Dynamic load allowance - IM (n=0.5,1.75)	28	7	64				13	9	22	
	a- Main load	24	12	41				#	. 5	. 19	
	b- Sub load	4	2	7				2	1	3	
6	Live load surcharge - LS (n=0.9,1.35)				15	11	26	59	42	97	
9	Braking force - BR (n=0.5,1.75)				18	6	32	169	85	296	25% of Japanese Load - p1
11	Friction force - FR (n=1)										f=0.05
	a- Dead load				0			0			
	b- Dead load + Live load				0			0			
12	12 Earthquake - EQ (n=1)				09			201			12% of Dead load

щ
_
ܣ
•
LOAD COMBINATION TABLE
7
₽
О
Ξ
~
•
7
=
8
~
~
o
ပ
Ξ
۵
◂
ふ
v
L

Hx My	242 603	211 331	-310	323 638	323 751
Pz	1127	643	1,127	286	002
Load combinations	ļ	2	3	•	S

1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ 0.9DC + 0.65DW + 0.9EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + EQ 1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b) 1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b) 0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a) Combination 4 Combination 5 Combination 2 Combination 1 Combination 3

Longitudinal direction

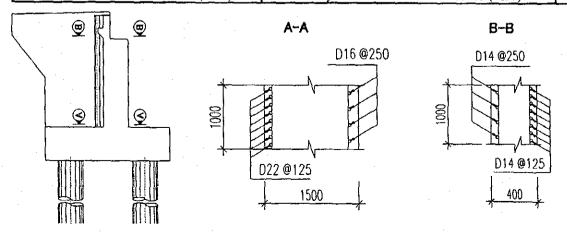
Load Combination	Displaceme	nt δ (mm)	Bearing Ca	pacity (kN)	Uplift Capaci	ty (kN)	Remarks	
	Actual	Allowable	Pmax	Allowable	Pmin	Allowable		
Strength I-1	13.6	30	4315	7061	1211	-4913	OK	
Strength J-2	11.2	- 30	2689	7061	464	-4913	OK	
Strength I-3	1.8	30	2947	7061	2579	-4913	OK	
Extremme Event 1-1	17.6	20	4285	7061	555	-4913	O.K	
Extremme Event I-2	18	20	3721	7061	-289	-4913	OK	

WALL

Section A-A (h = 150 cm, b = 100 cm)

SCCHOOL A-A		(11 - 120	CH1, D	100 (111)			
	М	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 30 cm 2 (D=2.2cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm,	4 Nos)
1	138	184			OK	ρ s = As/Ac =	0.0020
2	98	130			OK	ρ min = 0.03 fc/fy =	0.0018
3	25	33	1363	1422	OK	$\therefore \rho_s > \rho_{min}$ ——	O.K
4	143	191			OK	c/de =	0.04
5	144	191			OK	c/de < 0.42	O,K

Section B-B (h = 40 cm) $b = 100 \, cm)$ M 1.33M 1.2Mcr $Mr = \phi Mn | 1.33M <$ As = 12 cm 2 (D=1.4cm, 8 Nos.)(kN·m) Combination (kN·m) (kN·m) (kN·m) 1.2Mcr or Mr A's = $6 \text{ cm} 2 \quad (D=1.4 \text{ cm}, 4 \text{ Nos})$ 1 72 OK $\rho s = As/Ac =$ 0.0031 ρ min = 0.03 fc/fy = 0.0018 98 98 $\rho_s > \rho_{min}$ O.K c/de = 0.05 c/de < 0.42 O.K

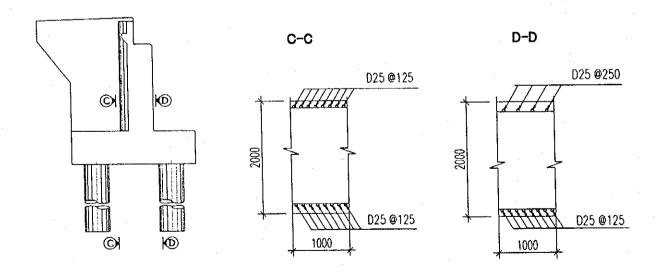

FOR SERVICE LIMIT STATE

Cracking

Combination	M (kN·m)	fsa (MPa)	fs (MPa)	0.6 · f y (MPa)	fsa < 0.6 · f y
1	72.28	159.4	98.8	229.5	OK

Stress

	Actual		A	llowable		Remark
fc tensile	=	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	=	3.03 (MPa)	ОК
fc compress	=	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs	=	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK


B abutment

7.50 (m)

SECTION C-C TO	OP FIBRE		(h = 200)	cm, b≕	100 cm)		
	М	1.33M	1.2Mcr	Mr=φMn		As = 39 cm 2 (D=2.5cm)	
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm	, 8 Nos)
1	224	298			OK	ρs = As/Ac =	0.0020
2	407	542		·	OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	0	0	2422	2363	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	434	577			OK	c/de =	0.00
5	648				OK	c/de < 0.42	O.K

SECTION C-C B	OTTOM FIBR	E	(h = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = $39 \text{ cm} 2$ (D= 2.5 cm ,	8 Nos)
1	907	1206			OK	ρ s = As/Ac =	0.0020
2	442	588			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	469	624	2422	2363	OK	$\rho_s > \rho_{min}$	O.K
4	897	1193			OK	c/de =	0.00
5	773	1027			OK	c/de < 0.42	O.K

SECTION D-DB	OTTOM FIBR	E	(h = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr=φ Mn	1.33M <	As = 39 cm 2 (D=2.5cm,	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm,	4 Nos)
i	1182	1572			OK	ρ s = As/Ac =	0.0020
2	717	954			OK	ρ min = 0.03 f'c/fy =	0.0018
3	744	990	2422	2422	OK	$\therefore \rho_s > \rho_{min}$	O.K
4	1173	1560			OK	c/de =	0.02
5	1048	1394			OK	c/de < 0.42	O.K

Abutment Type A-7

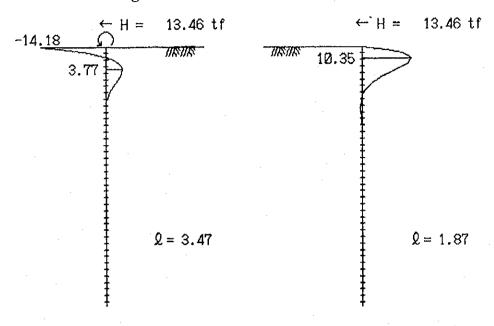
STABILITY CALCULATION

Longitudinal direction

	Displacen	nent δ (mm)	Bearing (apacity (T)	Uplift C	apacity (T)	Remarks
Load Combination	<u> </u>	Allowable		Allowable		Allowable	Kemarko
Strength - I-1	5.1	30	77.40	95	16.51	-76	O.K
Strength - I-2	4.3	30	46.69	95	6.90	-76	O.K
Strength - I-3	0.9	30	55.10	95	38.82	-76	O.K
Extremme Event - I-1	6.6	20	76.06	95	6.19	-76	O.K
Extremme Event - I-1	6.7	20	67.96	95	-9.63	-76	O.K

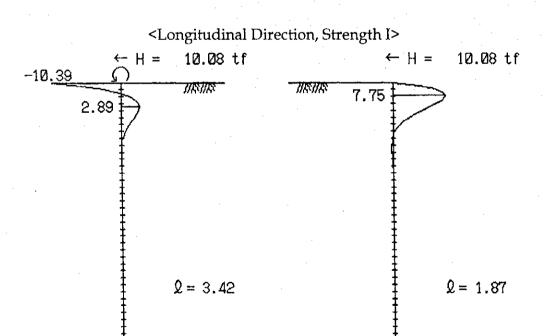
PILE SECTION

Checking stress

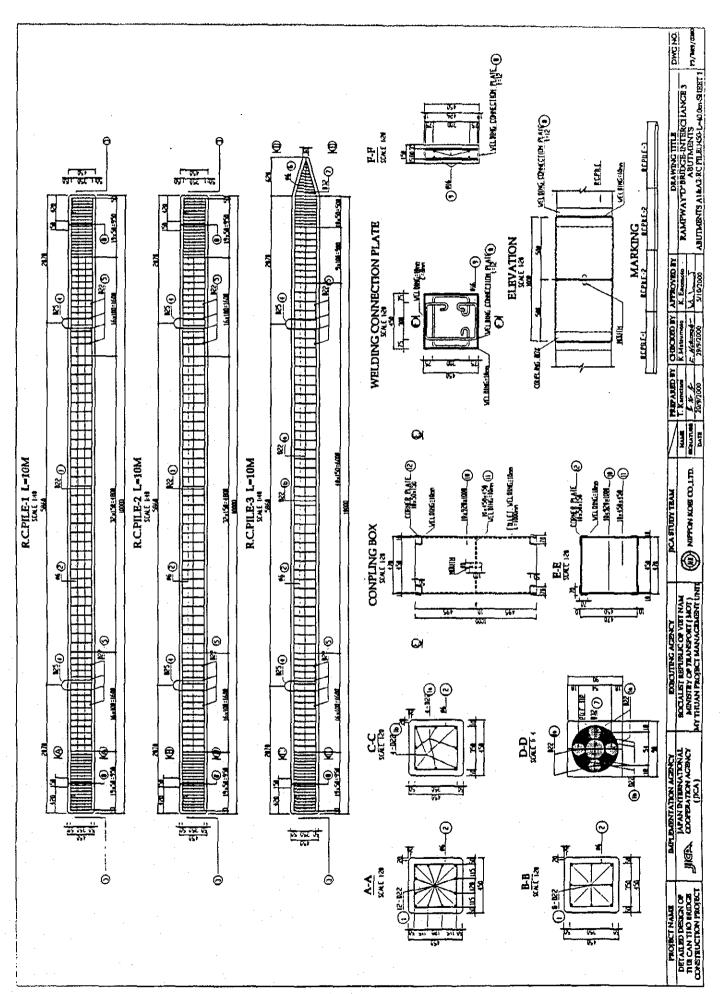

10 11 11	σs (k	g/cm2)	σς (k	(g/cm2)	Remark
Load Combination	Actual	Allowable	Actual	Allowable	11021112
Combination 1	1496.4	2250	93.2	125	OK
Combination 2	1539.6	2250	81.5	125	OK
Combination 3	-540.5	2250	39.9	125	OK
Combination 4	2415.1	3000	123.3	150	OK
Combination 5	2753.9	3000	120.8	150	OK

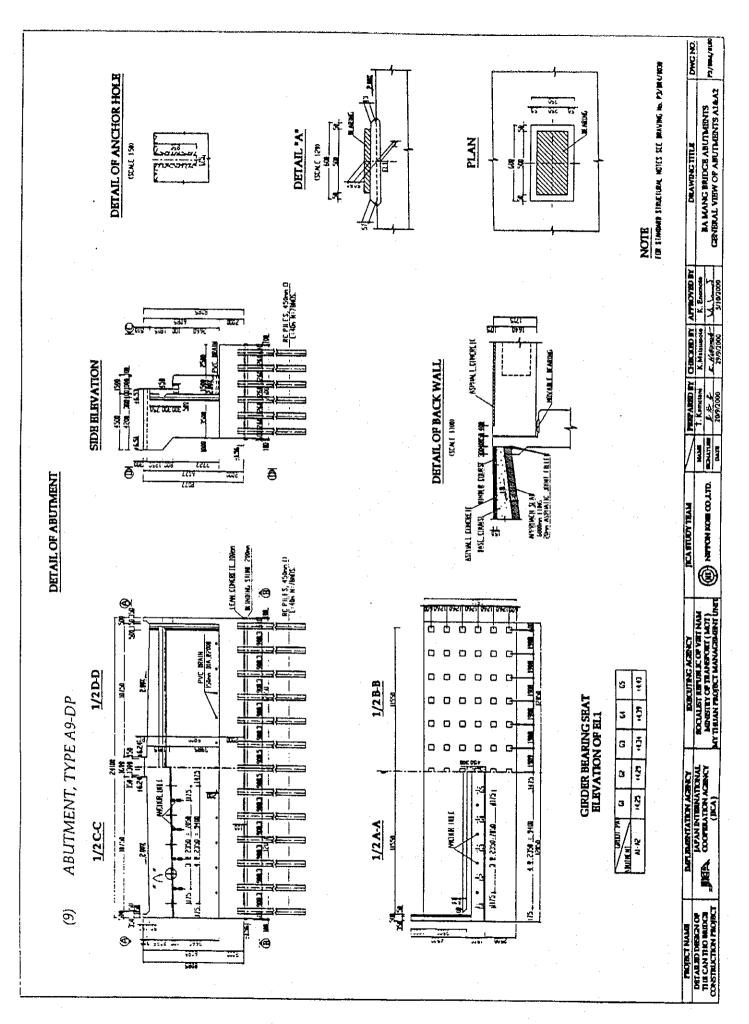
Notes:

σs Stress of reinforcement (kg/cm2)


σ c Stress of concrete (kg/cm2)

<Longitudinal Direction, Extreme Event I-1>


(Pile Head: Rigid)


(Pile Head: Hinge)

(Pile Head: Rigid)

(Pile Head: Hinge)

2. LOAD COMBINATIONS BAMANG ABUTMENT A1 (H=7,8M) Abutment DC 1350 T 0.03 m 0.0 m 0.05 m

1			Žď			ž			Š		Notes
Nos	1.8735	P=1	PK1	₽ 5 1	1=1	ž	₽ 2 1	1	7<1	141	
	Permanent foad										
-	Superstructure - DC (n=0.9,1.25)	451	406	564				271	243	338	
2	Wearing surface - DW (n=0.65,1.5)	50	33	76				30	20	45	
3	Abutment - DC (n=0.9 1.25)	1,350	1,215	1,687				44	39	54	
4	Horizontal earth pressure - EH (n=0.9,1.35)				377	273	627	981	709	1,630	
S	Horizontal earth pressure - EAE (n=0.9,1.35)				474	350	772	1,233	911	2,008	
ဖ	Vertical earth pressure - EV (n±0.9,1.35)	922	830	1,244				-1,783	-1,604	-2,407	
	Transient Loads										
~	Live load - LL(n= 0.5,1.75)	257	129	450				154	77	270	
	a- Main load	184	92	322				110	55	193	
	b- Sub load	73	37	128				44	22	77	
8	Dynamic load allowance - IM (n=0.5,1.75)	85	42	149				51	25	89	
-	a- Main load	61	30	106				36	18	64	
	be Sub load	24	12	42				15	7	25	
6	Live load surcharge - LS (n=0.9,1.35)				51	37	85	199	143	330	
9	Braking force - BR (n=0.5,1.75)				49	24	85	488	244	853	25% of Japanese Load - pf
=	Friction force - FR (n=1)										f=0.05
	a- Dead load				0			0			
	b- Dead load + Live load				0			0			
2	12 Earthquake - EQ (n=1)				262			921			12% of Dead load

	ı
	ł
	I
	Į
	1
LOAD COMBINATION TABLE	
팯	J
۳	
\simeq	l
_	ı
≴	İ
⋍	ł
5	Ì
2	ı
=	١
9	ĺ
₹	ł
Ö	1
O	ı
	ļ
⋖	
Q	
كسد	ļ
	1
	Į

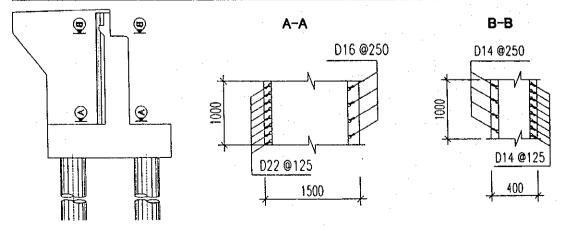
My	1203	657	-1,611	1,636	2,303
Hx	787	711	224	1,143	1,143
Pz	4170	2,483	4,170	3,742	2,654
Load combinations		2	8	*	S.

Combination 1	1.25DC + 1.5DW + 1.35EV + 1.35EH + 1.75LL + 1.75IM + 1.35LS + 1.75BR + 1FR(b)
Combination 2	0.9DC + 0.65DW + 0.9EV + 1.35EH + 1.35LS + 1FR(a)
Combination 3	1.25DC + 1.5DW + 1.35EV + 0.9EH + 1.75LL + 1.75IM + 0.9LS - 1.75BR - 1FR(b)
Combination 4	1.25DC + 1.5DW + 1.35EV + 1.35EAE + 0.5LL + 0.5IM + 1.35LS + 0.5BR + 1FR(b) + 1EQ
Combination 5	0 9DC + 0 6SDW + 0 9EV + 1 3SEAE + 0 5H + 0 5HM + 1 3SI S + 0 5BB + 1EB(h) + EO

WALL Section A

Section A-A		(n-130)	cm, v –	100 cm j			
	M	1.33M	1.2Mcr	Mr= φ Mn	1.33M <	As = 30 cm 2 (D=2.2cm	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 8 cm 2 (D=1.6cm	, 4 Nos)
1	325	432			OK	ρs = As/Ac =	0.0020
2	232	309			OK	ρ min = 0.03 fc/fy =	0.0018
3	57	75	1363	1422	OK	∴ ρs>ρmin ——	O.K
4	341	453			OK	c/de =	0.04
5	348	463		!	OK	c/de < 0.42	O.K

Section B-B		(h = 40)	cm, b=	100 cm)	:		
	M	1.33M	1.2Mcr	Mr=φMn	1.33M <	As = 12 cm 2 (D=1.4cm	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 6 cm 2 (D=1.4cm	, 4 Nos)
1	54	72			OK	ρs = As/Ac =	0.0031
						$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
			98	98		$\rho_s > \rho_{min}$	O.K
				1		c/de =	0.05
						c/de < 0.42	O.K


FOR SERVICE LIMIT STATE

Cracking

	М	fsa	fs	0.6·fy	fsa < 0.6 · f'y
Combination	(kN·m)	(MPa)	(MPa)	(MPa)	·
1	72.28	159.4	98.8	229.5	OK

Stress

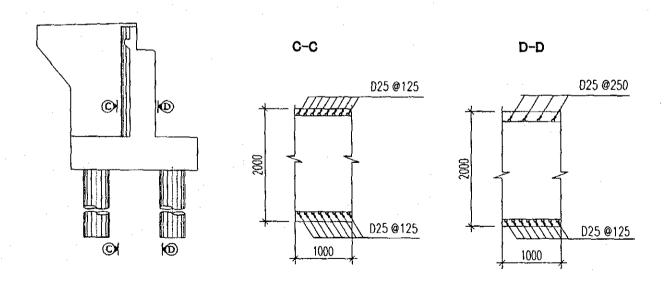
	Actual		A	llowable		Remark
fc tensile	-	1.31 (MPa)	$fr = 0.63 \cdot (fc)^{0.5}$	=	3.03 (MPa)	OK
fc compress	· =	1.34 (MPa)	fca = 0.4fc	=	9.41 (MPa)	OK
fs	=	4.92 (MPa)	fsa = 0.6fy	=	229.48 (MPa)	OK

FOOTING

B abutment

24.10 (m)

OFFICER		TO U.S. NO. NO.
SECTION	CACHOP	MIKKK.


SECTION C-C TOP	PIBRE		(n = 200)	cm, b=	100 cm)		
	М	1.33M	1.2Mcr	Mr= Ø Mn	1.33M <	As = 39 cm 2 (D=2.5cm)	8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 39 cm 2 (D=2.5cm)	8 Nos)
i	380	506			OK	ρ s = As/Ac =	0.0020
2	841	1118			OK	$\rho \min = 0.03 \text{ fc/fy} =$	0.0018
3	0	0	2422	2295	OK	$\therefore \rho_s > \rho_{min}$ ——	O.K
4	786	1045			OK .	c/de =	0.00
5	1220	1623			OK	c/de < 0.42	O.K

SECTION C-C BOTTOM FIBRE ($h \approx 200 \text{ cm}$, $b = 100 \, \mathrm{cm}$) $Mr = \phi Mn \mid 1.33M <$ 1.2Mcr (kN·m) (kN·m) (kN·m) 1.2Mcr or Mr A's = 39 cm²

Combination	(xx 11)	_ (XIX 111)	(111 / 117)	(4) (11)	1.21VICI O: IVII	AS - Jy Cinz (D-2,JCIII	0 1102 /
1	1125	1496			OK	ρs = As/Ac =	0.0020
2	423	562			OK	$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
3	687	913	2422	2295	OK	∴ \(\rho_s > \rho_{\text{min}}\)	O.K
4	1182	1573			OK	c/de =	0.00
5	942	1252			OK	c/de < 0.42	O.K.

SECTION D-D BOTTOM FIBRE (h = 200 cm, b = 100 cm)

			_ \				
	M	1.33M	1.2Mcr	Mr= φ Mπ	1.33M <	As = 39 cm 2 (D=2.5cm	, 8 Nos)
Combination	(kN·m)	(kN·m)	(kN·m)	(kN·m)	1.2Mcr or Mr	A's = 20 cm 2 (D=2.5cm	, 4 Nos)
1	755	1004			OK	ρ s = As/Ac =	0.0020
2	456	606			OK	$\rho \min = 0.03 \text{ f'c/fy} =$	0.0018
3	535	712	2422	2383	OK	:. ps > pmin	O.K
4	783	1042			OK	c/de ≈	0.02
5	715	951			OK	: c/de < 0.42	O.K

Abutment Type A-9

STABILITY CALCULATION

Longitudinal direction

Load Combination	acement &	(mm) Beari	ng Capac	ity (T) Upli	ft Capaci	ty (T)	Remarks
Load Comonadon	Actual	Allowable	P_{max}	Allowable	P_{min}	Allowable	TCHUIRS
Strength - I-1	4.8	30	71.80	116	35.13	-92	O.K
Strength - I-2	4.2	30	44.65	116	19.02	-92	O.K
Strength - I-3	1.1	30	64.90	116	42.02	-92	O.K
Extremme Event - I-1	6.8	20	<i>7</i> 3.51	116	22.44	-92	O.K
Extremme Event - I-1	6.9	20	65.24	116	2.81	-92	O.K

PILE SECTION

Checking stress

					the state of the s
Load Combination	σs (k	g/cm2)	σc (k	g/cm2)	Remark
Load Combination	Actual	Allowable	Actual	Allowable	
Combination 1	1299.9	2250	101.4	125	OK
Combination 2	1444.3	2250	89.6	125	OK
Combination 3	-623.7	2250	45.9	125	OK
Combination 4	2472.0	3000	142.7	150	OK
Combination 5	2888.9	3000	140.3	150	OK

Notes:

σs Stress of reinforcement (kg/cm2)

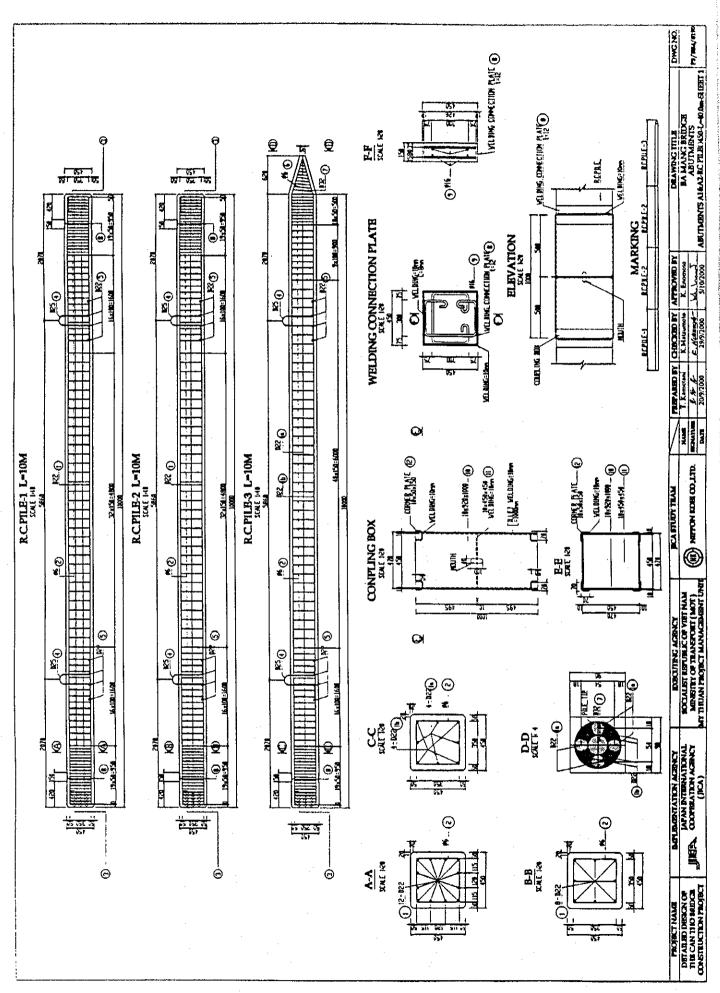
σc Stress of concrete (kg/cm2)

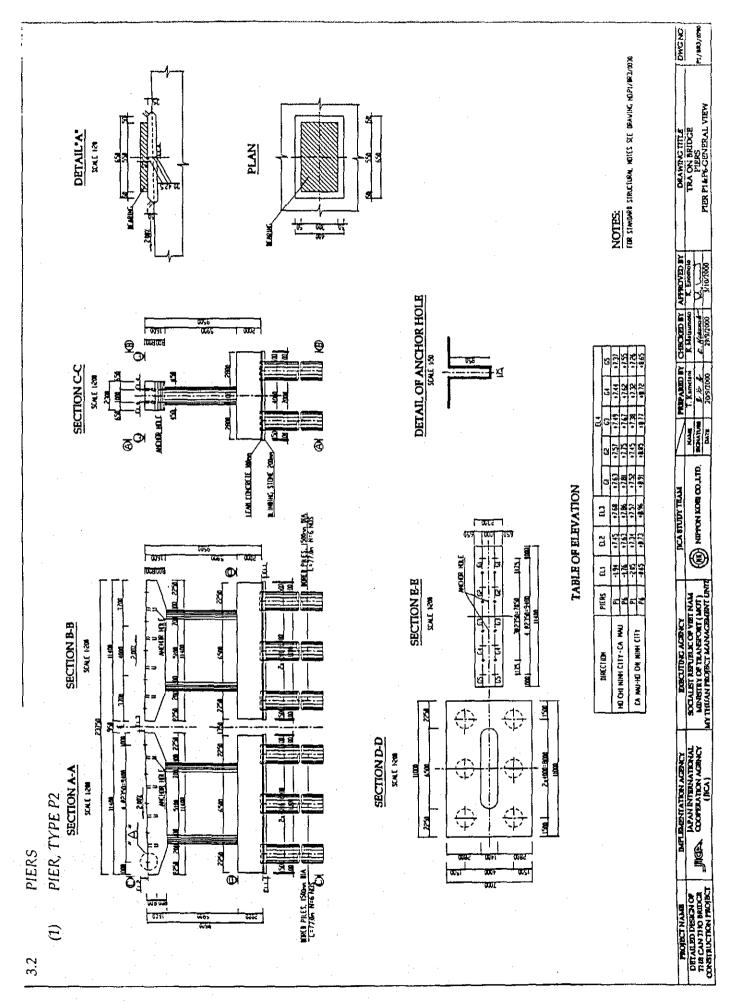
-16.56 -16.56 -18.83 -18.83 -19.56 <p

Q = 1.87

(Pile Head: Rigid)

(Pile Head: Hinge)


<Longitudinal Direction, Strength I> ← H = 10.22 tf ← H = 10.22 tf 7.86 2.68 7.86 7.86 10.22 tf 7.86 7.86 10.22 tf 10.22 tf 10.22 tf 7.86 10.22 tf <a href=


Q = 3.62

Q = 1.87

(Pile Head: Rigid)

(Pile Head: Hinge)

2. LOAD COMBINATIONS - TRA ON PIER 1

N=1				D.,		Ξ	>		Μ̈́			H.	,		1	1	Notes
Superstructure - Continuous span 363 301 416 127 105 146 Bier Transient Load 565 509 706 374 216 314 Bier Transient Load 565 509 706 6 6 706<	Nos		- III		<u>π</u>	ž	<u>'≙'</u> —— ∵⊽∶) <u> </u>	<u>-</u>			<u> </u>			<u>A</u>	
Superstructure - Continuous span 363 301 416 127 105 Superstructure - Simple span 379 333 483 -247 -216 Pier Transient Loads 565 509 706 -247 -216 Live load - LL(n= 0.5,1.75) 177 78 274 55 274 + Live load - LL(n= 0.8,1.35) 157 125 212 55 44 + Dynamic load allowance - IM (n=0.8,1.35) 127 128 27 85 43 + Live load - LL(n= 0.5,1.75) 52 26 90 18 14 + Dynamic load allowance - IM (n=0.8,1.35) 131 105 177 -85 43 + Live load - LL(n= 0.5,1.75) 35 36 36 48 -14 + Dynamic load allowance - IM (n=0.5,1.75) 35 36 46 77 3 + Live load - LL(n= 0.8,1.35) 38 29 101 20 10 + Live load - LL(n= 0.8,1.35) 11 105 17 <t< td=""><td></td><td>Permanent load</td><td></td><td></td><td>· · ·</td><td>:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Permanent load			· · ·	:											
Superstructure - Simple span 379 333 483 -247 -216 Pier Transient Loads 565 509 706 -247 -216 Live load - each spans	_	Superstructure - Continuous span	363	301	416			-		1	9						
Piler Transient Loads 565 509 706 Live load - each spans 2 3 3 a- Continuous spans 157 78 274 55 27 4- Live load - LL(n= 0.8,1.35) 157 125 212 55 44 + Live load - LL(n= 0.8,1.35) 157 157 158 4 4 + Dynamic load allowance - IM (n=0.8,1.35) 131 66 229 85 43 + Live load - LL(n= 0.8,1.35) 131 66 229 85 43 43 + Live load - LL(n= 0.8,1.35) 131 166 229 85 43 43 + Live load - LL(n= 0.8,1.35) 131 105 177 85 43 43 + Live load - LL(n= 0.8,1.35) 3 3 3 8 43 43 44 + Live load - LL(n= 0.8,1.35) 19 15 26 27 28 43 + Live load - LL(n= 0.8,1.35) 19 15 26 27 43	7	Superstructure - Simple span	379	333	483			-2		1	4						
Live load - each spans 17 Transient Loads 27 a - Continuous spans 157 78 274 55 27 + Live load - LL(n= 0.5,1.75) 157 125 212 55 44 + Dynamic load allowance - IM (n=0.5,1.75) 52 49 18 14 b Simple span 131 66 229 85 43 + Live load - LL(n= 0.5,1.75) 131 105 177 85 43 + Live load - LL(n= 0.5,1.75) 131 105 177 85 43 + Live load - LL(n= 0.5,1.75) 43 35 88 46 78 22 + Live load - LL(n= 0.8,1.35) 35 38 35 88 46 78 22 + Live load - LL(n= 0.8,1.35) 38 46 78 20 10 + Live load - LL(n= 0.8,1.35) 38 46 78 20 10 + Live load - LL(n= 0.8,1.35) 19 15 26 77 3 + Dynamic load allowance - IM (n=0.8,1.35)	3	Pier	565	509	706												
Live load - each spans 274 274 274 27 274 27 <th< td=""><td></td><td>Transient Loads</td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td>-</td><td>_</td><td></td><td></td><td>_</td><td>-</td><td></td><td></td></th<>		Transient Loads							-	-	_			_	-		
a- Continuous span 157 78 274 55 27 + Live load - LL(n=0.5,1.75) 157 125 212 55 44 + Live load - LL(n=0.8,1.35) 157 125 212 55 44 + Dynamic load allowance - IM (n=0.8,1.35) 52 41 70 18 14 b- Simple span + Live load - LL(n=0.5,1.75) 131 166 229 -85 -43 + Live load - LL(n=0.8,1.35) 131 105 177 -85 -68 -14 + Live load - LL(n=0.8,1.35) 43 35 58 -6 -7 -85 -85 -43 -14 -15 -85 -85 -43 -14 -15 -85 -85 -43 -14 -15 -85 -85 -43 -14 -15 -85 -85 -43 -14 -15 -85 -85 -43 -14 -15 -16 -17 -18 -18 -14 -17 -18 -18 -18	4	Live load - each spans				-	-					_	-		-		
+ Live load - LL(n= 0.5,1.75) 157 78 274 55 274 + Live load - LL(n= 0.8,1.35) 157 125 212 55 44 + Live load - LL(n= 0.8,1.35) 52 26 90 18 9 + Dynamic load allowance - IM (n=0.8,1.35) 22 41 70 18 14 b. Simple span + Live load - LL(n= 0.5,1.75) 131 66 229 -85 43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -88 + Live load - LL(n= 0.8,1.35) 43 22 76 -85 -88 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -23 -14 + Live load - LL(n= 0.5,1.75) 58 29 101 20 10 + Live load - LL(n= 0.5,1.75) 58 45 78 -28 -18 + Live load - LL(n= 0.5,1.75) 19 10 33 -28 -43 + Live load - LL(n= 0.8,1.35) 131 105 17 5		a- Continuous span													-		
+ Live load - LL(n= 0.8,1.35) 157 125 212 52 44 + Dynamic load allowance - IM (n=0.8,1.35) 52 41 70 18 14 + Dynamic load allowance - IM (n=0.8,1.35) 131 66 229 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Live load - LL(n= 0.8,1.35) 43 22 76 -85 -68 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 88 -8 -14 + Dynamic load allowance - IM (n=0.8,1.35) 35 88 29 101 -28 -14 + Live load - LL(n= 0.5,1.75) 19 15 26 7 5 -28 -14 + Live load - LL(n= 0.8,1.35) 38 29 101 33 7 3 + Live load - LL(n= 0.8,1.35) 19 15 26 7 5 + Dynamic load allowance - IM (n=0.5,1.75) 19 15 26 85 -43 -4 + Live load - LL	<u> </u>	+ Live load - $LL(n=0.5,1.75)$	157	78	274						9	.	_				
+ Dynamic load allowance - IM (n=0.5,1.75) 52 26 90 18 94 + Dynamic load allowance - IM (n=0.8,1.35) 52 41 70 18 14 b- Simple span + Live load - LL(n=0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n=0.8,1.35) 131 105 177 -85 -68 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 22 76 -85 -88 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 20 17 -85 -68 -7 - Live load - LL(n=0.5,1.75) 58 29 101 2 22 16 10 -28 -14 + Live load - LL(n=0.5,1.75) 58 29 101 33 7 5 -28 -14 -28 -43 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 -44 <t< td=""><td></td><td>+ Live load - $LL(n=0.8,1.35)$</td><td>157</td><td>125</td><td>212</td><td></td><td></td><td></td><td></td><td></td><td>4</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		+ Live load - $LL(n=0.8,1.35)$	157	125	212						4						
+ Dynamic load allowance - IM (n=0.8,1.35) 52 41 70 18 14 b- Simple span + Live load - LL(n=0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n=0.8,1.35) 131 105 177 -85 -68 + Live load - LL(n=0.8,1.35) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -23 -14 Live load - Both spans a- Continuous span -28 -28 -14 + Live load - LL(n=0.5,1.75) 58 29 101 20 10 + Live load - LL(n=0.8,1.35) 19 15 26 7 5 b- Simple span + Live load - LL(n=0.8,1.35) 19 15 26 7 5 + Live load - LL(n=0.8,1.35) 131 105 177 -85 -43 - + Live load - LL(n=0.8,1.35) 131 105 17 -85 -43 + Live load - LL(n=0.8,1.35) 43 22 <t< td=""><td></td><td>+ Dynamic load allowance - IM (n=0.5,1.75)</td><td>52</td><td>26</td><td>06</td><td></td><td></td><td></td><td>8</td><td></td><td>7</td><td></td><td></td><td>-</td><td></td><td></td><td></td></t<>		+ Dynamic load allowance - IM (n=0.5,1.75)	52	26	06				8		7			-			
b- Simple span 131 66 229 -85 -43 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -43 + Live load - LL(n= 0.8, 1.35) 131 105 177 -28 -43 + Dynamic load allowance - IM (n=0.8, 1.35) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8, 1.35) 8 46 78 -23 10 + Live load - LL(n= 0.5, 1.75) 19 10 33 7 3 + Live load - LL(n= 0.8, 1.35) 19 15 26 7 5 + Dynamic load allowance - IM (n=0.8, 1.35) 131 105 177 -85 -43 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -48 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -48 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -48 + Live load - LL(n= 0.8, 1.35) 43 22 76 -23 -1		+ Dynamic load allowance - IM (n=0.8,1.35)	52	41	70						4						
+ Live load - LL(n= 0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 29 101 -28 -23 a- Continuous span 4- Live load - Both spans 58 29 101 20 10 + Live load - LL(n= 0.5,1.75) 58 46 78 20 16 + Live load - LL(n= 0.8,1.35) 19 15 26 7 5 + Dynamic load allowance - IM (n=0.5,1.75) 19 15 26 7 5 b- Simple span 4- Live load - LL(n= 0.5,1.75) 131 166 229 7 5 + Live load - LL(n= 0.5,1.75) 43 22 76 -85 -48 + Live load - LL(n= 0.8,1.35) 43 35 58 -86 -86 + Dynamic load allowance - IM (n=0.8,1.35) 43 25 76 -86 -86		b- Simple span											_				
+ Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 29 101 -28 -23 a - Continuous span - Live load - Both spuns 58 29 101 20 16 + Live load - LL(n= 0.5,1.75) 58 46 78 20 16 + Live load - LL(n= 0.8,1.35) 58 46 78 7 3 + Dynamic load allowance - IM (n=0.5,1.75) 19 10 33 7 3 b - Simple span - L(n= 0.5,1.75) 131 66 229 7 3 + Live load - LL(n= 0.5,1.75) 131 105 177 9 -85 -48 + Live load - LL(n= 0.5,1.75) 131 105 177 9 -85 -48 + Live load - LL(n= 0.8,1.35) 131 105 176 9 -38 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 23 -18 -28		+ Live load - $LL(n=0.5,1.75)$	131	99	229						6		_				
+ Dynamic load allowance - IM (n=0.8,1.35) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -23 Live load - Both spans a- Continuous span -28 29 101 20 10 + Live load - LL(n= 0.5,1.75) 58 29 101 20 16 + Live load - LL(n= 0.8,1.35) 58 46 78 7 3 + Live load - LL(n= 0.8,1.35) 19 15 26 7 5 + Dynamic load allowance - IM (n=0.8,1.35) 131 66 229 76 -85 -43 + Live load - LL(n= 0.5,1.75) 43 22 76 -85 -43 -443 + Live load - LL(n= 0.5,1.75) 43 35 58 -9 -28 -19 + Live load - LL(n= 0.5,1.75) 43 35 58 -9 -28 -85 -43 + Dynamic load allowance - IM (n=0.5,1.75) 43 58 -9 -33 -18 -94		+ Live load - $LL(n=0.8,1.35)$	131	105	177			'		'	5						
Live load - Both spans 43 35 58 -29 101 -20 10 -20 -20 10 -20 -20 10 -20 -20 10 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20 <t< td=""><td></td><td>+ Dynamic load allowance - IM (n=0.5,1.75)</td><td>43</td><td>22</td><td>92</td><td></td><td></td><td>. !</td><td></td><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		+ Dynamic load allowance - IM (n=0.5,1.75)	43	22	92			. !			6						
Live load - Both spans 4. Live load - L(n= 0.5, 1.75) 58 29 101 20 10 + Live load - LL(n= 0.8, 1.35) 58 46 78 20 16 + Live load - LL(n= 0.8, 1.35) 58 46 78 7 3 + Dynamic load allowance - IM (n=0.8, 1.35) 19 15 26 7 5 + Dynamic load allowance - IM (n=0.8, 1.35) 131 66 229 -85 -43 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -68 + Live load - LL(n= 0.8, 1.35) 131 105 177 -85 -85 + Dynamic load allowance - IM (n=0.8, 1.35) 43 35 58 -23 -18 + Dynamic load allowance - IM (n=0.8, 1.35) 43 35 -85 -9 Braking force - BR (n=0.5, 1.75) 43 -19 -9 -33 -188 -94 Braking force - BR (n=0.8, 1.35) 19 -19 -19 -9 -33 -18 -18 Braking force - BR (n=0.8, 1.35) 19 -19 -19 -19 -19 -19		+ Dynamic load allowance - IM (n=0.8,1.35)	43	35	58			1			8						
a- Continuous span se 29 101 20 10 + Live load - LL(n= 0.5,1.75) 58 46 78 20 16 + Live load - LL(n= 0.8,1.35) 58 46 78 20 16 + Dynamic load allowance - IM (n=0.5,1.75) 19 15 26 7 3 + Live load - LL(n= 0.5,1.75) 131 66 229 7 85 -43 + Live load - LL(n= 0.5,1.75) 131 105 177 9 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 9 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 9 -38 -18 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -9 -3 -18 Braking force - BR (n=0.5,1.75) 20 -19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) -19 -19 -19 -19 -15 -25 -18	5	Live load - Both spans			·						-						
+ Live load - LL(n= 0.5,1.75) 58 29 101 20 10 + Live load - LL(n= 0.8,1.35) 58 46 78 20 10 + Live load - LL(n= 0.8,1.35) 19 15 26 7 3 + Dynamic load allowance - IM (n=0.8,1.35) 19 15 26 7 7 5 b- Simple span 4- Live load - LL(n= 0.5,1.75) 131 66 229 7 8 -43 + Live load - LL(n= 0.5,1.75) 131 105 177 8 -85 -68 + Live load - LL(n= 0.8,1.35) 131 105 177 8 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 9 -38 -18 + Dynamic load allowance - IM (n=0.5,1.75) 43 35 58 9 -33 -18 -9 Braking force - BR (n=0.5,1.75) 19 -9 -33 -188 -94 Braking force - BR (n=0.5,1.75) 19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) 19 -19 -9 -33<					į					-	-	_	_				
+ Live load - LL(n= 0.8,1.35) 58 46 78 20 16 + Dynamic load allowance - IM (n=0.5,1.75) 19 15 26 7 3 + Dynamic load allowance - IM (n=0.8,1.35) 19 15 26 7 5 b- Simple span 4- Live load - LL(n= 0.5,1.75) 131 66 229 7 -85 -43 + Live load - LL(n= 0.5,1.75) 131 105 177 8 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 8 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 9 -33 -188 -94 Braking force - BR (n=0.5,1.75) 19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) 19 -19 -15 -25 -188 -151		+ Live load - $LL(n=0.5,1.75)$	58	29	101			-			5						
+ Dynamic load allowance - IM (n=0.5,1.75) 19 10 33 7 3 + Dynamic load allowance - IM (n=0.8,1.35) 19 15 26 26 7 3 b- Simple span 4- Live load - LL(n= 0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n= 0.5,1.75) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.5,1.75) 43 35 58 -9 -33 -18 -9 Braking force - BR (n=0.5,1.75) 43 35 58 -9 -33 -18 -9 Braking force - BR (n=0.5,1.75) -19 -9 -33 -18 -9 -3 Braking force - BR (n=0.5,1.75) -19 -9 -33 -18 -9 -3 -18 -9 Braking force - BR (n=0.8,1.35) -19 -19 -9 -33 -18 -18 -18 -18		+ Live load - LL($n=0.8,1.35$)	58	46	78						<u>r.</u>		-				
b- Simple span b- Simple span 131 15 26 229 7 5 + Live load - LL(n= 0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -23 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) -19 -19 -15 -25 -188 -151	<u> </u>	+ Dynamic load allowance - IM (n=0.5,1.75)	19	10	33				7		7						
b- Simple span b- Simple span 66 229 -85 -43 + Live load - LL(n= 0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -23 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) -19 -15 -25 -188 -151		+ Dynamic load allowance - IM (n=0.8,1.35)	61	15	56				7		6	-	-	-			
+ Live load - LL(n= 0.5,1.75) 131 66 229 -85 -43 + Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 + Dynamic load allowance - IM (n=0.8,1.35) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -23 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) -19 -19 -15 -25 -188 -151		b- Simple span	_									_	-	_			
+ Live load - LL(n= 0.8,1.35) 131 105 177 -85 -68 - + Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -28 -28 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 - Braking force - BR (n=0.8,1.35) -19 -19 -15 -25 -188 -151		+ Live load - LL($n=0.5,1.75$)	131	99	229			-			6						
+ Dynamic load allowance - IM (n=0.5,1.75) 43 22 76 -14 -28 -14 + Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -18 -28 -23 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 -18 Braking force - BR (n=0.8,1.35) -18 -18 -15 -25 -188 -151 -		+ Live load - LL(n=0.8,1.35)	131	105	177			•			5						
+ Dynamic load allowance - IM (n=0.8,1.35) 43 35 58 -28 -28 -23 Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 -94 Braking force - BR (n=0.8,1.35) -18 -15 -25 -188 -151 -		+ Dynamic load allowance - IM (n=0.5,1.75)	43	22	76			·			6			_			
Braking force - BR (n=0.5,1.75) -19 -9 -33 -188 -94 Braking force - BR (n=0.8,1.35) -19 -15 -25 -188 -151		+ Dynamic load allowance - IM (n=0.8,1.35)	43	35	58			•	- 1		80						
-19 -15 -25 -188 -151	9	Braking force - BR (n=0.5,1.75)				6-					0		-	1			25% of
		Braking force - BR (n=0.8,1.35)							ţ		4	_	_				