
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT
DESIGN REPORT
PACKAGE III
PART I, HIGHWAY

OCTOBER 2000

NIPPON KOEI CO., LTD.

1161235 (5)

FINAL REPORT ON

THE DETAILED DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN

SOCIALIST REPUBLIC OF VIET NAM

DESIGN REPORT PACKAGE-I PART III, HIGHWAY

Table of Contents

CHAPTER 1	ALIGNMENT DESIGN	(I-1)
CHAPTER 2	TOLLGATE AND INTERCHANGE	(I-2)
CHAPTER 3	SERVICE AREA	(I-3)
CHAPTER 4	EMBANKMENT AND SOFT GROUND TREATMENT	(I-4)
CHAPTER 5	FLEXIBLE PAVEMENT	(I-5)
CHAPTER 6	LIGHTING SYSTEM	(I-6)

Chapter 1

ALIGNMENT DESIGN

	CONTENTS			I-1-1
1-1	GENERAL	•		I-1-2
1-2	PRINCIPALS TO ALIGNMENT	D DETERMINE	THE	I-1-4
1-3	GEOMETRIC DESIG	GN STANDARD		I-1-5
1-4	ALIGNMENT OF CE	ENTERLINE		I-1-7
1- 5	COORDINATE LIST			I1-10

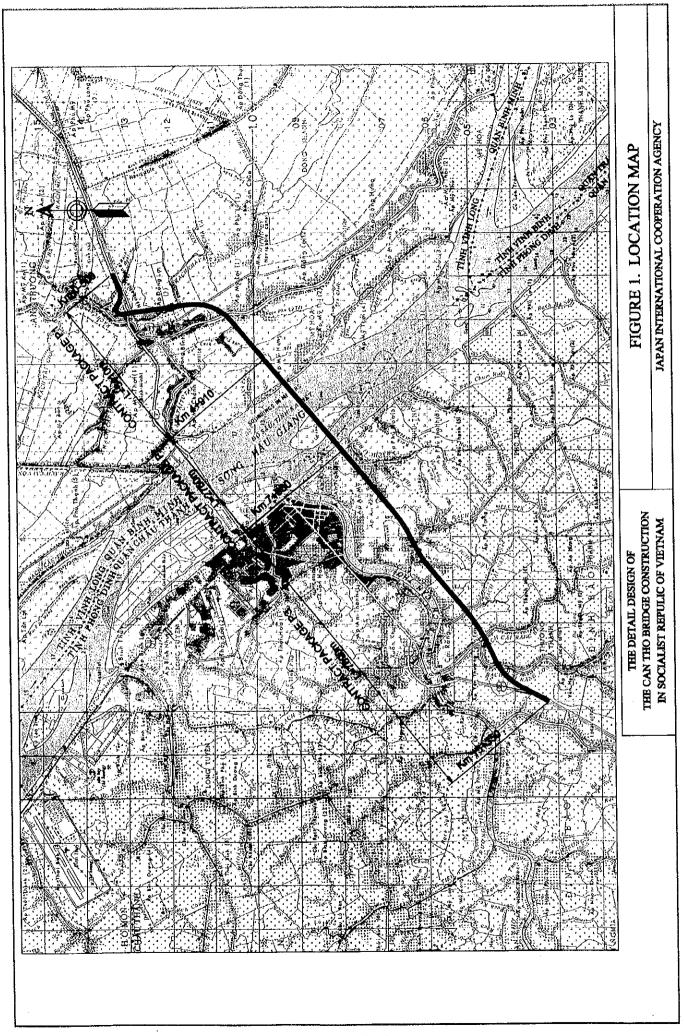
CHARTER 1 ALIGNMENT DESIGN

CONTENTS

1-1. GENERAL	
1-2. PRINCIPALS TO DETERMINE THE ALIGNMENT	
1-3. GEOMETRIC DESIGN STANDARD	
1-4. ALIGNMENT OF CENTERLINE	
1-5. COORDINATE LIST	10
1.5.1. COORDINATE LIST OF THROUGHWAY	10
1.5.2. COORDINATE LIST OF INTERCHANGE No3	18
1.5.3. COORDINATE LIST OF INTERSECTION	23

1-1. GENERAL

The project route was planned to connect two sides of Hau River at downstream distance of about 3.2km from the existing ferry.


The starting point is at Km2061 on National highway No.1A of Binh Minh District in Vinh Long Province. The end is at Km2077 on National highway No.1A of Chau Thanh District, Can Tho Province.

The overall length of the project is 15 850m, including:

Total length of the approach road	:	13 100 m
Vinh Long side	:	5 410 m
Can Tho side	:	7 690 m
Length of the Can Tho bridge	:	2 750 m

Moreover, the project route is divided to 3 packages as below.

			Km 4+910	5 410 m
	Km 4+910			2 750 m
Package 3	Km 7+660	to	Km15+350	7 690 m

1-2. PRINCIPALS TO DETERMINE THE ALIGNMENT

In the Feasibility Study, the centerline of the project route was determined at the 2.9km downstream from the existing Can Tho ferry. To determine the final centerline for the Detailed Design, the following conditions were investigated and discussed with the related officers and people.

- Connecting point with the National Highway No.1
- Area and location of temples and tombs
- Public facilities such as hospitals, schools, and disposal sites
- Density of residential areas including markets
- Consistency with the Master Plans of Industrial Zone and City Development
- Future planning of roads and interchanges
- Dockyard Facilities and fuel stations for ships
- Confluence point of the stream and/or canal
- Influence of the ecosystem

Mainly due to the locations of temples and cemeteries, the centerline was finally shifted 220m to the downstream side from the centerline of the Feasibility Study.

1-3. GEOMETRIC DESIGN STANDARD

Vietnamese standard "TCVN 4054-1998" was mainly applied to highway design for the project.


Where no provisions exist in TCVN4054, the relevant standards of AASHTO (A Policy on Geometric Design of Highways and Streets, 1994) of United States, JRSO (Japan Road Structure Ordinance, 1983) of Japan were referred.

The design standard and adopted values for the highway were summarized in Table 1.1.

Table 1.1 Geometric Design Standard and Adopted Values for Highway Design

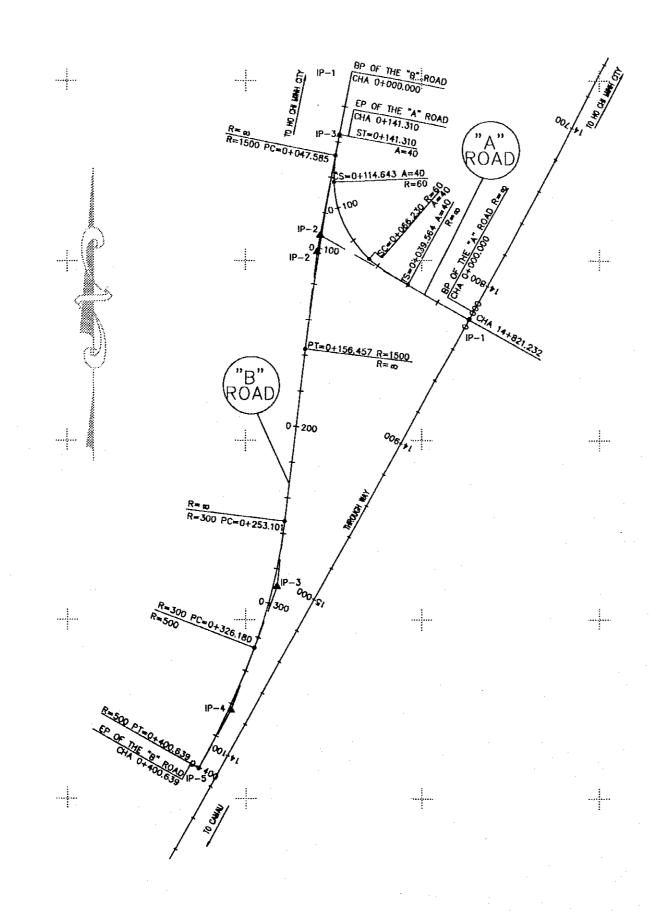
	Tubic II.	ocometre D	esign Standard and Ado	pied i	usues		value	10031	B.,
ł		Items		Unit	000.4.3.4		r		Reference
		<u> </u>			 	DARD		IGN	
		Class of Highwa	ay	-	80	60	80	60	TCVN4054
1	Basic	Terrain	Vocation	-		ain		ain	TCVN4054
]	conditions	Design Speed		kph	80	60	80	60	TCVN4054
		Design Vehicles			ļ	uck wi			TCVN4054
		Total Width		m	24	1.1	24	l.1 	
		Lane Number		-	 	<u> </u>		1	
		Lane width	Right side lane width	m	3.	.5	3	.5	
Ì			Left side lane width	m	3	.5	3	.5	
	Cross		Total width	m	2	.6	2	.6	
2	Section	Median	Separator width	m	1	.6	1	.6	
	Elements	<u> </u>	Safety portion	m	0	.5	0	.5	
		Sidewalk	Total width	m	2.	75	2.	75	
		Sidewalk	Separator width	m	0	.5	0	.5	
		Shoulder	Earthen shoulder	m	0.5 0.5				
	,	Slop of embank	ment	-	V: H	[=1:2	V: H	=1:2	
		Minimum	Super-elevation=6%	m	250	125	-	-	TCVN4054
		Radius	Super-elevation=4%	m	400	250	-	-	TCVN4054
	Horizontal	Minimum Rad Slope	ius with Normal Cross	m	1000	500	1100	-	TCVN4054
3	Alignment		Spiral type		Clot	hoid	Clot	hoid	TCVN4054
	71261	Transition Curve	Minimum length of transition	m	50	40	445.5	-	AASHTO
		Curve	Minimum radius w/o transition	m	2000	1300	1100	-	AASHTO
		Maximum grad	ient	%	6	7	4.35	-	TCVN4054
			us of Vertical Crest	m	4000	2500	4027		TCVN4054
		Curve	Sag	m	2000	1000	2027	-	TCVN4054
4	Vertical	Minimum Leng	th of Vertical Curve	m	50	40	70	70	TCVN4054
^	Alignment	j	Less than 4.0%	m		limit		•	TCVN4054
		Critical length		m	900	1000	-	-	TCVN4054
		of grads	For 5.0%	m	700	800	285	-	TCVN4054
		ļ	For 6.0%	m	500	600	<u>-</u>		TCVN4054
5	Cross slope	Normal Cross S		%	 	2		2	TCVN4054
<u> </u>		Maximum Supe Lateral Clearan		%	6	6	<u> </u>		TCVN4054
6	Clearance	m		ll Pave			TCVN4054		
L		Vertical Clearar	nce	m	4	.5	4	.5	TCVN4054

Note: The section at the interchange No.1 is temporarily designed with 40 km/h speed to get a good condition for the improvement and connect to express way HO CHI MINH city - CAN THO in the future. (Regarding a letter No.61/QD-TTg)

		_					_				if)		PC			PT	
	I IA	R	A1	N2	TL1	11.2	α	11	l l2	l C	Х.	Y	X	Y	CHA	X	Υ	CHA
P-5A	15'40'19.23°	3000	-	-	412.86959	412.86959	820.58442	-	-	820.58442	1107459.90196	586103.72334	1107730.94313	586423.59645	9+329.70607	1107304.97264	585725.22682	10+150.29049
P-6A	15'12'57.99°	3000	. **	-	400.71469	400.71469	796.713520	-	-	796.713520	1107144.898864	585357.873270	1107304.97264	585725.22682	10+150.29049	1106894.02105	585045.41117	10+947.00401
IP~58	15'40'11.42"	3000	-	-	412.81172	412.81172	820,47080	-	-	820.47080	1107482.13746	. 586103.53279	1107743.14203	586423.36105	9+322.17556	1107317.21693	585725.09558	10+142.64636
IP-6B	15'12'49.57"	3000	-	-	400.65237	400.65237	796.59116	-	-	796.59116	1107157.15412	585357.80518	1107317.21693	585725.09558	10+142.64636	1106906.31620	585045,39090	10+939.23752
P7	15'45'09.45"	5000	_		691.70053	691.70053	1374.67591	-	-	1374.67591	1105713.15088	583567.00000	1106146.20799	584106:36184	12+147:38450	1105442.78659	582930.32677	13+522.06041
IP-B	3975'14.77"	1100	700.00000	700.00000	617.37700	617.37700	1199.07900	445.45455	445,45455	308.16990	1105201.47290	582362.06399		_	-	-		-
IP-9	01'38'18.54"	3500		_	50.04804	50.04804	100.08927		-	100.08927	1104610.74084	582051.43176	1104855.03790	582074.72506	14+721.13961	1104567.12792	582026.88141	14+821.22888
E.P			-	-	•		-			-	1104105.75918	581767.17016	- '	~	-	-	-	-

		TS	-		SC		-	cs			\$1		AZIMUTH	V	SE (%)	W
	X	Y	CHA	Х	Y	CHA	X	Y ·	CHA	χ	Y	CHA		(KM/H)	(%)	(M)
IP-5A		-		-	·	-	-	_	-	-	_	-	230° 46° 58.43° 246° 27° 17.66°	80	-	0
IP-64	-	_	. .	-	-		-	-	-	-	.· -	-	230' 46' 58.43"	80	_	0
IP-58	-	-			-		-		-			-	246" 27" 09.85"	80	-	0
IP-6B	~	-	<u>.</u> .	-	-	-	-		-			-	231" 14" 19.66"	80	-	0
₽-7	-	-	-		-	-	-	.· -	-	-	-		246' 59' 29.11"	80	-	0
IP-8	1105442.78659	582930.32677	13+522.06041	1105241.79231	582533.70472	13+967,51495	1105033.7402B	582307.73205	14+275.68507	1104655.03790	582074.72506	14+721.13961	207' 44' 14.34"	80	-	0
P-9	-	•	-	-	-	-	-			-	<u>-</u> .		209' 22' 32.88"	80	-	0
E.P	-	~	-	-	-	-	-	-	_	-	· -	-	203 22 32.00	80	~	0

THE DETAIL DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPULIC OF VIETNAM FIGURE 2. ALIGNMENT LAYOUT AND GEOMETRIC DATA (THROUTHWAY)


JAPAN INTERNATIONAL COOPERATION AGENCY

DESIGN ELEMENT OF HORIZONTAL ALIGNMENT

MF.	IP No	IA.	IP CHA	Point	Pnt CHA	Northing	Easting	Element	Direction	Longth(m)	IP Distance	Azimulh
	P-1	-	0+000.000	BP-A	0+000.000	1 107 284.294	586 122,479	T-PARTE NO SORGEO			-	201' 48' 59
٥				PC-2	0+262.333	1 107 527.839	586 219.971	Tangent		262.333		
Σ	P-2	23" 45" 54"	0+302.312		********	1 107 564.955	586 234.829	70.34			302.312	225° 34° 5
۷				PT2	0+341,141	1 107 592.935	586 263.384	R-190.000	Rìght	78.808	***************************************	
œ				PC-3	0+341.141	1 107 592 935	586 263,384	-				
	IP-3	7 54' 54"	0+375,732		**********	1 107 617.145	586 268.090	· · · · · · · · · · · · · · · · · · ·			74.569	233" 29" 4
ا'				PT3	0+410.212	1 107 637,722	586 315.894	R=500.000	Right	69.071		
۹	P-4	-	0+410.212	EP-A	0+410.212	1 107 637.722	586 315,894				34.591	235' 29' 4
	P-1		0+000.000	8F-B	0+000.000	1 107 255.599	585 631.599	<u> </u>				244' 26' 0
				PC-2	0+000.000	1 107 255.599	585 631,599			_		
	IP-2	12" 36" 00"	0+022.080			1 107 265.128	565 551.518	 	ļ		22.080	257° 06° 0
				PT-2	0+043.982	1 107 270.082	585 673.035	R=200.000	Right	43.962		
Q.				PC-3		1 107 277.540	585 705.428	Tangent	-	33.241		
Σ	IP-3	34' 45' 56'	0+130.442			1 108 289,480	585 757,290				108.539	291" 48" 0
۷	<u> </u>			PT-3	0+180.374	1 107 269,717	585 806.703	R=170.000	Right	103,151		
- 1	-			15-4	D+394,346	1 107 190.254	586 005.372	Tongent		213.972		
œ				5C-4	0+421.013	1 107 182.228	586 030,741	A=40.000	Left	26.667		
1	P-4	90, 00, 00,	0+468.150	-	VI 14 11 11 11 11 11 11 11 11 11 11 11 11	1 107 162.546	586 073.899				340.995	201' 48' 0
Œ	-		10110000	CS-4	01488.594	1 107 207.465	586 089.625	R=60.000	Left	67.581	0.0.00	1
		<u> </u>		ST-4	0+515.261	1 107 231.372	586 101.307	A=40.000	Left	26,667		
	-		 	EP-B	0+540.261	1 107 254.584	586 110.591	Tangent		25,000		
	₽-5		0+540,261	-		1 107 254.584	586 110.591	i-j-	 		96,804	201' 48' 0
-	₽-1		0+000,000	BP-C	04000,000	1 107 512.765	586 085,056	 	 		-	56' 36' 5
α,	ļ		0.444	PC-2	0+000,000	1 107 512.765	586 085.056		 			
Σ	IP-2	12" 49" 58"	0+033,738		07000.000	1 107 495.194	586 056.254	 	 		33.738	71' 26' 5
	-		1	PT-2	0+067,194	1 107 484.450	586 024.269	R=300.000	Rìght	67.194		1
⋖	\vdash		 	PC-3	0+067,194	1 107 484,460	586 024,269			-		
œ	P-4	95' 27' 09"	D+254.193	1		1 107 424.962	565 846,988	 	 		220.738	156' 54' 0
ı	۲÷	27 11 11		PT-4	0+350.407	1 107 607.095	585 804,604	R=170.000	Right	263.213		
U				tP-C	0+420.171	1 107 675.043	585 788.792	Tangent	-	69.764		
	IP-5		0+420.171			1 107 675.043	585 788.792	1-7-	 		256.763	166" 54" (
	P-1		0+000.000		 	1 107 473.134	585 564,178	 	 	<u> </u>		21' 48' 0
O.	┝	-	1	PC-2	0+183,426	1 107 302.826	585 496.059	Tangent	 -	183,426		1
Σ	P-2	25' 27' 25	0+239.895	10.		1 107 250,395	585 475,088	14-14-11		7.00.1.00	239,895	47" 15" 2
4		1 2 2	-	PT-2	01294.500	1 107 212.068	585 433,618	R=250.000	Right	111,074		1
œ		 	 	PC-3		1 107 133,448	585 348,548	Tangent		115.837		
ı	IP-3	10" 11" 42"	0+437.096		-	1 107 115.284	585 328.894	†		· · · · · · · · · · · · · · · · · · ·	199.067	57° 27° 0
Š	Н	 	T	PT-3	0+463,718	1 107 100.886	585 306.336	R=300	 -	53,381		l
۵	P-4	· -	0+463,718	EP-D	0+463,718	1 107 100,886	585 306.336		1		_	57 27 O
_	P-1	-	0+000.000	BP-E	0+000.000	1 107 519.732	565 799.353		1		-	166" 54" (
۵			<u> </u>	TS~2	0+000.000		585 799.353	-	-	-		<u> </u>
Σ			·	SC-2	0+026.667	1 107 645.130	585 791.422	A=40.000	Left	26.667		1
∢	IP-2	55' 06' 00"	0+044.869	<u> </u>	1	1 107 563,433	565 789.183	T	_		44.869	111' 45' 0
œ		<u> </u>	1	CS-2	0+057.701	1 107 668.414	585 771.430	R=60.000	Left	31.034		<u> </u>
				ST-2		1 107 580.096		A=40,000	Left	26,667		
1	_	 	1	₹P-€		1 107 714,773		Tangent	-	93.375		
Ш	P-3	-	D+177.742	T		1 107 714.773	585 660.826	1			138.244	111' 46' 0
\$	P-1		0+000.000	BP-F	9+000.000	1 107 742.163	 	 	1	1	-	21' 46' 0
F-RAMP	P-2	 	0+257.750	EP-F		1 107 502.846	 	1	<u> </u>	1	257.750	21' 48' 0
<u>.</u>	P-1	-	0+000.000	BP-OR	0+000,000		565 570.119	1			-	291' 45' (
Ka.91	P-2	-	0+588.500	EP-OR	0+286.500	 	586 116.533	† <u>-</u>	 	1	288.500	291" 48" (
ቜ.			 	+	1	<u> </u>	 	 	 	 	 	 `

THE DETAIL DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPULIC OF VIETNAM FIGURE 3. ALIGNMENT LAYOUT AND GEOMETRIC DATA (INTERCHANGE 3)

JAPAN INTERNATIONAL COOPERATION AGENCY

DESIGN ELEMENT OF HORIZONTAL ALIGNMENT

RAMP	IP No	1A	IP CHA	Point	Pnt CHA	Northing	Easting	Element	Direction	Length(m)	IP Distance	Azimulh
Ω	1P-1		0+000.000	BP-A	0+000.000	1 104 566.795	582 026.640				-	299' 20' 45'
∢				TS-2	0+039.564	1 104 586.185	581 992.153	Tangent		39.564	· · · · · · · · · · · · · · · · · · ·	
0				SC-2	0+066.230	1 104 600.905	581 969,988	A=40.000	Left	26.667		
α	IP-2	71' 41' 44"	0+096.581			1 104 514.128	581 942.453				96.581	11' 02' 29"
"				CS-2	D+114.643	1 104 543.568	581 950.222	R≈60.000	Left	48.413		
1				ST-2	04141.310	1 104 670.089	581 953.373	A=40.000	Left	26.567		
⋖	P-3	-	0+141.310	EP-A	0+141.310	1 104 670,089	581 953.373				57.017	
	IP-1	-	0+900.000	BP-B	0+000.000	1 104 705.024	581 960.190				-	191" 02' 29"
				PC-2	0+47.585	1 104 558.319	581 951.076	Tongent	-	47.565		
۵	IP-2	4" 09" 31"	0+102.045			1 104 504.868	581 940,646				102.045	186' 52' 58'
∢				PI-2	0+156.457	1 104 550,801	581 934.120	R=1500	Left	108,871		
0		·		PC-3	0+253.101	1 104 454.853	581 922.538	Tongent		96.645		
œ	P-3	13" 57 25"	0+289.822			1 104 418.396	561 918.137				187.825	200 50 23
				PT-3	0+326.180	1 104 384.078	581 905.073	R≃300	Right	73.079		
ایرا		·		PC-4	0+326.180	1 104 354.075	581 905.073	-		-		
0	P-4	8" 31" 57"	0+363.478			1 104 349.219	581 891.804				74.02	209, 52, 50,
				PT-4	0+400.639	1 104 318.715	581 873.510	R=500	Right	74.459		
	P-5		0+400.639	EP-8	0+400.639	1 104 316,715	581 873.510				37.298	

THE DETAIL DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPULIC OF VIETNAM FIGURE 4. ALIGNMENT LAYOUT AND GEOMETRIC DATA (INTERSECTION I)

JAPAN INTERNATIONAL COOPERATION AGENCY

1-5. COORDINATE LIST

1.5.1. COORDINATE LIST OF THROUGHWAY

No	Chainage		Coordinate	of c	enterlines	T11
			N		Е	Remarks
165	7 K 790	+	1,108,708.157	+	587,613.457	
166	7K 800	+	1,108,701.835	+	587,605.710	
167A	7 K 840	+	1,108,676.545	+	587,574.720	
	7K 850	+	1,108,670.222	+	587,566.972	
168A	7 K 870	+	1,108,657.577	+	587,551.478	
	7K 900	+	1,108,638.609	+	587,528.235	
168B	7 K 920	+	1,108,625.964	+	587,512.740	
169	7K 950	+	1,108,606.996	+	587,489.497	
	7K 980	+	1,108,588.028	+	587,466.254	
170	8K 0	+	1,108,575.383	+	587,450.759	
171	8 K 50	+	1,108,543.770	+	587,412.021	
172	8K 100	+	1,108,512.157	+	587,373.283	
173	8K 150	+	1,108,480.544	+	587,334.546	
	8K 160	+	1,108,474.221	+	587,326.798	
	8 K 180	+	1,108,461.576	+	587,311.303	<u> </u>
174	8K 200	+	1,108,448.931	+	587,295.808	
	8K 213.37	+	1,108,440.477	+	587,285.449	
175	8 K 250	+	1,108,417.318	+	587,257.070	
176	8K 300	+	1,108,385.705	+	587,218.332	
	8K 320	+	1,108,373.059	+	587,202.837	
	8 K 350	+	1,108,354.092	+	587,179.595	
77A	8 K 353	+	1,108,352.195	+	587,177.271	
178	8K 400	+	1,108,322.478	+	587,140.857	
179	8K 450	+	1,108,290.865	+	587,102.119	
	8 K 456.83	+	1,108,286.548	+	587,096.828	
	8K 462.83	+	1,108,282.754	+	587,092.179	
:	8K 469.33	+	1,108,278.703	+	587,087.215	
	8 K 476.88	+	1,108,273.868	+	587,081.290	
180	8 K 500	+	1,108,259.252	+	587,063.381	1st CT Bridge
181	8 K 550	+	1,108,227.639	+	587,024.643	1st CT Bridge
182	8K 600	+	1,108,196.026	+	586,985.906	1st CT Bridge
	8K 606.73	+	1,108,191.768	+	586,980.688	
	8K 612.50	+	1,108,188.123	+	586,976,221	
	8 K 616.22	+	1,108,185.773	+	586,973.342	

No	Chainage		Coordinate o	of ce	nterlines	Remarks	
140	Chamage		N		E	Keniaiks	
	8K 625,00	+	1,108,180.220	+	586,966.536		
	8K 637.50	+	1,108,172.316	+	586,956.852		
183	8 K 650	+	1,108,164.413	+	586,947.168		
184	8 K 700	+	1,108,132.800	+	586,908.430		
	8K 723.65	+	1,108,117.848	+	586,890.108		
185A	8 K 748	+	1,108,102.452	+	586,871.242		
	8 K 750	+	1,108,101.187	+	586,869.692		
	8K 772.22	+	1,108,087.136	+	586,852.475		
186	8 K 800	+	1,108,069.574	+	586,830.954		
	8 K 850	+	1,108,037.961	+	586,792.217		
187A	8 K 852	+	1,108,036.696	+	586,790.667		
	8 K 898.42	+	1,108,007.345	+	586,754.700		
	8 K 899.29	+	1,108,006.798	+	586,754.031		
188	8 K 900	+	1,108,006.348	+	586,753.479		
	8 K 902.16	+	1,108,004.982	+	586,751.000	1	
	8 K 941.53	+	1,107,980.092	+	586,721.305		
	8 K 950	+	1,107,974.735	+	586,714.741		
189A	8 K 960	+	1,107,968.412	+	586,706.993		
	9K 0	+	1,107,943.122	+	586,676.003		
190A	9 K 11	+	1,107,936.167	+	586,667.481		
191A	9 K 40	+	1,107,917.832	+	586,645.013		
	9K 50	+	1,107,911.509	+ .	586,637.265		
	9K 80	+	1,107,892.541	+	586,614.023		
192	9K 100	+	1,107,879.896	+	586,598.528		
193	9K 150	+	1,107,848.283	+	586,559.790		
	9K 166.44	+	1,107,837.892	+	586,547.057		
194	9K 200	+	1,107,816.670	+	586,521.052		
195	9K 250	+	1,107,785.057	+	586,482.314		
196	9K 300	+	1,107,753.444	+	586,443.577		
197A	9K 350	+	1,107,718.165	+	586,407.830		
	9K 378.38	+	1,107,700.477	+	586,385.640		
198A	9K 400	+	1,107,687.141	+	586,368.620		
199A	9K 450	+	1,107,656.775	+	586,328.898	2sd CT Bridge	
	9K 500	+	1,107,627.074	+	586,288.676		
	9K 521.66	+	1,107,614.419	+	586,271.101		
	9K 550	+	1,107,598.049	+	586,247.964	IC91&91B	
	9 K 587	+	1,107,568.600	+	586,205.110		
	9K 600	+	1,107,569.705	+	586,206.774	IC91&91B	

\	Ci		Coordinate			
No	Chainage		N		E	Remarks
	9K 650	+	1,107,542.053	+	586,165.118	IC91&91B
	9K 700	+	1,107,515.098	+	586,123.006	IC91&91B
	9K 750	+	1,107,488.849	+	586,080.451	IC91&91B
	9K 800	+	1,107,463.312	+	586,037.465	IC91&91B
	9K 850	+	1,107,438.496	+	585,994.059	IC91&91B
	9K 900	+	1,107,414.407	+	585,950.245	IC91&91B
	9K 950	+	1,107,391.051	+	585,906.036	IC91&91B
	10K 0	+	1,107,368.435	+	585,861.444	IC91&91B
	10K 50	+	1,107,346.565	+	585,816.481	IC91&91B
	10 K 100	+	1,107,325.448	+	585,771.160	IC91&91B
	10 K 150	+	1,107,305.089	+	585,725.493	IC91&91B
	10 K 200	+	1,107,284.739	+	585,679.822	IC91&91B
	10K 250	+	1,107,263.630	+	585,634.497	
216A	10 K 300	+	1,107,241.769	+	585,589.530	
217A	10K 350	+	1,107,219.162	+	585,544.934	
218A	10 K 400	+	1,107,195.814	+	585,500.720	
219A	10 K439	+	1,107,177.030	+	585,466.540	
	10 K 450	+	1,107,171.733	+	585,456.902	
220A	10 K 500	+	1,107,146.925	+	585,413.491	CD Bridge
221A	10K 550	+	1,107,121.397	+	585,370.499	
	10 K 562	+	1,107,115.278	+	585,360.432	
222A	10 K 600	+	1,107,095.156	+	585,327.939	
223A	10 K 650	+	1,107,068.210	+	585,285.822	
224A	10 K 700	+	1,107,040.565	+	585,244.161	
225A	10K 750	+	1,107,012.230	+	585,202.965	
226A	10 K 800	+	1,106,983.212	+	585,162.248	
227A	10K 850	+	1,106,953.520	+	585,122.020	
228A	10 K 900	+	1,106,923.161	+	585,082.292	
229B	9K 350	+	1,107,725.650	+	586,401.723	
	9K 378.15	+	1,107,708.158	+	586,379.666	
230B	9K 400	+	1,107,694.724	+	586,362.435	
231B	9K 450	+	1,107,664.458	+	586,322.637	2sd CT Bridge
232B	9K 500	+	1,107,634.858	+	586,282.340	
	9K 521	+	1,107,622.557	+	586,265.170	
233B	9K 550	+	1,107,605.935	+	586,241.556	
234B	9K 587	+	1,107,579.390	+	586,202.770	
	9K 600	+	1,107,577.695	+	586,200,295	
235B	9K 650	+	1,107,550.147	+	586,158.569	

No	Chainage	Coordinate o	pt	
140	Chamage	N	E	Remarks
236B	9K 700	+ 1,107,523.298	+ 586,116.	390
	9K 750	+ 1,107,497.156	+ 586,073.	769
	9K 800	+ 1,107,471.727	+ 586,030.	719 IC91&91B
	9K 850	+ 1,107,447.020	+ 585,987.	·····
	9 K 900	+ 1,107,423.041	+ 585,943.	
	9 K 950	+ 1,107,399.796	+ 585,899.	
	10K 0	+ 1,107,377.292	+ 585,854.	
	10 K 50	+ 1,107,355.535	+ 585,809.	442 IC91&91B
	10 K 100	+ 1,107,334.532	+ 585,764.	
	10K 150	+ 1,107,314.271	+ 585,718.3	· · · · · · · · · · · · · · · · · · ·
	10 K 200	+ 1,107,293.803	+ 585,672.	740 IC91&91B
	10 K 250	+ 1,107,272.577	+ 585,627.	
	10 K 300	+ 1,107,250.600	+ 585,582.	559 IC91&91B
	10 K 350	+ 1,107,227.877	+ 585,538.0	021 IC91&91B
	10 K 400	+ 1,107,204.416	+ 585,493.8	868 IC91&91B
	10K 344	+ 1,107,187.490	+ 585,463.2	260
	10 K 450	+ 1,107,180.221	+ 585,450.1	112 IC91&91B
	10K 496	+ 1,107,157.290	+ 585,410.2	230
	10 K 500	+ 1,107,155.301	+ 585,406.2	766 IC91&91B
	10K 550	+ 1,107,129.662	+ 585,363.8	840 IC91&91B
254B	10 K 600	+ 1,107,103.311	+ 585,321.0	348
255B	10K 650	+ 1,107,076.256	+ 585,279.3	301
256B	10 K 700	+ 1,107,048.504	+ 585,237.2	711
257B	10 K 750	+ 1,107,020.062	+ 585,196.5	589
258B	10 K 800	+ 1,106,990.939	+ 585,155.9	947
259B	10K 850	+ 1,106,961.142	+ 585,115.7	796
260B	10 K 900	+ 1,106,930.681	+ 585,076.	147
261	10K 950	+ 1,106,895.862	+ 585,040.0	037
262	11 K 0	+ 1,106,864.558	+ 585,001.0	049
263	11 K 50	+ 1,106,833.254	+ 584,962.0	061
264	11 K 100	+ 1,106,801.950	+ 584,923.0	073
265	11 K 143	+ 1,106,775.030	+ 584,889.5	540
	11 K 150	+ 1,106,770.646	+ 584,884.0	084
266	11 K 195	+ 1,106,742.470	+ 584,848.9	990
	11 K 200	+ 1,106,739.343	+ 584,845.0	096
267	11 K 250	+ 1,106,708.039	+ 584,806.1	108
	11 K 283.46	+ 1,106,687.094	+ 584,780.0	021
268	11 K 300	+ 1,106,676.735	+ 584,767.	120

No	Chainage	Coordinate o	D	
	Chamage	N	E	Remarks
	11 K 327.66	+ 1,106,659.418	+ 584,745.553	
269	11 K 350	+ 1,106,645.431	+ 584,728.132	
270	11K 400	+ 1,106,614.127	+ 584,689.144	
	11 K 450	+ 1,106,582.824	+ 584,650.156	
271	11 K 455	+ 1,106,579.690	+ 584,646.260	
272	11 K 500	+ 1,106,551.520	+ 584,611.168	
273	11 K 550	+ 1,106,520.216	+ 584,572.180	
274	11 K 600	+ 1,106,488.912	+ 584,533.192	
275	11 K 650	+ 1,106,457.608	+ 584,494.203	
276	11 K 700	+ 1,106,426.305	+ 584,455.215	
277	11 K 750	+ 1,106,395.001	+ 584,416.227	
278	11 K 800	+ 1,106,363.697	+ 584,377.239	
279	11 K 850	+ 1,106,332.393	+ 584,338.251	
280	11 K 900	+ 1,106,301.089	+ 584,299.263	
281	11 K 950	+ 1,106,269.786	+ 584,260.275	
282	12K 0	+ 1,106,238.482	+ 584,221.287	44
283	12 K 40	+ 1,106,200.920	+ 584,174.500	
283	12K 50	+ 1,106,207.178	+ 584,182.299	
284	12K 100	+ 1,106,175.874	+ 584,143.310	
285	12 K 150	+ 1,106,144.571	+ 584,104.322	
286	12 K 200	+ 1,106,113.483	+ 584,065.162	
	12 K 214.78	+ 1,106,104.377	+ 584,053.524	
287	12 K 250	+ 1,106,082.788	+ 584,025.693	
288	12K 300	+ 1,106,052.490	+ 583,985.918	
289	12 K 350	+ 1,106,022.591	+ 583,945.843	CN Bridge
	12 K 400	+ 1,105,993.094	+ 583,905.471	CN Bridge
290	12 K 390	+ 1,105,987.280	+ 583,897.340	
291	12K 450	+ 1,105,964.002	+ 583,864.806	
292	12 K 500	+ 1,105,935.318	+ 583,823.852	
	12 K 550	+ 1,105,907.045	+ 583,782.614	
	12K 551.94	+ 1,105,905.963	+ 583,781.000	
293	12 K 560	+ 1,105,901.470	+ 583,774.310	
294	12 K 600	+ 1,105,879.187	+ 583,741.094	
295	12 K 650	+ 1,105,851.744	+ 583,699.298	
296	12 K 697	+ 1,105,826.340	+ 583,659.750	
	12 K 700	+ 1,105,824.721	+ 583,657.230	
297	12 K 745	+ 1,105,800.780	+ 583,619.130	
	12 K 750	+ 1,105,798.120	+ 583,614.894	

No	Chainage		Coordinate o			
110			N		E	Remarks
298	12K 800	+	1,105,771.944	1+	583,572.294	
299	12K 850	+	1,105,746.195	+	583,529.434	
300	12K 900	+	1,105,720.876	+	583,486.319	
301	12K 950	+	1,105,695.989	+	583,442,952	
	12K 979.18	+	1,105,681.669	+	583,417.533	
302	13 K 0	+	1,105,671.537	+	583,399.339	
	13 K 20.91	+	1,105,661.441	+	583,381.026	
303	13 K 50	+	1,105,647.522	+	583,355.484	
304	13 K 100	+	1,105,623.948	+	583,311.391	
	13 K 107.34	+	1,105,620.532	+	583,304.893	
	13 K 114.34	+	1,105,617.275	+	583,298.697	
	13 K 121.34	+	1,105,614.022	1+	583,292.499	
	13 K 128.34	+	1,105,610.790	+	583,286.290	
	13 K 135.64	+	1,105,607.422	+	583,279.820	
	13 K 144.85	+	1,105,603.185	+	583,271.639	
305	13 K 150	+	1,105,600.815	+	583,267.064	AM Bridge
	13 K 200	+	1,105,578.127	+	583,222.508	8
306	13 K 210	+	1,105,573.680	+	583,213.550	
	13 K 214.50	+	1,105,571.638	+	583,209.542	
	13 K 223.81	+	1,105,567.484	+	583,201.207	
	13 K 232.00	+	1,105,563.849	+	583,193.870	
	13 K 241.00	+	1,105,559.857	+	583,185.804	
307	13 K 250	+	1,105,555.885	+	583,177.728	
308	13 K 300	+	1,105,534.093	+	583,132.727	
	13 K 322.27	+	1,105,524.534	+	583,112.611	
309	13 K 350	+	1,105,512.751	+	583,087.511	
	13 K 364.71	+	1,105,506.567	+	583,074.170	
310	13 K 400	+	1,105,491.863	+	583,042.083	
311	13 K 453	+	1,105,470.230	+	582,993.700	
	13 K 450	+	1,105,471.430	+	582,996.449	
312	13 K 500	+	1,105,451.454	+	582,950.613	
313	13 K 550	+	1,105,431.859	+	582,904.613	
	13 K 600	+	1,105,412.174	+	582,858.651	
314	13 K 602	+	1,105,411.370	+	582,856.820	
315	13 K 650	+	1,105,392.125	+	582,812.847	
316	13 K 700	+	1,105,371.479	+	582,767.309	
	13 K 733.40	+	1,105,357.226	+	282,737.103	

No	Chainage		Coordinate	**		
140	Chamage		N		Е	Remarks
317	13 K 750	1+	1,105,350.010	+	582,722.154	
	13 K 800	+	1,105,327.497	+	582,677.510	
318	13 K 804	+	1,105,325.600	+	582,673.990	
	13 K 807.88	+	1,105,323.815	+	582,670.544	
	13 K 815.88	+	1,105,320.077	+	582,663.472	
***************************************	13 K 823.88	+	1,105,316.297	+	582,656.421	
	13 K 831.88	+	1,105,312.473	+	582,649.393	
	13 K 841.91	+	1,105,307.655	+	582,640.592	
319	13 K 850	+	1,105,303.727	+	582,633.524	CD Bridge
320	13 K 880	+	1,105,288.590	+	582,607.630	CR Bridge
	13 K 900	+	1,105,278.500	+	582,590.358	CD D: J
	13 K 950	+	1,105,251.627	+	582,548.198	CR Bridge
321	12 K 955	+	1,105,248.760	+	582,544.100	CR Bridge
322	14K 0	+	1,105,222.949	+	582,507.245	CD D: 1
	14K 29.24	+	1,105,205.293	+	582,483.942	CR Bridge
•	14 K 39.01	+	1,105,199.298	+	582,476.231	
323	14K 50	+	1,105,192.442	+	582,467.636	·····
	14 K 60	+	1,105,186.126	+	582,459.883	
	14K 74.00	+	1,105,177.139	+	582,449.153	
324	14 K 100	+	1,105,160.166	+	582,429.454	
325	14 K 150	+	1,105,126.189	+	582,392.778	
	14 K 164.61	+	1,105,115.928	+	582,382.381	***************************************
326	14 K 200	+	1,105,090.580	+	582,357.684	
327	14 K 250	+	1,105,053.414	+	582,324.244	
328	14 K 300	+	1,105,014.769	+	582,292.524	
329	14K 350	+	1,104,974.800	+	582,262.488	
	14 K 400	+	1,104,933.722	+	582,233.987	
330	14 K 403	+	1,104,930.780	+	582,232.090	
331	14 K 450	+	1,104,891.732	+	582,206.846	
332	14 K 500	+	1,104,849.006	+	582,180.877	
333	14 K 550	+	1,104,805.705	+	582,155.878	
334	14 K 600	+	1,104,761.974	+	582,131.640	
335	14 K 650	+	1,104,717.946	+	582,107.943	
336	14 K 695	+	1,104,678.170	+	582,086.900	
	14 K 700	+	1,104,673.747	+	582,084.567	
0077	14 K 750	+	1,104,629.550	+	582,061.188	
337	14 K 753	+	1,104,626.040	+	582,059.270	

No	Chainage		Coordinate o	Remarks		
	Chamage		N		E	Kemarks
	14K 786.02	+	1,104,597.587	+	582,043.762	
338	14 K 797	+	1,104,588.290	+	582,038.680	
	14 K 800	+	1,104,585.659	+	582,037.239	I - EP
339	14K 850	+	1,104,542.056	+	582,012.768	I - EP
340B	14 K 894.30	+	1,104,498.485	+	581,988.241	I - EP
	14K 900	+	1,104,498.485	+	581,988.241	I - EP
341	14 K 950	+	1,104,454.914	+	581,963.715	I - EP
342	15 K 0	+	1,104,411.343	+	581,939.188	I - EP
343	15 K 50	+	1,104,367.772	+	581,914.661	
344	15 K 100	+	1,104,324.201	+	581,890.134	
345	15 K 150	+	1,104,280.630	+	581,865.607	
346	15K 200	+	1,104,237.059	+	581,841.081	
347	15 K 250	+	1,104,193.488	+	581,816.554	
348	15 K 300	+	1,104,149.917	+	581,792.027	
349	15 K 350	+	1,104,106.346	+ .	581,767.500	

1.5.2. COORDINATE LIST OF INTERCHANGE No3

A-RAMP

No Chaine		Coordinate of centerlines			
No	Chainage		N	E	Remarks
A - 1	0+0	+	1,107, 2 84.29	+ 586,122.479	
	0+9	+	1,107,292.658	+ 586,125.828	
A - 2	0+20	+	1,107,302.862	2+ 586,129.912	
	0+25.4	+ 1	1,107,307.874	+ 586,131.918	
A - 3	0+40	+	1,107,3 2 1.429	+ 586,137.345	
A - 4	0+60	+ 1	1,107,339.997	+ 586,144.777	
A - 5	0+80	+ 1	l,107,358.564	+ 586,152.210	
A - 6	0+100	+ 1	,107,377.132	+ 586,159.643	
A - 7	0+120	+ 1	,107,395.700	+ 586,167.076	
A - 8	0+140	+ 1	,107,414.267	+ 586,174.508	
A - 9	0+160	+ 1	,107,432.835	+ 586,181.941	
A - 10	0+180	+ 1	,107,451.402	+ 586,189.374	
A - 11	0+200	+ 1	,107,469.970	+ 586,196.806	
A - 12	0+220	+ 1	,107,488.538	+ 586,204.239	
A - 13	0+240	+ 1	,107,507.105	+ 586,211.672	
A - 14	0+260	+ 1	,107,525.673	+ 586,219.104	
A - 15	0+280	+ 1	,107,543.912	+ 586,227.289	
A - 16	0+300	+ 1	,107,561.196	+ 586,237.333	
A - 17	0+320	+ <u>1</u>	,107,577.330	+ 586,249.137	
A - 18	0+340	<u> </u>	,107,592.134	+ 586,262.571	
A - 19	0+360	<u> </u>	,107,605.877	+ 586,277.099	
A - 20	0+380	1	,107,619.027	+ 586,292.167	
A - 21	0+400	1	,107,631.564	+ 586,307.748	

B-	R	Α	λ	1	r

D-IXAIVI		<u> </u>	Coordinate of	centerlines	77
No	Chainage		N	E	Remarks
B- 1	0+0	+	1,107,255.599	+ 585,631.599	
B - 2	0+20	+	1,107,263.314	+ 585,650.042	
B- 3	0+40	+	1,107,269.150	+ 585,669.163	
B- 4	0+60	+	1,107,273.676	+ 585,688.644	
B - 5	0+80	+	1,107,278.141	+ 585,708.139	
B - 6	0+100	+	1,107,281.150	+ 585,727.900	
B - 7	0+120	+	1,107,281.819	+ 585,747.877	
B - 8	0+140	+	1,107,280.139	+ 585,767.795	
B- 9	0+160	+	1,107,276.133	+ 585,787.378	
B - 10	0+180	+	1,107,269.855	+ 585,806.355	
B - 11	0+200	+	1,107,262.428	+ 585,824.925	
B - 12	0+220	+	1,107,255.001	+ 585,843.494	
B - 13	0+240	+	1,107,247.574	+ 585,862.064	
B - 14	0+260	+	1,107,240.146	+ 585,880.634	
B - 15	0+280	+	1,107,232.719	+ 585,899.204	
B - 16	0+300	+	1,107,225.291	+ 585,917.773	
B - 17	0+320	+	1,107,217.864	+ 585,936.343	
B - 18	0+340	+	1,107,210.437	+ 585,954.913	
B - 19	0+360	+	1,107,203.009	+ 585,973.483	
B - 20	0+380	+	1,107,195.582	+ 585,992.052	
B - 21	0+400	+	1,107,188.172	+ 586,010.629	
B - 22	0+420	+	1,107,182.396	+ 586,029.742	
B - 23	0+440	+	1,107,182.227	+ 586,049.649	
B - 24	0+460	+	1,107,188.581	+ 586,068.515	
B - 25	0+480	+	1,107,200.758	+ 586,084.264	
B - 26	0+500	.+	1,107,217.348	+ 586,095.299	
	0+513.4	+	1,107,229.667	+ 586,100.625	
B - 27	0+520	+	1,107,235.773	+ 586,103.067	
	0+532	+	1,107,246.649	+ 586,107.417	
B - 28	0+540	+	1,107,254.342	+ 586,110.495	

C-RAMP

	~ .	Coordinate of	f centerlines	
No	Chainage	N	E	Remarks
C- 1	0+0	+ 1,107,512.765	+ 586,085.056	
C- 2	0+20	+ 1,107,502.926	+ 586,067.648	
C- 3	0+40	+ 1,107,494.268	+ 586,049.623	
C- 4	0+60	+ 1,107,486.830	+ 586,031.061	
C- 5	0+80	+ 1,107,480.846	+ 586,011.987	
C- 6	0+100	+ 1,107,477.078	+ 585,992.357	
C- 7	0+120	+ 1,107,475.640	+ 585,972.420	
C- 8	0+140	+ 1,107,476.552	+ 585,952.452	
C- 9	0+160	+ 1,107,479.802	+ 585,932. <i>7</i> 30	
C- 10	0+180	+ 1,107,485.344	+ 585,913.525	
C- 11	0+200	+ 1,107,493.102	+ 585,895.103	
C- 12	0+220	+ 1,107,502.968	+ 585,877.720	
C- 13	0+240	+ 1,107,514.807	+ 585,861.614	
C- 14	0+260	+ 1,107,528.454	+ 585,847.010	
C- 15	0+280	+ 1,107,543.721	+ 585,834.108	
C- 16	0+300	+ 1,107,560.397	+ 585,823.088	
C- 17	0+320	+ 1,107,578.252	+ 585,814.101	
C- 18	0+340	+ 1,107,597.037	+ 585,807.271	
C- 19	0+360	+ 1,107,616.438	+ 585,802.430	
C- 20	0+380	+ 1,107,635.918	+ 585,797.897	
C- 21	0+400	+ 1,107,655.397	+ 585,793.364	
C- 22	0+420	+ 1,107,674.877	+ 585,788.831	

D-RAMP

No	Chainage	Coordinate of	f centerlines	
NU	Chainage	N	E	Remarks
D- 1	0+0	+ 1,107,473.134	+ 585,564.178	
	0+8.92	+ 1,107,464.851	+ 585,560.864	
D- 2	0+20	+ 1,107,454.565	+ 585,556.750	
	0+26.98	+ 1,107,448.084	+ 585,554.158	
D- 3	0+40	+ 1,107,435.995	+ 585,549.323	
D- 4	0+60	+ 1,107,417.425	+ 585,541.895	
D- 5	0+80	+ 1,107,398.855	+ 585,534.468	
D- 6	0+100	+ 1,107,380.286	+ 585,527.041	
D- 7	0+120	+ 1,107,361.716	+ 585,519.613	
D- 8	0+140	+ 1,107,343.146	+ 585,512.186	
D- 9	0+160	+ 1,107,324.576	+ 585,504.759	
D- 10	0+180	+ 1,107,306.007	+ 585,497.331	
D- 11	0+200	+ 1,107,287.652	+ 585,489.399	
D- 12	0+220	+ 1,107,269.980	+ 585,480.046	
D- 13	0+240	+ 1,107,253.112	+ 585,469.310	
D- 14	0+260	+ 1,107,237.156	+ 585,457.261	Bridge
D- 15	0+280	+ 1,107,222.213	+ 585,443.975	Bridge
D- 16	0+300	+ 1,107,208.335	+ 585,429.579	Bridge
D- 17	0+320	+ 1,107,194.761	+ 585,414.891	Bridge
D- 18	0+340	+ 1,107,181.187	+ 585,400,203	Bridge
D- 19	0+360	+ 1,107,167.612	+ 585,385.515	
D- 20	0+380	+ 1,107,154.038	+ 585,370.827	
D- 21	0+400	+ 1,107,140.463	+ 585,356.139	
D- 22	0+420	+ 1,107,127.004	+ 585,341.347	
D- 23	0+440	+ 1,107,114.424	+ 585,325.804	
	0+460	+ 1,107,102.906	+ 585,309.458	

E/F-RAMP

No Chainage			Coordinate of	D		
INC)	Chainage		N	E	Remarks
E-	1	0+0	+	1,107,619.732	+ 585,799.353	
E-	2	0+20	+	1,107,638.992	+ 585,794.016	
E-	3	0+40	+	1,107,656.390	+ 585,784.332	
E-	4	0+60	+	1,107,669.682	+ 585,769.512	
E-	5	0+80	+	1,107,678.466	+ 585,751.575	
E-	6	0+100	+	1,107,685.902	+ 585,733.008	
E-	7	0+120	+	1,107,693.329	+ 585,714.439	
E-	8	0+140	+	1,107,700.757	+ 585,695.869	
E-	9	0+160	+	1,107,708.184	+ 585,677.299	
F-	1	0+0	+	1,107,742.163	+ 585,671.781	
F-	2	0+20	+	1,107,723.593	+ 585,664.354	· · · · · · · · · · · · · · · · · · ·
F-	3	0+40	+	1,107,705.024	+ 585,656.927	
F-	4	0+60	+	1,107,686.454	+ 585,649.499	
F-	5	0+80	+	1,107,667.884	+ 585,642.072	
F-	6	0+100	+	1,107,649.314	+ 585,634.645	
F-	7	0+120	+	1,107,630.745	+ 585,627.217	
F-	8	0+140	+	1,107,612.175	+ 585,619.790	
F-	9	0+160	+	1,107,593.605	+ 585,612.362	-
F-	10	0+180	+	1,107,575.036	+ 585,604.935	
F-	11	0+200	+	1,107,556.466	+ 585,597.508	
F-	12	0+220	+	1,107,537.896	+ 585,590.080	
		0+232	+	1,107,526.340	+ 585,585.458	
F-	13	0+240	+	1,107,519.326	+ 585,582.653	
	-	0+248.8	+	1,107,511.163	+ 585,579.388	
					·	

1.5.3. COORDINATE LIST OF INTERSECTION

X T -	Chairman	Coordinate of	n 1	
No Chainage		N	E	Remarks
A- 1	0+ 0	+ 1104566.795	+ 582026.640	
A- 2	0+ 20	+ 1104576.597	+ 582009.207	
A- 3	0+ 40	+ 1104586.399	+ 581991.773	
A- 4	0+ 60	+ 1104596.957	+ 581974.805	
A- 5	0+ 80	+ 1104611.219	+ 581960.911	
A- 6	0+ 100	+ 1104629.229	+ 581952.428	
A- 7	0+ 120	+ 1104649.023	+ 581950.288	
A- 8	0+ 140	+ 1104668.804	+ 581953.122	
B- 1	0+ 0	+ 1104705.024	+ 581960,190	
B- 2	0+ 20	+ 1104685.394	+ 581956.359	
B- 3	0+ 40	+ 1104665.764	+ 581952.529	
B- 4	0+ 60	+ 1104646.125	+ 581948.749	
B- 5	0+ 80	+ 1104626.440	+ 581945.212	
B- 6	0+ 100	+ 1104606.710	+ 581941.939	
B- 7	0+ 120	+ 1104586.938	+ 581938.928	
B- 8	0+ 140	+ 1104567.128	+ 581936.182	
B- 9	0+ 160	+ 1104547.283	+ 581933.695	
B- 10	0+ 180	+ 1104527.427	+ 581931.298	
B- 11	0+ 200	+ 1104507.571	+ 581928.902	
B- 12	0+ 220	+ 1104487.716	+ 581926.505	
B- 13	0+ 240	+ 1104467.860	+ 581924.108	
B- 14	0+ 260	+ 1104448.014	+ 581921.633	
B- 15	0+ 280	+ 1104428.328	+ 581918.122	
B- 16	0+ 300	+ 1104408.920	+ 581913.308	
B- 17	0+ 320	+ 1104389.876	+ 581907.212	
B- 18	0+ 340	+ 1104371.231	+ 581899.979	
B- 19	0+ 360	+ 1104352.901	+ 581891.982	
B- 20	0+ 380	+ 1104334.905	+ 581883.259	
B- 21	0+ 400	+ 1104317.273	+ 581873.823	

Chapter 2

TOLLGATE AND INTERCHANGE

	CONTENTS	I-2-1
2.1	NUMBER OF LANES OF TOLLGATE	I-2-2
2.2	NUMBER OF LANES OF INTERCHANGE	1-2-4

CHARTER 2 TOLLGATE AND INTERCHANGE

CONTENTS

2.1.	$N\iota$	IMBER OF LANES OF TOLLGATE	.2
	2.1.1	BASIC DATA:	. 2
		CAPACITY OF TRAFFIC FLOW AT EVERY LANE:	
	2.1.3	DETERMINATION OF REQUIRED LANES:	. 2
2.2.	NU	IMBER OF LANES OF INTERCHANGE	.4
	2.2.1	FORECASTING OF TRAFFIC VOLUME AT EACH DIRECTION IN THE INTERCHANGE:	.4
	2.2.2	CAPACITY OF TRAFFIC FLOW AT EVERY LANE:	. 4
	2.2.3	DETERMINATION OF REQUIRED LANES:	4

2.1. NUMBER OF LANES OF TOLLGATE

2.1.1 Basic data:

Traffic volume, traffic flows and rate of traffic growth are forecasted to be used from a report of Feasibility Study.

Table 2.1: Inventory of forecasted traffic volume in years of 2006, 2010 and 2015

	volume (ı	me (nos/day)		
Type of vehicle/year	2006	2010	2015	
Motorcycle	15165	22281	33248	
Passenger car	2777	5139	8471	
Light buses	1267	2051	3011	
Heavy buses	566	898	1283	
Light truck	918	1721	2921	
Medium truck	2201	4175	7072	
Heavy truck	185	397	647	

2.1.2 Capacity of traffic flow at every lane:

Capacity of traffic flow at one lane (as per semi-automatic tollgate) is from 230pcu/h to 500pcu/h depending on number of lanes and levels of service in accordance with standard of Japanese road design and of 450pcu/h in local tollgate (tollgate No1 of NH No51).

However, traffic organization and traffic flow between Japan and Viet Nam are not the same. Therefore, capacity for traffic flow at every lane is proposed to take 450pcu/h.

2.1.3 Determination of required lanes:

Lanes of tollgate are determined as per below elements:

- Traffic volume for a design is converted at peak hours.

Including:

- + Years of design are 10 (regarding TCVN 5729-97)
- + Converted coefficient is taken from types of vehicles into cars (regarding TCVN 4054-98).
- + Traffic volume on peak hours is of 10% average annual traffic volume.
- Capacity of one lane (450pcu/h)

From the above elements, lanes of tollgate are determined of 12 ones as follow table:

	Exchange	Traffic volume				Number of lanes	
•	Coefficient	(1)	(Nos/day)		pcu/day	pcu/h	of toll gate
Type of vehicle/year		2006	2010	2015	2015	2015	2015
Motorcycle	0.3	15165	22281	33248	9974	997	2.2
Passenger car	1	2777	5139	8471	8471	847	1.9
Light buses	2	1267	2051	3011	6022	602	1.3
Heavy buses	2.5	566	898	1283	3208	321	0.7
Light truck	2	918	1721	2921	5842	584	1.3
Medium truck	2.5	2201	4175	7072	17679	1768	3.9
Heavy truck	3	185	397	647	1940	194	0.4
	Total		<u></u>		53137	5314	12

2.2. NUMBER OF LANES OF INTERCHANGE

2.2.1 Forecasting of traffic volume at each direction in the interchange:

Proposed traffic volume at each direction in the interchange is affected by follow elements:

Annual rate of traffic growth

Distribution of traffic flows due to development of transport network.

Types of traffic flows

The above parameters are taken from the report of Feasibility Study.

The computation is used in Japan Software and its result is shown in table 2.2.1, 2.2.2.

2.2.2 Capacity of traffic flow at every lane:

Capacity of traffic flow at every lane is determined as follows:

 $N_{capacity} = N_{max} \times Z$

Where:

N_{max}: Maximum capacity of traffic flow = 1500cpu/h (regarding TCVN 4054-98)

Z: coefficient of used companied capacity = 0.7 (regarding TCVN 4054-98)

2.2.3 Determination of required lanes:

Under required lanes are determined:

 $n_i = N_{peakhour} / N_{capacity}$

Where: N_{peakhour}: Traffic volume at peak hours is of 10% average annual traffic volume.

N_{capacity}: determination in accordance with item 2.2.2.

The result of required lanes at every direction in the interchange is summarized in table 2.2.3.

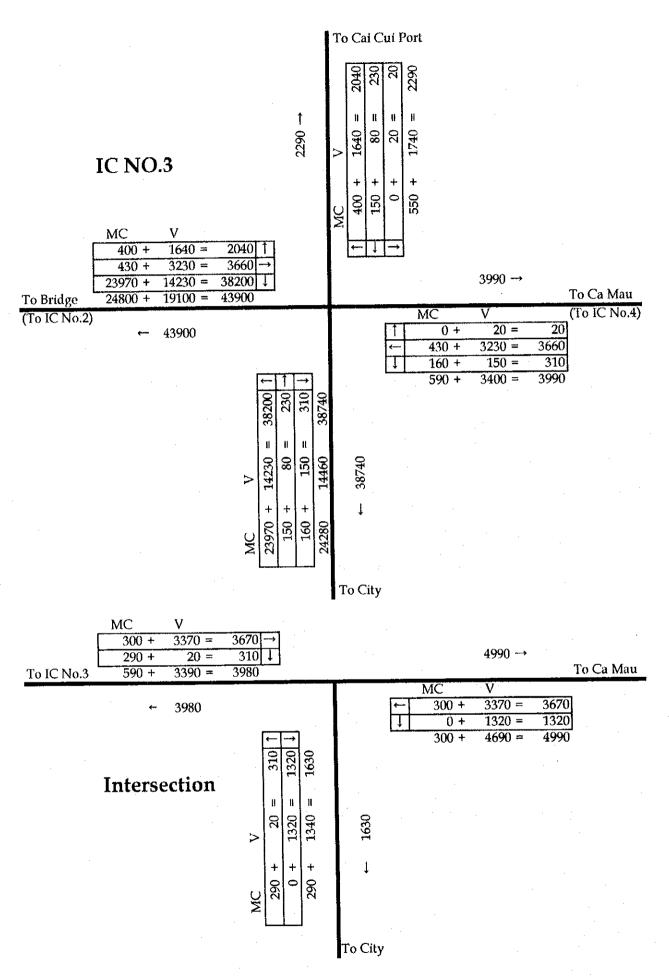


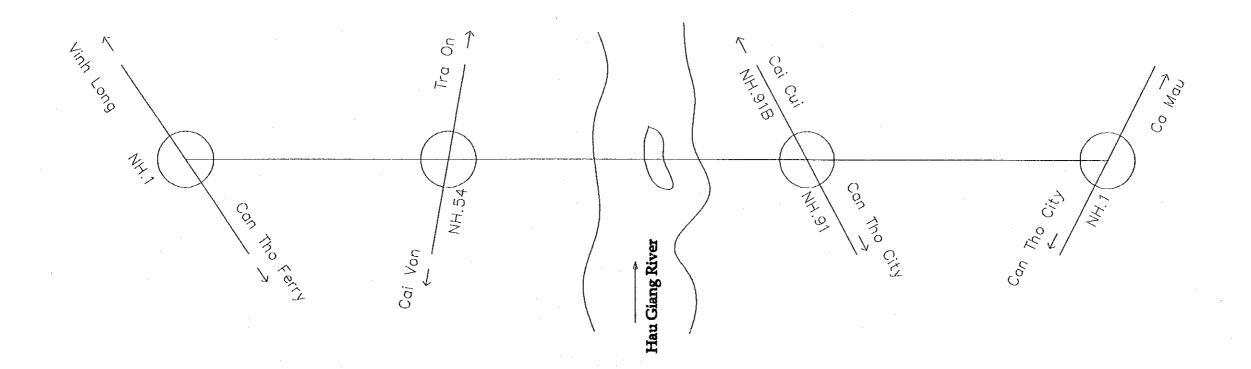
Fig. I-2-1 Traffic Volume by Direction

Table 2.2.1 Sectional Traffic Volume

Classification	Vehicle/day	Constitution ratio	Exchange coefficient	PCU/day	Classification	Vehicle/day	Constitution ratio	Exchange coefficient	PCU/day
	Section 6	Section 6 (Throughway-1C2-1C3)	(C2-IC3)			Section	7 (NH.91B-Cai	i Cui)	
TOTAL	87,780	0	0	85,299	TOTAL	4,540			6,731
MC	49,560	-	0.3	14,868	MC	1,060	•	0.3	318
Vehicle	38,220		0	70,431	Vehicle	3,480	a.		6,413
PC	13,969	36.55%	1.0	13,969	PC	1,272	36.55%	1.0	1,272
LB	4,421	11.57%	2.0	8,843	87	403	11.57%	2.0	805
HB	1,835	4.80%	2.5	4,586	HB	167	4.80%	2.5	418
LT	4,960	12.98%	2.0	9,919	LI	452	12.98%	2.0	903
MT	11,982	31.35%	2.5	29,954	TM	1,091	31.35%	2.5	2,727
HT	1,053	2.76%	3.0	3,160	LH	96	2.76%	3.0	288
	Section	Section 10 (NH.1-Ca Mau	Mau)			Section 8	Section 8 (NH.91B-Can Tho	ho City)	
TOTAL	12,440			20,794	TOTAL	50,020			39,352
MC	1,380	-	0.3	414	MC	34,240		0.3	10,272
Vehicle	11,060	•		20,380	Vehicle	15,780	ŧ		29,080
PC	4,042	36.55%	1.0	4,042	PC	5,768	36.55%	1.0	5,768
LB	1,279	11.57%	2.0	2,559	LB	1,825	11.57%	2.0	3,651
HB	531	4.80%	2.5	1,327	HB	757	4.80%	2.5	1,894
LT	1,435	12.98%	2.0	2,870	LT	2,048	12.98%	2.0	4,095
MT	3,467	31.35%	2.5	8,668	MT	4,947	31.35%	2.5	12,367
HT	305	2.76%	3.0	914	LH	435	2.76%	3.0	1,305
	Section 11	Section 11 (NH.1-Can Tho City)	to City)			Se	Section 9 (IC3-IS		
TOTAL	23,840			22,179	TOTAL	35,120			40,837
MC	14,100	-	0.3	4,230	MC	15,480		0.3	4,644
Vehicle	9,740			17,949	Vehicle	19,640	-		36,193
PC	3,560	36.55%	1.0	3,560	JA	2,178	36.55%	1.0	7,178
LB	1,127	11.57%	2.0	2,253	LB	2,272	11.57%	2.0	4,544
HB	468	4.80%	2.5	1,169	HB	943	4.80%	2.5	2,357
LT	1,264	12.98%	2.0	2,528	LT	2,549	12.98%	2.0	5,097
MT	3,053	31.35%	2.5	7,634	IM	6,157	31.35%	2.5	15,393
HT	268	2.76%	3.0	805	HT	541	2.76%	3.0	1,624

Table 2.2.2 Traffic Voulume by Direction (1/2)

	1	Vehicle/	Constitu	Exchang	PCU/	Classif	4 5	Vehicle/	Constitu	Exchang	PCU/
Classifi	ication	day	tion	e	day	Classif		day	tion	e	day
	In		3 (NH.911	3)			Ir	iterchange	3 (NH.91	В)	
	TOTAL	24,590	.,,.,,		19,334		TOTAL	380			299
·	MC	16,840	-	0.3	5,052	İ	MC	260	-	0.3	78
ĺ	Vehicle	7,750		-	14,282	ĺ	Vehicle	120	<u>-</u>		221
Bridge	PC	2,833	36.55%	1.0	2,633	E.P to	PC	44	36.55%	1.0	44
to Can	LB	897	11.57%	2.0	1,793	Can Tho	LB	14	11.57%	2.0	28
Tho	НВ	372	4.80%	2.5	930	Can Ino	HB	6	4.80%	2.5	14
i [LT	1,006	12.98%	2.0	2,011		LT	16	12.98%	2.0	31
	MT	2,430	31.35%	2.5	6,074		МТ	38	31.35%	2.5	94
	HT	214	2.76%	3.0	641		HT	3	2.76%	3.0	10
	TOTAL	17,140			20,061		TOTAL	17,140			20,061
	MC	7,470	-	0,3	2,241		MC	7,470	-	0.3	2,241
	Vehicle	9,670	-		17,820		Vehicle	9,670		1.0	17,820
Bridge	PC	3,534	36.55%	1.0	3,534	E.P to	PC	3,534	36.55%	1.0	3,534
to E.P	LB	1,119	11.57%	2.0	2,237	Bridge	LB	1,119 464	11.57% 4.80%	2.0	2,237 1,160
	HB	464	4.80%	2.5	1,160	_	HB	1,255	12.98%	2.0	2,510
	LT	1,255	12.98%	2.0	2,510		LT MT	3,031	31.35%	2.5	7,579
	MT	3,031	31.35%	2.5 3.0	7,579 8 00		HT	267	2.76%	3.0	800
	HT	267	2.76%	3.0	3,266		TOTAL	40	2.70%	3.0	59
	TOTAL MC	2,190 500		0.3	3,2 60 150		MC	10	_	0.3	3
	Vehicle	1,690		0.3	3,116		Vehicle	30		0.5	56
	PC	618	36.55%	1.0	618	:	PC	11	36.55%	1.0	11
Bridgeto	LB	196	11.57%	2.0	391	E.P to	LB	3	11.57%	2.0	7
Cai Cui	HB	81	4.80%	2.5	203	Cai Cui	HB	1	4.80%	2.5	4
	LT	219	12.98%	2.0	439		LT	4	12.98%		8
1 1	MT	530	31.35%	2.5	1,325		MT	9			24
	HT	47	2.76%	3.0	140		HT	1	2.76%		2
	TOTAL	24,590			19,334		TOTAL	2,190			3,266
	MC	16,840	-	0.3	5,052		MC	500	-	0.3	150
	Vehicle	7,750	-	-	14,282		Vehicle	1,690	_	-	3,116
Can Tho	PC	2,833	36.55%	1.0	2,833	Cai Cui	PC	618	36.55%	1.0	618
to	LB	897	11.57%	2.0	1,793	to	LB	196	11.57%		391
Bridge	HB	372	4.80%	2.5	930	Bridge	HB	81	4.80%	2.5	203
	LT	1,006	12.98%	2.0	2,011		LT	219	12.98%		439
	MT	2,430	31.35%	2.5	6,074		MT	530			1,325
	HT ·	214	2.76%	3.0	641		HT	47	2.76%	3.0	140
	TOTAL	40			43		TOTAL	40			43
	MC	20		0.3	6		MC	20		0.3	6
·	Vehicle	20			37	17	Vehicle			-	37
Can Tho	PC	7			: 7	EI .		7			7
to Cai	LB	2	~~~~~~	·}	5	II.	LB	2	4		5
Cui	HB	1			2		HB	1		· · · · · · · · · · · · · · · · · · · ·	5
	LT	3			5	41	LT	3			
	MT	6		+	16		MT	6			16
	HT	1		3.0	200		HT	1		3.0	59
	TOTAL	380		0.2	299 78	46	MC	10	-}	0.3	3
1	MC	260	 	0.3	221	4	Vehicle	+		0.5	56
	Vehicle PC	120 44	· · · · · · · · · · · · · · · · · · ·		44	1	PC	11	· · · · · · · · · · · · · · · · · · ·		11
Can Tho		14			28	Cai Cui	LB	1 3	+		7
to E.P	LB HB	14			14	a mer	HB			+ · · ·	4
	LT	16			31	-14	LT				8
ļ	MT	38	1	- 	94	- i l	MT			 	24
1	HT	3	+		10	-11	HT		+		2


Table 2.2.2 Traffic Voulume by Direction (2/2)

		Vehicle/	Constitu	Exchang	PCU/day			Vehicle/	Constitu	Exchang	PCU/day
Classif	ication	day	tion	e	PCU/day	Classifi	ication	day	tion	e	rCu/day
	Inte		VH.1-Can	Tho)					V		
	TOTAL	11,630	,,,, <u>,,</u>		10,557						
	MC	7,050	-	0.3	2,115						
	Vehicle	4,580	-	-	8,442	ľ					
1004	PC	1,674	36.55%	1.0	1,674						
IC.3 to	LB	530	11.57%	2.0	1,060	Ī					
Can Tho	НВ	220	4.80%	2.5	550	1					
	LT	594	12.98%	2.0	1,189						
	MT	1,436	31.35%	2.5	3,590						
	HT	126	2.76%	3.0	379	j					
	TOTAL	5,930			9,863			,			
	MC	690	-	0.3	207	Ī					
	Vehicle	5,240	-	-	9,656		*				
	PC	1,915	36,55%	1.0	1,915						
IC.3 to	LB	606	11.57%	2.0	1,212						
Ca Mau	HB	252	4.80%	2.5	629	Ì					
	LT	680	12.98%	2.0	1,360						
	MT	1,643	31.35%	2.5	4,107	Ì					
	HT	144	2.76%	3.0	433						
	TOTAL	11,630			10,557						
	MC	7,050		0.3	2,115	Ì					
	Vehicle	4,580			8,442						
	PC	1,674	36.55%	1.0	1,674						
Can Tho	LB	530	11.57%	2,0	1,060						
to IC.3	НВ	220	4.80%	2.5	550						<u> </u>
	LT	594		2.0	1,189				<u> </u>		
}	MT	1,436	31.35%	2.5	3,590						
	HT	126	2.76%	3.0	379						
	TOTAL	290	2.70%	3.0	534						
	MC	0	-	0.3	0	ŀ					
	Vehicle	290		0.0	534						·
Can Tho	PC	106		1.0	106						
to Ca	LB	34	11.57%	2.0	. 67						
Mau	НВ	14	4.80%	2.5	35						
Man	LT	38		2.0	75						
	MT	91	31.35%	2.5	227		······································	ļ	 		
	HT	8		3.0	24						 -
	TOTAL	290		3.0	534						
	MC	200		0.3	0						
	Vehicle	290	1	0.5	534						
Ca Mau	PC	106	1	1.0	106						
to Can	LB	34	+	2.0	67		*.			 	
Tho	HB	14	 	2.5	35						
1.10	LT	38		2.0	75					 	1
1	MT	91		2.5	227	·					
	HT	8		3.0	24			 	 		
 	TOTAL	5,930	+	3.0	9,863	ļ		 			
	MC	690		0.3	207			 		<u> </u>	
l	Vehicle				9,656			ļ			
1	PC	5,240		1.0	1,915	4					
Ca Mau	LB	1,915		1	1,913					} -	·
to IC.3	<u> </u>	606			· · · · · · · · · · · · · · · · · · ·		ļ	ļ <u></u>			-
	HB	252			629			 	}	 	-
	LT	680			1,360				 	ļ	
	MT	1,643		+	4,107	}			 	 	
	HT	144	2.76%	3.0	433	<u> </u>		L		<u> </u>	ــــــــــــــــــــــــــــــــــــــ

Table 2.2.3: Lane Number of Rampway

Name of Intersection	Direction	PCU/day	N _{peakhour}	Nmax	z	ni		Remarks
IC 1	Vinh Long→Ferry	3,540	319	1,500	0.55	0.4→	1.0	
(NH.1 Vinh Long)	Ferry→Vinh Long	3,540	319	1,500	0.55	0.4→	1.0	
IC 2	Vinh Long→NH.54	333	30	1,800	0.55	0.1→	1.0	
(NH.54)	NH.54→Vinh Long	333	30	1,800	0.55	0.1→	1.0	
·	Bridge→NH.54	6,557	590	1,800	0.55	0.6→	1.0	
	NH.54→Bridge	6,557	590	1,800	0.55	0.6→	1.0	
IC 3	Bridge> NH.91	22,600	2,260	1,500	0.70	2.16>	2.0	
(NH.91,91B)	NH.91B>Bridge	22,600	2,260	1,500	0.70	2.16>	2.0	
	Ca Mau>NH.91	358	36	1,500	0.70	0.04>	1.0	
	NH.91B>Ca Mau	358	36	1,500	0.70	0.04>	1.0	
		40.65	4.000	1 500	0.70	1.01	1.0	
Intersection	Can Tho>Bridge	10,557	1,056	1,500	0.70	1.01>	1.0	
(NH.1-Can Tho	Bridge sy >Can Tho	10,557	1,056	1,500	0.70	1.01>	1.0	
	Can Tho>Ca Mau	534	53	1,500	0.70	0.06>	1.0	
	Ca Mau>Can Tho	534	53	1,500	0.70	0.06>	1.0	

Fig. I-2-2: TRAFFIC VOLUME BY DIRECTION (Year:2020)

(PCU/day/Direction)

Interchange(NH.91B)	Intersection(NH.1-Can Tho)
3,266 N Throughway 20,061 20,061 19,334 75 59 50 20,061 299	Throughway 9,863 10,557 Ca Mau 9,863 10,557 Throughway 9,863 534 Can Tho City

Chapter 3

SERVICE AREA

	CONTENTS	I-3-1
3.1	ARRANGEMENT AND LAYOUT OF SERVICE	
	AREA	I-3-2
3.2	NUMBER OF PARKING LOT	I-3-3
3.3	DESIGN OF THE STORM DRAINAGE &	
	SEWAGE SYSTEMS	1-3-6

CHARTER 3 SERVICE AREA.

CONTENTS

3.1 ARRANGEMENT AND LAYOUT OF SERVICE AREA	2
3.1.1 ARRANGEMENT OF SERVICE AREA	2
3.1.2 STYLE AND LAYOUT	2
3.2 NUMBER OF PARKING LOT	3
3.2.1 DIMENSION OF PARKING SPACE FOR VEHICLE	3
3.2.2 NUMBER OF PARKING LOT	4
3.3. DESIGN OF THE STORM DRAINAGE & SEWAGE SYSTEMS	6
3.3.1. THE BASIC DATA	6
3.3.2. THE PRINCIPLES TO ARRANGE THE DRAINAGE SYSTEMS	6
3.3.3 CALCULATING THE HYDROLOGIC AND THE HYDRAULIC CONDITIONS	7

3.1 ARRANGEMENT AND LAYOUT OF SERVICE AREA

3.1.1 ARRANGEMENT OF SERVICE AREA

The service area was planned to both sides of the HAU River in consideration of the move of the store, which is doing business with the ferry platform periphery of established

The execution position of the service area was selected in consideration of the following items.

- · Security of sufficient distance with the interchange.
- Selection of the section of a fine horizontal and vertical alignment of throughway.
- Avoid the Area and location of temples and tombs, Public facilities such as hospital, school and disposal sites and density of residential areas including markets
- · Consistency with the master plans for Industrial Zones and City Development
- · Confluence point of the stream and/or canal
- Influence to ecosystem

3.1.2 STYLE AND LAYOUT

The service area is composed of the parking lot, throughway, ramp-way, and institutions for the user, garden ground and control institutions.

As for the institutions for the user, there is petrol station, stands, resting-places, restaurant, toilets, information office etc; and the size and fundamental arrangement of these outlines were planned with the design in this time.

Table 3.1.1 Standard scale of an architecture institution (sq.m)

Public toilet	Restaurant	Free resting- place	Stands	Petrol station	Subsidiary equipment
180	500	170	170	550	2070

Ramp-ways of service area conforms as ramp-way of the interchange and were designed.

3.2 NUMBER OF PARKING LOT

3.2.1 DIMENSION OF PARKING SPACE FOR VEHICLE

Dimension of the parking space of each vehicle shows below was adopted.

Table 3.2.1 Traffic Volume for Design

Type of Vehicle	Length (m)	Width (m)
Heavy bus and Truck	13.0	3.5
Medium bus and Truck	8.0	3.5
Light bus and Truck	5.5	2.7
Passenger car	5.5	2.7
Motor Cycle	2.0	1.25
Long Vehicle	17.0	3.5

3.2.2 NUMBER OF PARKING LOT

Number of parking lot is determined based on standard of Japanese road design.

Table 3.2.2 Traffic Volume for Design

Type of a car	Prediction number of units (2020)	Exchange rate	Conversion number of units	Total
Motor Cycle	49,612	0.30	14,884	14,884
Passenger Car	13,965	1.00	13,965	
Light Bus	4,420	2.00	8,840	
Light Truck	4,958	2.00	9,916	32,721
Medium Truck	11,978	1.00	11,978	11,978
Heavy Bus	1,834	1.00	1,834	
Heavy Truck	1,053	1.00	1,053	2,887
Total	87,820			62,470

Table 3.2.3 Calculation Table of Parking Lot Number

Item	Symbol	Motorcycle	Passenger Car	Medium Truck	Heavy Bus Heavy Truck
Traffic volume (2020)	Q	14,884	32,721	11,978	2,887
Holiday service coefficient	S		1.	15	
Design traffic volume	q=Q*s/2	8,558	18,815	6,887	1,660
Application ratio	v	0.500	0.100	0.100	0.250
Peak rate	r	0.100	0.100	0.100	0.100
Circulation ratio	С	4.000	4.000	4.000	3.000
Number of parking lot (calculate)	n=q*v*r/c	107	47	17	14
Number of parking lot (design)		196	48	10	15

Note

Holiday service coefficient:

Increasing coefficient that makes 90% or more of application

passable efficiency of the service area.

Application rate:

The ratio of the traffic density that flows in the service area in

throughway traffic density.

Peak rate:

The ratio of the traffic density that uses the service area at the

time of traffic congestion

Circulation rate:

The application number of parking space of in one hour.

(These coefficients were calculated from the traffic actual condition survey result in 4 main expressways of Japan except

for motorcycle.)

CAN THO SERVICE AREA PARKING LOT LAYOUT RESTAURANT SCALE 1:1000 15@3.97=59.6 24@2.7=64.8 RESTING PLACE REST ROOM PETROL STATION I-3-5

3.3. DESIGN OF THE STORM DRAINAGE & SEWAGE SYSTEMS

3.3.1. THE BASIC DATA

- 1) The general plan layout of Can Tho service area. (See Drawings)
- 2) The general arrangement of structural objects in service area.
- 3) The record of rainfall intensity of the Can Tho region.

3.3.2. THE PRINCIPLES TO ARRANGE THE DRAINAGE SYSTEMS

- 1) The drainage system will be designed gravity flow.
- 2) The drainage systems are to be installed under ground of sidewalk and clearance is 2-3m far from foundation of buildings; 1- 2m far from street lighting pole foundation.
- 3) The gradient of drainage structures might be followed to the gradient of road.
- 4) Dividing the flowing areas based on the general plan layout and the general arrangement of structural objects in studying area.

3.3.3 CALCULATING THE HYDROLOGIC AND THE HYDRAULIC CONDITIONS.

The peak runoff discharge of storm water is determined by following equation

Based on Viet Nam Standard "Design of standard drainage out side system and works" 20 TCN-51-84.

$$Q1 = C \times q1 \times A \quad (l/sec)$$

where:

A: Area of watershed = AI + A2 (ha)

A1: Sidewalk (concrete), AC pavement & House: (ha)

A2: Grass area (ha)

C: Runoff coefficient = (C1xA1 + C2xA2)/(A1 + A2)

C1: Runoff coefficient of House, Sidewalk or Ac pavement.

C2: Runoff coefficient of grass

C: Average Runoff Coefficient. It reflects the portion under the total water discharge flowing into the drainage system. It is depended on characteristics of surface area, for example:

- If surface area is concrete, asphalt: C = 0.90

- If surface area is aggregate, stone: C = 0.40-0.60

- If surface area is natural ground: C = 0.15

$$q_1 = 166.7 \times q (l/sec/ha)$$

q: Rainfall intensity is determined by statistic data of rainfall in every region and design frequency.

Where:

10-year frequency return period for pipes.

2-year frequency return period for ditches.

Table 3.3.1 Rainfall Intensity in Can Tho region

Duration		(a) Intensit	ies, I (mm/	h) Average	Recurrence	Interval	
(min)	1	2	5	10	20	50	100
5	105	140	175	200	215	240	250
6	102	136	171	194	209	234	245
7	99	132	167	188	203	228	240
8	96	128	163	182	197	222	235
9	93	124	15 9	176	191	216	230
10	90	120	155	170	185	210	225
15	85	108	135	150	162	172	185
20	76	95	122	133	143	158	165
30	58	76	100	110	120	137	145
60	42	54	72	81	90	110	105

The discharge of sewage:

 $Q2 = (Number of house in watershed area) \times 0.001 \text{ m}3/\text{sec/house}$

Total discharge:

$$Q = Q1 + Q2 (m3/sec)$$

Hydraulic Computation

 $Q_{\text{max}} = A \cdot V$

 $V = 1/n \times R0.67 \times 10.5$

Where:

A = the sectional area of pipe or ditch (m2)

V = Mean velocity (m/sec)

R = Hydraulic radius (m)

I = Hydraulic gradient or slope of pipe (%)

n = roughness coefficient

Table 3.3.2 Rough coefficient for material of drainage system

Surface	R	ough coefficie	gh coefficient		
Surface	Min	Normal	Max		
1. Pipes					
- Steel					
Welding joints	0.010	0.012	0.014		
 Mechanical joints 	0.013	0.016	0.017		
- Cast iron					
With the bitumen surface	0.010	0.013	0.014		
Without the bitumen surface	0.011	0.015	0.016		
Concrete Pipe	0.012	0.014	0.016		
2. Ditch					
- Earth, straight and uniform	0.016	0.018	0.020		
- Rock cut, smooth and uniform	0.025	0.030	0.033		
- Ground with dense grass	0.030	0.035	0.040		
- Cement-lined channels	0.012	0.014	0.016		
- Ground with gravel	0.022	0.027	0.033		
- Steel with paint surface	0.012	0.013	0.017		
- Steel with non-paint surface	0.011	0.012	0.014		
- Concrete with flat surface	0.017	0.020	_		
- Concrete with non-flat surface	0.022	0.027	-		

COMPUTING HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA

1. DRAINPIPE

HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:		•	D (mm)
1. Area of ditch A = $(p \times D^2)/4$	0.1257	m^2	
2. Perimeter of ditch $X = p \times D$	1.2566	m	
3. Hydraulic radius R = A/X	0.1000	m ·	
4. Roughness factor n	0.0140	-	
5. Hydraulic gradient i	0.0045		
6. Velocity of flow in ditch $V=(1/n) \times R^{2/3} \times i^{1/2}$	1.0323	m/s	
7. Discharge Max Q = A x V	0.1297	m ³ /s	
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm) 500
1. Area of ditch $A = (p \times D^2)/4$	0.1963	m^2	
2. Perimeter of ditch $X = p \times D$	1.5708	m	
3. Hydraulic radius R = A/X	0.1250	m	
4. Roughness factor n	0.0140		
5. Hydraulic gradient i	0.0045		
6. Velocity of flow in ditch $V=(1/n) \times R^{2/3} \times i^{1/2}$	1.1979		
7. Discharge Max $Q = A \times V$	0.2352	m^3/s	
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm)
	0.1963	m ²	D (mm) 500
1. Area of ditch A = $(p \times D^2)/4$		m² m	, ,
	0.1963	m	, ,
1. Area of ditch A = $(p \times D^2)/4$ 2. Perimeter of ditch X = $p \times D$	0.1963 1.5708	m	, ,
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X 	0.1963 1.5708 0.1250	m	, ,
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i 	0.1963 1.5708 0.1250 0.0140	m m	, ,
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n 	0.1963 1.5708 0.1250 0.0140 0.0162	m m	, ,
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463	m m	, ,
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463	m m	500
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463	m m/s m ³ /s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463	m m/s m ³ /s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA Area of ditch A = (p x D²)/4 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463	m m/s m/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463 0.1963 1.5708	m m/s m³/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i ¹/² Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463 0.1963 1.5708 0.1250	m/s m/s m³/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n 	0.1963 1.5708 0.1250 0.0140 0.0162 2.2728 0.4463 1.5708 0.1250 0.0140	m m/s m³/s m³/s	500 D (mm)

COMPUTING HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA

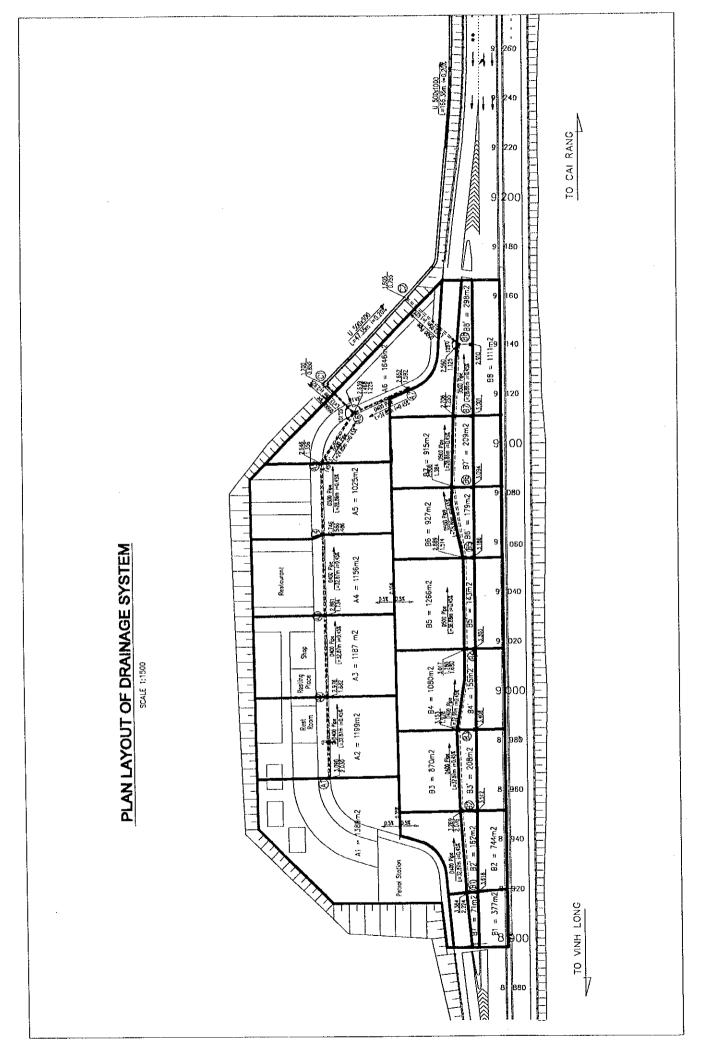
2. DITCH

HYDRAULIC CHARACTERISTICS OF THE SECTONAL ARE W (mm) H (mm)

500 x 500

1. Area of ditch $A = W \times H$	0.2500	m^2
2. Perimeter of ditch $X = W + 2 \times H$	1.5000	m
3. Hydraulic radius $R = A/X$	0.1667	m
4. Roughness factor n:	0.0140	
5. Hydrawlic gradient i:	0.0020	
6. Velocity of flow in ditch V= $(1/n) \times R^{2/3} \times i^{-1}$	0.9674	m/s
7. Discharge Max Q = A x V	0.2419	m^3/s

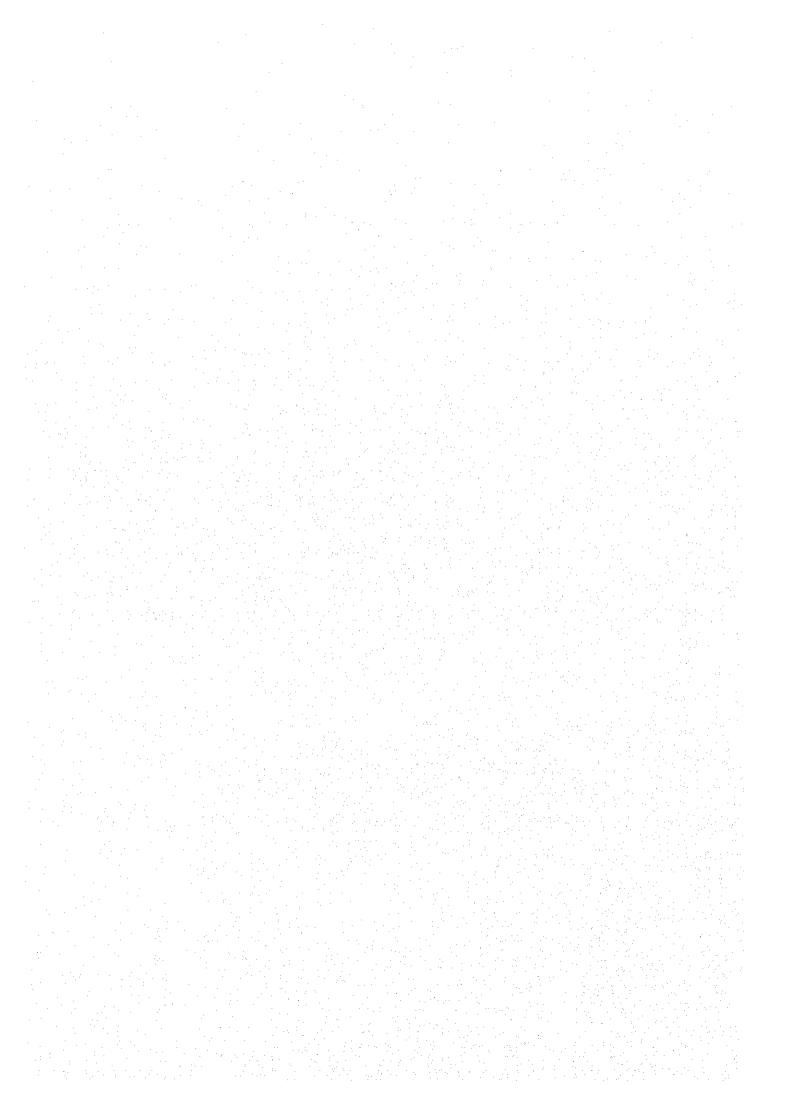
HYDRAULIC CHARACTERISTICS OF THE SECTONAL ARE W (mm) H (mm)


500 x 1000

1. Area of ditch $A = W \times H$	0.5000	m^2
2. Perimeter of ditch $X = W + 2 \times H$	2.5000	m
3. Hydraulic radius $R = A/X$	0.2000	m
4. Roughness factor n:	0.0140	*
5. Hydrawlic gradient i :	0.0020	
6. Velocity of flow in ditch V= $(1/n) \times R^{2/3} \times i^{-1}$	1.0925	m/s
7. Discharge Max Q = A x V	0.5462	m^3/s

COMPUTING HYDROLOGY & HYDRAULIC OF DRAINAGE SYTEM

							Compu	Computing hydrology	ology				Com	puting l	Computing hydraulic	
						Storr	Storm water				Sewage	Discharge	Se	Sectional of ditch	f ditch	
Start End	End	Symbol	Check	d (50%)	Ą	Aı	A2	CI	C2	Q	Ο2	Ø	(H×M)	Ι	ð	Λ
	·····	(Computed areas)	Point	(mm/min)	m ²	m²	m ₂			m³/s	m ³ /s	m³/s	ww	0/0	s/ _e u	m/s
***	2		3	5	8	7	σο	6	10	11	12	13	14	15	16	17
Start	BI	<u>B1</u>	B1	2.0	526.00	376.55	70.55	0.90	0.15	0.012		0.012	400	0.45	0.130	1.032
Start	B2	B1+B2	B 2	2.0	1353.20	1120.30	232.90	06.0	0.15	0.035		0.035	400	0.45	0.130	1.032
Start	B3	B1+B2+B3	B3	2.0	2431.00	1989.85	441.15	06:0	0.15	0.062		0.062	400	0.45	0.130	1.032
Start	22	B1+B2+B3+B4	B4	2.0	3666.05	3069.35	596.70	0.90	0.15	0.095		0.095	400	0.45	0.235	1.198
Start	B5	B1+B2+B3+B4+B5	B5	2.0	5074.50	4335.00	739.50	0.90	0.15	0.134		0.134	500	0.45	0.235	1.198
Start	B6	B1+B2+B3+B4+B5+B6	B6	2.0	6180.35	5261.50	918.85	0.90	0.15	0.162	, , ,	0.162	200	0.45	0.235	1.198
Start	<u>B7</u>	B1+B2+B3+B4+B5+B6+B7	B7	2.0	7304.05	6176.10	1127.95	0.90	0.15	0.191		0.191	500	0.45	0.235	1.198
Start	B8 1	B1+B2+B3+B4+B5+B6+B7+B8	B8	2.0	8712.50	7287.05	1425.45	0.90	0.15	0.226	•	0.226	300	1.62	0.446	1.198
												·				
1	1	**************************************					-	-								


						Compu	Computing hydrology	ology				Com	puting P	Computing hydraulic	
					Storn	Storm water				Sewage	Discharge	Š	Sectional of ditch	f ditch	
Start End	br	Check	d (50%)	A	A1	A2	Ü	Ŋ	Ö	Ö	ď	(W×H)	Ι	Ø	>
	(Computed areas)	Point	(mm/mm)	m²	m ²	m ²			m³/s	m³/s	m³/s	mu	0/0	m ³ /s	m/s
1 2	2	3	5	8	2	8	6	10	11	12	13	14	15	16	17
Start A1	<u>1</u>	A1	2.0	1388.90	1388.90		06:0		0.042	0.005	0.0467	400	0.45	0.130	1.032
Start A2	2 <u>A1+A2</u>	A2	2.0	2588.25	2588.25	· ·	06:0		0.078	0.005	0.0826	400	0.45	0.130	1.032
Start A3	3 <u>A1+A2+A3</u>	A3	2.0	3774.85	3774.85		06:0		0.113	0.003	0.1162	400	0.45	0.130	1.032
Start A4	4 A1+A2+A3+A4	A4	2.0	4930.85	4930.85		0.90		0.148	0.003	0.1509	500	0.45	0.235	1.198
Start A5	5 A1+A2+A3+A4+A5	A5	2.0	5955.95	5955.95		0.90		0.179	0.003	0.1817	500	0.45	0.235	1.198
Start A6	6 A1+A2+A3+A4+A5+A6	A6	2.0	7602.40	7602.40		06'0		0.228	0.003	0.2311	500	2.92	0.599	3.051
	,							. :							
							·								
Start C1	1 A1+A2+A3+A4+A5+A6	ט	2.0	7602	7602		0.90		0.228	0.003	0.2311	500X550	0.20	0.242	0.967
Start C1	1 TOTAL: (A+B)	2	2.0	16315	14889		0.90		0.454	0.022	0.4568	500X1000	0.20	0.546	1.092
			:												

Chapter 4

EMBANKMENT AND SOFT GROUND TREATMENT

	CONTENTS	I-4-1
4-1. L	DESIGN CONCEPTS	I-4-3
4-2.	DESIGN CONDITION	I-4-4
4-3. L	IMIT HEIGHT OF EMBANKMENT	I-4-12
4-4. \ \lambda	MAXIMUM EMBANKMENT HEIGHT	I-4-13
4-5. F	ORM OF COUNTER BERM	I-4-14
	DESIGN OF CONSTRUCTION METHOD FOR ETTLEMENT PROMOTION	I-4-15
4-7. A	ARRANGEMENT DESIGN OF PVD	I-4-16
4-8. S	TUDY OF SLOPE STABILITY	I-4-17
4-9.	CALCULATION OF SETTLEMENT	I-4-19
4-10. S	TUDY OF THICKNESS OF SAND BLANKET	I-4-21
	TUDY OF LATERAL MOVEMENT OF ABUTMENT	I-4-22
	THE PLAN OF MOVEMENT OBSERVATION AND EXECUTION MANAGEMENT	I-4-24
APPENDIX-1	CHARACTERISTIC VALUE OF SUBSOIL LAYER	I-4-29
APPENDIX-2	COST COMPARISON OF EMBANKMENT HEIGHT	I -4 -37
APPENDIX-3	STUDY OF COUNTER BERM FORM	I-4-40
APPENDIX-4	STUDY OF PVD ARRANGEMENT	I- 4-4 6
APPENDIX-5	STUDY OF SLOPE STABILITY	I-4-66
APPENDIX-6	CALCULATION OF SETTLEMENT	I-4-78

CHAPTER 4 EMBANKMENT AND SOFT GROUND TREATMENT

CONTENTS

4-1. Design Concepts	3
4-2. Design Condition	4
4.2.1 Design Section	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
4.2.2 Design Formula	6
4.2.3 Characteristic Value of Subsoil	8
4.2.4 Characteristic value of embankment material used for study	9
4.2.5 Minimum Safety Factor of Sliding "K"	9
4.2.6 Embankment Speed	9
4.2.7 Thickness of Surcharge.	9
4.2.8 Typical Cross Section for Study	9
4-3. Limit Height of Embankment	12
4.3.1 Description.	12
4.3.2 Design Formula	12
4.3.3 The Calculation Result and Conclusion	12
4-4. Maximum Embankment Height	13
4-5. Form of Counter Berm	
4.5.1 Description	14
4.5.2 Design formula	14
4.5.3 Conclusion.	14
4-6. Design of Construction Method for Settlement Promotion	
4.6.1 Description	15
4.6.2 Selection of the material for settlement promotion	15
4.6.3 Conclusion	
4-7. Arrangement Design of PVD	16
4.7.1 Description	
4.7.2 PVD arrangement study result of the main body of embankment	16
4.7.3 PVD arrangement of the counter berm	
4-8. Study of Slope Stability	
4.8.1 Description.	17
4.8.2 Slope Stability Calculation Result of General Section	
4.8.3 Slope Stability Calculation Result of Special Section	18
4-9. Calculation of Settlement	19
4.9.1 Description	19
4.9.2 Calculation Result of Settlement	20

4-10, Study of Thickness of Sand Blanket	
4.10.1 Description	21
4.10.2 Design formula	21
4.10 3 Determination of sand blanket thickness	21
4-11. Study of Lateral Movement of Abutment	22
4.11.1 Description	22
4.11.2 Determination of lateral movement	22
4-12. The Plan of Movement Observation and Execution Management	24
4.12.1 Description	24
4.12.2 Item of movement observation	24
4.12.3 Arrangement of devices for movement observation	24
4.12.4 Frequency of observation	27
4.12.5 Application to execution management of the observation result	27
APPENDICES	
Appendix-1: Characteristic Value of Subsoil Layer	29
Appendix-2: Cost Comparison of Embankment Height	37
Appendix-3: Study of Counter Berm Form	40
Appendix 4: Study of PVD Arrangement	46
Appendix-5: Study of Slope Stability	66
Appendix-6: Calculation of Settlement	78

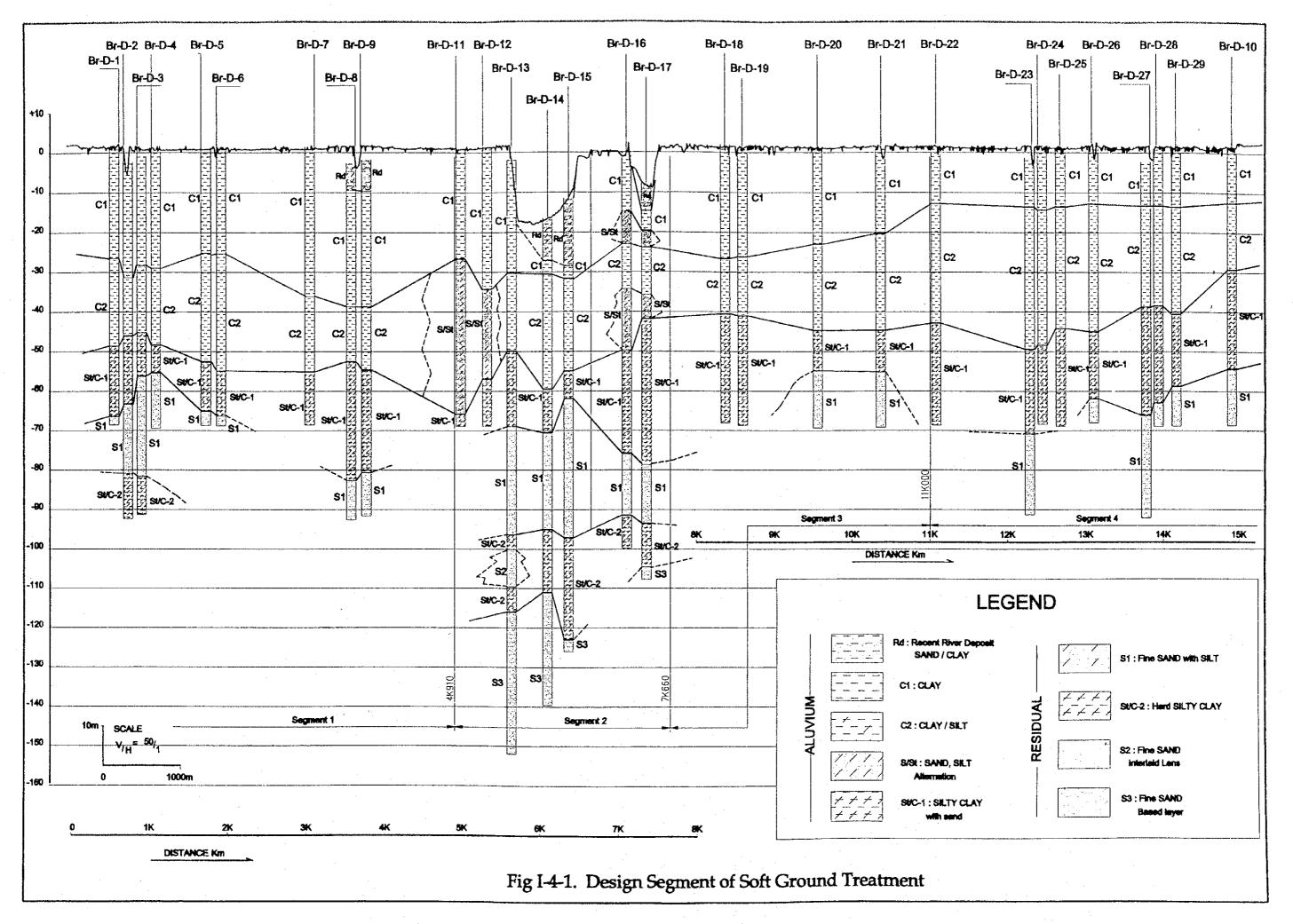
4-1. Design Concepts

- For embankment stability measure shall adopt the methods of Surcharge and Slow Banking and Settlement Promotion method (PVD) for increase the strength of subsoil.
- Sand Compaction Pile Method (SCP) shall adopt in the case that is not able to secure stability with the above method.
- Execution of embankment makes the information processing construction method by movement observation a principle.
- The degree of consolidation makes 90% or more or the remaining settlement quantity 10 or less cm a target at the time of the surcharge removing.
- Furthermore, the settlement quantity per the year after the road opening was prescribed to 2 or less cm.
- The surcharge method shall be adopted in general section in order that reduces remaining settlement. Also Pre-loading method should be adopted in structural section in order that reduces remaining settlement.
- Detainment period of surcharge and pre-load shall be secured at least 6 months
 without being related to the calculation result in consideration of the reduction of the
 settlement by secondary consolidation.
- The factor of safety to the slide of embankment shall be secured 1.10 or more at the time of surcharge/pre-load completion.

4-2. Design Condition

4.2.1 Design Section

The design section of the soft ground treatment was divided to 4 segments by mainly subsoil condition as below.


```
Segment 1; Km -0+500 - Km 4+910 (Package 1)

Segment 2; Km 4+910 - Km 7+660 (Main bridge section) (Package 2)

Segment 3; Km 7+600 - Km 11+000 (Package 3)

Segment 4; Km 11+000 - Km 15+350 (Package 3)
```

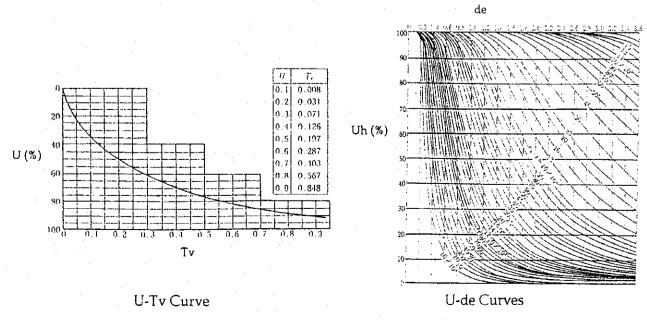
Segment 1,3 and 4 will be concerned for soft ground treatment.

4.2.2 Design Formula

(1) Settlement

$$S = Sc + SI$$

$$Sc = \frac{e0 \cdot e1}{1 + e0} \cdot Hi$$


$$U = Si / Sc$$

$$t = \frac{(H_0/2)^2}{Cv_0} \cdot Tv$$

$$t = \frac{Th}{Cl} \cdot de^2 \quad This formula applies to SD and PVD.$$

Where	S	÷	Total quantity of settlement	cm
	Sc	:	Settlement quantity due to consolidation	cm
	Sl	:	Settlement quantity in the long term	cm
	Si	:	Settlement of consolidation quantity in optional time	cm
	U	:	Degree of consolidation	
	e0	:	Initial void ratio of a consolidation layer	
	e1	:	Void ratio after the consolidation of a consolidation lay	er er
	Hi	:	Thickness of a consolidation layer	cm
	t	:	Time for consolidation	
	H_0	:	Thickness of conversion consolidation layer	cm
	Cv_0	:	Vertical consolidation coefficient	cm ² /s
	Tv	:	Coefficient of consolidation time	
	Th	:	Coefficient of horizontal consolidation time	cm
	Ch	:	Horizontal consolidation coefficient	cm ² /s
	de	:	Effective diameter of vertical discharge material	cm

Settlement quantity in the long term (Sl) is the value that is calculated by movement observation with construction stage and 20 cm are applied in the design stage.

(2) Slope Stability

Stability of embankment and cohesive of subsoil are calculated with formula as below.

$$K = \frac{\sum (Cu \cdot l + W \cdot \cos \alpha \cdot \tan \phi u)}{\sum W \cdot \sin \alpha}$$

$$Cu = Cu_0 + m \cdot (P_0 - P_C + \Delta P) \cdot U$$

Where	K	:	Safety factor of slope stability	
	Cu	;	Cohesion of subsoil after consolidation	kN/m²
	1	:	Length of a sliding surface of the small piece of a circular slip	m
	W	:	Weight of the small piece of a circular slip	kN/m³
	α	:	Average angle of slope of the small piece of a circular slip	kN/m²
	φu	:	Undercharge angle of shearing resistance that does not consider consolidation	Degree
•	Cu_0	:	Cohesion of subsoil before consolidation	kN/m²
	m	:	Ratio of strength increase of subsoil	,
	P_0	:	Overburden pressure before banking	kN/m²
	Pc	:	Consolidation yield stress (= P ₀ /m)	kN/m²
	⊿P U	: :	Increase stress by a banking load Degree of consolidation	kN/m²

Also, the average shear strength of the ground that established SCP in the special section was calculated with the following formula.

$$\frac{\sigma}{1 + (n-1) \cdot a_{s}} + \cos^{2}\alpha \cdot \tan \phi_{s} + (1-a_{s}) \cdot \{Cu_{0} + m (P_{0} - P_{C} + \sigma_{s}) \cdot \{\gamma'Z - \sigma_{s}\} \cos^{2}\alpha \cdot \tan \phi_{u}\} + (1-a_{s}) \cdot \{\gamma'Z - \sigma_{s}\} \cos^{2}\alpha \cdot \tan \phi_{u}\}$$

Where	τl	:	Average shearing strength of the ground established SCP	that	kN/m²
	a_s	:	Replacement rate of SCP $(=0.907(ds/d)^2)$		
	ds	:	Diameter of SCP		m
*	d	:	Spacing of SCP		m
	σ	:	Average increase load by embankment		
	γ'	:	Unit weight of subsoil		kN/m³
	γs	:	Unit weight of SCP		kN/m³
	Z	:	Depth of the small piece of a circular slip	•	m
	n	;	Stress share ratio (SCP/Subsoil)		
	φs	:	Internal friction angle of SCP		Degree

4.2.3 Characteristic Value of Subsoil

(1) Layer Constitution and C, ϕ , γ

The constitution of subsoil and characteristic value of the layer of each segment was summarized as the table shown below from the geographic survey and lab-test result.

C2 layer of segment 3 and 4 shall not include to this study by result of confirming of characteristic value.

Segment	Subsoil Layer		Cohesion	Internal Friction Angle	Unit Weight	Ratio of Strength Increase	
	Layer	Thickness	С	ø	γ	m	
	Name	m	kN/m²	Degree	kN/m³	-	
	C1-U	17.1	7.0	4.0	15.9	0.35	
1	C1-L	15.8	8.0	6.0	16.7	0.35	
	C2	21.8	10.0	14.0	17.3	0.35	
3	C1-U	16.3	9.0	4.0	15.6	0.35	
	C1-L	8.1	14.0	3.0	16.8	0.35	
4	C1	14.3	8.0	4.0	15.6	0.35	

Note C1-U; Layer C1-Upper, C1-L; Layer C1-Lower

(2) e-Log-P curves and Log P-Log Cv curves

e-Log P curves

<u> </u>	kPa (kPa	1)	0 10) 20	50	100	200	400	800
	C1-U	1.625 1.58	33 1.552	1.477	1.379	1.245	1.082	! -	
	. 1	C1-L	1.306 1.27	78 : 1.255	1.201	1.131	1.013	0.847	<u>-</u>
و		C2	1.132 1.09	32 1.076	1.046	0.999	0.932	0.841	0.761
	3	C1-U	1.740 1.70	07 ; 1.677	1.590	1.451	1.252	1.032	
		. C1-L	1.295 1.26	65 1.242	1.189	1.123	1.038	0.933	· · · · · · · · · · · · · · · · · · ·
	4	C1	1.624 1.57	79 1.548	1.469	1.350	1.187	1.009	

Log P-Log Cv curves

Avera	ge P	(kPa)	5	15	. 35	<i>7</i> 5	150	300	600
Log Cv3	C1-U	1.172	1.053	1.016	0.864	0.799	0.730		
	1	C1-L	1.085	0.901	0.869	0.774	0.640	0.605	
		C2	1.386	1.393	1.486	1.434	1.439	1.422	
	3	C1-U	0.963	0, <i>7</i> 71	0.685	0.488	0.435	0.406	
		C1-L	0.830	0.834	0.820	0.775	0.712	0.645	
	4	· C1	1.058	0.948	0.905	0. <i>7</i> 51	0.681	0.659	

Note P; Pressure, e; Void ratio, Cv; Consolidation coefficient

4.2.4 Characteristic value of embankment material used for study

Material	Location of dredging	Lab No.	C kN/m²	φ Degree	γ kN/m³
Embankment	1 Km downstream of proposed bridge	912	20	30	18.6
	5 Km downstream of proposed bridge	913	14	30	18.3
Sand Blanket	Dai Ngai sand	46	20	30	18.6

[•] Characteristic value of embankment material use for study ware applied Lab No. 913 due to safety design.

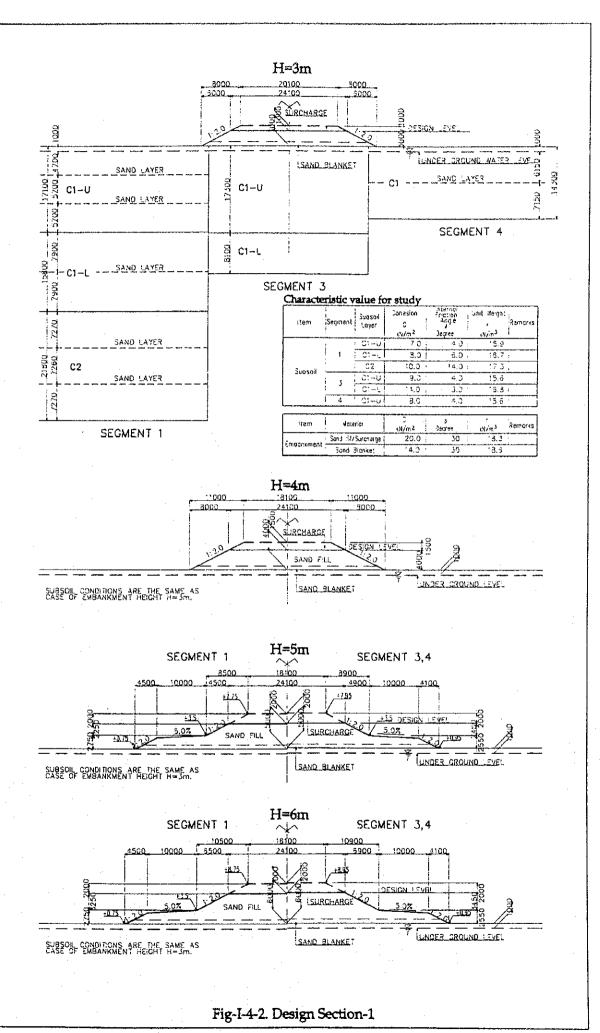
4.2.5 Minimum Safety Factor of Sliding "K"

At the time of surcharge completion.

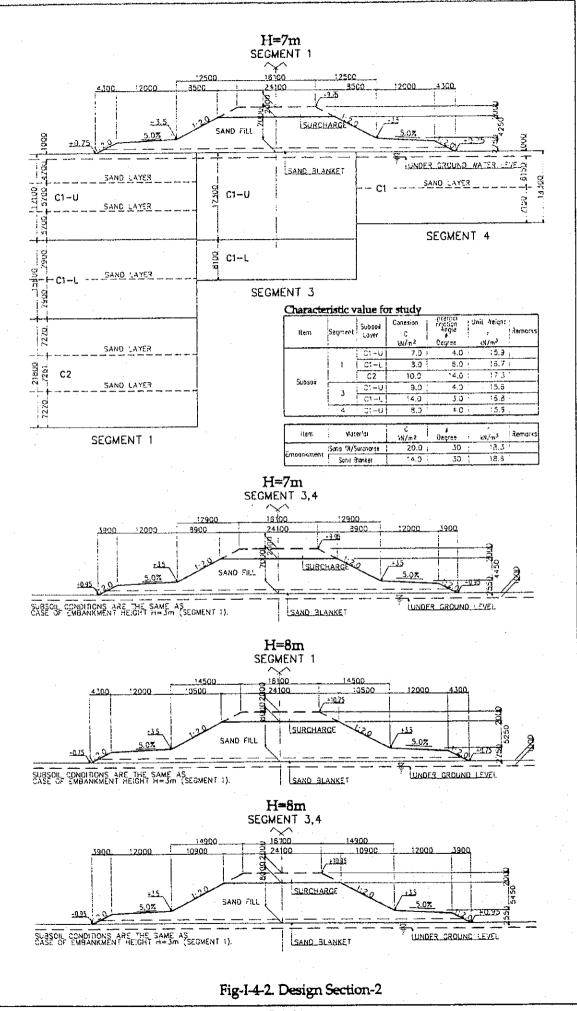
1.10

4.2.6 Embankment Speed

Embankment speed shall be applied less than 5 cm/day in average.


4.2.7 Thickness of Surcharge

Thickness of surcharge shall be applied 0.3 H basically. (H; Height of Embankment). Actual thickness of surcharge adopted the following table.


Height of Embankment; m	<3.0	<u>3.0</u> -4.0	<u>4.0</u> -5.0	<u>5.0</u> <
Height of Surcharge; m	0	1.0	1.5	2.0

4.2.8 Typical Cross Section for Study

Typical cross sections for soft ground analysis are shown in next pages.

I-4-10

I-4-11

4-3. Limit Height of Embankment

4.3.1 Description

Limit embankment height is maximum height in the case that it does not consider strength increase of the subsoil by the embankment load. This value is applied to the rough estimate of counter berm style and the study of stage construction.

4.3.2 Design Formula

Limit embankment height is calculated by the formula as below.

$$H_{EC} = qd / \gamma_E$$

Where, HEC; Limit embankment height (m)

qd; Limit bearing capacity of subsoil (kN/m^2)

 $qd = 5.1 \times Cu$ Cu; Cohesion in undrained condition test (kN/m²)

 γ_E ; Unit Weight of Embankment (kN/m³)

4.3.3 The Calculation Result and Conclusion

Segment	Cu	qd	γЕ	H_{EC}	D 1
ocginent	kN/m²	kN/m²	kN/m³	m	Remarks
1	7.0	35.7	18.3	2.0	
2	9.0	45.9	18.3	2.5	
3	8.0	40.8	18.3	2.2	

Limit embankment height adopts 2.0 m to all segments due considering the safety design.

4-4. Maximum Embankment Height

The maximum height of the road embankment greatly influences the bridge length and the degree of soft-ground treatment, included in the construction costs of the approach roads. The limitation height can be concluded from the result of optimization study based on the sub soils survey including the laboratory testing results. As illustrated in the following diagrams, the limiting embankment height was 7.0m from existing ground level, after consideration of embankment stability and minimizing cost of construction.

OPTIMUM EMBANKMENT HEIGHT

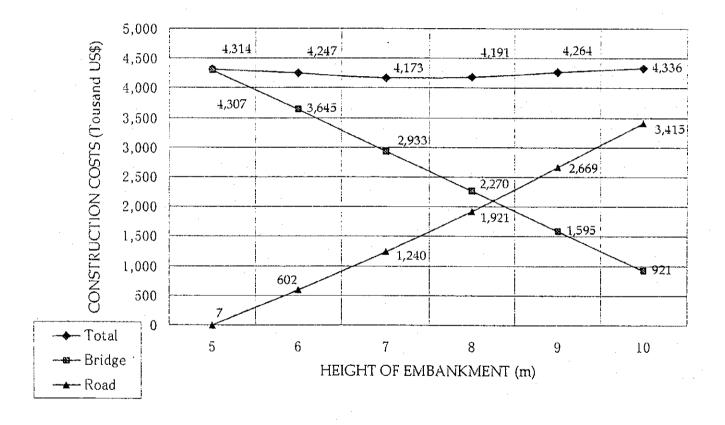


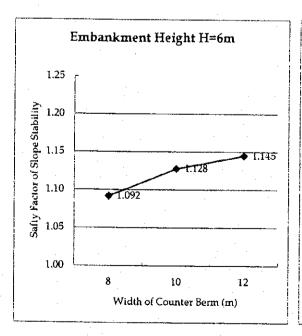
Figure I-4-4 Cost Comparisons by Embankment Height

4-5. Form of Counter Berm

4.5.1 Description

The Counter Berm is one of the soft ground treatment methods that placing the embankment as weight to foot of slope to improve the stability of embankment. This method is an effective method in the case that security of land acquisition and embankment material is easy.

The form of the counter berm was decided with the following manner.


- The height of counter berm is applied the limit banking height that expressed in Chapter 4.3.
- The width of counter berm is decided with the calculation result of slope stability.

4.5.2 Design formula

The design formula of the slope stability is explained on Chapter 4.2.2.

4.5.3 Conclusion

The study of the form of the counter berm was carried out with 6 m embankment height and also 8 m. The result of the stability calculation is shown to the graph as below. The width of counter berm adopts 10 m in the case of 6 m or less embankment height and adopts 12 m in the case of 8 m or less embankment height.

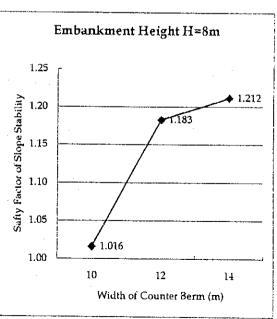


Figure I-4-5. Study Result of Counter Berm Width

4-6. Design of Construction Method for Settlement Promotion

4.6.1 Description

The consolidation of subsoil is promoted by discharge of underground water. Accordingly the selection of the high discharge method of efficiency will be contributed to the strength increase of subsoil, and the shortening of the construction period.

Sand drain method (SD) and pre-fabricated vertical drain method (PVD) are acknowledged the effective discharge method as soft ground treatment method generally, and the selection of the method suitable for the Project is carried out in this chapter.

4.6.2 Selection of the material for settlement promotion

Adaptability to the Projects of both methods SD and PVD are summarized as below.

SD	 This method is effective in the thick homogeneous clay stratum. As for SD the discharge ability is high because the diameter is big. There is the fear that the semantic differentials easy to disturb the subsoil and decrease the strength of subsoil and increase deformation. The drainage ability of SD relies on the material of sand. Accordingly the acquisition of the fine material is the condition that selects this method.
PVD	This method is cheaper in comparison with SD and the execution of work is early and also there is little fear that disturbs the subsoil.

And comparison table of construction costs of both methods SD and PVD are shown as below.

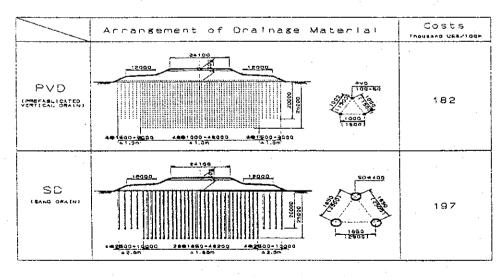


Figure I-4-6. Cost Comparison of SD and PVD

4.6.3 Conclusion

PVD should be applied to the Project as for the settlement promotion method of subsoil by the above study result.

4-7. Arrangement Design of PVD

4.7.1 Description

As expressed with the design concept, PVD should arranged to secure the degree of consolidation at the time of removing surcharge becomes 90% or more.

Also, PVD should place from ground surface to the bottom of high compressible C1 layer by the result of settlement analysis.

4.7.2 PVD arrangement study result of the main body of embankment

The arrangement study of PVD was carried out embankment height 4 m and 7 m as the representative case, and result of comparative study was summarized in the table as below.

	E	mbankmer	ıt Height 4r	E	mbankmer	nbankment Height 7m				
	Spacing	0.8 m	1.0 m	1.2 m	Spacing	0.8 m	1.0 m	1.2 m		
Segment 1	Sf (cm)		159.5		Sf (cm)		243.7	<u>.</u>		
ocgnicia i	Sr (cm)	147.0	145.7	140.4	Sr (cm)	221.9	220.4	213.9		
	U (%)	92.2	91.3	88.0	U (%)	91.1	90.4	87.8		
	Spacing i	0.9 m	1.1 m	1.3 m	Spacing	0.9 m	1.1 m	1.3 m		
Segment 3	Sf (cm)		156.6		Sf (cm)		228.6			
ochnicii. 9	Sr (cm)	152.9	141.3	123.8	Sr (cm)	225.2	212.0	189.8		
	U (%)	. 97.6	90.2	79.1	U (%)	98.5	92.7	83.7		
	Spacing	1.1 m	1.3 m	1.5 m	Spacing	1.1 m	1.3 m	1.5 m		
Segment 4	Sf (cm)		110.4		Sf (cm)		155.8			
Jegment 4	Sr (cm)	107.4	100.6	90.7	Sr (cm)	152.9	145.2	132.9		
	U (%)	97.3	91.1	82.2	U (%)	98.1	93.2	85.3		

Note Sf: Final Settlement Sr: Settlement at the time of removing surcharge U; Degree of Consolidation (=Sr/Sf x 100%)

4.7.3 PVD arrangement of the counter berm

The spacing of PVD of counter berm makes about 1.5 times of the spacing of the main body for economize.

4-8. Study of Slope Stability

4.8.1 Description

Stability calculation was carried out separately general section and special section.

(1) General Section

Slope stability of embankment was confirmed every 2 m from 4 m to 8 m of design embankment height of each design segment.

(2) Special Section

The establishment position of the abutment was considering even the execution of the pre-load for the abutment and was selected. As a result, most of the abutments were secured the stability with only Slow banking method. However, Sand Compaction Pile (SCP) was necessary for the pre-load of only Small Tra Va Bridge and Cai Nai Bridge.

(3) Design formula and software used for study

The factor of stability was calculated by both formula of Fillenius and Bishop's. And Japanese software COSTANA and Australian software PCSTABL5M was used for the calculation.

4.8.2 Slope Stability Calculation Result of General Section

Embankm	ent Height	4m	6m	· 8m
Safety Factor	Segment 1	1.16	1.13	1.18
of sliding K	Segment 3	1.11	1.13	1.20
or shaming ix	Segment 4	1.22	1.13	1.23

Note K: Safety Factor of sliding (>=1.10)

4.8.3 Slope Stability Calculation Result of Special Section

Bridge Name	Small Tra Va Bridge	Cai Nai Bridge
Safety Factor of sliding K	1.193	1.105

Note: Gravel should use to SCP for pre-load of Cai Nai bridge abutment. And Dai Ngai sand should use to embankment for Cai Nai Bridge.

4-9. Calculation of Settlement

4.9.1 Description

Settlement quantity was calculated every 1 m from 1 m to 8 m of design embankment height of each design segment. And settlement quantity of 5 points was calculated to every 1 section as also, shown in the rough sketch.

Japanese software DECALTO was used for calculation of settlement and Vietnamese software was used for checking. Both soft wear was calculated by using same formula shown in Chapter 4.2.2.

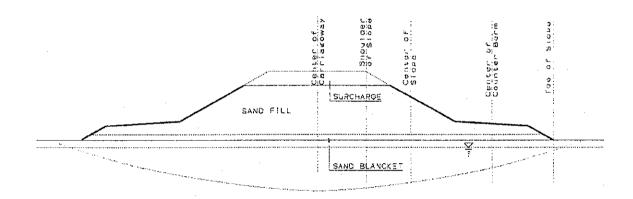


Figure I-4-7. Section of Settlement Calculation

4.9.2 Calculation Result of Settlement

Item/ Segment	Height of Embankment	Toe of Slope	Center of Counter Berm	Center of Slope	Shoulder of Slope	Center of Carriage way
	m	m	m .	m	m	m
	1.0	0.19	-	0.27	0.27	0.38
	2.0	0.38	-	0.66	0.76	0.92
	3.0	0.54	-	1.04	1.27	1.44
Segment 1	4.0	0.64		1.31	1.64	1.80
oegment 1	5.0	0.58	1.36	1.88	2.06	2.18
	6.0	0.61	1.41	2.05	2.30	2,43
	7.0	0.62	1.41	2.21	2.53	2.64
	8.0	0.63	1.45	2.37	2.76	2.87
] . [1.0	0.20	-	0.24	0.27	0.41
	2.0	0.35	-	0.61	0.74	0.95
	3.0	0.46	-	0.97	1.23	1.44
Segment 3	4.0	0.53	-	1.22	1.59	1.77
Jegment J	5.0	0.43	1.20	1.76	1.96	2.09
	6.0	0.43	1.23	1.90	2.17	2.30
	7.0	0.42	1.23	2.05	2.37	2.49
	8.0	0.43	1.22	2.16	2.56	2.67
	1.0	0.12	- :	0.18	0.21	0.31
	2.0	0.19	-	0.45	0.57	0.70
. [3.0	0.24	- 1	0.71	0.93	1.06
Soomant 1	4.0	0.27	_	0.89	1.19	1.30
Segment 4	5.0	0.22	0.85	1.27	1.43	1.51
	6.0	0.22	0.86	1.37	1.56	1.64
[7.0	0.21	0.84	1.45	1.69	1.76
	8.0	0.21	0.84	1.52	1.79	1.86

Note: Displayed settlement quantity was added 20 cm as settlement quantity for long-term settlement quantity. (Toe of Slope was not added 20cm.)

The settlement area was calculated on the basis of the assumption that settlement converges with the point of 5 m from toe of slope.

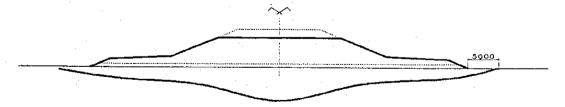


Figure I-4-8. Cross-Section of Settlement

Settlement of embankment height 1 m and 2 m was calculated with the proportional distribution method as below.

$$S_n = (S_{n+1}/S_{n+2})^2 \times S_{n+1}$$

4-10. Study of Thickness of Sand Blanket

4.10.1 Description

The thickness of the sand blanket was calculated in consideration of contact pressure of construction machine.

Dai Nai sand was selected for the material of sand blanket based on the test result.

4.10.2 Design formula

The calculation method of the sand blanket thickness is used according to Porando & Raysne formula as follows:

$$\frac{\text{K} \cdot \text{P}}{(\text{B} + 2 \cdot \text{h} \cdot \tan a) \cdot (\text{L} + \text{h} \cdot \tan a)} < (\gamma \cdot \text{h} + \text{C} \cot \phi) \cdot \frac{1 + \sin \phi}{1 - \sin \phi} \cdot e^{\pi \cdot \tan \phi} \cdot \text{C} \cdot \tan \phi$$

Where:

Left side of formula is the live load pressure.

Right side of formula is the capacity of the soft ground.

P: Weight of one vehicle wheel

K: Safety factor in construction process 1.1

B, L: Sizes of vehicle wheel

a: Angle of pressure distribution = 30 degree

 γ : Dry unit weight of sand blanket= 18.6 KN/cm³

h: Thickness of sand blanket

C: Cohesion of soft ground= 7.0kN/m^2

 ϕ : Internal friction angle of soft ground= 4.0 degree

4.10 3 Determination of sand blanket thickness

Vehicle	B (cm)	L (cm)	•	P (kN)		h (m)	
16 T	20	60		56.0	:	60	
21 T	. 20	60	į	73.5	1	70	
30 T	20	60	:	60.0		65	

As for the thickness of sand blanket 70 cm are applied.

4-11. Study of Lateral Movement of Abutment

4.11.1 Description

The lateral movement is the ground deformation the phenomenon that results to level direction by the embankment load.

As for the occurrence mechanism of this phenomenon, there is much problem that is not clarified and the measure method is not established in a present stage.

However, the ground that was consolidated sufficiently with the pre-load or surcharge be that there is little occurrence of this phenomenon is confirmed in the execution of work achievement of Japan.

The abutment is displaced and the expansion spacing of rail joint of an abutment and girder disappear and the bearing and parapet and girder fail is a big problem by lateral movement.

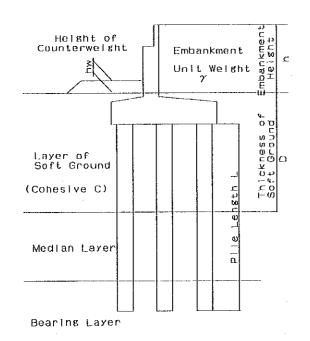
In this Chapter, the determination of the risk of the occurrence of lateral movement is confirmed by using determination formula that is adopted generally in Japan.

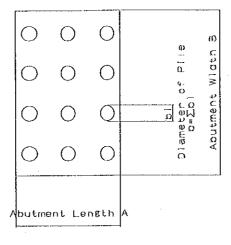
4.11.2 Determination of lateral movement

(1) Determination formula

 $I=\mu 1 \times \mu 2 \times \mu 3 \times \gamma \text{ (h-hw)/C}$

 $\mu 1=D/L$, $\mu 2=\Sigma b/B$, $\mu 3=D/A$ (=<3.0)


Where

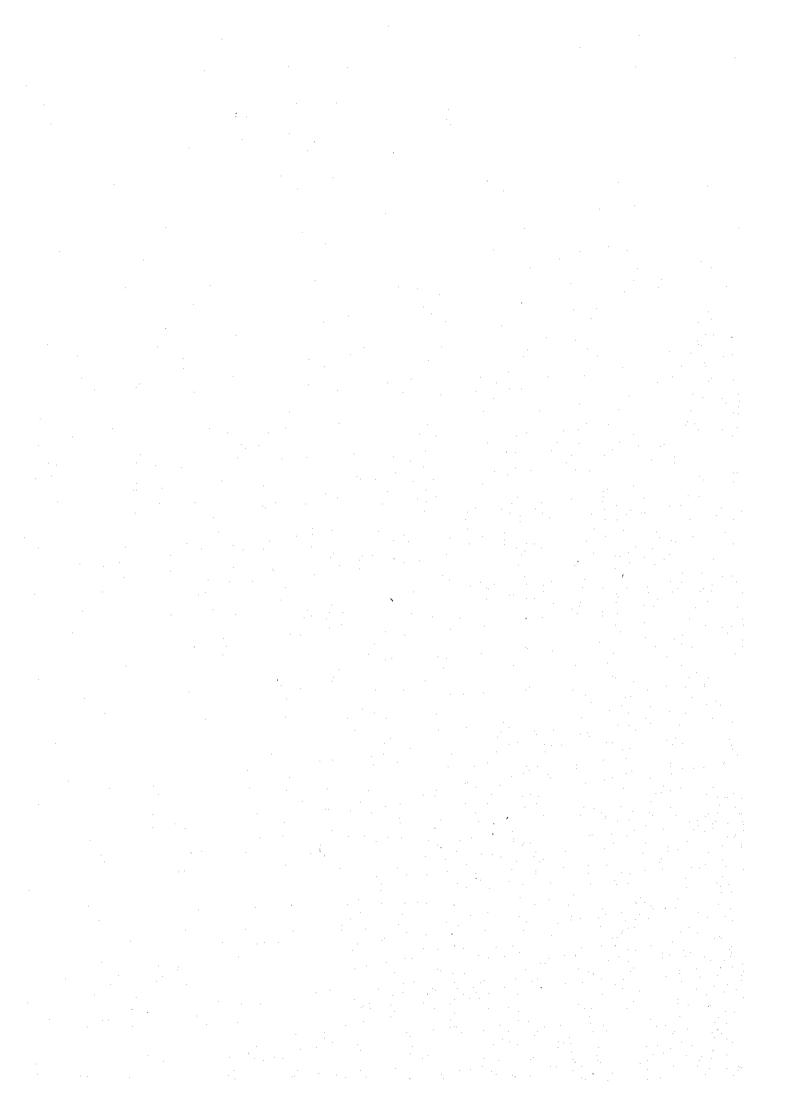

I	:	Later Lateral Movement Determination Index	Non Dimension
Υ	:	Unit Weight of Embankment	kN/m^3
h	:	Height of Embankment	m
h	:	Height of Counterweight	m
W			
C_{i}	:	Cohesion of Subsoil	kN/m²
D	:	Thickness of Soft Ground <3x (h-hw)	m
L	:	Length of Foundation Pile	m
b	:	Diameter of Foundation Pile	m
В	:	Width of Pile Cap	m
A	:	Length of Pile Cap	m

(2) Conclusion

Occurrence probability of the lateral movement occurrence of the abutment will be little. The calculation result is shown to the next page.

Study of Lateral Movement

Determination formula of Japan Road Association


 $I = \mu 1 \times \mu 2 \times \mu 3 \times \gamma \text{ (h-hw)/C}$

 μ 1=D/L, μ 2= Σ b/B, μ 3=D/A(=<3.0)

I: Lateral movement determination Index

(I < 1.2; There is little probability of the occurrence of Lateral Movement)

Classification	Bridge Name		E	mbankn	nent Facto	r _.	Thickness of	Soft Gro	ınd Factor			Structura	al Factor			Late	ral Moven	nent Detei	rminatio	n Index	Remarks
			h(m)	hw(m)	h-hw(m)	γ (kN/m³)	C1Layer	D(m)	C(kN/m²)	Α	В	L	n	bi	Σb	$\mu 1$	μ2	μ3	I	Judgment	
	T T.	A1	8.01	3.05	4.96	18.30	26.00	14.90	12.4	9.20	24.10	70.00	6	1.50	9.00	0.21	0.37	1.62	0.94	OK	
	Large Tra Va	A2	8.33	3.48	4.85	18.30	29.00	14.60	12.4	9.20	24.10	70.00	6	1.50	9.00	0.21	0.37	1.59	0.88	OK	
•	C11 T V	A1	7.53	2.50	5.03	18.30	25.70	15.10	12,4	8.50	24.10	70.00	5	1.50	7.50	0.22	0.31	1.78	0.89	OK	
Vinh Long	Small Tra Va	A2	8.75	3.75	5.00	18.30	24.50	15.00	12.4	8.50	24.10	70.00	5	1.50	7.50	0.21	0.31	1.76	0.87	OK	
	Т О	A1	8.77	3.20	5.57	18.30	36.00	16.70	12.4	9.20	24.10	79.00	6	1.50	9.00	0.21	0.37	1.82	1.18	OK	
ļ	Tra On	A2	8.58	3.20	5.38	18.30	36.00	16.10	12.4	9.20	24.10	79.00	6	1.50	9.00	0.20	0.37	1.75	1.06	OK	
Ī	Can Tho	A1	6.60	2.60	4.00	18.30	29.00	12.00	12.4	7.00	23.10	59.00	6	1.50	9.00	0.20	0.39	1.71	0.80	OK	
	(Main Bridge)	A2	5.70	2.55	3.15	18.30	16.00	9.50	15.9	7.00	23.10	62.00	6	1.50	9.00	0.15	0.39	1.36	0.29	OK	
	Cai Tac 1	A1	4.47	0.00	4.47	18.30	26.20	13.40	15.9	7.50	24.10	66.00	6	1.50	9.00	0.20	0.37	1.79	0.70	OK	
Į.	Cailaci	A2	6.88	2.69	4.19	18.30	26.90	12.60	15.9	9.20	24.10	66.00	6	1.50	9.00	0.19	0.37	1.37	0.47	OK	
	Cai Tac 2	A1	6.30	3.00	3.30	18.30	23.30	9.90	15.9	7.00	31.36	55.00	8	1.20	9.60	0.18	0.31	1.41	0.30	OK	
	Cat rac 2	A2	6.30	3.00	3.30	18.30	23.30	9.90	15.9	7.00	31.45	55.00	8	1.20	9.60	0.18	0.31	1.41	0.30	OK	<u> </u>
	Cai Da	A1	4.65	0.00	4.65	18.30	19.80	14.00	15.0	7.50	25.35	55.00	6	1.50	9.00	0.25	0.36	1.87	0.96	OK	
. [Cai Da	A2	4.65	0.00	4.65	18.30	19.80	14.00	14.2	7.50	25.10	55.00	6	1.50	9.00	0.25	0.36	1.87	1.02	OK	
Can Tho	Ba Mang	A1	4.50	1.76	2.74	18.30	13.60	8.20	14.2	7.50	24.10	40.00	13	0.45	5.85	0.21	0.24	1.09	0.19	OK	
[Da Malig	A2	4.50	1.76	2.74	18.30	13.60	8.20	14.2	7.50	24.10	40.00	13	0.45	5.85	0.21	0.24	1.09	0.19	OK	
	Cai Nai	A1	5.55	2.38	3.17	18.30	12.30	9.50	14.2	7.50	24.10	40.00	13	0.45	5.85	0.24	0.24	1.27	0.30	OK	
	Cai Nai	A2	5.67	2.38	3.29	18.30	14.70	9.90	14.2	7.50	24.10	40.00	13	0.45	5.85	0.25	0.24	1.32	0.34	OK	
	Λ n	A1	7.24	2.55	4.69	18.30	12.10	12.10	14.2	7.50	24.10	40.00	15	0.45	6.75	0.30	0.28	1.61	0.83	OK	
	Ap My	A2	7.24	2.55	4.69	18.30	12.10	12.10	14.2	7.50	24.10	40.00	15	0.45	6.75	0.30	0.28	1.61	0.83	OK	
ĺ	Cai Rang	A1	7.64	2.46	5.18	18.30	11.00	11.00	14.2	7.50	24.10	40.00	15	0.45	6.75	0.28	0.28	1.47	0.75	OK	
	Cai Kang	A2	7.46	2.46	5.00	18.30	13.00	13.00	14.2	7.50	24.10	40.00	15	0.45	6.75	0.33	0.28	1.73	1.02	OK	<u> </u>
	NH.54	A1	7.35	2.38	4.97	18.30	36.80	14.90	12.4	9.50	14.00	70.00	4	1.50	6.00	0.21	0.43	1.57	1.05	OK	
Over Br	1117.54	A2	7.35	2.38	4.97	18.30	36.80	14.90	12.4	9.50	14.00	70.00	4	1.50	6.00	0.21	0.43	1.57	1.05	OK	
Over or	NH.91B	A1	8.27	3.43	4.84	18.30	19.80	14.50	15.9	10.50	45.63	57.00	9	1.50	13.50	0.25	0.30	1.38	0.58	OK	•
	1417.71D	A2	8.27	3.43	4.84	18.30	19.80	14.50	15.9	10.50	45.68	57.00	9	1.50	13.50	0.25	0.30	1.38	0.58	OK	<u> </u>
Ramp Re	IC NH.91B	A1	4.19	0.00	4.19	18.30	19.80	12.60	15.9	5.40	7.50	40.00	6	0.45	2.70	0.32	0.36	2.17	1.19	OK	
Ramp Br	Rampway D	A2	4.16	0.00	4.16	18.30	19.80	12.50	15.9	5.40	7.50	40.00	6	0.45	2.70	0.31	0.36	2.16	1.16	OK	

4-12. The Plan of Movement Observation and Execution Management

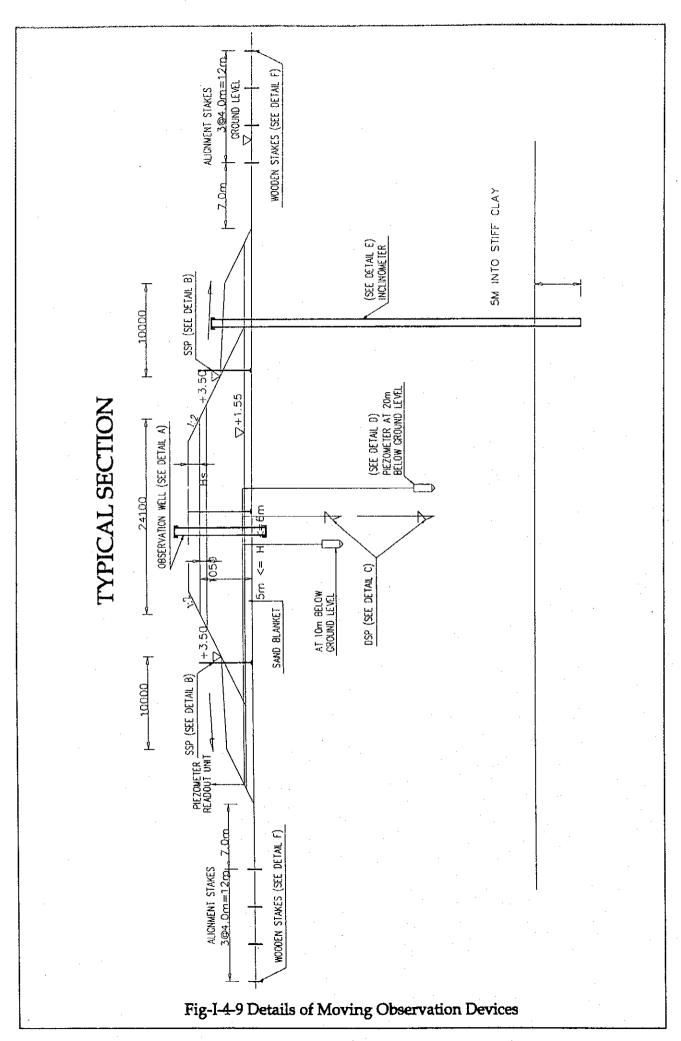
4.12.1 Description

The construction work of the soft ground section should adopt the information processing construction method by movement observation.

The execution management item by the movement observation is shown below.

- (1) Control of banking speed.
- (2) Stable evaluation of banking.
- (3) Prevention of the displacement of the rupture and periphery of banking.
- (4) Confirmation of settlement quantity.
- (5) Decision in the removal time of surcharge and the pre-load.
- (6) Decision of the establishment height of crossing structure.
- (7) Prediction of future settlement quantity.

In this chapter, selection of movement observation devices, arrangement of instruments, Execution management method by observation result are entered.


4.12.2 Item of movement observation

- (1) Settlement of ground surface and subsoil layer.
- (2) Deformation of the surface of the periphery ground by banking.
- (3) Horizontal deformation of subsoil.
- (4) Fluctuation of pore water pressure of subsoil.
- (5) Fluctuation of a groundwater level.

4.12.3 Arrangement of devices for movement observation

Surface Settlement Plate	SSP Each pre-load, 60m intervals in general section.
Deep Settlement Plate	DSP Pre-load of high embankment section
Alignment Stakes	AS Each pre-load, 60m intervals in general section.
Electrical Piezometer	EP Pre-load of high embankment section
Inclinometer	INC Pre-load of high embankment section
Observation Well	OW 1 or 2 unit to the each segment section

The detailed establishment position is shown to the Drawings. Also the standard establishment figure is attached in the next pages.

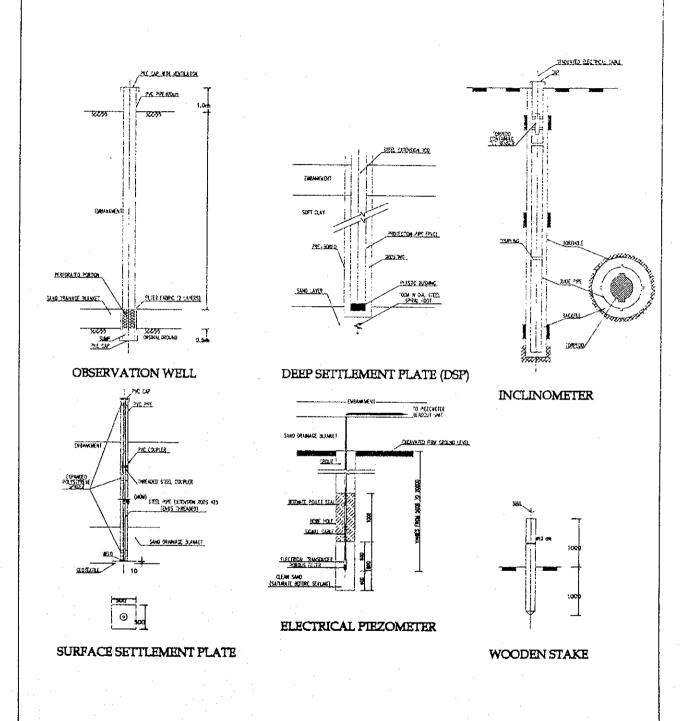


Fig-I-4-10 Details of Moving Observation Devices

4.12.4 Frequency of observation

Name of Devices	Symbol	Through Banking period	Period from banking completion until pavement construction work start
Surface Settlement Plate	SSP	Measuring/day	Measuring/week
Deep Settlement Plate	DSP	- a a -	- a a -
Alignment Stakes	AS	- a a -	-aa-
Electrical Piezometer	EP	- a a -	- a a -
Inclinometer	INC	-aa-	- a a -
Observation Well	OW	- a a -	- a a -

4.12.5 Application to execution management of the observation result

(1) Application purpose of the observation result

- Measured value of SSP and DSP are used to the confirmation of settlement quantity and, the stability control of banking with the measured value of deformation quantity and the confirmation of the progress situation of consolidation.
- Measured value of AS and INC are used to the stability control of banking with the measured value of settlement.
- Measured value of *EP* and *OW* are used to the confirmation of the progress situation of consolidation and the stability control of banking.

(2) Stability control method of embankment

There are several methods in the stability control method of embankment. In this paragraph, quantitative stability control methods are chosen to esteem simplicity of the control and shown as below.

Name of Method	Data that uses it for stability control
S-δ method	S: Settlement quantity δ : Lateral movement quantity
$\Delta \delta / \Delta t$ method	$\Delta \delta / \Delta t$: Lateral movement quantity per day
S-δ/S method	S: Settlement quantity δ : Lateral movement quantity

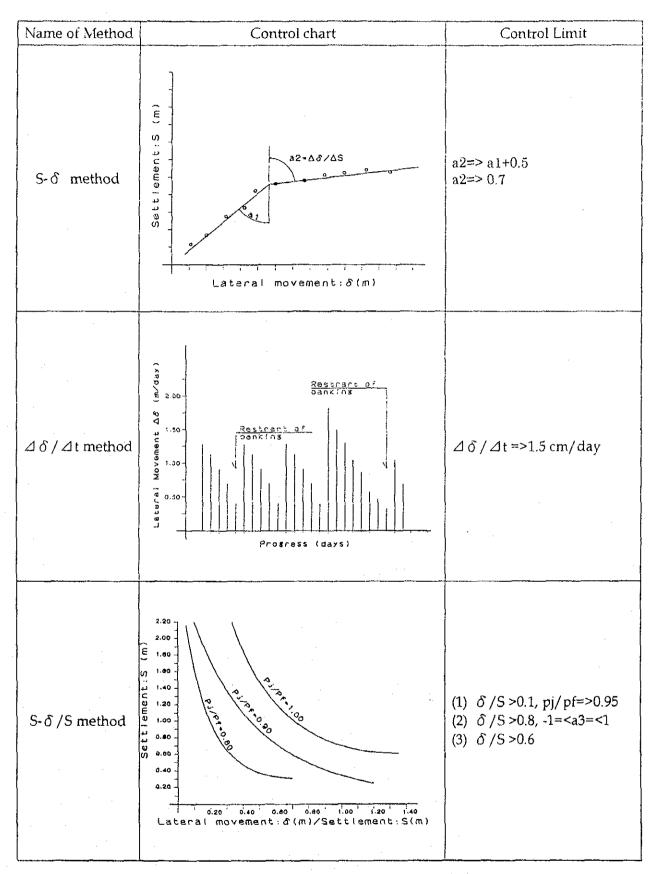


Figure I-4-11. Control Chart of Slope Stability