
(o) carearanon or rooming control briess			·
1) Vertical bearing stress of footing concre $\sigma_{cv}=P/(\pi D^2/4) \le \sigma_{ca}$	ete		
Reaction force of pile Diameter of Pile Vertical bearing stress Allowable bearing stress	$P= D= \sigma_{cv} = 0.5 x f_{c} =$	747660 kg 170 cm 32.94 kg/cm ² 120.00 kg/cm ²	Load Combination: 7
$\sigma_{cv} \ll \sigma_{ca} \longrightarrow OK$			
2) Vertical Punching Shear Stress τ _c =P/{πh(D+h)} <= τ _a			
Reaction force of pile Diameter of Pile Depth from pile head to upper surface of pile cap	P= D≓ h=	747660 kg 170 cm 100 cm	Load Combination: 7
Punching shear stress Allowable punching shear stress	$\tau_c = \tau_a =$	8.81 kg/cm ² 9.00 kg/cm ²	
$\tau_c \le \tau_a \longrightarrow OK$ 3) Horizontal Bearing stress $\sigma_{ch}=H/(Dl) \le \sigma_{ca}$			
Horizontal force at pile head Diameter of Pile Embedded Length of Pile Horizontal bearing stress Allowable bearing stress	$H= D= l= \sigma_{ch} \sigma_{ca}=0.3 \times f_{c} =$	51680 kg 170 cm 200 cm 1.52 kg/cm ² 72.00 kg/cm ²	Load Combination: 7
$\sigma_{ch} \leq \sigma_{ca} \rightarrow OK$		·	
4) Horizontal Punching Shear Stress τ _c =H/ {h' x (2l +D+2h')} <= τ _a			
Horizontal force at pile head Diameter of Pile Distance from side of pile to the	H= D=	51680 kg 170 cm	Load Combination: 7
nearest edge of pile cap Embedded Length of Pile Punching shear stress	h'= l= τ _c =	75 cm 200 cm 0.96 kg/cm ²	
Allowable punching shear stress	τ _a =	9.00 kg/cm ²	
$\tau_c \ll \tau_a \longrightarrow OK$			

(5) Calculation of Footing Concret Stress that Pile connected

5-42

5.3.3 Design of P37(P40) pier(1) Stability Calculation1) Dimension of Pier

		(Figure)	(m)			(Level)	<u>(m)</u>	
[Portion	Length	Portion	Length	Portion	Level	Portion	Level
	H1	6.42	L1	3.00	(1)	+6.92	(5)	-2.00
	H2	3.42	W2	19.00	(2)	+3.50	(6)	-4.74
	H3	3.00	L2	14.00	(3)	+1.78		
	W1	14.00			(4)	+0.50		

2) Summary of Loads Combiation Force at the Bottom of Pile Cap

<u> </u>		V	Longit	udinal	Trans	verse
LO	Load Combination		H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	9883.0	0.0	0.0	0.0	0.0
2	STRENGTH I-2	5877.1	0.0	0.0	0.0	0.0
3	STRENGTH III	8868.1	22.2	80.8	9.6	27.7
4	STRENGTH IV	10584.1	0.0	0.0	0.0	0,0
5	STRENGTH V-1	9651.0	6.3	23.1	2.7	7.9
6	STRENGTH V-2	5920.9	6.3	23.1	2.7	7.9
* * 7	EXTREME EVENT I-1	9144.7	879.7	4144.5	879.7	4144.5
8	EXTREME EVENT I-2	6000.7	879.7	4144.5	879.7	4144.5
· 9	EXTREME EVENT II	9154.9	437.4	558.1	874.7	1116.2
10	SERVICE I-1	7504.9	4.7	17.3	2.1	5.9
11	SERVICE I-2	6815.4	4.7	17.3	2.1	5.9

3) pile Capacity

BoreHoleBRD17Pile DiameterD1 = 2200 mm	
Pile Diameter D1 = 2200 mm	
D2 = 2000 mm	
Factor of Safety I'S = 3	
Pile length $L = 78.00 \text{ m}$	
L0 = 5.24 m	
L1 = 9.76 m	
L2 = 63.00 m	
Pile Embedded Length Le = 72.76 m	
Pile Cross-Section Circumference P1 = 6.912 m	
P2 = 6.283 m	
Pile Cross-Section Area $Ab1 = 3.801 \text{ m2}$	
Ab2 = 3.142 m2	
Concrete Unit Weight $\gamma c = 2.5 t/m3$	
Ultmate Soil End Bearing Capacit 3qu = 135 t/m2	
Soil Type of Bearing Layer2 $(1/2 = Sand/Clay)$)

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

	Layer	Thickness	Soil	Туре	γ'e	N	fs	Qs
	Number	d (m)	'1'=San	1; '2'=clay	(t/m3)		(t/m2)	(t)
	1-1	9.76	2	Clay	0.70	1.0	1.0	67
-10	1-2	5.16	2	Clay	1.00	1.0	1.0	32
-20 -	2	5.60	2	Clay	0.90	20.0	1.0	35
-30 -	3	10.40	2	Clay	1.00	12.0	2.0	131
-40	4	14.10	2	Clay	0.90	20.0	1.0	89
	5	27.74	2	Clay	1.00	25.0	15.0	2614
-50 -								
-60 -								
-70								
-80 ·	Total L =	72.76	m				Total Qs =	2969

END BEARING CAPACITY

Formula: Qt = qu* Ab

Soil Type of B.P	End Bearing Capacity
Clay	424 tonne
	3392.9 tonne
	221.1 tonne
	402.3 tonne
Load Combinations (Qall ₁)
	876.0 tonne
12ke & Strength Load	Combinations(Oall.)
Take & offengen Load	1404.7 tonne
Combinations (Qup ₁)	
	897.1 tonne
& Strength Load Com	ibinations(Qup ₂)
	1391.9 tonne
F 4.4	
	Clay Load Combinations (Iake & Strength Load Combinations (Qup ₁)

4) Reaction of Pile

a) Displacement

	10 11 11	Lo	ongitudina	ıl		l Fransverse		δ xa(cm)	Remark
Loa	id Combination	δf x(cm)	δy(cm)	α (rad)	δf x(cm)	δy(cm)	α (rad)		
1	STRENGTH I-1	0.00	1.10	0.00000	0.00	1.10	0.00000		OK
$\hat{2}$	STRENGTH I-2	0.00	0.65	0.00000	0.00	0.65	0.00000		
3	STRENGTH III	0.03	0.99	0.00002	0.01	0.99	0.00000		
4	STRENGTH IV	0.00	1.18	0.00000	0.00	1.18	0.00000	3.00	
5	STRENGTH V-1	0.01	1.08	0.00000	0.00	1.08	0.00000	3.00	OK
6	STRENGTH V-2	0.01	0.66	0.00000	0.00	0.66	0.00000	3.00	OK
7	EXTREME EVENT	1.36	1.02	0.00066	1.23	1.02	0.00032	2.00	OK
8	EXTREME EVENT	1.36		0.00066	1.23	0.67	0.00032	2.00	OK
9	EXTREME EVENT	0.64	1.02	0.00024	1.15	1.02	0.00023	2.00	OK
10	SERVICE I-1	0.01	0.84	0.00000	0.00	0.84	0.00000	1.50	OK
11	SERVICE I-2	0.01	0.76	0.00000	0.00	0.76	0.00000	1.50	OK
		0.01							

b) Bearing and Uplift forces of piles

r	Dearing and Opin	Longit		Trans	verse	Allowable	Capacitie		
Loa	ad Combination	PNmax(tf)		PNmax(tf)		Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	1098.11	1098.11	1098.11	1098.11	1404.7	-1391.9	OK	ОК
2	STRENGTH I-2	653.01	653.01	653.00	653.00	1404.7	-1391.9	OK	OK
3	STRENGTH III	992.97	977.72	987.57	983.12	1404.7	-1391.9	OK	OK
4	STRENGTH IV	1176.01	1176.01	1176.01	1176.01	1404.7	-1391.9	OK	OK
5	STRENGTH V-1	1074.50	1070.16	1072.96	1071.70	1404.7	-1391.9	OK	ОК
6	STRENGTH V-2	660.05	655.71	658.51	657.25	1404.7	-1391.9		ОК
. 7	EXTREME EVENT	1345.60	686.56	1253.67	778.49	1404.7	-1391.9	OK -	ОК
8	EXTREME EVENT	996.22		.904.33	429.16	1404.7	-1391.9	OK	OK
9	EXTREME EVENT	1137.75	896.67	1186.39	848.03	1404.7	-1391.9		ОК
10	SERVICE I-1	835.70	832.05	834.42	833.33	876.0	-897.1	OK	ОК
11	SERVICE 1-2	759.09	755.44	757.81	756.72	876.0	-897.1	OK	ОК
						<u> </u>		L	L

(2) Section Calculation of Pier Column 1) Sectional forces

<u></u>	uonai iorces					·····
In	Load Combination		Longit	udinal	Transv	verse
			H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	7458.2	0,0	0.0	0.0	0.0
2	STRENGTH 1-2	4247.7	0.0	0.0	0.0	0.0
3	STRENGTH III	6443.4	13.0	22.2	2.8	4.8
4	STRENGTH IV	7591.4	0.0	0.0	0.0	0.0
5	STRENGTH V-1	7226.3	3.7	6.3	0.8	1.4
6	STRENGTH V-2	4291.5	3.7	6.3	0.8	1,4
7	EXTREME EVENT I-1	6720.0	607.1	2005.8	607.1	2005.8
8	EXTREME EVENT I-2	4371.2	607.1	2005.8	607.1	2005.8
9	SERVICE I-1	5648.2	2.8	4.8	0.6	1.0
10	SERVICE I-2	4958.8	2.8	4.8	0.6	1.0

2) Section Analysis

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W .	mm	14000	oblong,
Height	Н	mm	3000	rounded-end shape
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				1
for Calculating Main Reinforcement	Mu	kN.mm	19670391	EXTREME EVENT I-2
Corresponding Compressive force	Nu _{corr}	kN	42867	
Maximum Shear Force				
Shear force	Vu	kN	5953	EXTREME EVENT I-2
Corresponding Compressive force	Nu _{corr.}	kN	42867	
Corresponding moment	Mu _{corr.}	kN.mm	19670391	

c) Bar Arrangement

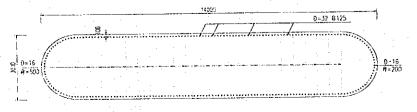
Item	Notation	Unit	Value	Remark
Main Reinforcement				
Diameter	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Total numbers of Rebar	n's	nos	246	@125
Shear Reinforcement				
Diameter	φν.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	23	
Spacing of Shear Reinf.	s	ກາກາ	500	
Total Area of Shear Reinf. within s	Av	mm2	4624.4	

5-46

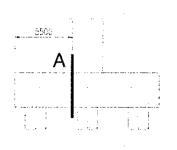
d) Checking for Flexural - Axial Ro Item	Notation	Unit	Value	Remark
Bending Moment	Mu	kN.mm	19670391	
Compressive force	Nu	kN	42867	
Depth of Compressive Area	с	mm	2558	
Flexural Resistance	Mr	kN.mm	242126339	
Compressive Resistance	Nr	kN	527627	
Checking Resistance			ОК	
Checking Reinforcement Ratio				
Numbers of Tensile bar	n _{tens}	nos	103	
$pst = As_{tensile} / A_g$		%	0.207	
omin=0.03fc/fy otes: Reinforcement selection is con		%	0.185	<u> </u>

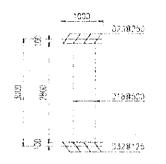
~ ^\

.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	5953152.92	
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2160	
Effective web width	b _v	mm	13356	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally	α		· ·	·
cracked concrete to transmit tension	β		5.0	
Area of shear reinf. within a distance s	A _v	mm ²	4624	
Strain in the tensile reinforcement	ε _x		-0.000012	
Inclination angle of diagonal comp. stress	0	degrees	27.00	
Shear stress on the concrete	$ \cdot \mathbf{v} $	MPa	0.229	
Area of Conc. on flexural tensile side	Act	mm ²	20034291.74	
Nominal Resistance of Concrete	V _c	N	58652996	
Nominal Resistance of Reinforcement	V _s	N	15291150	
Nominal Resistance	Vn	N	73,944,147	
Resistance factor for shear	φ.	· ·	0.9	
Factored Resistance	Vr	N	66,549,732	
Checking		<u> </u>	OK	<u> </u>


f) Checking for Flexural Stress


Item	Notation	Unit	Value	Remark
Factored Forces				
SERVICE I-1	Mu	kN.mm	46668.6	
	Nu	kN	55389.6	
SERVICE I-2	Mu	kN.mm	46668.6	
	Nu	kN	48628.6	
Factored Comp. Stress of Concrete	σcu	MPa		i -
SERVICE I-1			1.34	
SERVICE I-2			.1.18	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			10.14	
SERVICE I-2			8.9	
Checking Stress of Steel	1 1 A		OK	<u> </u>

REINFORCEMENT OF COLUMN

(3) Section Calculation of Pile Cap1) Section Analysis "A"

Total width of section Calculation width

19000 mm 1000 mm

a) Section Dimensions & Material Properties				
Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	Н	mm	3000	
Material Properties				
Concrete strength	· fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mu_{top}	kN.mm	354206	EXTREME EVENT I
for Calculating Bottom Reinforcement		kN.mm	5429434	EXTREME EVENT I
Maximum Shear Force				
Shear force	Vu	kN	1406	EXTREME EVENT I
Corresponding moment	Mu _{corr.}	kN.mm	5429434	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	20	Structural Reinf
Area of 1 bar	A1s	mm2	314.2	
Numbers of Rebar	ns	nos	4	
ottom Reinforcement				
Diameter	øbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8 -	
hear Reinforcement				
Diameter	φ v .	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	508.9	

d) Checking	for	Flexural	Resistance ((AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = As _{tensile} /(H.W) omin=0.03fc/fy	Mu _{top} c Mr _{top}	kN.mm mm kN.mm % %	-354206 115.25 6415080 OK 0.042 0.185	AILURE
Bottom Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio ost = As _{tensile} /(H.W) omin=0.03fc/fy	Mu _{bot} c Mr _{bot}	kN.mm mm kN.mm %	5429434 133.74 6413400 OK 0.214 0.185	

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	1406101	
Shear Resistance	Vr	N		
Effective shear Depth	d,	mm	2160	
Effective web width	b _v	mm	1000	
Spacing of stirrups	S	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		1.7	
Area of shear reinf. within a distance s	Av	mm ²	509	
Strain in the tensile reinforcement	ε _x		0.002000	
Inclination angle of diagonal comp. stress	θ	degrees	43.00	
Shear stress on the concrete	. V	MPa	0.723	1
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
Nominal Resistance of Concrete	V _c	N	1493091	1
Nominal Resistance of Reinforcement	V _s	N	919512	
Nominal Resistance	· Vn	N	2,412,603	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,171,343	, 1
Checking		l.	ОК	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			2944173	Tensile at bottom
SERVICE I-2			2528990	Tensile at bottom
Factored Comp. Stress of Concrete	ocu	MPa		
SERVICE I-1			1.86	
SERVICE I-2			1.6	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	σsu	MPa		
SERVICE I-1		1 - 1 - 1 - 1	-12.93	
SERVICE I-2	1		-11.11	
Checking Stress of Steel		<u> </u>	OK	<u></u>

2) Section Analysis of "B"

Total width of section Calculation width

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	Н	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	÷ .
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

ltem	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	146457	EXTREME EVENT I-2
for Calculating Bottom Reinforcem		kN.mm	932331	EXTREME EVENT I-
Maximum Shear Force			· ·	
Shear force	Vu	kN	2327	EXTREME EVENT I-
Corresponding moment	Mucorr.	kN.mm	932331	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	øtop	mm	20	Structural Reinf.
Area of 1 bar	A1s	mm2	314.2	
Numbers of Rebar	ns	nos	4	
Bottom Reinforcement			· · · · ·	
Diameter	øbot.	mm	.32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Shear Reinforcement				
Diameter	φv.	mm	. 18 .	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	· S	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	508.9	

đ١	Checking	for	Flexural	Resistance	(AASHTO 5.7.3.2)	
~~,	CITCCICIC		* ********		A second se	-

necking for Flexural Resistance (AADIT				
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	-146457	
Depth of Compressive Area	с	mm	133.74	
Flexural Resistance	Mr _{top}	kN.mm	6413400	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.042	
pmin=0.03fc/fy		%	0.185	AILURE
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	932331	
Depth of Compressive Area	С	mm	133.74	
Flexural Resistance	Mr _{bot}	kN.mm	6413400	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = A s_{tensile} / (H.W)$		*%	0.214	
omin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requiren

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2326553	
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2160	
Effective web width	b _v	mm	1000	
Spacing of stirrups	S	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	н. С
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		2.0	
Area of shear reinf. within a distance s	A _v	mm ²	509	
Strain in the tensile reinforcement	ε _x		0.001409	
Inclination angle of diagonal comp. stress	θ	degrees	40.09	
Shear stress on the concrete	v	MPa	1.197	
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
Nominal Resistance of Concrete	V _c	• N	1756578	
Nominal Resistance of Reinforcement	V _s	N	1018626	
Nominal Resistance	Vn	N	2,775,204	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,497,683	
Checking			OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			549283	Tensile at bottom
SERVICE I-2			468788	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			0.35	Î
SERVICE I-2			0.3	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-2.41	
SERVICE I-2			-2.06	
Checking Stress of Steel			OK	

(4) Section Calci	ulation of Pile		
Dia : D1 =	2200 mm	L1 =	15.0 m
D2 =	2000 mm	L2 =	63.0 m
Length :	78.0 m		
Number :	9 nos.		

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	L	ongitudin	al	Transverse		
Load Case	Sectiona	l Force	Depth	Sectiona	l Force	Depth
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)
STRENGTH I-1	0.00	1098.11	0.00	0.00	1098.11	0.00
STRENGTH I-2	0.00	653.01	0.00	0.00	653.00	0,00
STRENGTH III	16.45	977.72	0.00	8.07	983.12	0.00
STRENGTH IV	0.00	1176.01	0.00	0.00	1176.01	0.00
STRENGTH V-1	4.67	1070.16	0.00	2.27	1071.70	0.00
STRENGTH V-2	4.67	655.71	0.00	2.27	657.25	0.00
EXTREME EVENT I-1	637.89	686.56	0.00	727.44	778.49	0.00
EXTREME EVENT I-2	637.74	337.27	0.00	727.44	429.16	0.00
EXTREME EVENT II	339.78	896.67	0.00	721.87	848.03	0.00
SERVICE I-1	4.16	832.05	0.00	2.06	833.33	0.00
SERVICE I-2	4.16	755.44	0.00	2.06	756.72	0.00

2) General Conditions

Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	2200	· · ·
Steel Casing			Yes	
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	28	
Number of Rebars	n _{st}	nos	26	
Total Area of Reinforcement	A _{st}	mm2	16010	

3) Section Calculationa) Distribution of Axial Force and Bending Moment in Composite Section

	Diameter (of Pile 👘		2.20	
	Thickness	of Casing		0.014	
	Es=	20000000			
	Ec=	2500000			
	n=Es/Ec=	8.00			
	As0=	0.096761	m2		
	Ac=	3.801327	m2		
	Atrans=	4.575416	m2		m
	Is0=	0.059668	m4		m
	Ic0=	1.149901	m4		
	Itrans=	1.627242	m4		
	* Casing:	- Axial		16.92%	
•		- Bending		29.33%	
	* RC:	- Axial		83.08%	
		- Bending		70.67%	

b) Checking Resistance (AASHTO 5.7.2) i) In longitudinal Direction

i) In longitudinal Direction									
Load Case	Forces	Total	RC	Allowable	Casing				
CEPENICEULI 1	PN (tf)	1098.11	912.33	8230.97	185.78	2220.0	OK		
STRENGTH I-1	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK		
	PN (tf)	653.01	542.53	8732.83	110.48	2220.0	OK		
STRENGTH I-2	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK		
	PN (tf)	977.72	812.31	8209.19	165.41	2119.5	OK		
STRENGTH III	M (tf.m)	16.45	11.62	117.58	4.83	61.83	OK		
	PN (tf)	1176.01	977.05	8143.13	198.96	2220.0	OK		
STRENGTH IV	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK		
	PN (tf)	1070.16	889.11	8219.01	181.05	2193.1	OK		
STRENGTH V-1	M (tf.m)	4.67	3.30	30.45	1.37	16.59	OK		
	PN (tf)	655.71	544.77	8649.52	110.94	2176.4	OK		
STRENGTH V-2	M (tf.m)	4.67	3.30	52.60	1.37	26.88	OK		
	PN (tf)	686.56	570.40	2336.35	116.16	613.4	OK		
EXTREME EVENT I-1	M (tf.m)	637.89	450.77	1,846.44	187.12	988.17	ОК		
	PN (tf)	337.27	280.21	619.30	57.06	350.7	OK		
EXTREME EVENT I-2	M (tf.m)	637.74	450.66	996.01	187.08	1149.75	ОК		
	PN (tf)	896.67	744.97	5557.59	151.70	1073.4	OK		
EXTREME EVENT II	M (tf.m)	339.78	240.11	1,791.12	99.67	705.2	OK		

ii) In Transverse Direction

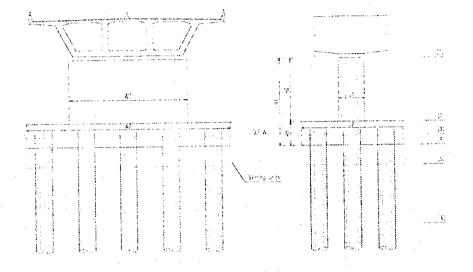
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
	PN (tf)	1098.11	912.33	8230.97	185.78	2220.0	OK
STRENGTH I-1	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK
	PN (tf)	653.00	542.52	8732.85	110.48	2220.0	OK
STRENGTH I-2	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK
	PN (tf)	983.12	816.79	8271.06	166.33	2169.8	OK
STRENGTH III	M (tf.m)	8.07	5.70	57.40	2.37	30.88	OK
	PN (tf)	1176.01	977.05	8143.13	198.96	2220.0	OK
STRENGTH IV	M (tf.m)	0.00	0.00	0.00	0.00	0.00	OK
	PN (tf)	1071.70	890.39	8241.36	181.31	2206.9	OK
STRENGTH V-1	M (tf.m)	2.27	1.60	14.64	0.67	8.10	OK
	PN (tf)	657.25	546.05	8692.92	111.20	2198.6	OK
STRENGTH V-2	M (tf.m)	2.27	1.60	25.35	0.67	13.17	ОК
	PN (tf)	778.49	646.78	2286.79	131.71	610.9	OK
EXTREME EVENT I-1	M (tf.m)	727.44	514.05	1,817.51	213.39	989.72	OK
	PN (tf)	429.16	356.55	747.57	72.61	384.2	OK
EXTREME EVENT I-2	M (tf.m)	727.44	514.05	1,077.79	213.39	1129.14	OK
	PN (tf)	848.03	704.56	2630.72	143.47	653.0	OK
EXTREME EVENT II	M (tf.m)	721.87	510.11	1,904.57	211.76	963.8	ОК

c) Checking Stress in RC portion

cj eneering		Force				Comp. Con	Remark	
Load C	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Kemurk
	Horizontal	691.28	2.94	1192.07	-23861	180.29	1101	OK
SERVICE I-1	Transverse	692.34	1.46	1,201.02	-23861	179.18	1101	
	Horizontal	627.63	2.94	1081.01	-23861	163.94	1101	OK
SERVICE I-2	Transverse	628.69	1.46	1,089.96	-23861	162.83	1101	

d) Checking Minimum Steel Ratio

mm2 mm2	16010 3801327	
% %	0.42 0.40	OK
	%	% 0.42


(5) Calculation of Footing Concrete Stress that Pile connected

1) Vertical bearing stress of footing concrete $\sigma_{cv}=P/(\pi D^2/4) \le \sigma_{ca}$

$\sigma_{cv} = P/(\pi D^2/4) \le \sigma_{ca}$			
Reaction force of pile Diameter of Pile Vertical bearing stress Allowable bearing stress	$p=D=\sigma_{cv}$ $\sigma_{ca}=0.5xf_{c}=0.5xf_{c}$	1345600 kg 220 cm 35.40 kg/cm ² 120.00 kg/cm ²	Load Combination: 7
$\sigma_{cv} \ll \sigma_{ca} \rightarrow OK$			
2) Vertical Punching Shear Stress $\tau_c=P/{\pi h(D+h)} \le \tau_a$			
Reaction force of pile Diameter of Pile Depth from pile head to upper surface of pile cap Punching shear stress Allowable punching shear stress	$p= D= h= t_c = t_a = t$	1345600 kg 220 cm 150 cm 7.72 kg/cm ² 9.00 kg/cm ²	Load Combination: 7
$\tau_c \leq \tau_a \rightarrow OK$ 3) Horizontal Bearing stress $\sigma_{ch}=H/(Dl) \leq \sigma_{ca}$			
Horizontal force at pile head Diameter of Pile Embedded Length of Pile Horizontal bearing stress Allowable bearing stress	$H= D= l= \sigma_{ch} \sigma_{ca}=0.3 \times f_c = 0.3 \times f_c$	97740 kg 220 cm 200 cm 2.22 kg/cm ² 72.00 kg/cm ²	Load Combination: 7
$\sigma_{ch} \leq \sigma_{ca} \rightarrow OK$	ст. 1997 г. 1997 г.		
4) Horizontal Punching Shear Stress $\tau_c=H/\{h' \times (2l + D+2h')\} \le \tau_a$			
Horizontal force at pile head Diameter of Pile Distance from side of pile to the	H= D=	97740 kg 220 cm	Load Combination: 7
nearest edge of pile cap Embedded Length of Pile Punching shear stress Allowable punching shear stress	$ \begin{array}{l} h' = \\ l = \\ \tau_c = \\ \tau_a = \end{array} $	90 cm 200 cm 1.36 kg/cm ² 9.00 kg/cm ²	
$\tau_c \ll \tau_a \longrightarrow OK$			

5.3.4 Design of P38(P39) pier(1) Stability Calculation1) Dimension of Pier

		(Figure)	(m)			(Level)	(m)	<u></u>
Γ	Portion	Length	Portion	Length	Portion	Level	Portion	Level
F	H1	8.02	L1	3.00	(1)	+8.52	(5)	-2.00
ļ	H2	5.02	W2	24.00	(2)	+3.50	(6)	-7.76
	H3	3.00	L2	14.00	(3)	+1.78		
	W1	14.00			(4)	+0.50		

2) Summary of Load Combination Forces at the Bottom of Pile Cap

	Load Combination		Longit	udinal	Transverse	
Loa			H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	10892.5	347.1	2783.4	96.8	
2	STRENGTH I-2	6285.7	29.3	235.0	96.8	
3	STRENGTH III	9836.2	256.6	1942.7	107.7	-22.1
4	STRENGTH IV	11756.8	253.8	2035.5	96.8	
5	STRENGTH V-1	10651.0	328.1	2598.7	99.9	
6	STRENGTH V-2	6385.8	71.4	540.0	99.9	-48.6
7	EXTREME EVENT 1-1	10094.1	1817.7	8432.3	1720.4	6816.8
8	EXTREME EVENT I-2	6554.7	1690.7	7414.2	1720.4	6816.8
9	EXTREME EVENT II	10136.1	856.8	2402.0	1422.4	1632.1
10	SERVICE I-1	8273.9	400.3	3185.4	99.2	-51.3
11	SERVICE I-2	7420.0	247.6	1961.1	99.2	-51.3
						L

3) Pile Capacity

INPUT DATA			
BoreHole			BRD17
Pile Diameter	D1	=	2200 mm
	D2	57	2000 mm
Factor of Safety	FS	-	3
Pile length	Ĺ	=	74.00 m
Ũ	LO		8.34 m
	L1	=	6.66 m
	L2	==	59.00 m
Pile Embedded Length	Le	=	65.66 m
Pile Cross-Section Circumference	P1	=	6.912 m
	P2	**	6.283 m
Pile Cross-Section Area	Ab1	=	3.801 m2
	Ab2	=	3.142 m2
Concrete Unit Weight	үс		2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	=	135 t/m2
Soil Type of Bearing Layer	·		2 $(1/2 = Sand/Clay)$

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

	Layer	Thickness	Soil	Туре	γ'e	N	fs	Qs
	Number	d (m)	'1'=Sano	d; '2'=clav	(t/m3)		(t/m2)	(t)
•	1-1	6.66	2	Clay	0.70	1.0	1.0	46
-10	1-2	5.16	2	Clay	0.70	1.0	1.0	32
-20 -	2	5.60	2	Clay	0.90	20.0	1.0	35
-30	3	10.40	2	Clay	1.00	12.0	2.0	131 ,
-40 <	4	14.10	2	Clay	0.90	20.0	1.0	89
	5	23.74	2 .	Clay	1.00	25.0	15.0	2237
-50								
-60								
-70								
-BO	Total L =	65.66	m				Total Qs =	2570

END BEARING CAPACITY

Formula: Qt = qu* Ab

T	ype of Pile	Soil Type of B.P	End Bearing Capacity
Cast-in-situ	Friction & Bearing	Clay	424 tonne
Ultimate Bearib	g Capacity (Qult)		
* $Oult = Ot + Os$			2994.5 tonne
Replaced Effect	ive Weight of Soil (Ws)		
-			194.4 tonne
Buoyant Weight	t of Pile (W)		
			395.3 tonne
Allowable Bear	ing Capacity for Service	Load Combinations ((Dall ₁)
* $Qall_1 = (Qult -$	• Ws) / FS + Ws - W		732.5 tonne
Allowable Board	ing Canadity for Earth av	ales & Strongth I and i	Combinations(Oall)
	ing Capacity for Earthqu - Ws) / FS + Ws - W	ake & Strength Load	1199.2 tonne
FS= 2	- 113) / 10 - 113 - 11		1155.2 tonne
	aacity for Service Load (Combinations (Oup.)	· · ·
* Qup ₁ = Qs / F			823.7 tonne
FS = 6			
Design Uplift C	apacity fot Earthquake	& Strength Load Com	binations(Qup ₂)
$* Qup_2 = Qs / F$			1252.1 tonne
FS= 3			

4) Reaction of Pile

a)]	Displacement					77			
т.	1 Combination	L	Longitudinal			Fransverse	δ xa(cm)	Remark	
LO	ad Combination	δf x(cm)	δy(cm)	α (rad)	δf x(cm)	<u>δ y(cm)</u>	α (rad)	· · ·	
1	STRENGTH I-1	0.39	0.76	0.00023	0.09	0.76	0.00001	3.00	OK
2	STRENGTH I-2	0.03	0.44	0.00002	0.09	0.44	0.00001	3.00	OK
3	STRENGTH III	0.29	0.69	0.00017	0.10	0.69	0.00001	3.00	OK
4	STRENGTHIV	0.29	0.82	0.00017	0.09	0.82	0.00001	3.00	OK
5	STRENGTH V-1	0.37	0.75	0.00022	0.09	0.74	0.00001	3.00	ОK
-	STRENGTH V-2	0.08		0.00005			0.00001	3.00	OK
6	EXTREME EVENT	1.97	0.10	0.00099			0.00032	2.00	OK
7		1.97	0.46	0.00091	1.65		0.00032	i	
8	EXTREME EVENT	í – – – – – – – – – – – – – – – – – – –	0.40	0.00091	1.34		0.00021		
9	EXTREME EVENT	0.91							
10	SERVICE I-1	0.66					÷		
11	SERVICE I-2	0.41	0.52	0.00018	0.14	0.52	0.00001	1.50	
					<u> </u>	1		1	<u> </u>

b) Bearing and Uplift forces of piles


	bearing and Opine	Longitudinal			Transverse Allowable Capacitie			Chec	king
Loa	ad Combination	PNmax(tf)		PNmax(tf)	PNmin(tf)	Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	837.16	the second s	737.86	714.47	1199.2	-1252.1	ОК	OK
2	STRENGTH 1-2	428.42	409.68	430.74	407.35	1199.2	-1252.1	OK	ОК
3	STRENGTH III	735.77	575.72	669.32	642.17	1199.2	-1252.1	OK	OK
4	STRENGTH IV	864.95	702.62	795.48	772.09	1199.2	-1252.1	OK	ОК
ŝ	STRENGTH V-1	814.41	605.72	716.30	691.84	1199.2	-1252.1	OK	OK
6	STRENGTH V-2	448.46	402.98	437.95	413.49	1199.2	-1252.1	OK	OK
7	EXTREME EVENT	1145.59	200.29	981.34	364.54	1199.2	-1252.1	OK	ОК
8	EXTREME EVENT	869.03	4.93	745.38	128.58	1199.2	-1252.1	OK	OK
9	EXTREME EVENT	870.73	480.75	879.58	471.90	1199.2	-1252.1	OK	ОК
10	SERVICE I-1	689.95	413.24	565.33	537.85	732.5	-823.7	ОК	ОК
11	SERVICE I-2	580.08	409.25	508.41	480.93	732.5	-823.7	OK	OK

5-57

(2) Section Calculation of Pier Column

L	ad Combination	V	Longit	udinal	Transverse		
1.1		(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)	
1	STRENGTH I-1	7860.6	347.1	1742.3	0.0	0.0	
2	STRENGTH I-2	4247.3	29.3	147.1	0.0	0.0	
3	STRENGTH III	6804.3	245.1	1182.7	4.1	10,	
4	STRENGTH IV	8015.3	253.8	1274.1	0.0	0.	
5	STRENGTH V-1	7619.2	324.9	1617.1	1.2	2.	
6	STRENGTH V-2	4347.4	68.2	328.5	1.2	2.	
7	EXTREME EVENT I-1	7062.2	1477.0	7263.3	1283.0	6289.	
8 -	EXTREME EVENT I-2	4516.3	1350.1	6626.0	1283.0	6289.	
9	SERVICE I-1	5951.6	397.8	1986.7	0.9	2.	
10	SERVICE I-2	5097.7	245.1	1220.4	0.9	2.	

2) Section Analysis

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				1
Width	W	mn	14000	oblong,
Height	H	mm	3000	rounded-end shape
Material Properties				······································
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Main Reinforcement	Mu	kN.mm	71228184	EXTREME EVENT I-2
Corresponding Compressive force	Nu _{corr.}	kN	69256	
Maximum Shear Force				
Shear force	Vu	kN	14485	EXTREME EVENT I-2
Corresponding Compressive force	Nu _{corr.}	kN	69256	
Corresponding moment	Mu _{corr.}	kN.mm	71228184	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Main Reinforcement				
Diameter	øbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Total numbers of Rebar	n's	nos	246	@125
Shear Reinforcement				
Diameter	φv.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	23	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	4624.4	

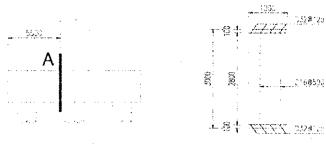
d) Checking for Flexural - Axial R Item	Notation	Unit	Value	Remark
Bending Moment	Mu	kN.mm	71228184	
Compressive force	Nu	kN	69256	
Depth of Compressive Area	с	mm	2558	
Flexural Resistance	Mr	kN.mm	309953538	
Compressive Resistance	Nr	kN	301362	
Checking Resistance		-	OK	
Checking Reinforcement Ratio				
Numbers of Tensile bar	n _{tens}	nos	121	
$\rho st = A s_{tensile} / A_g$		%	0.243	
pmin=0.03fc/fy		%	0.185	OK

d) Checking for Flexural - Axial Resistance (AASHTO 5.7.3.2)

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking	for Shear	Resistance	(AASHTO 5.8.3.3)

e) Checking for Shear Resistance (A	Notation	Unit	Value	Remark
Factored Shear	Vu	N	14484762	· · · · · · · · · · · · · · · · · · ·
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2160	
Effective web width	b _v	mm	13356	
Spacing of stirrups	s	mm	500	н. Т
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		2.5	
Area of shear reinf, within a distance s	A _v	mm ²	4624	
Strain in the tensile reinforcement	ε _x		0.000560	
Inclination angle of diagonal comp. stress	θ	degrees	29.97	
Shear stress on the concrete	v	MPa	0.558	
Area of Conc. on flexural tensile side	Act	mm ²	20034291.74	
Nominal Resistance of Concrete	V _c	N	29326498	
Nominal Resistance of Reinforcement	V _s .	N	13511139	
Nominal Resistance	Vn	N	42,837,637	
Resistance factor for shear	φ		0.9	· .
Factored Resistance	Vr	N	38,553,874	
Checking	<u> </u>	<u> </u>	ОК	


f) Checking for Flexural Stress Item	Notation	Unit	Value	Remark
Factored Forces				
SERVICE I-1	Mu	kN.mm	19482770	
	Nu	kN	58365	
SERVICE I-2	Mu	kN.mm	11967830	
	Nu	kN	49991	
Factored Comp. Stress of Concrete	ocu	MPa		
SERVICE I-1			2.83	
SERVICE I-2			2.08	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	σsu	MPa		
SERVICE I-1			0.65	
SERVICE I-2			2.99	. •
Checking Stress of Steel			OK	

(3) Section Calculation of Pile Cap

1) Section Analysis of "A"

.32**#**125

Total width of section Calculation width

24000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Notation	Unit	Value	Load Case
Muton	kN.mm	-1438354	EXTREME EVENT I-2
Mu _{bot}	kN.mm	6328749	EXTREME EVENT I-1
Vu	kN	1663	EXTREME EVENT I-1
Mu _{coin.}	kN.mm	6328749	н. С. С. С
	Mu _{top} Mu _{bot.} Vu	Mu _{top} kN.mm Mu _{bot.} kN.mm Vu kN	Mu _{top} kN.mm -1438354 Mu _{bot} kN.mm 6328749 Vu kN 1663

c) Bar Arrangement

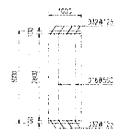
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	¢top	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Bottom Reinforcement				
Diameter	øbot.	mm	32	
Area of 1 bar	A1's	mm2	804,2	
Numbers of Rebar	n's	nos	8	
Shear Reinforcement				
Diameter	φν.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within	s Av	mm2	402.1	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1438354	
Depth of Compressive Area	С	mm	115.25	
Flexural Resistance	Mr _{top}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.214	
omin=0.03fc/fy		%	0.185	<u> </u>
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	6328749	
Depth of Compressive Area	с	mm	115.25	
Flexural Resistance	Mr _{bot}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.214	
omin=0.03fc/fy		%	0.185	OK

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	Ν	1663048	
Shear Resistance	Vr	N	1997 - A. A.	
Effective shear Depth	d,	mm	2160	
Effective web width	b _v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	9 0	
Factor indicating ability of diagonally cracked concrete to transmit tension Area of shear reinf. within a distance s Strain in the tensile reinforcement	β A _v ε _x	mm ²	1.7 402 0.002000	
Inclination angle of diagonal comp. stress	1	degrees	43.00	
Shear stress on the concrete	v	MPa	0.855	
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
Nominal Resistance of Concrete	V _c	N	1493091	· .
Nominal Resistance of Reinforcement	V _s	N	726528	
Nominal Resistance	Vn	N	2,219,619	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	1,997,657	
Checking	· .		ОК	


f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			3348737	Tensile at bottom
SERVICE I-2			2563096	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			2.04	
SERVICE I-2			1.56	
Checking Stress of Concrete			OK _	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-14.45	
SERVICE 1-2			-11.06	
Checking Stress of Steel	1		OK	· · · ·

2) Section Analysis of "B"

Total width of section

14000 mm 1000 mm

Calculation width a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	н	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	· · · · .
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment			· · ·	
for Calculating Top Reinforcement	Mutop	kN.mm	-407258	EXTREME EVENT I-2
for Calculating Bottom Reinforcen	Mubot.	kN.mm	4646969	EXTREME EVENT I-1
Maximum Shear Force				
Shear force	Vu	kN	1446	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	4646969	
			· .	

c) Bar Arrangement

ltem	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	¢top	mm	32	Structural Reinf.
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Bottom Reinforcement				
Diameter	øbot,	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8 -	
Shear Reinforcement				
Diameter	¢v.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	S -	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	402.1	

5-62

d) Checking for Flexural Resistance (AASH	ГО 5.7.3.2)		
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	407258	
Depth of Compressive Area	С	mm	115.25	
Flexural Resistance	Mr _{top}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio	1			
$\rho st = A s_{tensile} / (H.W)$		%	0.214	
omin=0.03fc/fy	<u> </u>	%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	4646969	
Depth of Compressive Area	c	mm	115.25	
Flexural Resistance	Mr _{bot}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio		ļ		
$\rho st = As_{tensile}/(H.W)$		%	0.214	
omin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	1446347	
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2160	
Effective web width	b,	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally	0		1.7	
cracked concrete to transmit lension	β	mm ²	402	
Area of shear reinf. within a distance s	A _v	mm	0.002000	:
Strain in the tensile reinforcement	ε _χ	· · ·		
Inclination angle of diagonal comp. stress	θ	degrees	43.00	
Shear stress on the concrete	. V	MPa	0.744	· · ·
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
Nominal Resistance of Concrete	V _c	N ·	1493091	
Nominal Resistance of Reinforcement	V _s	N	726528	
Nominal Resistance	Vn	Ν	2,219,619	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	1,997,657	
Checking			ОК	

f) Ch	ecking for Flexural Stress			<u> </u>	
í I	Item	Notation	Unit	Value	Remark
	Factored Moments	Mu	kN.mm		· ·
	SERVICE I-1			2254184	Tensile at bottom
	SERVICE I-2			1895346	Tensile at bottom
	Factored Comp. Stress of Concrete	σcu	MPa		
	SERVICE I-1			1.37	
	SERVICE I-2			1.21	
	Checking Stress of Concrete			OK	
	Factored Tensile Stress of Steel	σsu	MPa		
	SERVICE I-1			-9.73	
	SERVICE I-2			~8.57	
	Checking Stress of Steel			OK	

(4) Section Calculation of Pile

Dia ; D1 =	2200 mm	L1 =	15.0 m
D2 =	2000 mm	L2 =	59.0 m
Length :	74.0 m		
Number :	15 nos.		

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Le	ongitudin	al	Transverse			
Load Case	Sectiona	I Force	Depth	Sectiona	l Force	Depth	
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)	
STRENGTH I-1	184.42	615.17	0.00	62.432	714.47	0.00	
STRENGTH I-2	15.57	409.68	0.00	62.43	407.35	0.00	
STRENGTH III	137.23	575.72	0.00	69.34	642.17	0.00	
STRENGTH IV	134.85	702.62	0.00	62.43	772.09	0.00	
STRENGTH V-1	174.58	605.72	0.00	64.34	691.84	0.00	
STRENGTH V-2	39.79	402.98	0.00	64.34	413.49	0.00	
EXTREME EVENT I-1	1013.36	200.29	0.00	1087.56	364.54	0.00	
EXTREME EVENT I-2	945.88	4.93	0.00	1087.56	128.58	0.00	
EXTREME EVENT II	489.84	480.75	0.00	910.38	471.90	0.00	
SERVICE I-1	248.83	413.24	0.00	72.12	537.85	0.00	
SERVICE I-2	153.97	409.25	0.00	72.12	480.93	0.00	

2) General Conditions

Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	2200	
Steel Casing			Yes	·
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	25	· · · · · ·
Number of Rebars	n _{st}	nos	52	
Total Area of Reinforcement	A _{st}	mm2	25525	
			1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1

3) Section Calculation a) Distribution of Axial Force and Bending Moment in Composite Section Diameter of Pile 2.20 m

Diameter	of Pile		2.20	m
Thickness	of Casing		0.014	m
Es≠	20000000			
Ec=	2500000			
n=Es/Ec=	8.00			
As0=	0.096761 1	m2		
Ac=	3.801327 1	m2		
Atrans=	4.575416 1	m2		
Is0=	0.059668 1	m4		
Ic0=	1.149901 1	m4		
Itrans=	1.627242 1	m4		
* Casing:	- Axial		16.92%	
	- Bending		29.33%	
* RC:	- Axial		83.08%	
	- Bending		70.67%	

5-64

b) Checking Resistance (AASHTO 5.7.2)

i) In	longitu	dinal	Direction	

Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
	PN (tf)	615.17	511.09	6618.09	104.08	1203.2	ŌK
STRENGTH I-1	M (tf.m)	184.42	130.32	1,687.52	54.10	625.41	OK
	PN (tf)	409.68	340.37	8965.41	69.31	2005.2	OK
STRENGTH I-2	M (tf.m)	15.57	11.00	290.13	4.57	132.11	<u> </u>
	PN (tf)	575.72	478.32	7168.86	97.40	1327.8	OK
STRENGTH III	M (tf.m)	137.23	96,97	1,453.07	40.25	548.76	OK
OTDEN ICTLIN	PN (tf)	702.62	583.75	7426.68	118.87	1440.6	OK
STRENGTH IV	M (tf.m)	134.85	95.29	1,212.45	39.56	479.38	OK
CTRINCTUN 4	PN (tf)	605.72	503.24	6723.91	102.48	1224.9	OK
STRENGTH V-1	M (tf.m)	174.58	123.36	1,648.02	51.21	612.09	OK
CTRACTUV 2	PN (tf)	402.98	334.80	8487.71	68.18	1736.6	OK
STRENGTH V-2	M (tf.m)	39.79	28.12	712.77	11.67	297.32	OK
ENGERT OF ENGLIS	PN (tf)	200.29	166.40	223.37	33.89	145.5	OK
EXTREME EVENT I-1	M (tf.m)	1,013.36	716.10	961.27	297.26	1275.98	OK
	PN (tf)	4.93	4.10	5.00	0.83	4.1	OK
EXTREME EVENT I-2	M (tf.m)	945.88	668.41	814.58	277.47	1362.92	OK
	PN (tf)	480.75	399.41	2358.02	81.34	573.3	OK
EXTREME EVENT II	M (tf.m)	489.84	346.15	2,043.56	143.69	1012.8	OK

ii) In Transverse Direct Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
	PN (tf)	714.47	593.59	8245.99	120.88	1781.3	OK
STRENGTH I-1	M (tf.m)	62.43	44.12	612.59	18.31	269.88	OK
	PN (tf)	407.35	338.43	8034.48	68.92	1550.2	OK
STRENGTH I-2	M (tf.m)	62.43	44.12	1,047.27	18.31	411.96	OK
	PN (tf)	642.17	533.52	8160.56	108.65	1702.0	OK
STRENGTH III	M (tf.m)	69.34	49.00	749.46	20.34	318.64	OK
CTDENCTEL IV	PN (tf)	772.09	641.46	8233.90	130.63	1807.9	OK
STRENGTH IV	M (tf.m)	62.43	44.12	566.54	18.31	253.48	OK
CTRENCTLUX 1	PN (tf)	691.84	574.79	8225.57	117.05	1758.9	OK
STRENGTH V-1	M (tf.m)	64.34	45.47	651.05	18.87	283.62	OK
CTRENCTU V 2	PN (tf)	413.49	343.53	8009.08	69.96	1543.1	OK
STRENGTH V-2	M (tf.m)	64.34	45.47	1,059.76	18.87	416.33	OK
ENTREME EVENIT I 1	PN (tf)	364.54	302.87	431.16	61.67	235.9	OK
EXTREME EVENT I-1	M (tf.m)	1,087.56	768.53	1,094.06	319.03	1220.34	OK
EVEDENCE EVENIE 1.2	PN (tf)	128.58	106.83	124.29	21.75	89.4	OK
EXTREME EVENT I-2	M (tf.m)	1,087.56	768.53	894.11	319.03	1310.48	OK
EVTOEME EVENT II	PN (tf)	471.90	392.06	812.90	79.84	344.8	OK
EXTREME EVENT II	M (tf.m)	910.38	643.33	1,333.88	267.05	1153.4	OK

c) Checking Stress in RC portion

Load Case		For	Force		eel (tf/m2)	Comp. Con	Romark	
Load C	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	IQIMALK
0000100014	Horizontal	343.33	175.84	-239.36	-23861	248.10	1101	ок
SERVICE I-1	Transverse	446.85	50.97	528.22	-23861	159.88	1101	
	Horizontal	340.01	108.81	71.35	-23861	185.83	1101	ОК
SERVICE I-2	Transverse	399.56	50.97	446.85	-23861	147.91	1101	

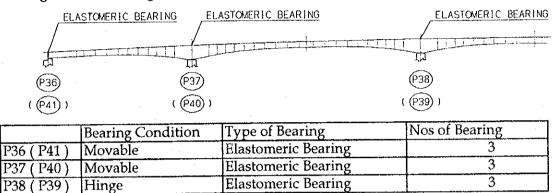
d) Checking Minimum Steel Ratio

Item	Notation	Unit	Value	Remark
Total Area of Reinforcement	A _{st}	mm2	25525	
Gross Area of Section	Ag	mm2	3801327	
Reinforcement Ratio	pst	%	0.67	
Minimum Reinforcement ratio	omin	%	0.40	OK

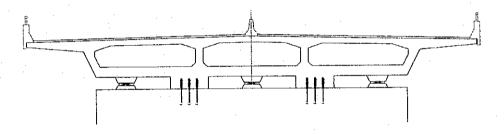
(5) Calculation of Footing Concret Stress that Pile connect

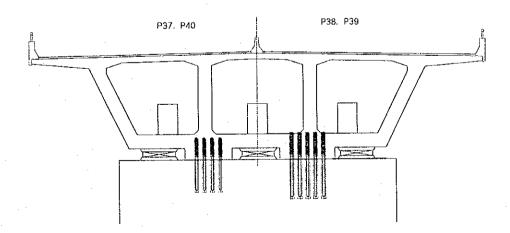
1) Vertical bearing stress of footing concrete $\sigma_{cv}=P/(\pi D^2/4) \le \sigma_{co}$

Reaction force of pile Diameter of Pile Vertical bearing stress Allowable bearing stress	$p=$ $D=$ σ_{cv} $\sigma_{ca}=0.5xf_{c}=$	1145590 kg 220 cm 30.14 kg/cm ² 120.00 kg/cm ²	Load Combination: 7
$\sigma_{cv} \ll \sigma_{ca} \rightarrow OK$			
2) Vertical Punching Shear Stress $\tau_c = P/{\pi h(D+h)} \le \tau_a$			
Reaction force of pile Diameter of Pile Depth from pile head to upper	P= D=	1145590 kg 220 cm	Load Combination: 7
surface of pile cap Punching shear stress Allowable punching shear stress	h= τ _c = τ _a = :	150 cm 6.57 kg/cm ² 9.00 kg/cm ²	
$\tau_c \leq \tau_a \rightarrow OK$ 3) Horizontal Bearing stress $\sigma_{ch}=H/(Dl) \leq \sigma_{ca}$			
Horizontal force at pile head Diameter of Pile Embedded Length of Pile Horizontal bearing stress Allowable bearing stress	$H= D= I= \sigma_{ch} \sigma_{ca}=0.3 x f_{c} = 0.3 x f_{c}$	121180 kg 220 cm 200 cm 2.75 kg/cm ² 72.00 kg/cm ²	Load Combination: 7
$\sigma_{ch} \ll \sigma_{ca} \rightarrow OK$			
4) Horizontal Punching Shear Stress $\tau_c=H/\{h' \times (2l + D+2h')\} \le \tau_a$			
Horizontal force at pile head Diameter of Pile Distance from side of pile to the	H= D=	121180 kg 220 cm	Load Combination: 7
nearest edge of pile cap Embedded Length of Pile Punching shear stress Allowable punching shear stress	h'= l= $\tau_c=$ $\tau_a=$	110 cm 200 cm 1.31 kg/cm ² 9.00 kg/cm ²	


ОК τ, <= -> τa

5.4 Design of Accessories


5.4.1 Design of Bearing


(1) Design Condition

1) Arrangement of Bearing

P36, P41

2) Loading and Displacement

a) Loading (each Bearings)

	P36	P37	P38	P39	P40	P41
Virtical Load Dead Load (DC+DW+CR+SH)	2119	15364	15824	15826	15354	2123
Live Load (LL + IM)	2748	4226	4232	4151	3942	2967
Horizontal Load (EQ)	254	1844			1842	255
					Uı	nit: kN

b) Displacement

		P36	P37	P38	P39	P40	P41
Temperature alteration	+15deg	9.7	5.6	0.0	0.0	5.7	9.8
	-15deg	-28.2	-21.2	0.0	0.0	-21.2	-28.1
Earthquake		26.5	26.6	0.0	0.0	26.6	26.5
						Un	it · mm

Unit : mm

3) Dimension

	Tal	ble	Dimensio	on of Be	aring				
		Sign	Unit	-P36	P37	P38	P39	P40	P41
	idth of Bearing								
	Longitusinal	b	(mm)	700	1600	1600	1600	1600	700
	Transverse	а	(mm)	700	1600	1600	1600	1600	700
Ru	bber								
	Thickness of each Rubber Layer	te	(mm)	20	34	34	34	34	20
	Numbers of Rubber Layer	n		. 5	6	- 6	6	6	5
	Total Thickness	Σte	(mm)	100	204	204	204	204	100
	Reinforce Parts	ts	(mm)	3.0	4.5	4.5	4.5	4.5	3.0

(2) Calculation Result

Calculation Result at P36 (each Bearing)

Curculation resolution at 2 55 (44)	<u> </u>	Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	0.4900	0.4900		
0	Ordinaty	Ao	m ²	0.4637			
Strain	Effective	δ	mm	1.28			
	Ordinaty	δο	mm	1.35			
Maximum Compressive Stress	Ordinaty	omax.o	N/mm ²	6.71		≦	8.0
Minimum Compressive Stress	Ordinaty	omin	N/mm ²	3.55		≥.	1.5
Range of Compressive Stress	Ordinaty	⊿σ	N/mm^2	3.16		≦	5.0
Rotation Strain	Ordinaty	δr	mm	1.17			
Compressive Strain	Ordinaty	δς	mm	1.28		≧	1.17
Local Shear Strain	Virtical	үс	%	100.4			
· · · · ·	Horizontal	YS	%	37.6		≦	70
	Rotation	γr	%	40.8			
	Total	γt	%	178.8		≦	333.3

Calculation Result at P37 (each Bearing)

		Sign	Unit	Longitudinal ⁴	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	2.5600	2.5600		
•	Ordinaty	Ao	m ²	2.5148			
Strain	Effective	δ	mm	1.54			
	Ordinaty	δο	mm	1.56			
Maximum Compressive Stress	Ordinaty	σ max.c	N/mm ²	6.86		≦	8.0
Minimum Compressive Stress	Ordinaty	o min	N/mm^2	5.86		≧	1.5
Range of Compressive Stress	Ordinaty	⊿σ	N/mm ²	1.00		≨	5.0
Rotation Strain	Ordinaty	δr	mm	1.33			
Compressive Strain	Ordinaty	δc	mm	1.54		≧	1.33
Local Shear Strain	Virtical	γc	%	76.6			
	Horizontal	γs	%	13.9		≦	70
	Rotation	γr	%	30.8			
	Total	γt	%	121.3		≦	333.3

Calculation Result at P38, P39 (each Bearing)

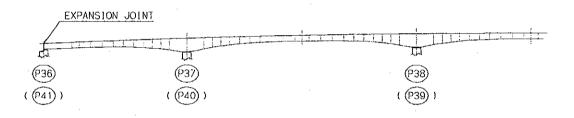
		Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	2.5600	2.5600		
~	Ordinaty	Ao	m ²	2.5600			
Strain	Effective	δ	mm	1.58			
	Ordinaty	δο	mm	1.58			·
Maximum Compressive Stress	Ordinaty	σ max.o	N/mm^2	6.95		S∎.	8.0
Minimum Compressive Stress	Ordinaty	σ min	N/mm^2	6.04		≧	1.5
Range of Compressive Stress	Ordinaty	⊿σ	N/mm^2	0.91		SII (5.0
Rotation Strain	Ordinaty	δr	mm	1.33			
Compressive Strain	Ordinaty	δς	mm	1.58		≧	1.33
Local Shear Strain	Virtical	γc	%	77.6			
	Horizontal	γs	%	0.0		<u>≦</u>	70
· · ·	Rotation	γr	%	30.8			
	Total	γt	%	108.4		≦.	333.3

Calculation Result at P40 (each Bearing)

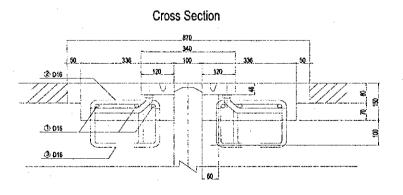
		Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	2.5600	2.5600		~ ~ ~
	Ordinaty	Ao	m ²	2.5150			-~-
Strain	Effective	δ	mm	1.54			
	Ordinaty	δο	mm	1.56			
Maximum Compressive Stress	Ordinaty	σ max.o	N/mm ²	6.86		≦	8.0
Minimum Compressive Stress	Ordinaty	σ min	N/mm^2	5.86		Ni	1.5
Range of Compressive Stress	Ordinaty	⊿σ	N/mm ²	1.00		<u>≤</u>	5.0
Rotation Strain	Ordinaty	δr	mm	1.33			
Compressive Strain	Ordinaty	δς	mm	1.54		_]]	1.33
Local Shear Strain	Virtical	γς	%	76.6			
	Horizontal	γs	%	13.9		≦	70
	Rotation	γr	%	30.8			
	Total	γt	%	121.2		≦.	333.3

Calculation Result at P41 (each Bearing)

		Sign	Unit	Longitudinal	Transverse	Allov	wable
Bearing Area	Effective	A	m ²	0.4900	0.4900		
	Ordinaty	Ao	m ²	0.4638			
Strain	Effective	δ	mm	1.28			
	Ordinaty	δο	mm	1.35			
Maximum Compressive Stress	Ordinaty	σ max.c	N/mm ²	6.71			8.0
Minimum Compressive Stress	Ordinaty	σmin	N/mm ²	3.56		N	1.5
Range of Compressive Stress	Ordinaty	Δσ	N/mm ²	3.16		≦	5.0
Rotation Strain	Ordinaty	δr	mm	1.17			
Compressive Strain	Ordinaty	δς	mm	1.28	·	≧	1.17
Local Shear Strain	Virtical	γc	%	100.5		·	
•	Horizontal	γs	%	37.4		÷≦	70
	Rotation	γΓ	%	40.8			
	Total	γt	%	178.8		≦	333.3


5.4.2 Design of Expansion Joint

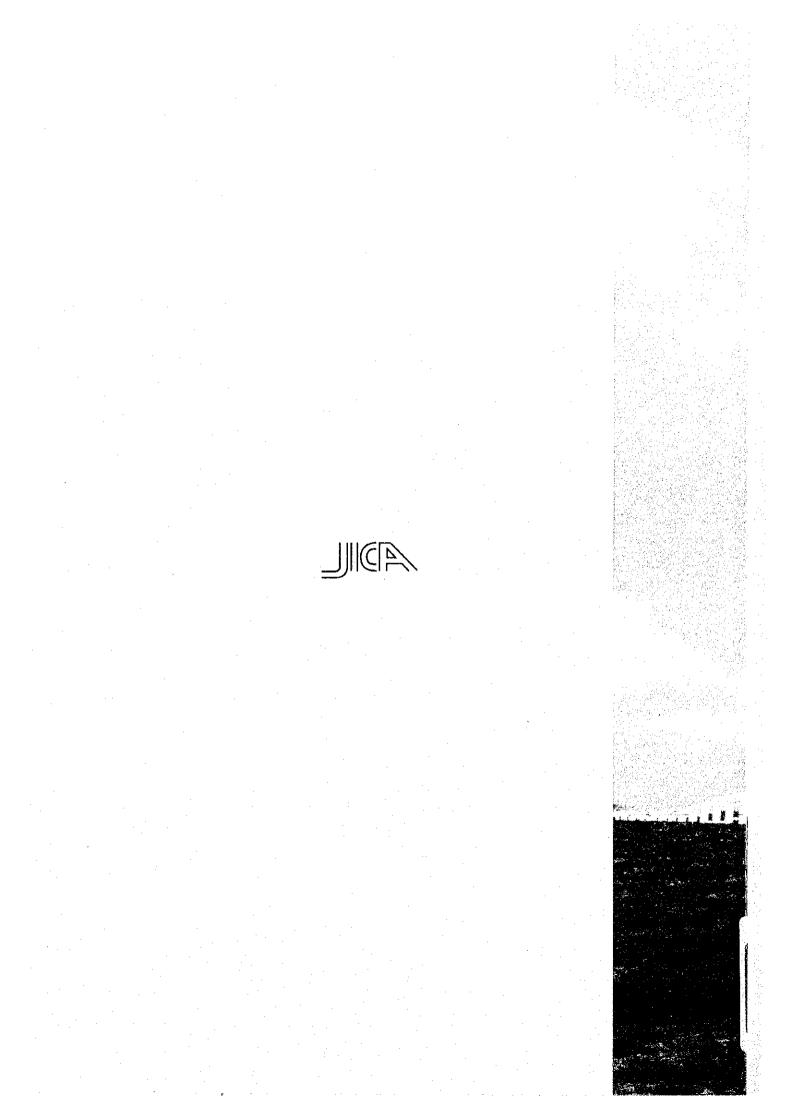
(1) Design Conditions


Displacement at P36, P41

		Unit : mm							
	P	36	P41						
Cause		I-Gieder	PC-Box	PC-Box	I-Girder				
Creep (at the end)		7.33	-8.66	8.67	-3.66				
Thermal Effect	+15 deg	11.99	-25,24	25.24	-5.99				
	-15 deg	-11.99	25.24	-25.24	5.99				
Sub-Total CR+T(+)	+15 deg	19.32	-33.9	33.91	-9.65				
CR+T(-)	-15 deg	-4.66	16.58	-16.57	2.33				
Total		53	.22	43	.56				
	21	.24	18.90						
5	and a sa farmer	D26 La D4	1 . 701						

Displace from P36 to P41 : Plus P41 to P36 : Minus

(2) Detail of Expansion Joint


·

·

. . . .

.

.

