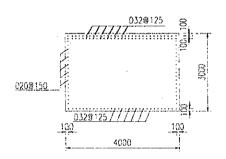

3) Envelope of Member End Actions

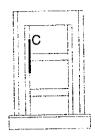
	YOYNIT	TI) (F)Y	Nx	Sy	Sz	Mx	Му	Mz
MEMBER	JOINT	TYPE	(tf)	(tf)	(tf)	(tf.m)	(tf.m)	(tf.m)
1	1	MAX	-721.57	442.245	439.66	55.9713	3745.79	9014.96
	ļ	CASE	12A	11	12B	11	10A	11
		MIN	-3874.36	-135.741	-437.34	-17.1713	-3741.95	<i>-</i> 2775.35
	i	CASE	10B	12B	10A	12B	12B	12B
1	2	MAX	3640.3	129	414.87	17.1713	1453.02	2067.17
		CASE	10B	12B	10A	12B	10B	12B
		MIN	553.04	-4 19.775	-417.19	-55.9713	-1469.25	-6709.05
		CASE	12A	11	12B	11	12A	11
2	2	MAX	-706.69	416.625	411.42	52.6953	2369.74	6709.05
		CASE	12A	11	12B	11	12A	11
		MIN	-3430.21	-128.055	-415.34	-16.2339	-2531.68	-2067.17
		CASE	10B	12B	10A	12B	10B	12B
2	3	MAX	3058.34	117.345	379.64	16.2339	1041.1	1024.22
		CASE	10B	12B	10A	12B	10A	12B
		MIN	438.94	-380.925	-375.72	-52.6953	-845.84	-3319.47
		CASE	12A	11	12B	11	12B	11
3	3		-659.6	377 <i>.</i> 775	576.66		,	3319.47
		CASE	12A	11	10B	11	12A	11
		MIN	-2781.24		-269.76	-18.3837	-667.08	-1024.22
		CASE	10B	12B	12A		10B	12B
3	4	MAX	2442.18		237.21		1686.4	159.96
٦	, 7	CASE	10B	12B	12A		12A	12B
		MIN	415.48	-345.225	-544.11			-517.84
		CASE	12A	11	10B			11
4	4	1 3	22.61	128.275	110.55			59.44
1	^	CASE	12A	11	12A			
		MIN	-329.51		-1299.6	1		-18.39
		CASE	10B		10B			12B
4	5	1	309.71	33.565	1093.35			
1		CASE	10B		10B		i .	
		MIN	-2.81	-108.475	-259.05			
1	Ì	CASE	12A	1	12A			1
5	5	1			1005.45			
		CASE			10A	1		
ĺ	ļ	MIN				3		,
		CASE					i .	
5	6	1		1				
	1	CASE			i	1	1	
		MIN			1	1	1	
		CASE		4	1	1	1	L .
6	ϵ		1		1			
"	Ί `	CASE		1	1	ł	1	t .
		MIN	1		•	1		
	1	CASE	1		I	ţ		1
6	5 7	1		E				
"	'] '	CASE	1		t .	1	1	
		MIN	1	3	1	i .	1	L .
		CASE	1		1	1	i	
		CASE	1	120	107	`] ***	1
			I		1,		<u> </u>	<u> </u>

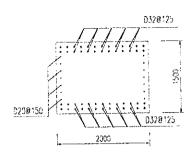
							(Ca	intinued)	
<u> </u>	T								
l	7	7	MAX	2794.64	117.345	377.89	52.6953	870.32	1024.22
		ļ	CASE	10A	12B	12A	11	12A	12B
			MIN	702.64	-380.925	-381.81	-16.2339	-1065.58	-3319.47
ļ			CASE	12B	11	10B	12B	10B	11
	7	8	MAX	-970.39	416.625	417.51	16.2339	2525.63	6709.05
]	- 1	Ì	CASE	12B	11	10B	12B	10A	11
1			MIN	-3166.51	-128.055	-413.59	-52.6953	-2363.69	-2067.17
	1		CASE	10A	12B	12A	11	12B	12B
	8	8	MAX	3376.6	129	419	55.9713	1463.26	2067.17
			CASE	10A	12B	12A	11	12B	12B
			MIN	816.74	-419.775	-416.68	-17.1713	-1447.04	-6709.05
			CASE	12B	11	10B	12B	10A	11
i	8	9	MAX	-985.27	442.245	439.15	17.1713	3745.64	9014.96
	-		CASE	12B	11	10B	12B	12A	11
	- 1		MIN	-3610.66	-135.741	-441.47	-55.9713	-3749.47	-2775.35
			CASE	10A	12B	12A	11	10B	12B
İ	9	3	MAX	235.81	3.15	220.66	0	903.39	4.04
1	1	İ	CASE	1	11	12A	13	10B	12B
	1	ļ	MIN	92.86	-0.945	-277.1	0	-822.52	-13.05
			CASE	2	10B	10B		12A	11
1	9	10	MAX	-92.86	0	244.29		12.72	18.56
	- [İ	CASE	2	11	10B	12B	5	11
	ļ		MIN	-235.81	0	-244.29	1		-5.7
	- 1	l	CASE	1	13	l	i	12B	12B
ļ	10	7	MAX	-92.86	3.15			! :	13.05
Ì	İ		CASE	2	1	12B	t .	12B	11
			MIN	-235.81			t .	1 1	-4.04
1	1		CASE	1	10B		3	10A	12B
	10	10	MAX	235.81	0	1	I .	1	5.7
	-		CASE	1	1				12B
			MIN	92.86	1	1		1	-18.56
1	ļ	-	CASE	2	1	1			11
İ	11	2	MAX	0.9	1		N .	1	
			CASE	12A	1	1			1 1
ĺ	İ		MIN	-7.13	•			1	1 1
			CASE	10E					
	11	11		6.17			The state of the s		
	ĺ		CASE	4A		1			I I
			MIN			1	•		I I
		_	CASE					E .	1 1
1	12	8			i i		1		
ļ			CASE		1	1	Į.	I .	
1			MIN	•					1 1
-			CASE)	1	1	1
	12	11							1 1
			CASE	1	2 13	1	N N		
İ			MIN		i i	1			1
			CASE	4.4	` 1.	10	101	1	
			1	1	I			<u></u>	<u></u>

4) Design of Sections a) Section A



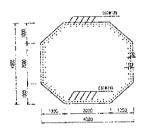
Item	Notation	Unit	Tensi	le Side	Remark
Rem	INOtation	Onit	Тор	Bottom	Remark
Factored Loads					
Maximum Moment	M	(tf.m)	4492.1	2042.2	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth] c	(mm)	220.84	163.83	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio	<u> </u> j		OK	OK	


b) Section B



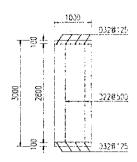
Item	Notation	Unit	Tensil	e Side	Remark
nem	Notation	Oitt	Тор	Bottom	Keinark
Factored Loads					
Maximum Moment	M	(tf.m)	-907.1	2397.1	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			2	1	
Bar Arrangement					and a management of the second
Dia, of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n {	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	c	(mm)	220.84	163.83	
Resistance Factor	[φ]		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio			OK	OK	

c) Section C



Item	Notation	Unit		e Side	Remark
			Тор	Bottom	
Factored Loads					
Maximum Moment	M	(tf.m)	903.4	822.5	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	2	
Number of tensile bars	n	_(nos.)_	26	26	
Resistance			Ì		
Flexural Resistance	Mr	(tf.m)	1071.2	1071.2	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	С	(mm)	199.84	199.84	·
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	•
Checking Reinforcement Ratio			ОК	OK	

d) Section D



	NT	Unit	Т	3	Remark	
Item	Notation		Left	Right	Front	Resilate
Factored Loads				_		
Maximum Moment	M	(tf.m)	3745.8	3742.0	9015.0	
Factored Axial Force	N	(tf)	1,723.4	2,872.5	2,384.0	
Load case of Max. Moment	<u> </u>		10A	12B	11	
Bar Arrangement			•			
Dia. of main reinforcement	Dm	(mm)		32		
Number of reinf. layers	nlay	(nos.)	2 ~ 1			
Number of bars	n	(nos.)				
In layer 1				106		
In layer 2			i	48		
Resistance						}
Flexural Resistance	Mr	(tf.m)	13705.35			
Axial Compressive Resistance	Mr	(tf.m)	6305.62	11098.00	2711.18	\
Compressive Depth	c	(mm)	1488.14			4
Resistance Factor	φ		0.825	1	l	
Checking Resistance			OK	OK	ОК	
Checking Reinforcement Ratio			OK	OK	OK	

(3) Design of Pile Cap

1) Section Analysis of "A"

Total width of section Calculation width

18000 mm 1000 mm

a) Section Dimensions & Material Properties

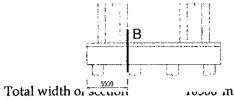
Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	Н	mm	3000	•
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mu _{top}	kN.mm	-1908902	EXTREME EVENT I-2
for Calculating Bottom Reinforcement	Mu _{bot.}	kN mm	4553343	EXTREME EVENT I-1
Maximum Shear Force			·	
Shear force	Vu -	kN	2573	EXTREME EVENT I-1
Coincidental moment	Mu _{coin.}	kN.mm	4553343	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Total Area of Top Reinf.	As	mm2	6434.0	
Concrete Cover	Cs	mm	100.0	
Bottom Reinforcement				
Diameter	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Total Area of Bottom Reinf.	A's	mm2	6434.0	
Concrete Cover	C's	mm	100.0	
Shear Reinforcement				
Diameter	φν.	mm	22	
Area of 1 bar	Å1v	mm2	380.1	
Numbers of Rebar in section	nv	nos	2	i .
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	760.3	


e) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = Astensile/(H.W) omin=0.03fc/fy	Mu _{top} C Mr _{top}	kN.mm mm kN.mm %	1908902 115.25 6415080 OK 0.214 0.185	OK
Bottom Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = As _{tensile} /(H.W) pmin=0.03fc/fy	Mu _{bot} C Mr _{bot}	kN.mm mm kN.mm	4553343 115.25 6415080 OK 0.214 0.185	

ecking for Shear Resistance (AASHTO S Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2573317	
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2160	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally	1		names and management (MCC) (Aug.	
cracked concrete to transmit tension	β	_	1.7	
Area of shear reinf, within a distance s	A_{v}	mm ²	760	
Strain in the tensile reinforcement	ϵ_{x}		0.002000	
Inclination angle of diagonal comp. stres	θ θ	degrees	42.79	•
Shear stress on the concrete	v	MPa	1.324	
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
	Fe		1	
Nominal Resistance of Concrete	V _c	N	1493091	
Nominal Resistance of Reinforcement	V ₅	N	1383725	
Nominal Resistance	Vn	N	2,876,817	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,589,135	
Checking			OK	
		i	_	<u> </u>

ltem	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1	1		1673380	Tensile at bottom
SERVICE I-1 SERVICE I-2	1			Tensile at bottom
Factored Comp. Stress of Concrete	ocu	MPa		
SERVICE I-1	000		1.02	
SERVICE I-1 SERVICE I-2			0.75	İ
Checking Stress of Concrete	i		ОК	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1	000	,,	-7.22	
		! .	-5.29	
SERVICE I-2			OK	
Checking Stress of Steel		<u> </u>		

2) Section Analysis of "B"

mm vocor 1000 mm

a) Section Dimensions & Material Properties

Calculation width

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-1186523	EXTREME EVENT 1-2
for Calculating Bottom Reinforcem		kN.mm	1569200	EXTREME EVENT I-1
Maximum Shear Force				
Shear force	Vu	kN	2108	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	1569200	

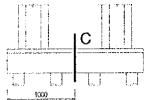
c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Total Area of Top Reinf.	As	mm2	6434.0	
Concrete Cover	Cs	mm	100.0	
Bottom Reinforcement				
Diameter	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Total Area of Bottom Reinf.	A's	mm2	6434.0	
Concrete Cover	C's	mm	100.0	
Shear Reinforcement	1			
Diameter	φv.	mm	22	
Area of 1 bar	A1v	mm2	380.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within	s Av	mm2	760.3	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

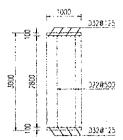
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1186523	
Depth of Compressive Area	c	mm	115.25	
Flexural Resistance	Mr _{top}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.214	
omin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement		1		
Bending Moment	Mu _{bot}	kN.mm	1569200	
Depth of Compressive Area	c	mm	115.25	
Flexural Resistance	Mr _{bot}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.214	
ρmin=0.03fc/fy	<u> </u>	<u> %</u>	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)

$\begin{array}{c} Vu \\ Vr \\ d_v \\ b_v \\ s \\ \alpha \\ \\ \beta \\ A_v \\ \epsilon_x \\ \theta \\ \end{array}$	N N mm mm degrees	2107886 2160 1000 500 90 1.9 760 0.001506 41.02	
d_v b_v s α β A_v ϵ_x θ	mm mm degrees	1000 500 90 1.9 760 0.001506	
b_v s α β A_v ϵ_x θ	mm mm degrees mm²	1000 500 90 1.9 760 0.001506	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	mm degrees mm²	500 90 1.9 760 0.001506	
α β A_{ν} ϵ_{x} θ	degrees	90 1.9 760 0.001506	
$eta_{\mathbf{v}}$ $eta_{\mathbf{x}}$ eta	mm²	1.9 760 0.001506	
A_{ν} ϵ_{x} θ		0.001506	
A_{ν} ϵ_{x} θ		0.001506	
A_{ν} ϵ_{x} θ		0.001506	
θ		A COLUMN TO SERVICE A PROPERTY AND	
θ	degrees	l	
		1 41.041	
V	MPa	1.084	
Act	mm ²	1500000	I
V.	N	1668749	
	N	1472463	
۷'n	N	3,141,212	
m	Ì	0.9	i
	N	2,827,091	•
		ОК	
	V _c V _s Vn φ Vr	V _s N Vn N	V _s N 1472463 Vn N 3,141,212 φ 0.9 Vr N 2,827,091

f) Checking for Flexural Stress


Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			181280	Tensile at bottom
SERVICE I-2			181280	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			0.11	
SERVICE I-2			0.11	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-0.78	
SERVICE I-2			-0.78	,
Checking Stress of Steel			OK	<u></u>

3) Section Analysis of "C"

Total width of section Calculation width

10500 mm 1000 mm

> Couling Discounting & Material Descention	1000		.i}	₹ 1/2/2/2 2328.52
a) Section Dimensions & Material Properties				
Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	·
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	[

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-1215995	STRENGTH I-1
for Calculating Bottom Reinforcen				
Maximum Shear Force				
Shear force	Vu	kN	-251	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	-1215995	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Total Area of Top Reinf.	As	mm2	6434.0	
Concrete Cover	Cs	mm	100.0	
Bottom Reinforcement				
Diameter	φbot.	mm	32	The same to section B
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Total Area of Bottom Reinf.	A's	mm2	6434.0	
Concrete Cover	C's	mm	100.0	
Shear Reinforcement				
Diameter	φv.	mm	22	-
Area of 1 bar	A1v	mm2	380.1	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Αv	mm2	760.3	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = Astensile/(H.W)	Mu _{top} C Mr _{top}	kN.mm mm kN.mm	1215995 115.25 6415080 OK 0.214 0.185	OK
pmin=0.03fc/fy Bottom Reinforcement Bending Moment Depth of Compressive Area Flexural Resistance Checking Resistance Checking Reinforcement Ratio pst = Astensite/(H.W) pmin=0.03fc/fy	Mu _{bot} c Mr _{bot}	kN.mm mm kN.mm	-551016 145.236 8609150 OK 0.214 0.185	

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

The shear force at this section is relatively small, so the calculation will be omitted

f) Checking for Flexural Stress

ltem	Notation	Unit	Value	Remark
Factored Moments SERVICE I-1 SERVICE I-2	Mu	kN.mm	-935939 -688813	Tensile at top Tensile at top
Factored Comp. Stress of Concrete SERVICE I-1 SERVICE I-2 Checking Stress of Concrete	σcu	MPa	0.57 0.42 OK	
Factored Tensile Stress of Steel SERVICE I-1 SERVICE I-2 Checking Stress of Steel	osu	MPa	-4.04 -2.97 OK	

(4) Section Calculation of Pile

Dia :

1500 mm 82.0 m

Length: Number:

12 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Longitudinal			Transverse		
Load Case	Sectiona	l Force	Depth	Sectiona	l Force	Depth
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)
STRENGTH I-1	7.59	649.87	5.209	0.00	689.11	0
STRENGTH I-2	1.94	359.08	5.22	0.00	369.09	0.00
STRENGTH III	8.30	550.32	6.08	1.90	582.79	9.41
STRENGTH IV	3.24	693.96	5.21	0.00	710.71	0.00
STRENGTH V-1	8.02	625.66	5.49	0.54	664.26	9.13
STRENGTH V-2	0.76	378.93	7.47	0.54	379.53	9.13
EXTREME EVENT I-1	150.81	-169.94	6.00	80.12	103.78	8.77
EXTREME EVENT 1-2	148.12	-365.62	6.01	80.12	-105.98	8.77
SERVICE I-1	9.08	476.30	7 .59	0.46	527.96	11.25
SERVICE I-2	4.20	417.32	7.80	0.46	439.76	11.25

2) Section Calculation

a) General Conditions

Item	Notation	Unit	Value	Remark
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	150	
Diameter of Rebars	d	mm	32	
Number of Rebars	n _{st}	nos	28	
Total Area of Reinforcement	A _{st}	mm2	22519	
	-			

b) Checking Resistance (AASHTO 5.7.2)

b) Checking Resistance (AASHTO 5.7.2)							
Load Case	Type of	Unit	Longitudinal		Transverse		Remark
Load Case	force	Oint	Actual	Allowable	Actual	Allowable	
STRENGTH I-1	PNmin	tf	649.87	3855.1	689.11	3891.7	OK
at Z= 5.211	n M	tf.m	7.59	44.9	0.00	0.0	OK
STRENGTH I-2	PNmin	tf	359.08	4349.1	369.09	4379.3	OK
at Z= 5.221	n M	tf.m	1.94	23.3	0.00	0.0	OK
STRENGTH III	PNmin	tf	550.32	3969.6	582.79	4029.0	OK
at Z= 6.081	n M	tf.m	8.30	59.8	1.90	13.2	OK
STRENGTH IV	PNmin	tf	693.96	3850.0	710.71	3858.8	OK
at $Z = 5.21$	n M	tf.m	3.24	17.9	0.00	0.0	OK
STRENGTH V-1	PNmin	tf	625.66	3879.9	664.26	3924.2	OK
at Z= 5.49	n M	tf.m	8.02	49.9	0.54	3.1	OK
STRENGTH V-2	PNmin	tf	378.93	4348.8	379.53	4352.0	OK
at $Z = 7.471$	n M	tf.m	0.76	8.6	0.54	6.4	OK
EXTREME EVENT	I-1 PNmin	tf	-169.94	-327.0	103.78	1012.0	OK
at Z= 6.00	n M	tf.m	150.81	290.1	80.12	781.3	OK
EXTREME EVENT	I-2 PNmin	tf	-365.62	-489.9	-105.98	-359.6	OK
at Z= 6.01:	n M	tf.m	148.12	198.5	80.12	271.9	OK

c) Checking Stress

Load C	200	Force		Tensile St	eel (tf/m2)	Comp. Con	Remark	
Load	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Nemaik
SERVICE I-1	Horizontal	476.30	9.08	1569.31	23861	276.08	1377	OK
at Z=7.59m	Transverse	527.96	0.46	1,431.28	23861	231.54	1377	OK
SERVICE I-2	Horizontal	417.32	4.20	1883.50	23861	279.54	1377	OK
at Z=7.80m	Transverse	439.76	0.46	1,567.69	23861	233.05	1377	OK

d) Checking Minimum Steel Ratio

ti) Checking Militantoleci Ruto						
Item	Notation	Unit	Value	Remark		
Total Area of Reinforcement	A _{st}	mm2	22519			
Gross Area of Section	Ag	mm2	1767145.9			
Reinforcement Ratio	ρst	%	1.27	•		
Minimum Reinforcement ratio	omin	%	0.40	OK		
	'					

(5) Calculation of Footing Concret Stress that Pile connected1) Vertical bearing stress of footing concrete

$$\sigma_{cv} = P/(\pi D^2/4) <= \sigma_{ca}$$

Reaction force of pile	P=	1364520 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Vertical bearing stress	σ_{cv}	77.22 kg/cm ²	
Allowable bearing stress	$\sigma_{ca}=0.5xf_{c}=$	= 150.00 kg/cm ²	

$$\sigma_{cv}$$
 <= σ_{ca} -> OK

2) Vertical Punching Shear Stress

 $\tau_c = P / \{\pi h(D + h)\} <= \tau_a$

Reaction force of pile	P=	1364520 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Depth from pile head to upper	h=	290 cm	
surface of pile cap	U=		
Punching shear stress	$\tau_c =$	3.40 kg/cm ²	
Allowable punching shear stress	τ_a =	9.00 kg/cm ²	

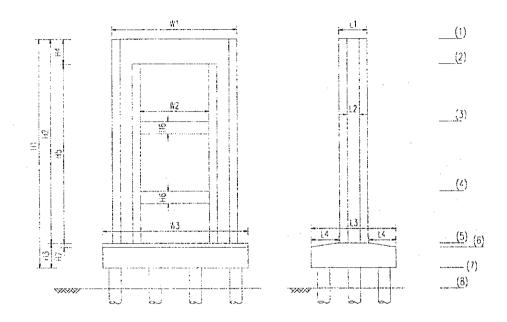
OK

3) Horizontal Bearing stress

 $\sigma_{ch} = H/(DI) \le \sigma_{ca}$

Horizontal force at pile head	H=	88370 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Embedded Length of Pile	I =	10 cm	
Horizontal bearing stress	σ_{ch}	58.91 kg/cm ²	
Allowable bearing stress	$\sigma_{ca}=0.3xf_c=$	90.00 kg/cm²	

$$\sigma_{ch} \iff \sigma_{ca} \longrightarrow OK$$


4) Horizontal Punching Shear Stress $\tau_c = H/\{h' \times (2l + D + 2h')\} \le \tau_a$

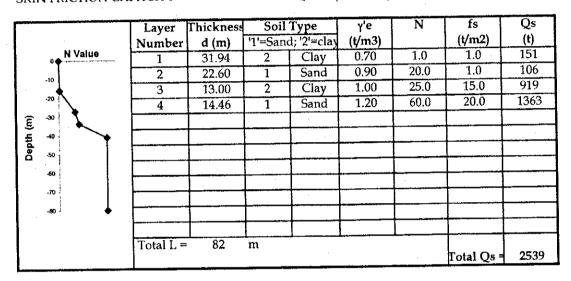
Horizontal force at pile head	H=	88370 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Distance from side of pile to the			
nearest edge of pile cap	h'=	7 5 cm	
Embedded Length of Pile] =	10 cm	
Punching shear stress	τ_c =	3.68 kg/cm ²	
Allowable punching shear stress	τ_a =	9.00 kg/cm ²	

$$\tau_c \ll \tau_a -> OK$$

3.13.4 Design of P14 pier(1) Stability Calculation1) Dimension of Pier

	(Figure)	(m)			(Level)	(m)	
Portion	Length	Portion	Length	Portion	Level	Portion	Level
H1	30.48	W1	15.00	(1)	+28.12	(6)	+0.14
H2	27.48	W2	7.00	(2)	+25.12	(7)	-2.36
H3	3.00	L1	4.00	(3)	+18.12	(8)	+1.14
H4	3.00	W3	18.00	(4)	+9.62		
H5	24.48	L2	2.00	(5)	+0.64		
H6	1.50	L3	10.50				
H7	0.50	L4	3.15				

2) Summary of Load Combination Forces at the Bottom of Pile Cap


Too	ad Combination	V	Longit	udinal	Trans	verse
LO	au Combination	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	5964.7	48.4	1328.8	0.0	0.0
2	STRENGTH I-2	1624.8	-24.0	-660.5	0.0	0.0
3	STRENGTH III	4349.1	60.1	1142.0	29.8	409.7
4	STRENGTH IV	5213.7	15.6	428.7	0.0	0.0
5	STRENGTH V-1	5595.4	53.6	1326.9	8.5	117.0
6	STRENGTH V-2	1970.8	-2.3	- 207.7	8.5	117.0
7	EXTREME EVENT I-1	4052.4	1086.9	23072.3	1077.6	22815.1
8	EXTREME EVENT 1-2	1947.8	1066.3	22503.9	1077.6	22815.1
9	SERVICE I-1	4433.5	59.4	1524.6	6.4	87.8
10	SERVICE I-2	2645.3	18.1	387.9	6.4	87.8

3) Pile Capacity

INPUT DATA			
BoreHole			BRD12
Pile Diameter	D	22	1500 mm
Factor of Safety	FS	=	3
Pile length	L	=	82.00
Pile Embedded Length	Le	EC:	82.00 m
Pile Cross-Section Circumference	P	=	4.712 m
Pile Cross-Section Area	Ab	=	1.767 m2
Concrete Unit Weight	γC	===	2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	=	300 t/m2
Soil Type of Bearing Layer	- 1-		1 (1/2 = Sand/Clay)

SKIN FRICTION CAPACITY

Formula: Qs = S (fs * P * d) for N > 0

END BEARING CAPACITY

FS=3

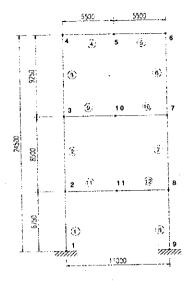
Formula: Qt = qu* Ab

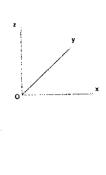
Type of Pile	Soil Type of B.P	End Bearing Capacity
Cast-in-situ Friction & Bearing	Sand	530 tonne

ULTIMATE BEARING CAPACITY (Quit) 3069 tonne * Oult = Qt + QsREPLACED EFFECTIVE WEIGHT OF SOIL (Ws) 129 tonne **BUOYANT WEIGHT OF PILE (W)** 217 tonne Allowable Bearing Capacity for Service Load Combinations (Qall₁) 892 tonne * $Qall_1 = (Qult - Ws) / FS + Ws - W$ Allowable Bearing Capacity for Earthquake & Strength Load Combinations(Qall2) 1382 tonne * $Qall_2 = (Qult - Ws) / FS + Ws - W$ FS=2Design Uplift Capacity for Service Load Combinations (Qup1) 640 tonne * $Qup_1 = Qs / FS + W$ Design Uplift Capacity for Earthquake & Strength Load Combinations(Qup₂) 1064 tonne * $Qup_2 = Qs / FS + W$

4) Reaction of Pile

a) Displacement


T .	Load Combination		ongitudir	nal		Transverse	9	δ xa(cm)	Remark
Lo			δ y(cm)	α (rad)	δ x(cm)	δ y(cm)	α (rad)	, ,	
1	STRENGTH I-1	0.08	0.80	0.000130	0.00	0.84	0.000000	3.00	OK
2	STRENGTH I-2	-0.03	0.37	-0.000046	0.00	0.33	0.000000	3,00	OK
3	STRENGTH III	0.11	0.67	0.000145	0.04	0.67	0.000019	3.00	OK
4	STRENGTH IV	0.03	0.81	0.000050	0.00	0.81	0.000000	3.00	OK
5	STRENGTH V-1	0.09	0.77	0.000139	0.01	0.80	0.000005	3.00	OK
6	STRENGTH V-2	0.01	0.40	0.000003	0.01	0.37	0.000005	3.00	OK
7	EXTREME EVENT I	1.96	0.63	0.002723	1.33	0.64	0.000816	2.00	OK
8	EXTREME EVENT I	1.62	0.38	0.001720	1.33	0.37	0.000816	2.00	OK
9	SERVICE I-1	0.16	0.61	0.000172	0.01	0.63	0.000004	1.50	OK
10	SERVICE I-2	0.07	0.48	0.000069	0.01	0.46	0.000004	1.50	OK


b) Bearing and Uplift forces of piles

Υ.	- 1 C Line Line	Longit	udinal	Transv	rerse	Allowable	Capacities	Chec	king
Lo	ad Combination	PNmax(tf)	PNmin(tf)	PNmax(tf)	PNmin(tf)	Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	702.19	621.28	695.14	695.14	1382.0	-1064.0	OK	OK
2	STRENGTH I-2	323.61	295.04	278.02	278.02	1382.0	-1064.0	OK	OK
3	STRENGTH III	605.79	515.23	572.05	548.97	1382.0	-1064.0	OK	OK
4	STRENGTH IV	687.87	656.49	672.18	672.18	1382.0	-1064.0	OK	OK
5	STRENGTH V-1	681.85	595.35	667.66			-1064.0	OK	OK
6	STRENGTH V-2	332.02	329.98	310.16	303.56	1382.0	-1064.0	OK	OK
7	EXTREME EVENT I-	1376.13	-323.65	1045.21	26.35	1382.0	-1064.0	OK	OK
8	EXTREME EVENT I-	850.54	-222.77	814.36	-204.50	1382.0	-1064.0	OK	OK
9	SERVICE I-1	562.66	455.02	530.50	525.37			OK	OK
10	SERVICE I-2	418.20	375.40	381.48	376.35	892.0	-640.0	OK	OK
]			

(3) Design of Pier Sections

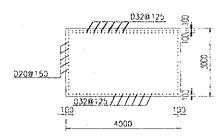
1) Calculation of Model

2) Loads from superstructure at pier top

2) Loads Holli Sup			udinal		verse	Remarks
Load	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)	Kenturks
DC1	1744.9	0.0	0.0	0.0		
DW1	0.0	0.0	0.0	0.0	3	
LLmax	694.1	14.1	0.0	0.0		
LLmin	-650.4	-17.0	0.0	0.0	ŧ	
TUmax	51.8	31.2	0.0	0.0		
TUmin	-50.0	-34.4	0.0	i e	1	
EQ1-L	-732.4	643.8	0.0	193.1	0.0	i
EQ1-T	-732.4	193.1	0.0	643.8	0.0	

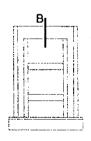
Loads acting on pier

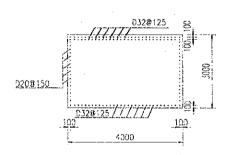
- Dead Load DC2: 2.5t/m3
- Wind Pressure on Structure WS2: 0.194t/m2
- Earthquake in longitudinal direction (EQ2-L):
 - +12% of self-weight in longitudinal direction.
 - +3.6% of self-weight in transverse direction.
- Earthquake in transverse direction (EQ2-T):
 - +12% of self-weight in transverse direction.
 - +3.6% of self-weight in longitudinal direction.


3) Envelope of Member End Actions

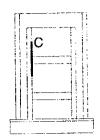
MEMBED	IOINTT	ТҮРЕ	Nx	Sy	Sz	Mx	Му	Mz
MEMBER	JOINT	IIIE	(tf)	(tf)	(tf)	(tf.m)	(tf.m)	(tf.m)
1	1	MAX	-895.07	448.125	445.96	51.9746	3977.72	9638.22
	ļ	CASE	12A	11	12B	11	10A	11
		MIN	-3922.23	-137.685	-444.13	-15.9658	-3976.47	-2971.03
		CASE	10B	12B	10A	12B	12B	12B
1	2	MAX	3626.91	129.18	415.78	15.9658	1064.57	2070.36
		CASE	10B	12B	10A	12B	10B	12B
		MIN	682.44	-419 <i>.7</i> 75	-417.61	-51.9746	-1078.18	-6709.05
		CASE	12A	11	12B	11	12A	11
2	2	MAX	-873.38	416.625	411.95	49.8482	2183.7	6709.05
		CASE	12A	11	12B	11	12A	11
]		MIN	-3379.54	-128.235	-416.81	-15.3843	-2348.29	-2070.36
		CASE	10B	12B	10A	12B	10B	12B
2	3	MAX	3007.66	117.525	381.11	15.3843	1239.16	1025.88
		CASE	10B	12B	10A	12B	10A	12B
		MIN	605.63		-376.25	-49.8482	-1033.23	-3319.47
		CASE	12A	11	12B		12B	11
3	3	MAX	-621.66	377.775	568.9		160.58	3319.47
		CASE	2	11	10B		12A	11
]		MIN	-2715.38	-116.58	-251.25			-1025.88
		CASE	10B		12A		10B	12B
3	4	MAX	2376.31				1660.46	160.23
	_	CASE	10B				12A	12B
		MIN	377.54		-536.35			-517.84
		CASE	2	11	10B		10B	11
4	4	MAX	4.1				4526.45	57.2
		CASE	12A		12A	11		11
		MIN	-321.75		-1289.51	0	-1988.51	-17.73
		CASE	10B		10B	12B	12A	12B
4	5				1083.26	.0	2085.36	593.87
		CASE	10B	12B	10B	12B	1	11
		MIN	15. <i>7</i> 1	-108.475	-210.29	- 0	424.29	-183.55
		CASE	12A	11	12A	11		12B
5	5	MAX	-15.71	33.625	1083.26	0	-424.29	183.55
		CASE	12B	12B	10A	11		12B
		MIN	- 301.95	-108.475	-210.29	0	-2085.36	-593.87
		CASE	10A	11	12B	12B	1	11
5	6	MAX	321.75	128.275	61.79	0	1988.51	17.73
		CASE	10A	11	12B	12B	12B	12B
		MIN	-4 .1	-39.565	-1289.51	0	-4526.45	-57.2
		CASE	12B	12B	10A	11	10A	11
6	6	MAX	2376.31	106.815	536.35	57.2009	3721.93	160.23
		CASE	10A	12B	10A	11	10A	12B
	-	MIN	377.54	-345.225	-218.7	-17,7282	-1660.46	-517.84
		CASE	2	11	12B	12B	12B	11
6	7	MAX	-621.66	377.775	251.25	17.7282	560.87	3319.47
		CASE	2	11	12B	12E	10A	11
		MIN	-2715.38	-116.58	~568.9	-57.2009	-160.58	-1025.88
		CASE	10A	12B	10A	. 11	12B	12B
		<u> </u>		·	<u></u>		<u>l</u>	<u> </u>

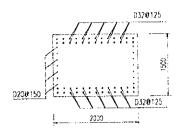
							(C	ontinued)	
Γ							10.0100	1000 00	1005 00
ļ	7	7	MAX	3007.66	117.525	376.25	49.8482	1033.23 12A	1025.88 12B
			CASE	10A	12B	12A -381.11	-15.3843	-1239.16	-3319.47
l			MIN	605.63	-380.925	-361.11 10B	12B	10B	11
	-		CASE	12B	11 416.625	416.81	15.3843	2348.29	6709.05
	7	8	MAX	-873.38 12B	11	410.01 10B	13.3343 12B	10A	11
			CASE	-3379.54	-128.235	-411.95	-49.8482	-2183.7	-2070.36
ĺ	1	ļ	MIN CASE	10A	12B	12A	11	12B	12B
	8	8	MAX	3626.91	129.18	417.61	51.9746	1078.18	2070.36
	٥		CASE	10A	12B	12A	11	12B	12B
		Ì	MIN	682.44	-419.775	-415.78	-15.9658	-1064.57	-6709.05
	ļ		CASE	12B	11	10B	12B	10A	11
	8	9	MAX	-895.07	448.125	444.13	15.9658	3976.47	9638.22
l	4	1	CASE	12B	11	10B	12B	12A	11
ı			MIN	-3922.23	-137.685	-445.96	-51.9746	-3977.72	-2971.03
			CASE	10A	12B	12A	11	10B	12B
ı	9	3	MAX	206.49	3.15	235.85	0	956.11	4.24
-	1	1	CASE	1	11	12A	13	10B	12B
	1	1	MIN	47.56	-0.945	-292.29	0	-874.63	-13.66
ļ			CASE	2	10B	10B	12B	12A	11
١	9	10	MAX	-47.56	0	259.48	0	14.74	19.17
ļ			CASE	2	11	10B	12B	5	11
		į	MIN	-206.49	0	-259.48	0		-5.89
		1	CASE	1	12B	10A	13		12B
1	10	7	MAX	-47.56	3.15	235.85	0	,	13.66
		ţ	CASE	2	11	12B	12B	12B	11
1	-		MIN	-206.49	-0.945	-292.29	0	} I	-4.24 12B
			CASE	1	10B	10A	11	10A -7.81	5.89
1	10	10	MAX	206.49	0		0 11	12A	12B
			CASE	1	11	10A -259.48	1		-19.17
			MIN	47.56	ŧ	i	1	3	11
ļ		٦	CASE MAX	2 0.64			1		1.31
	11	2	CASE	12A	ł	i	ı	1	12B
			MIN	-7.34				1	! I
١	-		CASE	10B	ł	l .	1	į.	11
ļ	11	11	MAX	5.95					9.69
Ì			CASE	4A				5	11
			MIN	-0.43	i	1		14.03	-2.97
Ì			CASE	4B			13	12A	
	12	8	MAX	7.34	3.15	190.94		1	1
			CASE						1
ļ	.		MIN			1	1		
			CASE	12F	10B				•
	12	11	MAX			1			
	·	,	CASE						
			MIN	1					
			CASE	4.4	128	101	3 12E	5	11
			1	1	1	I	l	J	<u> </u>


- 4) Design of Section1) Flexural Resistance and Bar Arrangementa) Section A



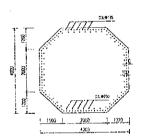
Item	Notation	Unit	Tensil	Tensile Side	
l Helft	inotation	tore Orac		Bottom	Remark
Factored Loads					
Maximum Moment	M	(tf.m)	4526.5	1988.5	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm .	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n l	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	- 1	-	
Compressive Depth	c	(mm)	220.84	163.83	
Resistance Factor	φ		0.90	0.90	٠
Checking Resistance	ļ	4	OK	OK	
Checking Reinforcement Ratio			OK	OK	


b) Section B

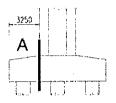


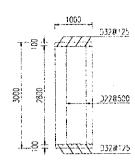
Item	Notation	Unit	Tensil	e Side	Remark
nem	Notation	Olut	Тор		Remark
Factored Loads					
Maximum Moment	M	(tf.m)	-424.3	2085.4	
Factored Axial Force	N	(tf)		-	
Load case of Max. Moment			2	1	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n n	(nos.)	64	32	•
Resistance		,			<u></u>
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	c	(mm)	220.84	163.83	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	ок	
Checking Reinforcement Ratio			OK	OK	

c) Section C



	Natation	Unit	Tensil	e Side	Remark
Item	Notation	Notation Offic		Bottom	Kemark
Factored Loads					•
Maximum Moment	M	(tf.m)	956.1	874.6	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	2	
Number of tensile bars	n	(nos.)	26	26	
Resistance					
Flexural Resistance	Mr	(tf.m)	1071.2	1071.2	
Axial Compressive Resistance	Nr	(tf.m)	٠ -		
Compressive Depth	c	(mm)	199.84	1	
Resistance Factor	φ	:	0.90	Į i	
Checking Resistance			ОК	OK	,
Checking Reinforcement Ratio			OK	OK	


d) Section D



*	T: T	T I ! 4	T	Remark		
Item	Notation	Unit	Left	Right	Front	Kemax
Factored Loads						
Maximum Moment	M	(tf.m)	3977.7	3976.5	9638.2	
Factored Axial Force	N	(tf)	1,894.4	1,922.9	2,604.1	
Load case of Max. Moment			10A	12B	11	ļ
Bar Arrangement		ļ				İ
Dia. of main reinforcement	Dm	(mm)		32		ļ
Number of reinf. layers	nlay	(nos.)) [2			
Number of bars	n	(nos.)			ļ	
In layer 1				106		
In layer 2				48		
Resistance						
Flexural Resistance	Mr	(tf.m)	13784.5	i 1		<u>'</u>
Axial Compressive Resistance	Nr	(tf.m)	6564.90	6698.75	2760.92	
Compressive Depth	· c	(mm)	1532.47	1552.83	1014.71	
Resistance Factor	φ		0.817	0.816	0.786	5
Checking Resistance			OK	OK	OK	
Checking Reinforcement Ratio			OK	OK	OK	<u> </u>

(3) Desing of Pile Cap 1) Section Analysis of "A"

Total width of section Calculation width

18000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

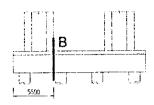
		EXTREME EVENT I-2 EXTREME EVENT I-1
kN.mm	4597620	EXTREME EVENT I-1
		1
kN	2599	EXTREME EVENT I-1
kN.mm	4597620	

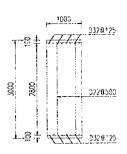
iii) Bar Arrangement:

Item	Notation	Unit	Value	Remark
Top Reinforcement		·		
Diameter	φŧοp	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Total Area of Top Reinf.	As	mm2	6434.0	
Concrete Cover	Cs	mm	100.0	
Bottom Reinforcement				
Diameter	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	·
Numbers of Rebar	n's	nos	8	
Total Area of Bottom Reinf.	A's	mm2	6434.0	
Concrete Cover	C's	mm	100.0	
Shear Reinforcement				
Diameter	φv.	mm	25	
Area of 1 bar	A1v	mm2	490.9	
Numbers of Rebar in section	nv	nos	2	ĺ
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	981.7	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1884793	
Depth of Compressive Area	c	mm	115.25	}
Flexural Resistance	Mr _{top}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$	1	%	0.214	
omin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	4597620	
Depth of Compressive Area	c	mm	115.25	
Flexural Resistance	Mr _{bot}	kN.mm	6415080	
Checking Resistance			OK	
Checking Reinforcement Ratio]		ļ
$\rho st = As_{tensile}/(H.W)$		%	0.214	i .
omin=0.03fc/fy	İ	%	0.185	OK


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2598618	
Shear Resistance	Vr	N		
Effective shear Depth	d_v	mm	2160	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		1.7	
Area of shear reinf, within a distance s	A _v	mm ²	982	
Strain in the tensile reinforcement	ϵ_{x}		0.002000	
Inclination angle of diagonal comp. stress	θ	degrees	42.77	
Shear stress on the concrete	v	MPa	1.337	
Area of Conc. on flexural tensile side	Act	mm ²	1500000	
Nominal Resistance of Concrete	V _c	N	1493091	
Nominal Resistance of Reinforcement	V_s	N	1788087	
Nominal Resistance	۷n	N	3,281,178	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,953,061	
Checking			OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1				Tensile at bottom
SERVICE I-2			1041492	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			0.97	1
SERVICE I-2			0.63	
Checking Stress of Concrete		<u> </u>	OK	
Factored Tensile Stress of Steel	σsu	MPa		
SERVICE I-1			-6.87	
SERVICE I-2			-4.49	
Checking Stress of Steel			OK	

2) Section B

Total width of section

10500 mm 1000 mm

Calculation width
a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Notation	Unit	Value	Load Case
Muton	LNI mm	-1229777	EXTREME EVENT I-2
			EXTREME EVENT I-1
Vu	kN	1959	EXTREME EVENT I-1
		1612454	·
	Mutop Mubot. Vu	Mutop kN.mm Mubot. kN.mm Vu kN	Mutop kN.mm -1229777 1612454 Vu kN 1959

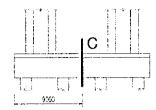
c) Bar Arrangement

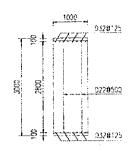
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Total Area of Top Reinf.	As	mm2	6434.0	
Concrete Cover	Cs	mm	100.0	
Bottom Reinforcement				
Diameter	φbot.	mm	32	
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	- 8	
Shear Reinforcement				
Diameter	φv.	mm	25	
Area of 1 bar	A1v	mm2	490.9	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	981.7	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

۱۱. ۲	Item	Notation	Unit	Value	Remark
ļ		rvotation	Ome		
ľ	Fop Reinforcement]	***************************************	
-	Bending Moment	Mu _{top}	kN.mm	1229777	
١	Depth of Compressive Area	С	mm	115.25	
ļ	Flexural Resistance	Mr _{top}	kN.mm	6415080	
	Checking Resistance	·		OK	
ı	Checking Reinforcement Ratio				
- [$\rho st = As_{tensile}/(H.W)$		%	0.214	
	omin=0.03fc/fy		%	0.185	OK
-	Bottom Reinforcement				
-	Bending Moment	Mu _{bot}	kN.mm	1612454	
	Depth of Compressive Area	c	mm	115.25	
	Flexural Resistance	Mr _{bot}	kN.mm	6415080	
	Checking Resistance			OK	
	Checking Reinforcement Ratio				
	$\rho st = As_{tensile}/(H.W)$		%	0.214	
	omin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


n. I	ecking for Shear Resistance (AASH1O Item	Notation	Unit	Value	Remark
	Factored Shear	Vu	N	1958521	
	Shear Resistance	Vr	N		
Ì	Effective shear Depth	d_{ν}	mm	2160	
	Effective web width	b_{v}	mm	1000	
	Spacing of stirrups	s	mm	500	
	Angle of inclination of transverse reinf.	α	degrees	. 90	
	Factor indicating ability of diagonally			er ana sandanbancoko okorea	
	cracked concrete to transmit tension	β		2,0	
	Area of shear reinf, within a distance s	A_{v}	mm²	982	
	Strain in the tensile reinforcement	εχ		0.001466	
	Inclination angle of diagonal comp. stress	θ	degrees	40.66	
	Shear stress on the concrete	v	MPa	1.007	
	Area of Conc. on flexural tensile side	Act	mm²	1500000	
	Nominal Resistance of Concrete	V_{c}	N	1756578	
	Nominal Resistance of Reinforcement	V _s	N	1925727	
	Nominal Resistance	Vn	N	3,682,305	
	Resistance factor for shear	φ		0.9	
	Factored Resistance	Vr	N	3,314,074	·
	Checking			OK	
		1]	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1	1		182448	Tensile at bottom
SERVICE I-2			182448	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1		1	0.11	
SERVICE I-2			0.11	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-0.79	
SERVICE I-2	ĺ	ļ	-0.79	
Checking Stress of Steel	<u></u>		OK	<u> </u>

3) Section C

Total width of section Calculation width

10500 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3000	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	·
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-1232890	STRENGTH I-1
for Calculating Bottom Reinforcen	Mubot.	kN.mm	-295848	EXTREME EVENT 1-1
Maximum Shear Force				
Shear force	Vu	kN	-260	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	-1232890	•

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	32	
Area of 1 bar	A1s	mm2	804.2	
Numbers of Rebar	ns	nos	8	
Bottom Reinforcement				İ
Diameter	φbot.	mm	32	The same to section B
Area of 1 bar	A1's	mm2	804.2	
Numbers of Rebar	n's	nos	8	
Shear Reinforcement				
Diameter	φv.	mm	25	
Area of 1 bar	A1v	mm2	490.9	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within	Av	mm2	981.7	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1232890	
Depth of Compressive Area	С	mm	115.25	
Flexural Resistance	Mr _{top}	kN.mm	6415080	
Checking Resistance		,	OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$	Į	%	0.214	
omin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	-295848.3	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.214	
omin=0.03fc/fy	l	%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

The shear force at this section is relatively small, so the calculation will be omitted

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			-929887	Tensile at top
SERVICE I-2			-512350	Tensile at top
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1	1		0.57	
SERVICE I-2			0.31	
Checking Stress of Concrete		.,	OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-4.01	
SERVICE I-2			-2.21	
Checking Stress of Steel			OK	

(4) Section Calculation of Pile

Dia:

1500 mm

Length:

82.0 m

Number:

12 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Lo	ongitudin	al	Transverse			
Load Case	Sectiona		Depth	Sectiona	l Force	Depth	
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)	
STRENGTH I-1	7.85	621.28	4.914	0.00	695.14	0.00	
STRENGTH I-2	2.77	295.04	4.91	0.00	278.02	0.00	
STRENGTH III	8.86	515.23	5.87	2.51	548.97	9.05	
STRENGTH IV	3.04	656.49	4.91	2.51	672.18	0.00	
STRENGTH V-1	8.37	595.35	5.23	0.61	661.07	9.03	
STRENGTH V-2	0.38	329.98	9.06	0.61	303.56	9.03	
EXTREME EVENT I-1	165.61	-323.65	5.74	82.19	26.35	8.75	
EXTREME EVENT I-2	115.24	-222.77	7.11	82.19	-204.50	8.75	
SERVICE I-1	8.95	455.02	7.30	0.52	525.37	11.19	
SERVICE I-2	3.62	375.40	7.61	0.52	376.35	11.19	

2) Section Calculation a) General Conditions

Item	Notation	Unit	Value	Remark
Number of Reinf, layers	n _{laver}	nos	1	
Concrete cover	cv	m	150	İ
Diameter of Rebars	d	mm	32	
Number of Rebars	n _{st}	nos	28	
Total Area of Reinforcement	A _{st}	mm2	22519	
Total Area of Reinforcement	A _{st}	mm2	22519	

b) Chacking Resistance (A ASHTO 5.7.2)

b) Checking Resistant	е (марпт	J 3.7.Z)					
Land Cons	Type of	IInit	Longitudinal		Transverse		Remark
Load Case	force	Oill	Unit Actual A		Actual	Allowable	Kemark
STRENGTH I-1	PNmin	tf	621.28	3888.9	695.14		OK
at Z= 4.91m	M	tf.m	7.85	48.9	0.00	0.0	OK
STRENGTH I-2	PNmin	tf	295.04	4406.2	278.02		OK
at Z= 4.91m	M	tf.m	2.77	41.3	0.00	0.0	
STRENGTH III	PNmin	tf	515.23	4002.4	548.97	4069.5	OK
at Z= 5.87m	M	tf.m	8.86	68.8	2.51	18.6	OK
STRENGTH IV	PNmin	tf	656.49	3906.6	672.18	3889.9	OK
at $Z=4.91m$	M	tf.m	3.04	18.1	2.51	14.6	OK
STRENGTH V-1	PNmin	tf	595.35	3913.5	661.07	3928.2	OK
at Z= 5.23m	M	tf.m	8.37	55.0	0.61	3.6	OK
STRENGTH V-2	PNmin	tf	329.98	4429.8	303.56	4463.2	OK
at Z= 9.06m	M	tf.m	0.38	5.1	0.61	8.8	OK
EXTREME EVENT I-	1 PNmin	tf	-323.65	-441.3	26.35	168.9	OK
at Z= 5.74m	M	tt.m	165.61	225.8	82.19	526.8	OK
EXTREME EVENT I-	2 PNmin	tf	-222.77	-439.0	-204.50	-491.5	OK
at Z= 7.11m	M	tf.m	115.24	227.1	82.19	197.5	OK

c) Checking Stress

Load Case		Force		Tensile Steel (tf/m2)		Comp. Con	Remark	
Load	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Kemark
SERVICE I-1	Horizontal	455.02	8.95	1495.06	23861	264.51	1377	OK
at Z=7.30m	Transverse	525.37	0.52	1,289.88	23861	207.84	1377	OK -
SERVICE I-2	Horizontal	375.40	3.62	1873.32	23861	278.34	1377	OK
at Z=7.61m	Transverse	376.35	0.52	1,339.75	23861	199.79	1377	OK

d) Checking Minimum Steel Ratio

Item	Notation	Unit	Value	Remark
Total Area of Reinforcement	A _{st}	mm2	22519	
Gross Area of Section	Ag	mm2	1767145.9	
Reinforcement Ratio	ost	%	1.27	
Minimum Reinforcement ratio	omin	%	0.40	OK

5) Checking Footing Concret Stress that Pile connected

1) Vertical bearing stress of footing concrete $\sigma_{cv}=P/(\pi D^2/4) <= \sigma_{co}$

$$\sigma_{cv} = P/(\pi D^2/4) \le \sigma_{cv}$$

Reaction force of pile Diameter of Pile Vertical bearing stress Allowable bearing stress	$P= D= \sigma_{cv} = 0.5 \times f_{c} =$	1376130 kg 150 cm 77.87 kg/cm ² 150.00 kg/cm ²	Load Combination: 7
---	--	---	---------------------

$\sigma_{cv} \ll \sigma_{ca} \rightarrow OK$

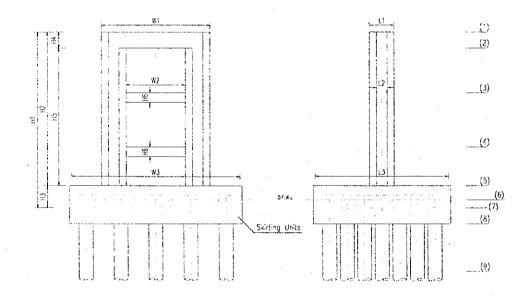
2) Vertical Punching Shear Stress $\tau_c = P/\{\pi h(D+h)\} \le \tau_a$

Reaction force of pile	P=	1376130 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Depth from pile head to upper surface of pile cap Punching shear stress Allowable punching shear stress	h= τ _c = τ _a =	290 cm 3.43 kg/cm ² 9.00 kg/cm ²	

τ_c <= τ_a -> OK

3) Horizontal Bearing stress $\sigma_{\rm ch}$ =H/(Dl) <= $\sigma_{\rm ca}$

Horizontal force at pile head Diameter of Pile Embedded Length of Pile	H= D= l=	90380 kg 150 cm 10 cm 60.25 kg/cm ²	Load Combination: 7
Horizontal bearing stress Allowable bearing stress	σ_{ch} $\sigma_{ca} = 0.3 \times f_c =$	60.25 kg/cm ² 90.00 kg/cm ²	


$$\sigma_{ch} \iff \sigma_{ca} \longrightarrow OK$$

4) Horizontal Punching Shear Stress $\tau_c = H/\{h' \times (2l + D + 2h')\} \le \tau_a$

Horizontal force at pile head	H=	90380 kg	Load Combination: 7
Diameter of Pile	D=	150 cm	
Distance from side of pile to the nearest edge of pile cap Embedded Length of Pile Punching shear stress Allowable punching shear stress	$\tau_c =$	75 cm 10 cm 3.77 kg/cm ² 9.00 kg/cm ²	·

3.13.5 Design of P15 pier(1) Stability Calculation1) Dimension of Pier

	(Figure)	(m)			(Level)	(m)	
Portion	Length	Portion	Length	Portion	Level	Portion	Level
H1	27.62	W1	15.00	(1)	+28.12	(6)	+1.78
H2	24.12	W2	7.00	(2)	+25.12	(7)	+0.50
H3	3.50	L1	4.00	(3)	+18.12	(8)	-2.00
H4	3.00	W3	24.00	(4)	+9.62	(9)	-23.81
H5	21.12	L2	2.00	(5)	+4.00		
H6	1.50	L3	19.00	, ,			
W4	0.00	L4	0.00				

2) Summray of Load Combination Forces at the Botom of Pile Cap

	I oa	Load Combination		Longit	udinal	Transverse		
	LUa	u Combination	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)	
	1	STRENGTH I-1	10704.13	47.46803	1311.067	39.28608	-24.0431	
	2	STRENGTH I-2	5496.167	-7.3165	-202.082	39.28608	-24.0431	
	3	STRENGTH III	9488.7	73.14528	1231.353	77.27961	411.3941	
	4	STRENGTH IV	11527.03	17.48822	483.0247	39.28608	-24.0431	
	5	STRENGTH V-1	10426.32	56.51752	1335.608	50.14138	100.3675	
Ì	6	STRENGTH V-2	5756.481	14.25517	168.3222	50.14138	100.3675	
	7	EXTREME EVENT I-1	9225.408	1422.787	22975.73	1453.508	22715.1	
	8	EXTREME EVENT I-2	5699.091	1407.135	22543.4	1453.508	22715.1	
	9	EXTREME EVENT II	9859.624	901.1343	1375.501	1824.423	2253.792	
	10	SERVICE I-1	8121.248	64.03428	1599.573	47.42755	69.26489	
	11	SERVICE I-2	6775.93	32.72883	734.9161	47.42755	69.26489	

3) Pile Capacity

INPUT DATA			
BoreHole			BRD15
Pile Diameter	D1	=	2200 mm
	D2	==	2000 mm
Factor of Safety	FS	==	3
Pile length	L	==	74.00 m
1110 101161-1	LO	=	24.31 m
	L1	===	15.69 m
	L2	==	34.00 m
Pile Embedded Length	Le	=	49.69 m
Pile Cross-Section Circumference	P1	=	6.912 m
The Cross occurred and the	P2	=	6.283 m
Pile Cross-Section Area	Ab1	=	3.801 m2
The cross occurrence	Ab2	=	3.142 m2
Concrete Unit Weight	γc	==	2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	==	300 t/m2
Soil Type of Bearing Layer	1		1 $(1/2 = Sand/Clay)$

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

	,	Thickness		Type	γ'e	N	fs	Qs (4)
	Number	d (m)	'1'=San	d; '2'=clay	(t/m3)		(t/m2)	(t)
•	1	7.69	2	Clay	0.70	1.0	1.0	53
	2-1	8.00	2	Clay	1.00	12.0	2.0	111
-	2-2	15.50	2	Clay	1.00	12.0	2.0	195
	3	7.00	2	Clay	1.05	25.0	15.0	660
	4	11.50	1	Sand	1.20	60.0	20.0	1445
i								
		†		<u> </u>				
1	Total L =	49.69	m				Total Qs =	2463

END BEARING CAPACITY

Formula: Qt = qu* Ab

Tv	pe of Pile	Soil Type of B.P	End Bearing Capacity	1
Cast-in-situ	Friction & Bearing	Sand	942 tonne	

ULTIMATE BEARING CAPACITY (Oult)

* Qult = Qt + Qs

3405.9 tonne

REPLACED EFFECTIVE WEIGHT OF SOIL (Ws)

166.0 tonne

BUOYANT WEIGHT OF PILE (W)

480.7 tonne

Allowable Bearing Capacity for Service Load Combinations (Qall₁)

 $*Qall_1 = (Qult - Ws) / FS + Ws - W$

765.2 tonne

Allowable Bearing Capacity for Earthquake & Strength Load Combinations(Qall2)

* $Qall_2 = (Qult - Ws) / FS + Ws - W$

1305.2 tonne

FS= 2

Design Uplift Capacity for Service Load Combinations (Qup₁)

 $*Qup_1 = Qs / FS + W$

891.3 tonne

FS = i

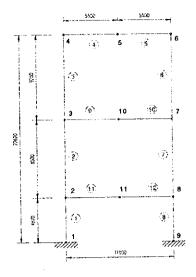
Design Uplift Capacity for Earthquake & Strength Load Combinations(Qup₂)

* $Qup_2 = Qs / FS + W$

1301.8 tonne

FS= 3

4) Reaction of Pile a) Displacement


Lo	Load Combination		ongitudir	ıal		Transvers	e	δ xa(cm)	Remark
			δ y(cm)	α (rad)	δ x(cm)	δ y(cm)	α (rad)	o xa(cm)	Remark
1	STRENGTH I-1	0.07	0.76	0.000054	0.05	0.76	0.000009	3.00	OK
2	STRENGTH I-2	-0.01	0.39	-0.000008	0.05	0.39	0.000009	3.00	OK
3	STRENGTH III	0.10	0.67	0.000063	0.10	0.67	0.000023	3.00	OK
4	STRENGTH IV	0.02	0.82	0.000020	0.05	0.82	0.000009	3.00	OK
5	STRENGTH V-1	0.08	0.74	0.000059	0.06	0.74	0.000013	3.00	OK
6	STRENGTH V-2	0.02	0.41	0.000011	0.06	0.41	0.000013	3.00	OK
7	EXTREME EVENT I-1	1.91	0.65	0.001207	1.85	0.65	0.000625	2.00	OK
8	EXTREME EVENT I-2	1.89	0.40	0.001190	1.85	0.40	0.000625	2.00	OK
9	EXTREME EVENT II	1.15	0.70	0.000431	2.27	0.70	0.000442	3.00	OK
10	SERVICE I-1	0.13	0.58	0.000071	0.08	0.58	0.000012	1.50	OK
11	SERVICE I-2	0.06	0.48	0.000034	0.08	0.48	0.000012	1.50	OK

b) Bearing and Uplift forces of piles

Lo	Load Combination		Longitudinal		verse	Allowable	Capacities	Chec	king
			PNmin(tf)	PNmax(tf)	PNmin(tf)	Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	626.47	562.87	601.39	587.96	1305.2	-1301.8	OK	OK
2	STRENGTH I-2	310.24	300.45	312.06	298.63	1305.2	-1301.8	OK	OK
3	STRENGTH III	564.37	489.93	545.05	509.25	1305.2	-1301.8	OK	OK
4	STRENGTH IV	652.10	628.67	647.10	633.67	1305.2	-1301.8	OK	OK
5	STRENGTH V-1	613.73	544.75	589.14	569.34	1305.2	-1301.8	OK	OK
6	STRENGTH V-2	326.01	313.61	329.71	309.91	1305.2	-1301.8	OK	OK
7	EXTREME EVENT I-1	1222.23	-197.19	1002.15	22.90	1305.2	-1301.8	OK	OK
8	EXTREME EVENT I-2	1015.83	-382.60	806.24	-173.01	1305.2	-1301.8	OK	OK
9	EXTREME EVENT II	800.92	294.60	893.93	201.58	1305.2	-1301.8	OK	OK
10	SERVICE I-1	492.62	409.74	460.78	441.57	765.2	-891.3	OK	OK
11	SERVICE I-2	396.38	356.50	386.04	366.84	765.2	-891.3	OK	OK
		<u> </u>			 				

(2) Design of Pier Sections

1) Calculation model

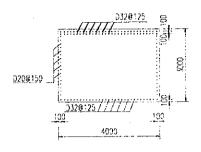
2) Loads from superstructure at pier top

	V		udinal		verse	Remarks
Load	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)	Kelitatks
DC1	1742.9	0.0	0.0	0.0		
DW1	0.0	0.0	0.0	0.0	0.0	
LLmax	694.5	17.1	0.0	0.0	0.0	
LLmin	-650.8	-14.2	0.0	0.0	0.0	·
TUmax	-47.3	35.0	0.0	0.0	0.0	
TUmin	49.4	-31.5	0.0	0.0	0.0	
EO1-L	-634.2	645.0	0.0	193.5	0.0	
EQ1-T	-634.2	193.5	0.0	645.0	0.0	

Loads acting on pier

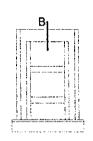
- Dead Load DC2: 2.5t/m3
- Wind Pressure on Structure WS2: 0.194t/m2
- Earthquake in longitudinal direction (EQ2-L):
 - +12% of self-weight in longitudinal direction.
 - +3.6% of self-weight in transverse direction.
- Earthquake in transverse direction (EQ2-T):
 - +12% of self-weight in transverse direction.
 - +3.6% of self-weight in longitudinal direction.

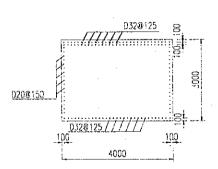
3) Envelope of Member End Actions


AGMBED	IOINE	TVDE	Nx	Sy	Sz	Mx	Му	Mz
MEMBER	JOINT	TYPE	(tf)	(tf)	(tf)	(tf.m)	(tf.m)	(tf.m)
1	1	MAX	-931.12	440.229	438.04	57.4869	3676.78	8803.16
		CASE	12A	11	12B	11	10A	11
		MIN	-3744.7	-135.317	-436.76	-17.6591	-3669.35	-2714.41
	j	CASE	10B	12B	10A	12B	12B	12B
1	2	MAX	3531.64	129.18	416.31	17.6591	1588.57	2070.36
]		CASE	10B	12B	10A	12B	10B	12B
		MIN	777.72	-419.775	-417.58	-57.4869	-1602.22	-6709.05
	1	CASE	12A	11	12B	11	12A	11
2	2	MAX	-913.04	416.625	411.95	53.775	2429.71	6709.05
		CASE	2	11	12B	11	12A	11
		MIN	-3334.81	-128.235	-416.84	-16,5906	-2594.26	-2070.36
i		CASE	10B	12B	10A	12B	10B	12B
2	3	MAX	2962.94	117,525	381.14	16.5906	993.33	1025.88
		CASE	10B	12B	10A	12B	10A	12B
		MIN	645.29		-376.25	-53.775	-787.23	-3319.47
		CASE	2	11	12B	11	12B	11
. 3	3	MAX	-621.66	377.775	568.92	60.289	293.3	3319.47
		CASE	2	11	10B	11	12A	11
		MIN	-2691.24	-116.58	-251.25	-18.6769	-693.76	
		CASE	10B	12B	12A	12B	10B	12B
3	4	MAX	2352.18	106.815	218.7	18.6769	1527.73	160.23
	- "	CASE	10B	12B	12A	12B	12A	12B
		MIN	377.54		-536.37	-60.289	-3589.18	-517.84
		CASE	2	11	10B	11	10B	
4	4	MAX	4.1	128.275	37.66	0	4393.73	60.29
		CASE	12A		12A	11	10B	11
		MIN	-321.77			0		-18.68
		CASE	10B			10B		
4	5	MAX	301.97			0		590.78
		CASE	10B	12B	10B	10B		11
		MIN	15.71			0		-182.6
		CASE	12A		12A	11		12B
5	5	MAX				0		
		CASE	12B		10A	11		
		MIN						
		CASE	10A		12B	12B		11
5	6	1 1				0		18.68
		CASE	10A		12B	12B	l .	
		MIN	-4.1	ı		0		
		CASE			ł I	. 11		
6	6			4		60.289		3 I
		CASE			1	11		
		MIN	1		1	-18.6769		
		CASE	i .	1				
6	7			I .				2
	,	CASE			1			1 .
		MIN	f					1
		CASE		1		11		
			1011		1371	**	1	
L	L	<u> </u>	1	L	1	L	L	l.,

							((Continued)	~~
r									
	7	7	MAX	2962.94	117.525	376.25	53.775	787.23	1025.88
1			CASE	10A	12B	12A	11	12A	12B
	İ		MIN	645.29	-380.925	~381.14	-16.5906		-3319.47
l	ļ	.]	CASE	2	11	10B	12B	10B	11
	7	8	MAX	-913.04	416.625	416.84	16.5906	2594.26	6709.05
		-	CASE	2	11	10B	12B	10A	11
l	1	-	MIN	-3334.81	-128.235	-411.95	-53.775	1	-2070.36
		ļ	CASE	10A	12B	12A	11	12B	12B
	8	8	MAX	3531.64	129.18	417.58	57.4869	1602.22	2070.36
İ	Ĭ	٦	CASE	10A	12B	12A	11	12B	12B
	ļ	Ì	MIN	777.72	-419.775	-416.31	-17.6591	-1588.57	-6709.05
İ	i		CASE	12B	11	10B	12B	10A	11
	8	9	MAX	-931.12	440.229	436.76	17.6591	3669.35	8803.16
	ျ	1	CASE	12B	11	10B	12B	12A	11
١			MIN	-3744.7	-135.317	-438.04	-57.4869	-3676.78	-2714.41
ļ			CASE	10A	12B	12A	11	10B	12B
	9	3	MAX	206.55	3.15	215.26	0	884.03	3.98
	7		CASE	1	11	12A	11	10B	12B
			MIN	47.47	-0.945	-271.7	0	-802.55	-12.82
	1		CASE	2	10B	10B	12B	12A	11
	9	10	MAX	-47.47	0	238.89	0	14.74	18.33
1	. 7	10	CASE	2	10B	10B	12B	5	11
	 		MIN	-206.55	0	-238.89	0	7.81	-5.63
1		ļ	CASE	1	13	10A	11	12A	12B
١	10	7	MAX	-47.47	3.15	215.26	. 0	802.55	12.82
	10	1	CASE	2	11	12B	12B	12B	11
1			MIN	-206.55	-0.945	-271.7	o	-884.03	-3.98
١		1	CASE	1	10B	10A	13	10A	12B
Į	10	10	MAX	206.55	0	238.89	0	-7.81	5.63
Ì	10	10	CASE	1	11	10A	13	12A	12B
-	-	1	MIN	47.47	0	-238.89	0	-14.74	-18.33
ı			CASE	2	10B	10B	12B	5	11
1	11	2	MAX	0.67	3.15	140.39	0	612.04	0.89
		-1	CASE		11	12A	. 13	10B	3
ĺ			MIN	-6.83	-0.945	-196.83		1	-2.59
1		1	CASE	1	10B	10E	12B		11
	11	11	MAX		0	164.01		₹	
ĺ	^-		CASE	i .		10E	3 12B	5	11
-	ļ		MIN	1	1	-164.01		I .	
			CASE			10 <i>A</i>	13		12B
	12	8	MAX	1 .	1	140.39			? I
		Ī	CASE			121	3 12B		
ĺ			MIN		1				
			CASE	1	1		13		3
ļ	12	11	MAX	1		1			
	12		CASE	i					
			MIN	1	1				
			CASE	1		3		5	11
]				·		<u> </u>

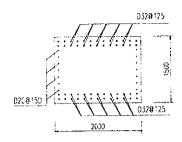
4) Flexural Resistance and Bar Arrangement


a) Section A



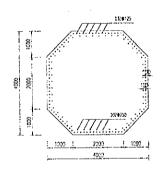
Item	Notation	Unit	Tensil	e Side	Remark	
l Hen	INOTATION	OILL	Тор	Bottom	Kemark	
Factored Loads						
Maximum Moment	M	(tf.m)	4393.7	1855.8		
Factored Axial Force	N	(tf)	~	-		
Load case of Max. Moment			10B	12A		
Bar Arrangement						
Dia. of tensile reinforcement	Dm	(mm)	32	32		
Number of tensile reinf. layers	nlay	(nos.)	2	1		
Number of tensile bars	n	(nos.)	64	32		
Resistance					•	
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95		
Axial Compressive Resistance	Nr	(tf.m)	· -	-		
Compressive Depth	c	(mm)	220.84	163.83		
Resistance Factor	φ		0.90	0.90		
Checking Resistance			ОК	OK		
Checking Reinforcement Ratio			OK	OK]		

b) Section B



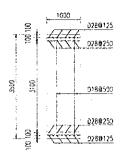
Item	Notation	Unit	Tensile	e Side	Remark	
nen	Notation	Olut	Тор	Bottom	Kelitark	
Factored Loads						
Maximum Moment	M	(tf.m)	-424.3	2085.4		
Factored Axial Force	N	(tf)		-		
Load case of Max. Moment			2	1		
Bar Arrangement						
Dia. of tensile reinforcement	Dm	(mm)	32	32	•	
Number of tensile reinf. layers	nlay	(nos.)	2	1		
Number of tensile bars	n	(nos.)	64	32		
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95		
Axial Compressive Resistance	Nr	(tf.m)	-	-		
Compressive Depth	c	(mm)	220.84	163.83		
Resistance Factor	φ	•	0.90	0.90	•	
Checking Resistance			OK	ОК		
Checking Reinforcement Ratio			OK	OK		

c) Section C



Ψ.	Notation	Unit	Tensile	e Side	Remark
Item	Notation	Oint	Top	Bottom	Acmurk
Factored Loads			1		
Maximum Moment	M	(tf.m)	884.0	802.6	
Factored Axial Force	N	(tf)	-	- [
Load case of Max. Moment			10B	12A	
Bar Arrangement				ļ	
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	2	
Number of tensile bars	n	(nos.)	26	26	
Resistance			.		•
Flexural Resistance	Mr	(tf.m)	1071.2	1071.2	
Axial Compressive Resistance	Nr	(tf.m)	-	- }	
Compressive Depth	c	(mm)	199.84	199.84	
Resistance Factor	φ		0.90	0.90	•
Checking Resistance	1		OK	OK	
Checking Reinforcement Ratio		_,,,,	OK	OK	

d) Section D



Item	3.7	Unit	Tensile Side			Remark
	Notation		Left	Right	Front	Kemark
Factored Loads						
Maximum Moment	M	(tf.m)	3676.8	3669.4	8803.2	
Factored Axial Force	N	(tf)	1,907.5	2,768.4	2,550.4	
Load case of Max. Moment			10A	12B	11	
Bar Arrangement						
Dia. of main reinforcement	Dm	(mm)	32			
Number of reinf. layers	nlay	(nos.)	2			
Number of bars	n	(nos.)				
In layer 1		•		106		
In layer 2			48			
Resistance						
Flexural Resistance	Mr	(tf.m)	14251.13	14551.89	10556.12	
Axial Compressive Resistance	Nr	(tf.m)	7393.55	10979.06	3058.20	ļ
Compressive Depth	c	(mm)	1649.54	2224.69	1057.81	1
Resistance Factor	φ		0.816	0.779	0.788	
Checking Resistance			OK	OK	OK	
Checking Reinforcement Ratio			OK	OK_	OK_	<u> </u>

(3) Design of Pile Cap

1) Section Analysis of "A"

Total width of section

24000 mm 1000 mm

Calculation width

a) Section Dimensions & Material Properties

ection Dimensions & Material Properties				
Item	Notation	Unit	Value	Remark
Section Dimension				
Width	- W	mm	1000	
Height	Н	mm	3500	·
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	•
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

kN.mm kN.mm	-5945355 7220805	EXTREME EVENT 1-2 EXTREME EVENT 1-1
	-5945355 7220805	EXTREME EVENT I-2 EXTREME EVENT I-1
	7220805	EXTREME EVENT I-1
ł	ł	
1		1
kN	2183	EXTREME EVENT I-1
kN.mm	7220805	
n.	1	1 242 .

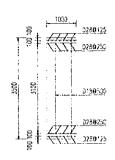
c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	- 28	
Area of 1 bar	A1s	mm2	615.8	•
Numbers of Rebar	ns	nos	12	
Bottom Reinforcement				
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	*
Numbers of Rebar	n's	nos	12	
Shear Reinforcement				
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	508.9	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

-11 1	CKING TOT I EXCITAT MESIDANCE (* 1. 1. 1. 1.	Notation	Unit	Value	Remark
- 1	Item	Notation	Om	vaitie	
- 1	Top Reinforcement				İ
ļ	Bending Moment	Mu _{top}	kN.mm	5945355	
ĺ	Depth of Compressive Area	С	mm	145.236	
ļ	Flexural Resistance	Mr _{top}	kN.mm	8609150	
1	Checking Resistance			OK	
	Checking Reinforcement Ratio				
	$\rho st = As_{tensile}/(H.W)$		%	0.211	
	omin=0.03fc/fy		%	0.185	OK
	Bottom Reinforcement				
	Bending Moment	Mu _{bot}	kN.mm	7220805	1
	Depth of Compressive Area	С	mm	145.236	
	Flexural Resistance	Mr _{bot}	kN.mm	8609150	
	Checking Resistance		ļ	OK	
	Checking Reinforcement Ratio				
	$\rho st = As_{tensile}/(H.W)$		%	0.211	
	omin=0.03fc/fy	1	%	0.185	OK

e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2183288	
Shear Resistance	Vr	N		
Effective shear Depth	d_{v}	mm	2520	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally			and the second second	
cracked concrete to transmit tension	β		1.7	
Area of shear reinf, within a distance s	A,	mm²	509	
Strain in the tensile reinforcement	ε _x		0.002000	
Inclination angle of diagonal comp. stress	θ	degrees	43.00	
Shear stress on the concrete	v	MPa	0.963	
Area of Conc. on flexural tensile side	Act	mm ²	1750000	
Nominal Resistance of Concrete	V _c	N	1741940	
Nominal Resistance of Reinforcement	V _s	N	1072764	
Nominal Resistance	Vn	N	2,814,704	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,533,233	
Checking			OK	

f) Checking for Flexural Stress

ltem	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			1488329	Tensile at bottom
SERVICE 1-2	Ì		570897	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1	Ì]	0.82	
SERVICE I-2			0.41	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa	·	
SERVICE I-1			-5.89	
SERVICE I-2			-2.94	
Checking Stress of Steel		<u> </u>	OK	

2) Section Analysis of "B"

Total width of section Calculation width

19000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	Н	mm	3500	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-1548195	EXTREME EVENT 1-2
for Calculating Bottom Reinforcen			4213157	EXTREME EVENT I-1
Maximum Shear Force				
Shear force	Vu	kN	1643	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	4213157	
Concidental moment	WIGCOIII.	KI W.IIIII	421010/	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	28	
Area of 1 bar	A1s	mm2	615.8	
Numbers of Rebar	ns	nos	12	
Bottom Reinforcement				
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	
Shear Reinforcement				
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	,
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Αv	mm2	508.9	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

USCKIUS IOI LIEXITAI RESISTANCE (LIVERIA		<u></u>		
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mutop	kN.mm	1548195	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{top}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
omin=0.03fc/fy	<u></u>	%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	4213157	
Depth of Compressive Area	c	mm	145.236	1
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio	1			
$ost = As_{tensile}/(H.W)$		%	0.211	1
omin=0.03fc/fy	1	%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	1642627	
Shear Resistance	Vr	N	. [
Effective shear Depth	d_{v}	mm	2520	
Effective web width	b_v	mm	1000	
Spacing of stirrups	5	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				•
cracked concrete to transmit tension	β		1.8	
Area of shear reinf, within a distance s	A_{v}	mm²	509	
Strain in the tensile reinforcement	ϵ_{x}		0.001749	
Inclination angle of diagonal comp. stress	θ	degrees	41.99	
Shear stress on the concrete	v	MPa	0.724	
Area of Conc. on flexural tensile side	Act	mm²	1750000	
Nominal Resistance of Concrete	V _c	N	1844407	
Nominal Resistance of Reinforcement	V _s	N	1111412	
Nominal Resistance	Vn	N	2,955,819	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,660,237	
Checking		<u></u>	OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1				Tensile at bottom
SERVICE I-2			1250388	Tensile at bottom
Factored Comp. Stress of Concrete	ocu	MPa		
SERVICE I-1			0.75	
SERVICE I-2			0.57	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		li
SERVICE I-1	1 "		-5.31	
SERVICE I-2			-4.05	
Checking Stress of Steel			OK_	<u></u>

(4) Section Calculation of Pile

Length: 74.0 m Number: 18 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Longitudinal			7		
Load Case	Sectiona	l Force	Depth	Sectiona	l Force	Depth
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)
STRENGTH I-1	39.05	562.87	0.00	36.78		0.00
STRENGTH I-2	-6.00	300.45	0.00	36.78	298.63	0.00
STRENGTH III	62.56	489.93	0.00	71.60	509.25	0.00
STRENGTH IV	14.39	628.67	0.00	36.78	633.67	0.00
STRENGTH V-1	47.15	544.75	0.00	46.67	569.34	0.00
STRENGTH V-2	12.46	313.61	0.00	46.67	309.91	0.00
EXTREME EVENT I-1	1220.70	-197.19	0.00	1322.18	22.90	0.00
EXTREME EVENT I-2	1207.79	-382.60	0.00	1322.18	-173.01	0.00
EXTREME EVENT II	814.33	294.60	0.00	1701.84	201.58	0.00
SERVICE I-1	56.94	409.74	0.00	46.83	441.57	0.00
SERVICE I-2	29.34	356.50	0.00	46.83	366.84	0.00

2) Section Calculation

a) Distribution of Axial Force and Bending Moment in Composite Section

Diameter of Pile 2.20 m
Thickness of Casing 0.014 m (2mm corrosion assumed)

20000000 $E_{S}=$ 2500000 Ec= n=Es/Ec= 8.00 As0≈ 0.096761 m2 Ac= 3.801327 m2 Atrans≂ 4.575416 m2 Is0= 0.059668 m4 Ic0=1.149901 m4 Itrans= 1.627242 m4

* Casing: - Axial 16.92% - Bending 29.33%

* RC: - Axial 83.08% - Bending 70.67%

b) General Conditions

Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	2200	
Steel Casing			Yes	
Number of Reinf, layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	32	*
Number of Rebars	n _{st}	nos	46	
Total Area of Reinforcement	A _{st}	mm2	36995	

c) Checking Resistance (AASHTO 5.7.2)

i) In longitudinal L	nrection						
Load Case	Forces	Total	RC	Allowabie	Casing	Allowable	Remark
ometh Logit I d	PN (tf)	562.87	467.64	8880.48	95.23	1856.9	OK
STRENGTH I-1	M (tf.m)	39.05	27.59	523.96	11.46	223.36	OK
CONTRACTION	PN (tf)	300.45	249.62	-1257.10	50.83	2352,5	OK
STRENGTH I-2	M (tf.m)	-6.00	-4.24	21.32	-1.76	-81.46	OK
CEDENICAL LIL	PN (tf)	489.93	407.04	8475.94	82.89	1632.4	OK
STRENGTH III	M (tf.m)	62.56	44.21	921.01	18.35	361.42	OK
CONTRACTION I	PN (tf)	628.67	522.31	9176.38	106.36	2085.5	OK
STRENGTH IV	M (tf.m)	14.39	10.17	178.76	4.22	82.77	OK
CERTAL CETT II 1	PN (tf)	544.75	452.59	8759.82	92.16	1784.6	OK
STRENGTH V-1	M (tf.m)	47.15	33.32	644.91	13.83	267.82	OK
CERTIFICATION A	PN (tf)	313.61	260.55	9409.71	53,06	1996.4	OK
STRENGTH V-2	M (tf.m)	12.46	8.80	318.23	3.66	137.53	OK
DAMPER OF THE PROPERTY	PN (tf)	-197.19	-163.83	-186.56	-33.36	-120.3	OK
EXTREME EVENT I-1	M (tf.m)	1,220.70	862.62	982.29	358.08	1291.44	OK
PARTON AND PARTON IN A	PN (tf)	-382.60	-317.87	-326.36	-64.73	-224.3	OK
EXTREME EVENT I-2	M (tf.m)	1,207.79	853.49	876.28	354.30	1227.51	OK
MATERIA AND PARENTE AT	PN (tf)	294.60	244.76	640.34	49.84	252.5	OK
EXTREME EVENT II	M (tf.m)	814.33	575.45	1,505.48	238.88	1210.1	OK

ii) In Transverse Direction Casing Allowable Remark Allowable RC Total Load Case Forces 99.47 1887.2 OK 8907.71 587.96 488.49 PN (tf) STRENGTH I-1 10.79 204.69 OK 25.99 473.61 36.78 M (tf.m) 298.63 50.52 1647.9 OK 248.11 8720.85 PN (tf) STRENGTH I-2 913.35 10.79 351.90 OK 36.78 25.99 M (tf.m) 423.09 8346.94 86.16 1589.9 OK 509.25 PN (tf) STRENGTH III 998.24 21.00 387.58 OK 71.60 50.60 M (tf.m) 633.67 526.46 8892.00 107.21 1907.9 OK PN (tf) STRENGTH IV OK M (tf.m) 36.78 25.99 438.54 10.79 192.01 OK 8770.18 1803.3 PN (tf) 569.34 473.02 96.32 STRENGTH V-1 256.30 OK 13.69 M (tf.m) 46.67 32.98 611.35 1558.4 OK 52.43 257.48 8471.12 PN (tf) 309.91 STRENGTH V-2 406.92 OK 13.69 32.98 1,085.23 M (tf.m) 46.67 3.87 OK 13.6 23.08 19.03 PN (tf) 22.90 **EXTREME EVENT I-1** 1357.10 OK 1,133.29 387.85 1,322.18 934.33 M (tf.m) -29.27 -98.5 OK -154.80 -173.01 -143.74 PN (tf) **EXTREME EVENT I-2** 387.85 1304.87 ΟK 934.33 1,006.20 1,322.18 M (tf.m) 89.5 <u>ok</u> 168.86 34.10 167.48 201.58 PN (tf) EXTREME EVENT II 1310.4 OK 1,701.84 1,202.62 1,212.53 499.22 M (tf.m)

c) Checking Stress in RC portion								
		Force		Tensile St	teel (tf/m2)	Comp. Con	Remark	
Load C	.ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Kemark
SERVICE I-1	Horizontal	340.42	40.24	565.34	-23861	213.32	1101	OK
SERVICE 1-1	Transverse	366.86	33.09	702.65	-23861	210.42	1101	OK
CEDINORIA	Horizontal	296.19	20.73	621.70	-23861	158.54	1101	OK
SERVICE I-2	Transverse	304.78	33.09	532.85	-23861	185.42	1101	OK .

d) Checking Minimum Steel R				
Item	Notation	Unit	Value	Remark
Total Area of Reinforcement Gross Area of Section Reinforcement Ratio Minimum Reinforcement ratio	A _{st} Ag pst pmin	mm2 mm2 %	36995 3801327 0.97 0.40	ОК

(5) Calculation of Footing Concrete Stress that Pile connected

1) Vertical bearing stress of footing concrete

$$\sigma_{cv} = P/(\pi D^2/4) \le \sigma_{ca}$$

Reaction force of pile P= 1222230 kg Load Combination: 7
Diameter of Pile D= 220 cm

Vertical bearing stress σ_{cv} 32.15 kg/cm² Allowable bearing stress σ_{ca} =0.5xf_c = 120.00 kg/cm²

 $\sigma_{cv} \leftarrow \sigma_{ca} \rightarrow OK$

2) Vertical Punching Shear Stress $\tau_c = P/\{\pi h(D+h)\} \le \tau_a$

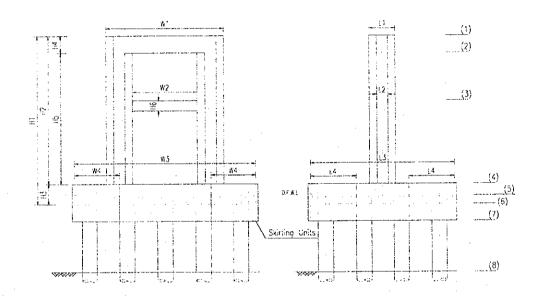
Reaction force of pile	P≖	1222230 kg	Load Combination: 7
Diameter of Pile	D=	220 cm	
Depth from pile head to upper			
surface of pile cap	h≖	150 cm	
Punching shear stress	τ _c =	7.01 kg/cm ²	
Allowable punching shear stress	τ _a ⊭	9.00 kg/cm ²	

 $\tau_c \leftarrow \tau_a \rightarrow OK$

3) Horizontal Bearing stress σ_{ch} =H/(Dl) <= σ_{ca}

Horizontal force at pile head	H=	101360 kg	Load Combination: 9
Diameter of Pile	D=	220 cm	•
Embedded Length of Pile]=	200 cm	
Horizontal bearing stress	σ_{ch}	2.30 kg/cm ²	
Allowable bearing stress	$\sigma_{ca} = 0.3 \text{xf}_{c} =$	72.00 kg/cm ²	

 $\sigma_{ch} \leftarrow \sigma_{ca} \rightarrow OK$


4) Horizontal Punching Shear Stress $\tau_c = H/\{h' \times (2l + D + 2h')\} \le \tau_a$

Horizontal force at pile head	H=	101360 kg	Load Combination: 9
Diameter of Pile	D=	220 cm	
Distance from side of pile to the			
nearest edge of pile cap	h'≖	90 cm	
Embedded Length of Pile]=	200 cm	
Punching shear stress	$\tau_c =$	1.41 kg/cm ²	
Allowable punching shear stress	$\tau_a =$	9.00 kg/cm ²	

τ. <= τ. -> ΟΚ

3.13.6 Design of P16 pier (1) Stability Calculation 1) Dimension of Pier

	(Figure)	(m)			(Level)	(m)	
Portion	Length	Portion	Length	Portion	Level	Portion	Level
H1	24.82	W1	15.00	(1)	+25.32	(5)	+1.78
H2	21.32	W2	7.00	(2)	+22.32	(6)	+0.50
H3	3.50	L1	4.00	(3)	+15.32	(7)	-2.00
H4	3.00	W3	24.00	(4)	+4.00	(8)	-22.12
H5	18.32	L2	2.00				
H6	1.50	L3	19.00			•	
1		W4	6.00				
		L4	6.00		<u> </u>	<u> </u>	

Ta	Load Combination		Longitudinal		Transverse	
LO	ad Combination	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	10251.2	49.8	1236.4	22.3	-13.7
2	STRENGTH I-2	5690.8	-4.1	-101.2	22.3	-13.7
3	STRENGTH III	9090.5	70.3	1121.8	57.3	342.1
4	STRENGTH IV	11024.9	20.5	510.0	22.3	-13.7
5	STRENGTH V-1	9985.9	57.3	1245.1	32.3	88.0
6	STRENGTH V-2	5848.9	15.8	213.3	32.3	88.0
7	EXTREME EVENT I-1	9183.3	1309.5	20234.4	1323.4	20013.2
8	EXTREME EVENT 1-2	5946.0	1294.1	19852.3	1323.4	20013.2
9	EXTREME EVENT II	9431.9	681.4	1066.3	1368.4	1703.9
10	SERVICE I-1	7809.7	68.5	1566.1	29.8	62.6
11	SERVICE I-2	6751.2	37.7	801.8	29.8	62.6

3) Capacity of Pile

INPUT DATA			
Borel·lole			BRD15
Pile Diameter	D1	32	2200 mm
	D2	=	2000 mm
Factor of Safety	FS	=	3
Pile length	L	×	74.00 m
	LO	==	22.62 m
	L1	<u>~</u>	17.38 m
	L2	=	34.00 m
Pile Embedded Length	Le	=	51.38 m
Pile Cross-Section Circumference	P1	=	6.912 m
	P2	E2	6.283 m
Pile Cross-Section Area	Ab1	==	3.801 m2
	Ab2	=	3.142 m2
Concrete Unit Weight	γс	=	2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	==	300 t/m2
Soil Type of Bearing Layer	•		1 (1/2 = Sand/Clay)

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

	1	Thickness		Туре	γ'e	N	fs	Qs
	Number	d (m)	'1'=San	d; '2'=clay	(t/m3)		(t/m2)	<u>(t)</u>
0	1	9.38	2	Clay	0.70	1.0	1.0	65
-10 i	2-1	8.00	2	Clay	1.00	12.0	2.0	111
20	2-2	15.50	2	Clay	1.00	12.0	2.0	195
	3	7.00	2	Clay	1.05	25.0	15.0	660
-30	4	11.50	1	Sand	1.20	60.0	20.0	1445
-40				1				
-50				1				
-60 -								
-70	-	 						
-80	Total L =	51.38	m	<u>. </u>				
•							Total Qs =	2475

END BEARING CAPACITY

Formula: Qt = qu* Ab

	Type of Pile	Soil Type of B.P	End Bearing Capacity
Cast-in-situ	Friction & Bearing	Sand	942 tonne

ULTIMATE BEARING CAPACITY (Oult)

* Qult = Qt + Qs

3417.5 tonne

REPLACED EFFECTIVE WEIGHT OF SOIL (Ws)

170.5 tonne

BUOYANT WEIGHT OF PILE (W)

474.3 tonne

Allowable Bearing Capacity for Service Load Combinations (Qall1)

 $*Qall_1 = (Qult - Ws) / FS + Ws - W$

778.6 tonne

Allowable Bearing Capacity for Earthquake & Strength Load Combinations(Qall₂)

* $Qall_2 = (Qult - Ws) / FS + Ws - W$

1319.7 tonne

FS= 2

Design Uplift Capacity for Service Load Combinations (Qup₁)

 $*Qup_1 = Qs / FS + W$

886.8 tonne

FS = 6

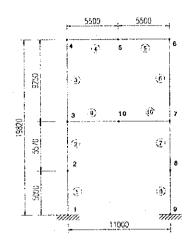
Design Uplift Capacity for Earthquake & Strength Load Combinations(Qup2)

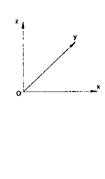
* $Qup_2 = Qs / FS + W$

1299.3 tonne

FS= 3

4) Reaction of Pile


a) Displacement


Γ,	10 11 11	L	ongitudina	al	7	fransverse		δ xa(cm)	Remark
Lo	ad Combination	δ x(cm)	δ y(cm)	α (rad)	δ x(cm)	δ y(cm)	a (rad)		
1	STRENGTH I-1	0.08	0.80	0.000060	0.03	0.80	0.000007		
2	STRENGTH I-2	-0.01	0.44	-0.000005	0.03	0.44	0.000007	3.00	
3	STRENGTH III	0.11	0.71	0.000067	0.08	0.71	0.000026	3.00	· ·
4	STRENGTH IV	0.03	0.86	0.000025	0.03	0,86	0.000007	3.00	OK
5	STRENGTH V-1	0.09	0.78	0.000064	0.05	0.78	0.000012	3.00	
6	STRENGTH V-2	0.02	0.46	0.000014	0.05	0.46	0.000012	3.00	OK
7	EXTREME EVENT I-1	1.97	0.72	0.001229	1.92	0.72	0.000837	2.00	OK
8	EXTREME EVENT I-2		0.46	0.001211	1.92	0.46	0.000837	2.00	OK
9	EXTREME EVENT II	0.98	0.74	0.000362	1.92	0.74	0.000486	3.00	OK
10	SERVICE I-1	0.15		0.000082	0.06	0.61	0.000012	1.50	OK
11	SERVICE I-2	0.08		0.000043	0.06	0.53	0.000012	1.50	OK
1 11	OLICE I L								

b) Bearing and Uplift forces of piles

··········	10 11 11	Longit	udinal	Trans	verse	Allowable	Capacities	Checking	
Lo	ad Combination	PNmax(tf)		PNmax(tf)	PNmin(tf)	Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	676.97	604.43	646.37	635.03	1319.7	-1299.3	OK	OK
ĵ	STRENGTH I-2	358.65	352.70	361.35	350.00	1319.7	-1299.3	OK	OK
3	STRENGTH III	608.37	527.94	588.75	547.56	1319.7	-1299.3	OK	OK
4	STRENGTH IV	704.00	674.11	694.73	683.39	1319.7	-1299.3	OK	OK
5	STRENGTH V-1	662.72	585.52	634.05	614.18	1319.7	-1299.3	OK	OK
6	STRENGTH V-2	373.91	357.20	375.49	355.62	1319.7	-1299.3	OK	OK
7	EXTREME EVENT I-1	1		1243.17	-95.26	1319.7	-1299.3	OK	OK
8	EXTREME EVENT I-2		-354.60	1040.84	-297.59	1319.7	-1299.3	OK	OK
9	EXTREME EVENT II	806.60	372.39	978.08	200.91	1319.7	-1299.3	OK	OK
10	SERVICE I-1	537.03	439.18	497.49	478.72	778.6	-886.8	OK	OK
11	SERVICE 1-2	447.82	1	431.33	412.57	778.6	-886.8	OK	OK
**						l			

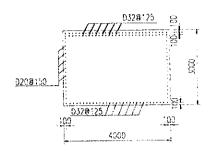
(2) Design of Pier Sections 1)Calculation model

2) Loads from superstructure at pier top

	V		udinal		verse	Remarks
Load	(tf)	H (tf)	M (tf.m)	H (tf)	M (tf.m)	Remarks
DC1	2268.8	0.0	0.0	0.0	0.0	
DW1	0.0	0.0	0.0	0.0	0.0	
LLmax	663.2	16.7	0.0	0.0	0.0	
LLmin	-395.2	-14.1	0.0	0.0	0.0	
TUmax	-19.5	41.1	0.0	0.0	0.0	
TUmin	-18.4	-36.8	0.0	0.0	0.0	
EQ1-L	-248.6	644.9	0.0	193.5	0.0	
EQ1-T	-248.6	193.5	0.0	644.9	0.0	

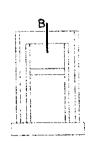
Loads acting on pier

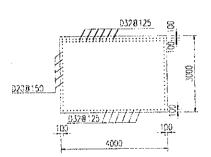
- Dead Load DC2: 2.5t/m3
- Wind Pressure on Structure WS2: 0.194t/m2
- Earthquake in longitudinal direction (EQ2-L):
 - +12% of self-weight in longitudinal direction.
 - +3.6% of self-weight in transverse direction.
- Earthquake in transverse direction (EQ2-T):
 - +12% of self-weight in transverse direction.
 - +3.6% of self-weight in longitudinal direction.


3) Envelope of Member End Actions

		<i>a</i> , T	Nx	Sy	Sz	Mx	Му	Mz
MEMBER	JOINT	TYPE	(tf)	(tf)	(tf)	(tf.m)	(tf.m)	(tf.m)
1	1	MAX	-827.45	439.095	428.68	53.4444	4446.96	8998.11
] 1	- 1	CASE	12A	11	12B	11	10A	11
	1	MIN	-3712.03	-134.796	-445.06	-16.4483	-4433.29	-2770.29
		CASE	10B	12B	10A	12B	12B	12B
1	2	MAX	3477.97	128.055	422.59		2218.37	2067.17
1 1	~	CASE	10B	12B	10A	12B	10B	12B
		MIN	658.93	-416.625	-406.21	-53.4444	-2144.4	-6709.05
		CASE	12A	11	12B		12A	11
2	2	MAX	-658.93	1	406.21		2144.4	6709.05
4		CASE	12A	11	12B		12A	11
			-3477.97		-422.59			-2067.17
		MIN CASE		-128.033 12B	10A		10B	12B
1	2		10B 3106.1	117.345	386.89		1314.21	1024.22
2	3	MAX					1014.21 10A	1024.22 12B
		CASE	10B 391.18				-1101.02	
		MIN			-3/0.31 12B		12B	
		CASE	12A		577.69		129.03	L
3	3	MAX	-633.83			11	129.03 12A	
Ì		CASE	12A		10B			
		MIN	-2807.01	-110.4	-268.99			
		CASE	10B					
3	4	MAX	2467.95					. 1
		CASE	10B					
		MIN	389.7					
		CASE	12A		10B			
4	4	MAX	21.84					1
		CASE	12A					
		MIN	-330.54	1		9	1	
	_	CASE						
4	5		310.74					
		CASE	10B				•	1 1
		MIN					1	
	<u> </u>	CASE						
5	5							
		CASE	12B					
		MIN		í				
		CASE					1	
5	6	1 !				1		
	1	CASE	10A	,		E .	1	
		MIN			li .	1		1
	ļ .	CASE					•	1
6	6			1		ī	•	
		CASE		1				1
		MIN		1			1	1
1		CASE		1		1		
6	7	MAX	1			1	1	L
		CASE	12B	11		1		1
		MIN	-2546.47	-116.4	-553.27	-60.029	1	1
	1	CASE	1	12B	10A	.] 11	12B	12B
						1	1	<u> </u>

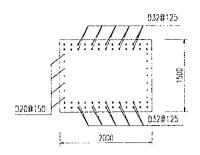
						((Continued)	
								1
7	7	MAX	2842.4	117.345	372.59	53.4444		
		CASE	10A	12B	12A	11	12A	12B
ļ j		MIN	654.88	-380.925	-388.97	-16.4483	-1338.52	-3319.47
		CASE	12B	11	10B	12B	10B	11
7	8	MAX	-922.63	416.625	424.67	16.4483	2211.79	6709.05
		CASE	12B	11	10B	12B	10A	11
		MIN	-3214.27	-128.055	-408.29	-53,4444	-2137.82	-2067.17
		CASE	10A	12B	12A	11	12B	12B
8	8	MAX	3214.27	128.055	408.29	53.4444	2137.82	2067.17
		CASE	10A	12B	12A	11	12B	12B
		MIN	922.63	-416.625	-424.67	-16.4483	-2211.79	-6709.05
		CASE	12B	11	10B	12B	10A	11
8	9	MAX	-1091.15	439.095	447.14	16.4483	4437.87	8998.11
		CASE	12B	11	10B	12B	12A	11
		MIN	-3448.33	-134.796	-430.76	-53.4444	-4451.54	-2770.29
		CASE	10A	12B	12A	11	10B	12B
9	3	MAX	243.89	3.15	242.65	0	979.86	4
		CASE	1	11	12A	11	10B	12B
		MIN	98.97	-0.945	-299.09	0	-899.85	<i>-</i> 12.89
		CASE	2	10B	10B	10B	12A	11
9	10	MAX	-98.97	0	266.28	0	13.31	18.4
		CASE	2	12B	10B	10B	5	11
1		MIN	-243.89	0	-266.28	0	1	
		CASE	1	13	10A	11	12B	12B
10	7	MAX	-98.97	3.15	242.65			12.89
		CASE	2	. 11	12B	12B	12B	11
]	MIN	-243.89		1	3	Į.	1
		CASE	1	10B		1		
10	10		243.89		1	1		
		CASE	1	13	10A	11	12B	12B
		MIN	98.97					
	,	CASE	2	10B	10B	12B	5	11


(4) Flexural Resistance and Bar Arrangement a) Section A



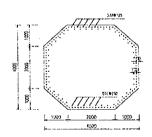
T1	Notation	Unit	Tensil	e Side	Remark
Item	Notation	Olut	Top	Bottom	Kemark
Factored Loads					
Maximum Moment	M	(tf.m)	4633.5	2184.1	•
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	: c	(mm)	220.84		
Resistance Factor	φ	i	0.90		
Checking Resistance			OK	OK	
Checking Reinforcement Ratio	<u> </u>		OK	OK_	


b) Section B

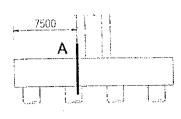


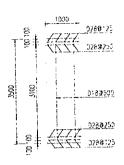
TA	Matation	Unit	Tensil	e Side	Remark
Item	Notation	Olut	Тор	Bottom	Kentark
Factored Loads					
Maximum Moment	M	(tf.m)	<i>-</i> 907.3	2397.4	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			2	1	
Bar Arrangement				ļ	4
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf, layers	nlay	(nos.)	[2	1	
Number of tensile bars	n	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	. с	(mm)	220.84	163.83	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio			OK	OK	

c) Section C



Item	Notation	Unit	Tensil	e Side	Remark
Item	INOLATION	OIII	Тор	Bottom	Kemark
Factored Loads					
Maximum Moment	M	(tf.m)	979.9	899.9	
Factored Axial Force	N	(tf)	-	- [
Load case of Max. Moment	I		10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	·
Number of tensile reinf. layers	nlay	(nos.)	2	2	
Number of tensile bars	n	(nos.)	26	26	
Total Area of tensile reinforcement	Ast	(mm2)	20910	20910	
Flexural Resistance	Mr	(tf.m)	1071.2	1071.2	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	С	(mm)	199.84	199.84	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio			OK	OK	
$\rho st = As_{tensile}/Ag$		%	0.697	0.697	


d) Section D



Item	Notation	Unit	Т	ensile Side	•	Remark
nem	Notation	Offic	Left	Right	Front	Kemank
Factored Loads						
Maximum Moment	M	(tf.m)	4447.0	4433.3	8998.1	
Factored Axial Force	N	(tf)	1,820.1	2,719.4	2,390.0	
Load case of Max. Moment			10A	12B	11	
Bar Arrangement						
Dia. of main reinforcement	Dm	(mm)		32		
Number of reinf, layers	nlay	(nos.)	2			ļ ·
Number of bars	n	(nos.)				
In layer 1			106			
In layer 2				48		
In layer 3						ļ
Flexural Resistance	Mr	(tf.m)	12917.1	14322.74	10267.39	
Axial Compressive Resistance	Nr	(tf.m)	5286.71	8785.72	2727.13	
Compressive Depth	С	(mm)	1350.81	1901.79	1004.65	
Resistance Factor	φ	, ,	0.820 0.781 0.795			
Checking Resistance			OK	OK	OK	1
Checking Reinforcement Ratio			OK	OK	OK	
ρ = As/Ag		(%)	0.885	0.885	0.885	

(3) Design of Pile Cap 1) Sectional Analysis of "A"

Total width of section Calculation width

24000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension Width Height	W	mm mm	1000 3500	
Material Properties Concrete strength Yield Strength of Rebars	fc fv	MPa MPa	24 390	
Elastic modulus of Concrete Elastic modulus of Steel	Ec Es	MPa MPa	26332 200000	
Allowable Comp. Stress of Concrete Allowable Stress of Steel	fca fsa	MPa MPa	10.8 -234	

b) Envelope of Sectional Forces

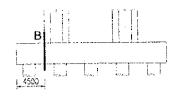
Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment for Calculating Top Reinforcement for Calculating Bottom Reinforcement		kN.mm kN.mm	-5308854 5783714	EXTREME EVENT I-2 EXTREME EVENT I-1
Maximum Shear Force Shear force Coincidental moment	Vu Mu _{coin}	kN kN.mm		EXTREME EVENT I-1

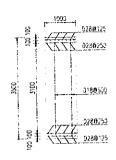
c) Bar

φtop A1s ns	mm mm2 nos	28 615.8	
A1s	mm2		
		615.8	
ns	200		
	1102	12	
ŀ		i	
φbot.	mm	28	
A1's	mm2	615.8	
n's	nos	12	
φv.	mm	18	
A1v	mm2	254.5	
nv	nos	2	
s	mm	500	
Av	mm2	508.9	
	Al's n's ov. Alv nv s	A1's mm2 nos www. mm A1v mm2 nos s mm	A1's mm2 615.8 n's nos 12

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Rer	nark
Top Reinforcement					
* Bending Moment	Mutop	kN.mm	5308854		-
Depth of Compressive Area	c	mm	145.236		
Flexural Resistance	Mr _{top}	kN.mm	8609150		
Checking Resistance		ļ	OK		
Checking Reinforcement Ratio					
$\rho st = As_{tensile}/(H.W)$		%	0.211		
ρmin=0.03fc/fy		%	0.185	OK	
Bottom Reinforcement					
Bending Moment	Mu _{bot}	kN.mm	5783714		
Depth of Compressive Area	c	mm	145.236		
Flexural Resistance	Mr _{bot}	kN.mm	8609150		
Checking Resistance			OK		
Checking Reinforcement Ratio					
$\rho st = As_{tensile}/(H.W)$	1	%	0.211		
ρmin=0.03fc/fy		%	0.185	OK	


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2243649	
Shear Resistance	Vr	N		· · · · · · · · · · · · · · · · · · ·
Effective shear Depth	d_{v}	mm	2520	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	•
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		1.7	•
Area of shear reinf. within a distance s	Α	mm²	509	
Strain in the tensile reinforcement	εχ		0.002000	
Inclination angle of diagonal comp. stress	θ	degrees	43.00	
Shear stress on the concrete	v	MPa	0.989	
Area of Conc. on flexural tensile side	Act	mm⁴	1750000	
Nominal Resistance of Concrete	V _c	N	1741940	
Nominal Resistance of Reinforcement	V _s	N	1072764	
Nominal Resistance	Vn	N	2,814,704	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,533,233	
Checking	1	}	ок	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			844145	Tensile at bottom
SERVICE I-2		į	167259	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		, , , , , , , , , , , , , , , , , , , ,
SERVICE I-1			0.38	
SERVICE I-2			0.07	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-2.71	
SERVICE I-2			-0.54	
Checking Stress of Steel			OK	

2) Section Analysiss of "B"

Total width of section Calculation width

19000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3500	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment for Calculating Top Reinforcemen for Calculating Bottom Reinforcen	Mutop Mubot.	kN.mm kN.mm		EXTREME EVENT I-2 EXTREME EVENT I-1
Maximum Shear Force Shear force Coincidental moment	Vu Mucoin.	kN		EXTREME EVENT I-1

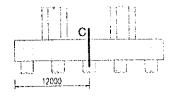
c) Bar Arrangement

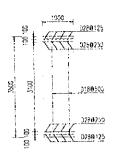
Arrangement Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	¢top	mm	28	
Area of 1 bar	A1s	mm2	615.8	
Numbers of Rebar	ns	nos	12	
Bottom Reinforcement				
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	i
Shear Reinforcement				
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	·
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within	s Av	mm2	508.9	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1423213	1
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{top}	kN.mm	8609150	
Checking Resistance	-		OK	
Checking Reinforcement Ratio			}	
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	2248921	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$	1	%	0.211	
pmin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	856933	
Shear Resistance	Vr	N		
Effective shear Depth	$d_{\rm v}$	mm	2520	
Effective web width	b _v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		2.3	
Area of shear reinf, within a distance s	A_{v}	mm [*]	509	
Strain in the tensile reinforcement	ε _x		0.001003	
Inclination angle of diagonal comp. stres	θ	degrees	36.03	
Shear stress on the concrete	v	MPa	0.378	
Area of Conc. on flexural tensile side	Act	mm²	1750000	
Nominal Resistance of Concrete	V _c	N	2356742	
Nominal Resistance of Reinforcement	V_s	N	1375374	
Nominal Resistance	Vn	N	3,732,116	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	3,358,905	
Checking			OK	•
Checking			OR	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			541757	Tensile at bottom
SERVICE I-2			371019	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa	·	
SERVICE I-1]	0.24	
SERVICE I-2	ŀ		0.17	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	σsu	MPa		
SERVICE I-1	1		-1.74	
SERVICE I-2			-1.19	
Checking Stress of Steel		1 1	OK	

3) Section Analysis of "C"

Total width of section

19000 mm 1000 mm

Calculation width
a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	l W i	mm	1000	
Height	H	mm	3500	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment for Calculating Top Reinforcemen for Calculating Bottom Reinforcen	Mutop Mubot.	kN.mm kN.mm	-211978 7 0	EXTREME EVENT I-2 EXTREME EVENT I-1
Maximum Shear Force Shear force Coincidental moment	Vu Mucoin.	kN kN.mm		EXTREME EVENT I-1

r Arrangement				
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	28	
Area of 1 bar	A1s	mm2	615.8	·
Numbers of Rebar	ns	nos	12	
Total Area of Top Reinf.	As	mm2	7389.0	
Concrete Cover	Cs	mm	100, 200	2 layers
Bottom Reinforcement			·	
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	
Total Area of Bottom Reinf.	A's	mm2	7389.0	
Concrete Cover	C's	mm	100, 200	2 layers
Shear Reinforcement				
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within	Av	mm2	508.9	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	2119787	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{top}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
omin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	0	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

f) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	1094888	
Shear Resistance	Vr	N		
Effective shear Depth	d_v	mm	2520	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally cracked concrete to transmit tension Area of shear reinf. within a distance s Strain in the tensile reinforcement Inclination angle of diagonal comp. stress Shear stress on the concrete Area of Conc. on flexural tensile side Nominal Resistance of Concrete Nominal Resistance of Reinforcement Nominal Resistance Resistance factor for shear Factored Resistance	β A _v ε _x θ v Act V _c V _s Vn φ Vr	mm ⁴ degrees MPa mm ⁴ N N	2.3 509 0.001067 36.67 0.483 1750000 2356742 1343565 3,700,307 0.9 3,330,277	
Checking			OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			-1447483	Tensile at top
SERVICE I-2			-1310903	Tensile at top
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE 1-1			0.65	
SERVICE I-2			0.59	
Checking Stress of Concrete			OK	·
Factored Tensile Stress of Steel	σsu	MPa		
SERVICE I-1			-4.65	
SERVICE I-2			-4.21	:
Checking Stress of Steel			OK	

(4) Section Calculation of Pile

Dia: D1 = D2 =

2200 mm 2000 mm L1 = L2 = 40.0 m 34.0 m

Length:

74.0 m

Number:

16 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Longitudinal			Т		
Load Case	Sectiona	l Force	Depth	Sectiona	Force	Depth
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)
STRENGTH I-1	43.61	604.43	0.00		635.03	0.00
STRENGTH I-2	-3.59	352.70	0.00	22.12		0.00
STRENGTH III	63.94	527.94	0.00	55.86	547.56	0.00
STRENGTH IV	17.95	674.11	0.00		683.39	0.00
STRENGTH V-1	50.85	585.52	0.00	31.76		0.00
STRENGTH V-2	14.52	357.20	0.00			0.00
EXTREME EVENT I-1	1193.48	-163.48	0.00	1258.73		0.00
EXTREME EVENT I-2		-354.60	0.00	·		0.00
EXTREME EVENT II	657.03	372.39	0.00	1350.70		0.00
SERVICE I-1	65.21	439.18	0.00		478.72	0.00
SERVICE I-2	36.10	396.08	0.00	31.27	412.57	0.00

2) Section Calculation

a) Distribution of Axial Force and Bending Moment in Composite Section

Diameter of Pile

2.20 m

0.014 m (2mm corrosion assumed)

Thickness of Casing

20000000 Es= Ec≠ 2500000

n=Es/Ec=

8.00

As0=

0.096761 m2

Ac=

3.801327 m2

Atrans= Is0=

4.575416 m2 0.059668 m4

Ic0=

1.149901 m4

Itrans=

1.627242 m4

* Casing: - Axial

16.92%

- Bending - Axial

29.33%

* RC:

- Bending

83.08% 70.67%

b) General Conditions				
Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	2200	
Steel Casing	1	٠.	Yes	
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	32	
Number of Rebars	n _{st}	nos	46	
Total Area of Reinforcement	A _{st}	mm2	36995	·
	1 1			

c) Checking Resistance (AASHTO 5.7.2)
i) In longitudinal Direction

i) In longitudinal L Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
COUNTY ICCUIT I 4	PN (tf)	604.43	502.17	8811.10	102.26	1844.8	OK
STRENGTH I-1	M (tf.m)	43.61	30.82	540,42	12.79	230,79	OK
STRENGTH I-2	PN (tf)	352.70	293.03	-1258.50	59.67	2285.6	OK
STRENGTH I-Z	M (tf.m)	-3.59	-2.54	10.94	-1.05	-40.34	OK
STRENGTH III	PN (tf)	527.94	438.62	8491.16	89.32	1655.0	OK
STRENGTTIII	M (tf.m)	63.94	45.18	874.47	18.76	347.54	OK
STRENGTH IV	PN (tf)	674.11	560.06	9093.20	114.05	2065.0	OK
SIKENGITIV	M (tf.m)	17.95	12.68	205.91	5.27	95.34	OK
STRENGTH V-1	PN (tf)	585.52	486.46	8712.03	99.06	1783.4	OK
SINGIII V-I	M (tf.m)	50.85	35.93	643.48	14.92	268,55	OK
STRENGTH V-2	PN (tf)	357.20	296.77	9351.60	60.43	1991.8	OK
SIRENGIII V-2	M (tf.m)	14.52	10.26	323.42	4.26	140.38	OK
EXTREME EVENT I-1	PN (tf)	-163.48	-135.82	-161.26	-27.66	-102.9	OK
EXTREME EVENT 1-1	M (tf.m)	1,193.48	843.38	1,001.34	350.10	1302.17	OK
EXTREME EVENT I-2	PN (tf)	-354.60	-294.61	-313.18	-59.99	-213.9	OK
EATREWIE EVENT 1-2	M (tf.m)	1,179.99	833.85	886.41	346.14	1233.91	OK
EXTREME EVENT II	PN (tf)	372.39	309.39	1203.72	63.00	371.6	OK
EXTREME EVENT II	M (tf.m)	657.03	464.29	1,806.37	192.74	1136.9	OK

ii) In Transverse Di	rection						
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
STRENGTH I-1	PN (tf)	635.03	527.59	9074.67	107.44	2021.5	OK
SIKENGIA I-I	M (tf.m)	22.12	15.63	268.66	6.49	122.09	OK
STRENGTH I-2	PN (tf)	350.00	290.79	9173.38	59.21	1884.3	OK
51RENGIA 1-2	M (tf.m)	22.12	15.63	493.08	6.49	206.49	OK
STRENGTH III	PN (tf)	547.56	454.92	8628.97	92.64	1724.2	OK
SIRENGIHIII	M (tf.m)	55.86	39.47	748.57	16.39	304.98	OK
STRENGTH IV	PN (tf)	683.39	567.77	9037.52	115.62	2034.4	OK
SIKENGIHIV	M (tf.m)	22.12	15.63	248.53	6.49	114.18	OK
STRENGTH V-1	PN (tf)	614.18	510.27	8965.24	103.91	1937.6	OK
SIKENGIH V-I	M (tf.m)	31.76	22.44	393.84	9.32	173.73	OK
STRENGTH V-2	PN (tf)	355.62	295.45	8948.05	60.17	1773.5	OK
SIKENGIH V-Z	M (tf.m)	31.76	22.44	679.24	9.32	274.63	OK
EXTREME EVENT I-1	PN (tf)	-95.26	-79.14	-93.62	-16.12	-58.0	OK
EXTREME EVENT 1-1	M (tf.m)	1,258.73	889.49	1,052.25	369.24	1329.74	OK
EXTREME EVENT I-2	PN (tf)	-297.59	-247.24	-258.02	-50.35	-171.8	OK
EXTREME EVENT 1-2	M (tf.m)	1,258.73	889.49	928.27	369.24	1259.79	OK
EXTREME EVENT II	PN (tf)	200.91	166.92	218.01	33.99	111.3	OK
EVINENTE EAGINI II	M (tf.m)	1,350.70	954.48	1,246.65	396.22	1297.0	OK ·

d) Check	ing Stress i	n RC porti	ion					
Load Case		Force		Tensile Steel (tf/m2)		Comp. Con	Domark	
Load	ase	PN (tf)	M(tf.m)	Actual	Allowable	Actual	Allowable	Kemark
SERVICE I-1	Horizontal		46.08	579.16	-23861	234.24	1101	OK
SERVICE I-I	Transverse	397.73	22.10	886.98	-23861	202.02	1101	OK
SERVICE I-2	Horizontal	329.07	25.51	668.19	-23861	180.84	1101	OK
JERVICE 1-2	Transverse	342.77	22.10	736.65	-23861	179.89	1101	OK

e) Checking Minimum Steel Ratio									
Item	Notation	Unit	Value	Remark					
Total Area of Reinforcement	A _{st}	mm2	36995						
Gross Area of Section	Ag	mm2	3801327						
Reinforcement Ratio	ρst	%	0.97	•					
Minimum Reinforcement ratio	ρmin	%	0.40	OK					

(5) Calculation of Footing Concrete Stress that Pile Connected

1) Vertical bearing stress of footing concrete

$$\sigma_{cv} = P/(\pi D^2/4) \le \sigma_{ca}$$

Reaction force of pile	P=	1311390 kg	Load Combination: 7
Diameter of Pile	D=	220 cm	
Vertical bearing stress	$\sigma_{\rm cv}$	34.50 kg/cm ²	
Allowable bearing stress	$\sigma_{ca}=0.5xf_{c}=$	= 120.00 kg/cm ²	

$\sigma_{cv} \iff \sigma_{ca} \longrightarrow OK$

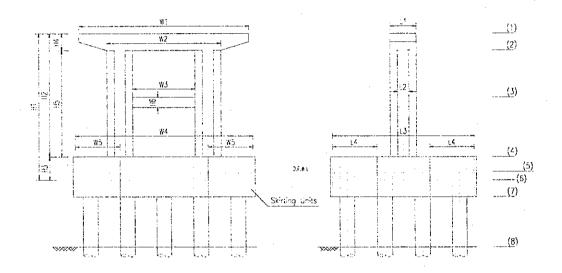
2) Vertical Punching Shear Stress $\tau_c = P/\{\pi h(D+h)\} \le \tau_a$

P= D=	1311390 kg 220 cm	Load Combination: 7
h	150 cm	
π– τ _c =	7.52 kg/cm ²	
$\tau_a =$	9.00 kg/cm ²	
	D= h= τ _c =	D= 220 cm h= 150 cm τ_c = 7.52 kg/cm ²

$\tau_c \leftarrow \tau_a \rightarrow OK$

3) Horizontal Bearing stress σ_{ch} =H/(Dl) <= σ_{ca}

Horizontal force at pile head Diameter of Pile	H= D=	85530 kg 220 cm	Load Combination: 9
Embedded Length of Pile	l=	200 cm	
Horizontal bearing stress Allowable bearing stress	σ_{ch} $\sigma_{ca} = 0.3 \times f_c =$	1.94 kg/cm ² 72.00 kg/cm ²	


$$\sigma_{ch} \leftarrow \sigma_{ca} \rightarrow OK$$

4) Horizontal Punching Shear Stress $\tau_c = H/\{h' \times (2l + D + 2h')\} \le \tau_a$

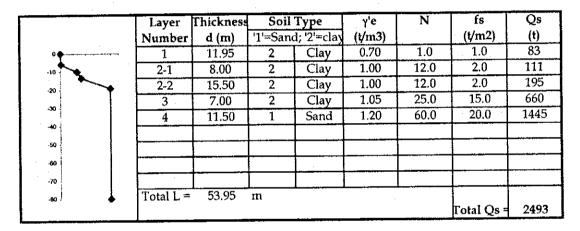
Horizontal force at pile head	H=	85530 kg	Load Combination: 9
Diameter of Pile	D=	220 cm	
Distance from side of pile to the			
nearest edge of pile cap	h'=	90 cm	
Embedded Length of Pile	l=	200 cm	
Punching shear stress	$\tau_c =$	1.19 kg/cm ²	
Allowable punching shear stress	$\tau_a =$	9.00 kg/cm ²	

3.13.7 Design of P17 pier(1) Stabilty Calculation1) Dimension of Piier

	(Figure)	(m)			(Level)	(m)	
Portion	Length	Portion	Length	Portion	Level	Portion	Level
H1	21.88	W1	23.00	(1)	+22.38	(5)	+1.78
H2	18.38	W2	15.00	(2)	+19.38	(6)	+0.50
H3	3.50	W3	7.00	(3)	+12.38	(7)	-2.00
H4	3.00	L1	4.00	(4)	+4.00	(8)	-19.55
H5	15.38	W4	24.00				
H6	1.50	L2	1.50				
		L3	19.00				
		W5	6.00				
		L5	6.00				

2) Summary of Load Combination forces at the Bottom of Pile Cap

I o	nd Combination	V	Longit	udinal	Trans	verse
LO	Load Combination		H (tf)	M (tf.m)	H (tf)	M (tf.m)
1	STRENGTH I-1	9440.6	112.2	2455.9	32.5	274.3
2	STRENGTH I-2	5490.2	-1.1	-23.4	32.5	274.3
3	STRENGTH III	8320.9	<i>7</i> 5.1	1121.1	79.1	892.6
4	STRENGTH IV	10030.4	23.6	515.4	21.3	-13.0
5	STRENGTH V-1	9184.7	106.7	2185.5	48.8	532.5
6	STRENGTH V-2	5550.7	19.3	272.8	48.8	532.5
7	EXTREME EVENT I-1	8477.2	1433.8	20708.4	1433.2	20411.2
8	EXTREME EVENT I-2	5515.8	1401.4	20000.0	1433.2	20411.2
9	EXTREME EVENT II	8583.0	682.6	1393.1	1339.0	1746.4
10	SERVICE I-1	7207.6	108.8	2269.5	42.4	410.3
11	SERVICE I-2	6416.4	44.1	852.7	42.4	410.3


3) Pile Capacity

INPUT DATA

71 21111			
BoreHole			BRD15
Pile Diameter	D1	=	2200 mm
	D2	=	2000 mm
Factor of Safety	FS	=	3
Pile length	L	=	74.00 m
0	L0	=	20.05 m
	L1		19.95 m
	L2	==	34.00 m
Pile Embedded Length	Le	=	53.95 m
Pile Cross-Section Circumference	P1	=	6.912 m
	P2	==	6.283 m
Pile Cross-Section Area	Ab1	=	3.801 m2
	Ab2	=	3.142 m2
Concrete Unit Weight	γс	==	2.5 t/m3
Ultmate Soil End Bearing Capacit	3qu	=	300 t/m2
Soil Type of Bearing Layer	•		1 $(1/2 = Sand/Clay)$

SKIN FRICTION CAPACITY

Formula: $Qs = \Sigma$ (fs * P * d) for N > 0

END BEARING CAPACITY

Formula: Qt = qu* Ab

	Type of Pile	Soil Type of B.P	End Bearing Capacity
Cast-in-situ	Friction & Bearing	Sand	942 tonne

ULTIMATE BEARING CAPACITY (Oult)

* Qult = Qt + Qs

3435.3 tonne

REPLACED EFFECTIVE WEIGHT OF SOIL (Ws)

177.3 tonne

BUOYANT WEIGHT OF PILE (W)

464.5 tonne

Allowable Bearing Capacity for Service Load Combinations (Qall₁)

* $Qall_1 = (Qult - Ws) / FS + Ws - W$

798.8 tonne

Allowable Bearing Capacity for Earthquake & Strength Load Combinations(Qall₂)

* $Qall_2 = (Qult - Ws) / FS + Ws - W$

1341.8 tonne

FS= 2

Design Uplift Capacity for Service Load Combinations (Qup₁)

* $Qup_1 = Qs / FS + W$

880.0 tonne

FS = 6

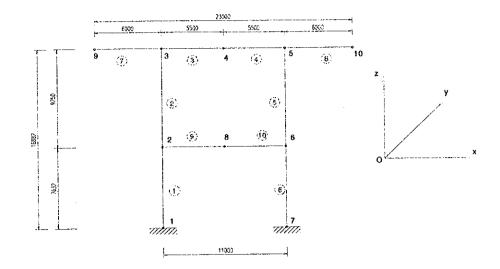
Design Uplift Capacity for Earthquake & Strength Load Combinations(Qup2)

* $Qup_2 = Qs / FS + W$

1295.5 tonne

4) Reaction of Pile

a) Displacement


1 -	ad Combination	Lo	ongitudin	al	Γ	ransverse		δ va(cm)	Remark
1.0	ad Combination	δ x(cm)	δ y(cm)	α (rad)	δ x(cm)	δ y(cm)	α (rad)	o za(cm)	Keniark
1	STRENGTH I-1	0.16	0.72	0.000115	0.04	0.72	0.000014	3.00	OK
2	STRENGTH I-2	0.00	0.42	0.000000	0.04	0.42	0.000014	3.00	OK
3	STRENGTH III	0.10	0.63	0.000062	0.10	0.63	0.000039	3.00	OK
4	STRENGTH IV	0.03	0.76	0.000024	0.03	0.76	0.000006	3.00	OK
5	STRENGTH V-1	0.15	0.70	0.000105	0.06	0.70	0.000024	3.00	OK
6	STRENGTH V-2	0.03	0.42	0.000016	0.06	0.42	0.000024	3.00	OK
7	EXTREME EVENT I-1	1.97	0.64	0.001164	1.89	0.64	0.000788	2.00	OK
8	EXTREME EVENT 1-2	1.92	0.42	0.001131	1.89	0.42	0.000788	2.00	OK
9	EXTREME EVENT II	0.89	0.65	0.000315	1.70	0.65	0.000403	3.00	OK
10	SERVICE I-1	0.23	0.55	0.000112	0.08	0.55	0.000021	1.50	OK
11	SERVICE I-2	0.09	0.49	0.000043	0.08	0.49	0.000021	1.50	OK

b) Bearing and Uplift forces of piles

Т.	- 1 C1-i	Longit	udinal	Trans	verse	Allowable	Capacities	Checking	
LO	ad Combination	PNmax(tf)	PNmin(tf)	PNmax(tf)	PNmin(tf)	Bearing (tf)	Uplift (tf)	Bearing	Uplift
1	STRENGTH I-1	661.01	519.07	601.78	578.29	1341.8	-1295.5	OK	OK
2	STRENGTH I-2	343.27	343.00	354.89	331.39	1341.8	-1295.5	OK	OK
3	STRENGTH III	558.42	481.69	552.22	487.89	1341.8	-1295.5	OK	OK
4	STRENGTH IV	641.81	611.99	631.53	622.27	1341.8	-1295.5	OK	OK
5	STRENGTH V-1	638.91	509.18	593.60	554.49	1341.8	-1295.5	OK	OK
6	STRENGTH V-2	356.51	337.33	366.48	327.36	1341.8	-1295.5	OK	OK
7	EXTREME EVENT I-1	1250.14	-190.49	1180.05	-120.40	1341.8	-1295.5	OK	OK
8	EXTREME EVENT I-2	1044.58	-355.10	994.96	-305.49	1341.8	-1295.5	OK	OK
9	EXTREME EVENT II	731.39	341.48	868.55	204.32	1341.8	-1295.5	OK	OK
10	SERVICE I-1	519.63	381.32	467.39	433.56	798.8	-880.0	OK	OK
11	SERVICE I-2	427.88	374.17	417.94	384.11	798.8	-880.0	OK	OK

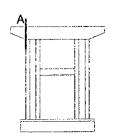
(2) Design ofnPier Sections

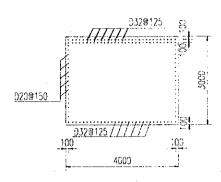
1) Calculation model

2) L	oads	from	superstructure	at	pier top
------	------	------	----------------	----	----------

	V	Longit	udinal		verse	Remarks
Load	(tf)	H(tf)	M (tf.m)	H (tf)	M (tf.m)	Kemarks
DC1	1334.5	0.0	0.0	0.0	0.0	
DW1	203.1	0.0	0.0	0.0		
LLmax	567.4	14.0	0.0	0.0	0.0	
LLmin	-143.8	-16.5	0.0	0.0	l	
IMmax	72.6	0.0	0.0	0.0		
IMmin	-7.6	0.0	0.0	0.0		
BRmax	0.0	34.1	0.0	6.4		
BRmin	0.0	0.0	0.0	6.4		
TUmax	33.5	41.6	0.0	0.0		
TUmin	-7.9	-46.5	0.0	0.0	1	
CR	82.2	0.0	0.0	0.0		
WL	0.0	0.0	0.0	2.3	13.8	
WS1	0.0	0.0	0.0	18.6		
EQ1-L	-112.9	747.0	0.0			9
EQ1-T	-112.9	224.1	0.0	747.0	181.5	

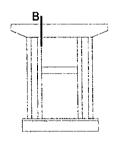
Loads acting on pier

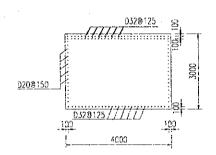

- Dead Load DC2: 2.5t/m3
- Wind Pressure on Structure WS2: 0.194t/m2
- Earthquake in longitudinal direction (EQ2-L):
 - +12% of self-weight in longitudinal direction.
 - +3.6% of self-weight in transverse direction.
- Earthquake in transverse direction (EQ2-T):
 - +12% of self-weight in transverse direction.
 - +3.6% of self-weight in longitudinal direction.


3) Envelope of Member End Actions

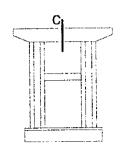
VEN (DED	TOLKET	TVDE	Nx	Sy	Sz	Mx	Му	Mz
MEMBER	JOINT	TYPE	(tf)	(tŕ)	(tf)	(tf.m)	(tf.m)	(tf.m)
								/
1	1	MAX	-772.29	496.167	496,26	17.4987	3818.75	7712.12
		CASE	12A	11	10B	13	12A	11
}		MIN	-3027.85	-155.761	-477.22	-7.246	-3875.26	-2430.72
		CASE	10B	12B	12A	10B	10B	12B
1	2	MAX	2693.95	146.145	445,17	7.246	214.52	1278.64
		CASE	10B	12B	12A	10B	12B	12B
		MIN	531.88	-464.113	-464.21	-17.4987	-303.33	-4047.69
j }		CASE	12A	11	10B	13	10A	11
2	2	MAX	-666.77	459.304	411.85	7.3289	1107.11	4049.94
[- [CASE	12A	11	12B	13	12A	11
		MIN	-2494.42	-144.717	-499.31	-4.6161	-1215.34	-1279.29
]	i	CASE	10B	12B	10A	10B	10B	12B
2	3	MAX	2155.36	134.952	466.76	4.6161	2668.14	195.58
-	Ĭ	CASE	10B	134.932 12B	10A	10B	10A	12B
	}	MIN	422.64	-426. 7 54	-379.3	-7.3289	-1882,17	-616.47
		CASE	12A	11	-379.3 12B	13	-1662.17 12B	-010.47 11
3	3	MAX	198.77	156.242	93.16	23.6656	4521.83	204.84
ا	J	CASE	198.77 10A	130.242	12A	25.0030	4521.65 10B	204.04
		MIN	-113,45	-49.112	-1266.4	-6.8553	-1916.46	-62.17
.		CASE	12B	-49.112 12B	-1200.4 10B	-0.0003 12B	-1910.46 12A	
3	4			36.272		6.8553		12B
ا	4	MAX	71.38		793.24		1120	507.15
		CASE	12B	12B	10B	12B	110.55	11
		MIN	-155.28	-112.622	-399.24	-23.6656	419.55	-164.71
ا ا	4	CASE	10A	27.200	12A	11	421.06	12B
4	4	MAX	168.18	37.299	710.84	23.6656	-421.06	164.71
		CASE	10B	12B	10A	11	12B	12B
		MIN CASE	-84.99	-116.169	-445.32	-6.8553	-1124.6	-507.15
	E		12A	110 790	12B	12B	2172.1	(7.92
4	5	MAX	128.48	159.789	139.24	6.8553	2172.1	67.82
		CASE	12A	11	12B	12B	12B	12B
		MIN	-210. 2 5	-50.139		-23.6656	-4057.69	-224.35
ا ا	-	CASE	10B	12B		11	10A	11
5	5	MAX	1939.5	132.53				205.65
		CASE	10A	12B		26 0610	12A	12B
		MIN		-418.391				
		CASE						
5	6		The state of the s		1 .			
		CASE		11				
		MIN		-142.295	-417.17			
	,	CASE		12B		11		
6	6	1		142.892	467.88			
		CASE		i	I			
	,	MIN	404.27		i			
		CASE		11				1
6	7	MAX		484.937		i	4	
}		CASE		i .				
		MIN			1	!	l	Į.
		CASE	10A	12B	10A	11	10B	12B
L	<u> </u>			l	<u> </u>			}

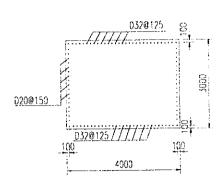
						((Continued)	
								İ
7	3	MAX	53.44	53.632	-370.65	0	-1291.77	57.86
l . I		CASE	10A	11	12A	10B	12A	12B
•		MIN	-51.31	-15.721	-668.12	0	-2463.52	-197.82
	1	CASE	10B	12B	5	13	5	11
7	9	MAX	0	0	0	이	0	0
]		CASE	12B	11	12A	10B	10B	12B
		MIN	0	0	0	이	0	0
		CASE	12A	12B	10B	13	12A	11
8	5	MAX	41.6	41.722	-291.85	0]	1737.76	139.46
		CASE	10A	11	12A	11	5	11
		MIN	-40.18	-12.271	-520.01	0	932.42	-40.96
		CASE	10B	12B	5	10B	12B	12B
8	10	MAX	0	0	0	0	0	[0
		CASE	12B	13	12B	13	12B	12B
		MIN	0	0	0	0	0	0
		CASE	11	12B	10A	12B	10A	13
9	2	MAX	-40.28	4.809	134.89	2.2487	656.03	1.89
		CASE	12A	11	12A	11	10B	11
İ		MIN	-69.84	-1.428	-199.53		-572.12	-0.31
		CASE	5	12B	10B	12B	12A	4A
9	8	MAX	69.84	0.416	164.37	0.6514	31.25	9.82
1		CASE	. 5	12B	10B	12B	5	11
		MIN	43.29	-1.434	-160.2	-2.2487	18.85	-3.2
		CASE	8B	11	12A	11	12A	12B
10	6	MAX	69.84	1.992	137.63	1		8.87
		CASE	5	13	12B		12B	11
		MIN	41.92	-0.648			-635.1	-2.86
]	CASE	12B	10B		11	10A	12B
10	8		-43.29	i	4		-18.85	
		CASE	8B		i		1	12B
		MIN	-69.84		1	3	3	
		CASE	5	12B	10B	12B	5	11
1	ł	[i				


4) Flexural Resistance and Bar Arrangement a) Section A



Thomas	Notation	Unit	Tensi	e Side	Remark
Item	INOTATION	Ont	Тор	Bottom	Kemaik
Factored Loads					
Maximum Moment	M	(tf.m)	2463.5	-1291.8	÷
Factored Axial Force	N	(tf)	-1	-	
Load case of Max. Moment			5	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n	(nos.)	64	32	·
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	- 1	-	
Compressive Depth	c	(mm)	220.84	163.83	•
Resistance Factor	φ		0.90	0.90	
Checking Resistance	Ì		ОК	ок	
Checking Reinforcement Ratio			OK	OK	

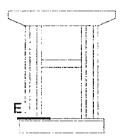

b) Section B

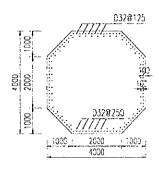


Item	Notation	Unit	Tensi	le Side	Remark
nent	Notation	Ulil	Тор	Bottom	Kemark
Factored Loads					
Maximum Moment	M	(tf.m)	4521.8	1916.5	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement					
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n	(nos.)	64	32	
Resistance					
Flexural Resistance	Mr	(tf.m)	5344.44	3035.95	
Axial Compressive Resistance	Nr	(tf.m)	-	-	
Compressive Depth	- c	(mm)	220.84	163.83	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio			OK	OK_	

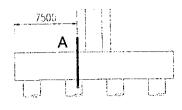
c) Section C

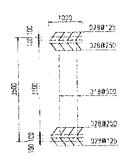
τ.	Natura	T I : 4	Tensil	e Side	Remark
Item	Notation	Unit	Тор	Bottom	Kemark
Factored Loads					
Maximum Moment	M	(tf.m)	-421.1	1124.6	•
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			12B	1	
Bar Arrangement	•			1	
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf. layers	nlay	(nos.)	2	1	
Number of tensile bars	n	(nos.)	64	32	
Resistance					•
Flexural Resistance	Mr	(tf.m)	3010.64	3010.64	
Axial Compressive Resistance	Nr	(tf.m)	-		
Compressive Depth	c	(mm)	139.35	139.35	•
Resistance Factor	φ		0.90	0.90	
Checking Resistance	1		OK	OK	
Checking Reinforcement Ratio	<u>l</u>		OK	OK	


d) Section D



т.	Matation	Unit	Tensi	le Side	Remark
Item	Notation	Olut	Тор	Bottom	
Factored Loads					
Maximum Moment	M	(tf.m)	656.0	572.1	
Factored Axial Force	N	(tf)	-	-	
Load case of Max. Moment			10B	12A	
Bar Arrangement				Ì	
Dia. of tensile reinforcement	Dm	(mm)	32	32	
Number of tensile reinf, layers	nlay	(nos.)	2	2	
Number of tensile bars	n	(nos.)	26	26	
Resistance					
Flexural Resistance	Mr	(tf.m)	1071.2	1071.2	
Axial Compressive Resistance	Nr	(tf.m)] -	- 1	
Compressive Depth	С	(mm)	199.84	199.84	
Resistance Factor	φ		0.90	0.90	
Checking Resistance			OK	OK	
Checking Reinforcement Ratio			OK	OK	


e) Section E



Item	Notation	Unit		Remark		
Helli	INOtation		Left	Right	Front	Kemark
Factored Loads						
Maximum Moment	M	(tf.m)	3818.8	3875.3	<i>7</i> 712.1	
Factored Axial Force	N	(tf)	772.3	3,027.9	2,121.2	
Load case of Max. Moment			12A	10B	11	
Bar Arrangement						
Dia. of main reinforcement	Dm	(mm)	1	32		
Number of reinf. layers	nlay	(nos.)	·	2		
Number of bars	n n	(nos.)				
In layer 1			106			
In layer 2				48		
Total Area of reinforcement	Ast	(mm2)	i	123854		
Bar spacing (inward)	@	(mm)	i	125,125		
Concrete Cover (inward)	cv	(mm)		100,200		
Resistance						
Flexural Resistance	Mr	(tf.m)	10122.1	14316.75	10572.12	
Axial Compressive Resistance	Nr	(tf.m)	2047.05	11186.32	2907.85	
Compressive Depth	c	(mm)	876.22	2278.55	1025.45	i
Resistance Factor	φ		0.886	0.767	0.807	
Checking Resistance			OK	OK	OK	
Checking Reinforcement Ratio			OK	OK	OK	

(3) Design of Pile Cap
1) Section Analysis of "A"

Total width of section

24000 mm 1000 mm

Calculation width 1000 in the Dimensions & Material Properties

tion Dimensions & Material Properties Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H	mm	3500	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	<u></u>

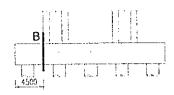
(Velope of Sectional Porces				1.0
Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment for Calculating Top Reinforcement for Calculating Bottom Reinforcement Maximum Shear Force Shear force Coincidental moment	Mu _{bot.}	kN.mm kN.mm kN kN.mm	5319855 2067	EXTREME EVENT I-2 EXTREME EVENT I-1 EXTREME EVENT I-1
	i	!		

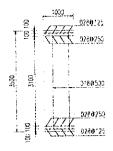
c) Bar A

Item	Notation	Unit	Value	Remark
op Reinforcement				
Diameter	фtор	mm	28	
Area of 1 bar	A1s	mm2	615.8	
Numbers of Rebar	ns	nos	12	
ottom Reinforcement				
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	
hear Reinforcement] . [
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf. within s	Av	mm2	508.9	

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	5330704	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr_{top}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy	l	%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	5319855	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				·
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy	<u> </u>	%	0.185	OK


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	2066749	
Shear Resistance	Vr	N		
Effective shear Depth	d_v	mm	2520	
Effective web width	b_v	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		1.7	
Area of shear reinf. within a distance s	Å _v	mm ²	509	*
Strain in the tensile reinforcement	εχ		0.002000	
Inclination angle of diagonal comp. stress	θ	degrees	43.00	
Shear stress on the concrete	v	MPa	0.911	
Area of Conc. on flexural tensile side	Act	mm ²	1750000	:
Nominal Resistance of Concrete	V _c	N	1741940	
Nominal Resistance of Reinforcement	V_s	N	1072764	
Nominal Resistance	Vn	N	2,814,704	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	2,533,233	
Checking	ļ		OK	
	<u> </u>			

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1	1		695282	Tensile at bottom
SERVICE I-2			11783	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1	1		0.31	
SERVICE I-2			0.01	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-2.23	
SERVICE I-2			-0.04	
Checking Stress of Steel			OK	1

2) Section Analysis of "B"

Total width of section

19000 mm 1000 mm

Calculation width
a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	W	mm	1000	
Height	H_	mm	3500	**************************************
Material Properties			1	
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Notation	Unit	Value	Load Case
Mutop Mubot.	kN.mm kN.mm		EXTREME EVENI' I-2 EXTREME EVENT I-1
Vu	kN	792 2086028	EXTREME EVENT I-1
	Mutop Mubot. Vu	Mutop kN.mm Mubot. kN.mm	Mutop kN.mm -1443600 Mubot. kN.mm 2086028

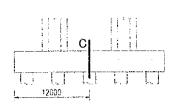
c) Bar Arrangement

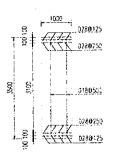
Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	фtор	mm	28	
Area of 1 bar	A1s	mm2	615.8	
Numbers of Rebar	ns	nos	12	
Bottom Reinforcement	İ			
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	
Total Area of Bottom Reinf.	A's	mm2	7389.0	
Concrete Cover	C's	mm	100, 200	2 layers
Shear Reinforcement				
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	508.9	<u> </u>

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mu _{top}	kN.mm	1443600	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{top}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	2086028	
Depth of Compressive Area	c	mm	145.236	
Flexural Resistance	Mr _{bot}	kN.mm	8609150	
Checking Resistance			ОК	
Checking Reinforcement Ratio			,	
$\rho st = As_{tensile}/(H.W)$		%	0.211	
ρmin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.


e) Checking for Shear Resistance (AASHTO 5.8.3.3)


Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	791775	
Shear Resistance	Vr	N		
Effective shear Depth	d_v	mm	2520	
Effective web width	b,	mm	1000	
Spacing of stirrups	s	mm	500	
Angle of inclination of transverse reinf.	α	degrees	90	
Factor indicating ability of diagonally			ĺ	
cracked concrete to transmit tension	β		2.3	
Area of shear reinf. within a distance s	A _v	mm²	509	
Strain in the tensile reinforcement	$\epsilon_{\rm x}$		0.000939	
Inclination angle of diagonal comp. stress	θ	degrees	35.27	
Shear stress on the concrete	v	MPa	0.349	
Area of Conc. on flexural tensile side	Act	mm ²	1750000	
Nominal Resistance of Concrete	V _c	N	2356742	
Nominal Resistance of Reinforcement	V _s	N	1414441	
Nominal Resistance	Vn	. N	3 <i>,7</i> 71,183	
Resistance factor for shear	φ		0.9	,
Factored Resistance	Vr	N	3,394,065	
Checking			OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			464079	Tensile at bottom
SERVICE I-2			336464	Tensile at bottom
Factored Comp. Stress of Concrete	σcu	MPa	/	
SERVICE I-1			0.21	
SERVICE I-2	1		0.15	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1	İ		-1.49	
SERVICE I-2		}	-1.08	
Checking Stress of Steel			OK	

3) Section Analysis of "C"

Total width of section Calculation width

19000 mm 1000 mm

a) Section Dimensions & Material Properties

Item	Notation	Unit	Value	Remark
Section Dimension				
Width	w	mm	1000	
Height	H	mm	3500	
Material Properties				
Concrete strength	fc	MPa	24	
Yield Strength of Rebars	l fy	MPa	390	
Elastic modulus of Concrete	Ec	MPa	26332	•
Elastic modulus of Steel	Es	MPa	200000	
Allowable Comp. Stress of Concrete	fca	MPa	10.8	
Allowable Stress of Steel	fsa	MPa	-234	

b) Envelope of Sectional Forces

Item	Notation	Unit	Value	Load Case
Maximum Flexural Moment				
for Calculating Top Reinforcement	Mutop	kN.mm	-1991455	EXTREME EVENT I-2
for Calculating Bottom Reinforcen				EXTREME EVENT I-1
Maximum Shear Force				
Shear force	Vu	kN	-1035	EXTREME EVENT I-1
Coincidental moment	Mucoin.	kN.mm	-1991455	

c) Bar Arrangement

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Diameter	φtop	mm	28	
Area of 1 bar	A1s	mm2	615.8	
Numbers of Rebar	ns	nos	12	
Bottom Reinforcement				
Diameter	φbot.	mm	28	
Area of 1 bar	A1's	mm2	615.8	
Numbers of Rebar	n's	nos	12	
Shear Reinforcement				*
Diameter	φv.	mm	18	
Area of 1 bar	A1v	mm2	254.5	
Numbers of Rebar in section	nv	nos	2	
Spacing of Shear Reinf.	s	mm	500	
Total Area of Shear Reinf, within s	Av	mm2	508.9	l

d) Checking for Flexural Resistance (AASHTO 5.7.3.2)

Item	Notation	Unit	Value	Remark
Top Reinforcement				
Bending Moment	Mutop	kN.mm	1991455	
Depth of Compressive Area	С	mm	145.236	
Flexural Resistance	Mr _{top}	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio	İ			
$\rho st = As_{tensile}/(H.W)$	ļ	%	0.211	
ρmin=0.03fc/fy		%	0.185	OK
Bottom Reinforcement				
Bending Moment	Mu _{bot}	kN.mm	0	
Depth of Compressive Area	c	mm	145.236	
Flexural Resistance	Mrbot	kN.mm	8609150	
Checking Resistance			OK	
Checking Reinforcement Ratio				
$\rho st = As_{tensile}/(H.W)$		%	0.211	
pmin=0.03fc/fy		%	0.185	OK

Notes: Reinforcement selection is controlled by the Minimum Reinforcement Ratio Requirement.

e) Checking for Shear Resistance (AASHTO 5.8.3.3)

Item	Notation	Unit	Value	Remark
Factored Shear	Vu	N	1035077	
Shear Resistance	Vr	N		
Effective shear Depth	d _v	mm	2520	
Effective web width	b _ν	mm	1000	
Spacing of stirrups	S	mm	500	
Angle of inclination of transverse reinf.	- α	degrees	90	
Factor indicating ability of diagonally				
cracked concrete to transmit tension	β		2.3	
Area of shear reinf. within a distance s	Α _ν	mm²	509	
Strain in the tensile reinforcement	$\epsilon_{\rm x}$		0.001014	
Inclination angle of diagonal comp. stress	θ	degrees	36.14	
Shear stress on the concrete	v	MPa	0.456	
Area of Conc. on flexural tensile side	Act	mm^2	1750000	
Nominal Resistance of Concrete	V _c	N	2356742	
Nominal Resistance of Reinforcement	V_s	N	1369838	
Nominal Resistance	Vn	N ·	3,726,580	
Resistance factor for shear	φ		0.9	
Factored Resistance	Vr	N	3,353,922	
Checking			OK	

f) Checking for Flexural Stress

Item	Notation	Unit	Value	Remark
Factored Moments	Mu	kN.mm		
SERVICE I-1			-1369794	Tensile at top
SERVICE I-2				Tensile at top
Factored Comp. Stress of Concrete	σcu	MPa		
SERVICE I-1			0.61	
SERVICE 1-2			0.57	
Checking Stress of Concrete			OK	
Factored Tensile Stress of Steel	osu	MPa		
SERVICE I-1			-4.40	
SERVICE I-2		i	-4.57	
Checking Stress of Steel			OK	

(4) Section Calculation of Pile

Dia : D1 =

2200 mm

L1 = L2 =

40.0 m 34.0 m

D2 = Length:

2000 mm 74.0 m

Number:

16 nos.

1) Sectional Forces (Extracted from the Results of Pile Group Analysis)

	Lo	ngitudina	al	Transverse		
Load Case	Sectiona			Sectiona	Depth	
	Mmax (tf.m)	Nmin (tf)	Z(m)	Mmax (tf.m)	Nmin (tf)	Z(m)
STRENGTH I-1	83.07	519.07	0.00	26.91	578.29	0.00
STRENGTH I-2	1.02	343.00	0.00	26.91	331.39	0.00
STRENGTH III	57.82	481.69	0.00	64.84	487.89	0.00
STRENGTH IV	17.48	611.99	0.00	18.19		0.00
STRENGTH V-1	79.63	509.18	0.00	40.06		0.00
STRENGTH V-2	14.92	337.33	0.00	40.06	327.36	0.00
EXTREME EVENT I-1	1106.79	-190.49	0.00	1162.64	-120.40	0.00
EXTREME EVENT 1-2	1082.79	-355.10	0.00	1162.64	-305.49	0.00
EXTREME EVENT II	562.78	341.48	0.00	1136.28	204.32	0.00
SERVICE I-1	88.67	381.32	0.00	37.79	433.56	0.00
SERVICE I-2	36.21	374.17	0.00	37.79	384.11	0.00

2) Section Calculation

a) General Condition

Item	Notation	Unit	Value	Remark
Diameter of pile	D	mm	2200	
Steel Casing			Yes	
Number of Reinf. layers	n _{laver}	nos	1	
Concrete cover	cv	m	250	
Diameter of Rebars	d	mm	32	
Number of Rebars	n _{st}	nos	46	
Total Area of Reinforcement	A _{st}	mm2	36995	

b) Distribution of Axial Force and Bending Moment in Composite Section

Diameter of Pile

2.20 m

0.014 m (2mm corrosion assumed)

Thickness of Casing 20000000 Es≖

Ec=

n=Es/Ec=

2500000 8.00

As0=

0.096761 m2

Ac=

3.801327 m2

Atrans=

4.575416 m2

Is0=

0.059668 m4

Itrans=

1.627242 m4

* Casing: - Axial

- Bending

16.92% 29.33%

* RC: - Axial 83.08%

- Bending

70.67%

c) Checking Resistance (AASHTO 5.7.2)

i) in longitudinal Direction							
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
STRENGTH I-1	PN (tf)	519.07	431.25	8129.16	87.82	1529.9	OK
SIKENGIII-I	M (tf.m)	83,07	0.00	1,106.31	24.37	424.51	OK
STRENGTH I-2	PN (tf)	343.00	284.97	9715.37	58.03	2201.6	OK
STRENGITT-2	M (tf.m)	1.02	0.00	24.88	0.30	11.35	OK
STRENGTH III	PN (tf)	481.69	400.20	8505.57	81.49	1658.7	OK
SIKENGIIIII	M (tf.m)	57.82	0.00	868.31	16.96	345.23	OK
STRENGTH IV	PN (tf)	611.99	508.45	9102.88	103.54	2054.6	OK
SIRENGIIIV	M (tf.m)	17.48	0.00	221.44	5.13	101.75	OK
STRENGTH V-1	PN (tf)	509.18	423.03	8169.79	86.15	1540.8	OK
SIRENGIII V-I	M (tf.m)	79.63	0.00	1,086.82	23.36	417.79	OK
STRENGTH V-2	PN (tf)	337,33	280.26	9295.94	57.07	1973.9	OK
SIKENGIII V-2	M (tf.m)	14.92	0.00	349.97	4.38	151.38	OK
EXTREME EVENT I-1	PN (tf)	-190.49	-158.26	-189.60	-32.23	-127.7	OK
EXTREME EVENT 1-1	M (tf.m)	1,106.79	0.00	936.99	324.67	1286.87	OK
EXTREME EVENT I-2	PN (tf)	-355.10	-295.02	-321.69	-60.08	-231.3	OK
	M (tf.m)	1,082.79	0.00	834.33	317.63	1223.15	OK
EXTREME EVENT II	PN (tf)	341.48	283.71	1304.93	57,77	393.2	OK
I IMAYA SIMBATAS	M (tf.m)	562.78	0.00	1,829.17	165.09	1123.6	OK

ii) In Transverse Directi	on						
Load Case	Forces	Total	RC	Allowable	Casing	Allowable	Remark
STRENGTH I-1	PN (tf)	578.29	480.45	8999.97	97.84	1962.6	OK
JIKENGIII FI	M (tf.m)	26.91	0.00	356.21	7.89	158.35	OK
STRENGTH I-2	PN (tf)	331.39	275.32	8995.61	56.07	1806.5	OK
STRENGTT I-2	M (tf.m)	26.91	0.00	621.73	7.89	254.35	OK
STRENGTH III	PN (tf)	487.89	405.35	8390.54	82.54	1615.0	OK
31KEROITIM	M (tf.m)	64.84	0.00	948.45	19.02	372.14	OK
STRENGTH IV	PN (tf)	622.27	516.99	9085.85	105.28	2051.0	OK
STRENGTITY	M (tf.m)	18.19	0.00	225.93	5.34	103.95	OK
STRENGTH V-1	PN (tf)	554.49	460.68	8820.08	93.81	1844.4	OK
STREITGITT V-1	M (tf.m)	40.06	0,00	542.07	11.75	231.04	OK
STRENGTH V-2	PN (tf)	327.36	271.98	8651.08	55.38	1650.6	OK
OTRENOTTI V-2	M (tf.m)	40.06	0.00	900.59	11.75	350.23	OK
EXTREME EVENT I-1	PN (tf)	-120.40	-100.03	-120.37	-20.37	-78.7	OK
EXTREME EVENT 1-1	M (tf.m)	1,162.64	0.00	988.64	341.05	1317.06	OK
EXTREME EVENT I-2	PN (tf)	-305.49	-253.81	-270.22	-51.68	-189.3	OK
BATALDIAG E TEINT 1-2	M (tf.m)	1,162.64	0.00	874.69	341.05	1249.02	OK
EXTREME EVENT II	PN (tf)	204.32	169.75	261.21	34.57	133.1	OK
EXTREME EVENT II	M (tf.m)	1,136.28	0.00	1,235.59	333.32	1283.6	OK

d) Checking Stress in RC portion Tensile Steel (tf/m2) Force Comp. Concrete (tf/m2) Load Case Remark PN (tf) M(tf.m) Actual Allowable Actual Allowable Horizontal 316.81 0.00 298.10 -23861 247.23 1101 SERVICE I-1 OK Transverse 360.21 0.00 745.34 -23861 196.36 1101 Horizontal 310.87 0.00 620.01 -23861 174.31 1101 SERVICE I-2 OK Transverse 319.12 0.00 632.53 -23861 179.76 1101

e) Checking Minimum Steel Rati	0		•	
Item	Notation	Unit	Value	Remark
Total Area of Reinforcement	A _{st}	mm2	36995	
Gross Area of Section	Ag	mm2	3801327	
Reinforcement Ratio	pst	%	0.97	
Minimum Reinforcement ratio	omin	%	0.40	OK
]	

(5) Calculation of Footing Concrete Stress that Pile connected 1) Vertical bearing stress of footing concrete $\sigma_{\rm cv}=P/(\pi D^2/4) <= \sigma_{\rm ca}$

$$\sigma_{cv} = P/(\pi D^2/4) \le \sigma_{ca}$$

Reaction force of pile	P=	1250140 kg	Load Combination: 7
Diameter of Pile	D=	220 cm	
Vertical bearing stress	$\sigma_{\rm cv}$	32.89 kg/cm ²	
Allowable bearing stress	$\sigma_{\rm ca}$ =0.5xf _c =	150.00 kg/cm ²	

$$\sigma_{cv} \iff \sigma_{ca} \longrightarrow OK$$

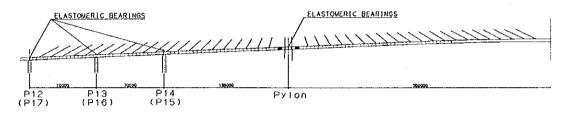
2) Vertical Punching Shear Stress $\tau_c = P / \{\pi h(D+h)\} \leq \tau_a$

Reaction force of pile	P=	1250140 kg	Load Combination: 7
Diameter of Pile	D≂	220 cm	
Depth from pile head to upper			
surface of pile cap	h=	150 cm	
Punching shear stress	$\tau_c =$	7.17 kg/cm^2	
Allowable punching shear stress	τ _a ==	9.00 kg/cm ²	

OK $\tau_c <= \tau_a ->$

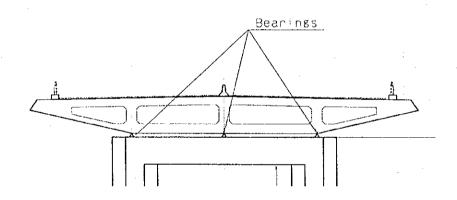
3) Horizontal Bearing stress $\sigma_{ch}=H/(Dl) \le \sigma_{ca}$

$$\sigma_{ch} \leftarrow \sigma_{ca} \rightarrow OK$$

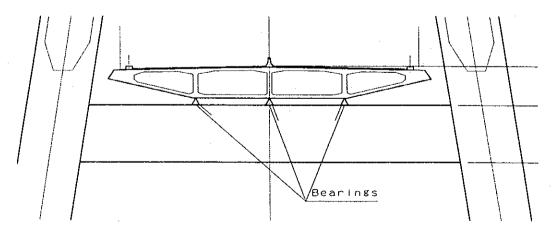

4) Horizontal Punching Shear Stress τ_c =H/{h' x (21 +D+2h')} <= τ_a

Horizontal force at pile head	H=	89610 kg	Load Combination: 7
Diameter of Pile	D=	220 cm	
Distance from side of pile to the			
nearest edge of pile cap	h'=	90 cm	
Embedded Length of Pile	I≔	200 cm	
Punching shear stress	$\tau_c =$	1.24 kg/cm^2	
Allowable punching shear stress	$\tau_a =$	9.00 kg/cm ²	

3.14 Design of Bearings


3.14.1 Design Condition

(1) Arrangement of Bearings



	Type of Bearings	Nos of Bearings
P12 (P17)	Elastomeric Bearings	3
P13 (P16)	Elastomeric Bearings	3
P14 (P15)	Elastomeric Bearings	3
Pylon (North, South)	Elastomeric Bearings	3

P12,P13,P14 (P15,P16,P17)

Pylon (Northern, Southern)

(2) Reaction and Displacement

1) Reaction (each Bearings)

Reaction (each bearings)	P12(P17)	P13(P16)	P14(P15)	Pylon
Virtical Load Dead Load (DC+DW+CR+SH)	2180			10144
Live Load (LL + IM)	3432	I	4110	3204
The state of the s	1258		1226	3308
Horizontal Load (EQ)	1	<u> </u>	<u> </u>	Unit: kN

2) Displacement

Displacement		P12(P17)	P13(P16)	P14(P15)	Pylon
	+15deg	62.7	47.85	-3.3	3.0
Temperature Effect	-15deg	-186.8	-170.6	-190.4	-126.6
T. th gualea	· · · · · · · · · · · · · · · · · · ·	400	400	400	400.0
Earthquake				Ţ	Jnit: mm

(3) Specification

Table Specification of Bearings

Table Specification of Search 3							
		Sign	Unit	P12(P17)	P13(P16)	P14(P15)	Pylon
Classificaion of Rubber		8-	1	NR	NR	NR	NR
		G	N/mm ²	0.78	0.78	0.78	1.18
Elastic Module		γu	%	500	500	500	400
Breaking Elongation		S		9.17	10	9.82	12.08
Shape Factor	1	E	N/mm²	433.6	515.6	497.4	137.2
Appearent Elastic Mod	ule	1	kN/mm		3.4	<u> </u>	8.27
Stiffeness of Bearings	Horizontal	KV	kN/mm		1		7970.00
	Virtical	IV A	KIA\ HIIII	1747.00			.,

(4) Dimension

Table Dimension of Bearings

IUDIC						*** *
	Sign	Unit	P12(P17)	P13(P16)	P14(P15)	Pylon
Width of Bearings						
Longitusinal	b	(mm)	1100	1200	1100	1450
Transverse	a	(mm)	1100	1200	1100	1450
Rubber		· · ·	<u></u>			
Thickness of each Rubber Layer	te	(mm)	30	30	28	30
Numbers of Rubber Layer	n	\	10	11	11	10
	Σte	(mm)	300	330	308	300
Total Thickness	ts	(mm)	4.5	4.5	4.5	4.5
Reinforce Parts	1 13	1(*****)			<u> </u>	

3.14.2 Calculation Result

Calculation Result at P12, P17 (each Bearings)

Calculation result at 112,11	······································	Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	1.2100	1.2100		
	Ordinaty	Ao	m ²	1.0730		×*-	
	Eathquake	Ae	m ²	0.7584	1.2100		
Strain	Effective	δ	mm	1.90			
	Ordinaty	δο	mm	2.14			
Maximum Compressive Stress	Ordinaty	omax.o	N/mm ²	3.09		≦	8.0
-	Earthquake	σmax.e	N/mm ²	2.96	1.91		12.0
Minimum Compressive Stress	Ordinaty	omin	N/mm ²	1.48			
Range of Compressive Stress	Ordinaty	⊿σ	N/mm ²	1.62		≦	5.0
Buckling Stress	Ordinaty	ocra	N/mm ²	10.49	****	≩	3.09
Rotation Strain	Ordinaty	δr	mm	1.83			
Compressive Strain	Ordinaty	δc	mm	1.90		ΛII	1.83
Local Shear Strain	Virtical	γс	%	55.5			
	Horizontal	γs	%	41.5		≦	<i>7</i> 0
	Rotation	γr	%	22.4			
	Total	γt	%	119.4		≦	333.3
Local Shear Strain (EQ)	Horizontal	γse	%	136.8	0.0	≦	150

Calculation Result at P13, P16 (each Bearings)

		Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	1.4400	1.4400		
	Ordinaty	Ao	m ²	1.3035		***	
	Eathquake	Ae	m ²	0.9482	1.4400		
Strain	Effective	δ	mm	4.36			
·	Ordinaty	δο		4.81			
Maximum Compressive Stress	Ordinaty	omax.o	N/mm ²	7.52		<u>N</u>	8.0
	Earthquake	omax.e	N/mm ²	8.29	5.63		12.0
Minimum Compressive Stress	Ordinaty	omin	N/mm ²	4.40			
Range of Compressive Stress	Ordinaty	⊿σ	N/mm ²	3.12		≦	5.0
Buckling Stress	Ordinaty	ocra	N/mm ²	11.35		≧	7.52
Rotation Strain	Ordinaty	δr	mm	1.00			
Compressive Strain	Ordinaty	δς	mm	4.36		∆lf	1.00
Local Shear Strain	Virtical	үс	%	123.9			
	Horizontal	γs	%	34.5		≦	70
	Rotation	γr	%	12.1			
	Total	γt	%	170.5		¥I	333.3
Local Shear Strain (EQ)	Horizontal	γse	%	124.2	0.0	≦	150

Calculation Result at P14, P15 (each Bearings)

		Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m ²	1.2100	1.2100		
	Ordinaty	Ao	m ²	1.7040	~~~~		
	Eathquake	Ae	m ²	0.7340	1,2100		
Strain	Effective	δ	mm	3.95	,		
	Ordinaty	δο	mm	4.46			
Maximum Compressive Stress	Ordinaty	omax.o	N/mm ²	7.20		≦	8.0
•	Earthquake	omax.e	N/mm ²	7.64	4.77		12.0
Minimum Compressive Stress	Ordinaty	omin	N/mm ²	2.74	0.00		
Range of Compressive Stress	Ordinaty	⊿o	N/mm ²	4.46	0.00	≦	5.0
Buckling Stress	Ordinaty	ocra	N/mm ²	10.94		≧	7.20
Rotation Strain	Ordinaty	δr	mm	0.92			
Compressive Strain	Ordinaty	δс	mm	3.95		≧	0.92
Local Shear Strain	Virtical	γс	%	120.9			
	Horizontal	γs	%	41.2		≦	70
	Rotation	γr	%	11.7			
	Total	γt	%	173.8		≦	333.3
Local Shear Strain (EQ)	Horizontal	γse	%	140.5	0.0	≦	150

Calculation Result at Northen Pylon, Southern Pylon (each Bearings)

Calculation Result at Northe	11 1 y 1011, 00u	· mictic i	, 1011 (-41	Tr Dettille			
		Sign	Unit	Longitudinal	Transverse	Allov	vable
Bearing Area	Effective	A	m²	2.1025	2.1025		
9	Ordinaty	Ao	m ²	1.9801			
	Eathquake	Ae	m ²	1.5127	2.1025		
Strain	Effective	δ	mm	1.34			
·	Ordinaty	δο	mm	1.43			
Maximum Compressive Stress	Ordinaty	omax.o	N/mm ²	5.40		≦	8.0
• •	Earthquake	omax.e	N/mm ²	6.91	5.12		12.0
Minimum Compressive Stress	Ordinaty	omin	N/mm ²	4.82			
Range of Compressive Stress	Ordinaty	⊿σ	N/mm ²	0.58		≨	5.0
Buckling Stress	Ordinaty	ocra	N/mm ²	27.57		≧	5.40
Rotation Strain	Ordinaty	δr	mm	1.21			
Compressive Strain	Ordinaty	δс	mm	1.34		≧	1.21
Local Shear Strain	Virtical	γc	%	48.8			
	Horizontal	γs	%	28.1		≦	70
	Rotation	уг	%	19.5		_	
	Total	γt	%	96.4		≦	266.7
Local Shear Strain (EQ)	Horizontal	γse	%	135.6	0.0	≦	150

Design of Expansion Joint 3.15

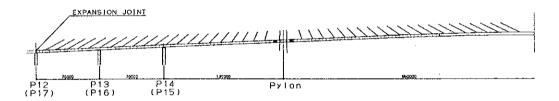
3.15.1 Design Conditions

Type of Expansion Joint

: Maurer Joint

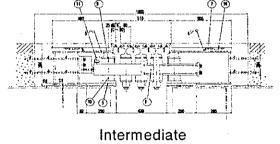
Displacement at P12 P17

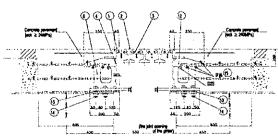
Cause		P	12	P17		
		PC I-Girder	Cable Stayed Bridge	Cable Stayed Bridge	PC I-Girder	
Creep (at the end)		3.66	-8.99	6.2	-7. 33	
Temperature Effect +15 deg		5.99	-124.86	125.55	. <u> </u>	
1	-15 deg	-5.99	124.86	-125.55	11.99	
Sub-Total	+15 deg	9.65	-133.85	131.75	-19.31	
	-15 deg	-2.33	115.87	-119.35	4.66	
Total	+15 deg	143	143.50		1.06	
	-15 deg	118	3.20	124.01		


Displace from P12 to P17: Plus

P17 to P12 : Minus

Expansion Spacing:


160 mm (P12)


160 mm (P17)

3.15.2 Detail of Expansion Joint

At the Support Beam

- 1. End Beam
- 2. Middle Beam
- 3. Sealing Rubber
- 4. Web
- 5. Lower Flange
- 6. Rib
- 7. Support Wire-net
- 8. Support Beam
- 9. Upper Bearing
- 10. Lower Bearing
- 11. Stopper
- 12. Anchor
- 13. Liner
- 14. HTB
- 15. Bars
- 16. Welded Wire-net