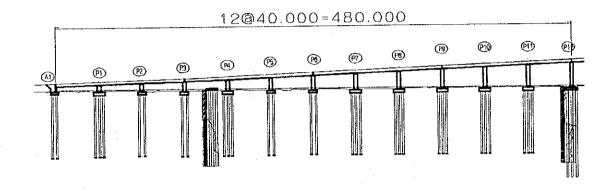

Chapter 4

DESIGN SUMMARY OF APPROACH VIADUCT (PC I GIRDER)

4.1	GEOMETRY OF BRIDGE	4-1
4.2	DESIGN OF SUPERSTRUCTURE	4-3
4.3	DESIGN OF SUBSTRUCTURE	4-19
4.4	DESIGN OF ACCESSORIES	4-28

4. Design Summary of Approach Viaduct (PC -I Girder)

4.1 Geometry of Bridge

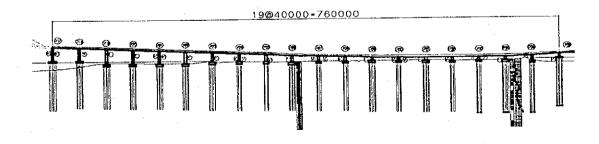

Vinh Long side

Bridge Length: L=480 m

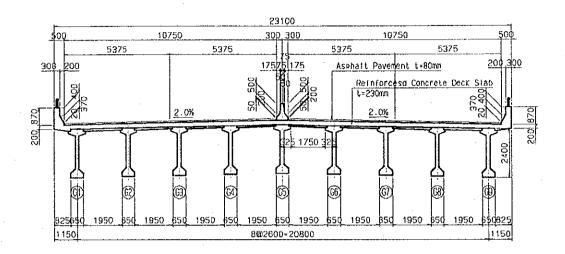
Bridge Type: 3-spans Continuous Connection I Girder

Type of Substructure: 2-Column Pier

Type of Foundation $\,:$ Cast in Place Concrete Pile $\,\Phi\,1.5m$


Can Tho side

Bridge Length: L=760 m


Bridge Type: 3-4 spans Continuous Connection I Girder

Type of Substructure : 2-Column Pier

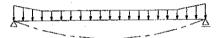
Type of Foundation $\,:$ Cast in Place Concrete Pile $\,\Phi 1.5m$

Typical Cross Section

4.2 Design of Superstructure

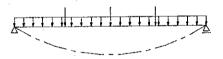
4.2.1 Calculation Model of Section Force for Girder

As for design of girder, superstructure is consider as simple girder during erection. After set up deck slab and connect girders, superstructure is consider as continuous girder. For calculation of force effect due to surfacing and live load, that are calculated in Grid Analysis. Then bearing condition is consider as elastomeric bearing. Also, the software that used it for the analysis is [APOLLO] of Japan.

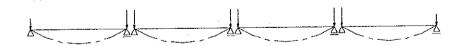

In the approach bridges, it has three structural type.(2 Continuous Span, 3 Continuous Span, 4 Continuous Span) Each type of Grid Model for calculation, which is shown below.

CALCULATION MODEL

STEP-1: MAIN GIRDERS

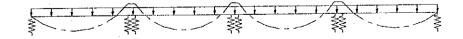

LOAD: GIRDER OWN WEIGHT, PRESTRESSING

STRUCTURE: SIMPLE BEAM


STEP-2: INTERMEDIATE DIAPHRAGM AND DECK SLAB LOAD: DEAD LOAD OF DIAPHRAGM AND DECK SLAB

STRUCTURE: SIMPLE BEAM

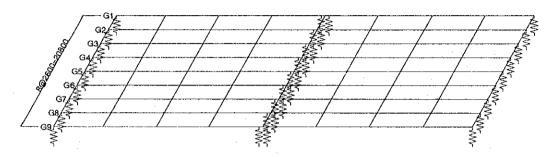
STEP-3: CONNECTION DIAPHRAGM AND END DECK SLAB LOAD: DEAD LOAD OF CONNECTION DIAPHRAGM AND END DECK


STRUCTURE: SIMPLE BEAM

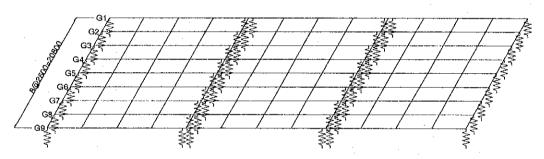
STEP-4: FORMING CONNECTION GIRDER THROUGH TRANSVERSE PRESTRESSING

LOAD: EFFECT OF CREEP DUE TO CHANGING STRUCTURAL SYSTEM

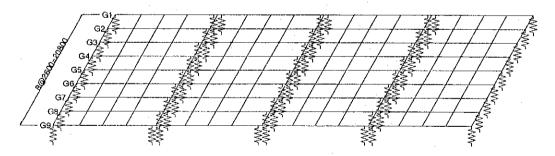
STRUCTURE: CONNECTION BEAM ON ELASTMERIC SUPPORT



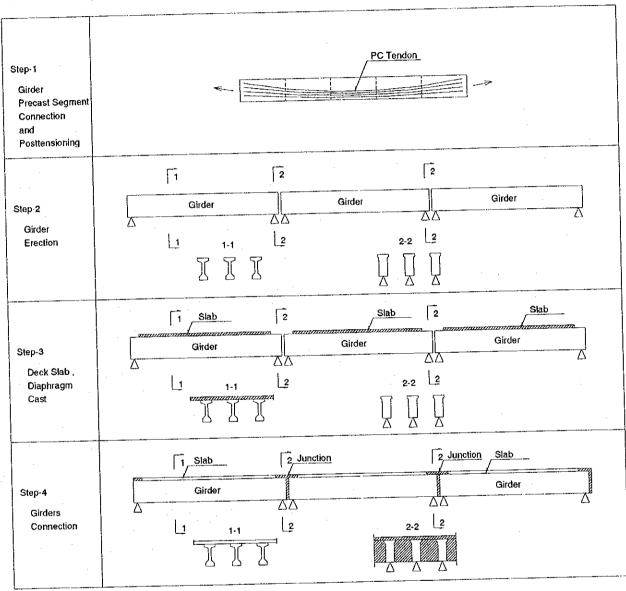
GRID MODEL FOR SUPERSTRUCTURE


LOAD: DEAD LOAD OF SURFACING, LIVE LOAD

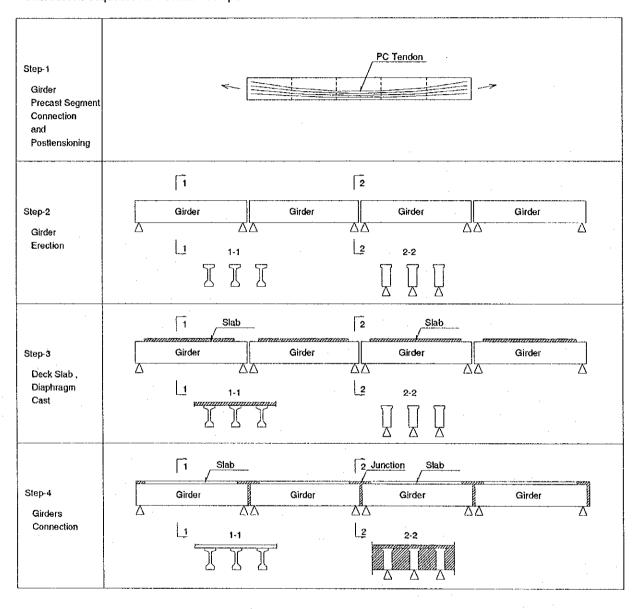
STRUCTURE: CONTINUOUS GRID STRUCTURE ON ELASTMERIC SUPPORT


Type-1: 2 CONTINUOUS SPAN

Type-2: 3 CONTINUOUS SPAN


Type-3: 4 CONTINUOUS SPAN

4.2.2 Construction Sequence


3- Span Continuous I Girder

Construction Sequence for 3 Continuous Span

4 - Span Continuous I Girder

Construction Sequence for 4 Continuous Span

4.2.3 Calculation Result of Sectional Force

The calculation result of section force of main girder is shown to the next page.

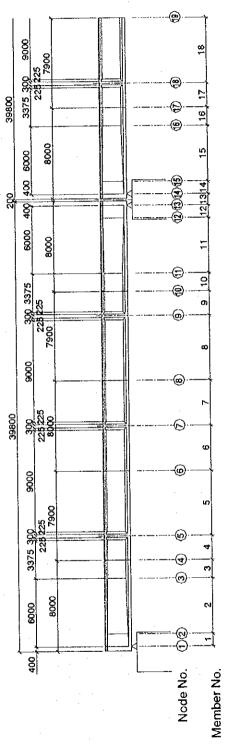
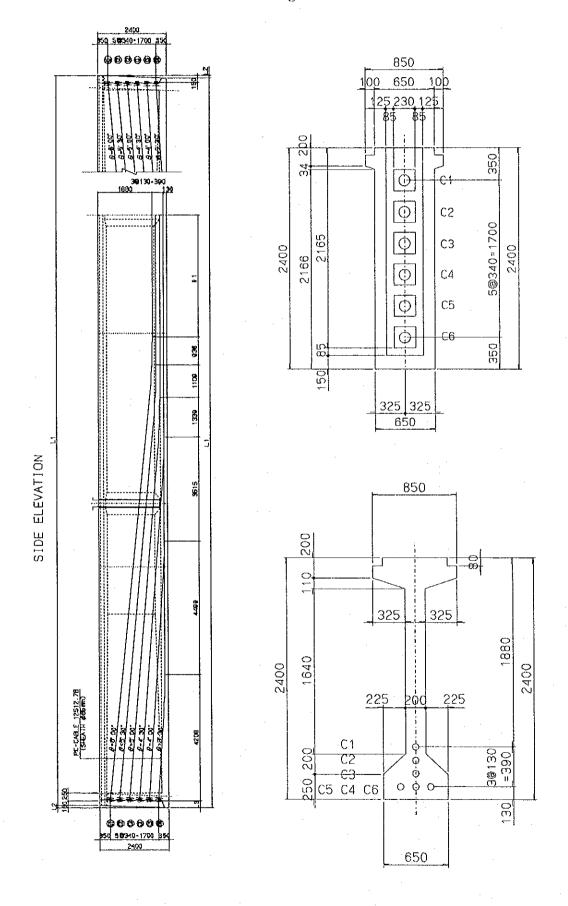
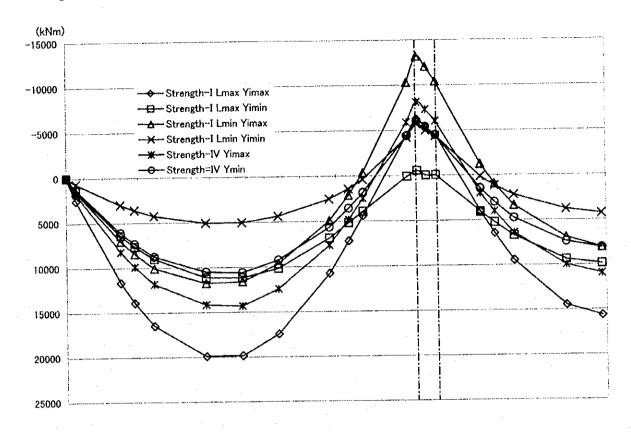
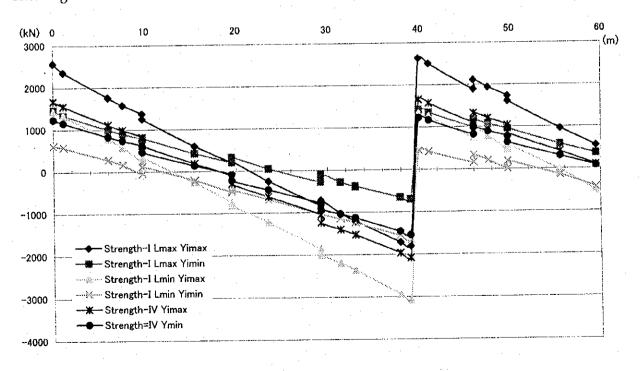



Figure Summary of Section for Calculation of Sectional Force

PC Steel Arrangement of Girder


(1) Unfactored Section Force

on	ntinuous Span Type																										
81		79.78	T	2	S	- 3	30.6	8	2613.7	12	0.0	1110.6	305.8	O.	7865.3	0.0	81519	1				O	0.0	103.7		- [-103.2
Mem-18		80046		2	8	6.68	85.5	8	3	628	9	211.3	9.561	00	7923.6	8	1 2 2 1 3	3	3	3	9 3	O'O	ů.	103.2	O'O	00	-103.2
11		2,00%		200	00	489.9	6.8	8	2504.2	281.2	0.0	211.3	2000	90	29.55	6,0	1121	3	3 3		ş ;	8	0.0	103.2	00	0.0	-103.2
Mem-17		Oak o	£	4.7	0.0	.14.3	108.5	8	1649.3	660	0.0	356.2-1	103 4	0.0	7	00	100 B	3	3		ş	00	00	103.2	00	0.0	107.2
····		01 0 8101	-1	414.6	8	14.3	. 4	8	1049.3	371.5	0.0	1-1-1956	-252.0	0.0	2 10	00	1 7A1A: 8 801A 9 901A	0.00	3 3	3	-33.6	8	0.0	103 2	0.0	0.0	-103.2
Mem-16		2 6	-1	493.7	8	413.6	193.5	8	1274.0 16	400	0.0	1-0.14	-163.8	0.0	7966.8	00			1	3	9	0.0	8	103.2	0.0	0.0	-103.2
		F	1	493.7	8	413.6	199.5	8	1274.0 12	8	0.0	10.1	-163.8 -1	0.0			8	3 3	3	3	33.0	9	00	103.2	0.0	0.0	-103.2
Mem-15	_		1	552.6 4	0.0	-732.4 4	205.0	8	1018.6 12	433.2	0.0	581.9-1441.0-1441.0-1356.1-1356.2-1211.3-1211.3-1110.6	-121.2	00		0	0.000		3	ı		00	0.0	03.2	00	0.0	-103.2
-		_	' L.	552.6 5	0.0	732.4 -77	207.3	8	1018.6 10	432.4	0.0	581.9-15	-127.4	8			1	٩	3	1	1	0.0	8	3.7	0.0	0.0	-103.2
Mem-14		I	' 1	767.9 55	0:0		242.6 3	00	477.3 10	530.8	0.0	2411.4 -15	84.5	0.0					8	ı	Ī	8	8	103.2	8	8	-103.2
_			?l.	767.9 76	0.0	1834,2 -1834,2	242.6 24	8	477.3	530.8 53	0.0	_	-84.5	8				-	2		l.	0.0	9	03.2	0,	00	03.2 -1
Men-13	F		2-39/20		00		250.5 24	00	662.5 47	557.5 53	0.0	25-2411.4	84.2 -8	8			3 3	2881.0-2496.2	8		Ĺ	8	9	03.2	00	0.0	103.2 -10
2	_		8 4848 2	2 825.8	0.0	8 -2105.4		8	. 1	48.6 557	0.0	0,0-2662.5			ŝ	1					6,	90	90	0.0	-00		0.0
Mem-12	L		-:066.2 -5085.8	3 -956.2	00	5 -2205.8	1 -306.1		6 574,7	1	0:0	.4 -2839,0	8 -579.8	E .	8	٠.	- 1	1.	_L	1	0.0	9	0.0	0.0	0.0		0.0
Ž	_			3 -898.3	1	5-1873.5	1 -298.1	0.0	6 462.6	7 45.7		4-2418.4	8 -554.8		1,7	1 2	4		1.	00	0.0	0.0	0.0	0.0	9		
Mem-11	Ŀ		4066.2	1 -898.3	0.0	499.6 1873.5	-298.1	0,0	3 462.6	5 45.7	0.0	0-2418.4	3 -554.8		1		4			- [-			Ĺ	<u> </u>	
Nie	<u> </u> -		-220.6	-683.0	0.0		-262.7	0.0	1003.3	105.6	00	1334.0	9-4633		13	ы.	12	-		0.0	0.0	0.0	0.0	0'0 0	0.0	l	
Mem-10	L	_i_	-220.6	-683.0	0.0	936	-250.6	0.0	1003.3	99.3	0.0	1334.0	463.9		1		-		8	0.0	0.0	0.0	0.0	0.0	00	1	
Me		-	825.1	-624.1	0.0	8.19.	-249.0	0.0	1304.1	140.0	0.0	Ŀ	4353	_	13		^L	8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	
6-6-	1	-	825.1	-624.1	0.0	8.16-	-249.0	0.0	1304.1	140.0	0.0	=	4353		2001	רן ם	~	00	0.0	0.0	0.0	0.0	0.0	0.0	1	1_	
9-mey		-	6180	-545.0	0.0	426.9	-233.5	0:0	1762.1	225.6	00	=	0 80.79	3	0.0	000	1928	8	00	0.0	0.0	0.0	0.0	0.0	0.0	l	
9	1		2081.9	-507.8	0.0	426.9	164.7	0.0	1762.1	0.79	0.0	6211	2,1	6	2	60	192.8	8	0.0	0.0	0.0	0.0	0.0	8	5	2	1.
Nem-8			4393.5	-2967	0.0	1354.5	į	0	2881.6	158.6	00	8	3100		2	0.75	252	8	0	0.0	0,0	0.0	0.0	8	5	3 5	00
	+	_	4393.5	296.2	0.0	24.5	Ę	8	2881.6	153.8	8	٠ ج	,				22	8	00	00	00	0.0	00	00	9	3 8	3
Mons-7		-	5283.9	0.651	8	1683.7	00	00	3205.6	261.3	8	15 g	1	, ,	O .	8	22.	8	00	0.0	8	0.0	00	5	3	3	8
	†	_	\$283.9	-111.8	00	2683	i 25	00		146.6	8		1		00	3748.7	192.2	3	0.0	0.0	8	0.0	3	٤	3	3	3 8
A.may		-	5436.7	35.4	0.0			00		207.3	5	1		k 17	0.0	200	8	8	0.0	0.0	0.0	.00	9	Ę	2		3 8
	,	_	5436.7 5	35.4	8			8		205.8	5					3635	6 6 6	8	0.0	0.0	0.0	0.0	ē	5		3	3 8
1 101		-	1624.8 5	247.0	8			00	6 5 9	335.1	6				ä	1828.4	22.5	0.0	0.0	0.0	0.0	0.0	8	3	3	3 :	3 8
\parallel	,	_	4624.8	284.2	I		1 2	e	2695 9 2695 9	ر ار					0.0	838	187.5	0.0	0.0	0.0	0.0	00	6	3	00	3	3 3
	TEN		3928.8	363.3	1		786		, 1277	318.3	.L				8		88	00	0.0	0.0	0:0	00	2	3 8	3	a :	3 8
\parallel	+	1	3928.8 39	363.3	_				12000	318		3	100.4		8	 	88	0,0	0.0	0.0	0.0	00	5	3 3	3		8 8
	Mem-		3300,4 39;	477.7	1		- 1	1		<u>'</u>	,				8	1134,0 1431.4 1431.4	189.0	0.0	0.0	0.0	0.0	8	6	3 3	O'O	8	8 8
\parallel	+		3300.4 330	422 2											00	1134.0	189.0	0.0	0.0	0.0	0.0	8	2	3	00	8	00 2
	Nem-2	1	732.7 330	647 5 42	ı		100 5	1			_			-524 -12	90	216.7 11.	197.0	0.0	0.0	0.0	0.0	6	3 5	3	8	8	90 8
	1			l		1		Ι.	Ι	1	1	- L.,	L	-52.4 -5	000	216.7 21	97.0 19	0.0	0.0	0.0	9						9 8
	Mem-1	-	0.0 732.7	437.5	1					. I	1		-	52.9 -5	90	200	198,0, 197	0.0	0.0	00	8			1.	-	1	90 8
				Į,	╀	1	<u> </u>	+	+	<u> </u>	1	_	4	-	_	_			ļ	Ŀ	L	Ļ	¥	4	_	4	_
		64	Σ	٥) z	1	۶ (0 2	1	ــــــــــــــــــــــــــــــــــــــ	⊥.	z i	٠.	<u></u>	Z	Ξ	S	Z	Σ	,] z	2			z		s) 2
		P6-P9		ă	i		Š	i		L.L max	(with IM)		L.L.min	(with IM)			ម			£	•		TI3(+)	5		-	(-) LIQ(-)


 8 -3557 37.82 740k 26.27 +184 -28 Ş \$ 1,5 Ŀ Ž ફુ \$ 33.8 £18 8/8 25 12 38.56 38.56 3 28 -3576 11% 请 -2710 -3576 B -2651 S -2703 8 X 3646 88 6 -1649 2 E Š ğ \$ ş -10437 -65 -1427 -6655 .1117 -10437 -10437 .1427 -1427 -507 ŝ -1507 -1117 507 \$ -12048 -1730 -5028 챵 7. 1631--124 # -7316 5.7 -5424 -1810 -6264 \$52 -13194 -1645 -1545 -1216 - 23 - 24 - 27 - 27 -10301 á -1457 -656 -656 -2935 -1559 -1559 -1965 -1716 -1559 -1965 -656 -656 -2935 -2935 -5919 -5919 Men-11 -1532 -1532 -1136 -1233 -331 -1244 -1244 -1136 # 52 E -1529 -331 -1244 -1244 -1529 -1133 -396 **₽** Mem-10 21 % 13 % 7.62 35.70 -285 -385 -23 -1153 -1151 55.0 25 5 5 5 7 8 5 35.70 5.53 -285 -285 -1151 Men-9 -1045 -1243 % 50. -1996 -1243 20, ફ્ 93 [5 -1867 -1040 -1058 -785 -785 -833 Men-8 -676 -618 -618 -458 គ្នា 45. 45. 103 65 919-919--676 ij <u>\$</u> 9/9-ä -820 -229 -752 -752 -92 Ü -257 -208 Ž 9028 11300 1 795 421 0.11 -213 -263 -263 -213 86+01 20 E - 8 Ŋ Ť, **\$** 895 254 39 68 ģ. ğ Š. 줥 Ξ 夏星 57.73 š \$ \$ 13 45 <u>8</u> 25.49 3 2 Ē z Z Σ Σ Σ S Σ c) Z S Z Ś Z Ξ Σ Σ (C) Σ Š Σ Ċ. Z S Z Ś Z S ø, z S ¥ ¥ ¥ ¥i¥ Figure Yin Ti Ϋ́≓ ¥.in ,±,Xe P6-P9 STRENCTH: ENCTH-IV TU(+) RENCTHAV TULE TAC: STRENCTH-I strenczki Line Tülei TRENCTION Lawn TU(+) TRENGTH. TOF.) ENCTH-1 TUC) KENCTILI TUC) TKEN Ž. TRE,

Factored Force Effect

Bending moment

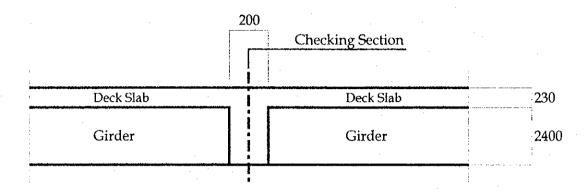
Shearing force

4.2.4 Check from Load and Resistance Factor Design

		Mei	m-1	Mer	n-2	Mei	n-3	Mer	n-4	Mer	n-5
		i .	j	i	j	i	j	i	j	i	j
	Pt	6817.7	6823.9	6823.9	6574.4	6574.4	6586.3	6586.3	6575.8	6575.8	6518.7
	k	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
	Aps	7107	7107	7107	7107	7107	7107	7107	7107	7107	7107
	As	-	-	-	-	-	-	-	-	-	-
	fy	345	345	345	345	345	345	345	345	345	345
	fpu	1860	1860	1860	1860	1860	1860	1860	1860	1860	1860
	fps	1762.45	1768.32	1768.32	1786.7	1786.7	1790.77	1790.77	1795.02	1795.02	1798.05
	f'c	40	40	40	40	40	40	40	40	40	40
	yu	1003.1	982.7	982.7	853.8	853.8	856.1	856.1	858.8	858.8	860.9
	yl	-1426.9	-1447.3	-1447.3	-1576.2	-1576.2	<i>-</i> 1573.9	-1573.9	-1571.2	-1571.2	-1569.1
	ер	-347.7	-459.5	-459.5	-968.6	-968.6	-1077.8	-1077.8	-1206.6	-1206.6	-1309.1
	dp	1350.8	1442.2	1442.2	1822.4	1822.4	1933.9	1933.9	2065.4	2065.4	2170
	ds	-				٠		-	-	-	-
\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	M	6	2549	2549	11655	11655	13925	13925	16500	16500	19913
ا × ا	N(TU+)	0	0	0	0	0	0	0	0	0	0
] <u>ä</u> [N(TU-)	0	0	0	0	0	0	0	0	0	0
	Meff	6	2549	2549	11655	11655	13925	13925	16500	16500	19913
# [N(TU+)	0	0	0	0	0	0	0	0	0	0
🗒 [N(TU-)	0	0	0	0	0	0	. 0	0	0	O
뷾	Mn	16032.3	17231.5	17231.5	22228.9	22228.9	23696.5	23696.5	25428.2	25428.2	26806.2
Strength-I L max Yi max	Mr	14429.1	15508.3	15508.3	20006	20006	21326.9	21326.9	22885.4	22885.4	24125.6
ਲ	Fs	2492.07	6.084	6.084	1.717	1.717	1.532	1.532	1.387	1.387	1.212
	13	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.
	M	-4	1522	1522	7042	7042	8453	8453	10071	10071	11763
l 🔬	N(TU+)	0	0	0	0	o	0	0	0	0	0
Ĕ	N(TU-)	0	. 0	. 0	0	0	0	0	0	0	0
l X	Meff	-2375	1522	1522	7042	7042	8453	8453	10071	10071	11763
Ē	N(TU+)	6818	0	0	0	0	0	0	0	0	0
무	N(TU-)	6818	0	0	. 0	0	0	0	0	0	. 0
gt	Mn	-20383	17231	17231	22229	22229	23697	23697	25428	25428	26806
Strength-I L min Yi max	Mr	-18345	15508	15508	20006	20006	21327	21327	22885	22885	24126
S S	Fs	7.726	10.187	10.187	2.841	2.841	2.523	2.523	2.272	2.272	2.051
		O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.

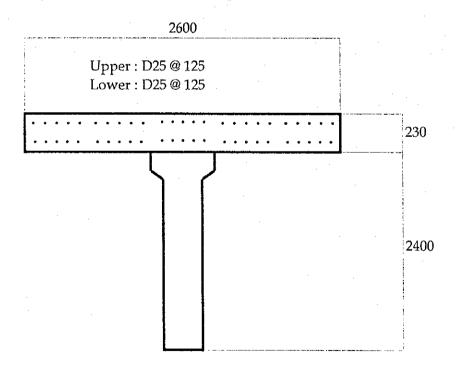
		Men	n-6	Men	n-7	Men	n-8	Men	n-9	Mem	-10
	i j			i	j	i	j	i	j	í	j
	Pt	6518.7	6388.3	6388.3	6518.7	6518.7	6575.8	6575.8	6586.3	6586.3	6574.4
	k	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
	Aps	7107	7107	7107	7107	7107	7107	7107	7107	7107	7107
	As	-	-	-	-		-	-	-		-
	fy	345	345	345	345	345	345	345	345	345	345
	fpu	1860	1860	1860	1860	1860	1860	1860	1860	1860	1860
<u> </u>	fps	1798.05	1798.05	1798.05	1798.05	1798.05	1795.02	1795.02	1790.77	1790.77	1786.7
	f'c	40	40	40	40	40	40	40	40	40	40
\vdash	yu	860.9	860.9	860.9	860.9	860.9	858.8	858.8	856.1	856.1	853.8
ļ	yl	-1569.1	-1569.1	-1569.1	-1569.1	-1569.1	-1571.2	-1571.2	-1573.9	-1573.9	-1576.2
ļ	ер	-1309.1	-1309.1	-1309.1	-1309.1	-1309.1	-1206.6	-1206.6	-1077.8	-1077.8	-968.6
	dp	2170	2170	2170	2170	2170	2065.4	2065.4	1933.9	1933.9	1822.4
	ds		- 1	-	_	-	~	· -	-	-	-
	М	19913	19859	19859	17459	17459	10758	10758	7192	7192	4414
$ \times $	N(TU+)	o	0	0	0	0	0	0	0	0	0
Yi max	N(TU-)	0	0	0	0	0	0	. 0	0	0	0
ξį	Meff	19913	19859	19859	17459	17459	10758	10758	7192	7192	4414
ma	N(TU+)	0	. 0	0	0	0	.0	.0	0	0	0
I.	N(TU-)	0	0	. 0	0	0	0	0	0	0	0
\$	Mn	26806.2	26806.2	26806.2	26806.2	25428.2	25428.2	23696.5	23696.5	22228.9	22228.9
Strength-I L max	Mr	24125.6	24125.6	24125.6	24125.6	22885.4	22885.4	21326.9	21326.9	20006	20006
Str	P-	1.212	1.215	1.215	1.382	1.311	2.127	1.982	2.966	2.782	4.533
	Fs	O.K.	O.K.	O.K.							
	· M	11763	11612	11612	9657	9657	4922	4922	2132	2132	-331
×	N(TU+)	0	0	0	0	. 0	0	0	0	0	. 0
na na	N(TU-)	0	0	0	0	-0	0	0	0	. 0	0
Ϋ́	Meff	11763	11612	11612	9657	9657	4922	4922	2 132	2132	-6699
mir.	N(TU+)	0	0	0	0	0	0	0	0	0	6574
Strength-I L min Yi max	N(TU-)	0	0	0	0	. 0	- 0	. 0	. 0	0	6574
节	Mn	26806	26806	26806	26806	25428	25428	23697	23697	23697	-14211
en g	Mr	24126	24126	24126	24126	22885	22885	21327	21327	21327	-12790
St.	Fs	2.051	2.078	2.078	2.498	2.370	4,650	4.333	10.003		1.909
	rs	O.K.	O.K.	O.K.							

<u></u>		Men	n-11	Men	n-12	Mer	n-13	Men	n-14	Men	า-15
	i j		j	i	j	i	j	i	j	i	j
	Pt	6574.4	6823.9	6823.9	0.0	0.0	6823.9	6823.9	6574.4	6574.4	6586.3
	k	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38	0.38
Aps		7107	7107	7107	7107	7107	7107	7107	7107	7107	7107
	As	-	20421.4	20421.4	20421.4	20421.4	20421.4	20421.4	-	-	
	fy	345	345	345	345	345	345	345	345	345	345
	fpu	1860	1860	1860	1860	1860	1860	1860	1860	1860	1860
	fps	1786.7	1721	1721	1749.13	1762.45	1730.9	1730.9	1795.84	1806.47	1809.5
	f'c	40	40	40	40	40	40	40	40	40	40
	yu	853.8	982.7	982.7	831.9	1003.1	982.7	982.7	853.8	853.8	856.1
	yl	-1576.2	-1447.3	-1447.3	-1598.1	-1426.9	-1447.3	-1447.3	-1576.2	-1576.2	-1573.9
	ер	-968.6	-459.5	-459.5	-347.7	-347.7	-459.5	-459.5	-968.6	-968.6	-1077.8
	dp	1822.4	1442.2	1442.2	1179.6	1350.8	1442.2	1442.2	1822.4	1822.4	1933.9
	ds	-	125.5	125.5	125.5	125.5	125.5	125.5	-	-	-
	M	4413	-4452	-4452	-6264	-5298	-4573	-4573	3985	4036	6447
ا ۾ ا	N(TU+)	0	0	0	0	0	-1427	-1427	-1649	-3566	-3576
l ä	N(TU-)	0	0	0	. 0	0	-1507	-1507	-1729	-3646	-3656
 	Meff	4413	-7588	-7588	-6264	-5298	-7708	-7708	3985	4036	6447
ma	N(TU+)	0	6824	6824	0	0	5396	5396	-1649	-3566	-3576
17 [N(TU-)	0	6824	6824	0	0	5317	5317	-1729	-3646	-3656
[振	Mn	22228.9	-21447.4	-21447.4	-15894	-15740.2	-20229.1	-20229.1	19866.1	19808.7	21263.4
Strength-I L max Yi max	Mr	20006	-19302.6	-19302.6	-14304.6	-14166.1	-18206.2	-18206.2	17879.5	17827.8	19137.1
જ	Fs	4.533	2.544	2.544	2.284	2.674	2.362	2.362	4.487	4.417	2.968
	13	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.
	M	-331	-10301	-10301	-13194	-12048	-10437	-10437	-1294	-1243	936
×	N(TU+)	0	0	. 0	0	0	-1427	-1427	-1649	-3566	-3576
ı	N(TU-)	0	0	0	0	0	-1507	-1507	-1729	-3646	-3656
γ	Meff	-6699	-13436	-13436	-13194	-12048	-13572	-13572	-7662	-7611	936
Bi.	N(TU+)	6574	6824	6824	0	0	5396	5396	4925	3009	-3576
11	N(TU-)	6574	6824	6824	0	0	5317	5317	4845	2929	-3656
gth	Mn	-14211	-21447	-21447	-15894	-15740	-20229	-20229	-13518	-12666	21263
Strength-I L min Yi max	Mr	-12790	-19303	-19303	-14305	-14166	-18206	-18206	-12166	-11399	19137
l s	Fs	1.909	1.437	1.437	1.084	1.176	1.341	1.341	1.588	1.498	20.449
		O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.


		Mem-	16	Mem	-17	Mem-	18
	 	i	j	i	j	<u>i i</u>	<u>i</u>
	Pt	6586.3	6575.8	6575.8	6518.7	6518.7	6388.3
	k	0.38	0.38	0.38	0.38	0.38	0.38
<u></u>	Aps	7107	7107	7107	7107	7107	7107
	As	-	-	-	-		-
	fy	345	345	345	345	345	345
	fpu	1860	1860	1860	1860	1860	1860
	fps	1809.5	1812.59	1812.59	1814.72	1814.72	1814.59
	f'c	40	40	40	40	40	40
 	yu	856.1	858.8	858.8	860.9	860.9	860.9
	yl	-1573.9	-1571.2	<i>-</i> 1571.2	-1569.1	-1569.1	-1569.1
	ep	-1077.8	-1206.6	-1206.6	-1309.1	-1309.1	-1309.1
	dp	1933.9	2065.4	2065.4	2170	2170	2170
<u> </u>	ds	- 1		-		-	
	M	6447	9457	9457	14486	14486	15636
ا _× ا	N(TU+)	-3576	-3575	-3575	-3557	-3557	-3530
E	N(TU-)	-3656	-3655	-3655	-3636	-3636	-3610
ξ	Meff	6447	9457	9457	14486	14486	15636
l ax	N(TU+)	-3576	-3575	-3575	-3557	-3557	-3530
ادًا	N(TU-)	-3656	-3655	-3655	-3636	-3636	-3610
th-J	Mn	21263.4	22988.5	22988.5		24373.3	24391.4
Strength-I L max Yi max	Mr	19137.1	20689.7	20689.7		21936	21952.2
Str	······································	2.968	2.188	2.188		1.514	1.404
	Fs	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.
	M	936	3356	3356			8076
×	N(TU+)	-3576	-3575	-3575	-3557		-3530
ma	N(TU-)	-3656	-3655	-3655			-3610
Strength-I L min Yi max	Meff	936					8076
min	N(TU+)	-3576					-3530
	N(TU-)	-3656	-3655			 	
<u> </u>	Mn	21263	22989				
eng.	Mr	19137	20690				<u> </u>
Str	Ea	20.449					
	Fs	O.K.	O.K.	O.K.	O.K.	O.K.	O.K.

4.2.5 Calculation of Connection Reinforcement

Connection of girder is calculated as R.C. structure. Procedure of calculation is mentioned as follows.


1) Location of Calculated Section

Outline of Profile

2) Figure of Section and Bar Arrangement

Figure of Seciton and Bar Arrangement of Deck Slab

3) Bending Moment

Dc	-5086	(kNm)	
Dw	-2206	(kNm)	
LL max	575	(kNm)	include IM
LL min	-2839	(kNm)	include IM
CR	7844	(kNm)	

4) Strength Design

	k T	0.38
		20421
	mm2)	
fy (1	MPa)	345
fps (MPa)	1762
f'c (1	MPa)	30
yu (mm)	1003
yl (mm)	-1426
	lp	1351
	ls	126
×	M(kNm)	-5298
Strength-I L max Yi max	Meff(kNm)	-5298
l ax	Mn(kNm)	-15740
gth	Mr(kNm)	-14166
- 5 - 5	E.	2.67
- 1 5	Fs	O.K.
.5	M(kNm)	-12048
] Ē	Meff(kNm)	-12048
Strength-I L min Yi max	Mn(kNm)	-15740
gth Yi n	Mr(kNm)	-14166
l ren	Ea	1.176
_ <u>22</u>	Fs	O.K.

4.3 Design of Substructure

4.3.1 Design Condition

(1) Type of Substructure

	Type of Substructure	Trype of Foundation	bearing support
P10	2 Column Type	12 Cast in situ Concrete Pile, dia. 1500mm	Fix
P18	2 Column Type	12 Cast in situ Concrete Pile, dia. 1500mm	Mov

Bearing Support Condition:

Move: Free for the longitudinal direction movement Fix: Fix for the longitudinal direction movement

(2) Materials

1) Concrete

٠,	COXICEC		
	Grade	fc¹	Typical use
	D	30 MPa	In situ concrete : Bored pile
	E	24 MPa	In situ concrete : Pier, Abut, Pile cap
	F	20 MPa	In situ concrete : Base concrete
	G	15 MPa	In situ concrete : Lean concrete, Plain concrete

fc': Compressive strength of concrete at 28 days

Grade	fc'	Ec (MPa)	EXP
D	30 MPa	29440	10.9 1.0E ((/do-a)
E	24 MPa	26330	10.8 x 1.0E-6 (/deg)

Ec: Elastic Modulus

EXP: Coefficient of thermal expansion and contraction

2) Reinforcement Steel

- Specified Yield Strength

Plain Round:

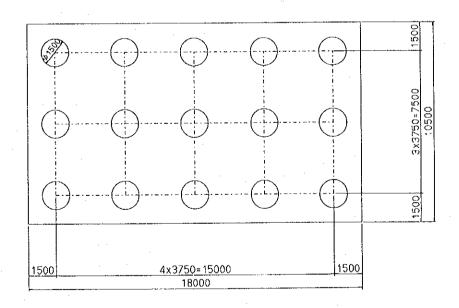
240 MPa

High Yield Deformed:

390 MPa

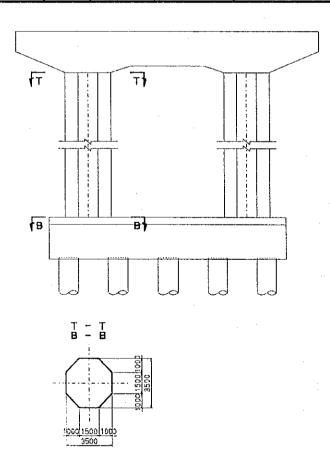
- Modulus of elasticity of reinforcement steel

 $E_S =$


200000 MPa

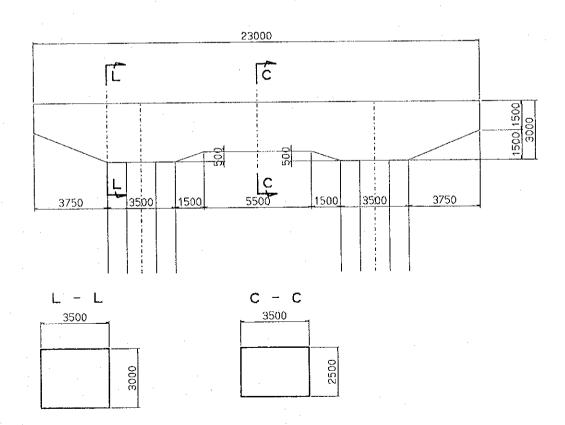
4.3.2 Calculation Result

(1) P10 - Pier

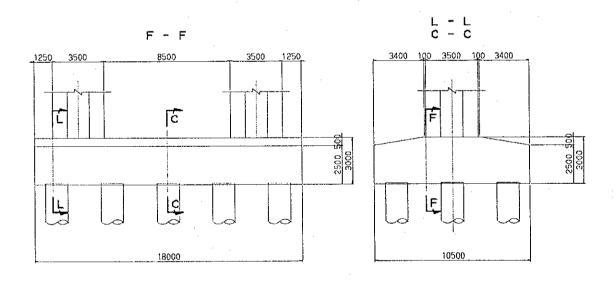

1) Stability Calculation

P10-Pier		Unit	Longtudinal De	erection	Transve	rse De	rection	Remarks
Size of Pile	сар	m						
Diameter, Le	ngth	m	Ç					
Number of I	Piles	nos.		3 * 5	= 15			
reinforcem	ent	cm2		28-	D 28			
Load Cas	е		D+ET D+ET					
i) Stability Calc	ulation							
Displacement	δ	mm	9.9 < OK	15.0	9.2	<ok< td=""><td>15.0</td><td></td></ok<>	15.0	
Bearing Capacity	PNmax	kN	6663.1 < OK	6800.0	6601.0	<ok< td=""><td>6800.0</td><td></td></ok<>	6800.0	
Uplift Capacity	PNmin	kN	-453.2 >OK	-5900.0	-391.2	>OK	-5900.0	
ii) Pile Section								
concrete	σc	N/mm2	5.1 < OK	12.0		<ok< td=""><td>12.0</td><td></td></ok<>	12.0	
reinforcement	σs	N/mm2	184.5 < OK	300.0	240.7	<ok< td=""><td>300.0</td><td>- PALIFICATION VICTORIA</td></ok<>	300.0	- PALIFICATION VICTORIA
shear stress	τ	N/mm2	0.29 < OK	0.42	0.35	<ok< td=""><td>0.42</td><td></td></ok<>	0.42	

b) Column

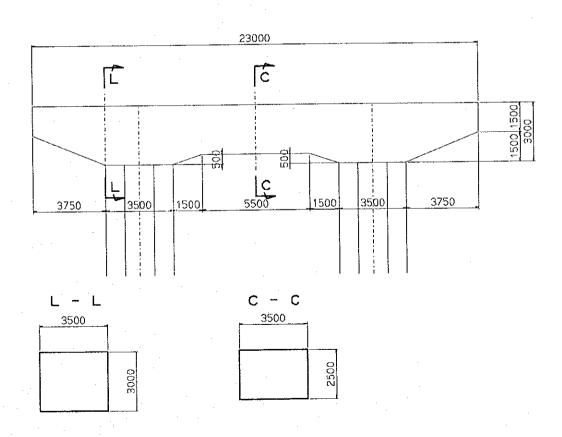

P10-Pier		Unit	Bottom Section		Top Section		Remarks
Continu	c b		350.0		350.0		
Section	h	cm	350.0	0	350.0)	
Area	As1	cm2	(60+5) -	D32	(60+5) -	D32	
Load Case			D + EL		D + E	T	
i)Factored Loac	ls						
Moment	M	kN∙m	-52,381		22,146.0		
Axial Force	N	kN	18,44	7	20,835.0		
Shear Force	S	kN	2,61	7	-		
ii)Result of Stre	ss Checl	(
Stress of	σ c	N/mm2	11.5	OK	5.2	OK	Actual
concrete	σса	N/mm2	12.0		12.0		Allowable
Stress of	σs	N/mm2	200.8	OK	331.0	OK	Actual
reinforcement	σsa	N/mm2	300.0		300.0		Allowable
Shear Stress	τ	N/mm2	0.37	THE PERSON AND THE PERSON	+		Actual
Julear Stress	τa	N/mm2	0.47		-		Allowable

2) Design of Section


a) Beam

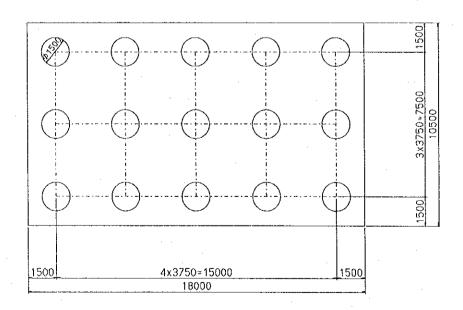
P10-Pier		Unit	Left Section		Center Section		Remarks
	b	cm	350.0)	350.	0	
Section	h	cm	300.0		250.	0	
Area	As1	cm2	29 - D	32	29 - I)32	
Load Ca	se		D+L		D+	ЕТ	
i)Factored Load	s						
Moment	M	kN∙m	-15,904		2,359	9.0	
Axial Force	N	kN	0	A	-647	.0	
Shear Force	S	kN	3,548	3	11,0	79	
ii)Result of Stre	ss Checl	<					
Stress of	σε	N/mm2	3.9	OK	5.6	OK	Actual
concrete	σca	N/mm2	8.0		12.0		Allowable
Stress of	σs	N/mm2	137.6	OK	233.6	OK	Actual
reinforcement	σsa	N/mm2	180.0		300.0		Allowable
Clara Characa	τ	N/mm2	0.42		1.26		Actual
Shear Stress	τa	N/mm2	0.22		0.26		Allowable

c) Base

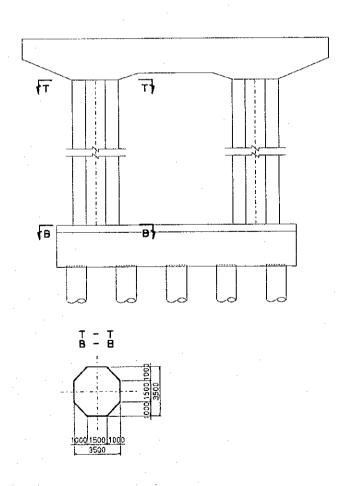

P10-Pier		Unit			Secti	on			Remarks
		Onn	Lef	t	Center		Front		Remarks
6	р	cm	1,050	0,0	1,050	0.0	1,80	0.0	
Section	h	cm	300.0		300	.0	300	.0	
Area	Asl	cm2	83 - I)32	83 - I)32	143 -	D32	
Load Case			D+	EL	D+	L	D+	ET	
i)Factored Load	ls				~ ~~~			-	1.
Moment	M	kN∙m	1,28	31	-27,5	516	32,66	6.0	j
Axial Force	N	kN	0		0		0.0)	
Shear Force	S	kN	55		12,622		5,842		
ii)Result of Stre	ss Check	.							
Stress of	σς	N/mm2	0.2	OK	3.8	OK	2.4	OK	Actual
concrete	σca	N/mm2	12.0		8.0		8.0		Allowable
Stress of	σs	N/mm2	8.5	OK	168.3	OK	129.4	OK	Actual
reinforcement	σsa	N/mm2	300.0		180.0		180.0		Allowable
Shear Stress	· T	N/mm2	0.00		0.47		0.11		Actual
onear otress	τa	N/mm2	0.22		0.22		0.17		Allowable

2) Design of Section

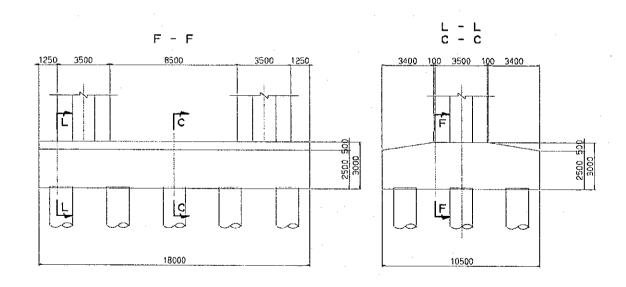
a) Beam


P18-Pier		Unit	Left Section		Center Section		Remarks
	b	cm	350.0)	350.0)	
Section	h	cm	300.0		250.0)	
Area	As1	cm2	23 - D	32	29 - D	32	
Load Cas	se		D+L		D+1	L	
i)Factored Load	s						
Moment	M	kN·m	-18,897		7,364.0		
Axial Force	N	kN	0		-523.0		
Shear Force	S	kN	3,54	4	6,464		
ii)Result of Stre	ss Check	ζ .					
Stress of	σς	N/mm2	4.3	OK	2.8	OK	Actual
concrete	σca	N/mm2	8.0		8.0		Allowable
Stress of	σs	N/mm2	1 <i>7</i> 1.7	OK	151.2	OK	Actual
reinforcement	σsa	N/mm2	180.0		180.0		Allowable
C1 C1	τ	N/mm2	0.42		0.73		Actual
Shear Stress	τа	N/mm2	0.21		0.16		Allowable

(2) P18 - Pier

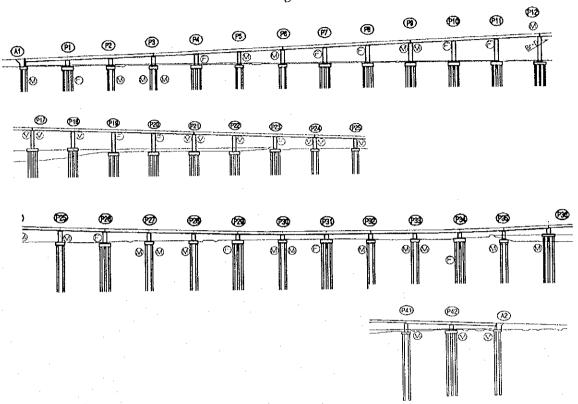

1) Stability Calculation

P18-Pier		Unit	Longtudinal De	erection	Transverse De	erection	Remarks
Size of Pile	сар	m		10.500 >	< 18.000	· · · · · · · · · · · · · · · · · · ·	
Diameter, Le	ength	m	¢	1.500,	L = 50.000		
Number of	Piles	nos.		3 * 5	= 15		
reinforcem	ent	cm2		28-	D28		
Load Cas	se		D + ET		D + ET		
i) Stability Calc	ulation						
Displacement	δ	mm	11.1 < OK	15.0	9.5 < OK	15.0	·
Bearing Capacity	PNmax	kN	6264.7 < OK	7300.0	5263.4 < OK	7300.0	
Uplift Capacity	PNmin	kN			1		
ii) Pile Section	ii) Pile Section						
concrete	σc	N/mm2	11.4 < OK	12.0	10.9 < OK	12.0	
reinforcement	σs	N/mm2	280.3 < OK	300.0	229.2 < OK	300.0	
shear stress	τ	N/mm2	0.23 < OK	0.51	0.22 < OK	0.55	


b) Column

P18-Pier		Unit	Bottom Section		Top Sec	tion	Remarks
C .:	b	cm	350.0		350.0		
Section	h	cm	350.0	1	350.	0	
Area	As1	cm2	(60+5) -]	D 2 9	44 - D	29	
Load Ca	se		D + E	L	D+I	ET	
i)Factored Load	İs			_			
Moment	M	kN·m	-34,353		8,726.0		
Axial Force	N	kN	18,000)	17,312.0		
Shear Force	S	kN	2,229		*		
ii)Result of Stre	ss Checl	ζ .					
Stress of	σς	N/mm2	11.9	OK	3.2	OK	Actual
concrete	σca	N/mm2	12.0		12.0		Allowable
Stress of	σs	N/mm2	248.8	OK	0.0	OK	Actual
reinforcement	σsa	N/mm2	300.0		300.0		Allowable
Shear Stress	τ	N/mm2	0.22		-		Actual
Snear Stress	τa	N/mm2	0.29				Allowable

c) Base


P18-Pier	P18-Pier			Section	n			Remarks
		Unit	Left	Cente	r	Front		Remarks
Coation	b	cm	1,050.0	1,050.0	0	1,80	0.0	
Section	h	cm	300,0	300.0		300	.0	
Area	As1	cm2	83 - D28	83 - D2	25	143 -	D32	
Load Ca	se		D + EL	D+L	,	D+	ET	·
i)Factored Load	ls							
Moment	M	kN·m	776	-26,438	8	32,59	5.0	
Axial Force	N	kN	0	0		0.0)	
Shear Force	S	kN	63	12,462	2	3,838		
ii)Result of Stre	ss Check	(
Stress of	σc	N/mm2	0.0 OI	3.7	OK	2.4	OK	Actual
concrete	σca	N/mm2	12.0	8.0		8.0		Allowable
Stress of	σs	N/mm2	8.0 OI	151.7	OK	129.1	OK	Actual
reinforcement	σsa	N/mm2	300.0	180.0		180.0		Allowable
Shear Stress	τ	N/mm2	0.00	0.47		0.10		Actual
Shear Stress	τ a	N/mm2	0.24	0.24		0.17		Allowable

4.4 Design of Accessories

4.4.1 Design of Bearing

Bearing Condition

(1) Design Condition

1) Virtical Load

	Movable	Fixed
	Support	Support
DC	255.34	469.37
DW	807.54	835.08
CR	96.95	-233.88
LL Max	375.36	683.85
LL Min	-65.67	-248.99
IM max	123.88	225.69
IM min	-21.67	-82.17
Rmax	1659.07	1980.11
Rmin	1072.49	739.41

2) Displacement

		Type I		Type II		Type III
Cause		2-Mov	1-Mov	1-Mov	1-Mov	
Creep (at the end)		-4.13	3.66	-3.66	3.66	
Thermal Effect	+15 deg	11.99	-5.99	5.99	-5.99	
	-15 deg	-11.99	5.99	-5.99	5.99	5.99
Sub-Total CR+T(+)	+15 deg	7.86	-2.33	2.33	-2.33	-
CR+T(-)	-15 deg	-16.122	9.65	-9.65	9.65	-
Total		10.19	<u> </u>	4.66		-2.33
		25.77		19.30		9.65

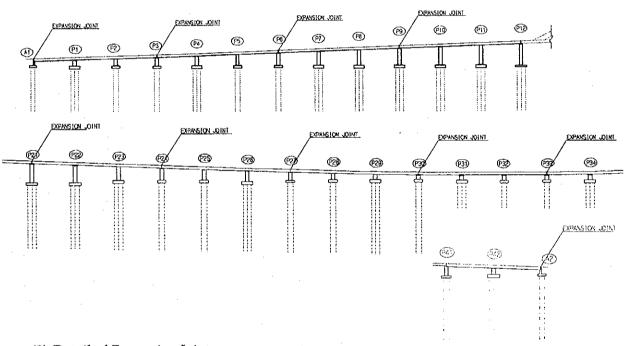
3) Dimension

Table Dimension of Bearing

	Sign	Unit	Mov	Fix
Width of Bearing				
Longitusinal	b	mm	550	550
Transverse	a	mm	550	550
Rubber				
Thickness of each Rubber Layer	te	mm	22	22
Numbers of Rubber Layer	n		5	5
Total Thickness	Σte	mm	110	110
Reinforce Parts	ts	mm	2.0	2.0

4.4.2 Calculate Result

Rotation An	gle at Girder End		Σαε	1/300	1/300	
	Reaction Force	Rmax	1659070	1980110	N	
Minimum R	eaction Force		Rmin	1072490	739410	N
Static Shear	Module of Rigidity of	of Rubber	Go	0.80	0.80	N/mm2
Reduced Sh	ear Module of Rigidi	ty of Rubber	Gt	0.62	0.62	N/mm2
Allowable	Bearing Stress		omax,a	8.00	8.00	N/mm2
	Minimum Compres	sive Stress	omin,a	1.50		N/mm2
			⊿σa	5.00	5.00	N/mm2
	nt Area of Bearing		omax,a	207384	247514	mm2
	aring at Transverse I	b	550	550	mm	
Width of Be	aring at Longitudina	a	550	550	mm	
Requiremen	ıt Area		A	302500	302500	mm2


(each Bearing)

4.4.2 Design of Expansion Joint

(1) Design Conditions

Type	Pier No. , Abut No.	Expansion Girder Length
I	P3,P6,P21,P24,P27,P33,P41	79.9m+39.9m
II	P9,P30	39.9m+39.9m
III	A1,A2	39.9m

Displacement						Unit : mm
	· · · · · · · · · · · · · · · · · · ·	Type I		Type II		Type III
Cause		2-Mov	1-Mov	1-Mov	1-Mov	
Creep (at the end)		-4.13	3.66	-3.66	3.66	3.66
Thermal Effect	+15 deg	11.99	-5.99	5.99	-5.99	-5.99
	-15 deg	-11.99	5.99	-5.99	5.99	5.99
Sub-Total CR+T(+) +15 deg		7.86	-2.33	2.33	-2.33	-
CR+T(-) -15 deg	-16.12	9.65	-9.65	9.65	_
Total		10.19		4.66		-2.33
		25.77		19.30		9.65

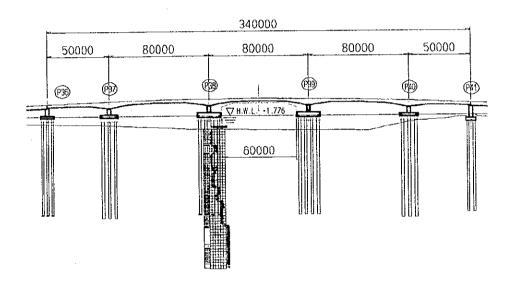
(2) Detail of Expansion Joint

Chapter 5

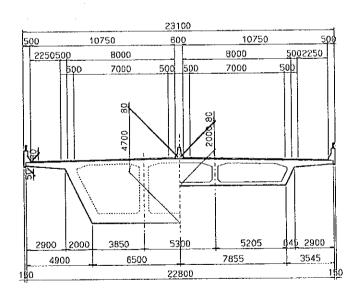
DESIGN SUMMARY OF BRUNCH STREAM BRIDGE (PC BOX GIRDER)

5.1	GEOMETRY OF BRIDGE		5-1
5.2	DESIGN OF SUPERSTRUCTURE	* .	5-4
5.3	DESIGN OF SUBSTRUCTURE		5-25
5.4	DESIGN OF ACCESSORIES		5-67

5. Design Summary of Branch Steam Bridge (PC-Box Girder)


5.1 Geometry of Bridge

Bridge Length: L=340 m

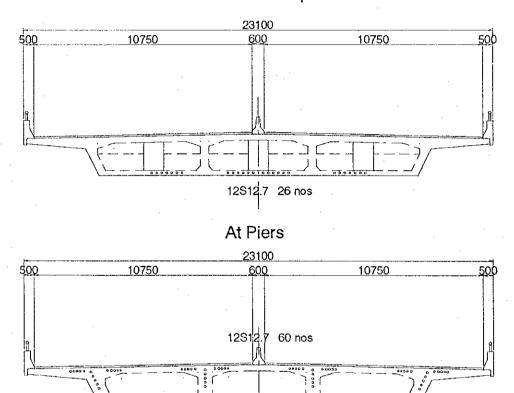

Bridge Type: 5-spans Continuous Box Girder

Type of Substructure : Wall type Pier

Type of Foundation : Cast in Place Concrete Pile Φ 2.0m

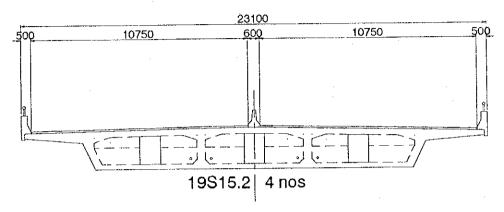
General View

Typical Cross Section

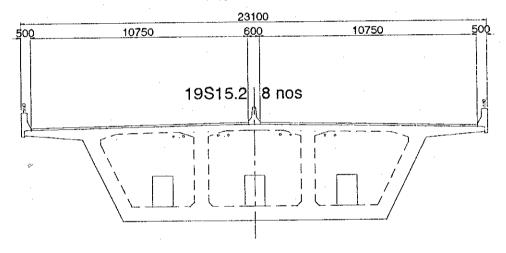

Longitudinal PC Steel: Internal PC Tendon (12S12.7)

and External PC Tendon (19S15.2)

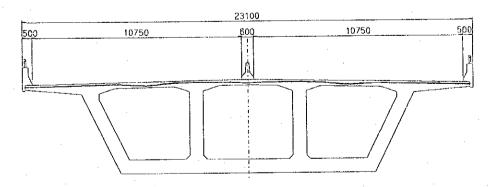
Transverse PC Steel: 1S21.8 (ctc.700)


Internal PC Tendon Arrangement

At Middle of Span



External PC Tendon Arrangement


At Middle of Span

At Piers

Transverse PC Tendon (1S21.8)

5.2 Design of Superstructure

5.2.1 Construction Sequence

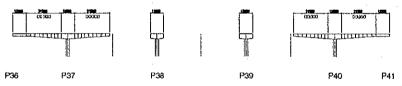
Erection method; Balanced Cantilever Method

Construction Schedule of 5 Continuous Span PC Box Girder Bridge

STAGE-1; Erect Basic Segments

Passing Days; 0 Days

STAGE-2; Balanced Cantilever Election


P38,P39 Erect Basic Segment

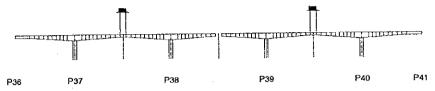
Passing Days; 184 Days

STAGE-3; Erect Closure Segment of Side Span

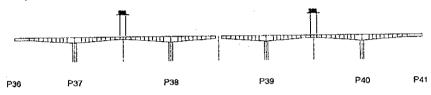
Passing Days; 229 Days


STAGE-4;P37,P39 Temporarily Fixed Free

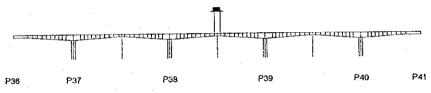
Passing Days; 234 Days


STAGE-5;P38,P39 Balanced Cantilever Erection

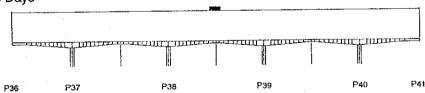
Passing Days; 308 Days


STAGE-6; Erect Closure Segment of Mid Span at P37-P38,P39-P40

Passing Days; 338 Days


STAGE-7; P38,P39 Temporarily Fixed Free

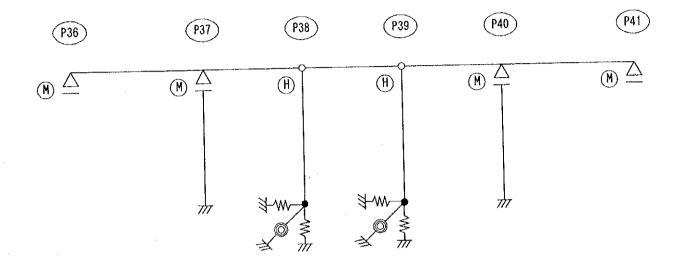
Passing Days ; 343 Days


STAGE-8; Erect Closure Segment of Center Span

Passing Days; 373 Days

STAGE-9; Wearing Surface and Utilities

Passing Days ; 418 Days



5.2.2 Construction Schedule

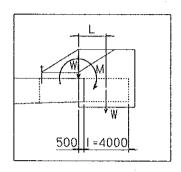
Construction Schedule of 5 Continuous Span PC Box Girder

4 P40 P38 P37 P36 Wearing Surface and utilities 45Days Elect Closure Segment 30Days Elect Closure Segment 30Days Cantilever Election 11Days×9Segment e(60 81)

5.2.3 Calculation Model

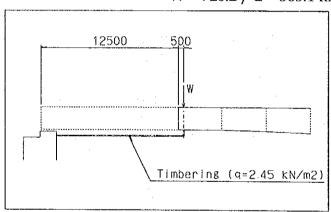
Note

M; Movable Support


H; Hinge

Spring Constant at Bottom of P38,P39

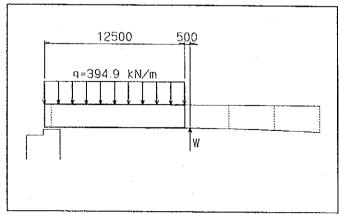
Kv	16094000	KN/m
Kh	457060	KN/m
Kr	559440000	KNm/rad


5.2.4 Loadings

- (1) Construction Load
 - 1) Moving Traveller
 Self Weoght of Traveller; W = 1422 kN
 Bending Moment due to Segment Weight;
 L = 1/2 * 4.0 + 0.5 = 2.5 m
 M = W*L = 1422*2.5 = 3555 kNm

- 2) During Erection of Closure Segment
 - a) Closure Segment of Side Span
 - i). During Erection Girder Width ; 22.8 m

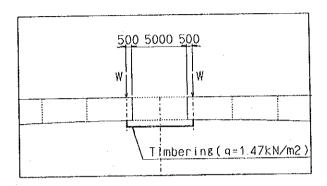
Self weight of Timbering ; 22.8*13.0*2.45 = 726.2 kNW = 726.2 / 2 = 363.1 kN



ii). Erection Completed

Self weight of Girder;

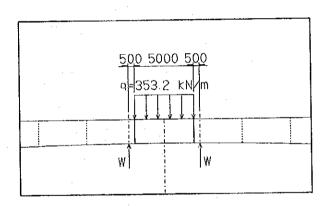
q = 394.9 kN/m


Release Timbering; W = -363.1 kN

b) Closure Segment of Midspan

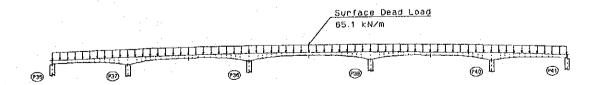
i) During Erection

Self weight of Timbering ; 22.8*6.0*1.47 = 201.1 kN W= 201.1 / 2 = 100.6 kN

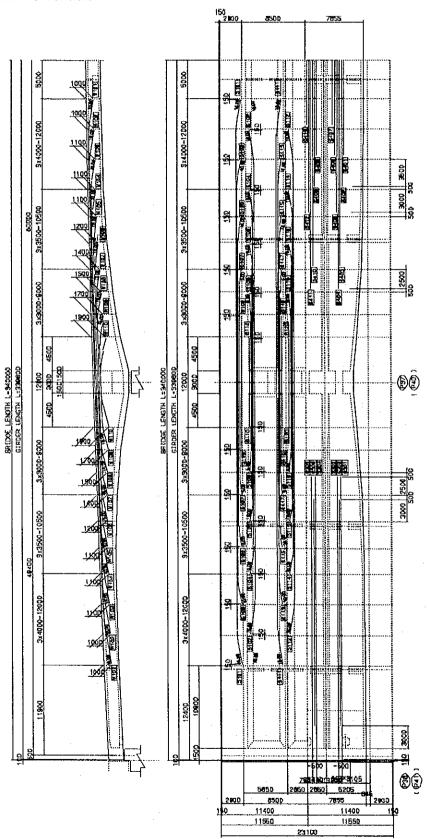


ii) Erection Completed

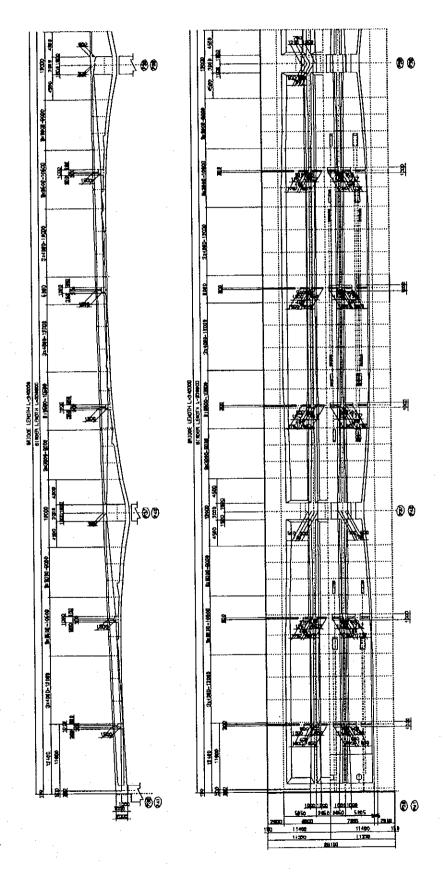
Self weight of Girder;


q = 353.2 kN/m

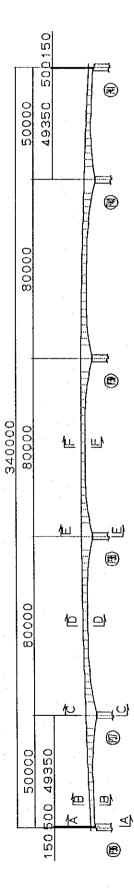
Release Timbering; W = -100.6 kN


(2) Surface Dead Load

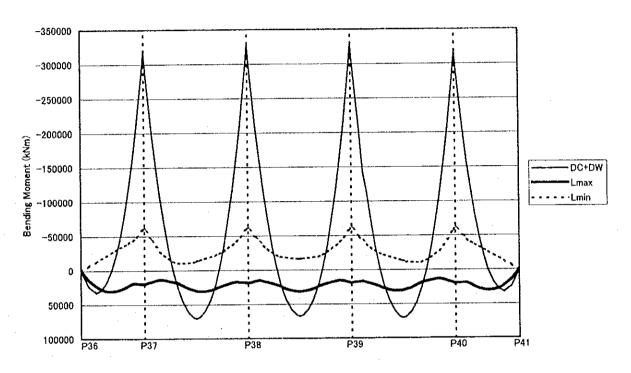
Surface Dead Load include pavement and railing. This Load Intensity distribute uniformly.



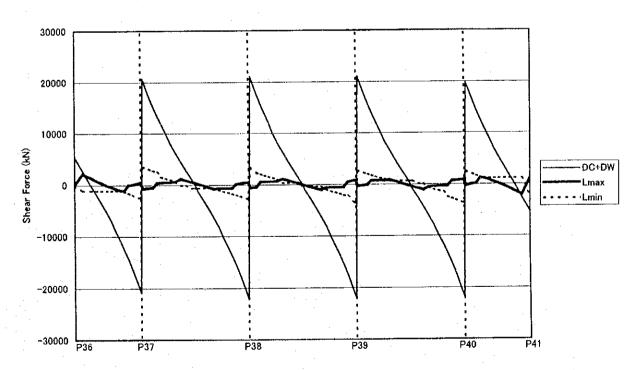
5.2.5 Arrangement of PC Tendon


(1) Internal PC Tendon

(2) External PC Tendon



5.2.6 Summary of Calculation Result(1) Checking Section



(2) Calculation Result of Sectional Force

Bending Moment Diagram

Shear Force Diagram

Section-A Maximum

MINATIFICATI		DC	DW	El.	LL	TÜ	CR	SH	TG	EQ	Force Effect	Remark
Sectional	force								***			
	M (kNm)	0	0	0	0	0	373	0	0	0		
	S(kN)	4534	748	-53	0	-23	176	0	293	125		
	N (kN)	-295	-48	3	0	1	277	0	-19	-119		
Load Con	nbination		· · · · · · · · · · · · · · · · · · ·									
Strength 1	M (kNm)	0	0	0	0	0	187	0	0	0	187	
-	S(kN)	5668	1122	-53	5192	-12	88	0	0	0	12005	
	N (kN)	-369	-72	3	121	1	139	0	0	0	-177	
	Factor	(1.25)	(1.50)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	0	0	0	0	0	187	0	0	0	187	
	S(kN)	5668	1122	-53	4005	-12	88	0	0	0	10818	
	N (kN)	-369	-72	3	93	1	139	0	0	0	-205	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3	M (kNm)	0	0	0	0	0	187	0	0	0	187	
	S (kN)	5668	1122	-53	0	-12	88	0	0	0	6813	
	N (kN)	-369	-72	3	0	1	139	0	0	. 0	-298	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	'M (kNm)	0	0	0	0	0	187	0	0	0	187	
	S (kN)	5668	1122	-53	0	-12	88	0	0	0	6813	
	N (kN)	-369	-72	3	0	1	139	0	0	0	-298	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	0	0	0	. 0	0	187	0	0	0	187	
	'S (kN)	5668	1122	-53	4005	-12	88	0	0	0	10818	
	N (kN)	-369	-72	3	93	1	139	. 0	0	0	-205	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme	M (kNm)	0	0	0	0	0	0	0	0	. 0	0	
Event 1	S (kN)	5668	1122	53	1484	0	0	0	0	125	8346	
	N (kN)	-369	-72	3	35	0	0	0	0	-119	1	
	Factor	(1.25)	(1.50)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

Minimum

	DC	DW	EL	LL	TU	CR	SH	ŤG	EQ	Force Effect	Remark
Sectional force											
M (kNr	n) 0	0	0	0	0	373	0	0	0		
S (kN)	4534	748	-53	0	-23	176	0	293	125		
N (kN)	-295	-48	3	0	1	277	0	-19	-119		
Load Combination										·	
Strength 1 M (kNr	n) 0	. 0	0	0	0	187	0	0	. 0	187	
S (kN)	4081	486	-53	-1992	-12	88	0	0	0	2598	
N (kN)	-266	-31	3	-264	1	139	. 0	0	0	-418	
Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2 M (kNr	n) 0	0	0	0	0	187	0	0	0	187	
S (kN)	4081	486	-53	-1536	-12	88	0	0	0	3054	
N (kN)	-266	-31	3	-204	1	139	0	0	0	-358	
Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3 M (kNr	n) 0	0	0	. 0	0	187	0	0	0	187	
S (kN)	4081	486	-53	0	-12	88	0	0	0	4590	
N (kN)	-266	-31	3	0	1	139	0	0	0	-154	
Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4 M (kNr	n) 0	0	0	0	0	187	0	0	ő	187	
S (kN)	4081	486	-53	0	-12	- 88	0	0	0	4590	
N (kN)	-266	-31	3	0	1	139	0	ō	0	-154	
Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		}
Strength 5 M (kNr	n) 0	0	0	0	0	187	0	0	0	187	
S (kN)	4081	486	-53	-1536	-12	88	0	0	0	3054	
N (kN)	-266	-31	3	-204	1	139	0	0	0	-358	
Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme M (kNr	n) 0	. 0	0	0	0	0	0	0	O	0	
Event 1 S (kN)	4081	486	-53	-569	0	0	0	ō	125	4070	
N (kN)	-266	-31	3	-76	0	0	0	0	-119	-489	1
Factor	(0.90)	(0.65)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

Section-B

Maximun										FO	Force Effect	Dansarle
		DC	DW]	EL	LL	TU	CR	SH	TG	EQ	rorce enecq	Kemark
Sectional fo	orce											
	M (kNm)	26411	4652	-638	23458	-281	2821	0	3505	1338		
	S (kN)	-266	31	53	1350	-23	214	0	294	102		
	N (kN)	11	-1	2	-69	0	334	0	-11	-779		
Load Com	bination											
Strength 1	M (kNm)	33014	6978	-638	41052	-141	1411	0	0	0	81676	
	S (kN)	-333	47	-53	3271	-12	107	0	0	0	3027	
	N (kN)	14	-2	2	75	0	167	0	0	0	256	
,	Factor	(1.25)	(1.50)	(1,00)	(1.75)	(0.50)	(0.50)	(0,50)	(0.00)	(0.00)		
Strength 2	M (kNm)	33014	6978	-638	31668	-141	1411	0	0	. 0	72292	
	S(kN)	-333	47	-53	2523	-12	107	0	0	0	2279	
	N (kN)	14	-2	2	58	0	167	0	0	0	239	
i	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3		33014	6978	-638	0	-141	1411	0	0	0		
	S (kN)	-333	47	-53	0	-12	107	0	0	0	-244	
	N (kN)	14	-2	2	0	0	167	0	0	0	181	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	M (kNm)	33014	6978	-638	0	-141	1411	0	0	C		
_	S (kN)	-333	47	-53	0	-12	107	0	0		-244	ļ
	N (kN)	14	-2	2	0	0	167	0	0		181	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	33014	6978	-638	31668	-141	1411	0	0	(
	S (kN)	-333	47	-53	2523	-12	107	0	- 0		2279	
	N (kN)	14	-2	2	58	0	167	0	0	L	239	
'	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)			<u> </u>
Extreme	M (kNm)	33014	6978	-638	11729	0	0	0	0			}
Event 1	S(kN)	-333	47	-53	935	0	0	0	0			l .
	N (kN)	14	-2	2	22	0	0	0	0	1		1
	Factor	(1.25)	(1.50)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00	<u>) </u>	1

Minimum								- a.i. 1	I		r r.(()	Danask
	" - "	DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Kemark
Sectional f	orce											
	M (kNm)	26411	4652	-638	-12706	-281	2821	0	3505	1338		
	S (kN)	-266	31	-53	-1139	-23	214	0	294	102		
	N (kN)	11	-1	2	42	0	334	0	-11	-779		
Load Con	bination					: 						
Strength 1	M (kNm)	23770	3024	-638	-22236	-141	1411	0	0	0	5190	
	S (kN)	-239	20	-53	-2177	-12	107	0	0	0	-2354	
	N (kN)	10	-1	2	-126	0	167	0	0	0	52	
	Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	23770	3024	-638	-17153	-141	1411	0	0	0	10273	·
	S (kN)	-239	20	-53	-1679	-12	107	0	0	0	-1856	
	N (kN)	10	-1	· 2	-97	0	167	. 0	0	0	81	
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)	·	
Strength 3	M (kNm)	23 <i>7</i> 70	3024	-638	0	-141	1411	0	0	0		
	S (kN)	-239	20	-53	. 0	-12	107	0	0	0	I	
	N (kN)	10	-1	2	0	0	167	0	0	0	178	ŀ
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	M (kNm)	23770	3024	-638		-141	1411	0	. 0	0		
Ĭ	S (kN)	-239	20	-53	0	-12	107	0	0	0		
	N (kN)	10	-1	. 2	0	0	167	0	0	0	178	
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	23770	3024	-638	-17153	-141	1411	0	0	0	1	l.
"	S(kN)	-239	20	-53	1679	-12	107	0	0	0		-1
i	N (kN)	10	-1	2	-97	0	167	0	0		81	
1	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		L
Extreme	M (kNm)	23770	3024	-638	-6353	0	0	0	0	1338		
Event 1	S(kN)	-239	20	-53	-622	0	0	0	0	102	-792	
	N (kN)	10	-1	2	-36	0	0	0	0	-779	-804	
	Factor	(0.90)	(0.65)	(1.00)	(0.50)		(0.00)	(0.50)	(0.00)	(1.00))	

Section-C Maximun

Maximun		***************************************							-			P
*******		DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional I	force											
	M (kNm)	-287773	-36578	-2650	20383	-1170	5744	-2	14553	7441		
	S(kN)	-18816	-2230	-53	441	-23	476	0	294	34	A14	
	N (kN)	568	67	1	-12	0	2469	1	-8	-3275		
Load Con	nbination											
Strength 1	M (kNm)	-359716	-54867	-2650	35670	-585	2872	-1	0	0	-379277	
	5 (kN)	-23520	-3345	-53	774	-12	238	0	0	0	-25918	
	N (kN)	710	101	1	189	0	1235	1	0	0	2237	
	Factor	(1.25)	(1.50)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	-359716	-54867	-2650	27517	-585	2872	-1	0	0	-387430	
ĺ	S(kN)	-23520	-3345	-53	597	-12	238	0	0	0	-26095	
	N (kN)	710	101	1	146	0	1235	1	0	0	2194	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)	l	
Strength 3	M (kNm)	-359716	-54867	-2650	0	-585	2872	-1	0	0	-414947	
	S(kN)	-23520	-3345	-53	0	-12	238	0	0	0	-26692	
	N (kN)	710	101	. 1	0	0	1235	1	0	0	2048	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	M (kNm)	-359716	-54867	-2650	0	-585	2872	-1	0	. 0	-414947	
'	S(kN)	-23520	-3345	-53	0	-12	238	0	0	0	-26692	
	N (kN)	710	101	1	0	0	1235	1	0	0	2048	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	-359716	-54867	-2650	27517	-585	2872	-1	0	0	-387430	
	S(kN)	-23520	-3345	-53	597	-12	238	0	0	0	-26095	
	N (kN)	710	101	1	146	. 0	12 35	1	0	0	2194	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme	M (kNm)	-359716	-54867	-2650	10192	0	0	-1	0	7441	-399601	
Event 1	S (kN)	-23520	-3345	53	221	0	0	0	0	34	-26663	
	N (kN)	710	101	1	54	0	0	1	0	-3275	-2408	
	Factor	(1.25)	(1.50)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

Minimum

		DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional f	orce											
	M (kNm)	-287773	-36578	-2650	- 6 2695	-1170	5744	2	14553	7441		
	S (kN)	-18816	-2230	-53	-2664	-23	476	. 0	294	34		
	N (kN)	568	67	1	77	0	2469	1	-8	-3275		
Load Com	bination											
Strength 1	M (kNm)	-258996	-23776	-2650	-109716	-585	2872	-1	0	0	-392852	
	S (kN)	-16934	-1450	-53	-6897	-12	238	0	. 0	0	-25108	
	N (kN)	511	44	1	-21	0	1235	1	0	0	1771	
	Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	-258996	-23776	-2650	-84638	-585	2872	-1	0	0	-367774	
	5 (kN)	-16934	-1450	-53	-5320	-12	238	. 0	0	0	-23531	
	N (kN)	511	44	1	-16	0	1235	1	. 0	0	1776	
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3		-258996	-23776	-2650	. 0	-585	2872	-1	0	0	-283136	
	S(kN)	-16934	-14 50	-53	. 0	-12	238	0	0	0	-18211	:
	N (kN)	511	44	1	0	0	1235	1	0	0	1792	. :
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	M (kNm)	-258996	-23776	-2650	0	-585	2872	-1	0	0	-283136	
	S(kN)	-16934	-1450	-53	0	-12	238	0	0	0	-18211	
,	N (kN)	511	44	1	0	0	1235	1	0	0		
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		-
Strength 5	M (kNm)	-258996	-23776	-2650	-84638	-585	2872	-1	0	0	-367774	
	S (kN)	-16934	-1450	-53	-5320	-12	238	0	. 0	0	-23531	
	N (kN)	511	44	1	-16	0	1235	1	0	0	1776	
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme	M (kNm)	-258996	-23776	-2650	-31348	Ó	Ó	-1	Ó	7441	-309330	
Event 1	S (kN)	-16934	-1450	-53	-1971	0	ō	: 0	0	34	-20374	
	N (kN)	511	44	1	-6	0	0	1	0	-3275		
	Factor	(0.90)	(0.65)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

Section-D Maximun

Maximun						OT Z	CD T	SH	TG	EQ	Force Effect	Domark
		DC	DW	EL.	LL	TU	CR	511	10	EQ	Poice Enect	Remark
Sectional f	orce											
	M (kNm)	55293	9385	-2244	30188	366	14035	1	11999	-3263		
	S(kN)	105	-58	10	345	38	-89	0	-63	-94		
	N (kN)	-2	1	0	-11	0	5012	1]	1	-6290		
Load Com	bination											
Strength 1	M (kNm)	69116	14078	-2244	52829	183	7018	1	0	0	140981	
	S(kN)	131	-87	10	2882	19	-45	0	0	0	2910	
	N (kN)	-3	2	0	47	0	2506	1	0	0	2553	
	Factor	(1.25)	(1.50)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	69116	14078	-2244	40754	183	7018	1	0	0	128906	
U	S (kN)	131	-87	10	2223	19	-4 5	0	0	0	2251	
	N (kN)	-3	2	0	36	0	2506	1	0	0	2542	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3	M (kNm)	69116	14078	-2244	- 0	183	7018	1	0	0	88152	
	S (kN)	131	-87	10	0	19	-45	0	0	0	28	
	N (kN)	-3	2	0	0	0	2506	·	0	0	2506	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		ļ
Strength 4	M (kNm)	69116	14078	-2244	0	183	7018	1	0	0		1
	S(kN)	131	-87	10	0	19	-45	0	0			1
	N (kN)	-3	2	0	0	0	2506	1	0			
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		ļ <u> </u>
Strength 3	M (kNm)	69116	14078	-2244	40754	183	7018	1	0			1
. °	S (kN)	131	-87	10	2223	19	-45	0	0	(-1
	N(kN)	-3	2	0	36	0	2506	4	0	(1
1	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)			ļ
Extreme	M (kNm)	69116	14078	-2244	15094	0	C	1	0			· ł
Event 1	S (kN)	131	-87	10	824	0	0	0	0	· 		·1
	N (kN)	-3	2	0	14	0	(1				
	Factor	(1.25)	(1.50)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)	<u> </u>

Minimum	DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional force				Î							
M (kNm)	55293	9385	-2244	-13077	366	14035	1	11999	-3263		
S (kN)	105	-58	10	-642	38	-89	0	-63	-94		
N (kN)	-2	1	0	11	0	5012	1	1	-6290		
Load Combination										· · · · · · · · · · · · · · · · · · ·	
Strength 1 M (kNm)	49764	6100	-2244	-22885	183	7018	1	0	. 0	37937	
S(kN)	95	-38	10	-2746	19	-45	0	0	0	-2705	
N (kN)	-2	1	0	-54	0	2506	1	0	0	2452	
Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2:M (kNm)	49764	6100	-2244	-17654	183	7018	1	0	0		
S (kN)	95	-38	10	-2118	19	-45	0	0	0	-2077	
N (kN)	-2	1	. 0	-42	0	2506	1	. 0	0	2464	
Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3;M (kNm)	49764	6100	-2244	0	183	7018	1	0	0		
S (kN)	95	-38	10	0	19	-45	0	0	0	41	
N (kN)	-2	1	0	. 0	0	2506	1	0	0	2506	
Factor	(0,90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4 M (kNm)	49764	6100	-2244	0	183	7018	1	0	0	·	
S(kN)	95	-38	10	0	19	-45	0	0	0	41	Ĭ
N (kN)	-2	1	0	0	0	2506	1	0	0		
Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5 M (kNm)	49764	6100	-2244	-17654	183	7018	1	0		1	
S (kN)	95	-38	10	-2118	19	-45	0,	0		-2077	
N (kN)	-2	1	0	-42	0	2506	1	0	(2464	
Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)	4	<u> </u>
Extreme M (kNm)	49764	6100	-2244	-6539	0	0	1	0	-3263		-1
Event 1 S(kN)	95	-38	10	-785	0	0	0	0	-94		-
N (kN)	-2	1	0	-16	0	0	1	- 0	-6290	-6306	
Factor	(0.90)	(0.65)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)	

Section-E Maximun

Maximun												
		DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional:	force											
	M (kNm)	-292457	-41229	-1838	19189	1903	6452	-4	9446	5711		
	S (kN)	-19679	-247 2	10	474	38	299	0	-63	-57		
	N (kN)	200	25	0	-4	0	769	1	0	-8954		
Load Con	abination							,				
Strength 1	M (kNm)	-365571	-61844	-1838	33581	952	3226	-2	0	0	-391496	
	S (kN)	-24599	-3708	10	949	19	150	0	0	0	-27179	
	N (kN)	250	38	0	67	0	385	1	0	0	741	
	Factor	(1.25)	(1.50)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)	<u> </u>	
Strength 2	M (kNm)	-365571	-61844	-1838	25905	952	3226	-2	0	0	-399172	
	S (kN)	-24599	-3708	10	732	19	150	0	0	0	-27396	
	N (kN)	250	38	0	51	0	385	1	0	0	725	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3	M (kNm)	-365571	-61844	-1838	0	952	3226	-2	0	0	-425077	
	S(kN)	-24599	-3708	10	0	19	150	0	0	0	-28128	
i	N (kN)	250	38	0	0	0	385	1	0	0	674	
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	l:M (kNm)	-365571	-61844	-1838	. 0	952	3226	-2	0	0	-425077	
	S (kN)	-24599	-3708	10	0	19	150	. 0	0	0	-28128	
	N (kN)	250	- 38	0	0	. 0	385	1	0	0	674	,
	Factor	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	-365571	-61844	-1838	25905	952	3226	-2	. 0	0	-399172	
i	S (kN)	-24599	-3708	10	732	19	150	0	. 0	0	-27396	
	N (kN)	250	38	0	- 51	0	385	1	0	0	725	
	Factor	(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme	M (kNm)	-365571	-61844	-1838	9595	0	0	-2	0	5711	-413949	
Event 1	S (kN)	-24599	-3708	10	271	0	0	0	0	-57	-28083	l
	N (kN)	250	38	0	19	0	0	1	0	-8954	-8646	
	Factor	(1.25)	(1.50)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

Minimum

		DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional	force											
	M (kNm)	-292457	-41229	-1838	-63441	1903	6452	-4	9446	5711		
	S (kN)	-19679	-2472	10	-2793	38	299	0	-63	-57		
	N (kN)	200	25	0	27	0	769	1	0	-8954		
Load Con	abination											
Strength 1	l M (kNm)	-263211	-26799	-1838	-111022	952	3226	-2	0	0	-398694	
	S(kN)	-17711	-1607	10	-7263	19	150	. 0	0	0	-26402	
	N (kN)	180	16	. 0	-9	. 0	385	1	0	0	573	
	Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	2 M (kNm)	-263211	-26799	-1838	-85 61 5	952	3226	-2	0	0	-373317	
	S (kN)	-17711	-1607	10	-5603	19	150	0	0	0	-24742	
	N (kN)	180	16	0	-7	0	385	1	0	0	575	
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3	M (kNm)	-263211	-26799	-1838	. 0	952	3226	-2	0	0	-287672	
	S (kN)	-1 <i>7</i> 711	-1607	10	0	19	150	. 0	0	0	-19139	
	N (kN)	180	16	0	0	0	385	1	0	0	582	
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	l M (kNm)	-263211	-26799	1838	0	952	3226	-2	0	. 0	-287672	
	S (kN)	-17711	-1607	10	0	19	150	0	0	0	-19139	
	N (kN)	180	16	0	0	0	385	1	Ô	0	582	
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5	M (kNm)	-263211	-26799	-1838	-85645	952	3226	-2	0	0	-373317	
_	S (kN)	-17711	-1607	10	-5603	19	150	0	0	0	-24742	
	N(kN)	180	16	0	-7	0	385	1	0	0	575	·
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Extreme	M (kNm)	-263211	-26799	-1838	-31721	Ó	. 0	-2	0	5711	-317860	
Event 1	S(kN)	-17711	-1607	10	-2075	. 0	0	0	0	-57	-21440	1
	N(kN)	180	16	0	-3	0	0	1	0	-8954	-8760	
	Factor	(0.90)	(0.65)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00)		

S	ection-F	
•	4	

Maximun							en T	T	rg T	EQ	Force Effect	Remark
		DC	DW	EL	LL	TU	CR	SH	16	EQ. [roice micci	Kemark
Sectional force												
M (kN	m)	54020	6989	-1753	31513	-1046	13523	1	9000	-1		
S (kN)		168	0	0	0	0	-49	0	0	-378		
N (kN)	1087	-26	37	-845	-1305	4794	1	-197	20		
oad Combinatio								<u></u>				
Strength 1 M (kN	lm)	67525	10484	-1753	55148	-523	6762	1	0	0	137644	
S(kN)		210	0	0	2928	0	-25	0	0	0	3113	
N (kN)	1359	-39	37	1243	-653	2397	1	0	0	4345	
Factor	·	(1.25)	(1.50)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2 M (kN	lm)	67525	10484	-1753	42543	-523	6762	1	0	0	125039	
S (kN)		210	0	0	2259	0	-25	0	0	0	2444	
N (kN		1359	-39	37	959	-653	2397	1	0	0	4061	ľ
Factor		(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3 M (kN		67525	10484	-1753	0	-523	6762	1	0	0	82496	
'S (kN		210	0	0	0	0	-25	0	0	0	185	•
N (kN		1359	-39	37	0	-653	2397	1	0	0	3102	
Factor		(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4 M (k)		67525	10484	-1753	0	-523	6762	1	0	0	82496	1
5 (kN		210	0	0	0	0	-25	0	0	0	185	[
N (kN	L	1359	-39	37	0	-653	2397	1	0	0	3102	1
Facto	·	(1.25)	(1.50)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 5:M (k)	_	67525	10484	-1753	42543	-523	6762	1	0	0	125039	
S (kN		210	0	0	2259	0	-25	0	0	0	2444	
N (k)	<u>+</u> -	1359	-39	37	959	-653	2397	1	0	0	4061	
Facto		(1.25)	(1.50)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		<u> </u>
Extreme M (k)		67525	10484	-1753	15757	0	0	1	0	-1	92013	
Event 1 S (kN		210		0	837	0	0	0	0	-378	669	
N (k)	-	1359	-39	37	355	0	0	1	0	20	1733	
Facto		(1.25)		(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00))	

M	iı	٦i	n	u	Ħ	n

	T	DC	DW	EL	LL	TU	CR	SH	TG	EQ	Force Effect	Remark
Sectional f	orce											
	M (kNm)	54020	6989	-1753	-15829	-1046	13523	1	.9000		···	
	S(kN)	168	0	0	-292	0	-49	0	0	-378		
	N (kN)	1087	-26	37	710	-1305	4794	1	-197	20		
Load Com	bination											· · · · · · · · · · · · · · · · · · ·
Strength 1	M (kNm)	48618	4543	-1753	-27701	-523	6762	1	0	0	29947	
Ŭ	S (kN)	151	0	0	-2928	0	-25	0	0	0	-2802	
	N (kN)	978	-17	37	-1479	-653	2397	1	0	. 0	1264	
	Factor	(0.90)	(0.65)	(1.00)	(1.75)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 2	M (kNm)	48618	4543	-1753	-21369	-523	6762	1	0	0	36279	
	S(kN)	151	0	0	-2259	0	-25	0	0	0	-2133	ļ
	N (kN)	978	-17	37	-1141	-653	2397	1	0	0	1602	
	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 3	M (kNm)	48618	4543	-1753	0	-523	6762	. 1	0	0	57648	1
	S (kN)	151	0	0	0	0	-25	0	0	0	126	I
	N (kN)	978	-17	37	0	-653	2397	1	0	0	2743	
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		
Strength 4	M (kNm)	48618	4543	-1753	0	-523	6762		<u> </u>	0	57648	•
	S(kN)	151	0	0	0	0	-25	0	<u> 0</u>	0	126	4
	N (kN)	978	-17	37	. 0	-653	23 97	1	0	0	2743	
	Factor	(0.90)	(0.65)	(1.00)	(0.00)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)		ļ
Strength 5	M (kNm)	48618	4543	-1753	-21369	-523	6762	1	0	0	36279	-i
ľ	S(kN)	151	0	0	-2259	0	-25	0	0	0	-2133	-1
	N (kN)	978	-17	37	-1141	-653	2397	·	0	ļ	1602	4
· ·	Factor	(0.90)	(0.65)	(1.00)	(1.35)	(0.50)	(0.50)	(0.50)	(0.00)	(0.00)	· · · · · · · · · · · · · · · · · · ·	ļ
Extreme	IM (kNm)	48618	4543	-1753	-7915	0	0	1	0			-
Event 1	S (kN)	151	0	0	-837	0	0	0	0		·	-l
	N (kN)	978	-17	37	-423	0	0	. 1	0	ļ.,	·	<u> </u>
1	Factor	(0.90)	(0.65)	(1.00)	(0.50)	(0.00)	(0.00)	(0.50)	(0.00)	(1.00))	1

(3) Check from Load and Rsistance Factor Design

(1) Result of Checking for Strength and Extreme event

		Section-A	A	Section-B	1-B	Section-C	ر ب	Section-D	Q	Section-E	p-E	Section-F	n-F
		Force	Factored										
	/	Effect	Resistance										
Strength 1	M (kNm)		718971	> 91676 <	289014	392852 <	4202603	140981 <	1842508	398694 <	4202603	137644 <	1842508
)	S (kN)	12005 <	44183	3027 <	52949	25918 <	()9866	2910 <	64678	> 62172	99594	3113 <	64678
	N (N)	418 <	3687121	256 <	2953333	2237 <	5768367	2553 <	2954778	741 <	5768367	4345 <	2954778
Strength 2	M (kNm)	187 <	718971	72292 <	289014	387430 <	4202603	128906 <	1842508	399172 <	4202603	125039 <	1842508
>	S (kN)	10818 <	44183	> 5227	52949	26095 <	()9866	2251 <	64678	27396 <	99594	2444 <	64678
	N (KN)	358 <	3687121	239. <	2953333	2194 <	5768367	2542 <	2954778	725 <	5768367	4061 <	2954778
Strength 3	M (kNm)	187 <	718971	40624 <	289014	414947 <	4202603	88152 <	1842508	425077 <	4202603	82496 <	1842508
) 	S (KN)	6813 <	44183	244 <	52949	26692 <	09866	41 <	64678	28128 <	99594	185 <	64678
	N (KN)	298 <	3687121	> 181	2953333	2048 <	2768367	2506 <	2954778	> 429	5768367	3102 <	2954778
Strength 4	M (kNm)	187 <	176817	40624 <	289014	414947 <	4202603	88152 <	1842508	425077 <	4202603	82496 <	1842508
.	S (KN)	6813 <	44183	244 <	52949	26692 <	09860	41 <	64678	28128 <	99594	185 <	64678
	Z (KN)	> 368	3687121	> 181	2953333	2048 <	2768367	2506 <	2954778	674 <	5768367	3102 <	2954778
				-									
Strength 5	M (kNm)	187 <	718971	72292 <	289014	387430 <	4202603	128906 <	1842508	399172 <	4202603	125039 <	1842508
) 	S (kN)	10818 <	44183	> 6222	52949	26095 <	09860	2251 <	64678	> 396 <	99594	2444 <	64678
	N (KN)	358 <	3687121	> 539 <	2953333	2194 <	2768367	2542 <	2954778	725 <	5768367	4061 <	2954778
Extreme Event	M (kNm)	v 0	718971	52421 <	289014	399601 <	4202603	92782 <	1842508	413949 <	4202603	92013 <	1842508
(Earthquake)	S (KN)	8346 <	44183	792 <	52949	26663 <	09860	812 <	64678	28083 <	99594	1064 <	64678
	Z (KZ)	522 <	3687121	804 <	2953333	2724 <	2768367	> 9089	2954778	> 0928	5768367	1733 <	2954778

1) Calculation of Frexural Resistance

Calculation of Flexural Resistance

Calculation of Flexural Resistance	Sign	Unit	Section-A	Section-B	Section-D	Section-F	Section-H	Section-J
Factored Flexural Resistance	M,	Nmm		2.89E+10	4.203E+11	1.843E+11	4.203E+11	1.843E+11
Resistance Factor	φ,		0.95	0.95	0.95	0.95		
Nominal Resistance	$M_{\rm n}$	Nmm		3.042E+10	4.424E+11	1.939E+11	4.424E+11	1.939E+11
	A _{ps}	mm ²	30564.8	30564.8				
Area of prestressing steel Average stress in prestressing steel at nominal bending resistance	f _{ps}	МРа	400	840			1466	1319
Yield strength of prestressing steel	f_{py}	MPa	1570	1570	1570	1570	1570	1570
Specified tensile strength of prestressing steel	f_{pu}	MPa	1860	1860	1860	1860	1860	1860
Specified tensile strength of prestressing seed	k		0.392	0.392	0.392	0.392	0.392	0.392
Distance from extreme compression fiber to the centroid of prestressing tendons	d _P	mm	729	384	4118	2020	4118	
Specified yield strength of reinforcing bars	f _v	MPa	390	390	390	390	390	390
Area of nonprestressed tension reinforcement	A _s	mm ²	37516	28501	40708	28049	40708	28049
Distance from extreme compression fiber to the centroid of nonprestressed tensile reinforcement	d _s	mm	1774	1755	4471	2377	4471	2377
	A's	mm ²	28501	37516	22620	44730	22620	44730
Area of compression reinforcement Distance from extreme compression fiber to centroid of compression reinforcement	d's	mm	245			230	329	230
Specified yield strength of compression reinforcement	f'y	MPa	390	390	390	390	390	390
Specified compressive strength of concrete at 28 days, unless another age is specified	f_c	MPa	40	ł	1			
Width of the compression face of the member	b	mm	15710					
Web width or diameter of a circular section	b _w	mm	1600					1
Stress block factor	β_1		0.76	0.70	6 0.76	6 0.7	6 0.70	6 0.70
Distance from extreme compression fiber to the nutral axis assuming the tendon prestressing steel	С	mm	1460	532	7 2220	149	9 222	6 149
has yielded	h,	mm	700	30	700	30	0 70	30
Compression flange depth of an I or T member Depth of the equivalent stress block	a (=cf		1109.6				4 1691.7	6 1139.2

$$\begin{split} Fomula: \quad & M_n = A_{ps} f_{ps} (d_{p} \cdot a/2) + A_{s} f_{y} (d_{s} \cdot a/2) - A'_{s} f_{y} (d'_{s} \cdot a/2) + 0.85 f_{c} (b \cdot b_{w}) \beta_{1} h_{f} (a/2 \cdot h_{f}/2) \\ & f_{ps} = f_{pu} (1 \cdot kc/d_{p}) \\ & k = 2(1.04 \cdot f_{py}/f_{pu}) \\ & c = (A_{ps} f_{pu} + A_{s} f_{y} - A'_{s} f_{y} \cdot 0.85 \beta_{1} f'_{c} (b \cdot b_{w}) h_{f}) / (0.85 f'_{c} \beta_{1} b_{w} + k A_{ps} f_{pu}/d_{p}) \end{split}$$

2) Calculation of Axial Resistance

	Sign	Unit	Section-A	Section-B	Section-D	Section-F	Section-H	Section-J
Factored Axial Resistance	P _r	N	3.69E+09	2.95E+09	5.77E+09	2.95E+09	5.77E+09	2.95E+09
Resistance Factor	ф		0.75	0.75	0.75	0.75	0.75	0.75
Nominal Resistance	P _n	Nmm	4.92E+09	3.94E+09	7.69E+09	3.94E+09	7.69E+09	3.94E+09
Specified strength of concrete at 28 days, unless another age is specified	f'c	MPa	40	40	40	40	40	40
Gross area of section	Ag	mm²	1.8E+08	1.44E+08	2.82E+08	1.44E+08	2.82E+08	1.44E+08
Total area of longitudinal reinforcement	A _{st}	mm²	66016.9	66017.1	63328.4	72779.2	63328.4	72779.2
Specified yield strength of reinforcement	f _y	MPa	390	390	390	390	390	390

Formula: $P_n = 0.80[0.85f_c(A_g-A_{st})+f_yA_{st}]$

3) Calculation of Shear Resistance

Fctored forces (moment, shear force, axial force) are taken as maximam value, aimed at Shear force.

	Sign	Unit	Section-A	Section-B	Section-D	Section-F		
Factored Flexural Resistance	V _r	N	44183499	52948886	99859894	64677599	99593719	64677599
	ф	Ī	0.9	0.9	0.9	0.9	0.9	0.9
Nominal Shear Resistance	V _n	N	49092777	58832096	110955438	71863999	110659688	71863999
Nominal Shear Resistance (upper limit)	V_n	N	24198000	23040000	54144000	28800000	54353000	28800000
Nominal shear resistance provided by tensile							1	
stresses in the concrete	V _c	N	37493178	52127612	102320093		101751648	
Shear resistane provided by shear reinforcement	V _s	N	10441599	6704484	8635345	6704484	8699040	6704484
Specified minimum yield strength of reinforcing		[<i>-</i>						
har	f _y	MPa	390	390	390	390	390	390
Corresponding effective depth from the extreme								
compression fiber to the centroid of the tensile						***	14.774	2010
force in the tensile reinforcement	d _e	mm	1298	798	4174	2069	4174	2069
Effective web width taken as the minimum web		i :					2201	1000
width within the depth b _v	b _v	mm	1440		I	1800		1800
Effective shear depth	d,	mm	1600	1600		1		1600
Spacing of stirrups	<u>s</u>	mm	250	250	250	250	250	250
Factor indicating ability of diagonally cracked	•	1				1	, ,	1.7
concrete to transmit tension	<u> B</u>		2.4	1.7	1.1	1.7	1.1	
	ار	D	31	43.1	36	43.1	35.8	43.1
Angle of inclination of diagonal compressive stress		Deg	ļ					0.21
Shear stress on the concrete	<u>v</u>	N/mn	4.03	1.34	6.88	1.0/	1.22	0.21
Strain in the reinforcement on the flexural tension			5.75E-04	3.63E-03	1.31E-02	4.45E-03	1.25E-02	2.67E-03
side of the member	EΧ	-			3.709E+11	1.107E+11		6.834E+10
Factored moment	Mu	Nmm	187000000					
Factored shear force	Vu	<u>N</u>	9397000					1
Factored axial force	Nu	N	-418000	292000	2237000	23/100	2377000	1733000
Angle of inclination of transverse reinforcement to				94	90	90	90	90
longitudinal axis	α	Deg	90	.l	<u> </u>	1	<u> </u>	
Area of shear reinforcement within a distance s	A	mm2	2513.6	2513.0	2515.0	2515.0	2313.0	2313.0
Component in the direction of the applied shear of								1
the effective prestressing force; positive if resisting	S	N	1158000	, .			209000	
the applied shear	V _p	114	1100000	1	۱ ۱	<u> </u>	207000	1

Formula: Nominal Shear Resistance

Nominal Shear Resistance $V_n = V_c + V_s + V_p$ The upper limit of Nominal Shear Resistance $V_n = 0.25 f_c b_v d_v + V_p$ $V_c = 0.083 \beta f_c^{1/2} b_v d_v$ $V_s = A_v f_v d_v (\cot \theta + \cot \alpha) \sin \alpha / s$

(2) Stress Check for Service Limit Slate

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8.43	Pa Pa
Combined Stress Maximum Upper Lower Upper Lower 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 1.15 2.97 1.07 2.90 2.17 2.90 2.88 2.32 2.27 2.90 2.88 2.32 3.34 5.86 0.61 7.99 3.34 5.86 0.61 7.99 3.34 5.86 0.61 7.99 3.34 5.86 0.61 7.99 3.34 5.86 0.61 7.99 3.34 5.86 0.61 7.99 3.34 5.86 0.64 2.33 6.20 3.34 2.71 3.65 8.09 1.048 1.37 3.19 8.67 1.04 6.64 1.169 8.67 1.19 6.48 2.22 5.15 5.30 0.93 6.74 1.134 8.32 0.76 7.22 5.15 5.30 0.93 6.74 1.134 8.33 0.75 7.22 5.15 5.30		Σ Σ
d Stress of the control of the contr	3.29 7.13	rable Stress oressive 0.6fc= le 0.5 / fc=
Combined Stress Maximum Upper Lower U 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.15 2.97 1.10 6.64 1.10 6.44 1.10 6.48 0.93 6.74 0.93 6.74 0.93 6.74	7.10 10.29 8.43 5.87	
10.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0		
	0.00	0.00
10 10 10 10 10 10 10 10	0.00	
(her fights of the fights of t		- 8888
Lower E Lower E		
17G(-) 10her 16 10.03 10.03 10.03 10.03 10.03 10.02 10.03	<u>i </u>	
	0.13	
17G(+) 17G(+) 1.18 1.18 1.19 1.	0.42	0.50 0.50 1.00
	251 251 251 251	
CR+5H Upper II 0.03 0.03 0.03 0.03 0.05 0.05 0.03 0.03		1 151515151
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	-0.36 -0.36 -0.36	
10.05 10		1.00
Lower Cond	0.38	
		1.00
LL-Min TU(+) Upper Lower Upper 0.00 0.00 0.00 1.50 1.95 0.04 1.73 1.73 0.06 1.89 2.31 0.05 1.89 2.31 0.05 1.89 2.31 0.05 1.80 0.00 0.00 0.00 0.00 0.00 0.00	3.00	0 0
IL-MAX	-1.6 -2.46 -1.51 0.00	1.30
X. Lower fisher - 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	-4.04 -6.03 -3.71 0.00	
Li-Max L	2.98	1.30
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.04	2000
\(\begin{align*} \lambda \end{align*} \text{Intring}	0.82	1.00
1.12 2.96 1.10 2.96 1.11 2	10.05	10000
Ored st. Upper [6ber 1.1.2] 2.09	2.89	1.0 1.0 1.0 1.0
Unfactored stress (N/mm2) DC	Service 2 Service 3 Service 3	Modification Factor Modification Factor 1.00

5.3 Design of Substructure

5.3.1 Design Conditions

(1) Type of Substructure

	Type of Substructure	Type of Foundation	Bearing Support
P36	Wall Type Pier	9 Cast in situ Concrete Pile, dia. 1500mm	- Move
P37	Wall Type Pier	9 Cast in situ Concrete Pile, dia. 2000mm	- Move
P38	Wall Type Pier	15 Cast in situ Concrete Pile, dia. 2000mm	- Fix
P39	Wall Type Pier	15 Cast in situ Concrete Pile, dia. 2000mm	- Fix
P40	Wall Type Pier	9 Cast in situ Concrete Pile, dia. 2000mm	- Move
P41	Wall Type Pier	9 Cast in situ Concrete Pile, dia. 1500mm	- Move

Bearing Support Condition:

Move: Free for the longitudinal direction movement

Fix: Fix for the longitudinal direction movement

(2) Materials

1) Concrete

Grade	fc'	Typical use
В	40 MPa	PC box girder, PC I-Girder
С	35 MPa	Hollow Slab
D		In situ concrete : Bored pile
E		In situ concrete : Pier, Abut, Pile cap
F	20 MPa	In situ concrete: Base concrete
G	15 MPa	In situ concrete : Lean Concrete, Plain Concrete

fc': Compressive strength of concrete at 28 days

		Ec	EXP
Grade	fc'	(MPa)	ΕΛΙ
В	40MPa	33 990	10.0 1.05 (/ /90)
D	30MPa	29 440	10.8 x 1.0E-6 (/°C)
E	24MPa	26 330	

* Ec: Young's Modulus (AASHTO LRFD, 5.4.2.4), Ec = $0.043\gamma_c^{1.5} \times \sqrt{fc^4}$

 γ_c : Density of concrete (kg/m³)

EXP: Coefficient of thermal expansion and contraction

2) Reinforcement Steel

- Specified Yield Strength:

Plain Round:

240Mpa

High Yield deformed:

390MPa

- Modulus of elasticity of reinforcement steel:

Es = 200,000 Mpa

(3) Geological Conditions:

Layer Number & Type of Soil	Layer Notation	N-Value for Design	fsi (kN/m2)
(1) Lean Clay, soft	Rd	N= 0	*
(2) Clay, soft	C1	N= 2	19.6
(3) Lean Clay or Silty Sand	S/St	N= 10	98.1
(4) Lean Clay	C2	N= 20	98.1
(5) Lean Clay, stiff	St/C-1	N= 2	19.6
(6) Silty Sand, dense	S 1	N= 10	98.1
(7) Lean Clay, hard	St/C-2	N= 20	98.1
(8) Silty Sand, dense	S3	N= 50	245.2

* fsi:

unit friction force along pile shaft.

Geotechnical Feature for Main Bridge

Substructi	ıre	P36, P41	P37, P40	P38, P39
	Ground	-3.88 (1.56)	-4.74 (-3.21)	-7.84 (-8.88)
Level of the p	ile cap	+0.50	0.50	0.50
Design Ground	Level	-3.88	-4.74	-7.84
Layer Condition	No.	Approximated Height & Thickness (m)	Approximated Height & Thickness (m)	Approximated Height & Thickness (m)
	(1)	-3.88 ~ -14.76 (10.88m)	-4.74 ~ -14.76 (10.02m)	-7.84 ~ -14.76 (6.92m)
	(2)	-14.76 ~ -19.66 (4.9m)	-14.76 ~ -19.66 (4.9m)	-14.76 ~ -19.66 (4.9m)
	(3)	-19.66 ~ -25.26 (5.6m)	-19.66 ~ -25.26 (5.6m)	-19.66 ~ -25.26 (5.6m)
•	(4)	-25.56 ~ -35.66 (10.4m)	-25.56 ~ -35.66 (10.4m)	-25.56 ~ -35.66 (10.4m)
	(5)	-35.66 ~ -49.76 (14.1m)	-35.66 ~ -49.76 (14.1m)	-35.66 ~ -49.76 (14.1m)
	(6)	-49.76 ~ -78.56 (28.8m)	-49.76 ~ -78.56 (28.8m)	-49.76 ~ -78.56 (28.8m)
	(7)	-78.56 ~ -93.46 (14.9m)	-78.56 ~ -93.46 (14.9m)	-78.56 ~ -93.46 (14.9m)
	(7)	-93.46 ~ -104.66 (11.2m)	-93.46 ~ -104.66 (11.2m)	-93.46 ~ -104.66 (11.2m)
	(8)	-104.66 ~	-104.66 ~	-104.66 ~

(4) Loading and Load Combination

1) Vessel Collision CV (AASHTO 3.14)

Design Velocity of Stream:

Items	P38 (P39)	P37 (P40)	P36 (P41)
Distance from pier to edge of channel (m)	130	90	10
Design Impact Velocity (m/s)	4.94	3.26	2.42

Tonnage of Design Vessel: 500MG

Application of Vessel Collision Force

- Amplitude: 100% of the design impact force in a direction parallel to the alignment of the centerline of the navigable channel, or 50% of the design impact force in a direction normal to the alignment of the centerline of the channel (applied separately).
- Location: The design impact force is applied as a concentrated force on the pier at the mean high water level of the waterway.

2) Water Loads

(AASHTO 3.7)

a) Buoyancy: $P_B = 1000 * g * V (N)$.

Where: V=Volume of substructure components under water surface (m³).

g = gravity acceleration (\sim 9.81 m/s²).

b) Longitudinal Stream Pressure:

$$p = 5.14 \times 10^{-4} C_D V^2 (MPa)$$

Where: V = design velocity of water (m/s)

C_D= drag coefficient for piers

3) Load Combinations

(a) Combination of Loads

(AASHTO LRFD, 3.4.1)

Load Combination	DC	LL	WA	WS	WL	FR	TU	TG	SE	l lee o	ne of th	oco al s	Lime
Load Combination	DD	IM	11A	,,,,	77.5	IIX	CR	1.0	OL.	U3E 01	te or th	ese ui e	tillic
	DW	CE					SH						
Limit State	EH	BR											
	EV	PL											
	ES	LS								ļ			····
		EL								EQ	IC	CT	CV
STRENGTH-I	ур	1.75	1.00			1.00	0.50	γtg	усе	_	-		-
STRENGTH-II	YP.	1.35	1.00			1.00	0.50	ytg	усе		-		· <u> </u>
STRENGTH-III	YP	-	1.00	1.40		1.00	0.50	γtg	усе		-		
STRENGTH-IV:					·								
EH, EV, ES, DW	ур		1.00			1.00	0.50	-	-	-	_	-	
DC ONLY	1.50									ļ			
STRENGTH-V	ур	1.35	1.00	0.40	1.00	1.00	0.50	γtg	үсе	<u> </u>			
EXTREME EVENT-I	ур	γeq	1.00			1.00	-	-	• _	1.00	_		
EXTREME EVENT-II	ур	0.50	1.00			1.00	<u> </u>		<u>-</u>		1.00	1.00	1.00
SERVICE-I	1.00	1.00	1.00	0.30	1.00	1.00	1.00	γtg	усе	_	_		_
SERVICE-II	1.00	1.30	1.00			1.00	1.00	γtg	γce	_	-		_
SERVICE-III	1.00	0.80	1.00			1.00	1.00	ytg	усе	-	_	_	_
FATIGUE-LL,IM &													
CEONLY	-	0.75	1.00			1.00		<u> </u>	_	_	-		_

* Loading Denotations:

· Permanent Loads

DD = downdrag

DC = dead load of structural components and nonstructural attachments

DW = dead load of wearing surfaces and utilities

EH = horizontal earth pressure load

EL = accumulated locked-in effects resulting from the construction process

ES = earth surcharge load

EV = vertical pressure from dead load of earth fill

Transient Loads

BR = vehicular braking force

CE = vehicular centrifugal force

CR = creep

CT = vehicular collision force

CV = vessel collision force

EQ = earthquake

FR = friction

IC = ice load

IM = vehicular dynamic load allowance

LL = vehicular live load

LS = live load surcharge

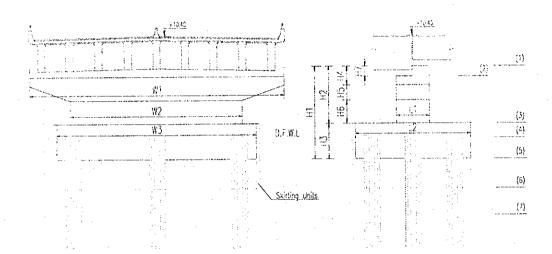
PL = pedestrian live load

SE = settlement

SH = shrinkage

TG = temperature gradient
TU = uniform temperature
WA = water load and stream pressure

WL = wind on live load


WS = wind load on structure

(b) Application of Load Combinations:

Load Items	Notation	Load Combinations										
		STRENGTH I-1	STRENGTH 1-2	STRENGTH III	STRENGTH IV	STRENGTH V-1	STRENGTH V-2	EXTREME EVENT1-1	EXTREME EVENT 1-2	EXTREME EVENT II	SERVICE I-1	SERVICE 1-2
Deadload from superstructure	DC1	1.25	0.90	1.25	1.50	1.25	0.90	1.25	0.90	1.25	1.00	1.00
Deadload of pier	DC2	1.25	0,90	1.25	1.50	1.25	0.90	1.25	0.90	1.25	1.00	1.00
Superimposed Load of superstructure	DW	1.50	0.65	1.50	1.50	1.50	0.65	1.50	0.65	1.50	1.00	1.00
Live load max	LLmax	1.75				1.35		0.50	·	0.50	1.00	
Live load min	LLmin		1.75				1.35		0.50			1.00
Dynamic Allowance max	IMmax	1.75				1.35		0.50		0.50	1.00	
Dynamic Allowance min	IMmin		1.75				1.35	*	0.50			1.00
Braking max	BRmax	1.75				1.35		0.50		0.50	1.00	
Braking min	BRmin		1.75			ļ <u></u>	1.35		0.50			1.00
Water pressure	WA	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Wind pressure on vehicles	WL				<u></u>	1.00	1.00	F. 174 . SP SPENI S. MAILE V			1.00	1.00
Wind pressure on Superstructure	WS1			1.40		0.40	0.40				0.30	0.30
Wind pressure on Substructure	WS2			1.40		0.40	0.40				0.30	0.30
Friction load	FR	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Temperature uniform	TU	0.50	0.50	0.50	0.50	0.50	0.50				1.00	1.00
Temperature Gradient	TG				-						0.50	0.50
Creep	CR	0.50	0.50	0.50	0.50	0.50	0.50				1.00	1.00
Shrinkage	SH	0.50	0.50	0.50	0.50	0.50	0.50				1.00	1.00
Earthquake from Superstructure	EQ1							1.00	1.00			
Earthquake of Substructure	EQ2							1.00	1.00			
Vessel Collision	CV									1.00		

5.3.2 Design of P36(P41) pier(1) Stability Calcalation1) Dimension of Pier

	(Figure)	(m)			(Level)	(m)	
Portio		Portion	Length	Portion	Level	Portion	Level
H1	7.32	H7	0.84	(1)	+7.82	(6)	-2.00
H2	4.32	W1	23.00	(2)	+6.98	(7)	-3.88
H3	3.00	W2	15.50	(3)	+3.50		
H4	1.59	L1	3.00	(4)	+1.78		
H5	1.25	W3	18.00	(5)	+0.50		
H6	1.48	L2	10.50				
	•						

2) Summray of Load Combination Force at the Botom of Pile Cap

	I C 1: "	Υ		udinal		verse
Lo	ad Combination	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	5779.4	59.7	437.2	28.9	112.9
2	STRENGTH I-2	3043.3	0.1	0.9	28.9	112.9
3	STRENGTH III	4737.3	30.2	132.3	52.4	264.4
4	STRENGTH IV	5590.9	0.1	0.9	17.7	-10.8
5	STRENGTH V-1	5541.2	54.7	375.0	38.6	194.2
6	STRENGTH V-2	3102.1	8.7	38.4	38.6	194.2
7	EXTREME EVENT 1-1	5006.3	461.0	1997.0	465.1	2080.6
8	EXTREME EVENT I-2	3198.3	443.9	1872.3	465.1	2080.6
9	EXTREME EVENT II	4992.7	341.7	538.9	670.2	853.1
10	SERVICE I-1	4395.4	42.4	291.1	33.9	149.8
11	SERVICE I-2	3653.0	8.3	41.7	33.9	149.8

3) Pile Capacity

INPUT DATA

BoreHole			BRD17
Pile Diameter	D1		1700 mm
	D2	=	1500 mm
Factor of Safety	FS	. =	3
Pile length	Ľ	=	70.00 m
	LO	==	4.38 m
	L1	=	10.62 m
	L2	22	55.00 m
Pile Embedded Length	Le	E 22	65.62 m
Pile Cross-Section Circumference	P1	=	5.341 m
	P2	=	4.712 m
Pile Cross-Section Area	Ab1	=	2.270 m2
	Ab2	=	1.767 m2
Concrete Unit Weight	γς	==	2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	12	135 t/m2
Soil Type of Bearing Layer	-		2 (1/2 = Sand/Clay)

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

	Layer Number	Thickness d (m)		Type d; '2'=clay	γ'e (t/m3)	N	fs (t/m2)	Qs (t)
0 •	1-1	10.62	2	Clay	0.70	1.0	1.0	
-10	1-2	5.16	2	Clay	1.00	1.0	2.0	49
-20	2	5.60	2	Clay	0.90	20.0	1.0	26
.30	3	10.40	2	Clay	1.00	12.0	2.0	98
: \	4	14.10	2	Clay	0.90	20.0	1.0	66
-40 :	5	19.74	2	Clay	1.00	25.0	15.0	1395
-50 -								
-70								
-80	Total L =	65.62	m				Total Qs =	1692

END BEARING CAPACITY

Formula: $Qt = qu^* Ab$

1	ype of Pile	Soil Type of B.P	Ţ	End Bearing Capacity	4
Cast-in-situ	Friction & Bearing	Clay		239 tonne	

Ultimate Bearibg Capacity (Qult)

* Qult = Qt + Qs 1930.1 tonne

Replaced Effective Weight of Soil (Ws)

113.2 tonne

Buoyant Weight of Pile (W)

206.8 tonne

Allowable Bearing Capacity for Service Load Combinations (Qall₁)

* $Qall_1 = (Qult - Ws) / FS + Ws - W$ 512.0 tonne

Allowable Bearing Capacity for Earthquake & Strength Load Combinations(Qall₂)

* $Qall_2 = (Qult - Ws) / FS + Ws - W$ 814.8 tonne

Design Uplift Caacity for Service Load Combinations (Qup₁)

* $Qup_1 = Qs / FS + W$ 488.7 tonne FS = 6

Design Uplift Capacity fot Earthquake & Strength Load Combinations(Qup₂)

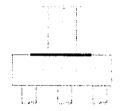
* $Qup_2 = Qs / FS + W$ 770.6 tonne FS= 3

4) Reaction of Pile

a) Displacement

Ţ.	1.Cl.ition	L	ongitudina	il]		[ransverse		δ xa(cm)	Remark
Loa	nd Combination	δf x(cm)	δ y(cm)	α (rad)	δf x(cm)	δ y(cm)	α (rad)		
1	STRENGTH I-1	0.14	0.84	0.00011	0.05	0.84	0.00001	3.00	OK
2	STRENGTH 1-2	0.00	0.44	0.00000	0.05	0.44	0.00001	3.00	OK
3	STRENGTH III	0.07	0.69	0.00004	0.10	0.69	0.00002	3.00	OK
4	STRENGTH IV	0.00	0.81	0.00000	0.03	0.81	0.00000	3.00	OK
5	STRENGTH V-1	0.12	0.81	0.00010	0.07	0.81	0.00002	3.00	OK
6	STRENGTH V-2	0.02	0.45	0.00001	0.07	0.45	0.00002	3.00	OK
7	EXTREME EVENT	1.00	0.73	0.00067	0.86	0.73	0.00019	2.00	OK
8	EXTREME EVENT	0.96	0.47	0.00064	0.86	0.47	0.00019	2.00	OK
9	EXTREME EVENT	0. <i>7</i> 0	0.73	0.00038	1.22	0.73	0.00020	3.00	OK
10	SERVICE I-1	0.15		0.00008	0.10	0.64	0.00002	1.50	OK
111	SERVICE I-2	0.03	0.53	0.00001	0.10	0.53	0.00002	1.50	OK
1 -									

b)	Bearing	and	Pullout	forces of	piles
----	---------	-----	---------	-----------	-------


	Bearing and Pullot	Longit		Trans	verse	Allowable	Capacitie	Chec	king
Loa	ad Combination		PNmin(tf)			Bearing (tf)	Pull (tf)	Bearing	Pull
1	STRENGTH I-1	673.68	610.63	648.65	635.66	814.8	-770.6	OK	OK
2	STRENGTH I-2	338.20	338.09	344.64	331.65	814.8	-770.6	OK	OK
3	STRENGTH III	538.96	513.78	539.41	513.32	814.8	-770.6	OK	OK
4	STRENGTH IV	621.27	621.15	623.95	618.47	814.8	-770.6	OK	OK
5	STRENGTH V-1	643.61	587.77	625.29	606.09	814.8	-770.6	OK	OK
6	STRENGTH V-2	348.32	341.04	354.28	335.08	814.8	-770.6	OK	OK
7	EXTREME EVENT	747.66	364.85	666.40	446.11	814.8	-770.6	OK	OK
8	EXTREME EVENT	537.71	173.02	465.52	245.22	814.8	-770.6	OK	OK
9	EXTREME EVENT	662.71	446.78	667.81	441.68	814.8	-770.6	OK	OK
10	SERVICE I-1	512.04	464.71	497.12	479.64	512.1	-488.7	OK	OK
11	SERVICE I-2	409.93	401.84	414.63	397.15	512.1	-488.7	OK	OK

(2) Section Calculation of Pier Column

1) Sectional forces

Io	oad Combination V		Longit	udinal	Transverse		
LU		(tf) [H (tf)	M (tf.m)	H (tf)	M (tf.m)	
1	STRENGTH I-1	3229.5	59.7	258.0	11,2	90.0	
2	STRENGTH 1-2	1207.5	0.1	0.5	11.2	90.0	
3	STRENGTH III	2187.4	21.5	49.1	29.5	175.7	
4	STRENGTH IV	2531.1	0.1	0.5	0.0	0.0	
5	STRENGTH V-1	2991.3	52.2	213.0	19.4	143,5	
6	STRENGTH V-2	1266.2	6.2	14.4	19.4	143.5	
7	EXTREME EVENT I-1	2456.5	461.0	1407.8	447.5	1542.7	
8	EXTREME EVENT I-2	1362.4	443.9	1334.2	447.5	1542.7	
9	SERVICE I-1	2355.5	40.5	165.6	15.1	112.9	
10	SERVICE I-2	1613.1	6.4	18.4	15.1	112.9	
					i		

2) Section Analysis

a) Section Dimensions & Material Properties

ltem	Notation	Unit	Value	Remark
Section Dimension				
Width	w	mm	15500	oblong,
Height	H	mm	3000	rounded-end shape
Material Properties	1			
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	The state of the s
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Main Reinforcement	Mu	kN.mm	13805669	EXTREME EVENT I-1
Corresponding Compressive force	Nu	kN	24090	
Maximum Shear Force				'
Shear force	Vu	kN	4521	EXTREME EVENT I-1
Corresponding moment	Mu _{corr.}	kN.mm	13805669	

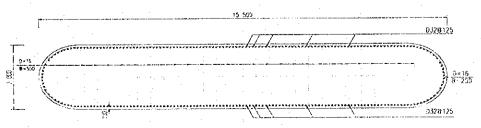
c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Main Reinforcement			1	
Diameter .	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	·
Total numbers of Rebar	n's	nos	270	@125
Shear Reinforcement				
Diameter	φν.	mm	16	
Area of 1 bar	A1v	mm2	201,1	
Numbers of Rebar in section	nv	nos	26	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	5227.6	

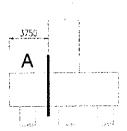
d) Checking for Flexural - Axial Resistance (AASHTO 5.7.3.2)

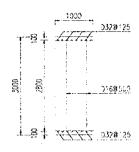
Item	Notation	Unit	Value	Remark
Bending Moment	Mu	kN.mm	13805669	
Compressive force	Nu	kN	24090	
Depth of Compressive Area	c	mm	2342	
Flexural Resistance	Mr	kN.mm	317150720	
Compressive Resistance	Nr	kN	553402	
Checking Resistance	ļ		ОК	
Checking Reinforcement Ratio				·
Numbers of Tensile bar	n _{tens}	nos	121	
$\rho st = A s_{tensile} / A_{g}$		%	0.218	
omin=0.03fc/fy	l	%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	4520564.3	
Shear Resistance	Vr	N		
Effective shear Depth	d_v	mm	2160	
Effective web width	b_{v}	nım	14856	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally	1		1	•
cracked concrete to transmit tension	β		4.9	
Area of shear reinf. within a distance s	Α _ν	mm ²	5228	
Strain in the tensile reinforcement	εχ		-0.000002	
Inclination angle of diagonal comp. stress	. 0	degrees	27.00	
Shear stress on the concrete	v	MPa	0.157	
Area of Conc. on flexural tensile side	Act	mm ²	22284291.74	
Nominal Resistance of Concrete	V _c	N	63935361	
Nominal Resistance of Reinforcement	V_s	N	17285648	e e
Nominal Resistance	Vn	N	81,221,009	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	73,098,908	
Checking			OK	


A Checking for Elevural Stress


Item	Notation	Unit	Value	Remark
Factored Forces				
SERVICE I-1	Mu	kN.mm	1623662.0	
•	Nu	kN	23099.3	
SERVICE I-2	Mu	kN.mm	180782.0	
	Nu	kN	15819.3	
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1	1		0.5	
SERVICE I-2			0.34	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1		,	-3.81	
SERVICE I-2	1		-2 .61	
Checking Stress of Steel		}	OK	

REINFORCEMENT OF COLUMN

(3) Section Calculation of Pile Cap 1) Section Analysis of "A"

Total width of section

18000 mm 1000 mm

Calculation width

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	·
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm		EXTREME EVENT 1-2
for Calculating Bottom Reinforcement	Mu _{bot.}	kN.mm	1883456	EXTREME EVENT I-1
Maximum Shear Force	,			
Shear force	Vu	kN	760	EXTREME EVENT I-1
Corresponding moment	Mu _{corr.}	kN.mm	1883456	
				<u> </u>

c) Bar Arrangement

ltem	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	фtор	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	•
Bottom Reinforcement				
Diameter	φbot.	mm	32	·
Area of 1 bar	Al's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Shear Reinforcement				· .
Diameter	φv.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	402.1	

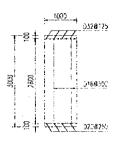
d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Checking for Flexural Resistance (AASI	Notation	Unit	Value	Remark
ILCHI	Notation			
Top Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = As _{tensile} /(H.W)	Mu _{top} c Mr _{top}	kN.mm mm kN.mm %	48768 115.25 6415080 OK 0.214 0.185	OK
pmin=0.03fc/fy Bottom Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = As _{tensile} /(H.W) pmin=0.03fc/fy	Mu _{bot} C Mr _{bot}	kN.mm mm kN.mm	1883456 115.25 6415080 OK 0.214 0.185	

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

hecking for Shear Resistance (AASHT)	Notation	Unit	Value	Remark
Item	Vu	N	760109.6	
Factored Shear		- N	700102.0	
Shear Resistance	٧r		2160	
Effective shear Depth	đ _v	mm		
Effective web width	b_{v}	mm	1000	
Spacing of stirrups	5	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				•
cracked concrete to transmit tension	β		2.3	
Area of shear reinf, within a distance s	Å,	mm ²	402	
Strain in the tensile reinforcement	εx		0.001080	
Inclination angle of diagonal comp. stres	1	degrees	36.30	
Inclination aligie of diagonal comp.	v	MPa	0.391	
Shear stress on the concrete	Act	mm ²	1500000	
Area of Conc. on flexural tensile side	V _c	N	2020065	
Nominal Resistance of Concrete	V _s	N	922302	
Nominal Resistance of Reinforcement		N	2,942,367	
Nominal Resistance	Vn	"	0.9	l '
Resistance factor for shear	φ			h .
Factored Resistance	Vr	N	2,648,130	
Checking	<u> L</u>	<u> </u>	OK	L


f) Checking for Flexural Stress

Thecking for Flexural Stress Item	Notation	Unit	Value	Remark
Factored Moments SERVICE I-1 SERVICE I-2	Mu	kN.mm		Tensile at bottom Tensile at bottom
Factored Comp. Stress of Concrete SERVICE I-1 SERVICE I-2 Checking Stress of Concrete	σcu	MPa	0.7 0.47 OK	
Factored Tensile Stress of Steel SERVICE I-1 SERVICE I-2 Checking Stress of Steel	osu	MPa	-4.95 -3.3 OK	

g) Checking for Crack	$f_s=Z/($	$(d_c A)^{(1/3)} <$		Value	Remark
	em	Notation	Unit		Remark
Nominal Con	crete Cover	d _c	mm	50	
Ronding Area	of Conc. around 1	l A	mm2	12500	•
Crack width	or corte, around a	7.	N/mm	17500	
Crack width	of Deinforcement	fs	MPa	204.7	
E .	of Reinforcement	13	1,,,,	OK	
Checking		<u> </u>			

2) Section Analysis of "B"

Total width of section Calculation width

10500 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	•
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

ltem	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-110592	STRENGTH IV
for Calculating Bottom Reinforcen		kN.mm	-76116	STRENGTH 1-2
Maximum Shear Force				
Shear force	Vu	kN	177	STRENGTH IV
Corresponding moment	Mucorr.	kN.mm	110592	
		·		

c) Bar Arrangement

ltem	Notation	Unit	Value	Remark
Top Reinforcement	l		·	
Diameter	фtор	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Bottom Reinforcement				
Diameter	φbot.	mm	20	Structural Reinf.
Area of 1 bar	A1's	mm2	314.2	+
Numbers of Rebar	n's	nos	4	
Shear Reinforcement				
Diameter	φv.	mm	16	
Area of 1 bar	A1v	mm2	201.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Αv	mm2	402.1	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

!) `	necking for riextitut Resistance (1717)				
	Item	Notation	Unit	Value	Remark
	Top Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = As _{tensile} /(H.W)	Mu _{top} C Mr _{top}	kN.mm mm kN.mm	110592 133.74 6413400 OK 0.214	
	pmin=0.03fc/fy		%	0.185	OK
	Bottom Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio	Mu _{bot} C Mr _{bot}	kN.mm mm kN.mm	-76116.1 133.74 6413400 OK	
	$\rho st = As_{tensile}/(H.W)$ $\rho min=0.03fc/fy$		% %		AILURE

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

Checking for Shear Resistance (AASHTO 5.8.3.3)

Thecking for Shear Resistance (AASH1) Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	176948	
Shear Resistance	Vr	N		
Effective shear Deptil	d _v	mm	2160	•
Effective web width	b _v	mm	1000	
Spacing of stirrups	s	mm	500	•
Angle of inclination of transverse reinf.	α	degrees	90	•
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		2.4	
Area of shear reinf, within a distance s	$A_{\rm v}$	mm ²	402	
Strain in the tensile reinforcement	ε _x		0.000747	•
Inclination angle of diagonal comp. stress	θ	degrees	32.95	
Shear stress on the concrete	V	MPa	0.091	
Area of Conc. on flexural tensile side	Act	mm²	1500000	
Nominal Resistance of Concrete	V _c	N	2107894	•
Nominal Resistance of Reinforcement	V _s	N	1045252	
Nominal Resistance	Vn	N	3,153,145	•
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,837,831	
Checking			OK	

f) Checking for Flexural Stress

Thecking for Flexural Stress Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			-130979	Tensile at top
SERVICE I-2			-130979	Tensile at top
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			0.08	
SERVICE I-2			0.08	*
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1	ĺ		-0.58	
SERVICE I-2			-0.58	
Checking Stress of Steel	1		OK_	

(4) Section Calculation of Pile

Dia : D1 = D2 =

1700 mm 1500 mm

L1 =L2 = 15.0 m 55.0 m

Length:

70.0 m

Number:

9 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Lo	ongitudin	al		Transverse		
Load Case	Sectiona	I Force	Depth	Sectiona	Depth		
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)	
STRENGTH I-1	30.24	610.63	0.00	19.93	635.66	0.00	
STRENGTH I-2	0.05	338.09	0.00	19.93	331.65	0.00	
STRENGTH III	16.78	513.78	0.00	35.86	513.32	0.00	
STRENGTH IV	0.05	621.15	0.00	12.48	618.47	0.00	
STRENGTH V-1	28.14	587.77	0.00	26.42	606.09	0.00	
STRENGTH V-2	4.83	341.04	0.00	26.42	335.08	0.00	
EXTREME EVENT I-1	256.61	364.85	0.00	319.57	446.11	0.00	
EXTREME EVENT I-2	247.82	173.02	0.00	319.57	245.22	0.00	
EXTREME EVENT II	205.04	446.78	0.00	470.55	441.68	0.00	
SERVICE I-1	26.82	464.71	0.00	27.07	479.64	0.00	
SERVICE I-2	5.48	401.84	0.00	27.07	397.15	0.00	

2) General Conditions

Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	1700	
Steel Casing			Yes	
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	28	
Number of Rebars	n _{st}	nos	15	
Total Area of Reinforcement	A _{st}	mm2	9236	
			1	

3) Section Calculation

a) Distribution of Axial Force and Bending Moment in Composite Section

Diameter of Pile 1.70 m Thickness of Casing 0.014 m $E_{S}=$ 20000000 Ec= 2500000 n=Es/Ec= 8.00 As0= 0.074770 m2 Ac= 2.269801 m2 2.867960 m2 Atrans= Is0=0.027685 m4 Ic0=0.409983 m4 Itrans= 0.631465 m4

* Casing: - Axial 20.86% - Bending

35.07% * RC: - Axial 79.14% - Bending 64.93% b) Checking Resistance (AASHTO 5.7.2)

i) In longitudinal Dire	ection					1737	nl
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
	PN (tf)	610.63	483.27	4703.73	127.36	1460.1	OK
STRENGTH I-1	M (tf.m)	30.24	19.63	191.12	10.61	121.60	OK
	PN (tf)	338.09	267.58	5278.73	70.51	1714.6	OK
STRENGTH I-2	M (tf.m)	0.05	0.03	0.81	0.02	0.43	OK
	PN (tf)	513.78	406.62	4893.27	107.16	1538.1	OK
STRENGTH III	M (tf.m)	16.78	10.89	131.27	5.89	84.48	OK
	PN (tf)	621.15	491.60	4976.32	129.55	1715.0	OK
STRENGTH IV	M (tf.m)	0.05	0.03	0.23	0.02	0.23	OK
	PN (tf)	587.77	465.18	4735.49	122.59	1467.4	OK
STRENGTH V-1	M (tf.m)	28.14	18.27	186.19	9.87	118.14	OK
	PN (tf)	341.04	269.91	5172.47	71.13	1633.8	OK
STRENGTH V-2	M (tf.m)	4.83	3.14	60.31	1.69	38.91	OK
	PN (tf)	364.85	288.75	1441.86	76.10	492.4	OK
EXTREME EVENT I-1	M (tf.m)	256.61	166.61	832.01	90.00	582.40	OK
	PN (tf)	173.02	136.93	352.49	36.09	283.2	OK
EXTREME EVENT I-2	M (tf.m)	247.82	160.90	414.21	86.92	682.04	OK
	PN (tf)	446.78	353.60	2482.97	93.18	654.6	OK
EXTREME EVENT II	M (tf.m)	205.04	133.12	934.84	71.92	505.2	OK

ii) In Transverse Direct	ion					T: 22	* 1
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
	PN (tf)	635.66	503.08	4774.51	132.58	1544.5	OK
STRENGTH I-1	M (tf.m)	19.93	12.94	122.98	6.99	81.43	OK
	PN (tf)	331.65	262.48	4924.84	69.17	1415.2	OK
STRENGTH I-2	M (tf.m)	19.93	12.94	242.99	6.99	143.01	OK
	PN (tf)	513.32	406.26	4689.70	107.06	1376.0	OK
STRENGTH III	M (tf.m)	35.86	23.28	268.51	12.58	161.65	OK
	PN (tf)	618.47	489.48	4850.74	128.99	1601.4	OK
STRENGTH IV	M (tf.m)	12.48	8.10	80.06	4.38	54.34	OK_
	PN (tf)	606.09	479.68	4740.53	126.41	1486.6	OK
STRENGTH V-1	M (tf.m)	26.42	17.15	169.30	9.27	108.98	OK
	PN (tf)	335.08	265.19	4812.94	69.89	1341.8	OK .
STRENGTH V-2	M (tf.m)	26.42	17.15	311.35	9.27	177.92	OK
	PN (tf)	446.11	353.07	1375.13	93.04	486.0	OK
EXTREME EVENT I-1	M (tf.m)	319.57	207.48	808.04	112.09	585.46	OK
	PN (tf)	245.22	194.08	416.94	51.14	306.2	OK
EXTREME EVENT I-2	M (tf.m)	319.57	207.48	445.74	112.09	671.07	OK
	PN (tf)	441.68	349.56	611.87	92.12	360.2	OK
EXTREME EVENT II	M (tf.m)	470.55	305.51	534.79	165.04	645.4	OK

c) Checking	g Stress in F	RC portion	i					
		Force Tensile S			teel (tf/m2)	Comp. Con	crete (tf/m2)	Remark
Load C	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Ittiliain
	Horizontal	367.79	17.41	910.13	-23861	193.60	1377	OK
SERVICE I-1	Transverse	379.60	17.58	943.05	13.05 -23861 199.03 1377	1377		
	1.1	318.03	3.56	896.25	-23861	144.12	1377	OK
SERVICE I-2	Transverse	314.32	17.58	752.14	-23861	170.93	170.93 1377	

d) Checking Minimum Steel R Item	Notation	Unit	Value _	Remark
Total Area of Reinforcement	A _{st}	mm2	9236	
Gross Area of Section	Ag	mm2	2269801	
Reinforcement Ratio	ρst	%	0.41	
Minimum Reinforcement ratio	ρmin	%	0.40	OK