
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

APPROXORECO, LTB

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA) MINISTRY OF TRANSPORT SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT DESIGN REPORT PACKAGE II

OCTOBER 2000

NIPPON KOEI CO., LTD.

1161234 [8]

FINAL REPORT

ON

THE DETAILED DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN

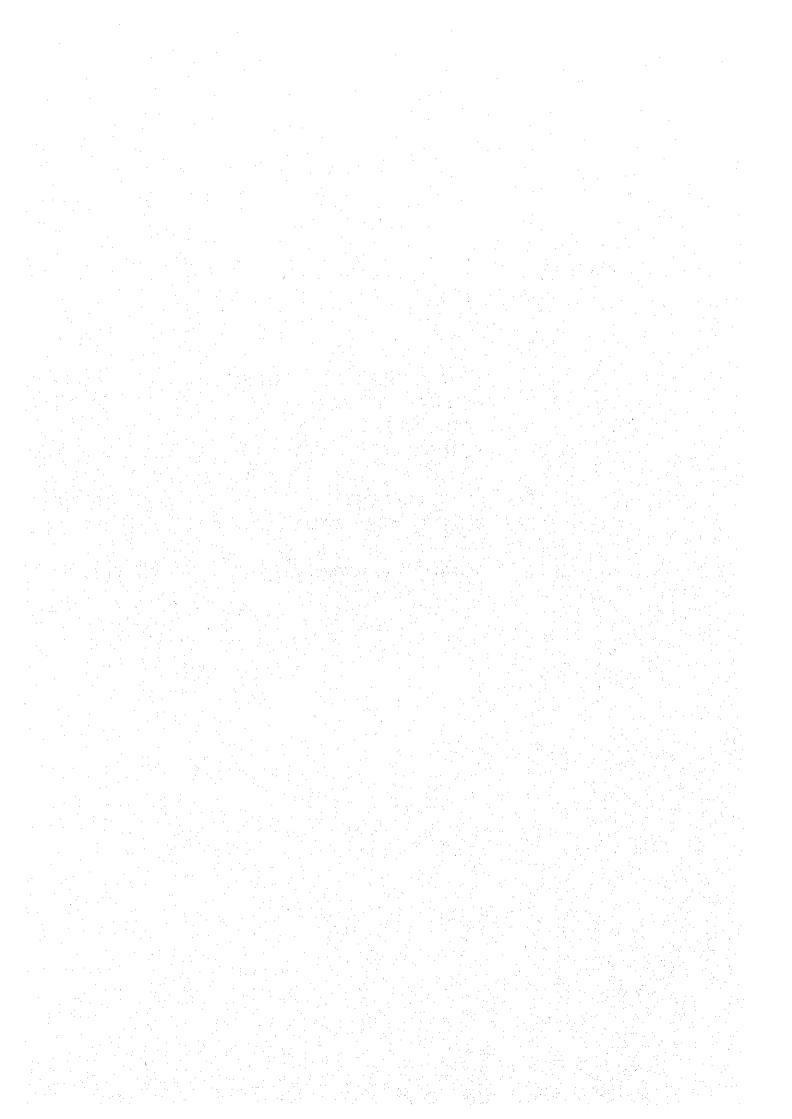
SOCIALIST REPUBLIC OF VIET NAM

DESIGN REPORT PACKAGE-II

Table of Contents

1	GEN	ERAL	1 - 1
	1.1	Standard and Specifications	1 - 1
	1.2	Geometry of Bridge	
	1.3	Cross Section	1-3
	1.4	Material	
	1.5	Geotechnical Condition	. 1 - 8
2	MAJ	OR LOAD	2 - 1
	2.1	Dead Load	2 - 1
	2.2	Live Load	2 - 1
	2.3	Thermal Effect	2 - 2
	2.4	Wind Load	2 - 3
	2.5	Vessel Collision Force	2 - 6
	2.6	Seismic Force	2 - 8
	2.7	Erection Equipment Weight for Cable Stayed Bridge	2 - 9
3	DES BRI	GIGN SUMMARY OF MAIN BRIDGE (CABLE STAYED DGE)	3 - 1
	3.1		
	3.2	Calculation Method	3-2
		3.2.1 2-D Frame Analysis	
•		3.2.2 Space Frame Analysis	3 - 3
	3.3	Construction Sequence	3 - 5
	. 3.4	Construction Schedule	3 - 9
	3.5	Overall Structure Analysis	3 - 10
		3.5.1 Result of 2D Analysis	

	3.5.2	Result of Space Frame Analysis	3 - 18		
3.6	Analy	sis of Natural Period	3 - 28		
3.7	Desig	n of PC-Girder	3 - 29		
	3.7.1	Detail of PC-Girder	3 - 29		
	3.7.2	Calculation Result	3 - 31		
	3.7.3	Check from Load and Resistance Factor Design	3 - 33		
	3.7.4	Result of Stress Check at Service Limit State	3 - 49		
3.8	Design of Steel-Girder				
	3.8.1	Geometry of Steel Girder	3 - 53		
	3.8.2	Design of Deck Floor	3 - 54		
	3.8.3	Design of Main Girder	3 - 58		
	3.8.4	Design of Diaphragm	3 - 70		
	3.8.5	Design of Transverse Rib			
	3.8.6	Design of Cable Anchorage	3 - 81		
	3.8.7	Design of Accessories			
3.9	Design of Pylon				
	3.9.1	General View of Pylon	3 - 95		
	3.9.2	Calculation Result of Sectional Force at Pylon	3 - 96		
	3.9.3	Cross Section	3 - 98		
	3.9.4	Column of Pylon	3 - 101		
3.10	Desig	gn of Stay Cable	3 - 107		
·	3.10.	1 Section Analysis of Stay Cable	3 - 109		
		2 Design of Control Device for Vibration at Stay Cable			
	3.10.	3 Study on the Increase of Stay Cable Stress	3 - 117		
3.11	Desi	gn of Pile-Cap	3 - 119		
	3.11.	1 Space Frame Analysis	3 - 119		
•	3.11.	2 Calculation Result	3 - 122		
	3.11.	3 Check from Load and Resistance Factor Design	3 - 130		
3.12	Desi	gn of Foundation for Pylon	3 - 134		
	3.12.	1 Design of Hybrid Pile	3 - 134		
	3.12.	2 Calculation Model	3 - 130		
	3.12.	3 Load Combination for Foundation	3 - 136		


		3.12.4 Soil Condition of Pile	3 - 138
		3.12.5 Vertical Spring Constant of Pile	3 - 139
		3.12.6 Calculation of Horizontal Spring-constant for Pile	
		3.12.7 Calculation of Pile Capacity	
		3.12.8 Calculation Result of Pile Reaction	3 - 144
		3.12.9 Calculation of Hybrid Pile	
	3.13	Design of Supplementary Pier	3 - 148
		3.13.1 Design Condition	3 - 148
		3.13.2 Design of P12 pier	3 - 153
		3.13.3 Design of P13 pier	3 - 170
		3.13.4 Design of P14 pier	3 - 186
		3.13.5 Design of P15 pier	
		3.13.6 Design of P16 pier	3 - 216
		3.13.7 Design of P17 pier	3 - 233
	3.14	Design of Bearing	3 - 251
		3.14.1 Design Condition	3 - 251
		3.14.2 Calculation Result	3 - 253
	3.15	Design of Expansion Joint	3 - 255
		3.15.1 Design Condition	3 - 255
		3.15.2 Detail of Expansion Joint	3 - 255
		OF APPROACH MADUCE (DC	T
4		SIGN SUMMARY OF APPROACH VIADUCT (PC	
	4.1	Geometry of Bridge	4 - 1
	4.2	Design of Superstructure	
		4.2.1 Calculation Model of Section Force for Girder	
		4.2.2 Construction Sequence	
	•	4.2.3 Calculation Result of Section Force	
	÷ .	4.2.4 Check from Load and Resistance Factor Design	
		4.2.5 Calculation of Connection Reinforcement	
	4.3	Design of Substructure	
	4.4	Design of Accessories	
	 -	4.4.1 Design of Bearing	
		4.4.2 Design of Expansion Joint	
		· · · · · · · · · · · · · · · · · · ·	

5 DESIGN SUMMARY OF BRUNCH STREAM BRIDGE			·	
	BOX	GIRD	ER)	5 - 1
	5.1	Geom	netry of Bridge	5 - 1
	5.2	Desig	n of Superstructure	5 - 4
		5.2.1	Construction Sequence	5 - 4
		5.2.2	Construction Schedule	5 - 6
		5.2.3	Calculation Method	5 <i>- 7</i>
		5.2.4	Loadings	5 - 8
		5.2.5	Arrangement of PC Tendon	5 - 10
		5.2.6	Summary of Calculation Result	5 - 12
	5.3	Desig	n of Substructure	5 - 25
		5.3.1	Design Condition	5 - 25
		5.3.2	Design of P36 (P41) pier	5 - 31
		5.3.3	Design of P37 (P40) pier	5 - 43
		5.3.4	Design of P38 (P39) pier	5 - 55
	5.4	Desig	n of Accessories	5 - 67
			Design of Bearing	
		5.4.2	Design of Expansion Joint	5 - 71

Chapter 1

GENERAL

1.1		STANDARD AND SPECIFICATIONS	1-1
1.2		GEOMETRY OF BRIDGE	1-1
1.3		CROSS SECTION	1-5
1.4		MATERIAL	1-7
	1.4.1	CONCRETE	1-7
	1.4.2	STRUCTURAL STEEL	1-8
	1.4.3	REINFORCEMENT STEEL	1-9
	1.4.4	PC STEEL	1-9
1.5		GEO-TECHNICAL CONDITION	1-11

1. General

1.1 Standard and Specifications

Name of Standards, Specification, or Guideline
Design Criteria for Bridge Design for The Can Tho Bridge Construction Projec (1999)
AASHTO, LRFD specifications for Bridge Design (1998)
Design Specification for Highway Bridge and Culvert (22TCN18-79)
Japanese Highway and Bridge Standard

1.2 Geometry of Bridge

Type of Bridge

Main Bridge

7-Spans continuous Hybrid (P.C. and steel) cable stayed bridge

Span Arrangement 70+7

70+70+130+550+130+70+70=1090 m

Type of Girder: Pre-cast segment PC box girder Steel box girder

Type of Pylon: Reinforced concrete pylon

Foundation: Cast in Place Concrete pile Dia.1.50m, Dia.2.00m, Dia.3.00m

Pier name	Type of Substructure	Type of Foundation	Bearing condition
P12, P13, P14	2 - column Pier	Cast in situ Concrete Pile (Dia. 1,500,)	Elastomeric
Northern Pylon	A – Type Pylon	Cast in situ Concrete Pile (Dia. 3,000)	Elastomeric
Southern Pylon	A -Type Pylon	Cast in situ Concrete Pile (Dia. 3,000)	Elastomeric
P15, P16, P17	2-column Pier	Cast in situ Concrete Pile (Dia. 2,000)	Elastomeric

Elastomeric Bearing supports the force of vertical and longitudinal horizontal direction to flexibility.

Approach Viaduct and Branch Stream Bridge

Vinh Long side

Bridge Type: 3-spans Connection Composite I Girder

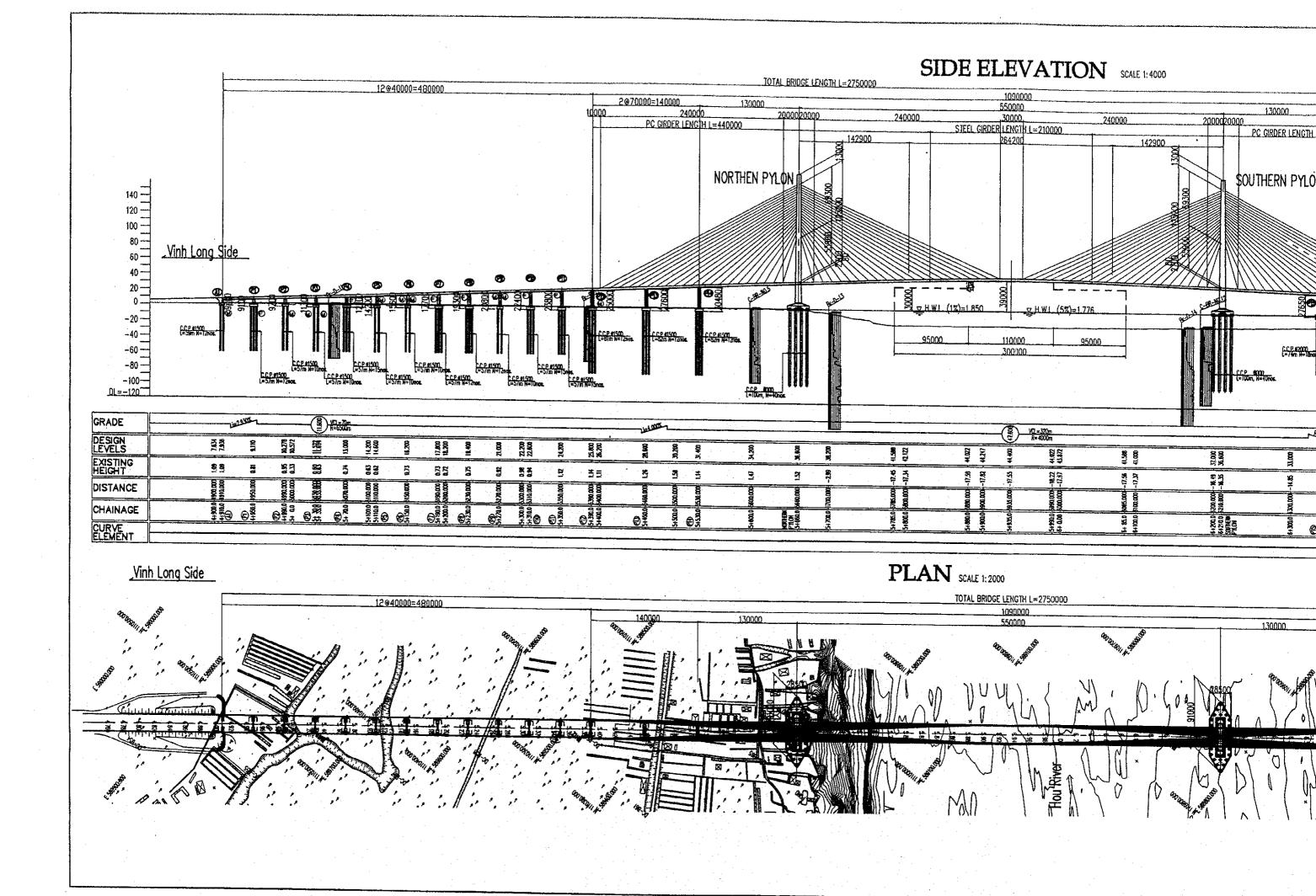
Span arrangement: 12@40m=480m

Substructure: reversed -T-type Abutment, 2-columns pier

Foundation: Cast in Place Concrete pile Dia.1.500m

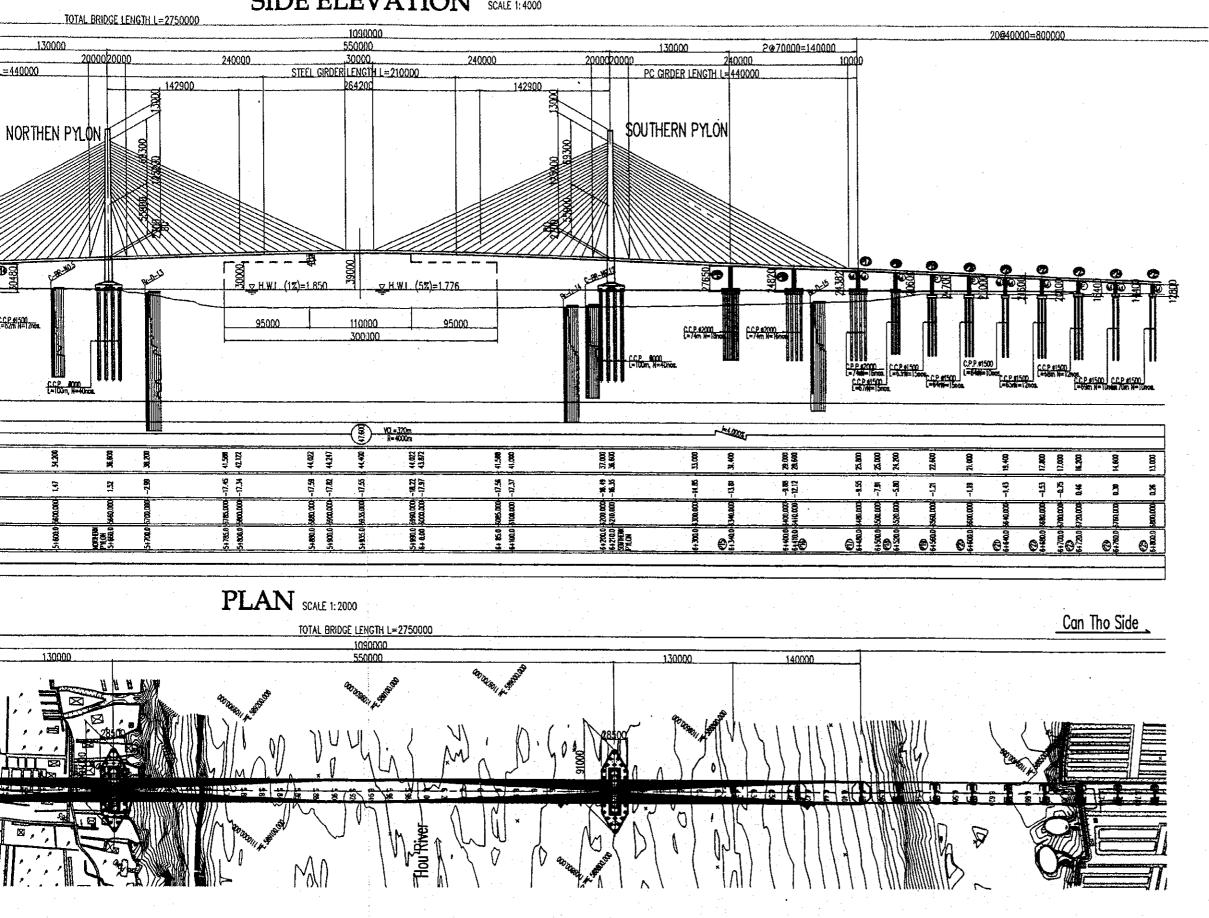
Can Tho side

Bridge Type: 3,4spans Connection Composite I Girder

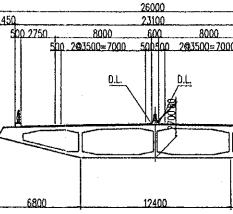

: 5spans Continuous PC Box Girder (Balanced Cantilever Method)

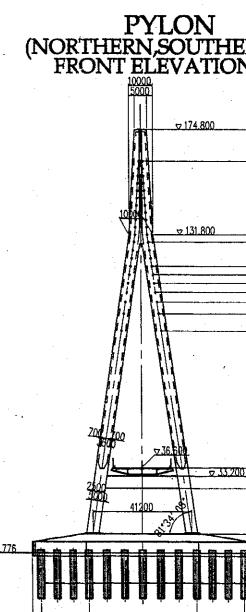
Span arrangement: 19@40m=760m, 50m+3@80m+50m=340m

2@40m=80m


Substructure: reversed -T-type Abutment, 2-columns pier

Foundation: Cast in Place Concrete pile Dia.1.50m, Dia.2.00m



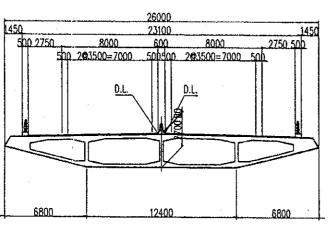

GENERAL VIEW (1/2)

PC BOX GIRDE

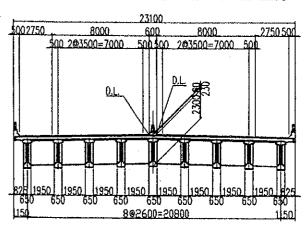
PROJECT NAME	!
DETAILED DESEGN OF	
THE CAN THO BRIDGE	
CONSTRUCTION PROJECT	

IMPLEMENTATION AGENCY
JAPAN INTERNATIONAL
COOPERATION AGENCY
(JICA)

SOCIALIST MINISTRY MY THUAN PRO

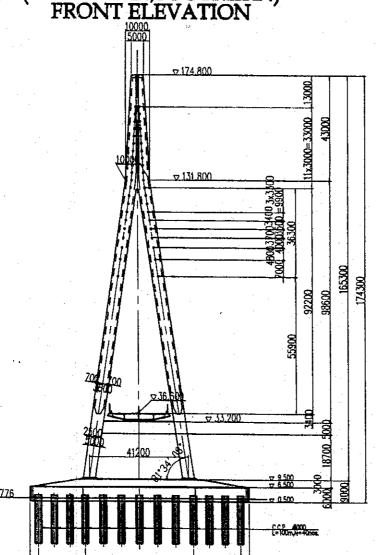

SUPERSTRUCTURE SCALE 1: 300

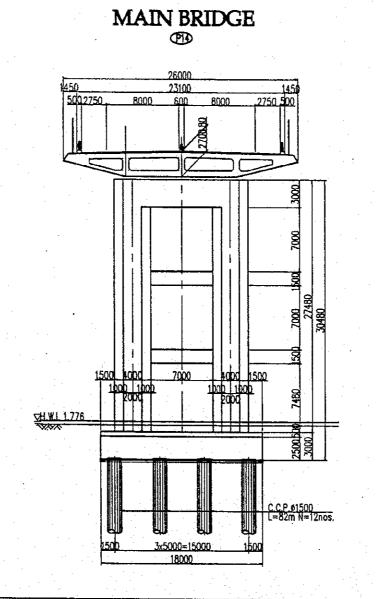
MAIN BRIDGE

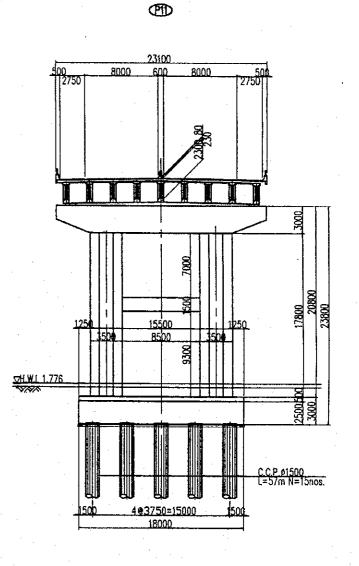

PC BOX GIRDER

STEEL BOX GIRDER

APPROACH BRIDGE CONNECTED PC I GIRDER







SUBSTRUCTURE SCALE 1:400

APPROACH BRIDGE

PROJECT NAME
DETAILED DESIGN OF
THE CAN THO BRIDGE
CONSTRUCTION PROTECT

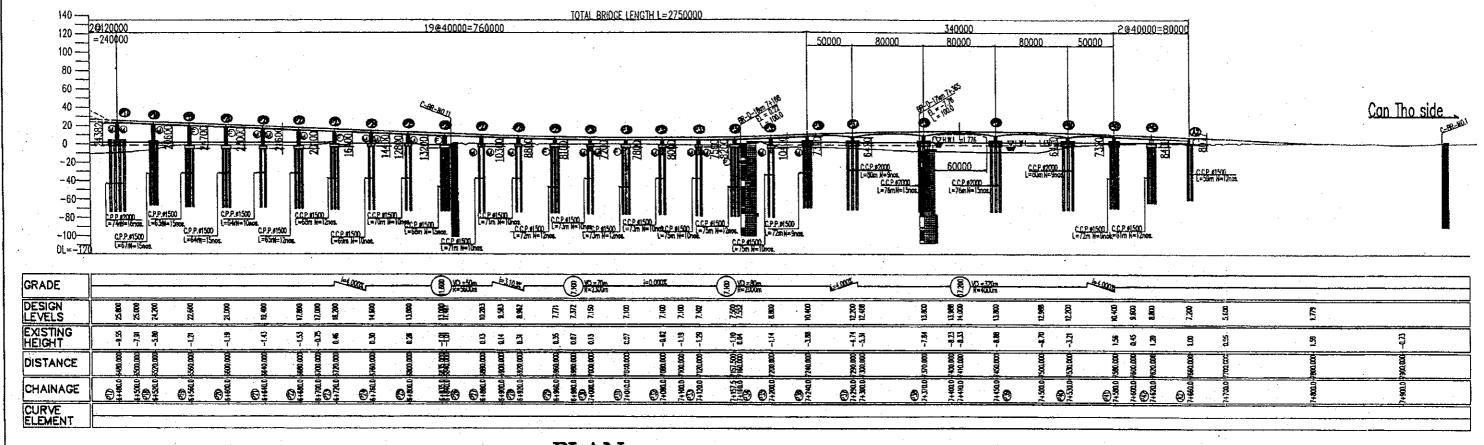
Can Tho Side

IMPLEMENTATION AGENCY JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)

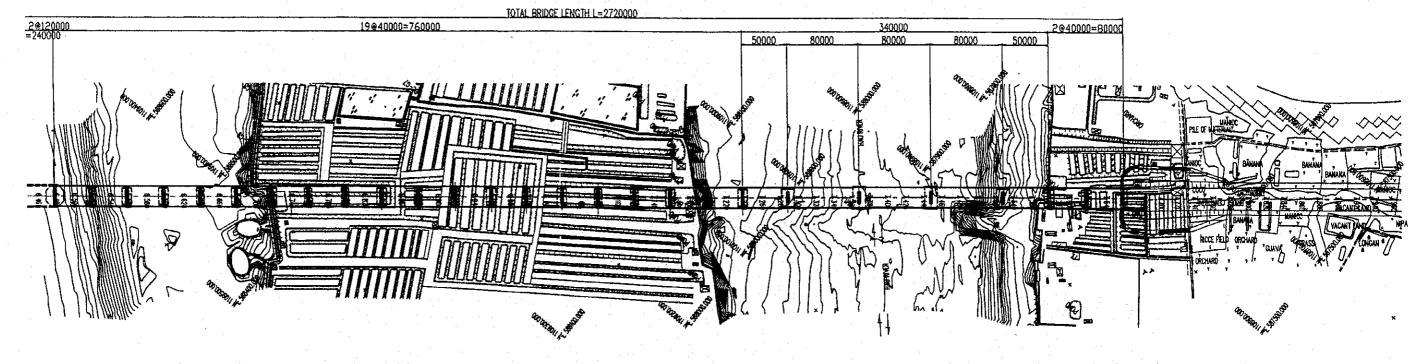
EXECUTING AGENCY SOCIALIST REPUBLIC OF VIET NAM MINISTRY OF TRANSPORT (MOT)
MY THUAN PROJECT MANAGEMENT UNIT

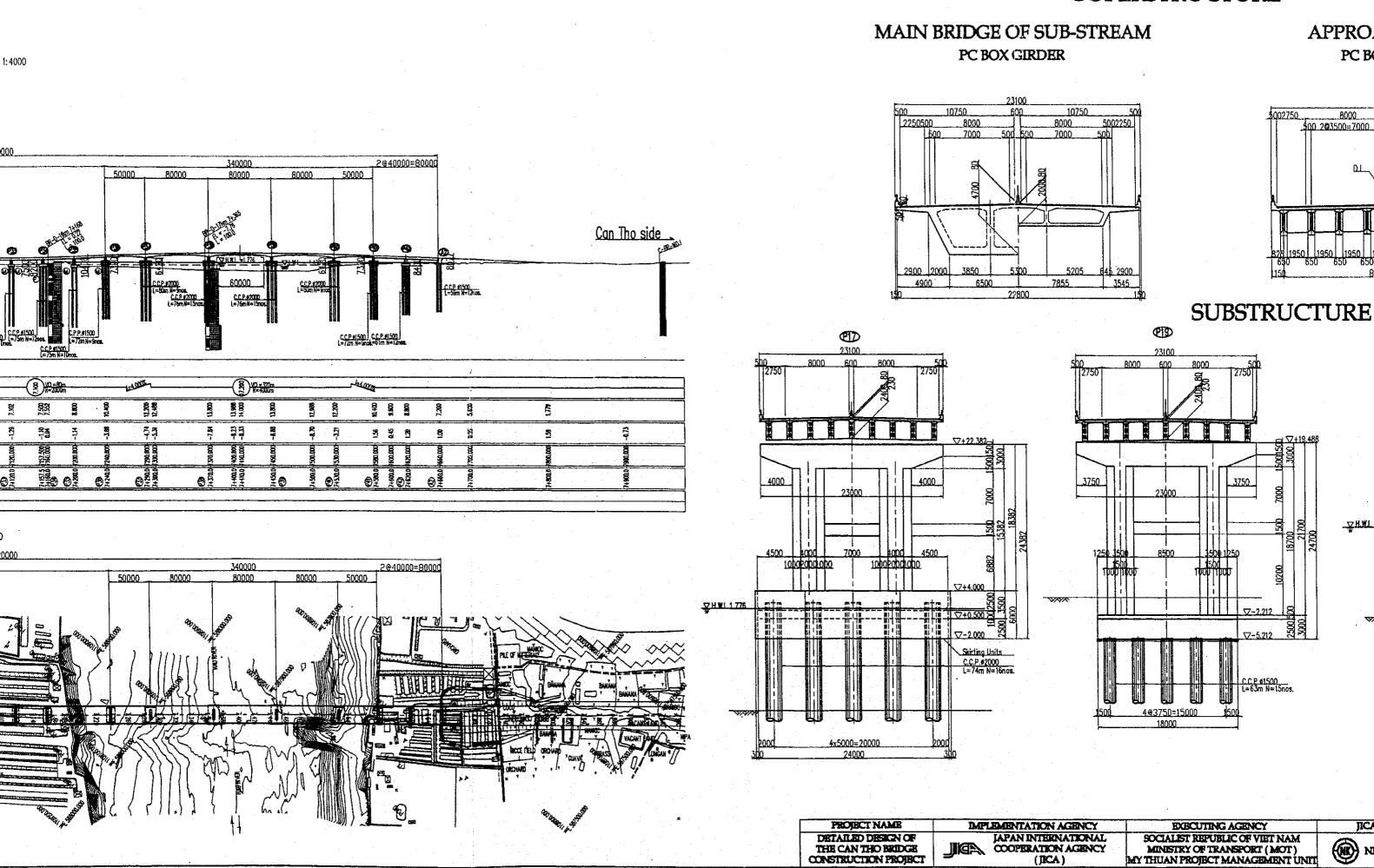
JICA STUDY TEAM NIPPON KORI COLLID.

PREPARED BY CHECKED BY APPROVED BY NAME S. Kiguchi K.Matsumoto K. Enomoto SCHATURE S. Konsk K. Hotunit DATE 20/9/2000 29/9/2000


General View of Can Tho Bridge (1/2)

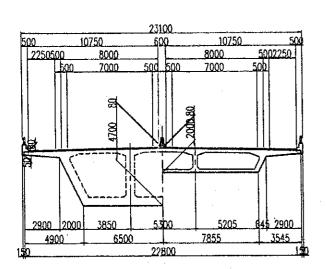
DRAWING TITLE

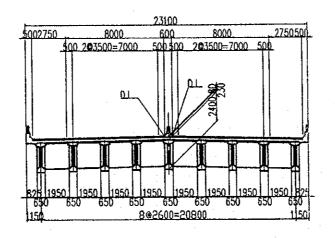

DWG NO.


1-3

SIDE ELEVATION SCALE 1: 4000

PLAN SCALE 1:2000

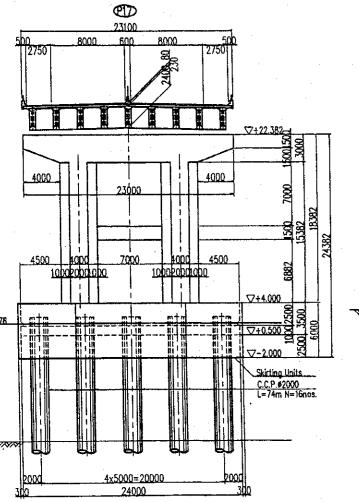


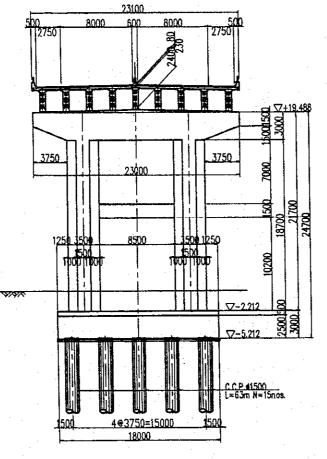

AL VIEW (2/2)

SUPERSTRUCTURE SCALE 1:300

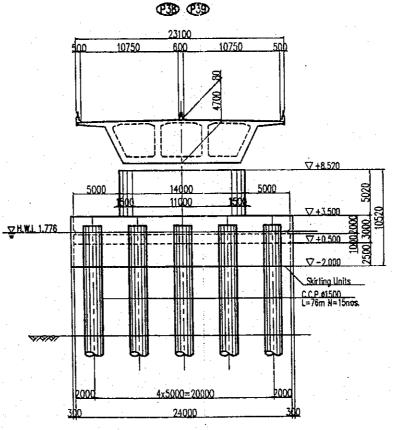
MAIN BRIDGE OF SUB-STREAM PC BOX GIRDER

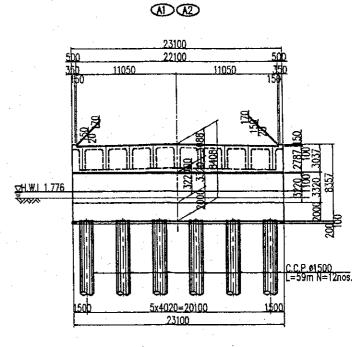
APPROACH BRIDGE PC BOX GIRDER


SUBSTRUCTURE SCALE 1: 400



TYPE	HYBRIO CABLE STAYED BRIDGE
TOTAL BRIDGE LENGTH	L=1090.000m
SPAN	2070m+130m+550m+130m+2070m
WIDTH	CARRIAGE WAY WIDTH=21.5m (10.75m+10.75m)
LIVE LOAD	B-LIVE LOAD
IMPACT COEFFICIENT	i=20/(L+50)
SEISMIC DATE	Kh=0.12
angle of skew	90' 00'00'
RADIUS OF CURVATURE	R=∞
LONGITUDINAL SLOPE	4.0% - 4.0% V.C.L.=320m


MATERIALS


TATV7 1	CIVITY	<u>. </u>
	GRDER	øck=50MPa
	PYLON	ock=40MPa
CONCRETE	PILECAP OF PYLON	øck=30MPa
	SUBSTRUCTURE	ock=25MPa
		ock=30MPa
PC STEEL	GRDER	12315.28(SWPR7B),PC Bar Dia.32mm
LC 2ICET	STAY CABLE	15.2B (SWPR7B)
STEEL	GRDER	SS400,SMA400,SMA490

প্রে

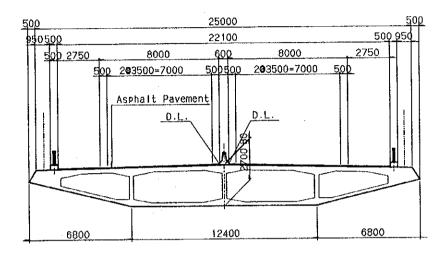
ı	PROJECT NAME
	DETAILED DESIGN OF
١	THE CAN THO BRIDGE
١	CONSTRUCTION PROJECT

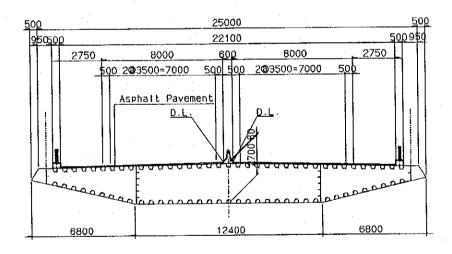

IMPL	EMBNITATION AGENCY
	JAPAN INTERNATIONAL
	COOPERATION AGENCY
	(JICA)

	RABCUTING AGENCY
	SOCIALIST REPUBLIC OF VIET NAM
	MINISTRY OF TRANSPORT (MOT)
ΜY	THUAN PROJECT MANAGEMENT UNIT

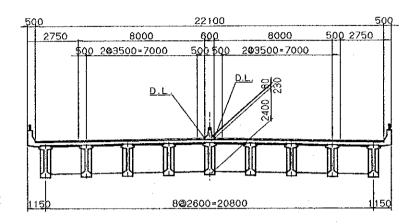
J	ICA STUDY "	TEAM
®	NIPPON KO	DEI CO.,LTD

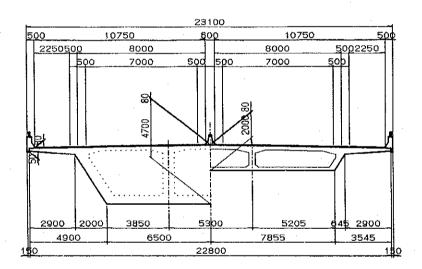
		PREPARED BY	CHECKED BY	APPROVED BY
	NAME	S. Kiguchi	K.Matsumoto	K. Enomoto
	SKINATURE	S. Kimah	K. Hatumet	J. L.
	DATE	. 20/9/2000	29/9/2000	5/10/2000
•	SENATURE	5. Kimah	K. Historich	V. J.


DERWING III LE	DITG NO.
General View of Can Tho Bridge (2/2)	1-4


1.3 Cross Section

Typical Cross Section


Main Bridge (PC Box Girder)


Main Bridge (Steel Box Girder)

Approach Viaduct

Branch Stream Bridge

1.4 Material

1.4.1 Concrete

Class	fc'			Typical use			
A	50 MPa	Pr	e-cast concrete: PC	Box Girders			
В	40 MPa		situ concrete: Pylo e-cast concrete: I G		5		
C	35 MPa	In	situ concrete: PC h	ollow slabs			
D	30 MPa	In	In situ concrete: Diaphragm for I-girder, In situ concrete: Bored pile Pre-cast concrete: Skirt unit and slab for river pier and pile caps				
E	25 MPa	Pre-cast concrete : Barrier In situ concrete : Pier, Abutment, Pile caps			ps		
F	20 MPa	In situ concrete : Concrete foot-path					
Ġ	15 MPa	In situ concrete: Lean Concrete, Plain Concrete			Concrete		
	fc'		Ec	G	Ct		
Class			(MPa)	(MPa)			
A	50MPa		33,900	14,100			
В	40MPa	-	30,400	12,600			
С	35МРа		28,400	11,800] 10.8/°C		
D	30MPa		26,300	10,900	x 1.0E-6		
Е	25MPa		24,000	10,000	X 1.0E-0		
F	20MPa		21,500	8,900			
G	15MPa		18,600	7,700			

^{*} fc': Compressive Strength of Concrete at 28 days (LRFD 5.4.2.1)

Ec: Elasticity Modulus of Concrete (LRFD 5.4.2.4) Ec = 0.043Yc^{1.5} $\sqrt{\text{fc'}}$ Ec= $4800\sqrt{\text{fc'}}$

G: Shear Modulus (LRFD5.4.2.5) $G = Ec/(2 \times (1+Poisson's ratio)) = Ec/2.4$

Ct: Coefficient of thermal expansion and contraction (LRFD5.4.2.2)

1.4.2 Structural Steel

(1) Steel Girder

		Minimum	Minimum Yield Point or Minimum Yield Strength (N/mm²)	Minimum Yield nm²)	Strength	Minimum Tensile	C C
Grade			Thickness of Steel	s of Steel		nguanc	Kemarks
	•	t ≦ 16	$t \le 16$ $16 < t \le 40 40 < t \le 75$	40 < t ≤75	75 <t< td=""><td>(N/mm²)</td><td></td></t<>	(N/mm²)	
Rolled Steels for General Structure	SS400	245	235	215	215	$400 \sim 510$	JIS G 3101
	SM400A	245	235	215	215	$400 \sim 510$	JIS G 3106
Rolled Steels for Welded Structure	SM490YA	365	355	335	325	$490 \sim 610$	JIS G 3106
	SM490YB	365	355	335	325	$490 \sim 610$	JIS G 3106
	SMA400AW	245	235	215	215	$400 \sim 510$	JIS G 3114
	SMA400CW	245	235	215	215	$400 \sim 510$	JIS G 3114
Hot-rolled Atmospheric Corrosion	SMA490AW	365	355	335	325	$490 \sim 610$	JIS G 3114
Resisting Steels for Welded Structure	SMA490BW	365	355	335	325	$490 \sim 610$	JIS G 3114
	SMA570W	460	450	430	420	570 ~ 720	JIS G 3114
High Strength Hexagon Bolt for Friction Grip Type(H.T.B)	F10TW)6	006		1000~1200	JIS B 1186 Type Weathering Bolts
High Strength Tension Control Bolt for Friction Grip Type (T.C.B)	S10TW		006	00		1000~1200	JIS B 1186 Type Weathering Bolts
Stainless Steel NUT	SUS304	-					JIS B 1181
PIPE	STK400		235	5		400	JIS G 3444

(2) Steel Pipe for Hybrid Pile

Remarks	JIS A 5525	
Minimum Tensile Strength	(N/mm^2)	490
Minimum Yield Point or Minimum Yield Strenoth	(N/mm²)	315
rade		SKK490

1.4.3 Reinforcement Steel

GRADE: SD345

- Specified Yield Strength:

Plain Round:

235MPa

High Yield deformed:

390MPa

- Modulus of elasticity of reinforcement steel:

Es = 200

200,000 MPa

Available size of reinforcement

Available size of femorement						
Dia. (mm)	Area (mm²)	Mass N/m	Dia. (mm)	Area (mm²)	Mass N/m	
10	78.54	6.05	28	615.8	47.37	
12	113.1	8.71	30	706.9	54.43	
14	153.9	11.87	32	804.2	61.88	
16	201.1	15.49	35	956.6	73.65	
18	254.5	19.61	38	1140.0	87.76	
20	314.2	24.22	41	1340.0	102.97	
22	380.1	29.22	51	2002.7	155.93	
25	490.9	37.76				

1.4.4 PC Steel

	Internal (Longitudinal)	Longitudinal PC Bar	Diaphragm at Stay PC anchorage
Grade	SWPR7BL	SBPR1180	SWPR7BL
Type of PC Steel	12S15.2	PC bar dia.32mm	12S15.2
Sectional Area (mm²)	1,664.5	804.2	1664.5
Nominal Strength (N/mm²)	1,860	1,180	1,860
Yield Strength (N/mm²)	1,570	930	1,570
Young's Modules (MPa)	196,000	197,000	196,000
Friction Loss Coefficient (/m)	0.002	0.002	0.002
Angle Coefficient (/ Deg.)	0.25	0.25	0.25
Set Losses (mm)	9	0	9

1.4.5 Stay Cable

The stays will be composed of 7 wire 15.2mm diameter strands with and elastic modulus $Es = 195 \times 10^3 MPa$ (adopted for design purposes.)

The effective stay modulus depends on the slope and the force in the stay according to the Ernst formula. Refer to the following formula.

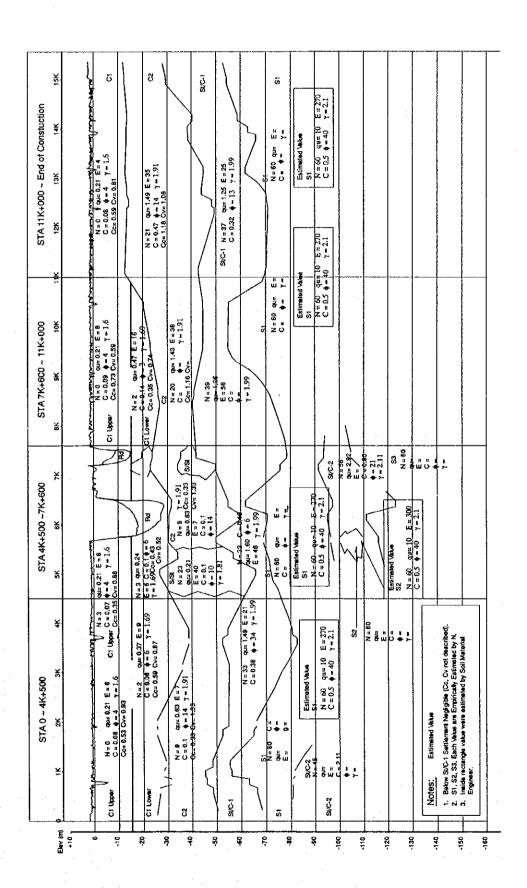
$$E = \frac{E_{O}}{1 + (\gamma \cdot l \cdot \cos \alpha)^{2} \cdot (\sigma_{1} + \sigma_{2})}$$

$$\frac{24 \sigma_{1}^{2} \cdot \sigma_{2}^{2}}{24 \sigma_{1}^{2} \cdot \sigma_{2}^{2}}$$

Here E: Elastic modulus of Stay Cable In the case that sag is considered

Eo: Elastic modulus of Stay Cable

γ: Unit weight of Stay Cable


1 : Stay Cable length

 α : Inclining Angle

σ: Tensile stress of Stay Cable

Stay stresses shall be limited to $0.40~\rm f_p$ under maximum service loads. This figure may be increased to $0.60~\rm f_p$ during construction or during stay exchange/removal. The steel properties are given in the table below

Material	Nom.ld	Area	Guaranteed Ultimate Tensile Strength f _p	Guaranteed Ultimate Force P _B	Service Limit Force
	Mm	Mm²	MPa	kN	kN
Strand	15.2	140	1862	261	104

Chapter 2

MAJOR LOADS

2.1	DEAD LOAD		•	2-1
2.2	LIVE LOAD			2-1
2.3	THERMAL EFFECT			2-2
2.4	WIND LOAD			2-3
2.5	VESSEL COLLISION FORCE	•		2-6
2.6	SEISMIC FORCE			2-8
2.7	ERECTION EQUIPMENT	WEIGHT	FOR	
	CABLE STAYED BRIDGE			2-9

2. Major Load

2.1 Dead Load

Force transferred from superstructure was analyzed in the superstructure design, and the effect of creep and shrinkage in the construction stage was considered as a part of Dead Load.

Permanent loads shall be calculated in accordance with Clause 3.5 of AASHTO LRFD. Dead loads shall include the weight of the concrete, steel reinforcement, prestressing tendons, cable stays, steelworks and any other embedded components, based on the following unit weights.

• Concrete (Reinforced):

2500 kg/m³

(Unreinforced):

 2300 kg/m^3

Steel work

 7850 kg/m^3

Asphalt

2300 kg/m³

• Cable Stays

The total superimposed dead load allowance (DW) of 62 kN/m is assumed, with the following breakdown:

 Carriageway asphalt surfacing 36 kN/m (thickness 75 mm, no allowance for future overlay)

Concrete median barrier

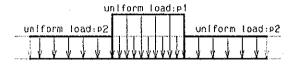
8 kN/m

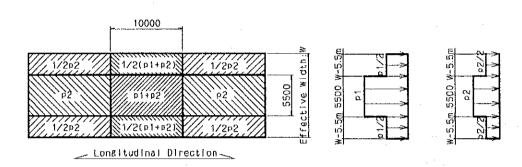
Steel pedestrian barrier

1 kN/m per side

Concrete edge barriers

5 kN/m per side


Possible future services


6 kN/m

2.2 Live Load

The design traffic load of the principal part of the bridge applies the B-load. (Japanese Standard) As for the details of the B load refer to Design Criteria

B-Live Load for Girder Design

Main load							
p1 – uniform	p1 – uniform load p2 uniform load						
Loading length D	Strength (kgf/cm²)		Strength (kgf/	Sub-loading		
(m)	for M	for S	L≦80	80 <l≦130< td=""><td>L>130</td><td></td></l≦130<>	L>130		
10	1,000	1200	350	430-L	300	50% of main- loadings	

Dynamic Load Allowance

Impact coefficient calculated in accordance with AASHTO and Japanese Standard. Main Bridge applies the standard of Japan and other bridges apply AASHTO.

AASHTO -Approach viaduct and other bridges of approach road section Impact coefficient: I=0.33

Japanese Standard - Main Bridge

I = 20/(L+50)

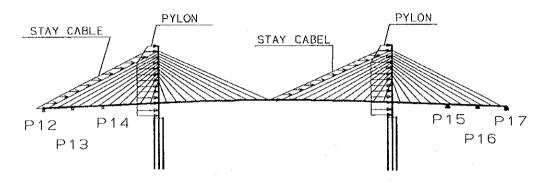
- I: impact coefficient
- L: length in meter of the portion of the span that is loaded to produce the maximum stress in the member.

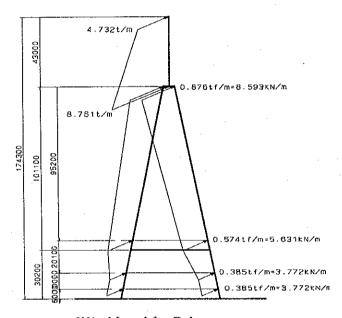
Impact coefficient for middle span: 0.033

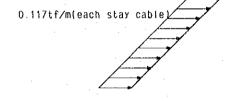
Impact coefficient for side span

P14(P15)~Northern Pylon(Southern Pylon): 0.111

P12~P13, P13~P14, P15~P16, P16~P17 : 0.167


2.3 Thermal Effect


Thermal Rise and Down is "±15°C" Differential Temperature is "5°C"


2.4 Wind Load

2.4.1 Static analysis

Longitudinal Direction

Wind Load for Pylon

Wind Load for Stay Cable

Calculate of Static Wind Pressure

km/h	mm	160.0 km/h	km/h
13.2	70.0	160.0	160.0
_ 0 >	=0Z	$\Lambda b=$	V10=

B(m) P(kN/m)	0.000 37.703		10.000 56.309					0.440 2.284			B(m) P(kN/m)					10.000 128.867	50610	,	0.440 3.426	
MPa B			0.0056 1			0 0003					MPaB					0.0129		0.013%		
Pd(MPa)	3000	0.0020	0.0038		0.0057	0.0062	70000	0.0052			Pd(MPa)	()	0.0038	72000	0.000	0.0086		0.0093	0.0070	0.007.0
VDZ	1000	163.7	2001	1 1	247.2	0 750	Z.00.2	235.3			7.07	1	163.7			247.2	! ·	256.9	100	C.CC2
(02/2)	(27 (70)	4.9618	6.0638	00000	7.4900	1	008/./	7.1309			(02/2)	m (5/ 50)	4.9618	0000	6.0638	7 4900	00/E·/	7.7850	C	7.1309
(1/X/ OF/ X)+0/X+ 0	<u>ر</u>							33 00				$2.5^{\circ} VU^{\circ}(VIU/VD)$ III $(2.5^{\circ} VU^{\circ}(VIU/VD)$								33.00
0.0024	7	10.000	00000	30,100	125 300	147,000	168,300	07 500	000//0	0.0036	2000	.7	Ι,	10,000	30.100	000010	125,500	168 300	2000	87,500
Pb= 0.0024	VDZ	71	1 1	Z2	7.2	3	7.4		67	The state of the s	2	ADZ	77	77	62		S	7.4	, ,	S 2

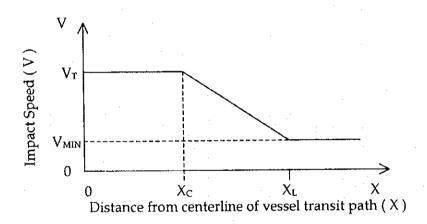
2.5 Vessel Collision Force

The vessel collision force of the ship is hypothesizing of 10000DWT collides with the foundation of Pylon from navigable line. The collision of the ship of 5000DWT is hypothesized to supplementary piers.

The impact load of 500DWT causes to be acted to the bridge of the tributary in consideration of the navigation of the ship of the present condition.

Ship Collision Force on Pier

The head-on ship collision impact force on a pier shall be taken as:


$$P_{\rm S} = 1.2 \times 10^5 V \sqrt{DWT}$$

where:

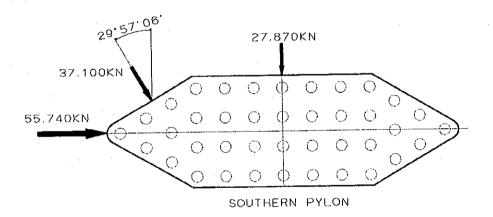
Ps = equivalent static vessel impact force (N)

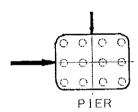
DWT = dead weight tonnage of vessel (Mg)

V = vessel impact velocity (m/s)

Application of Impact Forces

Substructure Design


For substructure design, equivalent static forces, parallel and normal to the centerline of the navigable channel, shall be applied separately as following:


- 100 percent of the design impact force in a direction parallel to the alignment of the centerline of the navigable channel.
- 50 percent of the design impact force in the direction normal to the direction of the centerline of the channel.
- For overall stability, the design impact force is applied as a concentrated force in the substructure at the mean high water level for the waterway.

Ship Impact Force for Substructure

unit: kN

Substructure	Longitudinal	Transverse
Southern Pylon	27,870	55,470
Pier P15	11,520	23,040
Pier P16	8,690	17,380
Pier P17	8,490	16,970
Pier P36	3,250	6,500
Pier P37	4,370	8,750
Pier P38	6,630	13,260
Pier P39	6,630	13,260
Pier P40	4,370	8,750
Pier P41	3,250	6,500

2. 6 Seismic Force

At determination of elastic seismic response coefficient which is resulting from formula in accordance with specification of AASHTO LRFD (Article 3.10) as follows. Acceleration coefficient "A" shall be taken in proposal of VIET NAM NATIONAL CENTER FOR NATURAL SCIENCE AND TECHNOROGY INSTITUTE OF GEOPHYSICS.

2.6.1 Examination of Seismic Coefficient

(1) Formula for elastic seismic response coefficient

Туре	Formula					
$T_{\rm m} > 4.0$	C_{sm} =3AS / $T^{4/3}$					
$0.3 < T_m < 4.0$	$C_{sm}=1.2AS / T^{2/3} \ge 2.5A$					
$T_{\rm m} < 0.3$	$C_{sm} = A (0.8 + 4.0 T_m)$					

T_m; Period of vibration (sec)

A; Acceleration coefficient

S; Site coefficient

(2) Soil condition of construction area

In accordance with the boring log, classification of soil condition for Main bridge and Approach bridges are taken as;

1) Main bridge

S=2.0 (Soil profile type IV)

2) Approach bridge

S=2.0 (Soil profile type IV)

(3) Elastic Seismic Response Coefficient

1) Main Bridge

Elastic seismic response coefficient for main bridge, shall be taken as;

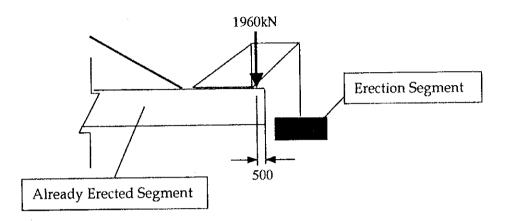
$$C_{sm} = 3*0.12*2.0 / 4.004/3 = 0.113$$

where; A

A = 0.12

S = 2.0

 $T_m = 4.00 \text{ (sec)}; Mode 3$


2) Approach Bridge

	A	T(sec)	Csm
Approach Viaduct	0.06	0.5	0.150*
		1.0	0.144
		1.5	0.110
Approach	0.05	0.5	0.125*
Approach Road Bridge		1.0	0.120
		1.5	0.092

2.7 Erection Equipment Weight for Cable Stayed Bridge

Erection Nose Weight: 1960 kN (200tf)

Loading Point

Chapter 3

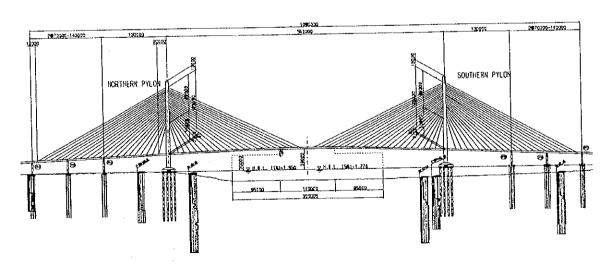
DESIGN SUMMARY OF MAIN BRIDGE (CABLE STAYED BRIDGE)

3.1	STRUCTURAL FEATURE	3-1
3.2	CALCULATION METHOD	3-2
3.3	CONSTRUCTION SEQUENCE	3-5
3.4	CONSTRUCTION SCHEDULE	3-9
3.5	OVERALL STRUCTURE ANALYSIS	3-10
3.6	ANALYSIS OF NATURAL PERIOD	3-28
3.7	DESIGN OF PC-GIRDER	3-29
3.8	DESIGN OF STEEL GIRDER	3-53
3.9	DESIGN OF PYLON	3-95
3.10	DESIGN OF STAY CABLE	3-107
3.11	DESIGN OF PILE CAP	3-119
3.12	DESIGN OF FOUNDATION OF PYLON	3-134
3.13	DESIGN OF SUPPLEMENTARY PIER	3-148
3.14	DESIGN OF BEARING	3-251
3.15	DESIGN OF EXPANSION JOINTS	3-255

3. Design Summary of Main Bridge (Cable Stayed Bridge)

3.1 Structural Feature

As for a main bridge, main span length is 550 m, total bridge length is 1090m.main span is the hybrid cable stayed bridge that the steel girder and P.C connected. The Pylon makes the concrete of box section.

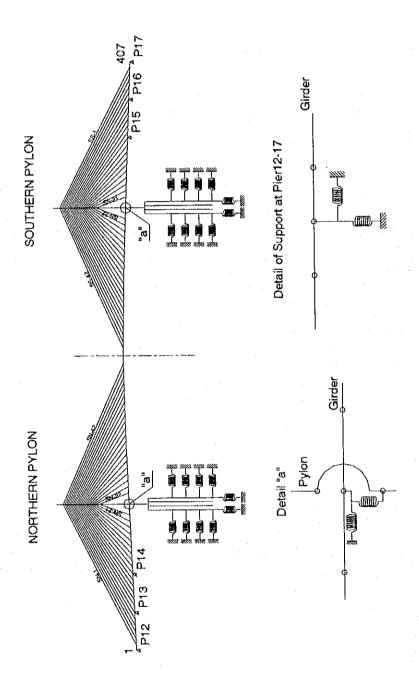

The arrangement of the pier of the side span made the interval of a minimum pier 70 m, to avoid hindering the flow of the water of the river with the pier, that there are the traffic of many ships, that the width of the river is wide.

The stiffening girder, that the width of the road is wide the stability by wind in consideration of the box girder type.

As for the type of the structure of the pylon transformation performance adopts a good A-type, because the scale of the bridge is big.

It is as the details following of structure.

- The length of the concrete segment of the stiffening girder makes minimum length 4 m, to hold down the occurrence of the twist.
- The construction method of stiffening girder a makes a balance cantilever method.
- · Stay cable uses parallel strand stay cable that was plated by zinc.
- The foundation of the main pier is the composite pile of a steel pipe and concrete.
- Elastomeric Bearing supports the force of vertical and longitudinal horizontal direction to flexibility.

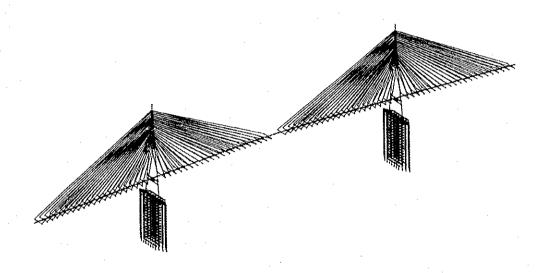


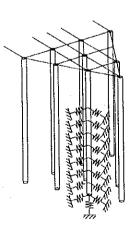
GENERAL VIEW OF MAIN BRIDGE

3.2 Calculation Method

3.2.1 2-D Frame Analysis

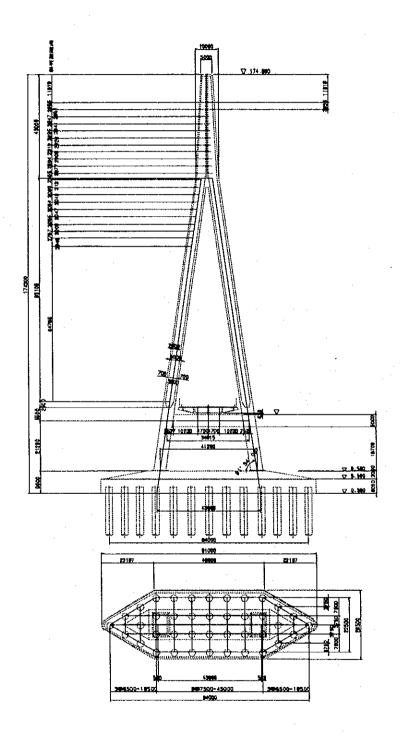
The design of the longitudinal direction of the girder makes the 2-D Frame Analysis by Infinitesimal Deformation Theory. The software that used it for calculation is "CONST". 2-D Frame Analysis shall be calculated sectional force, displacement, stress of complete structure and erection steps.


3.2.2 Space Frame Analysis


The purpose of the analysis by space frame is as shown below. The software that used it for the space frame analysis is "fancy".

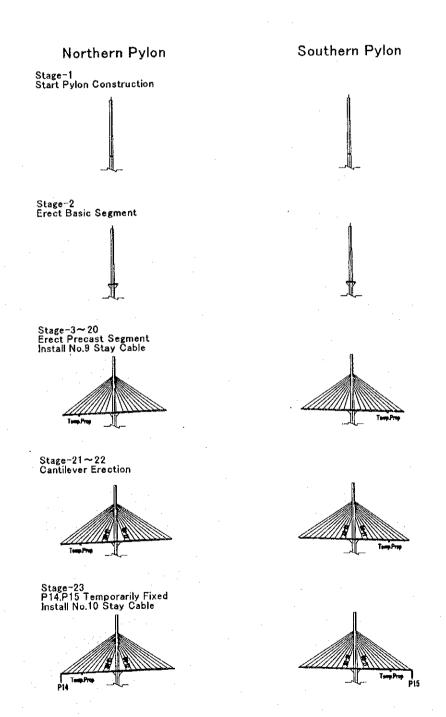
- Design of the section of the transverse direction of pylon.
- The fluctuation of stress of stay cable by life load is confirmed.
- The section design of transverse direction of a main girder.
- Transformation of a main girder is confirmed.

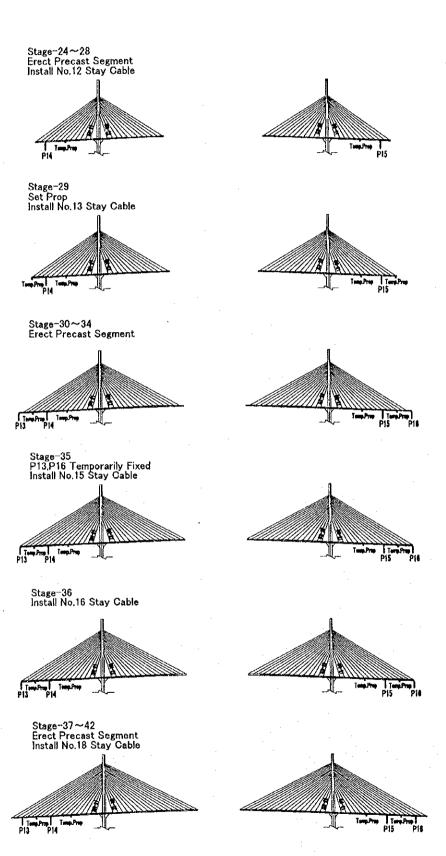
Calculation Model

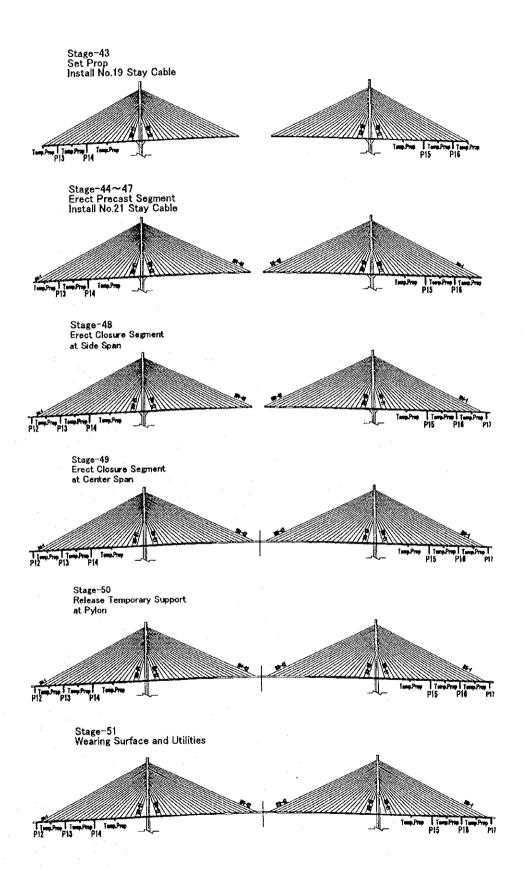

GROVAL MODEL

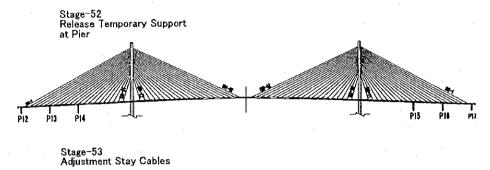
FOUNDATION MODEL

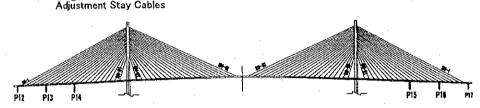
PYLON MODEL

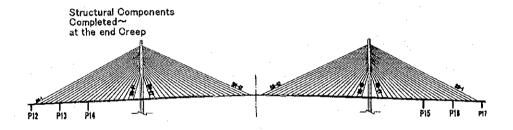

3.3 Construction Sequence

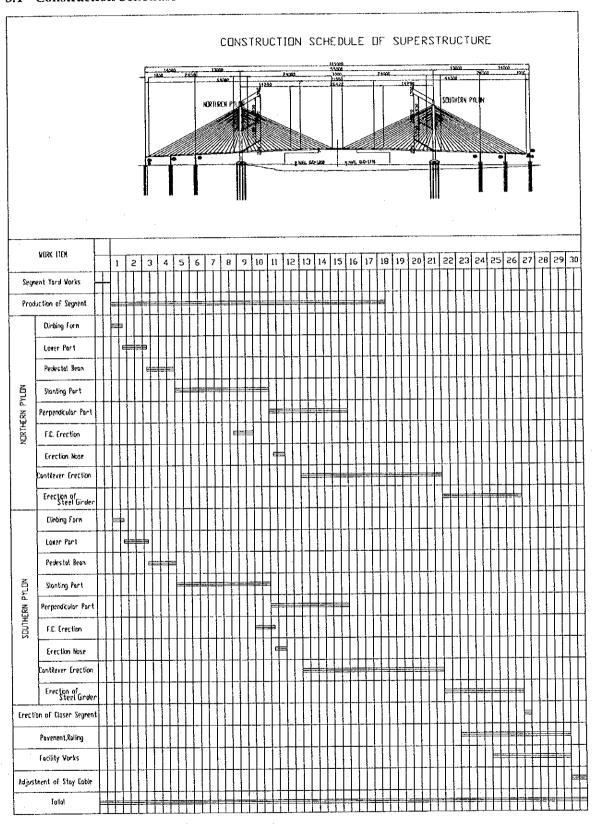

Support condition of P13,P14,P15,P16:

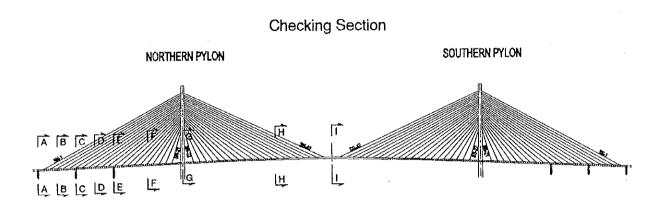

- During Construction
 - Support Element will be fixed for Vertical and Horizontal direction.
- After Completion of Structure


Elastomeric Support


Support condition of P12,P17 : Elastomeric Support







3.4 Construction Schedule

3.5 Overall Structure Analysis

Completed
Construction
Force after the C
Sectional]
able

	0	SECTION A	-	£5	V	SECTIONER	H				,	SECTIONC	U		
Decudition is	5				Left			Right			Left		· ·	Right	
	1	1-2		-	16- 15			16-17			30-29		l i	1	
	(ZYZ)	S(kN) M()	M(kNm)	NKN NKN	S(KN)	M(KNIm)	N(KN)	SKK	M(KNm)	(Syz	S(RN)	M(KNm)	N K K	SKS SKS	MKKn
*** Axial Force, Maximum ***	n***												1	***************************************	
DC+DW	-216	5285	o	-31251	15-	28983	-31251	-31	8883	45903	-13128	-175708	-54959	8937	- 1
DC+DW+L(+)	-62	4743	0	-30883	-169	27526	-30883	-169	27526	45264	-13956	-186148	5173	9763	
DC+DW+L/-)	450	7914	0	-35179	8	32070	-35174	370	32070	-52098	-12869	-169447		84.8	
DC+DW+T MAX	193	5224	0	-31052	11	28383	-31052	11	28383	45771	-13050	-174164		8871	-174164
DC+DW+T MIN	789	2601	0	-31525	186	38437	-31525	186	38437	46125	-12937	-159147	-55576	8902	-159147
DC+DW+L+T MAX	337	4681	0	30684	-126	326926	-30684	-126	26926	45131	-13878	18604		1696	
DC+DW+L+T MIN	026-	6728	0	-35452	88	41523	-35447	228	41523	-52320	-12678	-152886			
	6178	4342	0	-30841	628	19385	-30841	628	19385	49220	-11950	-151946	_		- 1
DC+DW-EO	-6612	2729	0	-31662	-692	38582	-31662	7695	38582	42586	-14306	-199470	-57733	9912	-19-44/0
*** Shear Force, Maximum ***	m***														
DC+DW		5285	0	-31251	ਨ	28983	31251	-31	28983	45903	-13128	-175708		8937	-1/5/08
DC+DW+[/+)	-325	8717	0	-3473	1481	42835	-34456	1481	42835	-51890	-11279	-150786		12931	-210171
DC+DW+[(-)	-197	3787	ō	-31266	-1764	52583	-31261	-1764	52583	-45602	-17327	-209397		7312	-149382
DC+DW+T MAX	289-	2601	0	-31125	ZZ	37236	-31125	727	37236	45860	-12780	-156059			-177252
L	193	5224	0	-31451	-74	29583	-31451		29583	-46035	-13206	-177252	-54613		
DC+DW+L+T MAX	-795	9083	0	-34347	1784	51088	-34330		51088	-51847	-10931	-131137	-55592	۲	
DC+DW+L+T MIN	212	3775	0	-31465	-1807	53183		-	53183	45734	-17405	-210941			- 1
DC+DW+EO	6178	4342	0	30841	628	19385	30841	628	19385	49220	-11950	-151946			Ė
DC+DW-BO	-6612	6227	0	-31662	-692	38582	-31662	-692	38582	-42586	-14306	2861	-57733	9912	-199470
Moment,	Maximum ****														
	-216	5285	0	-31251	-31	28983		-31	28983	45903	-13128	-175/08			
DC+DW+L(+)	-216	5285	0	-31262	442	73766		4	73/66	-51641	-11317	-149362			-149362
DC+DW+L(-)	-216	5285	0	-34350	117	2674		117	2874	45,68	-16/51	-218545	_	1	7,0077-
DC+DW+T MAX	193	5224	0	-31525	38	38437	•	186	38437	4	-17/80	- 1]		-
DC+DW+T MIN	289-	2601	0	-31052	11	28383		11	28383	46035	-13206	i	\perp	2002	
DC+DW+L+T MAX	193	5224	0	-31535	-223	83219		£2;	83219	-51598	-10969	- 1			- 1
DC+DW+L+T MIN	-687	3601	0	-34150	160	2074		<u>3</u>	2074	46100	-16809		27/7S	2511	
DC+DW+EQ	6178	4312	0	-30841	628	19385		879	19385	49220	Ì	Ì	j		Į.
DC+DW-EQ	-6612	6227	0	-31662	769-	38582	-31662	-695	38582	42586	-14306	-1994/U			1777

NOTE
DC+DW: Dead Load At the end of Greep
T: Thermal Effect
L: Live Load with Impact
{(+): Max , (-): Min}
BQ: Seisnric Force

Completed
Construction (
ctional Force after the C
Sectional 1
Table

				TARANT	3		occupilla i orce area							u	ROTTOR	t.		
Section Name		-,	SECTION-D				,	1	SECTION-E						<u> </u>		i dini	
		Left			Right		ı	Left			Right		<u>ت</u> ا	Lett			Kignt	
	,	45 - 44		4	45 - 46		19	69 - 99		Q	60 - 61		∞∣	- 1		إشا		
	N(KN)	.	M(kNm)	N(kN)	S(kN) IN	M(kNm)	N(kN)	S(kN)	M(kNm)	N(KN)	S(kN) M	M(kNm)	N(KN)	S(kN)	M(kNm)	N(N) - S	S(KN)	M(kNm)
*** Avial Force Maximum ***	um ***																	
DC+DW	1-69493	4158	4158 - 101071	-76735	-174 -	4 -101071	-87418	-13348 -	-316225	-88454	12334 -316225		-122385	- 1	85103 -122385	122385		85103
DC+DW+I (+)	-68320	-5103	5103 -102569	-75349	-846	-846 -110485	-85510	-14438	_	-86546	14653 -		-121307		106147 -121303	121303		106147
DC+DW+I (-)	-79238	-3455	-97980	-87467	744	<u> </u>	-100121	12854	_	-101191	9986	_	-138680	4085	64266 -138680	138680	4085	64266
DC+DW+T MAX	-68987	4238		-76197	-273	-273 -102005	-86769	-13522 -	-321767	-87518			-121095	3780		121095	3780	88378
	-70190	-4147	-85094	-77487	-128	-85094	-88313	-13207 -	-297102	69968-		_	-123989	3789		-123989		95265
F-	-67815			-74811	-946	-946 -111420	-84860	-14612 -	-355337	-85610			-120017	4110		-120012		109422
ĺ.	79935	3443	-82004	-88218	790	; —	-101015	-12713 -	-267431 -	-102406	9545 -		-140283			-140283		74428
	76197		1 1	76086	-1619	9 -114947	-87764	-15906 -396178	396178	-82660	16893 -		-116388			-116388	_	141236
DC+DW-EO	-69788	-2974	-87195	-77384	1271	-87195	-87073	-10790 -236272	236272	-94247	7775 -:	-236272	-128383	3681	28970	-128383	3681	28970
*** Shear Force Maximum ***	nam ***		1															
WC+CC	169493	-4158	-101071	-76735	-174 -	-101071	-87418	-13348 -316225	_	-88454	12334 -316225		-122385	3778	!	-122385	3778	85103
10 - D(1+1 (+)	73649	7656	-83585		1901	-84964	-99756	-11061 -268789		-87390	16444 -360820		-134830	5395		-134814		90753
- 11	77887	5909	-86061	1	-1915	-84682	-86274	-17663 -360351		-100674	9252 -		-122801	2451		-122796		105337
B-T-MAN-E-1	80607	4079	100136	77773	4	-100136	89088-	-13173 -310683	310683	-87518	12638 -321767		-121408	3793		-121408		101815
DC+DW+1	60170	4304	-86963	-76411	-327	69698-	-87014	-13556	-308186	69968-	12013 -297102	297102	-123676	3776	81829	-123676	_	81829
Į-	-74154	-2517	-82650	-86463	2001		-100405	-10887	-263247	-86454	16748 -	6748 -366362	-133853	5411	107465	-133837	i	107465
1	2012/-	6056	1	-75569	-2069		-85870	-17871 -	-352313	-101889	8931	-249620 -124091	124091	2448	102063 -124087	124087	2449	102063
	40107	5343	11.	-76086		-114947	-87764	-15906 -	-396178	-82660	16893 -	16893 -396178	-116388	3875	141236 -116388	.116388	3875	141236
DC+DW-EC	-69788	-2974	-87195	-77384	-	-87195	-87073		-236272	-94247	7775	-236272 -	-128383	3681	28970	-128383	3681	28970
oment	Maximum ***																	200
	-69493		-4158 -101071	-76735	-174	74 -101071	-87418	-13348 -316225	_	-88454			-122385	3778		285771-	3//8	55105
DC+DW+L(+)	-70673	-4240	-66844	-78197	-62	-66844	-99634	-11065 -268734	_	-100626			-1214/6	3/35		905171-	0//0	77.73
(-) 1+MC+CC	-75604	-4448	-118633	-83262	-212	-212 -118633	-85870	-16254 -369507	369507	-87013	15719 -		-138215	4073	0.700	-138215	40/3	2000
DC+DW+T MAX	-70190	4147	-85094	-77487	-128	-85094	-88313	-13207 -297102	-297102	69968-	12013 -	-	-121408	3793		-121408	3793	101815
	-68987	4238	102005	-76197	-273	-102005	-86769	-13522 -321767		-87518	12638 -	3	-123676	37/6		-1236/6	3//0	67919
F	71370	4778		-78948	-16	-50868	-100528	-10924 -249612	1	-101840	8932 -		-120499	3811	•	-120479	3811	134645
	75000		- [1]	827724	-312	-119567	-85221	-16429 -375049	375049	-86077	16023 -	16023 -375049	-139506	4071	60395	-139506	4071	60395
j	49197			-76086	-1619	-114947	-87764	-15906 -396178	396178	-82660	16893 -		-116388	3875	141236	-116388	3875	141236
DC+DW-EC	-69788	-2974	-87195	-77384	<u></u>	-87195	-87073	-10790 -236272	-236272	-94247	7775 -	7775 -236272	-128383	3681	28970	-128383	3681	28970
y														NOTE				

NOTE
DC+DW Dead Load At the end of Creep
T: Thermal Effect
L: Live Load with Impact
L: Live Load with Impact
(+): Max , (-): Min)
EQ: Seismic Force

	ı
~~	ı
ă	i
煮	ł
omplete	ı
₽.	ŀ
8	1
0	
O	
_	i
8	
Ē	
ū	
2	
Construction	
2	
<u></u>	
O	
the	
~	
₩	
after the	
≒	
40	
w	
Ę	
بي	
al Force	
ectiona	
0	
	i
Y	
U)	ı
á.	
-	Ċ
2	

			Table					S	CECTION				J.		
Section Name			SECTIONS										3		
		Left			Right		د	Left		_	Kight				
		109-108			109 110	 	7,	169 - 168		16	169-170		1	8	
	(NXX	S(KN)	MIKNIMN(KN)	\vdash	S(KN)	M(KNIM N(KN)		S(KN) N	M(KNM N(KN)		S(KN) N	M(KNM N(KN)		S(KN) N	M(KNM)
*** Axial Force, Maximum ***				1									1		
MC+XI	133459	-13973	-122656	134599	11745	11745 -122656	96966-	614	888	-39636	3	988	2/34	=	11/00
DC+DW+1 (+)	-133067	-16544	-132714	133910	11913	11913 -129753	-38325	641	-7009	-38324	179	-7009	4239		61934
DC+DW+1()	140074	-14363	-145440	151764	13034	13034 -143479	49933	1251	-19310	49929	1291	-19309	1367	3	109011
DC+DW+T MAX	132159	-13973	-120020	132529	11595	-120020	-37452	631	4543	-37452	199	4543	4998	1	66251
	-135099	-13906	-13906 -109158	137060	11847	-109158	42354	194	2355	42354	495	2325	171	0	6443
1	131767	1	-130077	131840	11762	-127117	-36141	657	-7659	-36141	989	-7659	65.03	1	62473
1	-151615		-14297 -131941	154225	13136	13136 -129980	-52651	1098	-13061	-52647	1140	-13061	1195		107734
-	-131558	1	-15675 -124794	117238	10627	10627 -124794	-33376	1016	-2839	-33375	1042	-2839	966 866	-874	66545
DC+DW-EO	-135360	}	-12271 -120518	151960	12863	12863 -120518	45897	213	4948	-45896	220	4948	1564	877	8/8/8
*** Shear Force, Maximum ***	mm ***			ŧ											,
DC+DW	1-133459	-13973	-13973 -122656	134599	11745	11745 -122656	-39636	614	-3893	-39636	979	-3859	45/7	1	11/60
(+) [+MCI+CU	-147876	-13633	-122314	142334	14949	14949 -154121	45030	2648	2105	45054	7684	2013	292	1639	252
D-10W+1 (-)	134647	-17333	-153787	142622	11448	11448 -122599	43028	424	6276	42990	-390	6368	2645	-1637	25.5
DC+DW+T MAX	-135099	-13906	-109158	136669	11896	11896 -125293	-37452	631	4543	-37452	661	4543	4998	1	66251
	137150	'	13973 -120020	132920	11546	-103885	42354	194	2355	42354	495	2355	171	0	848
F	149517	1	13366 -108816	144404	15099	-156757	-42847	2664	1455	-42871	5696	1363	4894	<u>2</u>	94013
PCEDIME ET MIN	133347	17333	-17333 -151151	140941	11250	11250 -103827	45746	-577	12525	-45709	-540	12617	82	-1637	92207
	131558		15675 -124794		10627	10627 -124794	-33376	1016	-2839	-33375	1042	-2839	3903	-874	66545
DC+DW-FO	-135360		-120518		12863	12863 -120518	45897	213	-4948	45896	250	4948	1564	877	878
Monnent,	Maximum ***	***		**								0000	1,000	-	1 1
	1-133459	-13973	-122656	134599	11745	11745 -122656	-39636	614	-3893		8	56	*57	-	11/2/21
DC+DW+L(+)	-146505	-13717	-119632	L_	11621	11621 -119632	41937	1018	26119	i	1052	26119	046	> k	1,0001
DC+DW+1 (-)	136170	16464	-162554	137167	13596	3596 -162554	47295	8	-36854	•	28/	1000 1000 1000 1000 1000 1000 1000 100	5445	5	7021
DC+DW+T MAX	-132499	1_		132920	11546	11546 -103885	42354	461	2355		495	2355	4998	7	1979
	134750	_L	13977 -175293		11896	-125293	-37452	631	4543	-37452	199	4543	171	0	\$ 4
L	145545		-13/51 -1008/0	146559	11422	11422 -100860	44655	2 <u>8</u>	32368	44643	901	32368	4211	-	111220
- 1	127471		16463 -165190		13746	13746 -165190	45111	82	-37504	45110	1001	-37504		К	57640
1	121558	4	15675 124794		10627	10627 -124794	-33376	1016	-2839	<u> </u>	1042	-2839		-874	55.55
DC+DW-EO	135360		12271 - 120518		12863	12863 -120518	45897	213	4948	-45896	250	-4948	1564	877	648/8
													2		

NOTE
DC+DW Dead Load At the end of Creep
T: Thermal Effect
L: Live Load with Impact
(+): Max , (-): Min }
EQ: Seismic Force

Table Reaction Force after Construction

		P1	2	P	3	P1	4	Norther	n Pylon
		RX(kN)	RY(kN)	RX(kN)	RY(kN)	RX(kN)	RY(kN)	RX(kN)	RY(kN)
*** RX Maximum	ì ***								
DC+DW		-5	5834	-6	18486	-7	25703	2753	409776
DC+DW+L(+)		143	6630	143	20747	141	28314	3027	409555
DC+DW+L(-)		-187	5433	-189	17197	-194	22937	2771	434561
DC+DW+T	MAX	402	5756	350	18320	297	26170	3947	409553
DC+DW+T	MIN	-413	5912	-363	18652	-313	25237	1560	409999
DC+DW+L+T	MAX	551	6552	500	20581	447	28780	4221	409332
DC+DW+L+T	MIN	-595	5511	-546	17363	-500	22470	1578	434784
DC+DW+EQ		6412	4637	6412	15912	6410	32569	39844	405805
DC+DW-EQ		-6423	7031	-6424	21059	-6425	18838	-34336	413748
*** RY Maximum	n ***	·							
DC+DW		-5	5834	-6	18486	-7	25703	2753	409776
DC+DW+L(+)		0	9269	-25	25023	109	32507	4366	424036
DC+DW+L(-)		-45	4336	-22	14388	-173	20337	1456	420388
DC+DW+T	MAX	-413	5912	-363	18652	297	26170	3947	409553
DC+DW+T	MIN	402	5756	350	18320	-313	25237	1560	409999
DC+DW+L+T	MAX	-407	9346	-382	25189	414		L	423813
DC+DW+L+T	MIN	362	4259	334	14222	-479	19870		420611
DC+DW+EQ		6412	4637	6412	15912	6410	l	39844	405805
DC+DW-EQ		-6423	7031	-6424	21059	-6425	18838	-34336	413748

	Souther	n Pylon	P1	5	P1	.6	P1	7
·	RX(kN)	RY(kN)	RX(kN)	RY(kN)	RX(kN)	RY(kN)	RX(kN)	RY(kN)
*** RX Maximum ***								
DC+DW	-2799	409759	23	25714	21	18490	20	5835
DC+DW+L(+)	-3068	409539	208	22947	203	17202	201	5378
DC+DW+L(-)	-2815	434545	-128	28321	-130	20750	-130	6687
DC+DW+T MAX	-3979	409542	333	25253	382	18657	432	5913
DC+DW+T MIN	-1618	409975	-287	26175	-340	18324	-391	5757
DC+DW+L+T MAX	-4249	409322	519	22486	565	17368	613	5456
DC+DW+L+T MIN	-1634	434762	-438	28782	-492	20584	-542	6609
DC+DW+EQ	31920	412998	6451	19755	6450	20949	6449	6972
DC+DW-EQ	-37518	406519	-6405	31673	-6408	16032	-6407	4698
*** RY Maximum ***								
DC+DW	-2799	409759	23	25714	21	18490	20	5835
DC+DW+L(+)	-1516	420388	-95	32521	42	25028	17	9270
DC+DW+L(-)	-4391	424005	187	20342	34	14392	56	4337
DC+DW+T MAX	-1618	409975	-287	26175	382	18657	432	5913
DC+DW+T MIN	-3979	409542	333	25253	-340	18324	-391	5757
DC+DW+L+T MAX	-336	420604	-405	32982	403	25194	429	9347
DC+DW+L+T MIN	-5571	423788	498	19881	-326	14225	-355	4259
DC+DW+EQ	31920	412998	6451	19755	6450	20949	6449	6972
DC+DW-EQ	-37518	406519	-6405	31673	-6408	16032	-6407	4698

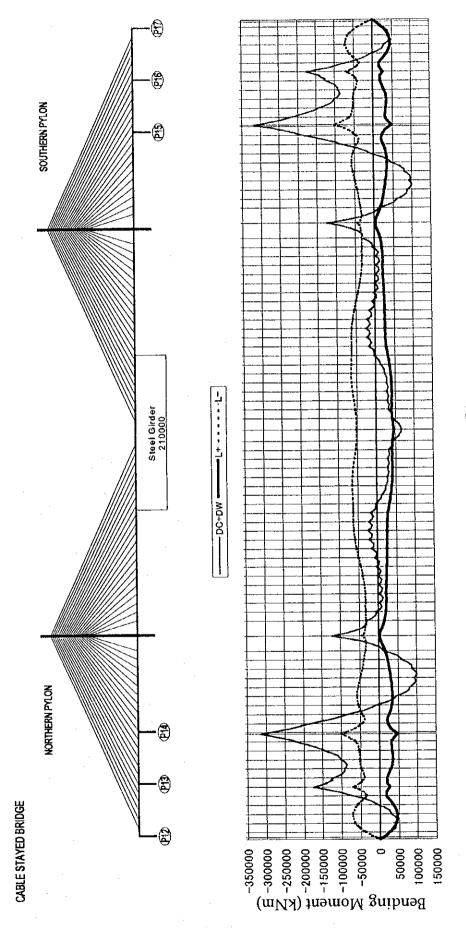


Fig Bending Moment Diagram

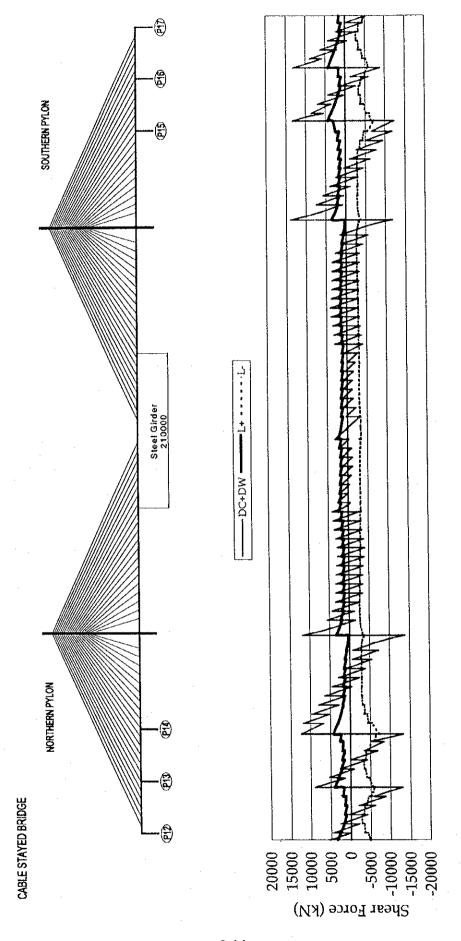


Fig Shear Force Diagram

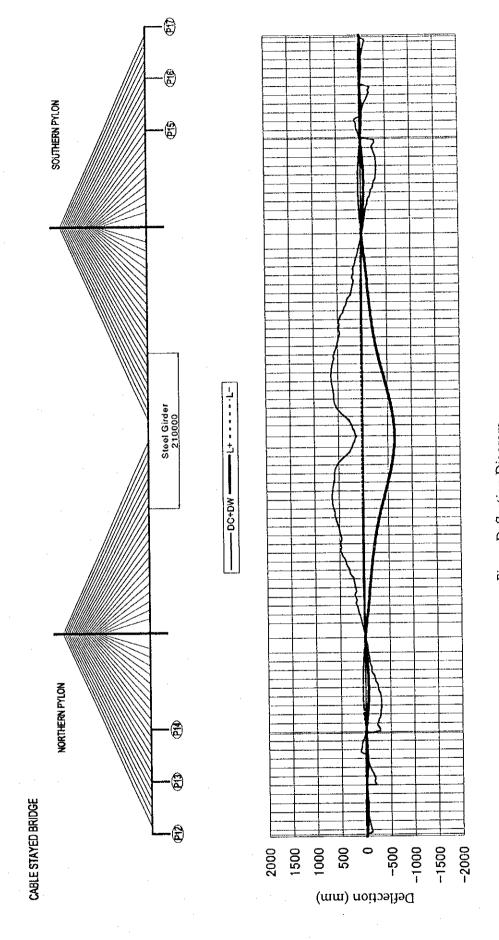
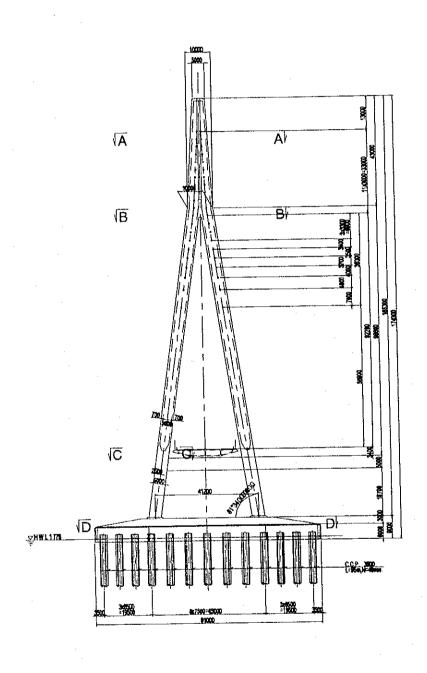



Fig Deflection Diagram

3.5.2 Result of Space Frame Analysis (Pylon)

Table SECTIONAL FORCES AT PYLON

,	
4	•
\circ	١
Ξ.	
۲	1
(.)
ĭ	ļ
	٠
=	Ġ
\vdash	١
,_	֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
⋖	•
7	ř
4	1
\subset	١
Ξ.	ī
۳)
Ε	3
Ü	j
-	
4	_
7)
_	S
_	•

					Ş								
						R-R			ပု			0.0	
		Arrial Grand Chos	A-A Choor Force	Bending	Axial Force	Shear Force	Bending	Axial Force	Shear Force	Bending	Axial Force	Shear Force	Bending Moment
		STIPLE TOTAL		Moment		dan	Moment (1.N.m.)	200	23	(KNm)	(KS)	(kN)	(KNn)
		(ZZ)	(kN)	(kNm)	(K:N)	(KIN)	(10 274)	(114)			20,20	67.4	75078
2		12674	-3133	0	-102292	-11317	-549286	-151144	2157	-145655	-18/483	7917	00500-
3 2		1429		0	-16467	1556	46604	-14799	131	42055	-16742		41446
3		0		0	-8675	2753	81930	-10308	572	43832	-9638		57428
3	IN UNION			0		6771-	44303	-1227	-536	-12980	-3097		-27063
	MmIN	168	1	9	,	3466	65337	-6682	882	33303	-6800	719	50854
	Smax	1/6-					-34058	4606	-754	-3567	-5842	-713	-20944
	Smin	287-	Ŧ				10918	127	72	3544	107	135	7258
	Nmax	04					23370	-11359	48	29950	-12640	-158	25781
	Znin	-1233	\$ 692					2000			4775	16368	392351
Š	,	0	604	3391	-6101	-2234	4824	5556-		COCO-			200051
)	!		404	-3391	6101	2234	4824	5533	-1747	6305	,	¥-	100760-
						0	0	-15	7	435	443	-307	-2/66
ž	17)				151	2.	435	443	307	2766
	۲ <u>.</u> ۲)	0	0							121	-603	-32346
12	'n	42	2 76	0	117	13		97-	`				
	Down	42	2 -76		211-	-13	-5222	28	224	7/01	171		3
8			1 2	0	3	-1	53	2	1	171			
اٰرَ					6	0	0	0	0	*	0		
Ŧ,					100	ľ	3219	-113	-62	-3638	-56	-39	-6012
ដ		-18			•	15	-		7865	401343	2271	18605	851952
ద	1	104	4 -1662	3035	'	'						-18605	-851952
	ļ	20.	4 1662	-3005	5	3 2057	127524	-2236	C98/-				

_	,	,		
)		
	1			
			ì	
		()	
ĺ				

					777								
						8.8			y			D-D	
			A-A				1			Randing		,	Bending
		Axial Force Shea	Shear Force		Axial Force	Shear Force	Moment	Axial Force	Shear Force	Moment	Axial Force	Shear Force	Moment
			Ş	_	(FAD)	CNT	(KNE)	SS	Š	(KNB)	(kN)	(kN)	(kNm)
•		(FN)	(kN)	(KININ)	(874)	I		1,000	0.22	31 408	201771	-14738	-193035
DC+DW		-14102	0	0	-118762	0	5	-165945	2	25.50		123	544
;	1	360	ď	35	-8306	130	3937	-4974	20	916		ST	
3	Mmax	600		3 8	1	1	-3837	-7318	-32	-637	-8034	-242	-2198
	Mmin	386	ıή	S,				2000		210	5510	133	35
	S. E.S.	386	5	35	-8306	130	3937	47/4	07	710			0000
	<u>.</u>	1		25	8306	-130	-3837	-7318	-32	-637	-8034	-747	9617-
	CIED	202							_	C	0	-	0
	Nmax	11	0	0	974	5	7		3			6	1376
		137	2	C	-13850	0	<u> </u>	-10652	-111	-301			200
	rimN	Ş		<u>'</u>				40522	3145	91060	-69311	11359	117462
SM	LIR		1342	3662	-10	2013		0006#		2000		11172	-116721
	1		-1342	-3662	-10	-9613	-174764	49753	-4692	-109440	10760		
	N. I			-		ır	92	-15	1	10	443	322	\$55
χĸ	L-X			1	1			7,	-	-10	443	-322	-2934
	RIT)	0	-	0	ņ				1.5077	38-	13390	116879
5	1		573	3126	-11	2906	55466	-19883	21/3	1000			110/01
3	4			3018	=	-2906	-55466	19849	-3180	-66778	39495	13411	-1104
	1												

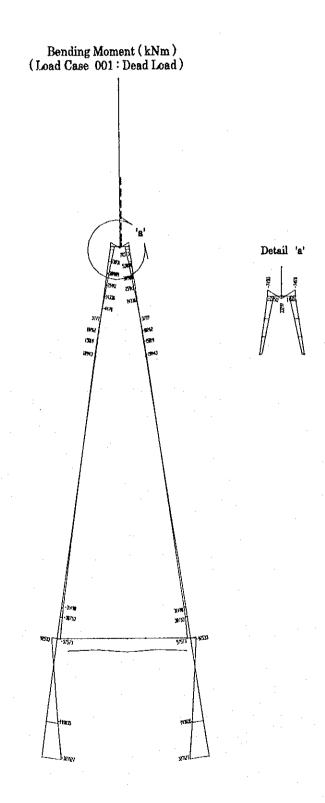


Fig Bending Moment Diagram(Dead Load)

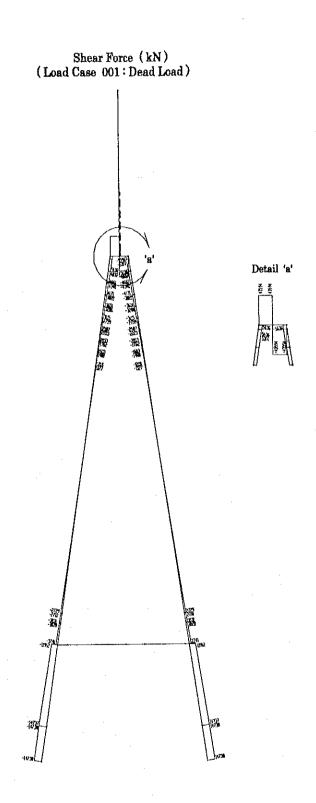


Fig Shear Force Diagram (Dead Load)

Bending Moment (kNm)
(Load Case 211: Wind Load on Structureal Component)

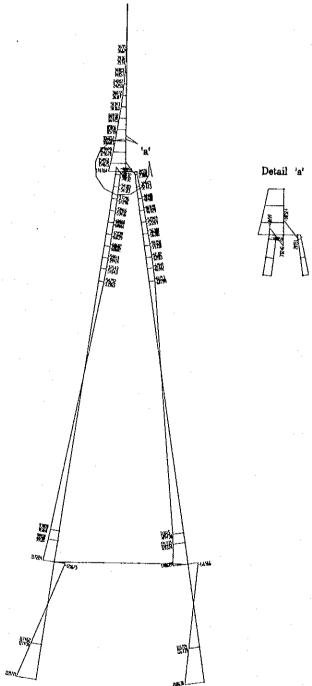


Fig Bending Moment Diagram (Wind Load)

Shear Force (kN)
(Load Case 211: Wind Load on Structureal Component)

Fig Shear Force Diagram (Wind Load)

Bending Moment (kNm) (Load Case 221: Wind on Live Load)

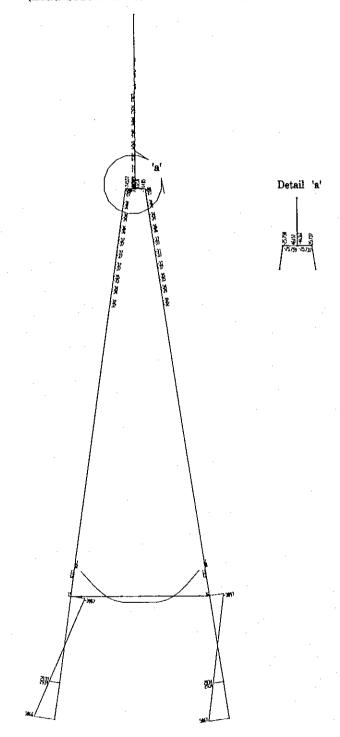


Fig Bending Moment Diagram (Wind on Live Load)

Shear Force (kN) (Load Case 221 : Wind on Live Load)

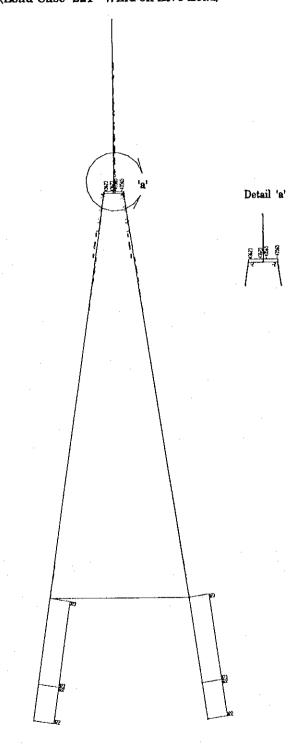


Fig Shear Force Diagram (Wind on Live Load)

Bending Moment (kNm) (Load Case 301: Earthquake Load)

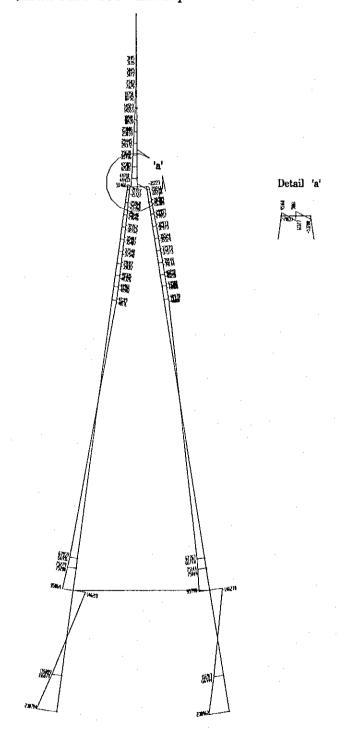


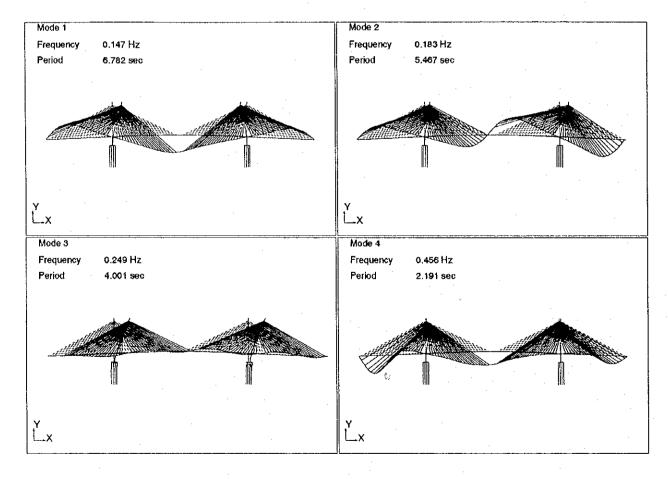
Fig Bending Moment Diagram (Earthquake)

Shear Force (kN) (Load Case 301: Earthquake Load) Detail 'a'

Fig Shear Force Diagram (Earthquake)

3.6 Analysis of Natural Period

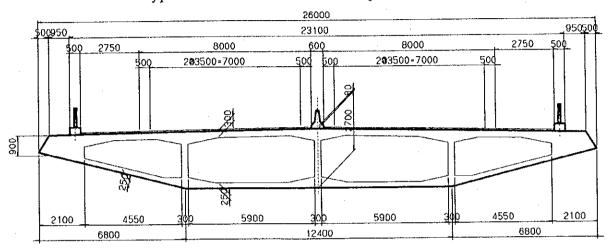
Model for analysis of natural period apply same model as calculation of internal forces. Result of natural period is shown in table.

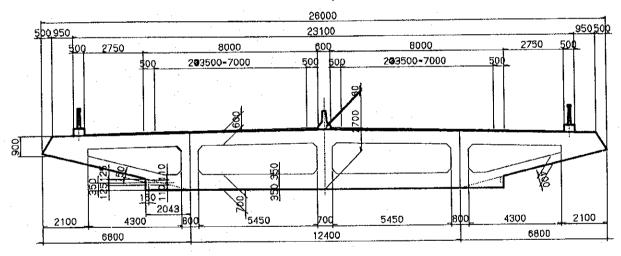

Table 3.6-1 Result of Natural Period Analysis

MODE	CIRC. FRQ	FREQUENCY	PERIOD		х	Υ	RZ
MODE	(RAD/SEC)	(1/SEC)	(SEC)		,	0.004 4.54E+01 0 3.33E+00	112
1	0.92644	0.14745	6.782111	E.M	1.41E+02	9.31E+02	
		·		EMR	0.001	0.004	
2	1.14934	0.18292	5.466763	E.M	1.85E+02	4.54E+01	
				EMR	0.001	0	
3	1.51369	0.24091	4.150910	E.M	8.06E+04	3.33E+00	
				EMR	0.317	0	
4	2.86727	0.45634	2.191346	E.M	2.93E+01	1.73E+04	
				EMR	0	0.068	

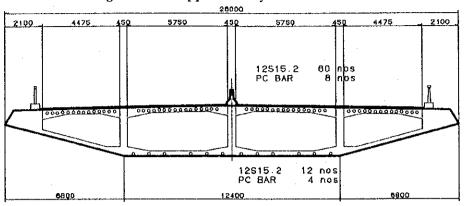
Note;

EM: Effective Mass

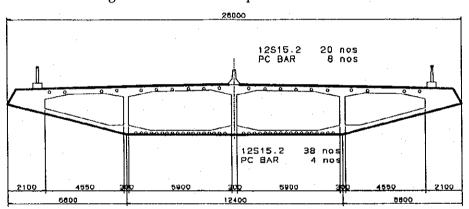

EMR: Effective Mass Ratio


3.7 Design of PC-Girder

3.7.1 Detail of PC-Girder

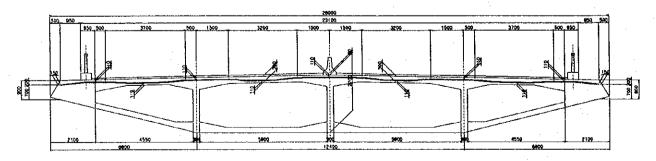

Typical Cross Section at Middle of Span

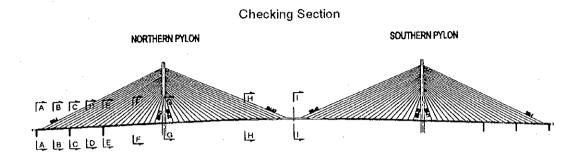
At Northern and Southern Pylon



PC Steel Arrangement at Supplementary Pier

• PC STEEL 12S15.2 PC BAR φ32


PC Steel Arrangement at Middle of Span


PC STEEL 12S15.2PC BAR φ32

Transverse PC Steel of Deck Slab

4S15.2 ctc..500

3.7.2 Calculation Result

			Section A				Sect	on B		
						Left			Right	
		N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)
DC		-180	5471	Ó	-18707	-3064	48686	-27882	1049	48686
DW		-50	162	0	-2929	-384	-1616	-4411	366	-1616
EL		13	-347	0	752	-707	-18399	1017	-842	-18399
LL	Mmax	0	. 0	. 0	31	-334	45138	-6	-301	45138
-	Mmin	0	0	0	-2087	-360	-26501	-3098	149	-26501
	Smax	-108	3432	0	31	1058	30921	-3224	1569	13922
	Smin	19	-1498	0	-2145	-1737	6726	-8	-1663	23726
	Nmax	154	-512	0	259	-71	-1420	368	-137	-1303
	Nmin	-233	2628	0	-2624	-257	2786	-3927	432	2663
BR		-150	-6	270	1	-3	81	-149		189
		150	6	-270	-1	3	81	149	. L	-189
WS	1	15	-461	0	-1665	6	-7371	-2582		-7371
WL		0	0	0	0	0	0	0	0	<u> </u>
SH		Ö	0	0	1	0	1	1	- 0	1
CR		154	-542	-1455	367	-137	-1304	367		-1458
TU		-615	92	-0	-386	-20		-299		
TG		-59	254	0	-74	261	8565			
EQ	T	6394	-943	0	1510	178		483		
~	<u> </u>	6396	942	0	-1511	-179		-483		
CV	ĹR	0	-11	0	-21	0	L			-173
]	RL	0	11	0	21	0	173	35	-7	173

		<u> </u>		Secti	ion C			Γ''''		Secti	on D		
l .			Left			Right			Left			Right	
		N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)		N(KN)		M(KNM)
DC		-40432	-11620	-120511	-48254	7971	-120511	-60427	-4380	-65746	-66674	-1013	-65746
DW		-6916	-441	-2089	-8273	484	-2089	-10815	-157	2399	-11836	477	2399
EL.		1447	-1068	-53174	1568	481	-53174	1746	378	-37818	1772	361	-37818
LL	Mmax	-5738	1811	26345	-6674	-1622	26345	-1180	-81	34226	-1461	111	34226
	Mmin	64	-3603	-42835	-287	2520	-42835	-6111	-289	-17562	-6526	-38	-17562
	Smax	-5987	1849	24921	-152	3993	-34463	-4156	1561	17485	-9189	2075	16107
1	Smin	301	-4199	-33689	-6711	-1624	26325	-3389	-1750	15009	841	-1741	16388
	Nmax	639	-827	-10440	785	825	-5949	1172	-944	-1498	1386	-672	-9414
	Nmin	-6194	258	6260	-7400	-288	1805	-9745	703	3090	-10731	918	10933
BR	1	2	-3	-182	-149	2	88	1	3	24	-149	-3	294
-		-2	3	182	149	-2	-88	-1	-3	-24	149	3	-291
ws	1	-4253	845	13169	-4995	-1194	13169	-7720	82	-8514	-9294	900	-8514
WL		0	0	0	0	0	0	0	0			<u> </u>	0
SH		2	0	-1	2	0	-1	2	0		2	0	0
CR		783	825	-5948	783	825	-5027	1384	-672	-9414	1384	-672	-10117
TU		198	-117	-2316	-722	98	-2316	-758	119		-806		1401
TG	· · ·	-89	269	18105	-135	-100	18105	-192	-67	15042	-213		15042
EQ	T	-3317	1178	23762	2775	-975		296		+			-13876
_	 	3317	-1178	-23762	-2774	975		-295					13876
CV	LR	-59		289	-70	-27	289						-181
1	RL	59	-19	-289	70	27	-289	122	-3	181	155	-23	181

				Secti	ion E			Γ		Sect	on F		
			Left			Right	***************************************		Left			Right	
		N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)
DĈ		-75366	-13522	-297802	-76424	13995	-297802	-95479	1652	110048	-100040	5811	110048
DW		-13784	-218	7085	-13819	-605	7085	-17746	-346	-4899	-18593	502	-4899
EL		1734	389	-25704	1791	-1056	-25704	830	-247	-59809	591	-8	-59809
LL	Mmax	-12215	2283	47490	-12171	-3081	47490	1629	-249	34027	1144	286	34027
İ	Mmin	1548	-2906	-53282	1440	3384	-53282	-15369	-128	-24058	-15696	209	-24058
l	Smax	-12337	2286	47435	1063	4109	-44595	1300	1320	21587	-11264	1728	5132
	Smin	1144	-4314	-44126	-12220	-3082	47482	-12740	-1736	3460	-1102	-1129	19915
1	Nmax	1908	-1089	-33570	1907	2318	-32759	1919	181	22889	1481	518	20757
	Nmin	-12702	493	29671	-12737	-2468	29195	-15870	-124	-23590	-16183	197	-23601
BR	 	1	1	55	-149	-6	325	2	0	10	-148	-6	280
		-1	-1	-55	149	6	-325	-2	0	-10	148	6	-280
WS		-13095	3053	56653	-12804	-4163	56653	-18561	-261	-26795	-19143	163	-26795
WL		0	0	0	0	0	0	0	0	0	0	0	0
SH		3	0	-2	. 3	0	-2	3	0	0	3	1	1
CR	-	1904	2318	-32757	1904	2317	-28283	1478	518	20757	1478	469	21242
TU		-974	261	8312	-1404	-456	8312	-1833	-110	-4397	-1901	-42	-4397
TG		-244	-33	13580	-278	-16	13580	-303	3	13326	-308	7	13326
EQ	I	-346	-2558	-79953	5794	4559	-79953	5972	1198	49611	6564	550	49611
1		345	2558	79953	-5793	-4559	79953	-5972	-1197	-496 10	-6565	-551	-49610
CV	LR	-238	77	1463	-231	-103	1463	-358	-5	-539	-368	1	-539
	RL	238	-77	-1464	231	103	-1464	359	5	539	368	-4	539

r				Secti	on G			i		Secti	on H		
			Left			Right			Left .			Right	
		N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)	N(KN)	S(KN)	M(KNM)
DC		-113393	-13185	-65371	-114008	10880	-65371	-31179	-772	101896	-31180	-748	101896
DW		-20037	-1933	-39115	-20590	2053	-39114	-10379	729	-14290	-10378	738	-14290
EL.		-25	1139	-18460	1	-1192	-18460	1923	659	-91530	1924	657	-91530
LL	Mmax	-13046	256	3024	-13638	-124	3024	-2301	403	30013	-2289	405	30013
	Mmin	-2711	-2490	-39897	-2567	1850	-39897	-7658	334	-32960	-7658	340	-32960
	Smax	-14417	340	341	-7735	3203	-31464	-5394	2033	5998	-5418	2037	5906
	Smin	-1187	-3359	-31131	-8023	-296	57	-3391	-1039	10169	-3354	-1036	10262
1	Nmax	391	-2571	-10057	689	167	-7096	1311	26	-3115	1311	25	-3116
l	Nmin	-16515	-390	-22783	-17165	1288	-20822	-10296	636	-15416	-10293	644	-15416
BR	i e	3	-4	-176	-65	-4	171	77	0	-64	-73	-4	206
		-3	4	176	65	4	-171	-77	0	64	73	4	-206
WS		-19182	-646	-35663	8799	-1000	42042	7966	263	10015	7965	310	10015
WL		0	0	.0	0	0	ő	0	0	0	.0	0	0
SH		2	ō	-11	2	0	-11	1	0	0	0	0	0
CR		687	167	-7085	687	167	-6597	1310	25	-3116	1311	25	-3012
ΤU		-1950	0	3954	-3104	225	3954	-3275	-24	975	-3275	-21	975
TG		-340	66	16134	-391	-48	16134	-534	<u>. </u>	5598	-534		5598
EQ	T	1901	-1702	-2138	17361	-1118		6260		1054	6261	396	1054
1		-1901	1702	2138	-17361	1118	2138	-6261	-401	-1055	-6260		-1055
CV	LR	-317	-82	-3462	2227	-86	3610	2317	3	-115	2317	17	-115
	RL	317	82	3467	-2227	85	-3604	-2317	-3	118	-2316	-17	118