3.7.3 Check from Load and Resistance Factor Design

- (1) Definition of basis conditions
 - 1) Definition of Load Modifer

Load modifer is a factor, relating ductility, redundancy, and operational importance. Load modifer shall be taken as:

- a) For loads for which a maximum value of y_i is appropriate: $\eta_i = \eta_D \eta_R \eta_I \ge 0.95$
- b) For loads for which a minimum value of y_i is appropriate $\eta_i = 1/(\eta_D \eta_R \eta_I)$ ≤ 1.00

where:

 η_D = a factor relating to ductility

 η_R = a factor relating to redundancy

 η_I = a factor relating to operational importance

i) Determining a factor of Ductility The structural system of the main bridge was planned and designed to avoid the concentration of the load effects into the limited portion, and as indicated in AASHTO LRFD, the Energy-dissipating devices (elastic bearing, etc.) were also planned and designed. These measures enhance

the ductility of the structural system. With this reason, 1.00 was applied for this factor.

 $\eta_{\rm D} = 1.00$

ii) Determining a factor of redundancy

In AASHTO LRFD, the limitation of the above categories are not clearly described. Moreover, in the design of this project, the past records of the same types of bridges were reviewed and studied thoroughly. The structure system is not conventional, but the design procedures and results are confidential for the redundancy. 1.00 was applied for this factor.

 $\eta_R = 1.00$

iii) Determining a factor of operational importance

The importance of Main Bridge was already considered in other design conditions with reference to the Japanese standards. Moreover, commonly 1.00 is applied for the similar factor defined in Japanese standards even for the large span bridges. Considering the above reasons, 1.00 was applied for this factor.

 $\eta_1 = 1.00$

iv) Determination of Load Modifer

A factor of ductility, redundancy, and operational importance is defined in 1), 2), 3). Load modifer shall be calculated in Equation-1, result is shown below.

- For loads for which a maximum value of y_i is appropriate: $\eta_i = \eta_D \eta_R \eta_I$ = 1.00 *1.00 = 1.00
- For loads for which a minimum value of y_i is appropriate $\eta_i=1/(\eta_D\eta_R\eta_I)=1/(1.00 *1.00 *1.00)=1.00$

2) Load Combination

a) Load Factor

The total factored force effect shall be taken as:

$$Q=\Sigma \eta_i y_i Q_i$$

 η_i = Load Modifer (=1.00)

y_i= load factor

Q_i= force effects

b) Load Combination

Load combination and load factor shall be taken in 3.7.3.3.

(2) Summary of Load and Resistance Factor Design Method

1) Resistance Factors

Resistance Factor for strength limit state, according to LRFD Bridge Design Specifications (AASHTO, 1998), which is shown below.

For flexure and tension of prestressed concrete	: 1.00
For shear and torsion	: 0.90
For flexure of fully bonded Tendons	: 0.90
For Shear of fully bonded Tendons	: 0.90

2) Factored Flexural Resistance

The factored resistance M_r shall be taken as:

 $M_r = \phi M_n$

nominal resistance

 $M_n = A_{ps} f_{ps} (d_p - a/2) + A_s f_v (d_s - a/2) - A'_s f'_v (d'_s - a/2) + 0.85 f'_c (b - b_w) \beta_1 h_f (a/2 - h_f/2)$

 A_{ps} = area of prestressing steel (mm²)

 f_{ps} = average stress in prestressing steel at nominal bending resistance (MPa)

d_p= distance from extreme compression fiber to the centroid of prestressing tendons (mm)

 A_s = area of nonprestressed tension reinforcement (mm²)

f_v= specified yield strength of reinforcing bars (MPa)

d_s= distance from extreme compression fiber to the centroid of nonprestressed tensile reinforcement

A'_s= area of compression reinforcement (mm²)

f'y= specified yield strength of compression reinforcement (MPa)

d'_s= distance from extreme compression fiber to centroid of compression reinforcement (mm)

f'_c= specified compressive strength of concrete at 28 days, unless another age is specified (MPa)

b= width of the compression face of the member (mm)

b_w= web width or diameter of a circular section (mm)

 β_1 = stress block factor

h= compression flange depth of an I or T member (mm)

a= cβ₁, depth of the equivalent stress block

3) Factored Compressive Resistance

The factored axial resistance of reinforced concrete compressive components, symmetric about both principal axis, shall be taken as:

$$P_r = \phi P_n$$

nominal resistance

 $P_n = 0.80[0.85f_c(A_g-A_{st})+f_yA_{st}]$ (for members with tie reinforcement)

f'_c= specified compressive strength of concrete

 A_g = gross area of section (mm²)

A_{st}= total area of longitudinal reinforcement (mm²)

 $f_v = specified$ yield strength of reinforcing bars (MPa)

φ= resistance factor

4) Factored Tension Resistance

The factored resistance to uniform tension shall be taken as:

$$P_r = \phi P_n$$

nominal resistance of tension

$$P_n = f_y A_{st} + A_{ps} [f_{pe} + f_y]$$

A_{st}= total area of longitudinal mild steel reinforcement (mm²)

 A_{ps} = area of prestressing steel (mm²)

f_v= yield strength of mild steel longitudinal reinforcement (MPa)

f_{pe}= stress in prestressing steel due to prestress after losses (MPa)

5) Factored Shear Resistance

The factored resistance, V_r , shall be taken as:

$$V_r = \phi V_n$$

nominal resistance of shear, V_{rv} shall be determined as lesser of:

$$V_n = V_c + V_s + V_p$$

$$V_n=0.25f_cb_vd_v+V_p$$

$$V_c = 0.083 \beta f_c^{0.5} b_v d_v$$

 $V_s = A_v f_v d_v (\cot \theta + \cot \alpha) \sin \alpha / s$

b_v=effectice web width taken as the minimum web width (mm)

d_v=effective shear depth (mm)

s=spacing of stirrups (mm)

β=factor indication ability of diagonally cracked concrete to transmit tension

θ=angle of inclination of diagonal compressive stresses (deg)

 α =angle of inclination of transverse reinforcement to longitudinal axis (deg)

A_v=area of shear reinforcement within a distances (mm²)

(3) Load Combination							mr r l	100	cr [
Load Combination	DC	LL	WA	WS	WL	FR	TU	TG	SE		of These at	
	DW	IM					CR		-	EQ	CV	CL
,	EL	BR					SH					
		PL										/////////////////////////////////////
Strength I	γр	1.75	1.00	-	-	1.00	0.5/1.2		-	-		-
Strength II	γ _p	1.35	1.00	-	_	1.00	0.5/1.2		-		-	
Strength III	γр	-	1.00	1.40	-	1.00	0.5/1.2			-		-
Strength IV DC.DW	1.50	7	1.00	-		1.00	0,5/1.2				-	
Strength V	γ _P	1.35	1.00	0.40	1.00	1.00	0.5/1.2	-		-	-	
Extreme Event 1	γ _P	0.50	1.00	-	-	1.00	_		-	1.00	-	<u>-</u>
Extreme Event 2	γр	0.50	1.00	-		1.00	-		-	<u>-</u>	1.00	1.00
Service I	1.00	1.00	1.00	0.30	1.00	1.00	1.0/1.2	0.50	0.50			-
Service II	1.00	1.30	1.00	-		1.00	1.0/1.2	-	-	<u> </u>	-	
Service III	1.00	0.80	1.00		-	1.00	1.0/1.2	0.50	0.50	<u> -</u>		
Service IV ⁽²⁾	1.00	-	1.00	-	-	1.00	1.0/1.2	1.00	1.00	-	-	- "
Fatigue LL.IM & CE only	-	0.75		-	-	-			ļ		-	
Construction - Strength I ⁽³⁾	γр	1.50(1)	-		-	-	-		<u> </u>	ļ. <u>-</u>	-	-
Construction - Strength II ⁽³⁾	γ _P	-		1.25		-	-		-	ļ <u> </u> -	-	
Construction - Service (3)	γ _P	1.00 ⁽¹⁾		1.00	-		<u> </u>	-	<u> </u>] -	- (4)	
Construction-Extreme Event	γ,	1.00(1)		-						<u> </u>	1.00(4)	~

1) Loads from construction equipment.

2) For segmentally constructed bridges.

3) Refer to Notes on load factors for explanation of out of balance calculations. Also refer Cl 5.14.2.3.2 for additional requirements for segmental construction.

4) Accidental impact of precast segment (refer Cl 5.14.2.3.2).

Strength I Base load combination relating to the normal vehicular use of the bridge without wind.

Strength II Load combination relating to owner specified design vehicle

Strength III Load combination relating to ultimate wind loads

Strength IV Load combination relating to very high dead load to live load ratio.

Strength V Load combination relating to live loads and wind loads

Extreme Event I Load combination relating to earthquake

Extreme Event II Load combination relating to collisions by vessels and vehicles

Service I Load combination relating to normal operational use

Service II Load combination intended to control yielding of steel and slip of connections

- Only applicable to steel structures

Service III Load combination intended to control cracking in prestressed concrete structures Fatigue Load combination for elements susceptible to fatigue or fracture damage.

Load factors for Permanent Loads y p

Type of Load	Load	Factor
	Max	Min
DC: Component and attachments	1.25	0.90
DW: Wearing Surfaces and Utilities	1.50	0.65
EL : Locked-in Erection Stresses	1.00	1.00

3-37

(4) Force Effect

combination relating to the normal vehicular use of the bridge Live load Shear maximum	5	: 1.25	0.65 DW : 1.50 DW	EL : 1.00	11 1000	LL Mmax : 0.00 LL	Main :	0.00 Smax : 0.00 Smax :	Smin : 0.90	xarra	Nmin : 0.00	0.00 BR : 0.00 BR :	. 0.00	: 0.50 SH : 0.50 SH :	CR : 0.50	TU : 0.50	00:0	EQ	0.00 CV : 0.00 CV	M(KNm) N(KN) S(KN) M(KNm) N(KN) S(KN) M(KNm)	-248 5561 -728 -820	-26581 -5316 37383 -22589 -4	-39773 679 37511 -33781 996	-58055 -17348 -229349 -49983 -1	-69754 13076 -221029 -60156	-87645 -7261 -123030	-96609 -1628 -137235 -84417	-109344 -17457 -458300 -96817	-110879 20517 -454644 -98011	-141956 1820 118639	-149967 9129 115151 -130060	-171768 -22658 -181971 -144635	-173396 15976 -176544 -	7210 51007 604 7000 51004 1550
ne normal vehicular Live load Shear minimum	4	DC ::	DW	E	, , , , , , , , , , , , , , , , , , ,		Mmin	Smax :	Smin :	Nmax	Nmin :	BR :		: HS	 5	TU:	TG	 		N(KN) S(KN)					_		-64166 -3549		_					OREL MARK
ombination relating to the	ž	: 1.25	1.50	1.00	. ,	,,	Mmin : 0.00	Smax : 1.75	••	Nmax : 0.00	••	. 0000 :	0000 :	: 0.50	: 0.50	0:00	00:0	00:0	00:0	S(kN) M(kNm) N					1		4	_			11246 87807		.,	LCOCC TYCY
		DQ	ΜCI	F	1:		2	S)	(X)			BR	WS	HS	ď	17	75	EQ	C	N(KN)	202- 8	75 -26980						ŀ			2 -172270	Ш	•	. COO. 1
Strength I; Base load	Factor	0.00	: 0.65	1.00		Mmax : 0.00	Mmin : 1.75	••				: 0.00	: 0.00	0.50	: 0.50	: 0.50	00:0	0.00	00.00	S(kN) M(kNm	4457 -72	-4422 -2217	501 -22252	-17764 -242086	12841 -24162					995 2129	6127 237	L	13368 -177819	67867 . 0000
Strength Live load me		2	WC	<u> </u>]]	2	σ̈	. Ø	. 2	. Z	BR	MS	SH	స	TU	5T	四	S	N(KN)	3 412	0 -21649	3 -32331		5 47709	Ш			8 -73201	0 -123708	3 -129208	9 -120478	4 -121689	0/047
ent maximum	Factor	: 1.25	1.50	100		••	in : 0.00						00.00	: 0.50	: 0.50	: 0.50	00.00	: 0.00	0.00	N) (M(kNm)	510	-5776 118860	392 118783	-12731 -164975	8794 -164515				11069 -314208	1068 138130	8723 138373	-17710 -159079	15467 -158834	71037
FOICE FILECT		DC	ΑC	<u> </u>	: : :	LL Mmax	Mmin	Smax	Smin	Nmax	Nain	BR	WS	SH	CR	TO.	JG	OH OH	S	N(KN) S(KN)	81.8	-26980	-40428	-69215 -	-82807			_	-135515	-142463	-150556	-195283	-198468	00700
Mor (‡)																				Section		B	~	7 0	×	l o	R	1 E	×	F	×	7 5	æ	

200	ractor	⊋ ;	0.00	90:	0.00	0.00	000	000	000	1.35	1.75	0.00	0.50	0.50	0.50	0.00	0 0 0 0	90.0	M(kNm)	-255	27821	28051	-158992	-164073	5775K-	41252	251197	10761	10471	139309	-135809	-31106	00000
Live load Axial force min	4	••	••	••	Mmax :	Mmin :	Smax :	Smin :	Nmax :	Jmin :	••	••	••	••	••	••	••	••		7994	4145	802	-11116	8045	6867-	737	2000	# C	707	1700	11862	1297	
ive load A	(Z ;	Š	EL		~	S	w	4		BR	WS	SH	ర్	7	ည	g;	S	N(KN)	686-	-21538	-32471	47502	-57457	-72508	-80385	27.75	-931//	-118233	139003	140483	-47631	
1	ractor	1.25	05.1 :	1.00	0.00	00:0	0.00	00:0	: 1.35	0.00	: 1.75	0.00	0.50	0.50	. 0.50	0.00	0.00	90:0		-255	37810	38363	-225491	-218495	-122389			-440972	109500		1	9017	10.44
Live load Axial force max	•				Mmax	Mmin	Smax	Smin	Nmax	Nmin				_					S(kN)	_	-5292		_			_	_	_	\downarrow	_		_	
id moment minimum Live load Shear maximum Live load Shear minimum Live load	,	۲ ا	Ž Ž	且	11						BR	WS	SHS	ర	2	TG	G	<u>}</u>	N(KN)	-572		_				_	_			4	1	1	_
mum	Factor	0.90	. 0.65	1.00	00.00	0.00	00.0	1.35	0.00	00.00	: 1.75	00:0	0.50	. 0.50	0.50	00:0	0.00	0.00	M(kNm)	_		-	١					``		[`	_	7	
Live load Shear minimum					Mmax	Manin	Smax	Smin	Nmax	Nmin									S(KN)				_						_	_	7		_
Live load		<u>임</u>	ΔM	띮	급						BR BR	WS	HS.	S	Œ	ភ	Si Si	<u></u>	N(KN)	1,0		<u> </u>	_	Ļ.							1	'	
cimum	Factor	: 1.25	: 1.50	1.00	000	0.00	: 1.35	00:0	00.0	0.00	: 1.75	0000	0.20	0.50	0.50	00.00	0.00	0.00	M(kNm)	2 255		_	Ļ	<u>L'</u>		L -91287 -5713 -74161 -67602 -4328 -123103 -95305 -3457 -96762 -6390 -79132 -88112 -6878 -12289 R -101267 -307 -74040 -74709 -559 -122982 -111700 2345 -98501 -64763 -2858 -77150 -9724 -132954 L -129171 -12467 -335419 -73042 -16455 -360818 -110105 -17019 -444776 R -130908 12291 -73042 -16455 -360818 -111005 -17019 -449772 R -13011 1167 12457 -12937 -12463 -3343 -111005 -17019 -44972 R -130108 12297 -456950 -92479 7906 -11242 -17019 -1748 10950 R -143111 1167 12457 -1046 -113042 10345 42874 -11248 19974 R -151273							
Live load Shear maximum					Mmax	Mmin	Smax	Smin	Nmax	Nmin						-			S(KZ)	6 11132		_	ļ		L			7					
Live load		<u>2</u>	ΔM	표	rr r						BR	MS	SH	ő	7	ភ	G G	ک	NCKN		12		1 .		ļ			Į i	i!		_		
imimum	Factor	06.0	: 0.65	1.00	000	1.35	0.00	000	000	000	: 1.75	000	0.50	0.50	0.50	0000	0.00	0000 :	M(kNm)	255	-1171		 	+	╄	-	1		!	12		-161	7
Live load moment minimum					Mmax	Mmin	Smax	Smin	Nmax	Zmin									CIENI	4446		_	17	Ŀ		L	Ţ					12	
Live load		2	ΔM			•					R	ž	Ţ.	ť	j 2	70	<u> </u>	S	NALMI	٦.,	10	_	_	1	<u> </u>		L	<u> </u>	╄		H		
aximum	Factor	: 1.25	1.50	90	1.35	000	000	800	000	000			050	0.00	050	000	0.00	0000	MACAN		1	\perp	'	Ļ	↓.		Ė.	ļ.	<u> </u>		L.		
Live load moment maximum				٠	Mmax	Mrnin	Smax	Smin	Namax	Manin	MELLET			-					CONT			_	٢-		Ţ.		1			ļ			
Live load		2	30	; <u>=</u>] _	}					ă	Z Z	2 7	5 E	j F	<u> </u>	요	' ' '	MICHIN	18(KIN)	L -780 6499 -259 -778 8 1470 -20891 -518 8 1470 -20891 -518 8 1470 -20891 -518 -5292 -5292 -5292 -5292 -5292 -5282 -13775 -5282 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -13775 -5282 -5282 -13775 -5282 -5282 -13775 -5282 -5282 -13775 -5282 -5282 -1382 -5282 -5282 -5282 -5282												
																				топо	-		-		+	<u></u>	-	1	-	<u></u>	_	~	L

Strength III ; Load combination relating to ultimate wind loads

	Factor	06.0	: 0.65	: 1.00	00:0	00.0	0.00	0.00	0.00	0.00	0.00	1.40	0.50	0.50	0.50	00.0	00.0	0.00	M(kNm)	-728	24202	24125	-167124	-166664	-99437	-99788	-301344	-299107	44230	44473	-108244	-10266	-10183	-10146
					Mmax	Mmin	Smax	Smin	Nmax	Nmin							٠		S(kN)	4457	-3792	240	-11459	8431	-3943	-502	-10633	12077	1219	29/5	-11900	10130	439	466
Minimum) 2	ΜQ	펍]				٠		BR	WS	SH	ර	JT	D	ପ୍ର	٥ ک	N(KN)	412	-17997	-26909	-39144	47206	-59354	-65638	-74588	12/5/-	-96812	-101740	-115733	-117197	-33866	-33865
_	Factor	1.25	1.50	1.00	0.00	0.00	0000	0.00	0.00	0.00	0.00	3.40	0.50	0.50	0.50	0000	00.0	00.00	M(RNm)	-728	39868	39791	-211079	-210618	-120409	-120760	-399553	-397316	78583	78826	-164371	-164126	13335	13372
					Mnax	Mmin	Smax	Smin	Nmax	Nmin									S(KN)	6510	-5191	918	-15901	11632	6095-	-452	-15551	16461	1503	8222	-18158	15684	788	831
Maximum		2	ΜQ	田	1						BR	WS	HS	ű	7	ű	<u>G</u>	75	(NAN)	-518	-27034	40417	-59174	-71127	96968-	-99034	-112683	-114216	-145314	-152558	-172452	-174601	-53601	-53600
																					7	ĸ	ſ	~	7	R	7	×	1	<u>~</u>	-	~	_	~
																			Corrion	4	E E	· .	U	٠	Ω		(II)		14.	<u>. </u>	S		I	•

Strength IV

; Load combination relating to very high dead load to live load ratio

Mmax Mmin Smax Smin Nmax Nmax

SH SH DI

도 타 타 장 러 크

EQ : 0.00	CV : 0.00	N(kN) S(kN) M(kNm)	-556 7704 -728	-31335 -6311 42840	46879 760 42763	-68558 -19340 -267794	-82407 13865 -267333	-103930 /-6515 -155754	-114817 -524 -156106	-130657 -18737 -486855	-132427 19432 -4 84618	168769 1793 76190	-177273 9671 76433	-200813 -20885 -189944	-203103 17808 -189699	-60434 925 -6957	-60433 973 -6920
		Section	A	В	ps.	C	M.	D L	Υ.	E	~	F	×	J U	2	7 #	M

	ន្ន	Factor	0.90	0.65	1.00	0.00	0.00	90.00	0.00	0.00	1.35	0.00	0.40	0.50	0.50	0.50	0.00	0.00	0.00	M(kNm)	-728	27963	277.20	-158673	-164227	-95265	277788	250004	10000	1250	130001	100601-	20005	30957	
	Live load Axial force min	ii.	••	••	••	Mmax :	Mmin :	Smax :	Smin :	Nmax ;	: rimN		••	••	••	**	••	••		S(kN)	8005	-4139	823	-11110	8042	-2994	/2/	1066-	8/45	7901	0770	11900	1207	1325	1
	Live load A		ပ္	ΔW	EL	_		Ψ,	•,			BR	WS	SH	స	2	70	ద	S	N(KN)	-727	-21539	-32211	47506	-57196		-20125	┙	-92916	-11823/	120000	1,0002	-140370		
		Factor	: 1.25	: 1.50	1.00	0.00	0.00	00.00	00.00	1.35	00:0	00:0	. 0.40	0.50	0.50	0.50	0000	: 0.00	0.00	M(kNm)	-728	'n	╀-	-225173	L		_	_		\perp	106848	4	-173705		
	Live load Axial force max					Mmax	Mmin	Smax	Smin	Nmax	Nmin									S(kN)	57.78	-5287		-17017	12746	_	-1359	-].	'	22	278	
Ioaus	Live load		2	ΩM	出	::						BR	WS	HS	წ	7	TG	EO	5	N(KN)	3 -310	-2	L		2 -70068	-	4	4		ļ	4	-	-	51831	
Strength V ; Load combination relating to live loads and wind loads	imum	Factor	06.0	: 0.65	1.00	0.00	0.00	00:0	: 1.35	0000	0.00	00:0	: 0.40	0.50	0.50	0.50	0.00	0.00	0000 :	M(kNm)			\perp	7 -212604	8 -131125		4	1	'7	_	4	_	7	3546	
loads ar	Live load Shear minimum					Mmax	Mmin	Smax	Smin	Nmax	Nmin									S(KN)		Ľ		7 -17127	6 6238			7	8 7916	_					3 -933
g to nve	Live load		2	ΜQ	EL	금	· ·					BR	WS	ES	ర	DI	T _C	G.	ζŞ	M(kNm) N(kN)	-386	,		5 -38737	_		Į		9 -92218						5 -38393
relatin	ximum	Factor	: 1.25	: 1.50	. 1.00	0.00	00:0	: 1.35	000	00:0	0.00	000	0.40	0.50	0.50	0.50	0.00	000	0.00	M(kNm)		Ĩ		Ľ	_			335516	8 457519				3		31 21345
ibinatio	I ive load Shear maximum					Mmax	Menin	Smax	Smin	Nmax	Z									SCRN								38 -12465	31 22008			15 -17699	7		14 3581
oad con	live load		2	MO	ā	<u> </u>						#	SM	7.	: č	111	Ľ) C	6 Y	NAN	12	ſ	_	1	Ţ	L	_	75 -129338	38 -112781	52 -143559	95 -167765	216161- 20	-		42 -60914
HV	minimim	Factor	0.90	0.65	00 1	0.00	1.35	000	000	900	000		. 040		0.50	0.50	000		000	MirNm	٦.			Ľ		33 -123145	↓_	56 -373275	45 -371038	46 11752	44 11995	62 -162105			925 -54642
Streng	I ive load moment minimum					Mmax	Mmin	Smax	Smin	Nmox	Nimin	1470								COLNI		1	1	16373	1	24 4333		98 -14556	77 16645		30 6044	93 -15262	12		_
	I ive loa		<u></u>	. A	į.	} <u>_</u>	<u>;</u>					aa —	ź ż	2 7	<u> </u>	įĘ	<u> </u>	2 0	3 S	MIGANIA	٦	ľ	4	1	1	 		_	-73777	Ļ.	Ļ.	89 -119393	╄-		89 -44204
	mer win ou	Factor	125	05.	00 -	1.25	900	900	900			8.5	900	0.40	3.0	0.00	800	88.6	00:0	Machine		_	12 100805	_	-		<u></u>	Ļ.	.	ļ.,	8608 124762	13 -160289	\vdash	_	78 53889
	minimis out out out of the second	C DIODIELIC				Manne	Mania	S-22	Curic	rume Verific	Millax	USTERNI .		•					· .	27.77		_	<u>'</u>	1	CVVO - 25	<u> </u>		-1	Ļ	15 1167		64 -17813			
	1 tags 1	Live loa		3 2	5 5	급 <u>:</u>	<u></u>	-					Y G	٠ ۲	بر در	įį	2 <u>{</u>	ع (د 	3 		Z(KK)	7	+	+	-06920	+	,	+	t	+	+	╁	+		-56690
		-				•															Section	Α	ם ה	-	ء اد ر	4 -		Ti ha	1	i L		0		T	<u>i</u>

ş	Factor	0.90	0.65	1.00	0.00	0.00	0.00	0.00	0.00	0.50	0.50	0.00	0.00	000	0.00	0.00	1.00	0.0		M(KIVIII)	135	15394	15467	-136191	-138283	-107749	-103693	-354211	-354314	73871	74000	-116336	-115182	-15798	-15663
Live load Axial force min	14	••	••	••	Mmax :	Mmin :	Smax :	Smin :	Nmax :	Nmin :	••	••	••	••	••			••			0505	-3666	1215	-10507	6852	4498	-1228	-14234	14468	2151	2619	-13883	9458	1158	1180
Live load A		2	MQ	덞							BR	WS	æ	ጸ		ը	සූ	S	1		6021	-177%	-28499	-45850	-48238	-64244	-70719	-81752	-76622	-98598	-103132	-121458	-107244	-31734	-31806
max	Factor	: 1.25	: 1.50	1.00	0.00	00:0	00:0	0.00	0.50	00.00	050 :	00.0	0.00	00:0	0000	0000:	1.00	00:0	1, 6,7 3,1	K K					-186115	-131015						-166101	7		14004
L) Live load Axial force max					Mmax	Mmin	Smax	Smin	Nmax	Nain									34.00					'				_	21245			'		-	1236
(L) Live load		D D	DW	딥	LL			-			BR	WS	SH	S.	1	TG	S.	S					_	_	_	_	-	4	-			_	_		45738
Extreme event I; Load combination relating to Earthquake(L)	Factor	06'0 :	: 0.65	: 1.00	0.00	0000 :	00.00	0.50	0.00	0.00	0.20	00.00	0000 :	00.00	0.00	0000	: 1.00	0.00	14.03.4	Z Z				_			_	_	°?		-	_		_	0 -2824
relating to Earthqu Live load Shear minimum					Млах	Mmin	Smax	Smin	Nmax	Nmin									- 1	2		304406		7		_		`		3 1345		-1			340
n relatir		<u>გ</u>	DW	EL	1						BR	WS	HS.	Ŋ	<u>5</u>	ე	8	S	\neg	2	\Box			_		_		_					. 1	·	15 -28336
mbinatic	Factor	: 1.25	: 1.50	: 1.00	0.00	: 0.00	: 0.50	: 0.00	••	00.0	: 0.50	: 0.00	00.00	: 0.00	: 0.00	0.00	: 1.00	0.00	1.5.17.5	M (KL				_		_		_		3157 130812	Ш		15969 -176629		2242 18515
ent I; Load combina Live load Shear maximum			•		Mmax	Mmin	Smax	Smin	Nmax	Nmin		10	_	.,						<u> </u>		-2549944										•			49103 22
event I;		_	5 DW			-					. BR	0 WS	HS 0	CR				·		Z Z		750 -25								73637 -138515	73772 -151491	<u> </u>	<u> </u>	-24570 -49	
Extreme	Factor	: 0.90	: 0.65	: 1.00		0.50 : r	0.00	00.0	00.0 : ×	0.00 : 1	0.50	: 0.00	00:0	0.00	00.0	0.00	: 1.00	0.00		M(K)		-3718		-12438 -160738		Щ.		-15933 -395687	17394 -395552	2149 73	6200 73	-14933 -124893	Ļ.		1028 -24
Extreme (Live load moment minimum		Q	DW	H	LL Mmax	Mmin	Smax	Smin	Nmax	Nmin	BR	WS	. HS	S. S.	TC	70	EQ	' > .		S(Kh			-28084	-	-44681		-68617 -		<u> </u>	-98348	-102888	-114556 -1	-99945	-30415	-30488
	Γ					00.00	0.00	0.00	0.00	0.00										M(kNm) N(kN)		52236 -1	52371 -2	<u> </u>	-169968	<u> </u>		-443510 -7	443375 -6	137032	137167 -10	-159560 -11	-159385	30434	305693
tent maxim	Factor				Mmax : 0							0 .	0 :	0 .	0 .			0 :				-5104	1526	-14173 -1	9386 -1	-6557 -1	-1581 -1	-18257 -4	18546 4	2373 1	8699	-19818 -1	14306 -1	1391	1426
I ive load moment maximum		Д	MC	E			Smax	Smin	Nmax	Nmin	BR	WS	SH	CR	i F	7.G	<u> </u>		•	N(KN) S(KN)	6032	-25499	40047	-65652 -	-71796	-90304	-99481	-119603	-114834	-138350	-145287	-176442	-162885	47471	-47538
vi II	i																					-1	R	-	М	,	N.		×	1	24	\vdash	×	-	~
																				Section	Ą	В		υ		۵	-	n	•	1	*	U		I	_

DC	DC DW DW EL LL N		I ive load moment minimum	ive load Sh	Live load Shear maximum	-	Live load Shear minimum	hear minim		Live load Axial force max	cal force m		Ive load A	Live load Axial force min	1
Mmax : 0.1. Mmin : 0.0 Smax : 0.0 Smin : 0.0 Nmin : 0.0 Nmin : 0.0 Nmin : 0.0 : 0.0		1			1	×			Factor		1	Factor	,		Factor
Mmax : 0.5 Mmin : 0.6 Smax : 0.6 Smin : 0.6 Smin : 0.6 Nmin : 0.6 Nmin : 0.6 :		••	0.00	2	••	1.25) D		0.60	გ.	••	1.25	۲ ا	••	2 t
Mmax : 0.5 Mmin : 0.6 Smax : 0.5 Smin : 0.6 Nmin : 0.6 Nmin : 0.6 Nmin : 0.6 Smin : 0.6 Nmin : 0.6 Nmin : 0.6 Nmin : 0.6 Smin :		••	0.65	DΨ	••	1.50	ΔW		0.65	ΩM	••	1.50	ΣŃ	••	29.5
Mmax : 0.0 Mmin : 0.0 Smax : 0.0 Smin : 0.0 Nmin : 0.0 Nmin : 0.0 : 0.0			1.00	딥	••	1.00	EL	•	1.00	日	••	1.00		••	8:
Mmin : 0.0 Smax : 0.0 Smax : 0.0 Nmax : 0.0 Nmin : 0.0 0.0		Mmax	0.00	LL. N	Mmax :	0.00	1,	Mmax :	0.00		Mmax :	9.0	1	Мтах :	000
Sumax : 0.0 Sumin : 0.0 Nimax : 0.0 Nimin : 0.0	. 0, 0	Menin	0.50	2	Mmin :	0.00		Mmin :	0.00	Ζ,	Mmin :	0.00	_	Mmin :	8
Souin		Smax	0.00	i un	Smax :	0.50		Smax	0.00	us.	Smax :	0.00	Ψ)	Smax :	 8
Nmax 0.0 Nmin 0.0 Nmi		Smin .	800	i or	Smin	0.00		Smin	0.50	os	Smin :	0.00	υ,	Smin :	0.00
Nmin 0.0 Nmi		Nmax.	900	. ~	Nmax :	0.00		Nmax	0.00	_	Nmax :	0.50	_	Nmax :	0.0
S(CN) M(kd		Number .	8		Z. cimZ	0.00		Nmin	0.00		Nmin :	0.00	_	Nmin :	0.50
S(kN) M(k)	Q EX		6	RR		0.50	BR		0.50	BR	••	0.50	BR	••	0.50
S (KN) M(k) 2458 7 2458	אַנְיַנ	•	8	2/1		000	WS		0.00	WS		0.00	WS		0.00
S(KN) M(k)	V	•	3 5	ב ע	•	2	Ţ,		0.00	X.	••	0.00	SH	••	0.00
S(KN) M(k) 7580	5 6	•	3 5	5 6		900	č		0.00	ä		0.00	ŭ	••	0.00
S(KN) M(k) 7680	ξĒ	• •	0.00	É	•	80.0	J.		0.00	2		0.00	5		0.00
S(KN) M(kl 7680	2 }		9 9) (900	Ľ		000	ភ		000	55	•	0.00
S(kN) M(kl 7680 – 5458 7	2 6		8.6	5 5		90.1	9		1.00	H		1.00	සූ	••	1.00
S(kN) M(kl 7680	.		3 5	5	•	900	ر ا		900	ر د		000	S	••	0.00
S(kN) M(kl 7680 -5458 7	<u>ر</u>	•	3	5	•	3	,	٠							
7680	NCKN	S(KN)	M(kNm)	N(KN) S	S(kN)	M(kNm)	N(KN)	S(kN)	M(kNm)	N(kN)	1				M(kNm)
-5458 7	5503	202	-135	-6662	9396	-135	-6493	4878	-135	-6531	7409	-135	-6619	6941	-135
0000	1	4072	21485	-28521	4762	65863	-20572	-4760	38099	-28407	-5326	49692	-20812	970 7	36129
1		-244	21350	-42473	1144	57228	-27356	-1150	46464	40677	291	49616	-29316	-103	35932
-16526 -2	L	-14791	-208080	-59145	-16507	-218157	-35971	-15089	-203507	-55832	-17431	-235837	-39218	0000	200201-
11334		10204	-208215	-73935	14141	-247984	-53293	8132	-173635	-73466	7557	-233/2/	-52836	-2132	-80021
-4191	_	-2628	-90347	-92384	0/65-	06/66-	ocara-	225	73507	90000	156	-107380	-71868	1665	-76235
1312	\perp	1187	-90482	-1044%	1,77	707600	74130	11522	-231258	-111851	-14828	-324189	-81062	-9119	-194360
-13142	559 -73937	-10818	-235836	110455	13020	320836	-87801	5049	-185589	-119233	12133	-323918	09088-	5356	-194733
753	4	7070	1/2027	150461	757	31581	108070	-1050	-11835	-150151	193	32232	-110544	-244	-25360
150296 -23 37	37801 -110294	2015	25779	164472	8325	23219	-108572	4436	-3743	-158099	7720	31031	-116113	5099	-25501
16410	4	-11525	-120411	-180933	-17783	-176569	-117599	-10110	-100322	-173529	-18217	-172186	-125263	-11565	-105521
16546	Ļ	11979	-120614	-198458	18209	-172524	-141341	Ē	-100637	-190034	16991	-160340	-150483	11698	-1110//
588	+-	204	-26615	-61616	1403	16381	-40879		-5051	-58263	400	11825	44332	355	17,043
869	L	240	-26750	-61551	1454	16200	-40784	-449	-5139	-58186	448	11689	4224	765	0/4/1-

uju	Factor	0.90	0.65	1.00	0.00	0.00	000	0.00	0.00	0.50	0.50	0.00	0.00	0.00	0.00	0.00	0.00	1.00	M(kNm)	0	25588	25527	-159573	-161800	-94066	-90145	-272827	-273060	23716	23710	-111209	-109519	-16935	-16935
Live load Axial force min	ш	••	••	,,	Mmax :	Mmin :	Smax :	Smin :	Nmax :	Nmin :	••	••	••	••	**	••	••	••	S(kN)	2862	-3843	563	-11665	138	-3312	241	-11599	6086	948	5651	-13351	10492	759	803
Live load A		2	DW	EL	3						BR	XS.	SH	წ	TU	<u>1</u>	압	გ 	N(KN)	-298	-19321	-28941	-42593	-51008	-64663	-71448	-81644	-82572	-104929	-109990	-123677	-130928		-35713
max	Factor	: 1.25	: 1.50	1.00	00'0 :	00.00	0.00	00.0	0.50	00.00	0.50	0.00	0.00	00.00	00:0	0.00	0.00	1.00	M(KNm)						-117332		_	T	_		_]	7	_	12732
Live load Axial force max					Mmax	Mmin	Smax	Smin	Nmax	Nmin						-			S(kN)		-5149		-16236		_	_						12		200
Live load		Ճ	ΜQ	ם	님						BR	X.	SH	S.	2	ភ	<u>a</u>	S	N(KN)							-+	4	_	_					7007
Live load Shear maximum Live load Shear minimum Live los	Factor	: 0.90	: 0.65	: 1.00	00'0	0000:	00.00	0.50	0.00	00.0	0.50	00.0	0.00	00.0	. 0.00	00.00	0.00	1.00	M(kNm)	_	3 27558		_		\dashv	_	4	'7		_		<u>'</u>		7007
Live load Shear minimum					Mmax	Mmin	Smax	Smin	Nmax	Nmin				-					S(kN)		2 4583		7		_			<u> </u>		_		9		00
Live load		2	ΔW	口	1						BR	WS	HS	చ	2	ŢĠ	œ G	S	N(kN)	0 -172	2 -19082				_			_					9 -32263	L
ximum	Factor	: 1.25	: 1.50	1.00	0000	0.00	0.50	0.00	0.00	0000 :	. 0.50	00.00	00.00	00:0	0.00	0.00	0.00	1.00	M(kNm)		4 55322			1		_	4			4		-1		0,000
Live load Shear maximum					Mmax	Mmin	Smax	Smin	Nmax	Nmin									S(kN)	11 8440	1 4584	_	_		1	_	`	_			Ľ			
~!	-	ŭ	ΔM	급	日						BR	WS	HS.	ర	17	72	S S	S	N(RN)		15 -27031	15 -42098	0 -62520			_	_		144846		9 -179347		L.	
moment minimum	Factor	06'0	: 0.65	.: 1.00	00.00	0.50	0000	00:0	00:00	00:0	: 0.50	00.00	0.00	0.00	00:0	0.00	00.00	: 1.00	M(kNm)	1	34 10945	422 10945	35 -184120	Ľ	\Box		_	``Y	946 23482		11 -126129	<u> </u>	608 -25707	1
Live load moment minimum					Mmax	Mmin	Smax	Smin	Nmax	Nmin									SCKN)		53 -3894	ļ	28 -13595	52 9203	Ĺ		_	34 12735	_	L.	75 -13311	30 10773		
Live loa		2	ΩM	EL	11						BR	WS	HS	Ű	7	TG	없	ò	N(KN)	0	31 -19053	31 -28527	35 -39528	35 47452	Ļ.			21 -75484	77 -104679	_	96 -116775	23 -116330	34396	
maximum	Factor	: 1.25	1.50	: 1.00	0.50	00:0	00:0	0000	00:0	00:0	0.50	00:0	0.00	000	0.00	0.00	00:0	: 1.00	MikNm		30 62431	875 62431	30 -193485	33 -193485	70 -99470	11 -99470	22 -362121	37 -362121	77898 07	7/898 94	96/091- 96	153723		1
Live load moment maximum					Mmax	Mmin	Smax	Smin	Nmax	Nain									S(KN)	Ι.	Ľ	L	5 -15330	56 10333	22 -5370	111- 60	35 -15622	13887	1170	15 8156	52 -18196	36 15340	33 992	
Live loa		ပ္ထ	DΨ	П	<u> </u>						38	MS	7. T.	č	j P	13	<u> </u>	75	(NGR)	-287	-2	-	-62395	-74566	-90722	-100209	-119495	-120784	-144681	-152145	-	 	-51453	
																			notion	V	-	<u> </u>	C	~	7 0	~	E	~	F	æ	C	~	7	-

Ę	Factor	0.00	0.65	1.00	80.0	90.0	0.0	0.00	0.00	0.50	0.50	0.00	00:0	0.00	0.00	0.00	0.00	99:	M(RNm)	o	25934	25873	-160151	-162378	-95/0 4	58/69-	-2/5/49	/866/7-	24/34	20.45	-104280	-116733	70/91-	16702 }
Live load Axial force min	1.	-•	••	••	Mmax :	Mmin :	Smax :	Smin :	Nmax :	Nair :	••	••	••	••	••	••		••	SORN	34	.38£3	549	-11703	7853	-3318	C61	-11/53	10015	826	5643	-13187	10663	753	760
Live load A		ပ္ထ	MQ	日	1						BR	ws	SH	S	2	ဋ	잂	S	NGN	ş	-19279	L	42475	-50868	-64419	-71139	-81168	-82110	-104212	-109254	-123043		_	10246
max	Factor	: 1.25	: 1.50	1.00	0.00	0.00	0.00	0000	0.50	0.00	0.50	0000	0.00	00.0	0.00	00:0	00.00	: 1.00	Marvim		39498	39556	-212455		_	_	4	A		4	_	7		13000
Live load Axial force max					Mmax	Mmin	Smax	Smin	Nmax	Nmin							_		SCENI		ļ.		-16274			\perp				_		27		1100
Live load		DQ DQ	ΔW	EF	1						8K	WS	SH	ర	TO	<u>T</u>	g	ò	NICEND	210	7	ļ.,	-59089					4	4				_	Chest
mum un	Factor	0.30	: 0.65	1.00	0.00	0.00	0.00	0:20	0.00	0.00	0.50	00:0	0.00	0.00	0000	0.00	0.00	1.00	MAChim	-	27974	1	-180125			4	4	``	_	_	_	-1	_	0.00
Live load Shear minimum					Mmax	Mmin	Smax	Smin	NEBX	Nmin									CALAD		⊥'		3 -13931					<u> </u>	_	_	9 -11732	1786 0		
Live load		DC	ΜQ	且	ב						BR	MS	SH	ő	11		요	Ċ,	NIG. NI	IN (KIN)	-	1_		Ļ							8 -115379	1 -126240		
Live load Shear maximum Live load Shear minimum Live loa	Factor	: 1.25	: 1.50	1:00	0.00	000	0.50	0.00	0.00	00:0	0.50	0000	00.0	000	00.0	000	000	1.00	11.00.00	IMI(KINER)	4 55668	\perp	7	ļ.,	لــــا	Ĺ	_	4.		9 73508	5 -175328	4 -178181	1 17522	
Live load Shear maximum		٠			Mmax	Mmin	Smax	Smin	Nmax	Nmin		•						٠	44.00	J(KI)	1 0402	_		<u> </u>	d.		0 -15775	5 17688	9 1964	3 8869	3 -19405	6 17174	3 1801	-
		2	DΨ	百	1	٠.					BR	SM	. E	<u> </u>	; <u>F</u>	<u> </u>	. G	′∂		Ž.	0.020	1	\perp	<u> </u>	ļ.,	_	6 -119080	6 -113705	0 -144129	0 -157613	0 -178713	1 -183356	4 -57633	
moment minimum	Factor	06:0	: 0.65	1.00	000	0.50	00:0	000	000	000	0.50	000	800	000	000		200	1.00	2 2 2 2	M(KNm	30.11	1		┺	4 -104030	L	3 -317226	۳	6 24560	9 24560	7 -119200	Ł	2 -25474	4
Live load moment minimum					Mmax	Manin	Smax	Smin	Nmax	Zmin										S S	2 4693	_	٦	1	Ľ	_	3 -13453	12	2 956	0 5649	1 -13147		0 602	
Live load		2	MO	Ļ	1							y y	2	3 6	į į	2 E	2 2	S		X Z	_	7 28458	4	1			8 -74043	<u> </u> _	5 -103962	5 -109010	7 -116141	L	L	
naximum	Factor	1.25	92.	001	0.50	000	0.00	000	000	900	0.50	000	2000		9000	200	200	. 1.00		M(kNm)	(,	7//70		+	-	80166- 2	.365048	<u>L</u> .	87955	_	F	-	╁	
Live load moment maximum					Mmax	Mmin	Smax	Smin	Nmax	Nain										쏤		0975- 6	-			L	7	ļ.				ļ.,		
Live load		Č	3	ŭ	3 =	}					d d d	NO.	2 2	5 8	į į	 2 {	2 6	58		Z(KZ)	-287	68697-	7707	-74476	-90478	00666-	-119019	-120322	-143964	-151409	-178028	-182440	-56087	
																				Section	V	- 20	٠ ار	عام ر		L	ш	1_	i L	1_	: 	1.	ı.	

(5) Flexural Resistance

Table Calculation of flexure resistance

Secti	on	A	В	С	D	Е	F	G	H
A_{ps}	(mm ²)	18076	55168	117946	64862	151 2 36	97972	91314	31392
A'ps	(mm²)								
f_{ps}	(MPa)	1847	1783	1778	1770	1756	1727	1796	1815
f_{pu}	(MPa)	1860	1860	1860	1860	1860	1860	1860	1860
f_{py}	(MPa)	1570	1570	1570	1570	1570	1570	1570	1570
k		0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.392
A_s	(mm^2)	0	0	0	0	0	0	0	0
f_y	(MPa)	390	390	390	390	390	390	390	390
d_s	(mm)	0	0	0	0	0	. 0	0	0
A's	(mm^2)	. 0	0	0	0	0	0	0	0
f'y_	(MPa)	390	390	390	390	390	390	390	390
d's	(mm)	0	0	0	0	0	0	0	0
f'c	(MPa)	50	50	50	50	50	50	50	50
b	(mm)	25000	12400	25000	12400	25000	12400	25000	12400
b_w	(mm)	1350	900	1350	900	1350	900	2300	900
β_1		0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.69
С	(mm)	. 46	270	286	316	362	465	224	157
h_f	(mm)	350	300	250	300	250	300	700	300
a		31.422	186.615	197.395	217.816	250.006	321.051	154.356	108.126
Mn	kNm	45945	235916	509497	276094	644008	405358	278415	132504
φ	KINIII	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Ψ		0.55	0.50	0.55	0.93	0.55	0.50	0.50	0.93
Q		728	118860	270929	156106	489417	138373	219188	67863
η		1.00	1.00	1.00		1.00	1.00	L	1.00
		Strength I	Strength I	Strength I	Strength IV	Extreme I	Strength I	Strength I	
Mr	kNm	43648	224120	484022		611808	385090		125879
Q _M	kNm	728	118860	270929	1	489417	138373	219188	67863
<u></u>		OK	OK	OK	OK	OK	OK	OK	OK

(6) Axial Resistance

Table Calculation of axial resistance

Tabh		Caracion	I uniui i co						
Secti	on	A	В	C	D	E	F	G	Н
f'c	(MPa)	50	50	50	50	50	50	50	50
A_{g}	(mm²)	22140100	19763700	23443500	19746000	23355100	19604600	33005600	19866500
A _{st}	(mm²)	37890.8	91154.8	124444.8	97812.8	157734.8	151076.8	97812.8	54423.6
f _y	(MPa)	•		<u>.</u>	-	-	<u> </u>	-	
P_n	kN	751475	668867	792848	668038	788710	661420	1118865	673611
ф		0.9	0.9	0.9	0.9	0.9	0.9	0.9	0.9
Q	kN	6662	46879	82807	115115	135515	177273	203103	63081
η		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
		Extreme I	Strength IV	Strength IV	Strength I	Strength I	Strength I	Strength IV	Strength I
P _r	kN	676328	601980	713563	601234	709839	595278	1006979	606250
Q_N	kN	6662	46879	82807	115115	135515	177273	203103	63081
		OK	OK	OK	OK	OK	OK	OK	OK

(7) Shear Resistance

Table Calculation of shear resistance

Secti		A	B B	С	D	E	F	G	Н
$V_{\rm c}$	(N)	754726	503151	754726	503151	754726	503151	1285829	503151
$\frac{v_c}{V_s}$	(N)	22248675				22248675			22248675
$\frac{v_s}{V_p}$	(N)	0	0	0	0	0	0	0	0
f_c	(Mpa)	50	50	50	50	50	50	50	50
		390	390	390	390	390	390	390	390
f _y	(Mpa)	2700	2700	2700	2700	2700	2700	2700	2700
h 1	(mm)		900	1350	900	1350	900	2300	900
b _v	(mm)	1350						1944	
d_v	(mm)	1944	1944	1944	1944	1944	1944	1944	1944
S	(mm)	125	125	125	125 4.9	125 4.9	125 4.9	4.9	125 4.9
<u>β</u>	(dog)	4.9 27.2	4.9 27.2	4.9 27.2	27.2	27.2	27.2	27.2	27.2
0 .	(deg) (deg)	90	90	90	90	90	90	90	90
$\frac{\alpha}{A_{v}}$		1885	1885	1885	1885	1885	1885	1885	1885
	(mm²)		6832	19340	7261	23652	11246	22658	4396
V_{u}	(N)	12516		0.0082	0.0046	0.0100	0.0071	0.0056	0.0028
V	fc	0.0053 0.0007	0.0043 0.0006	0.0082	0.0046	0.0100	0.0071	0.0008	0.0004
	TC .	-1.9E-06	1.15E-04	4.95E-06					
$\frac{\varepsilon_{x}}{E_{s}}$		200000	200000	200000	200000	200000	200000	200000	200000
		196000	196000	196000	196000	196000	196000	196000	
E _p			<u> </u>	33900	33900	33900	33900	33900	33900
$\frac{E_c}{c}$		33900	33900		.			8.38	1.17
fpe		1.23	1.15	14.4	6.5 -3.01	18.9 -3.23	9.3 -3.1	-1.87	
fpc		0	-4.01	-2.57					
fpo	· · · - · · · · · · · · · · · · · · · ·	1.23	-22.03	-0.46	-10.90	0.23	-8.62	-2.43	-13.90
17	(kN)	754726	503151	754726	503151	754726	503151	1285829	503151
$\frac{V_n}{V_n}$	(KIV)	0.9	1	<u></u>	0.9		0.9		
φ		0.9	0.9	0.9	0.5	0.9	0.9	0,2	0.7
Q	(kN)	12516	6832	19340	7261	23652	11246	22658	4396
$\frac{\vee}{\eta}$	(KIV)	1.00	.					1	1
<u> </u>							Srength I	1	ľ
		<u> </u>		- 		1	1		
$V_{\mathbf{r}}$	(kN)	679253	452835	679253	452835	679253	452835	1157246	452835
Qs	(kN)	12516							
		OK	OK	OK	OK	OK	OK	OK	OK

3.7.5 Result of Stress Check at Service Limit State

(1) Unfactored Stress

Load	Secti	on-A		Secti	on-B	
Combination			Left		Right	
	Upper	Bottom	Upper	Bottom	Upper	Bottom
DC(include PS)	1.21	1.7	3.96	7.9	4.51	8.42
LL Max	0	0	2.96	-4.01	2.96	-4.01
LL Min	0	0	-1.63	2.46	-1.58	2.51
CR&SH	0	0	0	Ö	0	0
TU(+)	0.02	0.02	0.05	0.05	0.05	0.05
TU(-)	-0.01	-0.02	-0.06	-0.04	-0.06	-0.05
TG(+)	0.02	0.41	0.59	0.05	0.58	0.05
TG(-)	-0.04	-0.02	-0.06	-0.44	-0.06	-0.44

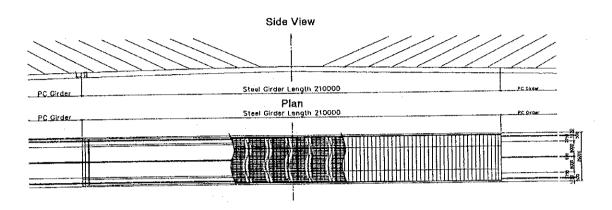
Load		Secti	on-C			Secti	on-D	
Combination	Left		Right		Left		Right	
	Upper	Bottom	Upper	Bottom	Upper	Bottom	Upper	Bottom
DC(include PS)	5.16	9.59	5.55	9.97	2.84	15.65	3.21	16.02
LL Max	1.82	-1.55	1.86	-1.51	2.29	-3.01	2.3	-3
LL Min	-2.57	2.91	-2.56	2.92	-0.84	1.88	-0.82	1.9
CR&SH	0.01	0	0.01	0	0	0	0	0
TU(+)	0.09	0.11	0.08	0.13	0.08	0.06	0.08	0.06
TU(-)	-0.09	-0.11	-0.07	-0.12	-0.09	-0.06	-0.09	-0.06
TG(+)	1.18	0.11	1.18	0.13	1.05	0.06	1.05	0.06
TG(-)	-0.09	-0.95	-0.07	-0.96	-0.09	-1.02	-0.09	-1.02

Load		Secti	on-E			Secti	ion-F	
Combination	Left		Right		Left		Right	
	Upper	Bottom	Upper	Bottom	Upper	Bottom	Upper	Bottom
DC(include PS)	3.21	19.34	3.25	19.37	17.16	7.54	17.45	
LL Max	3.33	-2.71	3.32	-2.72	2.11	-3.1	2.13	-3.07
LL Min	-3.23	3.55	-3.23	3.55	-0.8	2.88	-0.78	2.9
CR&SH	0.03	-0.02	0.03	-0.02	0	0.01	0	0.01
TU(+)	0.36	0.35	0.37	0.34	0.13	0.32	0.12	0.32
TU(-)	-0.35	-0.35	-0.36	-0.34	-0.13	-0.32	-0.13	-0.32
TG(+)	1.2	0.35	1.21	0.34	1	0.32	0.99	0.32
TG(-)	-0.35			-0.86	-0.13	-1.12	-0.13	-1.12

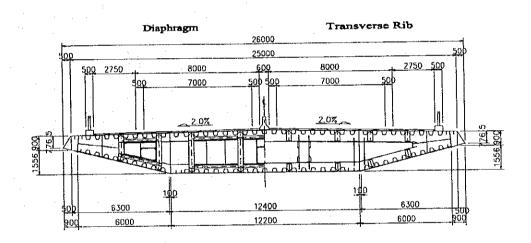
Load		Secti	on-G		Section-H	
Combination	Left		Right			
	Upper	Bottom	Upper	Bottom	Upper	Bottom
DC(include PS)	6.01	7.93	6.21	7.91	2.84	4.38
LL Max	0.54	0.21	0.55	0.23	2.1	-2.62
LL Min	-1.87	2.39	-1.87	2.39	-1.81	3.38
CR&SH	0.01	-0.02	0.01	-0.02	0	0
TU(+)	0.09	0.19	0.06	0.21	0.15	0.05
TU(-)	-0.09	-0.19	-0.07	-0.22	-0.15	-0.05
TG(+)	0.75	0.19	0.73	0.21	0.5	0.05
TG(-)	-0.09	-0.66	-0.07	-0.68	-0.15	-0.14

(2) Result of Stress Check at Service Limit State

į						;												" - " L - "				
	Live load	Live load maximum	u			Liv	Live load maximum	cimum			<u> (</u>	Live load minimum	ninimum				Tive	Live load munimum Tomas partico	um ()			
	Temperature (+)	(+)				Te	Temperature (-)	⊙				Temperature (+)	1					remperature (-)		1000		
		,	1	Factor					Factor					ractor	Į.					ractor		
	1000		•	90 -		ב	DC DW FI		: 1.00		<u>ដ</u>	DC,DW,EL		: 1.	1.00		Ö Ö	DC,DW,EL		: 1.00		
	≥`	1	•	33		<u> </u>	II Mmax	>	1.00			LL Mr	Mmax		0.00		Ľ	L Mmax	<u>×</u>	: 0.00		
-	- -	max	••	1.00				، ؟	900	,			Mmin	: 1.(8			Mmin	G	1.00		
		um	••	0.00				•	200			WS		:0:	0.30		⋧	WS		0:00		
	sw		••	0.50 0.00		. +			001.			H		: 1.0	8		ଫ	ľ		: 1.00		
	HS.		••	1.00			בור מי		. 1.00		<u> </u>	8		. 1.	1.00		<u>.</u>	R		1.00		
	£	•	••	(S) (S)		- •	; ;	. ur	20:0			Ę	+15	. 1	8		<u> </u>		+15	0.00		
	2	+12	••	7.0E				i G)	-15	0.	00:0				-15	: 1.00		
	í	5	••	0.00			£	3 14	800			ρ	+15	: 0	0.50		F	2	+15	0.00		
	բ	t 1,		0.00				3 5	0.50				-15	:0	0.00		••••		-15	: 0.50		
	_	l																			,	
	ľ			I out or Bhor		11	Unper fiber		Lower fiber	ber	1	Upper fiber	1	Lov	Lower fiber		Upi	Upper fiber		Lower liber	iber	
	Upper mee	100		TOWEL INC.	1		oldenoth Albandach	olden	factored	factored Allowable		factored Allowable	lowable	fact	factored Allowable	wable	fact	factored Allowable	wable	factore	factored Allowable	e
	<u> </u>	factored Allowable		ਰਾ	Anowabie Tanaila Comp	T	choce Tens	Tensile Comn		Tensile Comp	duno	stress Te	Tensile Comp			Tensile Comp	ap stress		Q.	SEC	Ter	Comp
	-+	lensue Comp	7	Sues	O O	Ī	7	00 30 00	1 .	000	30.00	1.26	0.00	30.00	2.04	0.00	30.00	1.17 0.				30.00
¥	07:1	3 5	3 8	5 5	1	90.05	0 62.9	0.00		0.00	30.00	2.85	0.00	30.00	10.47					_	_	30.00
	***	200	3 8	3 6	1	Į.	ļ	-	L	0.00	30.00	3,44	0.00						_	_		30.00
\neg	0,50	3 8	3 5	8 20		\perp	\perp	000 30.00	L	000	30.00	3.62	0.00				_	_	_	_]		30.00
ء <u>اد</u> ر	0.01	300	3 2	27.8		Ļ	L	ļ	L	0.00	30.00	4.01	0.00			_	_	_	4	_	_	30.00
۷.	20.4	8 8	8 8	12.78	000	30.00	4.93	ļ.,		0.00	30.00	2.91	_			_		_		_	_	30.00
) 10	100	000	300	13.16	L	L		- -		000	30.00	3.30	_	_	_	4		\perp	1	1	1	20.00
4 -	801	000	30.00	17.40	↓.	L		0.00 30.00		0.00	30.00	1.45	_	_		_	1	\perp	4.	71.69	20.0	30.00
1 0	808	000	90.05	17.40	1_	Ļ.		0.00 30.0	Ĭ.	0.00	30.00	1.51	_	4	_	1	30.00	0,70	4	4		30.00
-	20.22	800	88	5.17	0.00	30.00	18.98	0.00 30.00	0 3.13	0.00	30.00	17.31		-1	_	Ц.			30.00	1	200	3 8
2	20.50	000	30.00	5.49	0.00	30.00	19.29 0.	0.00 30.0		0.0	30.00	17.59	_	4		4	1	1	1	2 2	1	3 2
1 0	726	0.00	30.00	8.55	0.00	30.00				0.00	30.00	4.85	0.00	4		4	30.00	2,70	0.00	╧		300
))	7.41	0.00	30.00	8.59	0.00	30.00			_	0.00	30.00	4.99	4	_	4	20.0	1	_		1	1	30.05
E	5.54	0.00	30.00	1.87	Ш	30.00	4.60 0.	0.00 30.0	0 1.58	0.00	30.00	1.63	000	30.00	/0./	_		╛	4]	╛	3

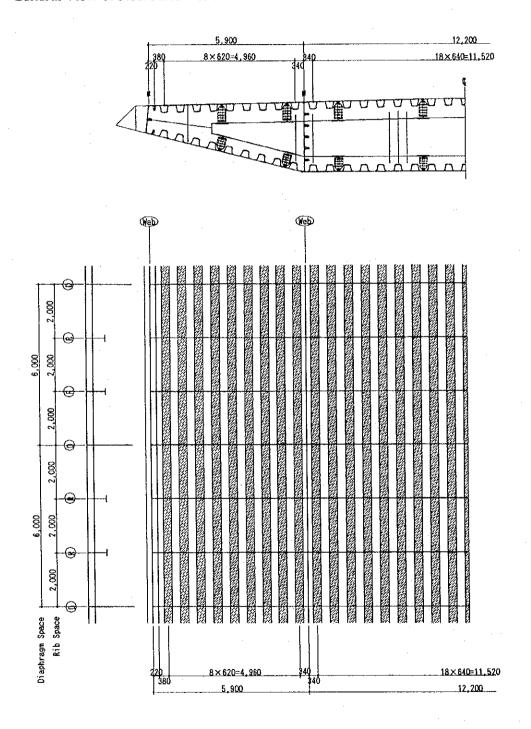

Live load mosimum Live load maximum Live load mosimum Live																	Comp	30.06	30.00	80.00	30.00	30.00	3 5	3 5	3 8	3	36.5	30.05	30.00	0000
Transpersiture (**) Factor Transpersiture (**) Factor Transpersiture (**) Tr																owable	의		_	_	_	4	4	4	4	1	4	+	1.	1
True load maximum Live		ŏ	8	2		2 8	₹	8	8	8	ন্ত	8	R		ver fiber	ored All			9.51	90.0	1.12	1.50	7 6	57.3	1.24	1.29	9.77	2.00	7.10	1
Live load moximum Live load Live load moximum Live load moximum Live load moximum Live load moximum Live load Live load moximum	F	Fact	: 1.0	: 0:0			ဘ် 	: 7:	: 1.(: 0.	0	. 0.0	0 :		Low	fact					_	4	4	4	4	4	_	\downarrow	1	_
Live load maximum Live load Live load maximum Live load Live load maximum Live load Live	(-)			×		5				+15	-15	+15	-15			wable	ile Con				_		1	4	_	4	4	4	\downarrow	
Live load maximum Live load Li max Li max	load min						ഗ	-	~						er fiber	red Allo						_					\perp	1		
Live load maximum Live	Tem		<u>N</u>	_	i 		₹	S	<u> </u>	F		=			ddn	facto		L	L				_	_	-		_	_ļ	1	
Live load maximum Live																/able	le Com	L	<u> </u>	L.			_	4	_	_	1	_	4	_
Live load maximum Temperature (+) Temperat															r fiber	edAllow	•	L	L.	_	_				\Box				\perp	
Live load maximum Live load Livim		Factor	1.00	000		0.80	. 0.0	: 1.00	: 1.00	0.50	0.00	: 0.50	0.00		Lowe	factor	Т	L	L	1_		Ш		_	Ц	_	_	4	4	_
Live load maximum Live load Li Li Li Li Li Li Li L	umu (ເກ	ı,	. 10	ιŊ			ble	Comp	L	L	ļ	ļ_	Ш						4	-4	
Tomperature (+)	ad minin			Yemy	WILING	Mmin				1+	7	+ 1	7		fiber	dAllowa	Tensile	L		L					Ц					
Live load maximum Temperature (+) Temperat	Live loa Temper		00	; =	3		WS	SH	<u>გ</u>	2		2			Upper	factore	stress	L	L	↓_	1				Ц		Ц			
Live load maximum	* .		-													96	Comp	1	╁	↓	↓.	Ļ_	_	ļ				Ц		
Live load maximum															her	Allowal	Tensile	000	000	0.00	L		L	0.00		L.	Ц			
Live load maximum Factor Temperature (+) Factor Temperature (+) Factor Temperature (-)		Enchor.	. 100	200	. c.w	0.00	00:0	1.00	1.00	000	050	000	0.50		Cowpr	Factored	stress	1.67	4.33	18.7	7.56	7.95	12.43	12.81	1623	16.27	3.99	4.30	7.44	7.40
Live load maximum Factor Temperature (+) Factor Temperature (+) Factor Temperature (+) Factor CDC DC DC DC DC DC DC	щ																auto	900	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	200
Live load maximum Factor Temperature (+) Factor Temperature (+) Factor Temperature (+) Factor Temperature (+) Factor CL LL LN LN CN CN CN CN	Live load maximum Temperature (-)	,			dmax.	Amin				1	1 -	. +		}	9	A Howen	Foncilo	000	000	900	000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Live load maximum Temperature (+) Fa	ive load emperat		Ļ		_	-	SM	Į.	<u>ئ</u> ۋ	ÍĒ	2	۲	2		Innor fir	Posoo	Ú	12	4.74	6.79	67.9	6.94	454	4.92	5.38	5.40	18.65	18.96	6.32	727
Live load maximum Temperature (+) Fa		+											_		Ť		T	Ic	30.05	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	5
Live load maximum Temperature (+) Fa												-			,	110000	TOWADIE	L SOLO	3 6	3 6	800	000	000	0.00	0.00	900	0.00	0.00	0.00	5
Live load maximum Temperature (+) DC,DW,EL LL max WS SH CR TU -15 CR TU -15 CR TU -15 CR TU -15 CR CM CM CM CM CM CM CM	<u> </u>		ctor	3 :	980	00.0	3	2 6	3 8	3 5	000	200	00.0	3		A IT TO MA	Ctored	600	70.7	7,7	2 53	8.04	13.33	13.71	17.68	17.68	5.55	5.86	8.36	06.0
Live load maximum Temperature (+) DC,DW,EL LL max min WS SH CR TU +15 TU +15 TG +1		ľ	<u>.</u>		··			• •			`				1	3 3	T	le	30.00	20.00	20.00	30.05	1	┸	30.06	30.00	30.00	30.00	30.00	3
Live load Tempera DC,DW, DC,DW, DC,DW, WS SH TU TU TG TG TG TG TG TG	aximum				×		•		٠		<u>.</u>	<u>.</u>	+ U h	Ď.		17	owable	alle C		-1-	4	4	1	┸	┵	L	<u> </u>	Ĺ	1	ļ.
	e load m	The later		TH'MO"				<u> </u>	ב ר	ו ול		·	2		100	per moer	ğ	•	-	9.81	7.50	00.7	5 57	100	202	717	19.70	66.61	7.08	1
	15.5		- 1	<u> </u>	_		_			- (_			-	<u></u>	190	ğ	1		1	+	+	+	+		+	╁	+	

Service IV; Load combination for segmentally constructed bridges Unit; MPa	Temperature (-)	Factor	DC : 1.00	LL Mmax : 0.00	Mmin : 0.00	••	SH : 1.00		TU +15 : 0.00	-15 : 1.00	•	-15 : 1.00	Upper fiber Lower fiber	factored Allowable factored Allowable	stress Tensile Comp stress Tensile Comp	Ц		30.00 7.69 0.00	00.0 00.8 00.06 00.0	0.00 30.00 8.35 0.00	0.00 30.00 14.03 0.00	30.00 14.40 0.00	17.48 0.00	30.00 17.55 0.00	0.00 5.39 0.00		6.64 0.00	00'06 00'0	
ges													fiber	d Allowab															200
l brid		Factor	: 1.00	0.00	0.00	0.00	1.00	1.00	0.00	: 1.00	0.00	. 1.08	Lower	factore	stress	1.64			8.00									6.54	
ructed													1	ē	Comp	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	000
const	twe (-)			Mmax	Mmin				+15	-15	+15	-15	ž	Allowab	Tensile	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	50.0
ntally	Tempera		2	:1		WS	SH	స	7		5		Upper fil	factored	stress	1.14	3.78	4.33	4.90	5.35	2.57	2.94	2.19	2.20	16.77	17.06	5.75	6.01	3
segme					٠			•						٥	duio	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	000
n for													er	Allowabl	Tensile Comp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
binatic		Factor	: 1.00	0.00	00.0	00.00	1.00	: 1.00	1.00	0.00	: 1.00	0.00	Lower fiber	factored Allowable	stress	2.35	8.05	8.57	9.92	10.36	15.83	16.20	20.37	20.37	8.51	8.80	8.48	8.52	1
d com														9	dunc	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	30.00	0000
; Loa	ture (+)		=	max	min				+15	-15	+15	-15	er	Allowabl	Tensile Comp	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	000	100
vice IV	Temperature (+)		DC,DW,EL	1	-	WS	SH	۳ ا	5		5		Upper fiber	factored Allowable	stress	1.27	4.92	5.46	7.08	7.45	4.54	4.91	5.58	5.65	18.86	19.12	7.28	7.41	
Ser											•			· *			.,	R		Я	10	×	<u>п</u>	ĸ	Ļ	ĸ	ر_	×	

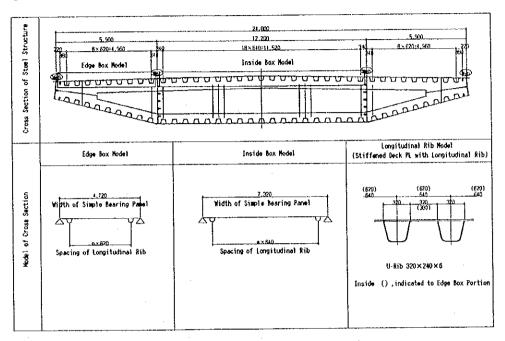

3.8 Design of Steel Girder

3.8.1 Geometry of Steel Girder

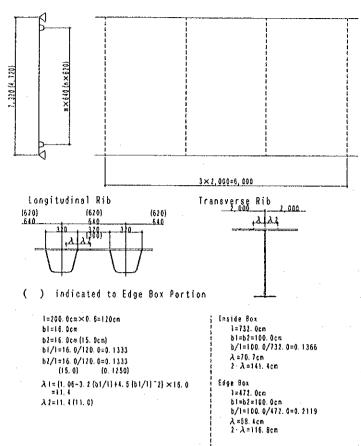
General View


Typical Cross Section

3.8.2 Design of Deck Floor


As for design of steel deck floor, the design according to Pelikan & Essilnger Method, based on "Orthotropic Plate Theory".

General View of Steel Plate Deck



(1) Analysis Model of Steel Deck Floor

Structure type of main girder is multi cell box girder. Therefore, deck floor considered as continuous girder is supported at web. Further, the equivalence span length calculated from spacing of web, considered as simple bearing panel.

(2) Calculation of Effective Width

(3) Design Section Force

Design Section force

		Design Sec	ction force	•
		Section Force	Section Force	Daging 200622 (200
		caused by Live Load	caused by Dead Load	Design section force
Inside Box	Mmax	6.219	0.036	6.255
(Inside)		(8.028)	(0.036)	(8.064)
	Mmin	-3.045	-0.071	-3.116
		(-4.013)	(-0.071)	(-4.084)
Box girder	Mmax	6.205	0.033	6.238
(Out side)	Mmin	3.326	-0.065	-3.391

(); In case that converted rigidity of lateral rib is not accounted.

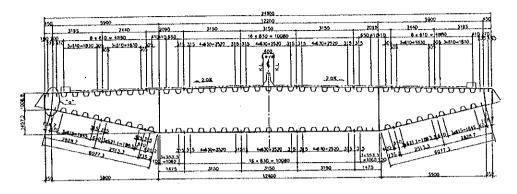
(4) Stress Check of Deck Floor

Stress Intensity

		Oticss michig	
		Section Force	Section Force
•		caused by Live Load	caused by Dead Load
Inside Box	Mmax	-493	1342
(Inside)		(-636)	(1731)
,	Mmin	246	-669
		(322)	(-876)
Box girder	Mmax	-507	1342
(Out side)	Mmin	275	-7 30

If the converted rigidity of lateral rib is accounted, stress is s=1342kgf/cm². Although stress intensity is less than 1400 kgf, SM490A is adopted for material because of account of superposition with main girder system.

3.8.3 Design of Main Girder

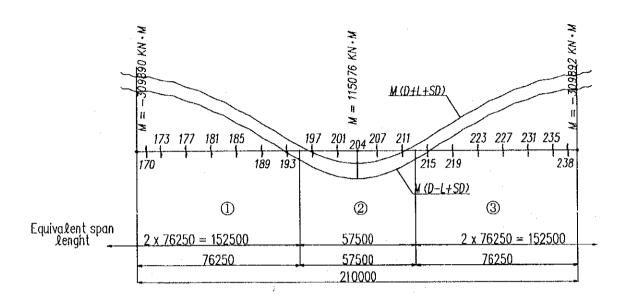

(1) Design concept

- The effective width for bending moments calculated using equivalent, span length that is determined by bending a diaphragm working dead and live load. (SPECIFICATIONS FOR HIGHWAY BRIDGES)
- · Effective width is not applied for axial force (In calculation of sections).
- Decks with longitudinal rib of high stress, decrearation of allowable with local buckling is ignored.
- Instead of stability calculation of material affected by longitudinal compressive stress and bending stress, whether sum of those stress is less than allowable stress.
- Design of web conforms with Japanese spec. "Specifications for highway bridges part II steel bridges the third chapter". Longitudinal rib is not effective in calculating section force.
- · All section vary at the point of field joint.
- · The following table shows, the each way of field joint.

SPLICE METHOD		FIELD OR WELD	BOLT
DECK	Longitudinal Direction	0	
	Transverse Direction	0	
LOWER FLANGE WEB	Longitudinal Direction	0	
	Transverse Direction	0	
WEB	Side Web		0
	Center Web		. 0
U-RIB	Deck		0
	Lower Flange	0	
TRANSVERSE	Flange, Web		0
	Vertical Member		0
DIAPHRAGM			0
LOCAL RIB CON	NECTED RIB		0
FENDER			0

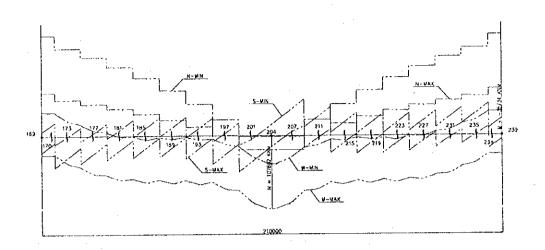
(2) Detail of Steel Girder

Basic Dimension of Steel Girder



Section Composition of Steel Girder

	10 O O O	1		073	0850 0850		(SWA490AW)	16 (SWA490AW)	(SUA490AW)	(SVA490AW)	J2Dx240x6 (SkA490AH)	140 x 14 (SUA490AW)
				16 x 6000 = 36000	7 x 12000 = 84600	3-456	14 (SMA490AW)	16 (SMA49DAW)	12 (SWA49DAW)	10 (SMA490AW)	320x240x6 (SMA490AW)	140 x 14 (SHA490AW)
22 AN 500000	STEFF, GIBDER, LENGTH, 210000.	\		950	Poop bosh zood	2-536	(SMA4508W)	16 (Sua420AW)	(SWAASDAW)	(SWA 490AW)	320x240x6 (SMA490AW)	140 x 14 (SWA490AW)
			त्याच्याच्याच्याच्याच्याच्याच्याच्या 	16 x 6000 = 96000	7 x 12000 = 84000	至5-2	14 (SMA490AW)	16 (SNA190AW)	12 (SNA490AW)	10 (SWA490AW)	320x240x6 (SMA490AW)	140 × 14 (SMA4906W)
		/				HC-1	14 (SMA490AW)	16 (SMA490AW)	12 (SWA490AW)	13 (SWA490AW)	320x240x6 (SWA490AW)	140 x 14 (SMA490AW)
	PC CRDER	/	 	OLAPHRACH, POSITION 6980	¥1	SECTION NO	Drck P!	10 B JM 3055	CTATTR WEB PL	19.6	Bi3 n	88 K


(3) Calculation of Effective Width of Flange

Design of effective width shall be checked from bending moment according to Japanese specifications for highway bridges.

		1	2	3
Equivalent span	lengh:L(cm)	15250	5750	15250
	b1(cm)	295	295	295
	b1/L	0.0193	0.0513	0.0193
side box	λ1/b1	1.000	0.997	1.000
	λ1	295.0	294.2	295.0
	b2(cm)	610	610	610
1	b2/L	0.0400	0.1061	0.0400
center box	λ2/b2	1.000	0.888	1.000
	λ2	610.0	541.6	610.0

(4) Calculation of Sectional Force

Ī		17.50 T. T. L. C. C.	C11-S	L11-5D	GS∙7	20	G.	05-17-10	CS-17-3	D-1-1-SD	5:17:3	LT1-5D	D+1.71+SD	LT1+8D	U11-SD	CT1+SD	L711-SD	LT1+50	L-T1-5D	D+LT1+SD	35	2011-2	T-45D	C11-5D	8-17-3	CT1+SD	1.T1+SD	1125 D+L-T1+SD	0.4T√	LT1-SD	318	36	3 5	1 <u>2</u>	8	og G	8	ପ୍ର	8	<u> </u>	315	35	200	8	ପ୍ର	တ္ဆ	33	38	3 6	3 2	18	133) Oi	20	9	310	32	(Ç	8	3
	ři č	M(KN'H) Load Case	39200 D+	39200 D+	34725 D-	34725 D.	-32000 D	2648	26.88.5	-24070 D+	-24070 D+L-T1+S	-1050LD	-19595 D.	-17305 D+L-T1+SE	-17305 D+	-9642 D+L-T1+SD	-9642 D+	-8058 D+L-T1+SD	.0058 U	6311	-6311 D-L-1145D	700	0.09	100	1820 D-	1820 D	1125 D	1125 D-	2673 D	2673 D+L-T	3000	2000	0300 D. E.C.	3870 D.	3829 D.	4866 D.	486c D.	Oa a 9902	708b D	6919 D.	20.00	3060	4504 D.EQ	4504 D	8512 D.	8512 D.	0000	2021 0.00	702107	0.00	03:01:25%	18475 D.	18475 D.	20543 D	20543 D	24049 D	28050 D	28050 D.EQ	43639 D.	4363
-	ᅬ	SKN SCT	143				- 1	9,67	ł		1	L	L	2211	2236	1201	1227	929	7.5	-205	<u>.</u>	1 2 5	7 0	742	90	423	069-	1688	1461	1475	Por-	3	12.0	1610	1150	576	656	93	9	-38 -38 -38 -38 -38 -38 -38 -38 -38 -38		C252	1347	1357	427	439	2	/CT	00.0	7657	2451	1520	1525	1213	1218	2 °	3938	3936	3005	SUM
	┝	-†	45,40	45030	46015	40220	40.47	30265	397.87	30177	-39175	38825	35030	34952	34950	-3460A	34603	34495	34193	-34148	30087	30011	79.407	296.80	29567	-29562	-29248	-24593	-24526	-24524	25492	7,147	26451	26412	21073	-23047	-21046	-20923	20923	-20862	70207	14745	.14718	-14717	14597	-14597	14557	76057	67661	-0000	1359	7970	-6462	-6424	-6422	6294	2700	2703	2817	7812
		T. C. Se	GS-F-	J-T1-SD	ds-tT-	ds-ti-	03-11-	200	ę.	Š	8		OS:	OS.	9	US.	D+L+SD	ΩŞ	0-1-50	5-1-5D	e (05-1-0	e	9	-SD	ds.	OS+	ŪŞ.	D-1-50	3	3 5	95.1.0	8	S.	as-	Deleso	٥٠ د د	છ	25.1.0	0.1.0 C.1.0	983	93	OS+	GS-S	8	2 1	3 6	2 5	9	8	യം	os-1	g	95	100	as.	CS.	3
1	Mmax	M(KN-m) Load Case	32304D-L-11-SD	32303 D-L-T1	31256 D+L+T1+SD	31256 D+L	33971 D+1	35% 1 D-12-1 1-50	20457	41668 D-1	41668/D+	45408 D-1-5D	45408 D+1	47702 D-1	47702 D-1	55182 D+L+SD	SS132 D+1	56616 D+1		57401 D+3		20100	1,011	110111111111111111111111111111111111111	64908:D+1	64908 D-L+SD	62966 D+L+SE	62%6 D+1	64431 D+1	64431 D-1	68079 D+1	68079 D+	DS-1-0 SIZE	C0200	56802 D-1	1+Q 96659	1+0 96659	69331 D+1	69331 D+I	69355 D+L+SD	08350 05150	20 3123	66945 D+1	56948 D+1	70916 D+L+SD	70916 D+I	71155 D-L-SD	O COL	07,420	07570	70271 D+L+SD	77956 D-L-SD	77956 D+L+SD	79451 D+L+SD	79451 D+	80434 ID-L-SE	73684 D	83884 D+L+SD	96617 D+	9661/10+1
		SSS	1	.103	L.	LI	L	12021	1_	13.55	1383	2	24651	22.19	2241	1128	1153	768	35	475	1942	C C	202	21.4	222	250	.1029	1621	1370	1384	523	2	2 6	9	Į.	1294	1307	192	336	-175	201	667	1434	14/3	337	348	S.	7	//71.	1100	7270	1185	1180	813	817	417	3397	3395	2328	2326
	⊢		1 1 1 2 1	-11059	-41853	-35750	.35833	1,037	36,50	35785	35773	35148	31960	-32042	-32030	-32385	-32372	-32.156	32474	-32831	-26320	200	2007	28207	28808	28799	-29127	-23986	-24052	-24043	-24338	24,330	24420	245.86	18836	-18893	-13386	-19122	19120	.19196	06161	1,0071	12964	12959	-13147	-13142	.13192	1,1188	13335	1715	2415	5224	.5270	.5312	\$063	5456	3585	3589	2442	4
•	+	2 S	200		a	QS+1	G:1	1.55	15	1 Est.	9		1:50	1+50	8:	95.5	T1+SD	J+\$D	ŝ	Ω	DŞ.			3 6			Q	1.50	T1+SD	U.SD			-	+	8	3.50	Q\$+1.	Q	١	Ω		9	1.55	05-L-T1-5D	9	a	6		9 7	(15.1)	3 5		Q	D	e	e	\dagger	-	2.S.SD	2-S-SU
	- 1	- 14	6589 D+1+50	70 D+L+S	579 D+L+S	12583 D+L-T1+SD	88 D-L-T	15055 D*L*11+5D		251051051.473.50	187 D+L+11+SD	24035 D+L+SD	29787 D+L+T1+SD	31715 D+L+T1+SD	198 D: L-1	03-17-1-0 03-	37839 D+L+T1	38830 D+L+T1+SD	38896 D+L+T1+SU	364 D+L+S	10817 D+L+T1+SD	42299 D+L+11+	2.1.0	44734 [D.1.5]	D	45203 D+L+SD	42792 D-L-S	:	516 D+1,+1	192 D-L-1	49536 D-L+SD		000	45503 D.1.45D	00 D.L.	50369 D+L+7	135 D+L+T1+SD	52696 D+L+SD	52715 D+L+SD	52618 D+L+SD	000		52848 D · L • 7	1-7-(1659	56617 D+L+SD	s-7+0 0€s	56759 D+L+SD	2 - C	249 D	239 0-1-1	Seeus DeletinsD	145 D-1-5	66145 D+L+SD	110 D+L-5	110 D+L+S	795 D+L+5	56429 D+EQ	SM14 D+EQ	81739 D+L+T2+S+SD	£1739 D+L+T2+S-SD
orce		Ĭ.		1354	L	1426 12		61.10	1	1.86		1244 241	L	ľ	L	L	L	-727 384		"	422 400	\perp		L	1131		L	161 46	Ц		1	1		Τ	100	l					$_{ m L}$	1	75 67		963	1	1348	- 1	-1		1							1898		680
Result of Sectional Force		ଠା	1.			ΙI	1	36350		l	l	ı			l	1	l	H		1	-28152		١	1	7,7601	L	1	23410		ŀ			23206		18408	1	l	li			١	ŀ	12427				1	1		١			-4358		H	1	1	1 445	П	1769
ection	1	Т	1 9	7	4	9F)	-36	\$ X	} -	5 3	3,6		-	33	8	8	32	.32	-35	.33	-28		-	77.) * -	1	-28	5	.23	ņ	2	7	77	+	+	"	٦	-17	-12	-17	+	+	7.	-12	12	-12	-12	=		4	7	1	-	4	4	7	-	-		_
t of S	!	Load Case	3	G\$+ 1-0	OS-T-O	2883 D+L+SD	0-[-5])	05-1-0		1967 Per 1901	D+1+5D	24284 D-1 +SD	05-1-0	05-1-0	D-1-5D	05-1-0	32603 D+L+SD	34340 D+L+SD	D-L-SD	D+L+SD	33772 D+L+SD	05-1-0		00110	05.1.0	6	D.L.SD	D+1.5D	D+1.45D	D+1+5D	D-1-5D	OS+1+0	05-1-0	D+L+3D		41968 D+L+SD	D+L+SD	46570 D+L+SD	46551 D+L+SD	46949 D+L+SD	05-1-0	05-LT-50	65.1.0	D+T+SD	48184 D+L+SD	48171 D+L+SD	48640 D+L+SD	QS-1-0	47172 D+L+SD	D+L+SD	46087 D+L+SD	55149 D+1.4SD	55149 D+L+SD	D-L-SD	D+T+SD	59639 D+L+SD	59637 D-1SD	63/17 D-L-SD	77464 D+L+SD	0.1.5
Sesul	Smax	(E ZZ)	5461	5383	\$318	2883	5979	5913	00.07	75007	19446	24284	21.02	24331	24278	32662	32603	34340	34274	36140	33,772	35750		41.007		42489	41636	39246		40933	45477	45436	45885	42000	30350	41968	42202	46570	46551	46949	40954	4459	F1219	43002	48184	48171	48640	48833	47172	43420	45087	55140	55149	57102	57102	59639	59637	63417	77464	77464
		S(KN)		١	l	4619		1	C/7C	-		1713	1		3820	2699	2775	2350	2379	1141	3526	327.8	323	7000		Γ	620		5262	2995	1880	1899	1527	220	2174	200	2942	1632	1847	1476		1	332	3093			1627				3964		ŀ		2477	1254	5313	1		100
Table		N(KS)	43838	A. W. F	13861	38305	38303	.38329	200	28231	38346	38.00	34/45	.34680	34692	-34663	3467	-34004	34673	-34615	30637	-306.30	0000	\$6.00C	anaac-	2000	30523	-25786	-25777	-25862	-25811	.25820	25799	50852-	10767	1074)	20049	19988	20002	19977	.20028	19545	13362	13351	13282	19281	-13264	13279	- 1	- 1	537.	1	1	ľ			1	3885		3413
		Load Case	3 6		-SD	∵-SD	.≁SD	-50		0.5	25.		737	GŞ.	Ę.	SD	US+	C-SD	SD	SD.	-SD	55	GŞ.	150	430		·sn	-SD	03:0	÷SD	J+5D	.+SD	S	-5D	300	9	QS+	-S-	5 D	.+SD	50	D+L+SD	3	-SD	OS+	-SD		-SD	.÷SD	-+T2+5+SD	-12-5+5v	TO C.C.	*T2*5*SF	-172-5-SD	-12-5-SE	.+T2+5+5D	-TZ+S+5U	72408 D-1-17-5-51	-12+5+8D	17.5.5.ST
		M(KN·m)	18210 D-L+SD	1.000	16344 D-	16694 D+1	1,5611,0+1	13610 D+1-5D	200	220	3 2	3 5	2	6871.0	100 D	15464 D	15662 D+1	17532 D-1	17532 D+1	19826 D-1	18846 D+1	21000 D+1	23001	27807 00-1-51	7,007	20000	29057 13-1	27882 D-	29833 D+1	29833 D+L+5D	35694 D+L+S	35689 D-1	36561 D-L-SD	36555 D+	35500 D-	3603 D-1-5D	34037 D+1	42067 D-1	42064 D+1	42990 D+L+SD	42986 D+1	42078 D+	40312 D+	47536 D.	49600 D-1	49591 D+L+5D	50852 D+1	50849 D+1	51036 D+L+SI	48211 D+1	51351 D+1	CONTRACT	47500 D+1	65246 D-1	65227 D-1	[+C] >8669	68169 D-	72408 D-	88750 D+1	A Parent
		Σ1	\perp	\perp		<u>L.</u>		3048					┸			┸					1 1	- 1	1	- [ı	200	1	1	1	ı	ı			- 1		١	ı	865		ļ	L	-725	-	Ι.	ı	Į.	1	H		_1	3166	\perp	1	1			_1	666		L
	۱ŀ		49085	40061	49051	-12846	42841	42836	-97.534	42800	47700	2://76-	2//2	33437	38433	3463	38410	.38404	38400	38380	-33698	-33694	0000	33673	33670	60000	327.35	28303	28300	-28297	28283	-28281	28277	28275	-26261	20177	771.47	22166	22165	.22161	.22159	-22.148	15411	15,487	15300	15397	-15394	.15393	-15386	.9031	-9030	8706-	9010	-9018	980%	-9012	80	428	133	133
	┰	ž	+	+	ļ			\dagger	+	+		\dagger	\dagger		+	\dagger	t	l					1	+		†	+	1		H	-	H		- 1	t		1		,	1																				
	l	n) Load Case	30-00	77 0 27	01 to 10	31 D-EQ	44 D • EO	2644 D-EQ	9		27.07.27	37.07.		20.00			01 -C	M D-EO	M D-EO	\$2 D+EQ	52 D+EQ	16 D+EQ	10 E	15 D+EO	5 D•EO	3		P. P. FO	77 D-EO	37 D+EQ	18 D+EC	18 D+EQ	03-01-2	74 D+EO	03 P-E0	2 2		\$2240 D+EO	#0 D+EO	21 D-EO	21 D-EO	03 D 62	03 04 05	20.00	2 2 2	M D-EO	1 P.EO	71 D-EO	51 D+EQ	11 10+1-72	46 D-L-T2		7 7 7 9	3 0 - 1 - 2	30-17	58 D-L-72	150-172	40913 D+L-72+5+5D	110-5-21	1.0
	1-1	Σ	_1.	1		1				_1	1	1			ŀ			┖	L	ı	H		- 1	- 1	- E	- 1	-	1	1	1	1	•	11	- 1	- 1	1	- 1	1	1	1	l I	ı	- 1	- 1		1.	ŀ	Ш	Ш		$\sqcup L$	_		1	1	L	ш	┸.	1	L.
	l	3	1			71 2967		۱		77 1866		1			ł	١	١	1009		l				١	1	١	1	ı		l	l		П			1	ł	29 268	l	ı	1				1	ı	L			.7 2156	Ц	\$	2 .	3 707				2923		ı
		NKK	169 -31715	1	1.	l	L	72 -2h389		_1		L		_L	1	1	Т	1	1	1	19791. 64			Į	- 1	- 1	П		1	15876	ı	1	1	1	- 1	1	1	07,11.	1	1	l	H	6493		ı	1	94 -6653	l		5	196	1	1					7862		l
	_	tr Joint	_[11		L		172 172		2		1		52	77	1			178 17		179		180		181		791			31	L	185 18		186 78					160						1			194		195		196			198			200	L	
		Member	169	ľ	3	121		a		Ħ	ľ	7	ľ	ü	•	-	1	ì	1		a	•	18		~		=	-	,	=		٣		7		18,	ľ	3	1	•	190		191		4	101	•	=		۲	١	#	Ş	=	S	•	199	700	i	100

		l							•												
اي	S Z	3	(KV II)	Load Case		SYS	E People	Ž	100 CO		D. J. en	0921	2,20	*5+CL+ 1+U F/5+S+	5	3.76	_		H	2690 47939	ω,
S١	7869	٦	24688	-LT2-5-5D	£ 5	582	5 52/41 D+L+12+5	25-54-54	.	1	\$1066 D-1 -SD	2,60	317	845W D-L-12-5-SL	S-SI	3379	1950 99	99827 D-L-SD	2860	2658	47939 D.EQ
21	12 7870	ř	24655 L	1.12.5.30	43/	1707	92100 D-1-1-2-0	I		1	9:10	4000	1126	90833 D-L-SD			L	111 D+L-SD	3011	1444	60341 D.E
2	7872	1	60932 D	-L12-5-50	65	7	10550 D+1-12-5		2000	1	9	300	200	08:3 D-1-SD	-	3205	L	111 D-L-SD	30121	1441	60341 D-E
읾	7872	1	6093Z	4.L.12.5.5D	440		103635 D+L+12+5			1	0.1.0	30,87	.1617	908111D+L+SD		3253	L	107602 (D+L+SD	3062	1024	62821 D.E
စ္ကုဒ	7872	ļ	61337	Tr. 5.55	A 44.0	\$ 5	104576 Del +Tres.	İ		1	90802 D+1.+SD	3986	1618	90811 D-L+SD	\vdash	3253	0 107	107602 D+L+SD	3062	1024	62821 D.EQ
2	7872	1	\$1337 IL	75.54.21	7.0	70,7	0.770 0.00	١	2007	ł	10.1	7208	2017	34340 D-1,+SD	_	3215	l	113 D-L+SD	5354	1440	62089 D+E
ဒ္ကု	7872	1	166909	75.5.2	440	-1	2021-7-07/0001	١	1	ı	6.1.0	1072	.,111	HOMAN D. L. SD	-		492 107	113 D+L-SD	5383	-1446	62089 D-5
ន្តl	7872		2 66909	- L-12-5-5D	459	,	2-71-1-10 09CC07	10-0-3	316	ı	D.1.T2.545	750E	3530	G1089ID+L+SD	ŀ	3358	1_	99838 D-L-SD	5231	-2689	49680 D-E
s١	7870	Ť	24562 C	15+5+71-7+	42/		77717 0 17.0	100	0	ı		Year	2564	Charles Charles	-	L	L	331 D-1-5D	5229	2691	49680 D-E
2	12869	Ŧ	54562 D	-LT2-5-5D	3	- 1	\$7.47 04.7476		5	64213	70.00	350	3057	77480 D. L.C.	-	1	L	GS+1+G 62996	5193	3007	45373 D-1
2	17 7668	7	51780 D	-C15-5-5D	3	ı	86417 17417-1233	1	1	1		2002	1000	12.1.C	-	2427	2.177	CS+1+C 60%6	5189	3013	45373 D.E
S	2982 21	-21	51780 D	-L-T2+S+SD	431	ı	88782 D+L+12+5	1	1/25 cc/1	61/30	0.0171777	7	2020	7,107 D. L. CD	-	1	l	CS-1-C V06	\$202	3942	29762 13-1
12	7861	-2	40691 D	**L-T2+S+SD	428		72454 D+L+T2+S	2+2+50	0691- 90	1	09-01	30:1/	20/0	מיזים הכוצים	+	1	1	00.00	1	100	20767
12	18 7862	-7	40691 D	*L-T2-5+SD	425		72495 D+L+T2+5				09.00	3893	202	63450 D+L-50		200		2011-0-0	7/02	1	20,707
12	7Xh1	6	37677 D	-1-T2-5-SD	424	ı	6#218 D+L-T2+5		3428 -209	8 54775	5 D-EQ	3867	5318	59671 D+C+SD	-	3591	_	504X C+C+SC	N. P.	7	25/25/25
:15	9	1	Charle	T2-8-5T	6006°	1	70040 D+L+T2+5	ļ		1929	1 D+T+SD	-5203	-1253	5%73 D+L+SD	_	-5472		45: 0.1.SD	3906	8	25753 D•
312		Ϊ	Charles	T2.5.5D	5109		65293 D+L+T2+S	l	L		1 D+1+3D	-5278	-2476	05-71-0 11-17-SD		-5:22		79477 D-L-SD	707	1234	22169 D+
٦I:	0 0		20020	1 C C C	2100	1	85311 Del . 172-8	ı	4407 625	67432	D-L+SD	5281	2472	57141 D+L+SD	L	-5326		477 D+1+SD	4036	-1230	22169 D+F
31:	١		20070	200	2000	1	STATE PARTY	1	L	L	15+ 1+C	5302	.2842	25189 D+L+SD		.5281	L	77982 D+C+SD	4074	.1543	20074 D+
긺	1	0701	36/23	76.5.717	7000		7 1 1 1 10070			1	US* 1*C	WES.	2848	55189 D+L+SD	-	-5285	L	7921D+L+5D	-4076	1540	20074 D+EQ
2	11	-1020	36723 E	+ C12+S+SD	-9019	- 1	2771-17-17-17-17-17-17-17-17-17-17-17-17-	75.5.7		1		575	3046	C. 1-Cl 05131	-	15.15.	L	703011D+L-SD	4193	2470	11(%7/D-EO
21	1	7	30052 E	1.L-T2+5+SD	-9025	٠	51465 [J-L-14:5		0.00	1	1 1 2	1	2002	us i diocest	-	2360	2266	0.5-1-01 040	-4195	2468	11067 D+1
21		1.	30052 E	1-T2+5+5D	-9027		51555 D•L•T2•5			26093		8	9	101210113	-	00.13	ı	05- D-1 -CD	000	1246	A522 D.
12	13	1	28016[0	05-8-ZL-1-1	-9028		48414 D+1,+T2+5		586 -1025		9:D+L+T1+SD	-5375	7.00	431641U+L+SU	-	0010	n Co.	0/13/ (/L/30)	35.00.1		
21	6669-	Ē	28410 D	1-T2+S+SD	-15381	491	51101 D+L-SD	-12	12463 256	_	CD+L+SD	.13160	-417	17206 D+L+5D		77.77	1	75/ 01-50	27.33		1
5	75140		\$2963 D	150	15.889	-757	50912 D+L+SD	71.	952 \$85	9 56804	4 D+C+SD	-13268	-1638	48866 D-L+SD	-	131%		71186 13-11-512	79.71	101.	X3 - 7 1501
i i	100	١	1000	199	157.90	747	50912 D+L+SD	12	1330) 1349	9 5679	2 D+C+SD	.13255	-1627	48874 D+L+SD	_			1186 D+L+SD	12108	-152	10311 D-
٩Į٢		ľ	1	2	25,00	1131	30.47 De 1.5D	-12	L	3 Sb668	Ò	-13282	1998	4\$206 D+L-SD	_	13149		3948 D+L+SD	-12207	465	0.55
4	100%	1	1 2000	3 5	36300	0011	40564 D-1 -SD	: 1:			4 D-1SD	-13274	1986	18219 [C-L-SD	L	13155	-335	QS+7+Q 3160	12208	454	9844 D-
٩ŀ	7006-	Ί	10076	315	200		OS- L-Cl wasch	1		L		13383	3093	43038 D-L-SD		12967	L.,	5982 D+T+SD	-12328	-1384	5714 D•
d	3525	1	430(4)		CONF.	1	12 Care 1 Care 1	1	12.0	1	1	13.51	3084	43049 D+L+SD	Ľ	12972	L	3982 D+E+SD	-12329	9261-	5714 D-1
~	16 .859	7	49604 11	23	SA.	/1777	42550 U*L*50	115	200	90076	C. T. T. S.	13366	3330	ATTAIN DALASE		Ĺ	L	65448 D-L-SD	-1235	1581	4248 D-EC
7	217 -8576	7	4857241	347 48572 D.EQ -154	-15407	-240-	40368 D+L+SD	-				RESOL .	18	456-20 D-1.T1	5		L	5448/D-L-SD	18363	1259	4248 D+EQ
7	17 -14051	٦	48572 IL	037	-22143	725	42141 D-L-SD			<u>֚֚֚֚֚֚֚֚֓֞</u>	1	2	S	100	1	10107	L	1317 D. F. S.D.	\$6.0X	223	7958 D+
'n	38.		23452 [7	7.60	-22154	-524	43047 D+L+SD	-12			3 D+L+SD	07007-	7487	4090910-1-51	+	16161	34.	200 D. L. C.	18.05	2	795,8 13.
'n	18 -13938	l	51452 L	EQ	-22155	-506	43047 D+L+SD	.17976	776 1474			.144/3	0/11-	70,070,00		cas	1	20, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12	200,		2000
7	191 -13903	ľ	1 11615	03-	-22158	-381	42121 D-L+SD	-17916	111	0 52752	اة	6561-	ì	46563 17-11-50		17.120	╧	130. 17. 15.	07.10		1000
15	10 .13903	Ι.	SIBLA	9	-22160	-865	42121 D+L+SD	-12	330 112	4 5273	D+L+51	4	1832	46602 D+L+SD		19132	1	387 0-1-20	-10224	70-	20190
(ľċ	13804	1	18150	25.	32177	-1973	36086 D+L+SD	-18128		89 50172	۵	-20046	-2943	42233 D+L+SL	•		_	66026 D+L+SD	79097	7.5.	3/1/
4	Macr-	ľ		3 5	22174	10.	34000 041480	18457	ľ	L		-19729	-2928	43995/D+L+SD	Ľ	L	-1294 bi	6026 D+L+SD	-18062	-975	5717/D-EQ
4	12004	1	166704	3 9	1 1	3226	34004 D.1 -CD			L	9 D-1 -T 1-SD	19741	3175	40375 D+L+5D		18842	9 [845]	4632 D+L+SD	12690	1184	4646 D+
М	21 -15/6	1	10164		/// 77	1	2007		L		3 D-1 -6D	20.50	3,80	43131 D-L-TI	Li-SD	L	L	64632 D+L+SD	23938	1380	4646 D-
N١	21 -18482	١	469101	9	56282	2	33336 0-1-50	7 6	707 707 20	1 (650)	10.1.60	2000	1550	è		24417	L		.24077	<u>*</u>	8970 D+EQ
ч	22 -18371	'	489661	2	28269	400	2990/ D+T+2D	3		1	20.7.0	2000	100	20034 P. L. CT	1	24475	L	68232 D. I. CD	770077	38.4	8970 D+
ĮΑ	22 -18371		48966 1.) EQ	-28271	456	36613 D+L+SD	5	197 1424		2 0-1-50	17.00 T	9751-	10.7.7.6.6	+	30,10	1	0 1 C	61676	K	69.87 D.
N	23 -18338	ľ	48587 L	03-0	-28275	.831	35739 D-L+SD	ន			20-1-30	-75620	1900	4344		252	2/7-	06100 0100	24243	457	15-11-140 7403
ŀ	73	ľ	48587 L	99.0	28278	118-	35745 D+L+SD	E,	23)41 107	7 4956	5 D+L+SD	4	-1881	45505jD-L+Si		74.344	1	0100 101-1-50	C1717.		0.00
4 6	1701	7	1477.1	150	.28292	-1930	29881 D+L+SD	ģ	350	47519	9 D+L+T1+SD	-25864	-2996	40959 D-L-St	_	24049	-1385	455 D+L+SD	24532	1	20000-1-1-5
d já	1070	1	1	3 9	FOCUL	1013	29884 D-1+5D	8	23468	12 47560	01D-L+T1+SD	-25754	-2980	3S+T+Q \$160f	_	24057	1	4456 D+L+SD	-24512		2700 D-
٧	1024	1	27/22	3 2	2000	2	03.1.000		1,1	ļ.	OF-I+TI+SD	2576	3227	39254 ID+L+SD	ا	23990		2990 D-L-SD	.24579	.1688	1152 D•
4	255 -1822	1	1/100%		75707-	200	C	1	28730	ı	C8+1+0	-30524	.621	41660 D+L+SD	١	29132	1	62990[D+L+SD	.29234	683	1152 D+L-T1+SD
N	25 -2235		433171	3	,3383¥	200	C . C . C . C . C . C . C . C . C . C .	1 5	l	ı	13-11-61	30505	1,185.6	47510 D+1+SD		28803	L	649301D - L-SD	29554	424	1842 D+
ч	26 -2224,	'	4357611) EQ	-33656	ç9 0 ,	73040	; ; ;	2,2	776	30.10	10.		A. 1. C.		28812	L	39 20 D. 1 . S.D.	.29554	401	1842 D-
d	26 -22245		4357611	<u>8</u>	33959	659	29045 0+1-50	*		200	10.1.3	COLUM	2000	72. 1.11 1.21		11240	L	GS+1-O-10480	-29660	-743	989 D-L-T1+SD
'n	27 -2234		42657 1	8	33665	-1035	77843 D+L+5D	7	2/215		0.7-7-0.0	A COUNTY	2777		1		1	12.1.01 they	20000		080
N	27 -22216	ľ	4265711).EQ	33667	.1008	27843 D-L-SD	5			8 D+L+SD	4	1817-	41070 0+1-5		17,07	1	20.2.2	20000		124017-1-T1-SP
ž	28 -22321		37204 L	03.0	33064	-2126	21032 D+L+SD	77			42356 D+L+T1+SD	-30635	627	S-7-(1/7/S6		6000	2	200	10000		CALL TILES
46	22122	Ϊ	17204	180	33688	-2105	21032 D+L+SD	2		L	12316 D-L-41-SD		3279	35767[D+L+SE		28399		59196 D•L•SD	04447-	C77-	2 2 2
٩ŀ	20100		Trape.	35	33,03	2351	14477 D-L-SD	27	L	<u>1</u>	40834 D+L+T1+SD	Ĺ	-3526	33788 D+L+SD	_	28323	-1941: 5	7416 D-L-SD	-30075	.1952	62% D-LT1+5D
4 6	1	7	35453	315	38474	175	19455 D. L.SD		.32480 1809	L	© D+L+SD	-34616	-1142	36156 D+L+SD	_	32835	475 5	57416 D+L+SD	-34137		-62% U.
4 5	C/C7- 67	ľ	334321	1	28204	1	17557 Del 28D	1	l	L	8 D.L.TI+SD	L	3967	34285 D+L-SE	_	32477	-795 5	56629 D+L-SD	34481		-8046 12-
4	30	1	156066		20075	100	1/20/ 12 1/21/2	1	30,010	⊥	3 Del +T1+SD	94666	1351	34351 D+L-SI		32490	292	6629 D+1,+5D	-34482	-887	-8046(D+L-T1+SD
М	30 -2563	T	331437	1	360%	17/1	7501 0010	1		C5828 878	D+1+T+SD	L	-2726	32615 D+L+SD	-	32376	.1153	55194 D-L-SD	34590	6771-	-9530 D
сH	31 -2560	7	31334	200	-304PH	/067-	13091 U+L+3U	2 6	1	Ϊ.	7703 D. L. T. SD	╀	2700		-	32.388	5 9011.	5394 D+L+SD	-34592	Ľ	3630 D-L-T1-SE
4	31] -2560.	٦	31334	250	-38409	1929	15691 1741-50	718		Ι		+	3671	247.45 Del 45P			L	47710ID+L+SD	34938	72.37	17290 D
તા	32 .2551.	?	2351511	85	38427	-2557	0892 D+L+5U	7		L	31//6 U+1-1-5D	1	1707	24442 D. L. 3	+	33045	l.	477101D+L+SD	.34939	.22.12	-17299 D-LT1-S
l4	32 -25513	7	2351511)-EQ	38431	-2531	6892 D+L+SD	7	32478 -66	-663 3172	31723 D-L-11+5D	4	27.70	24236 D-1-C-3D		1	2365	GSV TVU STAN	35018	2443	18-11-71-01 De201.
'n	33 -2549	7	21245	ე. <u>წ</u> ე	-38436	.2777	4302 D+L+5D	7		⊥	W U-1-11-50	26650	1	2.102010-0-2	1	1	1	45-15-05-15-05-	38817		
14	1103					1								1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -							1
į	721		21245	200	-12769	373	4951 D+L+SD	ŗ.			1 0-1-50	4	11/1-	7647-0 14767	+			00.1	20163		CIS+11-1+CL 0+UFC.

					1		ļ	Sea.3	>	-	S	Smin	Ĺ_	Mmax		-	2	-Jmin	
	_	XEUX.			4	Cmm	_	ìŀ		+	ľ		CHAINE	COUNTY INTO	Sept A Comment	2	(VAV)	(W.N.w)	and Case
inia.	SIN	STKN	MIKN.m)! Load Case	N(KN)	SKN	M(KN·m) Load Case	2 2 2	S(KN) M(K	(KN.m) [road Case	Z.		딁	4	323	j	1	1		ŀ
į		3	C101 D CO	497CA.	15.88	03+T+C	36781	185	25107 D-L-T1+SD	38331	262.	19531 D+L+SD	-35787	15551	416/2 10-1-50	3	1	Oct I -T+O squar-	2
Ş	10007-	1			l	2647 Pull LED	CHICAL .	Ŀ	23379 D-1, T1-SD	36341	:6066	16893 D+L+SD	-35665	1735	39359 D+L+SD	39275	.1783	-26488 D+L-T1+SD	1+50
ŝ	-28501		33710.65	1007b		OCCUPATION OF THE PARTY OF THE			Target N. 1 Truch	+	72 GE	169-8 [0+1+5]	35679	1708	393591D+L+SD	39276	1752	26488 D-LTI-SD	i.so
235	-23502	-1814	13571 D-EQ	-42809		US47 D4 C4SD	15/95	-143	1000	1	4307	Cono	35,800		33970 D+1,+T7+SD	SD 40132	2679	32006 D+L+SD	٥
236	-28713	-2747	33ZS D-EQ	-42831	3049	-13605 D+L+5D	-36542	/121/	15051 0-1-11-50	1		ŀ			Table D. Table	ł		22, 1-0, 300,05	ļ
72.6	24735	ı	3375 D.FO	-42836	3019	-13605 D+L+SD	-36564	-1192	14985 D - L - T1 - SD	-	4370	29/6/20-0-50	22025	1007	1	1	1	2000	١
3	CT /07-			17873	L	14484 Dal 45D	1729	-1426	12580 D-L-T1+SD	38306	-4619	2879 D+L+SD	35733	2892	31255 D+L+T1+SD	-	•		2
237	-780%>	2222	77.77	107		20.7.0	1,10	130,	US- 1-0 7462	FAREA	1000	CS+T+QLFES	-41856	226	31255 D+L+T1+5D	SD -46003	23,6	34731 D-1-5D	ő
237	34145	271	523 D-EQ	-49046		-16341 D+L+SD	/957b-	/65	30/00			C274 Pa. F. ch	41,663	601	7740 D-1 -T1-5D	55.57	128	39209 D+L-TX+SD	OS-X
23	340%	-250	548 D-EQ	-1 9059		-16082 D+L+SD	-42340	1353	6541 0-1-50	1,000	10011	201 2 201	37,17		C2-17- 1-0 09775	Ļ	ľ	39209 D+L X1+SD	es:
328	34005	275	54.8 D.EO	49062	2 -190	-16082 D-L-SD	42388	1384	6584 U+L+30	4,304		75.01.0		Ι		1		13.CT	20.5
i	ı	L	22 27 22	19081	ľ	18213 D+1.+SD	.42763	589	11614 D+L+T1+5D	1386U	2472	3077 (D-L-SD	41396	167-	3.381 D+C+1 143D	1]	171637	3
ij	_]	1	2	00.5	`	13.1.0	66867	27.0	11529 D+1.+T1+SD	-43817	-2436	3163 D-1-5D	-11409	269-	31301 D+L+T1-5D	SD 45862	-916	41094 D-C-T1-SD	1.5D
23	34029	-925	-1514 D-EQ	44000	⅃	1	- Trans		13.17	╀	ľ	A75 D-1 +5D	.41290	1580	29620 D-L-T1+SD	SD 45978	1783	43102 D+L71+SD	1÷80
2,0	33062	6361	3432 D.FO	49103	10161-	.20387 D+C+SD	477.08	705	102/0 0-11-20					l					

(5) Resuil of Check of Stress

		UNIT	'SECTION 1	SECTION 2	SECTION 3
DECK PL		mm	14	14	17
SIDE WEB P	L	mm	18	16	16
CENTER WEB	PL	mm	12	12	12
LFLG PL		ww	13	10	13
U RIB			320x240x6	320x240x6	320x240x6
PL RIB			140x14	140x14	140x14
MATERIAL OF E	DECK		SMA490AW	SMA490AW	SMA490BW
MATERIAL			SMA490AW	SMA490AW	SMA490AW
σ DECK		N/mm2	-77.5 < 210.0	-105.8 < 210.0	-102.5 < 210.0
σ WEB		N/mm2	-87.2 < 141.4	-102.8 < 172.4	118.9 < 167.1
ø LFLG		N/mm2	-87.5 < 88.1	88.5 < 210.0	133.1 < 210.0
τ MAX		N/mm2	-51.5 < 120.0	45.5 < 120.0	-59.1 < 120.0
Combined Stre	5585	N/mm2	0.21 < 1.20	0.25 < 1.20	0.40 < 1.20
Biaxial stress	DECK	N/mm2	0.99 < 1.20	0.77 < 1.20	0.70 < 1.20
condition	LFLG	N/mm2	0.94 < 1.20	0.97 < 1,20	1.08 < 1.20
Biaxial in plane	DECK	N/mm2	0.96 < 1.00	0.71 < 1.00	0.88 < 1.00
stress condition	LFLG	N/mm2	0.95 < 1.00	0.90 < 1.00	0.84 < 1.00

CHECK OF CENTER WEB

0.862 0.865,11 0.866,12

DESIGN RULES AN	DESIGN RULES AND SPECIFICATIONS FOR HIGHWAY BRIDGES GIVEN BY JAPAN ROA	AP AN FOAD ASSOCIATION												
								-sec-	1	-		r	ľ	
			169,239		169,239		171,237	171,237	173,235	173,235	173,235	175,233	175,233 CASE 11	175,233 CASE 17
	, and the same of		٦.	CASE	CASE P	CASE 2	1,	3	1	3		• 3	3	₃
			T	_	ŢŦ	Т	T	Т		1	Г			2552
		O(mm)	700 51	70 5	25	1, OK	2 0	2000	12 OK	12 OK	12 OK	12 OK	12 OK	12 OK
		C (mm)	2		,	9	*	۰	9	9	9	9	9	9
	SUFFERED FLAIE	(N/mm2)	114	172	9.2	4.4	26.1	32.2	21.5	18.6	17.3	4.2	27.5	23.7
3	ENED 14A1E	C (IN/mm2)	0.09	825	82.6	66.7	53.3	81.7	43.2	67.1	0.09	44.3	68.9	6.65
3	LEACH BLX/B	2 (N/mm2)	29.9	9.0	5.8	31.5	-5.2	6.6	37.9	-14.4	12.3	£.	.252	14.0
	0 15 02.	col(N/mm2)	151.1	154.5	153.8	150.8	155.3	153.7	148.6	156.4	152.7	149.1	157.4	152.1
	1		2950	010	0.630	0.528	1.098	0.916	0.123	1,215	0.795	0.230	1.366	91,20
	DIENT OF STRESS		1,018	1,040	1.036	3,016	1.046	1.035	1,003	1.053	1.029	1.006	1.063	1.025
	I ATE	t ren(mm)	15	8.9	8.9	9.1	8.8	6.9	9.2	8.8	9.0	9.2	8.7	0.6
			SMA490W	SMA490W S	SMA490W S	SMA490W SP	SMA490W S	SMA490W	SMA490W S	Shrangew S	SMA490W S	SMA490W S	SMA490W	SMA490W
		b riting)	l	957	140	140			140	140	140	140	140	140
	210	+ mm)	2	×	7	14	14	14	14	14	14	72	14	74
	200	(mm) e	2000	2010	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
<u> </u>	301		30 00 ot	10.00 OK	10.00 OK	10.06 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OX
			01.5	812	5	5.30	5.10	5.10	5.10	5.10	5.10	5.10	5.10	5.10
	DINAL NB	/zuralicurz/	20 07 01	10 09 81	10 A0 OK	19 65 OX	10 60 OK	19.60 OK	30 09K	19.60 OK	19.60 OK	39,60 OK	19.60 OK.	NO 09:61
CONCITUDINAL	SECTIONAL AREA OF LONGITUDINAL RIB	A Kem2	13 an OV	40 60		5	8	٤	Q.X	800	603	900	2	800
808	REQUIRED MOMENT OF INEKTIA OF LONGITUDINAL KIB	I 1 regl(cm4)	900	ST.	nno i	30	3	20.00	20 110	70.1	12.8. OK	1281 OK	12.81 OK	12.83 OK
	MOMENT OF INTERTY OF LONGITUDINAL RIB] 1(cm4)	1281 OK	X ISI	1281 OK	1281 OK	1281 OK	ier :	100 TO			NO 1071	300	1000
	RATIO OF CROSS SECTIONAL AREA OF LONGITUDINAL KIB	81	0.064	0.066	0.064	0.064	300	1000	390	1900	0.000	0.064	600.0	7000
	REQUIRED RELATIVE STIFFNESS RATIO OF LONGITUDINAL RIB 7.1	1	31.942	31.942	31.942	31.942	31.942	31.942	31.942	31,942	31,942	31,942	31.942	31.942
	ASPECT RATIO OF STIFFED PLATE	8	0.784	0.784	0.784	0.784	0.784	0.784	0.784	0.784	0.784	0.784	0.784	0.784
		0.0	3,726	3.726	3,726	3.726	3.726	3.726	3,726	3.726	3.726	3,726	3.7.26	3,726
	SOLACIONA	t Gram)	19.6	18.6	18.7	19.0	18.5	18.7	19.3	18.4	18.8	19.2	18.2	18.9
	T.DIMAT RIB	× 1. reul	19.967	19.967	19.967	19.967	19.967	19.967	19.967	19.62	19 967	19 62	19.067	19.967
			١.	SMA4DOW S	SMA400W S	SMA490W SI	SMA490W S	SMA490W	SMA490W	SMA490W S	SMA490W	SMA490W S	SMA490W	SMA490W
	ata pagyini	t tw(mm)	l	2	3.6	10	10	10	9	10	2	10	30	10
		Dtw(mm)	317	317	312	337	317	317	317	317	317	317	317	317
	TASE KUB	t tf(mm)	10	10	92	QI.	10	30	10	91	2	22	10	10
	WIDTH OF FLANGE AT TRANSVERSE RIB	b b(mm)	100	100	8	100	88	100	188	100	100	100	100	100
TRANSVEYSE KIB	RADIUS OF SCALLOP	R(mm)	35	35	38	35	35	35	35	35	35	38	33	32
	brw / t∰		31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31,7 OK	31.7 OK	31.7 OK
	w / /2) / rd S	10.5	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.588 OK	4.500 OK	4.500 OX	4.500 OK	4.500 OK	4.500 OX	X 00X
	ERTHA OF TRANSVERSE RIB	I t- req1(cm4)	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515	2515
		I Hem4)	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	10201
	COFSTIFFENED PLA	cal(N/mm2)	151,1	154.5	153.8	150.8	155.3	153.7	148.6	156.4	152.7	149.1	157.9	152.1
	ATT CHARM IS CARE AS CONTROL	(N/mm2)	120.0	120.0	120.0	120.0	120.0	120.0	126.0	120.0	120.0	120.0	120.0	120.0
	TACTOR OF CITA D CT PGG		5.521	5.521	5.521	5.521	5.521	5,521	5.521	5.521	5.521	5.521	5,521	5.521
CHECKOF HUCKINGOF	CALLON OF STREET, STRE	D'(mm)	425	425	53	425	425	425	425	52)	425	425	425	425
WEB PLATE	SPACING OF LONG LODING NO	a (mm)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
			39% OK		0.427 OK	0.379 OK	0.274 OK	0.490 OK	0.310 OK	0.304 OK	0.319 OK	0.274 OK	0.321 OK	0.285 0
	(\$ {\(\frac{1}{2}\) + {\(\frac{1}{2}\} + {\(\frac{1}{2}\) + {\(\frac{1}{2}\) + {\(\frac{1}{2}\} + {\(\frac{1}{2}\) + {\(\frac{1}{2}\) + {\(\frac{1}{2}\} + {\(\frac{1}{2}\) + {\(\frac{1}{2}\} + {\(\frac{1}{2}\} + {\(\frac{1}{2}\} + {\(\frac{1}{2}\) + {\(\frac{1}{2}\} + {\(\frac{1}\) + {\(\frac{1}\} + {\(\frac{1}\} + {\(\frac{1}\} + {\(\frac{1}\) + {\(\frac{1}\} + {\(- 1						╛				

						\$66.2	-						1	2	-	
		177,231	179,229		1 722,181	183,225	185,223	187,221	189,219	191,217	193,215	195,213	197,211	199,209	201,207	క్ల
		CASE	Ξ	11	CASE 11 C	Ξ	CASE 11	CASE 11	CASE 11	CASE	CASE 11	CASE 11	-	=	ᆲ	CASE 11
	OF STREET, PLATE	W04140W	Г	3	SMA490W SM	SMA490W	SMA490W S	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W S	SMA490W
	DESCRIPTION OF STREET PLATE	2555	_	2540	2540	2540	2546	2546	2553	2553	2553	2553	2553	2553	2553	2553
	ATE	1,	ď	10 OK	10 OK	to OK	10 OK	10 OK	10 OK	36 X	10 OK	10 QK	30 OK	16 OK	ta Q	36 QX
			٠		•	*	9	9	9	9	ş	9	9	Ŷ	9	9
•	NUMBER OF PANELS SEPARATED BY STIFF EVED 1 2012		H	2	7.5	18.6	32	17.7	2.4	19.3	4.0	28.1	13.3	40.7	26.0	0.0
	ENEDITALE	-	╀		- 2	8	63.0	75.3	79.8	20.0	75.0	63.0	717	65.6	9.62	89.2
23 X	IT EACH EDGE	-	+			ş	.72.6	82	-79.5	-86.3	-87.9	-78.0	1.06	-101.4	120.9	.134.2
		\downarrow	+	1.00.1	133.0	2	134.3	135.6	135.7	138.0	138.3	139.3	139.6	144.2	143.8	143.6
	R LOCAL BUCKLING OF STEPENED PLATE	-	╀	1 1	1 727	1 807	198	1.62	1.996	2147	21.2	2.238	2257	2.546	2.519	2.504
		1,569	╁	à	/6/1	/70"		21.1	31.	93.1	133	1 130	1341	1.172	1169	1.168
			+	/80.	7,0,7	100		1		\$2	2	3	8.1	7.9	5.5	7.9
	REQUIRED THICKINESS OF STIFFEINED PLATE Trequini		1	1	1.	L	١.	١.	Chenony	Chianowy	SKAAGOW	SMAASOW	SMA490W	SMA490W	SMA490W	SMA490W
	CRADE OF LONGITUDINAL RIB	SMA490W	W SMA490W				Г	1			9,	97	140			140
	WIDTH OF LONGITUDINAL KIB	2	140	140	92	92	148	140	190	2		:	7	-	-	-
	THICKNESS OF LONGITUDINAL MB		Ā	7	<u>-</u>	7	5	14	2						9,02	9986
	SPACING OF TRANSVERSE STIFFENERS	2000	-	2000	2000	2000	2000	2000	2000		1	T	7007	00017	2007	2000
	bs/tr \$ 10.5	10.0	10.00 OK	10.00 OK	16.00 OK	10.00 OK	10.00 OK	30.00 OK	10.00 QK		1		10.00 OK	10.60 OK	10.00 OX	10.00 OK
	TELEPORT AREA OF LONGITUDE	-	5.11	4.23	ន្	423	4.24	4.24	4.26	92.4	4.26	4.26	4.26	426	426	426
		-	ĕ	19,60 OK	19.6e OK	19,60 OK	19.66 OK	19.60 OK	19.60 OK	19.60 OK	19.60 OK	19.60 QK	19-60 OK	19.60 OK	19.60 OK	19.60 OK
LONCITUDINAL	SECTION AND TO THE PROPERTY OF	H		ş	2	493	491	491	684	489	489	489	489	489	489	489
NB BNB		-	ž	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK
		230.0		2200	200	0.077	2200	0.077	2/2010	0.077	0.077	0.077	0.077	0.077	0.077	0.077
	RATIO OF CROSS SECTIONAL AREA OF LONG! UDINAL NS 81	190.5	+	t	456	55.456	55.325	55.325	55.174	55.174	55.174	55.174	55.174	55.174	55.174	55.174
	REQUIRED RELATIVES THENESS KALIO OF LONG LODINAL ND 71	0.00	-	┼-	0.787	0.787	0.786	0.786	0.783	0.783	0.783	0.783	0.783	0.783	0.783	0,783
-	DPLAIE		╀	720	4774	4774	422	4272	4.269	4.269	4.269	4.269	4.269	4.269	4.269	4.269
		0.57	+		12.5	1,5	521	17.3	17.3	121	17.1	17.0	17.0	16.5	16.5	16.6
		7	+	╁	0001	1 283	21.715	21.215	27.079	21.079	21.079	21.079	21.079	21.079	21.079	21.079
	REQUIRED STIFFNESS RATIO OF LONGITUDINAL RIB 7 I- 1643	19.913	1	1	7	1	1.	110011	Chancola	Chandau	Chiadony	SMAAGW	SMA490W		SMA490W	SMA490W
		SMA4			Ţ		Γ	SNIAMSON	ALDE FAING	or or	10	9	2	l		10
	THICKNESS OF WEB AT TRANSVERSE RIB tw(mm)	-	10	01	or !	3 5	2 5	,	21.6	212	317	317	317	317	317	317
		$\frac{1}{1}$	317	317	317		317	46	} =	=	٤	٤	2	g	91	10
	RIB	+	10	2	2 5	2 9	2	2 2	Ę	9	ξ	92	ğ	100	100	300
TRANSVEISE KIB	WIDTH OF FLANGE AT TRANSVERSE RIB	+	136	100	B ;	3	36	S.	15	25	35	38	35	35	35	32
	RADIUS OF SCALLOP		50	5	3 2	3,0	31.7.0%	31.7 OK	31.7 OK	1	ľ		31.7 OK	31.7 OK	31.7 OK	31.7 OK
	9 49	6	5 3	20 00	20 000	20 003	1500 01	3 500 OK	4 500 OK	4.500	8 \$	Ů	4.500 OK	4.500 OK	4.500 OK	4.500 OK
		+	5	2000	4.00 ON	2000	100	1531	1518	_	<u> </u>	L	L	_	1538	1538
	VERSE RIB	ctm4)	+	1525	QC	5751	icei	1000	Ĺ	Ľ	٦	Ľ	֓֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֡֓֓֓֓֓֡֓֓֡֓֡		1º201 OK	19201 OK
	MOMENT OF INERTIA OF TRANSVERSE RIB		19201 OK	19201 OK	19201 OK	19201 OK	19201 UK	19201	1	1	\perp		i	1	14.2.8	1336
	ALLOWABLE STRESS FOR LOCAL BUCKLING OF STIFFENED PL 0 cal(N/mm2)	-	159.8	137.1	132.9	134.1	134.3	135.8	135.7	136.0	138.3	Crier	0,600	2000	1300	9000
	ALLOWABLE SHEAR STRESS (N/mm2)	_	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	1770.0	1,000	1500		1
TO ALIANO	_	5.5	5.521	5.519	5.519	5.519	5.520	5.520	3.521	5.521	5.521	5.521	3521	2,541	170.0	
BUCKLING OF	_	4	426	423	423	423	424	424	456	426	426	426	475	470	077	97
WEB PLATE			2000	2000	2000	2000	2000	2000	2000	2000	2000	5000	20002	2000	2007	71477
			Ř	0.426 OK	0.444 OK	0.392 OK	0.407 OK	0.333 OK	0.347 OK	K 0.265 OK	K 0.274 OK	0.230 OK	C UZM OK	0235 OK	0.289 OK	0.327 OK
	x(01/0cal)²+(1/1a)²≤1	-			-											

DESIGN RULES AN	DESIGN RULES AND SPECIFICATIONS FOR HICHWAY BRIDGES GIVEN BY 1APAN ROAD ASSOCIATION	NOITA										
							sec-1					
<u>.</u>		169,239	169,239	169,239	171,237	171,237	171,237	173,235	173,235	173,235	175,233	175,233
		CASE 2	CASE 5	9 BSVO	CASE 2	CASE 11	CASE 12	CASE 2	CASE 11	연	7	CASE 11
-	CRADE OF STIFFENED PLATE	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SNIA490W	SMA490W	SNAAGW	SMA490W
	WIDTH OF STIFFENED PLATE	988	988	826	988	988	888	886	878	986	926	988
	ATE	16 OK	16 OK	16 OK	16 OK	36 OK	16 OK	16 OK	16 OK	16 OK	16 OK	16 OK
	BY STIFFENED PLATE	2	7	2	7	5	2	7	2	7	7	2
		5.1	3.0	0.7	1.9	12.1	13.9	9.3	\$3	7.4	1.6	11.8
WEB		46.7	55.2	38.8	46.6	50.6	34.1	40.2	63.3	32.8	43.9	54.5
		31.7	32.7	9.3	33.1	28.1	10.4	38.2	32.0	14.5	39.9	28.4
	N V STRESS FOR LOCAL BUCKLING OF STREETENED PLATE	1743	176.4	187.0	173.6	177.3	186.1	169.7	178.7	180.5	170.2	180.6
	ı	_	0.408	0.760	0,290	0.445	0.734	0.050	0.494	0.558	160.0	0.560
	DIENTOFSTRESS	1.038	1.053	1.143	1.032	1.061	1.135	1.004	1.072	1.087	1.007	1.087
	PEON INCOMESSE OF STIFFFINED PLATE C reg(mm)	10.3	10.2	9.4	10.4	10.1	9,5	10.7	10.0	6.6	20.7	6.6
				SMA490W S	SMA490W s	SMA490W	SMA490W	SMA490W S	SMA490W	SMA490W S	SMA490W S	SMA490W
	(BEI) OF CONCENTRATION OF THE PROPERTY OF THE			140	140	140	140	140	140	140	0 2 1	140
	RIB	11	14	14	14	14	14	ž	14	7	7	72
	Sa	2000	2000	2000	2000	2000	2000	2000	2000	2900	2000	2000
	> 105	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK
- The second	DEV 17	2.40	7 90	2.80	2.90	7.90	2.90	2.90	7.90	7.90	7,90	7.90
		19.60 OK	19.60 OX	19.60 OK	30 09'61	19.60 OK	19.60 OK	19.60 OK	19.60 OK	_	19.60 OK	19.60 OK
LONGITUDINAL	SECTIONAL ANEA OF LONGITUDINAL AB		1027	1027	1027	1027	1027	1027	1027	1027	1027	1027
8 2		-	1283 OK	ı	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK
	9,0 17,40	6134	124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124	0.124
	RATIO OF CNOSSECTIONAL AREA OF LOWALI OCCIONE NO	34 800	7,802	34.807	34.807	34.807	34.807	34.807	34.867	34,807	34.807	34.807
	ALIO OF LOWER CONTACTOR	2 004	, 838	2.624	2.024	2.024	2.024	2.024	2.024	2,024	2.024	2.024
	ASPECT KATIOOP SILPLED TLATE	2 800	2 800	2.899	2.899	2.899	2.899	2,899	2.899	2.899	2.899	2.599
		21.6	[30,0	21.7	212	19.8	ន៍	20.9	202	223	20.7
	TABLE 3.2.6 (APANESE SPECIFICATION)	27.018	27.918	816.22	27.918	27.918	27.918	27.918	27.918	27,918	27.918	27.918
		١.	١.] _	L	SMA40nW	SMA400W	SMA400W S		SMA400W	SMA400W	SMA400W
	CRADE OF LIKE AND AND THE SECOND SECO	1	İ	Г	10	10	10	10	10	02	30	10
		317	317	317	317	317	317	317	317	317	317	317
	RSERIB	10	10	10	30	10	10	10	30	Q.	10	92
		100	100	100	100	100	100	200	100	901	100	100
TRANSVERSE NB		35	35	35	35	35	33	35	35	35	35	3.5
	013/11W	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	31.7 OK	ᆜ	31.7 OK	31.7 OK
	((b#-tiw)/2)/t# \$ 10.5	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 CK	4.500 OK	4.500 OK	4.500 OK
	IA OF TRANSVERSE RIB	, 63	63	S	3	83	33	83	33	8	83	8
		19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK
	OF STIFFENED FL	-	176.4	187.0	173.6	177.3	186.1	169.7	178.7	160.5	170.2	180.6
	ATTOWABLESHEAR STRESS t (N/mm2)	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	120.0	126.0	120.0
20 20 20 20	×	5.584	5.584	5.584	5.564	5.584	5.584	5.584	5.584	5.584	5.584	5.544
BUCKLINGOF	SPACING OF LONGITH DINAL RIB	494	494	161	+64	464	494	494	494	494	194	494
WEBPLATE		2000	2000	2000	2000	2000	2008	2000	2000	2000	2000	2000
		0.238 OK	0.270 OK	0.146 OK	0,240 CK	6,250 OK	0.163 OK	0.238 OK	0.302 OK	0.144 OK	0.249 OK	0.303 OK
	x(c1/cca) ² + (T/Ta) ² ≤ 1											

														٠		
<u> </u>						T	src-2				-		ŀ	Ī	-	
			177,231	922,621	181,227			187,221	•			10	_			ē,
			CASE 11	CASE 11	CASE 11	CASE 11	CASE 11	司	=	1	::	11	al I	::	=	C/SE a
	GRADE OF STIFFENED MATE		SMA490W	SMA\$90W	SMA490W S	SMA490W S	SMA490W S	SMA490W	SMA490W	SMAIROW	SMA490W S	SMA490W SI	SMA490W SN	SMA490W S	2	SMA490W
	WIDTH OF STIFFENED PLATE	b(mm)	988	986	\$96	988	\$96	886	986	886	888	830	988	986	928	288
	THICKNESS OF STIFFENED PLATE	t (mm)	16 OK	36 OK	16 OK	16 OK	16 OK	16 OK	16 OK	16 OK	16 OK	16 OK	16 OK	¥0 ĕ	36 OK	16 OK
<u>-</u> -	NI MORE OF PANELS SEPARATED BY STIFFENED PLATE	c	2	2	2	2	2	7	2	2	2	2	7	۲,	2	2
	SHEAR STRESS OF STIFFENED PLATE	7 (N/mm2)	153	0.6	3.0	7.5	13	7.2	2.3	7.8	1.6	12.3	5.8	17.8	11.4	0.0
WEB	KTRESS AT FACH FIXTE	0 14N/mm2)	74.8	77.4	78.3	72.3	9.92	63.5	72.4	63.1	67.5	49.5	56.2	20.0	609	683
	2.5 %	0.2(N/mm2)	26.1	21.8	21.4	16.8	16.6	11.5	11.3	5.5	5.0	1.2	.2.0	-10.0	-111	-12.0
	EL CAMPAGNES CONTROL DE LA CONTROL DA CONTROL DE LA CONTRO	o calfN/mm2)	163.4	181.0	185.9	167.2	187.8	189.5	189.9	192.3	192.8	196.4	196.8	202.9	202.3	202.0
	CHANTEN OF STORY	9	0.651	669.0	0.727	0.768	0.783	0.832	0.844	6.913	0.926	1.024	1.036	1.200	1.182	1.176
	CANDIAN OF STREET	4	1111	175	1133	1146	1,151	2917	1,171	1.195	1.290	1.237	1242	1.312	1.304	1301
	STOCKED BY CANDIDATE OF STREET	, cooling		5.	5.6	9.6	55	9.2	9.2	0.6	0.6	8.7	8.6	8.2	8.2	\$3
	Nacoural Price Section 1995		١.	١.,] _	١.,	١,		SMA490W S	SMA490W S	_	SMA490W SI	SMA490W SI	SMA490W SI	>	SMA490W
	LANDE OF LONGII DUINAL NIB		1	1	Γ	1	l	Г		140	140			140	140	140
	WIDTH OF LONGITURINAL NIS	Orimin)		7	2 2	2	=	7	7	14	Z	2	7	14	14	14
	HICKNESS OF LONG FOUND ALL NE	\$ (mm)	9000	2000	3000	Sillo Sillo	2800	2000	2000	2000	2003	2000	2000	2000	2000	2000
	STACING OF INACOVERSES IPPENEDS	G Arrang	10.00	10.00	10 00 OK	70 00 OX	10.00 OK	10.00 OK	10.00 OK	16.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10.00 OK	10:00 OK
	Cor E	A.1. a. a. a. a.	7.04	8	5	7.8	2.40	2.90	28	2.90	2.90	2.90	2.90	2.90	2.90	7.90
	NECOCKED SECTIONAL ANS A OF LONG TO MINAL AND	A Items	70 57 62	70.050	30 03 81	16 60 OK	10 66 OX	19.60 OK	19.60 OX	19.60 CK	19.60 OK	19.60 OK	19.66 OK	19.60 OK	19.60 OK	19.60 OK
LONGITUDINAL		A Henry	100	1001	2003	1027	26	1027	1027	1027	1027	1027	1027	1027	1027	1027
812	REQUIRED MOMENT OF INERTIA OF LONGIT UDINAL KIB	I i-regi(cm4)	201	30 0361	30 540	1261 OK	ž	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK	1281 OK
	MOMENT OF INEKTIA OF LONGITUDINAL NB	I (Cms)	707	1		12.0	201.0	P.2.0	1210	0.124	0 124	0.124	0.124	0.124	0.124	0.124
	RATIO OF CROSS SECTIONAL AREA OF LONGITUDINAL RIB	81	0.124	0.124	11, 74	575	671.75	200	20.00	20.00	203.72	20.00	24 807	708.12	34.807	34 807
	RECUINED RELATIVE STIFFINESS RATIO OF LONGITUDINAL RIB 71	3 7 1	34.807	34.867	34.807	34.807	34.60/	74.80/	78.90	79.50.v	04:00	200	200	181	700	2004
	ASPECT RATIO OF STIFFED PLATE	ŏ	2.024	2.024	2.024	2.024	2.024	2.024	1707	\$70.7	570.7	570.7	1,000	000	8	3,400
	CIUTICAL ASPECT RATIO	0.0	2.899	2.899	2.899	2,899	2.899	2.599	2.89	2.849	7.9%	7.833				:
	TABLE 3.2 6 ((APANESE SPECIFICATION)	t O(mm)	20.2	20.0	19.8	19.6	19.5	187	19.2	18.9	187	18.2	181	1 1	7, 1	
	REQUIRED STIPFINESS RATIO OF LONGITUDINAL RIB	71.req1	27.918	27.918	27.918	27.918	27.918	27.918	1	-	7	1	7		1	77.310
	GRADE OF TRANSVERSE RIB		SMA400W	SMA400W S	SMA400W S	SMA400W S	SMA400W S	SMA400W	SMA400W	SMAAOOW	_[.	.[<u>.</u> [SMA400W
	THICKNESS OF WEB AT TRANSVERSE RIB	t tw(mm)	10	2	92	22	9	9	10	10	e l	=	2	OT .	a !	9
-	WIDTH OF WEB AT TRANSVERSE NIB	b1w(mm)	317	317	317	317	312	317	317	317	317	317	317	312	4	A :
	THICKNESS OF FLANCE AT TRANSVERSE RIB	t tt(mm)	02	92	2	20	10	2	2	10	2	e l	2	2 3	2 3	n e
TE ANGVERGE EIR	WIDTH OF FLANCE AT TRANSVERSE RIB	Dtf(mm)	100	100	100	100	81	<u>8</u>	100	8	001	81		3 2	200	201
	RADIUS OF SCALLOP	A (mm)	35	35	8	35	35	25	35	38	32	8	8	3	6	6 4 6
	btw/ttw ≤ 46		31.7 CK	31.7 OK	31,7 OK	31,7 06	31.7 QK	31.7 OK	31.7 OK	ł	31.7 OX	31.7 OK	3 3	25 /16	AD 716	200 000
	((bu-tw) /2) /t# ≤	10.5	4.500 OK	4.50fi OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.500 OK	4.58 OK	4.500 OK	4.500 QK	4.580 UK	A See Ch
	REQUIRED MOMENT OF INEKTIA OF TRANSVERSE RIB	I t-req1(cm4)	3	2	63	53	8	3	3	83	3	3	83	3	3	63
	MOMENT OF INERTIA OF TRANSVERSE RIB	I t(cm4)	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	19201 OK	1920) OK	19201 OK	30 10261	14201 OK
	A I DWARI E STRESS FOR LOCAL BLXCKLING OF STIFFENED PL/ o cal(N/mm2)	i o cal(N/mm2)	183.4	184.9	185.9	167.2	187.8	189.5	189.9	1923	192.8	196.4	196.8	202.9	2023	202.0
	ALLOWARI ESHEAR STRESS	\$ (N/mm2)	120.0	120.0	120.0	120.0	120.0	120.0	120.0	129.0	120.0	120.0	120.0	120.0	120.0	120 0
a C ALGARA	_	×	5.584	5.584	5.584	5.584	5.584	5.584	5.584	5.544	5.564	5.584	5.584	5,584	5.584	5.584
BUCKLINGOF		(mm), q	494	494	494	494	464	494	464	¥	494	194	4.8	25	\$0.5	707
WEB PLATE	_	a.'(mm)	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
	$(2-0.1/2 \times (0.1/0 \text{ cal}) - 0/2$		0.331 OK	0.314 OK	0.333 OK	0.299 OK	0.313 OK	0.269 OK	0.282 OK	0.232 OK	0.245 OK	0,166 OK	0.152 OK	0.157 OK	0.186 OK	0.207 OK
	x(01/0ca)2+(1/2a)2 \$ 1															

3.8.4 Design of Diaphragm

(1) Design Concept

Design of diaphragm is as follows.

- i) action of floor system
- ii) action of girder(diaphragm at cable anchorage)

(2) Section force due to action of floor system

It calculates section forces that web point of main girder is continuous and supported by beam.

1) Loading Width of load is 2m between diaphragms.

dead load pavement
$$22.5 \text{ kN/n} \times 0.080 \times 2.000 = 3.60 \text{ kN/m}$$
 concrete median barrier $7.0 \text{ kN/n} \times 2.000 = 14.00 \text{ kN}$ concrete + steel barrier $4.0 \text{ kN/n} \times 2.000 = 8.00 \text{ kN}$ steel weight $5.5 \text{ kN/n} \times 2.000 = 11.00 \text{ kN/m}$

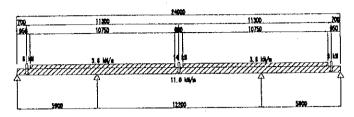
live load
$$P = 100 \text{ kN } \text{ x } (1 + i)$$

end span
$$P = 100 \text{ x} (1 + 0.358) = 136 \text{ kN}$$

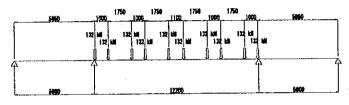
intermediate span $P = 100 \text{ x} (1 + 0.322) = 132 \text{ kN}$
intermediate support $P = 100 \text{ x} (1 + 0.340) = 134 \text{ kN}$

end span
$$L = 5.900$$

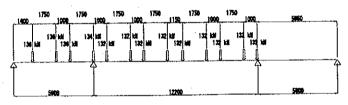
 $i = \frac{20}{50 + L} = \frac{20}{50 + 5.900} = 0.358$


intermediate span L = 12.200

$$i = \frac{20}{50 + 1} = \frac{20}{50 + 12.200} = 0.322$$


intermediate support
$$i = (0.358 + 0.322)/2 = 0.340$$

2) Figure of Loading

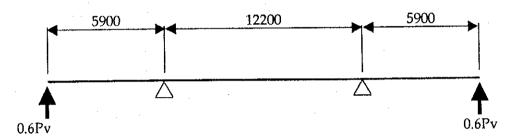

1. DEAD LOAD

Z. LIVE LOAD weet

3, LIVE LOAD OMEZ

. 4 IIVE IDĀD mma

3) Added of section force


	M(kN·m)	S(kN)
end support	. 0	228
end span	362	92
intermediate support	-1179	641
intermediate span	1011	7

(3) Section force due to action of main girder

Design of diaphragm at cable anchorage uses load of cable tensions. Ratio of partial is as follows.

	ratio of partial
web at cable anchorage	0.40
next transverse rib	0.25
diaphragm at cable anchorage	0.60

Design of diaphragm at cable anchorage shall be checked section force of continuous beam that center web point of main girders is as support.

	a comp	onent by	cable	section f	orce of cro	ss beam
	Px	Py	Pz	N(kN)	M(kN m	S(kN)
C35,C50	3264	189	1846	-113	6534	1107
C36,C49	2298	127	1249	<i>-</i> 76	4421	749
C37,C48	2459	129	1289	-78	4563	773
C38,C47	2769	140	1405	-84	4975	843
C39,C46	3123	151	1539	-91	5448	923
C40,C45	3437	161	1648	-96	5835	989
C41,C44	4385	198	2052	-119	7263	1231
C42,C43	4797	210	2195	-126	7769	1317

where

Px: component of longitudinal direction

Py: component of transverse direction

Pz: component of vertical direction

(4) Design of effective width

1) Effective width of floor system action

Design of effective width shall be checked form of bending moment by \lceil Japanese spec \rfloor . Form of bending moment is calculated by continuous beam

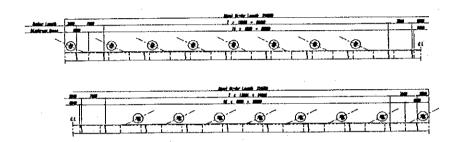
that web of main girders is as support.

mat web of man	L	2 x b	b	equation	b/L	λ	$2 \times \lambda$
end support	4720	2000	1000	(8.3.1)	0.21	676	1353
end span	4720	2000	1000	(8.3.1)	0.21	676	1353
intermediate suppor		2000	1000	(8.3.2)	0.28	519	1039
intermediate span	7320	2000	1000	(8.3.1)	0.14	827	1654

2) Effective width of main girder action(diaphragm at cable anchorage)

Design of effective width shall be checked form of bending moment by <code>\GammaJapanese spec_J</code> . Form of bending moment is calculated by cantilever beam that center web point of main girders is as support.

	L	2 x b	b	equation	b/L	λ	2 x λ
end span	11800	2000	1000	(8.3.2)	0.08	821	1642
intermediate span	7320	2000	1000	(8.3.1)	0.14	827	1654


(5) Result of Stress Check

Σσbl N/mm2

Combined Stress

N/mm2

Stress due to action of floor system Intermediate Intermediate Allowable End Support End Span Support Span 0 kN N Sectional Force -1179 1011 362 0 М kNm 228 92 641 kN 0.0 O.K 0.0 O.K 0.0 O.K 0.0 O.K <140 N/mm2 σt N/mm2 -9.7 O.K 25.4 O.K -14.1 O.K σbu N/mm2 0.0 O.K <140 N/mm2 17.0 O.K 11.9 O.K <140 N/mm2 σbl N/mm2 -29.6 O.K 0.0 O.K 4.8 O.K 23.0 O.K 0.2 O.K < 80 N/mm2 21.2 O.K N/mm2 Stress 25.4 O.K -29.6 O.K -14.1 O.K 17.0 O.K 0.0 O.K -9.7 O.K <140 N/mm2 Σ σ bt N/mm2

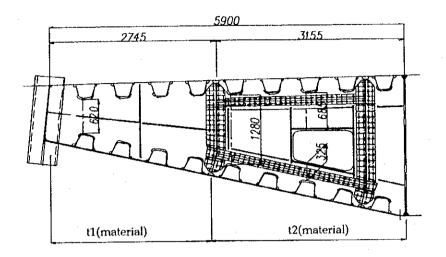
11.9 O.K

0.01 O.K

0.13 O.K

0.01 O.K

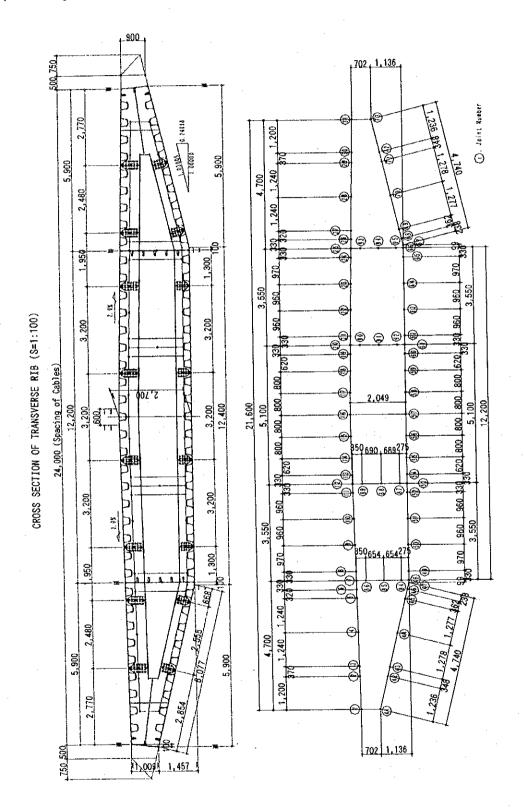
0.0 O.K


0,07 O.K

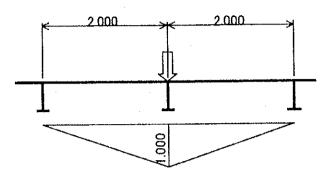
<140 N/mm2

<1.2 N/mm2

	•	Stress du	ie to action of r	nain girder		
		C35,C50	C36,C49	C37,C48	C38,C47	Allowable
78	N kN	-113	-76	-78	-84	
Sectional Force	M kNm	6534	4421	4563	4975	
£ 6	S kN	1107	749	773	843	
တိ		•				
	σt N/mm2	-1.5 O.K	-1.0 O.K	-1.1 O.K	-1.2 O.K	<140 N/mm2
	σbu N/mm2	-88.2 O.K	-59.7 O.K	-63.4 O.K	-69.2 O.K	<140 N/mm2
	σbl N/mm2	92.2 O.K	62.4 O.K	76.7 O.K	83.6 O.K	<140 N/mm2
92	τ N/mm2	37.7 O.K	25.5 O.K	26.3 O.K	28.7 O.K	< 80 N/mm2
Stress						
ਲਿ	Σσbι N/mm2	-89.7 O.K	-60.7 O.K	-64.6 O.K	-70.4 O.K	<140 N/mm2
	Σσbl N/mm2	90.6 O.K	61.3 O.K	75.5 O.K	82.4 O.K	<140 N/mm2
	Combined Stres					
	K N/mm2	0.64 O.K	0.29 O.K	0.40 O.K	0.47 O.K	<1.2 N/mm2
		C39,C46	C40,C45	C41,C44	C42,C43	Allowable
-	N kN	-91	-96	-119	-126	
Sectional Force	M kNm	5448	5835	7263	7769	
. Š Č	S kN	923	989	1231	1317	
\%						
	σt N/mm2	-1.3 O.K	-1.4 O.K	-1.5 O.K	-1.6 O.K	<140 N/mm2
	σ bu N/mm2	-75.8 O.K	-81.1 O.K	-85.1 O.K	-91.0 O.K	<140 N/mm2
i	σbl N/mm2	91.5 O.K	98.0 O.K	100.3 O.K	107.3 O.K	<140 N/mm2
l w	τ N/mm2	31.4 O.K	33.7 O.K	41.9 O.K	44.9 O.K	< 80 N/mm2
Stress						
S.	Σ σ bt N/mm2	-77.1 O.K	-82.5 O.K	-86.6 O.K	-92.6 O.K	<140 N/mm2
	Σ σ bl N/mm2	90.2 O.K	96.6 O.K	98.8 O.K	105.7 O.K	<140 N/mm ²
]	Combined Stres	SS				
	K N/mm2	0.57 O.K	0.65 O.K	0.77 O.K	0.88 O.K	<1.2 N/mm2
						


(6) Check of Shear Stress of Diaphragm at Stay Cable Anchorage

Check of	Shear S	tress of	Diapl	ragm at S	tay Cable Anch	orage					
	S(kN)	w1	t1	GRADE1	SHEAR STRESS	(N/mm²)	w2	ŧ2	GRADE2	SHEAR STRESS	(N/mm²)
D1.D34	1107	620	15	SMA490W	119 <	120	1010	11	SMA490W	100 <	120
D3,D32	749	620	11	SMA490W	110 <	120	1010	11	SMA490W	67 <	120
D5.D30	773	620	11	SMA490W	113 <	120	1010	11	SMA490W	70 <	120
D7.D28	843	620	15	SMA490W	91 <	120	1010	11	SMA490W	76 <	120
D9,D26	923	620	15	SMA490W	99 <	120	1010	11	SMA490W	83 <	120
D11,D24	989	620	15	SMA490W	106 <	120	1010	11	SMA490W	89 <	120
D13,D22		620	- 18	SMA490W	110 <	120	1010	11	SMA490W	111 <	120
D15,D20		620	18	SMA490W	118 <	120	1010	11	SMA490W	119 <	120


3.8.5 Design of Transverse Rib

(1) Analysis Model

(2) Loading

1) Effective Loading width for longitudinal direction Effective loading width was considered as spacing of each transverse rib (2.0m).

2) Dead Load

Asphalt Pavement:

 $2.30 \times 0.080 \times 2.000 = 0.714 \text{ tf/m} (7kN/m) \times 2.000 =$

0.368 tf/m 1.428 tf

Concrete barrier : 0. Concrete + steel barrier :

r: 0.408 tf/m (4kN/m) x 2.000 =

0.816 tf

Unit weight of Steel:

 $0.550 \text{ tf/m}^2 \times 2.000$

1.1 tf/m

3) Live Load

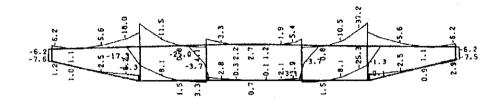
 $P=10.0 \text{ tf } \times 1.000 \times (1+i)$

where:

i:

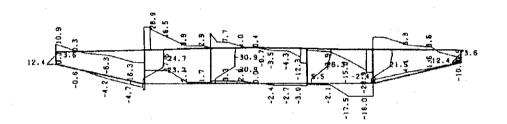
Impact Coefficient

(3) Section Force at Transverse Rib and Vertical Member


Design Section Force [Dead load + Live load(include impact)]

Design Section Force (Dead to		N (tf)	M (tfm)	S(tf)	
Upper transverse rib	6	24.13	-16.65		Nmax
- PF	16	-50.89	15.66		Nmin
	11	-9.09	23.78		Mmax
	8	-9.4	-37.26		Mmin
·	- 8			37.77	Smax
Lower transverse rib	57	50.8	3.08		Nmax
	46	-25.76	-7.83		Nmin
	52	8.73	32.62		Mmax
	50	8.73	-33.02		Mmin
	49			23.85	Smax
Vertical member	89	-0.17	-4.45		Nmax
	84	-71.21	14.22		Nmin
	88	-20.79	25.88		Mmax
	89	-13.2	-32.68		Mmin
	89			-42.07	Smax

(4) Sectional Forces

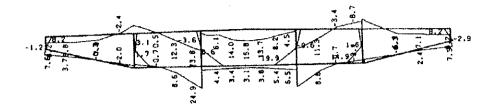

Minimum Summary

Bending Moment

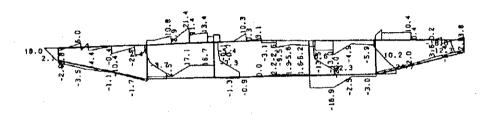
--- 60.0tm

Shear Force

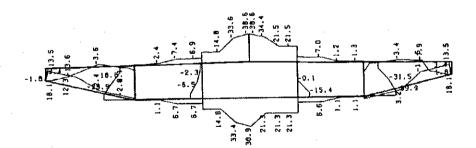
---- 40.0t


Axial Force

----- 60.0t


Maximum Summary

Bending Moment


40.0tm

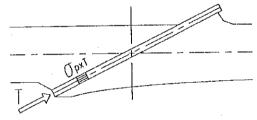
Shear Force

40.0t

Axial Force

____ 40.0t

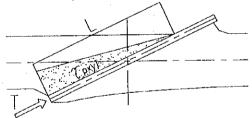
(5) Result of Stress Check at Transverse Rib


	Upper	Lower
σN	51 kgf/cm2	56 kgf/cm2
σMu	1350 kgf/cm2 < σ ca	-1364 kgf/cm2 < σ ca
σMl	-770 kgf/cm2	893 kgf/cm2
σu	1401 kgf/cm2 < σ ca	-1309 kgf/cm2 < σ ca
σl	-719 kgf/cm2	949 kgf/cm2
τ	0 kgf/cm2	0 kgf/cm2
τν	0 kgf/cm2	0 kgf/cm2
τh	0 kgf/cm2	0 kgf/cm2
σса	2100 kgf/cm2	-1715 kgf/cm2

3.8.6 Design of Cable Anchorage

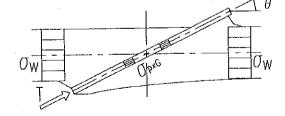
- (1) Design Concept
- 1) Design of Steel Pipe at Anchorage
- a) Stress of Steel Pipe at Cable Anchorage
 - · Normal Stress due to Action as a Tension of Cable:
 - · Shear Stress due to Action as a Tension of Cable : τ_{pxyT}
 - · Normal Stress due to Action as a Main Girder
 - $\cdot \Sigma \sigma_{px} = \sigma_{pxT} + \sigma_{pxG} < \sigma_{a}$
 - $\cdot \sum \tau_{pxy} = \tau_{pxyT}$
 - $-\frac{\sum \sigma_{pxy}}{\sigma_{a}})^{2} + \left(\frac{\sum \tau_{pxy}}{\tau_{a}}\right)^{2} < 1.2$
 - σ_a: Allowable Normal Stress
 - τ_a :Allowable Shear Stress
- b) Method of Stress Calculation
- i) Normal Stress due to Action as a Tension of Cable: σ pxT

$$\sigma_{pxT} = \rho_{p1} \times \frac{T}{A_p}$$


- ρ_{p1} : Foctor of Stress Concentration
- T: Tension of Cable
- Ap :Sectional Area of Steel Pipe

ii) Shear Stress due to Action as a Tension of Cable: r pxyT

$$\tau_{pxyT} = \frac{T}{2 \times L \times t_p}$$


- :Tension of Cable
- :Thickness of Steel Pipe
- :Effective Length of Steel Pipe

iii) Normal Stress due to Action as a Main Girder: σpxG

$$\sigma_{pxG} = \rho_{p2} \times \sigma_{w} \times \cos^{2} \theta \times \frac{t_{w}}{t_{p}}$$

- ρ_{p2} : Factor of Stress Concentration
- σw: Normal Stress due to Action as a Main Girder
- :Angle of Stay Cable
- :Thickness of Web Plates
- :Thickness of Steel Pipe

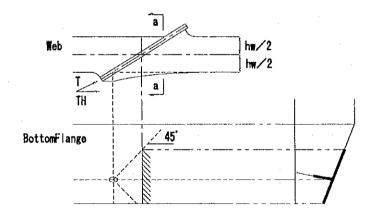
2) Design of Web at Cabie Anchorage

- a) Stress of Web at Cable Anchorage
 - Compressive Stress due to Horizontal Component of Cab: σ_{wxT}
 - Shear Stress due to Vertical Component of Cable : τ_{wxyT}
 - Compressive Stress due to Action as a Main Girder : $\sigma_{\,wxG}$
 - Shear Stress due to Action as a Main Girder : τ_{wxyG}

$$\cdot \Sigma \sigma_{wx} = \sigma_{wxT} + \sigma_{wxG} < \sigma_{a}$$

$$\bullet \; \Sigma \; \tau_{\; wxy} \; = \; \tau_{\; pxyT} \; \; + \; \tau_{\; pxyG} \qquad \qquad < \; \tau_{\; a}$$

$$\cdot \left(\frac{\sum \sigma_{\text{wx}}}{\sigma_{\text{a}}}\right)^2 + \left(\frac{\sum \tau_{\text{wxy}}}{\tau_{\text{a}}}\right)^2 < 1.2$$


- σ_a : Allowable Normal Stress
- τ_a : Allowable Shear Stress

b) Method of Stress Calculation

i) Compressive Stress due to Horizontal Component of Cable: σ wxT


$$\sigma_{\text{wxf}} = \frac{3}{4} \times \frac{T_{\text{H}}}{A_{\text{e(a)}}}$$

- T_H: Horizontal Component of Cable
- $A_{\text{e(a)}}\!:\!\text{Effective}$ Sectional Area of Main Girders

ii) Shear Stress due to Vertical Component of Cable: τ_{wxyT}

$$r_{wxyT} = \frac{\alpha \times T_v}{h_w \times t_w}$$

 T_{v} : Vertical Component of Cable

h_w: Width of Web Platest_w: Thickness of Web Plates

α :Distribution factor of Vertical Force

iii) Compressive Stress and Shear Stress due to Action as a Main (: owxG, vxxyG

$$\sigma_{\text{wxG}} = \sigma_{\text{w}} \times \frac{A_{\text{o}}}{A_{\text{e}}}$$

 σ_w :Compressive Stress due to Action as a Main Girder before Reinforced

A. : Effective Sectional Area of Main Girders before Reinforced

Ae : Effective Sectional Area of Main Girders After Reinforced

$$\tau_{wxyG} = \tau_w \times \frac{t_{wo}}{t_w}$$

 $\tau_{\rm w}$: Shear Stress due to Action as a Main Girder before Reinforced

 t_{wo} :Thickness of Web Plates before Reinforced

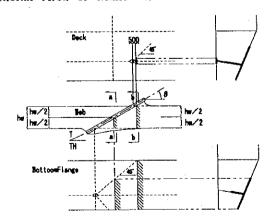
tw : Thickness of Web Plates After Reinforced

3) Design of Deck and Bottom Flange

a) Stress of Deck and Bottom Flange at Cable Anchorage

٠,	, ,		Deck		Botto	m Flange
	Longitudinal Stress due to Horizontal Component of G	Cal	:	σ _{DxT}	: (^J FxT
	Transverse Stress due to Vertical Component of Cable	:	:	σ _{DyT}	: •	^J FyT
	Shear Stress due to Horizontal Component of Cable		:	₹ Dxy1	:	r _{Fxy} r
•	Longitudinal Stress due to Aaction as a part of main	ı G	:	σ _{DxG}	: (J FxG
•	Shear Stress due to Aaction as a part of main Girde	r	:	τ _{Dxy} (:	τ _{Fxy} G

Deck
$$\begin{array}{rcl} \cdot \; \Sigma \; \sigma_{Dx} & = & \sigma_{DxT} \; + \; \sigma_{DxG} \; < \; \sigma_{ca} \\ \cdot \; \Sigma \; \sigma_{Dy} & = & \sigma_{DyT} & < \; \sigma_{ca} \\ \cdot \; \Sigma \; \tau_{Dxy} & = & \tau_{DxyT} \; + \; \tau_{DxyG} \; < \; \tau_{a} \\ \cdot \; \left(\; \frac{\sum \sigma_{Dx}}{\sigma_{a}} \; \right)^{2} \; - \; \left(\; \frac{\sum \sigma_{Dx}}{\sigma_{a}} \; \right) \; \times \; \left(\; \frac{\sum \sigma_{Dy}}{\sigma_{a}} \; \right) \; + \; \left(\; \frac{\sum \sigma_{Dy}}{\sigma_{a}} \; \right)^{2} \; + \; \frac{\sum \tau_{Dxy}}{\tau_{a}} \; \right)^{2} \\ < 1.2 \end{array}$$

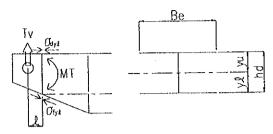

b) Method of Stress Calculation

i) Longitudinal Stress due to Horizontal Component of Cable: σ_{DxT} , σ_{ExT}

$$\sigma_{\,\mathrm{DxT}} \quad = \frac{T_{\mathrm{H}}}{A_{\mathrm{e(b)}}} \qquad \qquad \sigma_{\,\mathrm{FxT}} \, = \frac{3}{4} \; \times \; \frac{T_{\mathrm{H}}}{A_{\mathrm{e(a)}}} \label{eq:sigma_fit}$$

:Tension of Cable T_H

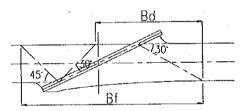
:Effective Sectional Area of Main Girders $A_{e(a,b)}$



ii) Transverse Stress due to Vertical Component of Cable : σ_{DyT} , σ_{FyT}

$$M_T = 0.4 \times T_v \times L$$

$$\sigma_{DyT} = \frac{M_T}{I_D} \times y_u$$


$$\begin{split} \sigma_{\,DyT} & = \frac{M_T}{I_D} \times y_u \\ \sigma_{\,FyT} & = \frac{M_T}{I_D} \times y_L \end{split}$$

- :Vertical Component of Cable T_v
- :Momennt of Inrtia of Section ID
- :Effective Width of Flanges Вe
- iii) Shear Stress due to Horizontal Component of Cable: T DxyT, T FxyT

$$\tau_{\text{DxyT}} = \tau_{\text{FxyT}} = \frac{T_{\text{H}}}{B_{\text{D}} \times T_{\text{D}} + B_{\text{F}} \times T_{\text{F}}}$$

- :Horizontal Component of Cable T_{H}
- :Effective Length of Shear Stress B_D , B_F
- :Thickness of Deck t_D
- :Thickness of Bottom Flange

iv) Longitudinal Stress and Shear Stress due to Aaction as a part of main Girder: $\sigma_{D(F)xG}$, $\tau_{D(F)xG}$

$$\begin{array}{llll} \sigma_{\,D(F)xG} & = & \sigma_{\,D(F)x} & \times & \frac{A_o}{A_e} \\ \\ \tau_{\,D(F)xyG} & = & \tau_{\,D(F)xy} & \times & \frac{T_{D(F)O}}{T_{D(F)}} \end{array}$$

- :Longitudinal Stress and due to Aaction as a part of main Girder
- :Effective Sectional Area of Main Girders (before Reinforced) A_o :Effective Sectional Area of Main Girders (After Reinforced) A_e
- :Shear Stress due to Action as a Main Girder before Reinforced $\tau_{D(F)xy}$
- :Thickness of Flange Plates before Reinforced t_{D(F)O}

(2) Dimension of Stay Cable

						Cable	ole			
			C35	G36	C37	C38	C39	C40	C41	C42
Angle of Stay Cable	θ xz	(rad)	0.514663	0.497813	0.482902	0.469645	0.457807	0.447196	0.437652	0.429041
	θyz	(rad)	1.468767	1.469791	1.470796	1.471783	1.472751	1.473702	1.474635	1.475551
	θxy	(rad)	0.057834	0.055025	0.052558	0.050373	0.048426	0.046680	0.045104	0.043675
	θ 12	(rad)	0.513946	0.497178	0.482334	0.469133	0.457342	0.446771	0.437261	0.428680
Tension in Stay Cable	Working Tension	(<u>K</u> Z)	3750	2615	2776	3105	3482	3812	4841	5275
	Design load	(<u>K</u> Z)	3755	2619	6222	3108	3485	3815	4845	5280
Kind of Cabule	Nos of Strand		375	308	308	30S	375	375	455	£08
Ultimate Strength of Cable		(KZ)	4295	4295	4295	4295	4295	4295	4295	5224
Component of Tension	Vertical Force: Tv	Pz(kN)	1846	1249	1289	1405	1539	1648	2022	2195
	Horizontal force: Th	Px(kN)	3264	2298	2459	2769	3123	3437	4385	4797
	Out Plane: Tc	Py(kN)	189	127	129	140	151	161	198	210

(3) Design of Cable Anchorage

1) Case of omax

a) Design of Steel Pipe at Anchorage

										ſ
						Cable	le.		Ì	
			C35	36	37	G8	සො	C40	C41	
Action as a Tension of Cable: \(\sigma\) p1	Kind of Cable		375	308	30E	30S	375	375	455	202
	Factor of Stress Concentration: pp1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1:1
$a \text{ol} = a \text{ol}^* T / A \text{o}$	Tension in Stay Anchorage:T	(kN)	4558.0	4558.0	4558.0	4558.0	4558.0	4558.0	5830.0	5830.0
	Thickness of Steel Pipe:tp	(mm)	32	32	32	32	32	32	32	32
	Radius of Steel Pipe: ϕ	(mm)	514	514	514	514	514	514	514	514
	Sectional Area of Steel Pipe: Ap	(mm2)	48456	48456	48456	48456	48456	48456	48456	48456
	Compressive Stress: \(\sigma\)	(N/mm2)	103	103	103	103	103	103	132	132
Action as a part of main Girders: \(\sigma\) p2	Factor of Stress Concentration: pp2	1.3	1.3	1.3	1.3	1.3	13	1.3	1.3	13
	Stress	(N/mm2)	83	75	78	77	74	70	22	61
$\sigma_{D2} = \rho_{D2} \sigma_{W}(\cos\theta)^{2}(t_{W}/t_{D})$	Thickness of Web Plates:tw	(mm)	16	16	16	16	16	16	16	16
	Angle of Stay Cable: θ	(rad)	0.517	0.500	0.485	0.472	0.460	0.449	0.439	0.431
	Thickness of Steel Pipe:tp	(ww)	32	32	32	32	32	32	32	٠
	Compressive Stress: σp^2	(N/mm2)	31	37	40	40	39	37	33	33
Compound Stress: &p	rd o	(N/num2)	103	103	103	103	103	103	132	132
	σ p2	(N/mm2)	31	37	40	40	39	37	30	33
a v == c v 1+ c v 2 ≤ c a	άρ	(N/mm2)	135	141	143	143	142	140	163	165
· ·	g	(SCW480)	170	170	170	170	170	170	170	170
	Decision		OK	OK	OK	ΟĶ	OK	Š	β	용
Stress: 7	Factor of Stress Concentration: ρ	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3	1.3
	Tension in Stay Cable: T	(XX)	4558.0	4558.0	4558.0	4558.0	4558.0	4558.0	5830.0	5830.0
$t = o *T/(2^*L^*to) < t a$	Effective Length of Steel Pipe:L	(mm)	2371	2439	2505	2566	2625	2680	2732	2782
	Thickness of Steel Pipe:tp	(mm)	32	32	32	32	32	32	32	32
	Shear Stress: t	(N/mm2)	39	·86	37	36	35	35	43	43
	4 8	(SCW480)	100	100	100	100	100	100	100	100
unrai	Decision		OK	Ŗ	οK	οĶ	Q X	Ä	ğ	OK X
Check for Combined Stresses	ďρ	(N/mm2)	135	141	143	143	142	140	163	165
•	ga	(SCW480)	170	170	170	170	170	170	170	170
$(\alpha p/\sigma a)^2 + (\tau/\tau a)^2 \le 1.2$	į.	(N/mm2)	39	38	37	36	35	35	43	43
	1 8 1	(SCW480)	100	100	100	100	100	138	28	188
	Combined Stresses≤1.2		0.78	0.83	0.85	0.84	0.83	0.80	1.10	1.12
	Decision		OK	ş	8 X	Š K	QK	ÖK	OK K	S S

b) Design of Web at Cable Anchorage

material material		35	36	C37	8	085	97	170	C42	
mat		3	•	}	3	3	7	ij	, ,	
ma	material	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W SMA490W SMA490W SMA490W SMA490W SMA490W before Reinforced
	erial		SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W SMA490W SMA490W SMA490W SMA490W SMA490W After Reinforced
Wi	Width of Web Plates: Hw (num)	1045	1045	1045	1045	1045	1045	1045	1045	
Į.	Thickness of Bottom flange Plates:tf (mm)	13	13	10	10	10	10	13	13	before Reinforced
	Thickness of Bottom flange Plates:tf (mm)	13	13	10	10	. 10	10	13	13	After Reinforced
rois:		16	16	16	16	16	16	16	16	before Reinforced
1	Thickness of Web Plates: tw' (mm)	19	20	27	26	26	24	26	28	After Reinforced
1-	Radius of Steel Pipe: d (mm)	514	514	514	514	514	514	514	514	and the second s
Effe	Effective Length of Steel Pipe: LS1 (mm)	2370.7	2439.5	2504.7	2566.5	2625.0	2680.2	2732.4	2781.6	Rear of Steel Pipe
Effe		3632.2	3744.3	3850.5	3950.8	4045.6	4135.0	4219.3	4298.8	Front of Steel Pipe
Effe	Effective Sectional Area of Main Girders: Ae (mm2)	20309	20795	18276	18605	18913	19203	22809	23141	before Reinforced Ae=
Effe	Effective Sectional Area of Main Girders: Ae' (mm2)	21877	22885	24023	23830	24138	23383	28034	29411	After Reinforced Hw*tw/2+Hw*tt/2/tan#
Am	Cable: 6	0.517	0.500	0.485	0.472	0.460	0.449	0.439	0.431	
	n in Star	4558.0	4558.0	4558.0	4558.0	4558.0	4558.0	5830.0	5830.0	manufact and analytic is grainly separate.
oldi. Se	Force: V (kN)	2252.5	2185.1	2124.8	2070.9	2022.4	1978.6	2480.2	2434.4	V≖T*sin θ
1	Horizontal force: H (kN)	3962.5	4000.1	4032.4	4060.4	4084.8	4106.1	5276.1	5297.4	H=T*cos θ
H	Horizontal force: Hx (kN)	2971.9	3000.1	3024.3	3045.3	3063.6	3079.6	3957.1	3973.1	Hx3/4*H
+	σ i=Hx/Ae' (N/mm2)	136	131	126	128	127	132	141	135	
'	0 w (N/mm2)	63	75	78	77	74	8	57	61	Action as a part of main Girders
1	σο=σw*β (N/mm2)	59	89	09	60	58	27	46	48	β=Ae/Ae'
	Σ σ = σ i+ σ ο (N/nm2)	195	199	185	188	185	189	187	183	
ıqm P	σ a (N/mm2)	210	230.	210	210	210	210	210	210	e de de la granda de la companya de
	1 / ca	0.93	0.95	0.88	0.90	0.88	0.90	0.89	0.87	
Foc		1.30	1.30	1.30	1.30	1.30	1.30	1.30	1.30	
T 1	1	99	19	44	44	43	46	53	49	Rear of Steel Pipe t Tt=T/(2*LS1*tw')* p
L 1	t Tb (N/mm2)	43	40	28	29	28	30	35	31	Front of Steel Pipe t Tb=T/(2*LS2*tw')* o
τ Tt/	t/ ra (N/mm2)	0.55	0.51	0.37	0.37	0.36	0.38	0.44	0.41	
		0.36	0.33	0.24	0.24	0.23	0.25	0.29	0.26	
Sue Sue	Distribution factor of Vertical Force: a	0.40	0.40	0.40	0.40	0.40	0.40	0.40	0.40	
\	r T' (N/mm2)	45	42	30	30	æ	32	37	33	8
<u> </u>	7 w (N/mm2)	8	rS.	3	5	9	7	9	11	Action as a part of main Girders
-	το= τ w* β (N/mm2)	7	4	2	3	4	4	4	4	$\beta = tw/tw^{\prime}$
ผ	$\Sigma_{\tau} = \tau T' + \tau o (N/mm2)$	52	46	32	33	क्ष	38	40	40	
H (2)	t a (N/mm2)	120	120	120	120	120	120	120	120	
ы	r/ra	0.44	0.38	0.27	0.28	0.28	0.30	0.34	0.33	
	Combined Stresses≤1.2	1.05	1.05	0.85	0.88	0.86	0.90	0.91	0.87	(Σσ/σa)^2+(Στ/τa)^2

c) Design of Bottom Flange at Cable Anchorage

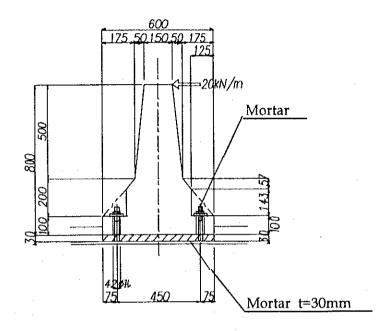
Cable Cabl											1		
Contact Cont								Cap	اٍدٍ				Kemark
Decided Deci	:				33	ĝ	3	Ü	වී	9	5	3	
Comparison Com	Dimension	material	Deck			SMA490W	SMA490W					MAA90W	efore Reinforced
Deck Width: Rd Company Statemy State						SMA490W	SMA490W	SMA190W	SMA490W	MA490W	MA490W	MA490W	After Reinforced
Deck Thickness: Ut (mm) 14 14 14 14 14 14 14 14 14 14 14 14 14			Bottom flange			SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	MA490W	SNAA490W	efore Reinforced
Deck						SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	SMA490W	MA490W	ster Reinforced
Thickness: id (mm) 122 124 14 14 14 14 14		Deck	Width: Bd	(mm)	1642	1642	1642	1642	1642	1642	1642	1642	
Duplyingm Thickness: ut Cimm 14 14 14 14 17 17 17 17			Thickness: td	(mm)	14	14	14	14	47	14	17		
Diaphregm		·	Thickness: td'	(mm)	41	14	14	14	14	14	17		After Reinforced
Thickness: ID Thickness: I		Diaphraem	Width: HwD	(mm)	1222	1232	1245	1253	1262	1269	1274	1281	
Pattern Range Wichth: Bf Cimm 1642	:		Thickness: tD	(mm)	11	11	11	11	11	11	11		
After Reinforced		-	Thickness: tD'	(mm)	11	11	=	F	Ħ	11	=	_	After Reinforced
Thickness: if (mm) 19 19 19 10 10 10 19 19 19 10 10 10 19 19 19 10 10 10 10 10 10 10 10 10 10 10 10 10		Bottom flance	Width: Bf	(mm)	1642	1642	1642	1642	1642	1642	1642	1642	
Thickness: if Component Thickness: if Cimin 19 19 19 10 10 19 19 19		0	Thickness: tf	(mm)	13	13	94	10	101	10	13		efore Reinforced
After Reinforced Section Moduluss, wd (cm2) 30600 30872 30492 30702 30942 30704 5070			Thickness: #	(mm)	13	13	10	10	10	10	13		After Reinforced
Section Modulus:vf (cm3) 28956 19518 23831 24128 24924 2477 30757 30999 Component Tession in Say Cable: ## (red.) 1,515 1,525		After Reinforced	Section Modulus:wd	(cm3)	30601	30872	30492	30724	30942	31146	37648	37863	
Component Tension in Say Cable: T (kN) 4558.0 4558.0 4558.0 4558.0 4558.0 5858.0 5858.0 5858.0 5858.0 6 4558.0 4558.0 4558.0 4558.0 6458 6472 6460 6449 6459 6459 6459 6459 6459 6459 6459			Section Modulus:wf	(cm3)	28956	29215	23931	24123	24304	24473	30757	30939	
Marke of Tension Angle of Suy Cabbi: θ (rad) 0.517 0.550 0.445 0.472 0.450 0.445 0.451 1.472 1		Commonent	Tension in Stav Cable: T	SS.	4558.0	4558.0	4558.0	4558.0	4558.0	4558.0	5830.0	5830.0	
Angle of Say Cable: \$\psi\$ (i.e.d) 1.469 1.470 1.471 1.472 1.472 1.473 1.475 1.		of Tension	Anole of Stav Cable: 8	(rad)	0.517	0.500	0.485	0.472	0.460	0.449	0.439	0.431	
Horizon Hori			Andle of Stay Cable: #	(rad)	1.469	1.470	1.471	1.472	1.473	1.474	1.475	1.476	
Victical Component: V (NM) 2240.8 2175.9 214.2 2060.7 2012.7 1969.3 2463.6 2423.4 Radius of Steel Piper \$\phi\$ (mm) 1045 19			Horizontal Component: H	(KZ)	3962.5	4000.3	4032.4	4060.4	4084.8	4106.1	5276.1	-	H=T'cos θ
Number of Sectional Area: Active Reinforced) Number of Sectional Area: Active Reinforced) (mm) 1045				OF PER	2040 B	2173.0	21147	2060.7	7 6106	1969.3	2468.8	_	$V=T$ sin $ heta$ sin ψ
Web at Cable Width: How Cardines; Lev (nmm) 1045 <td></td> <td></td> <th>Postice of Chal Ding: 6</th> <td>(##)</td> <td>511</td> <td>514</td> <td>514</td> <td>514</td> <td>514</td> <td>514</td> <td>514</td> <td></td> <td></td>			Postice of Chal Ding: 6	(##)	511	514	514	514	514	514	514		
Web at Cable Windingstrict (Inim) 16 <			Naulus of Successions	(mins)	10.0	101	1015	185	1645	1045	10.45	1045	
Filective Sectional Area: Acelebeore Reinforced) (mm.2) 20309 20795 1877 2885 24023 22889 23414 Effective Sectional Area: Acelebeore Reinforced) (mm.2) 20309 20795 1877 2885 24023 22880 24138 22383 28034 29411 Effective Sectional Area: Acelebeore Reinforced) (mm.2) 21877 22885 24023 22889 24138 23383 28034 29411 Effective Sectional Area: Acelebeore Reinforced) (mm.2) 2187 22885 24023 22889 24138 23383 28034 29411 Effective Sectional Area: Acelebeore Reinforced) (mm.2) 2187 22885 24023 22889 24138 28034 29411 Effective Sectional Area: Acelebore Reinforced) (mm.2) 2187 21885 24023 24138 23383 28034 29411 Effective Sectional Area: Acelebore Reinforced) (mm.2) 195 199 185 185 185 189 187 183 183 Aceleborate Stress Ength of Cantilever: L. (mm.) 919 957 992 1024 1055 1054 1111 1137 Aceleborate Stress Bed (mm.) 2899 2999 2998 3029 3071 3110 3148 3184 Aceleborate Stress Bed (mm.) 2899 2999 2998 3029 3071 3110 3148 3184 Aceleborate Stress Bed (mm.) 2899 2999 2998 3029 3071 3110 3148 3184 Aceleborate Stress Aceleborate	÷	Web at Cable	Width: rawc	(mm)	25	3,5	2 4	2 2	12	1,61	191	_	pefore Reinforced
Effective Sectional Area: Ae(before Reinforced) (mm2) 20309 20795 18276 18675 18713 1222 22899 23141 Effective Sectional Area: Ae(before Reinforced) (mm2) 21877 22885 24023 22889 24138 2383 28034 29411 Longitudinal Stress od (N/mm2) 136 131 126 127 122 141 135 Longitudinal Stress (N/mm2) 136 137 128 128 127 127 129 141 135 at Bottom flange ow (N/mm2) 195 199 185 186 185 189 187 183 o ca (N/mm2) 219 219 219 210 210 210 210 210 210 Transverse Stress Length of Cantilever: (N/mm2) 229 2985 3029 3071 3110 3148 3184 Shear Stress Bd (N/mm2) 229 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 229 239 2985 3029 3071 3110 3148 3184 o ca (N/mm2) 220 (N/mm2) 220 220 220 220 220 220 220 220 220 2		Anchorage	L Mickness : DV	(mm)	2 2	2	2,	3,6	36	24	3		A fier Reinforced
Effective Sectional Arat. Active for Keinforced) (mm2) 21877 22885 24023 23830 24138 2383 24138 2383 24131 125 132 141 135 131 126 128 128 141 135 131 131 132 141 135 141 141 141 141 141 141 141 141 141 14				(mm)	61	07	75000	10705	16013	10302	32800	_	
Effective Sectional Area: Ae'(After Reinforced) (mm2) 1367 1286 1280 12436 12383 12864 12941 1358 135		Effective Sectional		(mm2)	20309	C6/07	9/781	18605	16913	20741	270077	11.00	Ae=Hwc*tw/2+Hwc*tf/2/tan8
Longitudinal Stress od (N/mm2) 136 131 126 128 127 123 141 135 at Bottom flange ov (N/mm2) 63 65 66 60 58 57 46 44 oca (N/mm2) 195 199 185 185 185 187 187 187 Transverse Stress Length of Cantilever: L (nm) 919 957 992 1024 1055 1064 1111 1137 Transverse Stress Bd (mm) 2890 2939 2985 3029 3071 3110 3148 3184 Shear Stress Bd (mm) 1469 4540 4607 4609 4728 4783 4854 r v (N/mm2) 190 120 120 120 120 120 r v (N/mm2) 190 120 120 120 120 120 r v (N/mm2) 130 1469 4778 4783 4783 4854 r c (N/mm2) 130 120 120 120 120 120 r c (N/mm2) 130 120 120 120 120 120 120 r c (N/mm2) 130 120 120 120 120 120 120 r c (N/mm2) 130 120 120 120 120 120 120 r c (N/mm2) 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 r c (N/mm2) 130 120 120 120 120 120 120 120 r c (N/mm2) 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 130 r c (N/mm2) 130 130 130 130 130 130 130 130 130 130 130 r c (N/mm2) 130 1		Effective Sectional A		(mm2)	21877	22885	24023	23830	24138	23383	28034	29411	
at Bottom flange ow (N/mm2) 69 68 66 66 58 57 46 44 o ca (N/mm2) 195 199 185 188 185 189 187 113 Transverse Stress Length of Cantilever: L (nm) 919 957 992 1024 1055 1084 1111 1137 Transverse Stress Bd (N/mm2) 210 210 210 210 210 210 210 210 210 210	Bottom	Longitudinal Stress		(N/mm2)	136	131	126	128	127	132	141	135	
Act O cat (N/mm2) 59 68 60 68 50 64 58 57 446 448 457 949 185 188 185 189 187 189 187 187 189 187 188 187 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188 188	flance	at Bottom flange		(N/mm2)	63	75	78	7	74	2	22	19	7
reast Oxd (N/mm2) 195 185 186 185 189 187 188 187 188 187 188 187 188 188 188 188 188 188 188 188 188 188 188 188 188	>		0.0	(N/mm2)	59	99	99	99	88	57	46	84	σο=σw'Ae/Ae'
treess Cora (N/mm2) 210 <t< td=""><td>_</td><td></td><th>σxd</th><td>(N/mm2)</td><td>195</td><td>199</td><td>185</td><td>188</td><td>185</td><td>189</td><td>187</td><td>183</td><td>σxd*σd+σο</td></t<>	_		σxd	(N/mm2)	195	199	185	188	185	189	187	183	σxd*σd+σο
flange Oyd Oyd 919 957 992 1024 1055 1084 1111 1157 flange Oyd Oyd -28 -35 <			Ø CR	(N/mm2)	210	210	210	210	210	210	210	210	
flange oyd (N/nm2) -28 -35 -31 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 -32 <th< td=""><td></td><td>Transverse Stress</td><th>Length of Cantilever:L</th><td>(mm)</td><td>616</td><td>957</td><td>992</td><td>1024</td><td>1055</td><td>1084</td><td>1111</td><td>1137</td><td>L=Hwc/2/tan 8</td></th<>		Transverse Stress	Length of Cantilever:L	(mm)	616	957	992	1024	1055	1084	1111	1137	L=Hwc/2/tan 8
Gea (N/mm2) 210 21		at Bottom flange	o yd	(N/mm2)	-28		-35	-35	35	-35	36	-36	g yd=0.4*V*L/wd
Bd (mm) 2890 2985 3029 3071 3110 3148 3184 Bf (mm) 4469 4507 4667 4728 4732 4835 4884 rdi (N/mm2) 40 46 46 46 45 <td></td> <td>•</td> <th>G CA</th> <td>(N/mm2)</td> <td>210</td> <td>210</td> <td>210</td> <td>210</td> <td>210</td> <td>210</td> <td>210</td> <td>210</td> <td></td>		•	G CA	(N/mm2)	210	210	210	210	210	210	210	210	
Bf (mm) 4469 4507 4607 4728 4738 4835 4884 rdi (N/mm2) 40 46 46 46 45 4		Shear Stress	Bd	(mm)	2890	L_	2985	3029	3071	3110	3148	3184	$Bd = Hwc'(1/\tan\theta + 1/\tan(\pi/6) - 1/\tan(\theta + \pi/6))$
N/mm2 40 46 46 45 45 45 45 45 45 45 45 45 45 45 45 45			B£	(mm)	4469	<u> </u>	4607	4669	4728	4783	4835		Bf=Hwc'(1/tan θ +1/tan(π / θ)+1)
N/mm2 10			r di	(N/mm2)	9	40	46	46	45	45	45		H/((Bd*wd)+(Bf*tf))
N/mm2 10			W 1	(N/mm2)	10		ę,		10	11	*	#	7
N/mm2 50 47 51 53 55 55 53 59 59 59 59 59 59 59 59 59 59 59 59 59			0 1	(N/mm2)	10		5		10	11	*	17	t 0= t w*t/tf
N/mm2 120 120 120 120 120 120 120 120 120 120			1	(N/mm2)	S	47	51	53	55	55	53	59	r = r di+ t o
1.04 1.05 0.96 1.00 0.99 1.02 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.1			P 1	(N/mm2)	120		120	120	120	120	120	120	
60m 512 1.17 1.20 1.13 1.18 1.17 1.20 1.17 1.18			ombined Stresses≤1.2		1.04		96.0	1.00	0.99	1.02	0.99	1.00	(σxd/σca)^2+(τ/τa)^2
CT: CT: CT: CT: CT: CT: CT: CT: CT: CT:		Check for	Biaxial Stress Condition	1.2	1.18	1.20	1.13	1.18	1.17	1.20	1.17	1.18	(oxd/oca)^2-{oxd/oca)^(oyd/oca)+(oyd/oca)^2+(t/ta)^2

d) Design of Deck at Cable Anchorage

						Canle				7	
		,ł	: :8	36	37	සෙ	69 C40		C41 C	C42	
	Dock		Ĭ≧	≥	SMA499W SM	SMA490W SMA	SMA490W SMA490W	90W SMA	SMA490W SMA	aq Mibi	SMAM Pefore Reinforced
Dimension (material)				SMA490W SM	A4908V SM	SMA490W SMA490W SMA490W	90W SMA	SMA490W SMA490W		490W	SMA490W After Reinforced
	Dottom flance		SMA490W SMA490W SMA490W	4A490W SM	A490W SM	SMA490W SMA	SMA490W SMA490W SMA490W	90W SMA	490W SMA	SMA490W be	before Reinforced
	porton nange		SMA490W S	SMA490W SM	SMA490W SM	SMA490W SMA	SMA490W SMA490W	90W SMA	190W SNA	490W A1	SMAN90W SMAN90W After Reinforced
	Width: #d	(mm)	1642			1642	1642	1642 1	1642	1642	
Deck	Thickness td	(mm)	14	14	4	14	14	72	17	17 be	before Reinforced
	Thickness:td	(mm)	14	1	14	14	14	14	17	17 A	After Reinforced
Disaber on	C/wH-HwD	(mm)	1116	1120	1127	1131	1135 1	1138	1138 1	1141	
Utaphiragin	Thickness tD	(HH)	II	12	11	11	11	11	11	11 be	before Reinforced
	Thickness #1/	(mm)	=	11	11	11	11	11	11	11 A	After Reinforced
0 - 11 - 0	Michigas, uc	(mm)	1642	1642	1642	1642	1642	1642	1642 1	1642	
Bottom Hange	Thinks are of	(E/E)	13	13	92	10	10	10	13	13 be	before Reinforced
	Thickness of	(m.m)	13	13	10	10	10	22	13		After Reinforced
A face Dainforced	Section Modulus:wd	(cm3)	27724	27839	27410 2	27510 27	27604 27	27693	33401 33	33495	
WIND ANDMONES	Section Modulus: wf	(cm3)	26207	26317	21392 2	21474 21	21552 21	21625 23	27169 27	27248	
Contract of Toneion		2	╄	! —	4558.0 4	4558.0 45	4558.0 45	4558.0 58	5830.0	5830.0	
County on the state of the stat		(rad)	<u> </u>	0.5000	0.4850 0	0.4716 0.4		0.4490 0.	0.4394 0.4	0.4308	
-	Angle of our Carlor to	(Lad)	÷	<u>. </u>	<u>. </u>	-	•		ــــ	1,4756	
	Angle of Stay Capte: w	(No	<u></u> -	٠	· •			·		5297.4 H	H=T*cos θ
	Horizontal Component.	()	<u>-i-</u>	<u> </u>		٠		<u> </u>	÷		V=T'sin θ 'sin ψ
	Vertical Component: V	(KIX)	277	51737	5114	514		514			
	Radius of Steel Pipe: 0	(1010)	7		;	1	Ĺ	┸	L	182	
Web at Cable Anchorage	Width: Hwc	(mm)	1040	2	201	2 7	7	╧	1	_	before Reinforced
	Thickness: tw	(E)	9 9	2 5	3 5	3 3	2 2	1 2	- 7		After Reinforced
	Thickness: tw'	(mm)	13	_	4	ᆚ	ᆚ		1		A.—H (A /2*cin 0 ***********************************
Effective Sectional Area: Ae(before Reinforced)	: Ae(before Reinforced)	(mm2)	30301	_	-		٠.		<u> </u>		(4) T 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Effective Sectional Area: Ae'(After Reinforced)	: Ae'(After Reinforced)	(mm2)	33436	34705	42233	41389 4	_		+	_	m nus.7/0.74
1 canibudian Chase at	ρφ	(N/mm2)	119	115	æ	86	86	2	117		o d=H/Ae′
Rottom flange	MΩ	(N/mm2)	63	73	78	7	74	2	22	19	Action as a part of main Girders
-9	90	(N/mm2)	57	99	57	58	56	55	7	45	σοσσw*Ae/Ae'
	σxd	(N/mm2)	176	181	152	156		158	191	157	oxd=od+oo
	Ø Cd	(N/mm2)	210	210	210	210	210	210	210	230	
· ·	Length of Cantilever: L	(mm)	520	536	551	266	579	592	5	1 519	L≖ φ / 2/sin θ
Transverse Suess at	o vd	(N/mm2)	17	17	17	17	17	17	18	2	σ yd=0.4*V*L/wd
9	C C C C C C C C C C	(N/mm2)	210	210	210	210	210	210	210	210	
	Pa	(mm)	2890	2939	2985	3029	3071	3110	3148	3184	3184 Bd=Hwc'(1/lan $\theta + 1/\tan(\pi/6) - 1/\tan(\theta + \pi/6)$)
Shear Suress	36	(EE)	4469	4540	4607	699	4728	4783	4835	4884 F	Bf=Hwc*(1/tan θ +1/tan($\pi/6$)+1)
		(N/mm2)	9	40	97	46	\$	1	ξţ.	45	H/((Bd*td)+(Br'tf))
-		(N/mm2)	11	8	9	6	12	11	10	19	Action as a part of main Girders
		(N/mm2)	11	82	9	6	12	11	10	19	τ o= τ w*td/td'
	1 1 2 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(N/mm2)	51	48	52	3	52	56	55	I	tatdit to
-		(Z/mm2)	120	120	120	120	Ļ.	130	120	120	
	C. Samuel Charles		680	06.0	17.0	0.76	_	0.79	0.79	23.0	(0xd/oca)^2+(;/:a)^2
								-	1		

3.8.7 Design of Accessories

(1) Design of Central Separation Belt


·Form: Precasting Concrete Wall

·Connection of Wall and Deck: High Strength Bolt

-Design Load of Bolt: Clash Load 20kN at the top of Wall

·Incremental Coefficient for Allowable Stress: 1.7

·Number of Bolts: 10 a Block

Force Acting on a Bolt

Tensile Force

$$Pv = 20.0 x 2.0 x \frac{0.830}{0.450} x \frac{1}{1.7} = 43.4 kN$$

Horizontal Force

Ph = 20.0 x 2.0 x
$$\frac{1}{1.7}$$
 = 23.5 kN

Bolts

Effective Diameter : D2 = 20.376 mmMinimum Diameter : D1 = 19.294 mm

Section Area : $A = \frac{1}{4} x (\frac{D2 + D1}{2})^2$. π : 309.0 mn

Stress on a Bolt

$$\sigma = \frac{43.4 \times 10^3}{5 \times 309.0} = 28.1 \text{ N/mm}^2 < \sigma a = 140.0 \text{ N/mm}^2 \text{ O.K}$$

$$23.5 \times 10^3 = 28.1 \text{ N/mm}^2 < \sigma a = 140.0 \text{ N/mm}^2 = 0.00 \text{ O.K}$$

$$\tau = \frac{23.5 \text{ x}}{10 \text{ x}} \frac{10^3}{309.0} = 7.6 \text{ N/mm}^2 < \tau a = 80.0 \text{ N/mm}^2 \text{ O.K}$$

$$k = (\frac{28.1}{140.0})^2 + (\frac{7.6}{80.0})^2 = 0.05 < 1.2$$
 O.K

Stress on Weld

Check on fillet weld of 6mm

Section Area: $A = 22 \times \pi \times 6 \times 1 = 293.186 \text{ mm}^2$

$$\tau = \frac{43.4 \text{ x}}{5 \text{ x}} \frac{10^3}{293.2} = 29.6 \text{ N/mm}^2 < \tau \text{ a} = 80.0 \text{ N/mm}^2 \text{ O.K}$$

$$\tau = \frac{23.5 \text{ x}}{10 \text{ x}} \frac{10^3}{293.2} = 8.0 \text{ N/mm}^2 < \tau \text{ a} = 80.0 \text{ N/mm}^2 \text{ O.K}$$

$$k = (\frac{29.6}{80.0})^2 + (\frac{8.0}{80.0})^2 = 0.15 < 1.0$$
 O.K

Bearing Stress of Concrete on Washer

Washers 1 - PL 70 x 12 x 70 (SS400)

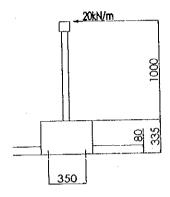
Diameter of Bolt Hole: 42ϕ

Bearing Area: $A = 70 \times 70 - 1/4 \times 42^2 \times \pi = 3515 \text{ mm}^2$

$$\sigma b = \frac{43.4 \text{ x}}{5 \text{ x}} \frac{10^3}{3515} = 2.5 \text{ N/mm}^2 < \sigma ba = 0.3 \sigma ck = 7.2 \text{ N/mm}^2 \text{ O.K}$$

$$(\sigma ck = 24.0 \text{ N/mn})$$

(2) Design of Curb


·Form: Precasting Concrete Wall

·Connection of Wall and Deck: High Strength Bolts

Design Load of Bolts: Clash Load 20kN at the top of Hand Rail

·Incremental Coefficient for Allowable Stress: 1.7

·Number of Bolts: 8 a Block

Force Acting on a Bolt

Tensile Force

$$P_V = 20.0 \times 2.0 \times \frac{1.335}{0.350} \times \frac{1}{1.7} = 89.75 \text{ kN}$$

Horizontal Force

$$Ph = 20.0 \times 2.0 \times \frac{1}{1.7} = 23.5 \text{ kN}$$

Bolts

M22 (SS400)

20.376 mm Effective Diameter Minimum Diameter

: 19.294 mm : $\frac{1}{4} \times (\frac{D2 + D1}{2})^2 = \pi =$ 309.0 Section Area

Stress on a Bolt

$$\sigma = \frac{89.75 \times 10^3}{4 \times 309.0} = 72.6 \text{ N/mm}^2 < \sigma a = 140.0 \text{ N/mm}^2 \text{ O.K}$$

$$\sigma = \frac{23.5 \times 10^3}{8 \times 309.0} = 9.5 \text{ N/mm}^2 < \tau a = 80.0 \text{ N/mm}^2 \text{ O.K}$$

$$k = \left(\frac{72.6}{140.0}\right)^2 + \left(\frac{9.5}{80.0}\right)^2 = 0.28 < 1.20$$
 O.K

Stress on a Weld

Check on Fillet Weld of 6mm

Section Area : $A = 22 \times \pi \times 6 \times 1 = 293.186 \text{ mm}^2$

$$\sigma = \frac{89.75 \times 10^3}{4 \times 293.2} = 76.5 \text{ N/mm}^2 < \sigma a = 80.0 \text{ N/mm}^2 \text{ O.K}$$

$$\sigma = \frac{23.5 \times 10^3}{8 \times 293.2} = 10.0 \text{ N/mm}^2 < \tau a = 80.0 \text{ N/mm}^2 \text{ O.K}$$

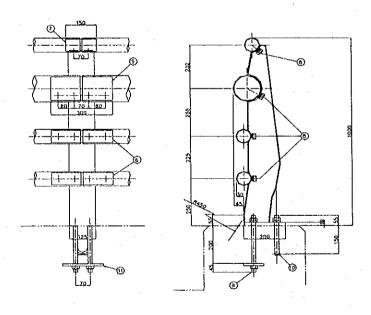
$$k = (\frac{72.6}{80.0})^2 + (\frac{10.0}{80.0})^2 = 0.93 < 1.00 O.K$$

Bearing Stress of Concrete on Washer

Washers

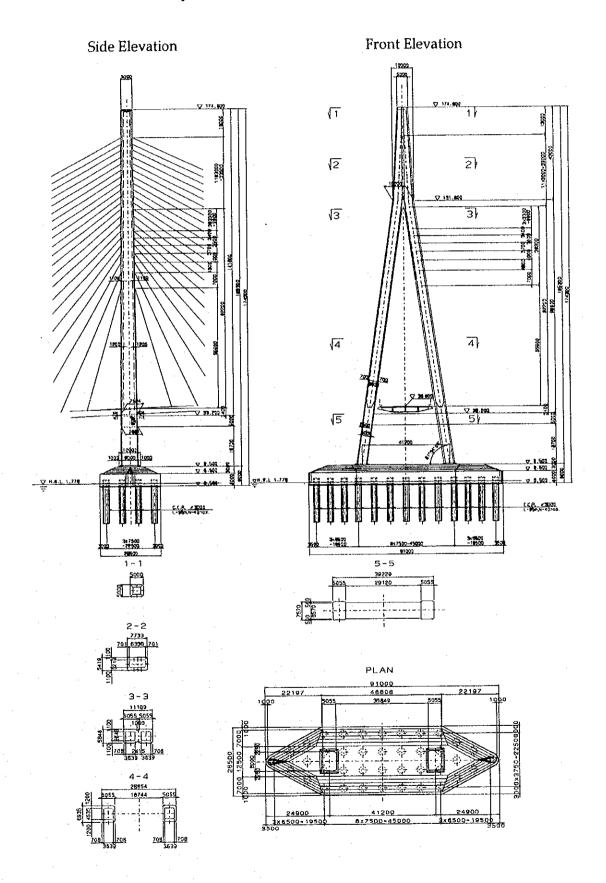
1 - PL 70 x 12 x 70 (SS400)

Diameter of Bolt Hole:


 42ϕ

Bearing Area : A= $70 \times 70 - 1/4 \times 42^2 \times \pi = 3515 \text{ mm}^2$

$$\sigma b = \frac{89.75 \times 10^{3}}{4 \times 3515} = 6.4 \quad \text{N/mm}^{2} < \sigma ba = 0.3 \, \sigma \, ck = 7.2 \quad \text{N/mm}^{2}$$


$$(\sigma ck = 24.0 \, \text{N/mm}^{2}) \quad \text{O.K}$$

Detail of Hand Rail

3.9 Design of Pylon

3.9.1 General View of Pylon

3.9.2 Calculation Result of Section Force at Pylon

able	Sectiona	l Forces at I	ylon Longi	tudinal Dir	ection		
			A-A			В-В	
				Bending			Bending
		Axial Force	Shear Force	Moment	Axial Force	Shear Force	Moment
		(kN)	(kN)	(kNm)	(kN)	(kN)	(kNm)
DC		-12674	-3133	0	-102292	-11317	-549286
DW		-1429	665	0	-16467	1556	46604
LL	Mmax	0	0	0	-8675	2753	81930
	Mmin	0	. 0	0	-5234	-1779	-44303
ĺ	Smax	-971	1100	0	-10948	3466	6533
ļ	Smin	-263	-485	0	-2889	-2546	-3405
ļ	Nmax	40	49	0	1107	1672	1091
	Nmin	-1233	692	0	-14145	489	3332
WS		0	604	3391	-6101	-2234	482
		0	-604	-3391	6101	2234	-482
WL	L→R	0	0	0	0	0	
	R→L	0	0	0	0	0	
TU	Up	42	76	0	117	13	522
	Down	-42	-76	0	-117	-13	-522
CR	l	1	2	0	-3	-1	5
SH		0	ō	0	0	0	
TG		-18	19	0	-208	55	321
EQ	-	-104	-1662	3035	-63	-2057	-12752
	-	104	l	-3035	63	2057	12752
	<u></u>	<u> </u>	C-C			D-D	
			1	Bending			Bending
		Axial Force	Shear Force	Moment	Axial Force	Shear Force	Moment
		(kN)	(kN)	(kNm)	(kN)	(kN)	(kNm)
DC		-151144	2157	-145655	-187483	2167	-869
DW		-14799	131	42055	-16742	-32	414
LL	Mmax	-10308	572	43832	-9638	587	574
	Mmin	-1227	-536	-12980	-3097	-594	-270
	Smax	-6682	882	33303	-6800	719	508
	Smin	-4606	-754	-3567	-5842	-713	-209
	Nmax	127	7 72	3544	107	7 135	72
	Nmin	-11359	48	29950	-12640	-158	257
WS	→	-5533	1747	-6305	-477	16368	3923
	-	5533	-1747	6305	477	-16368	-3923
WL	L→R	-15	7	435	-44	3 -307	-27
•	R→L	1	5 -7	-43	44	3 307	27
TU	Up	-2	3 -224	-16572	-12	1 -603	-323
	Down	2	8 224	16572	2 12	1 603	323
CR		-		·	1	1	1
			0			0 0	
SH							
SH			3 -62	-363	8 -5	6 -89	-60
SH TG EQ		-11 223					

ction	
C	tion

Table	Sectiona	Forces at 1	ylon Trans	versai Dire	CHOIL	11 13	
			A-A			В-В	Bending
				Bending	A. J. J. Toward	Shear Force	Moment
		Axial Force	Shear Force	Moment	Axial Force	1	(kNm)
		(kN)	(kN)	(kNm)	(kN)	(kN)	
DC+DW		-14102	0	0	-118762	0	0
LL	Mmax	-389	5	35	-8306	130	3937
	Mmin	389	-5	-35	-8306	-130	-3837
	Smax	-389	5	35	-8306	130	3937
	Smin	389	-5	-35	-8306	-130	-3837
[Nmax	. 11	0	0	974	0	0
	Nmin	-651	0	0	-13850	0	0
WS	L→R	. 1	1342	3662	-10	9613	174764
	R→L	1	-1342	-3662	-10	-9613	-174764
WL	L→R	0	0	1	0	5	92
	R→L	. 0	0	-1	0	-5	-92
EQ	L→R	0	573	3126	-11	2906	55466
-	R→L	0	-573	-3126	-11	-2906	-55466
}			C-C			D-D	
				Bending			Bending
		Axial Force	Shear Force	Moment	Axial Force	Shear Force	Moment
		(kN)	(kN)	(kNm)	(kN)	(kN)	(kNm)
DC+DW		-165945	-2710	-31498	-204224	-14738	-193035
LL	Mmax	-4974	20	319	-5510	133	544
	Mmin	-7318	-32	-637	-8034	-242	-2198
	Smax	-4974	20	319	-5510	133	544
	Smin	-7318	-32	-6 37	-8034	-242	-2198
	Nmax	C	0	. 0	(0	(
	Nmin	-10652	-11	-301	-11262	-91	-1376
WS	L→R	-49566		91060	-6931	11359	117462
	R→L	49753	-4692	-109440	6928	-11173	-116721
WL	L→R	-15		10	-443	322	2934
	R→L	15		-10	443	3 -322	-2 93-
EQ	L→R	-19883		66931	-3949	13390	11687
~~	R→L	19849		·		- }	-11694-