4.10.1 Description

The thickness of the sand blanket was calculated in consideration of contact pressure of construction machine.

Dai Nai sand was selected for the material of sand blanket based on the test result.

4.10.2 Design formula

The calculation method of the sand blanket thickness is used according to Porando & Raysne formula as follows:

 $\frac{K \cdot P}{(B+2 \cdot h \cdot \tan a) \cdot (L+h \cdot \tan a)} < (\gamma \cdot h+C \cot \phi) \cdot \frac{1+\sin \phi}{1-\sin \phi} \cdot e^{\pi \cdot \tan \phi} \cdot C \cdot \tan \phi$

Where:

a :

Left side of formula is the live load pressure.

Right side of formula is the capacity of the soft ground.

- P: Weight of one vehicle wheel
- K: Safety factor in construction process

:55

1.1

7.0kN/m²

B, L: Sizes of vehicle wheel

Angle of pressure distribution =30 degreeDry unit weight of sand blanket=18.6 KN/cm³

- *γ*: Dry unit weight of sand blah: Thickness of sand blanket
- C: Cohesion of soft ground=
- ϕ : Internal friction angle of soft ground= 4.0 degree

4.10 3 Determination of sand blanket thickness

		-		
Vehicle	B (cm)	L (cm)	P (kN)	h (m)
16 T	20	60	56.0	60
21 T	20	60	73.5	70
30 T	20	60	60.0	65

As for the thickness of sand blanket 70 cm are applied.

4-11. Study of Lateral Movement of Abutment

4.11.1 Description

The lateral movement is the ground deformation the phenomenon that results to level direction by the embankment load.

As for the occurrence mechanism of this phenomenon, there is much problem that is not clarified and the measure method is not established in a present stage.

However, the ground that was consolidated sufficiently with the pre-load or surcharge be that there is little occurrence of this phenomenon is confirmed in the execution of work achievement of Japan.

The abutment is displaced and the expansion spacing of rail joint of an abutment and girder disappear and the bearing and parapet and girder fail is a big problem by lateral movement.

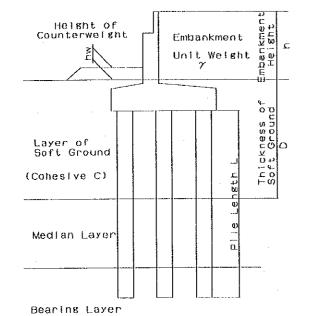
In this Chapter, the determination of the risk of the occurrence of lateral movement is confirmed by using determination formula that is adopted generally in Japan.

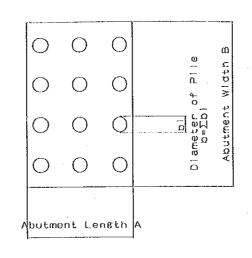
4.11.2 Determination of lateral movement

(1) Determination formula

 $l=\mu 1 \times \mu 2 \times \mu 3 \times \gamma (h-hw)/C$

 μ 1=D/L, μ 2= Σ b/B, μ 3=D/A (=<3.0)


Where


I	:	Later Lateral Movement Determination Index	Non Dimension
Ŷ	:	Unit Weight of Embankment	kN/m³
h	:	Height of Embankment	m
h	:	Height of Counterweight	m
w	-		
С	:	Cohesion of Subsoil	kN/m ²
D	:	Thickness of Soft Ground <3x (h-hw)	m
L	:	Length of Foundation Pile	m
Ъ	:	Diameter of Foundation Pile	m
В	:	Width of Pile Cap	m
A	:	Length of Pile Cap	m

(2) Conclusion

Occurrence probability of the lateral movement occurrence of the abutment will be little. The calculation result is shown to the next page.

Study of Lateral Movement

Determination formula of Japan Road Association

 $I=\mu 1 \times \mu 2 \times \mu 3 \times \gamma \text{ (h-hw)/C}$

 μ 1=D/L , μ 2= Σ b/B , μ 3=D/A(=<3.0)

I: Lateral movement determination Index

(I < 1.2; There is little probability of the occurrence of Lateral Movement)

Classification	assification Bridge Name		E	mbankm	ient Facto	or	Thickness of	Soft Grou	nd Factor			Structura	al Factor	۰		Later	al Moven	nent Deter	mination	Index	Remarks
Classification	Diluge i fuili		h(m)	hw(m)	h-hw(m)	γ (kN/m ³)	C1Layer	D(m)	C(kN/m ²)	Α	В	L	n	bi	Σb	μ1	μ2	μ3	<u> </u>	Judgment	
	The Tex Ma	A1	8.01	3.05	4.96	18.30	26.00	14.90	12.4	9.20	24.10	70.00	6	1.50	9.00	0.21	0.37	1.62	0.94	OK	
	Large Tra Va	A2	8.33	3.48	4.85	18.30	29.00	14.60	12.4	9.20	24.10	70.00	6	1.50	9.00	0.21	0.37	1.59	0.88	ОК	
	C 11 T V-	A1	7.53	2.50	5.03	18.30	25.70	15.10	12.4	8.50	24.10	70.00	5	1.50	7.50	0.22	0.31	1.78	0.89	OK	
Vinh Long	Small Tra Va	A2	8.75	3.75	5.00	18.30	24.50	15.00	12.4	8.50	24.10	70.00	5	1.50	7.50	0.21	0.31	1.76	0.87	OK	
	/T 0	A1	8.77	3.20	5.57	18.30	36.00	16.70	12.4	9.20	24.10	79.00	6	1.50	9.00	0.21	0.37	1.82	1.18	OK .	
	Tra On	A2	8.58	3.20	5.38	18.30	36.00	16.10	12.4	9.20	24.10	79.00	6	1.50	9.00	0.20	0.37	1.75	1.06	OK	
Can Tho	A1	6.60	2.60	4.00	18,30	29.00	12.00	12.4	7.00	23.10	59.00	6	1.50	9.00	0.20	0.39	1.71	0.80	ОК		
· · · · ·	(Main Bridge)	A2	5.70	2.55	3,15	18.30	16.00	9.50	15.9	7.00	23.10	62.00	6	1.50	9.00	0.15	0.39	1.36	0.29	OK	·
	Cai Tac 1	A1	4.47	0.00	4.47	18.30	26.20	13.40	15.9	7.50	24.10	66.00	6	1.50	9.00	0.20	0.37	1.79	0.70	OK	
		A2	6.88	2.69	4.19	18.30	26.90	12.60	15.9	9.20	24.10	66.00	6	1.50	9.00	0.19	0.37	1.37	0.47	OK	
	Cai Tac 2	A1	6.30	3.00	3.30	18.30	23.30	9.90	15.9	7.00	31.36	55.00	8	1.20	9.60	0.18	0.31	1.41	0.30	OK	
		A2	6.30	3.00	3.30	18.30	23.30	9.90	15.9	7.00	31.45	55.00	8	1.20	9.60	0.18	0.31	1.41	0.30	OK	
	Cai Da	A1	4.65	0.00	4.65	18.30	19.80	14.00	15.0	7.50	25.35	55.00	6	1.50	9.00	0.25	0.36	1.87	0.96	OK	
		A2	4.65	0.00	4.65	18.30	19.80	14.00	14.2	7.50	25.10	55.00	6	1.50	9.00	0.25	0.36	1.87	1.02	OK	
Can Tho	Ba Mang	A1	4.50	1.76	2.74	18.30	13.60	8.20	14.2	7.50	24.10	40.00	13	0.45	5.85	0.21	0.24	1.09	0.19	OK	
	Da Malig	A2	4.50	1.76	2.74	18.30	13.60	8.20	14.2	7.50	24.10	40.00	13	0.45	5.85	0.21	0.24	1.09	0.19	OK	
	Cai Nai	A1	5.55	2.38	3.17	18.30	12.30	9.50	14.2	7.50	24.10	40.00	13	0.45	5.85	0.24	0.24	1.27	0.30	OK	
		A2	5.67	2.38	3.29	18.30	14.70	9.90	14.2	7.50	24.10	40.00	13	0.45	5.85	0.25	0.24	1.32	0.34	OK	· · · ·
	Ap My	A1	7,24	2.55	4.69	18.30	12.10	12.10	14.2	7.50	24.10	40.00	15	0.45	6.75	0.30	0.28	1.61	0.83	OK	
	Ар му	A2	7.24	2.55	4.69	18.30	12.10	12.10	14.2	7.50	24.10	40.00	15	0.45	6.75	0.30	0.28	1.61	0.83	OK	
	Cai Rang	A1	7.64	2.46	5.18	18.30	11.00	11.00	14.2	7.50	24.10	40.00	15	0.45	6.75	0.28	0.28	1.47	0.75	OK	·
	Cal Kallg	A2	7.46	2.46	5.00	18.30	13.00	13.00	14.2	7.50	24.10	40.00	15	0.45	6.75	0.33	0.28	1.73	1.02	OK	
	NH.54	A1	7.35	2.38	4.97	18.30	36.80	14.90	12.4	9.50	14.00	70.00	4	1.50	6.00	0.21	0.43	1.57	1.05	OK	
Orion B-	1111.54	A2	7.35	2.38	4.97	18.30	36.80	14.90	12.4	9.50	14.00	70.00	4	1.50	6.00	0.21	0.43	1.57	1.05	OK	<u> </u>
Over Br	NH.91B	A1	8.27	3.43	4.84	18.30	19.80	14.50	15.9	10.50	45.63	57.00	- 9	1.50	13.50	0.25	0.30	1.38	0.58	OK	
	14(1.91D	A2	8.27	3.43	4.84	18.30	19.80	14.50	15.9	10.50	45.68	57.00	• • 9	1.50	13.50	0.25	0.30	1.38	0.58	ОК	
Domn Pr	IC NH.91B	A1	4.19	0.00	4.19	18.30	19.80	12.60	15.9	5.40	7.50	40.00	6	0.45	2.70	0.32	0.36	2.17	1.19	OK	
Ramp Br	Rampway D	A2	4.16	0.00	4.16	18.30	19.80	12.50	15.9	5.40	7.50	40.00	6	0.45	2.70	0.31	0.36	2.16	1.16	OK	

1-4-23

4-12. The Plan of Movement Observation and Execution Management

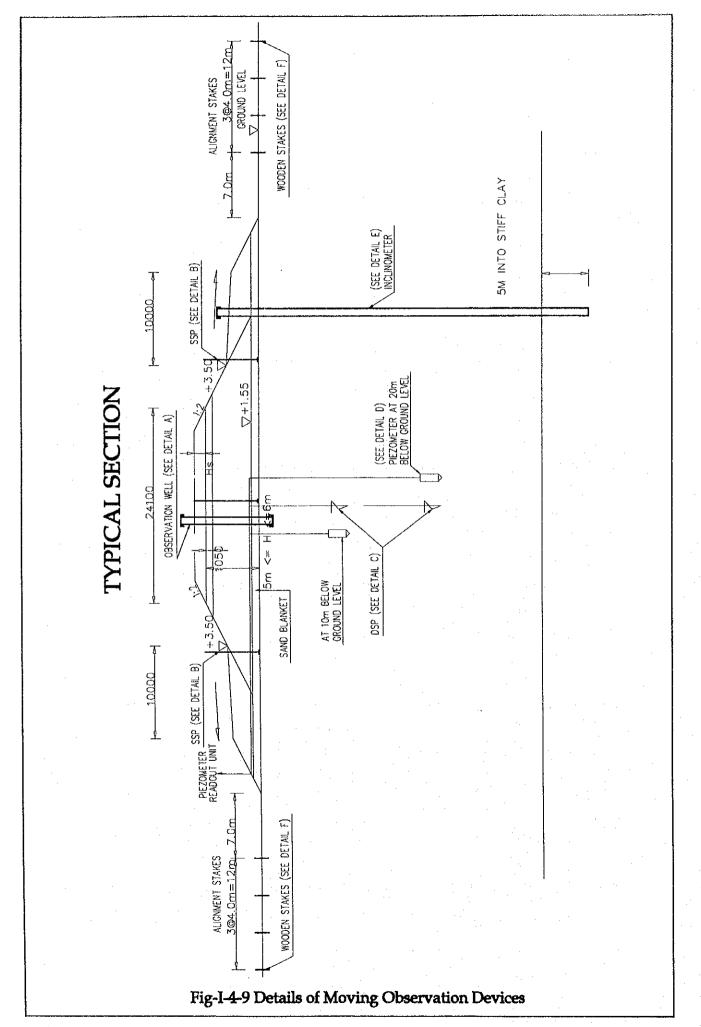
4.12.1 Description

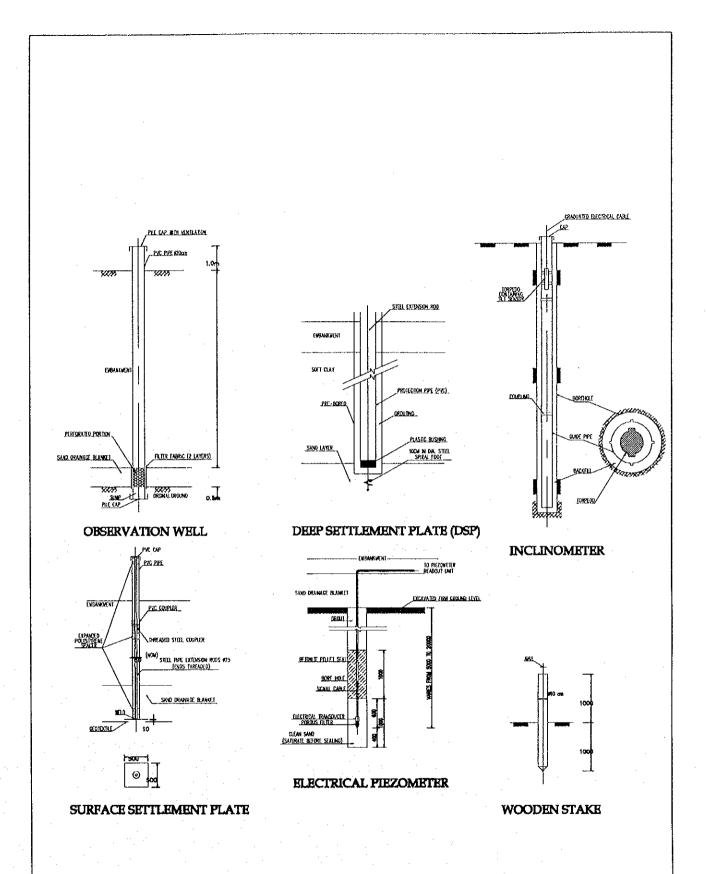
The construction work of the soft ground section should adopt the information processing construction method by movement observation.

The execution management item by the movement observation is shown below.

- (1) Control of banking speed.
- (2) Stable evaluation of banking.
- (3) Prevention of the displacement of the rupture and periphery of banking.
- (4) Confirmation of settlement quantity.
- (5) Decision in the removal time of surcharge and the pre-load.
- (6) Decision of the establishment height of crossing structure.
- (7) Prediction of future settlement quantity.

In this chapter, selection of movement observation devices, arrangement of instruments, Execution management method by observation result are entered.


4.12.2 Item of movement observation


- (1) Settlement of ground surface and subsoil layer.
- (2) Deformation of the surface of the periphery ground by banking.
- (3) Horizontal deformation of subsoil.
- (4) Fluctuation of pore water pressure of subsoil.
- (5) Fluctuation of a groundwater level.

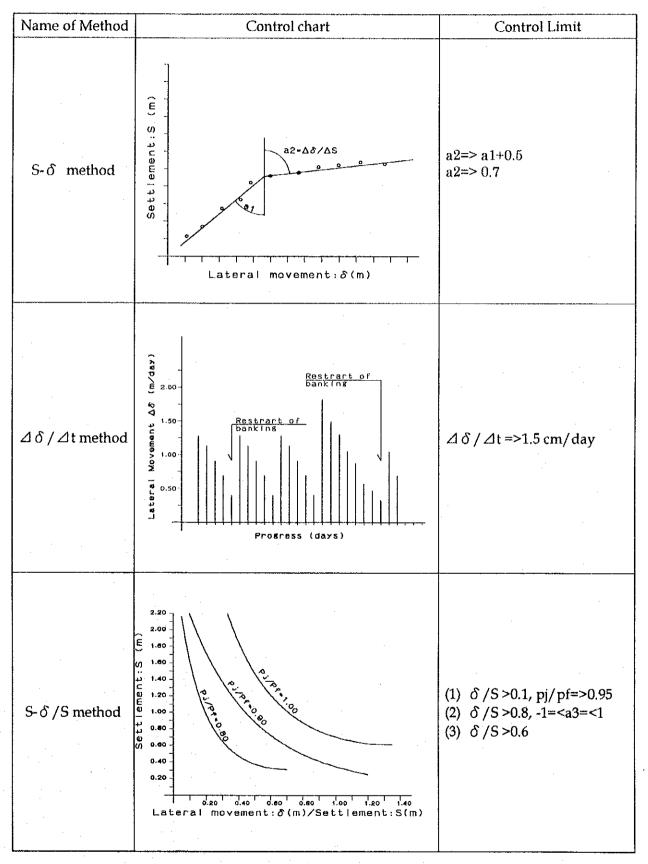
4.12.3 Arrangement of devices for movement observation

Surface Settlement Plate	SSP	Each pre-load, 60m intervals in general section.
Deep Settlement Plate	DSP	Pre-load of high embankment section
Alignment Stakes	AS	Each pre-load, 60m intervals in general section.
Electrical Piezometer	EP	Pre-load of high embankment section
Inclinometer	INC	Pre-load of high embankment section
Observation Well	OW	1 or 2 unit to the each segment section

The detailed establishment position is shown to the Drawings. Also the standard establishment figure is attached in the next pages.

Fig-I-4-10 Details of Moving Observation Devices

4.12.4 Frequency of observation


Name of Devices	Symbol	Through Banking period	Period from banking completion until pavement construction work start
Surface Settlement Plate	SSP	Measuring/day	Measuring/week
Deep Settlement Plate	DSP	- a a -	- a a ~
Alignment Stakes	AS	- a a -	- a a -
Electrical Piezometer	EP	- a a -	- a a -
Inclinometer	INC	-aa-	- a a -
Observation Well	OW	-aa-	- a a -

4.12.5 Application to execution management of the observation result

- (1) Application purpose of the observation result
- Measured value of SSP and DSP are used to the confirmation of settlement quantity and, the stability control of banking with the measured value of deformation quantity and the confirmation of the progress situation of consolidation.
- Measured value of *AS* and *INC* are used to the stability control of banking with the measured value of settlement.
- Measured value of *EP* and *OW* are used to the confirmation of the progress situation of consolidation and the stability control of banking.
- (2) Stability control method of embankment

There are several methods in the stability control method of embankment. In this paragraph, quantitative stability control methods are chosen to esteem simplicity of the control and shown as below.

Name of Method	Data that uses it for stability control
S-δ method	S: Settlement quantity δ : Lateral movement quantity
$\Delta \delta / \Delta t$ method	$\Delta \delta / \Delta t$: Lateral movement quantity per day
S- δ /S method	S: Settlement quantity δ : Lateral movement quantity

Figure I-4-11. Control Chart of Slope Stability

Appendices

Appendix-1: Characteristic Value Subsoil Layer

CAN THO BRIDGE CONSTRUCTION

						e ~ Lo	g P Curv	es (CI)						
C	Layer	No	Lab No	Bore No	Depth	(m)	Void			P (kl		······		Cc
Segment	Layer	INO	1.40 140	pare 140	Depa		ratio	10.0	20.0	50,0	100.0	200.0	400.0	
		1	801	Br-D-1	2.0 -	3.0	1.538	1.480	1.414	1.303	1.175	1.053	0.914	0.462
		2	802	Br-D-1	9.0 -	9.5	1.445	1.417	1,389	1.315	1.198	0.996	0,781	0.714
		5	66	Br-D-2	3.0 -	4.0	1.491	1.413	1.375	1,305	1.226	1.134	1.016	0.392
		6	67	Br-D-2	8.0 -	9.0	1.587	1.565	1.526	1.445	1.337	1.213	1.070	0.475
		12	173	Br-D-3	7.0 -	8.0	2.165	1.995	1.926	1.785	1.609	1.423	1.208	0.714
		15	192	Br-D-4	7.0 -	8.0	1,514	1.479	1.452	1.387	1.288	1.142	0.972	0.565
		18	97 1	Br-D-5	3.0 -	4.0	1.637	1.568	1.549	1.468	1.384	1.277	1.153	0.412
	C1-U	19	972	Br-D-5	10,5 -	11.5	1.562	1.543	1.524	1.461	1.347	1.171	0.983	0.625
	01.0	25	931	Br-D-6	10.0 -	11.0	1.670	1.655	1.641	1.579	1.476	1.288	1.068	0.731
		28	859	Br-D-7	5.0 -		1.903	1.862	1.836	1.771	1.695	1.594	1.407	0.621
		29	860	Br-D-7	8.0 -	9.0	1.832	1.811	1.773	1.666	1.529	1.373	1.151	0.737
		31	806	Br-D-8	3.0 -	3.5	1.389	1.350	1.326	1.266	1.190	1.045	0.881	0.545
		32	807	Br-D-8	10.5 ~		1.596	1,580	1.553	1.478	1.388	1.261	1.107	0.512
I		34	869	Br-D-9	2.0 -		1.414	1,396	1.381	1.348	1.315	1.275	1.225	0.166
				Br-D-9	9.0 -		1.637	1.624	1.610	1.572	1.524	1.434	1.299	0.448
		35	870	01-17-9	9.0 -						1.379	1.245	1.082	0.541
	Aver						1.625	1.583	1.552	1.477			0.718	0.341
		3	803	Br-D-1	19.0 -		1.152	1.123	1.096	1.039	0.966	0.849	0.718	0.455
		7	68	Br-D-2	22.0 -		1.205	1.163	1.123	1.042	0.962			
		13	174	Br-D-3	15.0 -		1.402	1.337	1.305	1.224	1.142	1.021	0.882	0.462
1		14	175	Br-D-3	20.0 -	21.0	1.053	1.019	1.004	0.965	0.903	0.815	0.712	0.342
	C1-L	20	973	Br-D-5	17.0	18.0	1.468	1.454	1.438	1.397	1.325	1.142	0.936	0.684
		24	930	Br-D-6	17.5	18.5	1.215	1.202	1.187	1.150	1.101	0.976	0.769	0.688
		30	861	Br-D-7	18.0 -	19.0	1.468	1.449	1.422	1.357	1.284	1.190	1.066	0.412
		33	808	Br-D-8	19.0 -	20.0	1.514	1.499	1.486	1.444	1.380	1.263	1.016	0.821
		36	871	Br-D-9	17.0	- 18.0	1.280	1.253	1.236	1.189	1.120	0.992	0.749	0.807
	Aver	age					1.306	1.278	1.255	1.201	1.131	1.013	0.847	0.553
· · ·		73	749	Br-D-18	8.0	9.0	1.862	1.806	1.765	1.663	1.496	1.300	1.086	0.711
		74	750	Br-D-18	13.0	14.0	1.872	1.832	1.794	1.682	1.512	1.298	1.052	0.817
	1.1	78	742	Br-D-19	4.0	4.5	2.092	2.047	2.007	1.891	1.716	1.501	1.266	0.781
	C1-U	79	747	Br-D-19	12.0	- 13.0	1.491	1.475	1.454	1.398	1.315	1.151	0.973	0.591
1997 - A		83	836	Br-D-20	9.0	- 10.0	1.700	1.676	1.656	1.591	1.454	1.207	0.939	0,890
		87	847	Br-D-21	11.0		1.423	1.407	1,383	1.315	1.212	1.057	0.877	0.598
ш	Ave	1					1.740	1.707	1.677	1.590	1.451	1.252	1.032	0.731
	Ave	1.	7751	Br-D-18	18.0	19.0	1.381	1.358	1.333	1.266	1.176	1.077	0.963	0.379
1		75	751		18.0 19.0		1.361	1.338	1.200	1.149	1.091	1.009	0.913	0.319
1	C1-L	80	744	Br-D-19			1.209	1.086	1.200	1.021	0.964	0.883	0.794	0.2%
		84	837	Br-D-20	19.0							1.181	1.063	0.392
• · · ·		88	848	Br-D-21	19.0	- 20.0	· · · · · · · · · · · · · · · · · · ·		1.368					
	Ave	rage	<u> </u>	<u> </u>	ļ		1.295	1.265	1.242		1.123	1.038	0.933	0.347
		38	342	Br-D-10	6.0			1.922	1.889			1.482	1.281	0.66
		.93	372	Br-D-22	3.0	<u> </u>	·	1.913	1.875		1.584	1.388	1.190	0.65
	1	94	373	Br-D-22	8.0			1.455	1.420		1.225	1.083	0.938	0.48
		98	26	Br-D-23	6.0	- 7.0	1.360		1.310			0.960	0.756	0.67
		104	305	Br-D-24	4.0	- 5.0	1.765	1.735	1.703			1.324	1.145	0.59
	1	105	306	Br-D-24	11.0	- 12.0	1.557	1.505	1.473	1.398	h	1.158	1.007	0.50
	C1	109	52	Br-D-25	9.0	- 10.0	1.538	1.523	1.499	1.435	1.341	1.146	0.928	0.72
· IV		110	53	Br-D-25	12.0	- 13.0	1.538	1.490	1.459	1.397	1.316	1.204	1.085	0.39
1	1.	115	259	Br-D-26	3.0	- 4.0	2.241	2.126	2.077	1.941	1.724	1.440	1.152	0.95
		118	985	Br-D-27	4.0	- 4.5	1.381	1.364	1.344	1.299	1.243	1.165	1.061	0.34
		121		Br-D-28	8.0	- 9.0	1.528	1.467	1.423	1.340	1.182	1.001	0.796	0.68
	1	122		Br D-28	 	- 13.0	1.319	1.299	1.276	1.225	1.148	1.033	0.909	0.41
		128		Br-D-29	5.0				1.372	1.301	1.194	1.041	0.871	0.56
1.			+					· · · · · · · · · · · · · · · · · · ·						.i
1 ·	Ave	rage	1				1.624	1.579	1.548	1.469	1.350	1.187	1.009	0.58

e - Log P Curves (C1)

CAN THO BRIDGE CONSTRUCTION

					Î	gr Curve				P (kPa)				Cc
Segment	Layer	No	Lab No	No Bore.	Depth (m)	Void ratio	10	20	50	100	200	400	800	
		8	69	Br-D-2	41.0 - 41.5	1.195	1.134	1,103	1.052	0.974	0.889	0.792		0.322
		16	194	Br-D-4	30,5 - 31.0	1.078	1.049	1.036	1.007	0.966	0.904	0.821		0.276
	C2	21	974	Br-D-5	27.5 - 28.0	1.102		1.043	1.013	0.969	0.914	0.843	0.760	0.276
I		22	975	Br-D-5	32.0 - 32.5	1.023		0.981	0.954	0.914	0.862	0.801	0.732	0.229
		26	933	Br-D-6	26.5 - 27.0	1.261		1.234	1.206	1,170	1.093	0.946	0.791	0.515
	Aver	age				1.132	1.092	1.079	1.046	0.999	0.932	0.841	0.761	0.324
		76	752	Br-D-18	39.0 - 39.5	0.784		0.749	0.730	0.704	0.671	0.633	0.578	0.183
		81	746	Br-D-19	30.0 - 30.5	0.739		0.718	0.694	0.667	0.631	0.588	0.536	0.173
		85	838	Br-D-20	28.0 - 28.5	0.839		0.829	0.820	0.794	0.758	0,713	0.654	0.196
	C2	86	839	Br-D-20	40.0 - 40.5	0.870		0.845	0.820	0.789	0.745	0.692	0.623	0.229
ПĮ	~~	89	849	Br-D-21	24.0 - 24.5	0.890		0.884	0.863	0.820	0.763	0.699	0.622	0.256
		90	850	Br-D-21	34.4 - 34.8	0,745		0.728	0.714	0.690	0.660	0.626	0.585	0.136
		91	851	Br-D-21	41.0 - 41.5	0.971		0.957	0.940	0.919	0.891	0.851	0.784	0.223
	Ave	age			· · · · · · · · · · · ·	0.834		0.816	0.797	0.769	0.731	0.686	0.626	0.199
	<u> </u>	39	346	Br-D-10	33.0 - 33.5	0.812		0.802	0.789	0.777	0.759	0.726	0.665	0.203
		95	375	Br-D-22	16.0 - 16.5	0.815		0.810	0.805	0.793	0.772	0.746	0.705	0.136
		96	377	Br-D-22	34.0 - 34.5	0.655		0.647	0.641	0.631	0.615	0.592	0.559	0.110
		99	27	Br-D-23	10.0 - 11.0	1.345	1.314	1.288	1.223	1.128	1.000	0.860		0.465
		100	29	Br-D-23	18.0 - 18.5	0.675		0.669	0.661	0.650	0.632	0.608	0.569	0.130
		101	30	Br-D-23	27.5 - 28.0	0.703		0.692	0.680	0.657	0.627	0.595	0.548	0.156
		102	31	Br-D-23	37.0 - 37.5	0.606			0.592	0.578	0.559	0.534	0.502	0.153
		106	308	Br-D-24	23.5 - 24.0	0.964		0.953	0.935	0.908	0.868	0.820	0.751	0.229
	1.1	111	54	Br-D-25	18.0 - 18.5	0.773		0.763	0.749	0,732	0.703	0.666	0.615	0.169
		112	55	Br-D-25	27.5 - 28.0	0.702		0.685	0.668	0.652	0.626	0.587	0.539	0.159
· IV	C2	113	. 56	Br-D-25	33.0 - 33.5	0.784		0,763	0.754	0.737	0.717	0.686	0.633	0.176
1 ·	·	116	262	Br-D-26	17.0 - 17.5	0.877		0.866	0.849	0.828	0.799	0.762	0.707	0,183
ļ		117	263	Br-D-26	25.0 - 25.5	0.734		0.724	0.710	0.690	0.659	0.620	0.567	0.17
1		119	986	Br-D-27	12.5 - 13.0	0.791		0.777	0.771	0.764	0,749	0.724	0.684	0.13
		123	10	Br-D-28	17.0 17.5	0.909		0.896	0.885	0.871	0.844	0.796	0.733	0.20
		124	11	Br-D-28	23.5 - 24.0	0.796		0.775	0.749	0.718	0.675	0.625	0.567	0.19
		125	12	Br-D-28	27.0 - 27.5	0.750		0.743	0.736	0.726	0.708	0.675	1	
		126	13	Br-D-28	38.0 - 38.5	0.881		0.853	0.841	0.819	0.792	0.754	0.692	
		129	356	Br-D-29	16.0 - 16.5	0.745		0.738	0.725	0.709	0.685	0.649	0.602	<u>↓</u>
		130	357	Br-D-29	30.0 - 30.5	0.688		0.669	0.646	0.623	0.589	1	Į	ļ
1	Ave	rage				0.794		0.779	0.765	0.747	0.720	0,681	0.628	0.17

e - Log P Curves (C2)

					Log	Cv	- Log	P Curves	s (C1)					
Carrowt	Layer	No	Lab No	Bore No	Der	pth (r	m)			P (kPa)	/Cv (cn	n2/s)		
Segment	Layer	NU	Labino	pore no		pan (i		5	15	35	75	150	300	60
· ·		1	801	Br-D-1	2.0	- [3.0	1,525	1.221	1.090	0,948	0.924	0.895	
		2	802	Br-D-1	9.0	-	9.5	1,510	1.452	0.979	0.748	0.527	0.504	
		5	66	Br-D-2	3.0	-	4.0	1.185	1.209	1.343	1.204	1.188	1.129	
		6	67	Br-D-2	8.0	•	9.0	0.781	0.478	0.464	0.451	0.449	0.437	. .
		12	173	Br-D-3	7.0	-	8.0	0.291	0.274	0.250	0.309	0.440	0.334	
		15	192	Br-D-4	7.0	-	8.0	0,759	0.777	1.195	0.828	0.721	0.667	
		18	971	Br-D-5	3.0		4.0	0.929	0.589	0.454	0.449	0.431	0.422	
	C1-U	19	972	Br-D-5	10.5 10.0	-	11.5 11.0	0.873	0.881	1.027	1.095	0.986	0.951	
		25	931 859	Br-D-6 Br-D-7	5.0		6.0	1.420	1.471	1.331	1.073	1.118	0.557	
		28 29	859 860	Br-D-7 Br-D-7	8.0		9.0	1.452	1.160	0.996	0.970	0.956	0.928	
		29 31	806	Br-D-7 Br-D-8	3.0		3.5	1.447	1.100	1.101	0.843	0.745	0.718	
		31	807	Br-D-8	10.5		11.5	1.091	0.912	0.812	0.623	0.596	0.595	
I		34	869	Br-D-9	2.0		3.0	1.550	1.585	1.643	1.457	1.419	1.387	
. 4		35	870	Br-D-9	9.0	-	10.0	1.472	1.245	1.188	1.151	0.882	0.833	
			cm ² /s	x10 ⁻³				1.172	1.053	1.016	0.864	0.799	0.730	
	Aver	age		/day				101	91	88	75	69	63	
		3	803	Br-D-1	19.0	-	20.0	1.856	1.384	1.326	0.852	0.791	0.748	
		7	68	Br-D-2	22.0	-	22.3	0.291	0.334	0.346	0.429	0.415	0.385	
		13	174	Br-D-3	15.0	-	16.0	0.669	0.486	0.440	0.437	0.480	0.439	
	CIT	14	175	Br-D-3	20.0	-	21.0	1.096	0.830	0.784	0.773	0.783	0.672	
	C1-L	20	973	Br-D-5	17.0	-	18.0	1.176	1.021	0.971	0.953	0.407	0.394	
		30	861	8r-D-7	18.0	•	19.0	0.799	0.997	0.964	0.913	0.907	0.891	
		33	808	Br-D-8	19.0	-	20.0	1.287	1.376	1.560	1.371	0.964	0.945	
		36	871	Br-D-9	17.0	-	18.0	1.506	0.781	0.559	0.463	0.374	0.369	
	Aver	are		sx10 ⁻³				1.085	0.901	0.869	0.774	0.640	0.605	
				/day				94	78	75	67	55	0.396	
		73	749	Br-D-18	8.0	<u> </u>	9.0	0.970	0.646	0.610	0.445	0.422	0.398	
• •	- 1 - 1 - 1	74 78	750	Br-D-18 Br-D-19	13.0 4.0		14.0 4.5	0.955	0.678	0.582	0.499	0.469	0.415	
	· C1-U	79	742	Br-D-19 Br-D-19	12.0		13.0	0.940	0.712	0.694	0.586	0.478	0.453	
	· .	83	836	Br-D-20	9.0		10.0	1.351	1.236	1.060	0.540	0.449	0.418	
		87	847	Br-D-21	11.0		12.0	0.722	0.668	0.620	0.395	0,364	0.357	
		<u> </u>		sx10 ⁻³				0.963	0.771	0.685	0.488	0.435	0.406	
ш	Ave	rage	2	/day				83	67	59	42	38	35	
		75	751	Br-D-18	18.0	•	19.0	0.902	0.706	0.653	0.610	0.588	0.571	
	CIL	80	744	Br-D-19	19.0	· -	- 20.0	0.427	0,553	0.669	0.631	0.618	0.606	
	CPL	84	837	Br-D-20	19.0	-	20.0	1.087	0.981	0.946	0.851	0.846	0.821	
		88	848	Br-D-21	19.0	-	20.0	0.905	1.095	1.012	1.009	0.795	0.581	
	Ave	nare		sx10 ⁻³				0.830	0.834	0.820	0.775	0.712	0.645	
				/day				72	72	71	67	61	56	
		38	342	Br-D-10	6.0		7.0	1.570	1.272	1.107 0.845	1.105 0.408	1.092 0.297	1.051 0.290	
		93	372	Br-D-22	3.0		4.0	1.191 1.184	1.282	0.845	0.408	0.297	0.290	
. •		94	373 26	Br-D-22 Br-D-23	8.0 6.0	<u>!</u>	9.0	0.775	0.834	0.973	0.301	0.740	0.559	·· ··
		98 104	305	Br-D-23 Br-D-24	4.0	<u> </u>	5.0	1.080	0.959	0.937	0.722	0.599	0.563	
		104	305	Br-D-24 Br-D-24	11.0	· · · ·	12.0	0.768	0.725	0.720	0.665	0.537	0,532	
	C1	105	52	Br-D-25	9.0	• •	10,0	1.033	1.035	1.184	0.869	0.567	0.555	
		110	53	Br-D-25	12.0	+ · · · · · · · · · · ·	13.0	2.027	1.536	1.514	1.356	1.377	1.346	
IV	1	115	259	Br-D-26	3.0		4.0		0.441	0,404	0,369	0.423	0.388	
		118	985	Br-D-27	4.0	┉┈╌┼	4.5		1.328	1.283	1.267	1.222	1.212	
· .		121	8	Br-D-28	8.0	+	9.0		0.614	0.600	0.525	0.473	0.450	
		122	9	Br-D-28	12.0) -	13.0	0.701	0.629	0.623	0.496	0.473	0.450	
		128	354	Br-D-29	5.0) -	6.0	0.764	0.630	0.617	0.470	0.462	0.451	
1				/sx10 ⁻³		+	· · · ·	1.058	0.948	0.905	0.751	0.681	0.659	
	Ave	rage				+	+		· · · · ·			59	57	
	1		i cm	² /day	1 .	Į.	1	91	82	78	65	. 59	5/	

CAN THO BRIDGE CONSTRUCTION

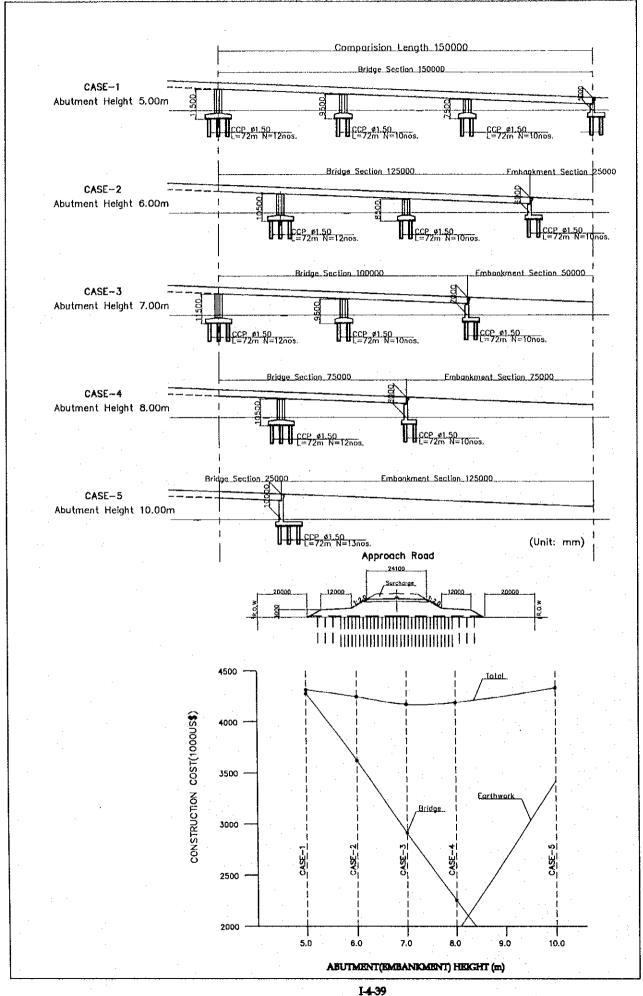
		r	T			Curre.	. (P (kPa)	/ Cy fen	n2/s)		7
Segment	Layer	No	Lab No	Bore No	Depth (m)	5	15	35	75	150	300	600
				D. D. A	41.0 - 41.5	0.703	0.698	0.634	0.644	0.620	0.609	
		8	69	Br-D-2	41.0 - 41.5 30.5 - 31.0	1.384	1.136	1.300	1.540	1.501	1.398	
		16	194	Br-D-4	27.5 - 28.0	0.725	0.725	1.345	1.416	1.579	1.723	
	C2	21	974	Br-D-5	32.0 - 32.5	1.493	1.493	1.734	1.871	1.802	1.789	
I		22	975	Br-D-5	26.5 - 27.0	2.625	2.911	2.417	1.700	1.695	1.591	
-		26	933	Br-D-6	20.0 - 27.0	1.386	1.393	1.486	1.434	1.439	1.422	
	Aver	age		sx10 ⁻³		1.500	1.555	128	124	124	123	
				/day Pr D 19	39.0 - 39.5	0.970	0.646	0.618	0.445	0.422	0.396	
		76	752	Br-D-18		1.225	1.225	1.456	1,342	1.275	1.152	1.071
		81	746	Br-D-19	30.0 - 30.5		0.288	0.290	0.299	0.321	0.318	0.312
		85	838	Br-D-20	28.0 - 28.5	0.288	0.200	1.207	1.403	1.347	1.326	1.195
	C2	86	839	Br-D-20	40.0 - 40.5	0.450	0.952	0.198	0.152	0.138	0.125	0.108
		89	849	Br-D-21	24.0 - 24.5	0.469		1.868	2.074	1.866	1.826	1,528
ł		90	850	Br-D-21	34.4 - 34.8	1.715	1.715	1.000	1.318	1.431	1.430	1.232
ļ		91	851	Br-D-21	41.0 - 41.5	1.163	1.163		1.005	0.971	0.939	0.908
	Ave	rage		/sx10 ⁻³		0.972	0.923	0.973 84	87	84	81	78
	ļ			²/day		84	80	2.856	2.448	1.382	0.936	
		_39	346	Br-D-10	33.0 - 33.5	3.862	3.862		0.380	0.364	0.454	0.445
		95	375	Br-D-22	16.0 - 16.5	0.622	0.622	0.598		0.340	0.233	0.218
		96	377	Br-D-22	34.0 - 34.5	0.440	0.440	0.368	0.301		0.235	0.210
	1	99	27	Br-D-23	10.0 - 11.0	0.504	0.558	0.534	0.444	0.432	0.343	0.338
· ·		100	- 29	Br-D-23	18.0 - 18.5	0.362	0.362	0.234	0.396	0.412		
1		101	30	Br-D-23	27.5 - 28.0	0.811	0.811	1.388	1.746	1.341	1.292	1.282
		102	31	Br-D-23	37.0 - 37.5			1.395	1.613	1.526	0.350	0.325
		106	308	Br-D-24	23.5 - 24.0	0.773	0.773	0.693	0.418	0.397	<u> </u>	0.525
		111	54	Br-D-25	18.0 - 18.5	0.755	0.561	0.510	0,439	0.428	0.419	
	C2	112	55	Br-D-25	27.5 - 28.0	1.712	2.138	2.080	1.811	1.707	1.644	
iv		113	56	Br-D-25	33.0 - 33.5	1.560	1.847	2.190	2.787	2.213	1.889	
1.		116	262	Br-D-26	17.0 - 17.5	0.998	0.912	0.935	1.142	1.418	1.184	1.00/
		117	263	Br-D-26	25.0 - 25.5	1.790			1.897	┟━━━━━━╋╼╋	1.942	1.906
		119	986	Br-D-27	12.5 - 13.0	1.138			0.907		0.865	0.749
		123	10	Br-D-28	17.0 - 17.5	1.257	1.257	0.618	0.554	1	0.379	0,354
		124	11	Br-D-28	23.5 - 24.0	1.134	· · · · · ·	1.614	1.471		1.374	1.360
		125	12	Br-D-28	27.0 - 27.5	0.520	0.520				0.460	0.439
		126	13	Br-D-28	38.0 - 38.5	2.124			2.363		2.017	1.813
		129	356	Br-D-29	16.0 - 16.5	0.628	0.628	+	0.490	1	0.427	· · ·
		130	357	Br-D-29	30.0 - 30.5	0.961	0.961			+	1.070	
	A	01200	cn	n²/sx10 ⁻³		1.109	~ ````````````````````````````````````				0.942	
	AV	erage	c	m²/day		96	5 96	5 107	9	1 84	81	8

Log Cv - Log P Curves (C2)

		<u>۱</u>					Water	Unit
	Layer		Borehole	Laboratory	Sample depth	Soil Name	content	weight
Segment	name	No	symbol	No	III		W	g
	1141114		oy moor		-	(ASTM D2487-83)	%	kN/m^3
	~~ ¥1		Br-D-1	801	m 2.0 - 3.0		53.4	16.00
	<u>C1 - U</u> C1 - U	1 2	Br-D-1 Br-D-1	801	9.0 - 9.5	CL : Lean CLAY CH : Fat CLAY	45.9	15.70
	<u>Ci</u> -U Ci -U	6	BI-D-1 BI-D-2	66	3.0 - 4.0	CL: Sandy CLAY	52.4	16.20
	<u>C1 - U</u>	7	Br-D-2	67	8.0 - 9.0	CH: Fat CLAY	58,5	16.20
	C1 - U	18	Br-D-2 Br-D-4	191	1.0 - 2.0	CH : Fat CLAY	56.9	16.20
	<u>C1 - U</u>	23	Br-D-5	971	3.0 - 4.0	CH : Fat CLAY	60.8	16.10
	<u>C1 - U</u>	24	Br-D-5	972	10.5 - 11.5	CH : Fat CLAY	57.1	16.20
	C1 - U	34	Br-D-7	859	5.0 - 6.0	CH : Fat CLAY	68.7	15.40
	C1 - U	35	Br-D-7	860	8.0 - 9.0	CH: Fat CLAY	65.7	15.40
	C1 - U	37	Br-D-8	806	3.0 - 3.5	CL: Sandy CLAY	42.0	15.80
	Average						56.1	15.90
	C1 - L	3	Br-D-1	803	19.0 - 20.0	CL : Lean CLAY	42.0	17.40
	C1 - L	8	Br-D-2	- 68	22.0 - 23.0	CL : Lean CLAY	41.4	16.90
1	C1 - L	14	Br-D-3	174	15.0 - 16.0	CH : Fat CLAY	51.7	16.70
	C1 - L	15	Br-D-3	175	20.0 - 21.0	CL : Lean CLAY	38.9	17.80
	C1 - L	20	Br-D-4	193	15.0 - 16.0	CH : Fat CLAY	58.7	15.90
· · ·	C1 - L	25	Br-D-5	973	17.0 - 18.0	CH : Fat CLAY	52.2	16.30
· · ·	C1 - L	31	Br-D-6	932	17.5 - 18.5	CL: Sandy CLAY	39.7	16.60
	C1 - L	36	Br-D-7	861	18.0 - 19.0	CL: Lean CLAY	53.8	16.40
	C1 - L	39	Br-D-8	808	19.0 - 20.0	CH : Fat CLAY	54.4	16.20
	Average				·		48.1	16.70
					1		41.0	17.00
	C2	9	Br-D-2	69	41.0 - 41.5	CH : Fat CLAY	41.9 37.8	17.20 17.30
	C2	26	Br-D-5	974 975	27.5 - 28.0 32.0 - 32.50	CL: Lean CLAY	37.8	17.30
	C2	27 32	Br-D-5 Br-D-6	975	26.5 - 27.0	CL : Lean CLAY CL : Lean CLAY	43.2	16.80
	C2	32	01-D-0	935	20.3 - 27.0		40.1	17.30
	Average						40.1	17.50
	C1 - U	111	Br-D-18	749	8.0 - 9.0	CH : Fat CLAY	69.2	15.60
	a -u	111	Br-D-18	750	13.0 - 14.0	CH : Fat CLAY	69.5	15.70
		112	Br-D-10 Br-D-19	742	4.0 - 5.0	CH : Fat CLAY	77.4	15.20
	<u>C1</u> - U	120	Br-D-19	747	12.0 - 13.0	CH : Fat CLAY	51.8	16.10
	C1 - U	124	Br-D-20	835	2.0 - 3.0	CH : Fat CLAY	73.8	15.20
	C1 - U	125	Br-D-20	836	9.0 - 10.0	CH : Fat CLAY	58.4	15.50
	C1 - U	129	Br-D-21	846	6.0 - 7.0	CH : Fat CLAY	81.8	15.00
	C1 - U	130	Br-D-21	847	11.0 - 12.0	CL: Lean CLAY	49.3	16.30
	Average						66.4	15.60
	C1 - L	113	Br-D-18	751	18.0 - 19.0	CL : Lean CLAY	40.3	16.90
3	C1 - L	121	Br-D-19	744	19.0 - 20.0	CL : Lean CLAY	44.1	16.80
	<u>C1 - L</u>	126	Br-D-20	837	19.0 - 20.0	CL: Lean CLAY	36.4	17.20
	C1 - L	131	Br-D-21	848	19.0 - 20.0	CH : Fat CLAY	54.2	16.30
	Average						43.8	16.80
		111	D D 10	750	200 205		20.0	19.30
	C2	114	Br-D-18	752	<u>39.0 - 39.5</u> 30.0 - 31.0	CL: Lean CLAY	28.8	<u>19.30</u> 19.50
	C2	122	Br-D-19 Br D 20	746 838	30.0 - 31.0	CL: Lean CLAY	26.4 29.2	19.50
	C2 C2	127	Br-D-20 Br-D-20	839	28.0 - 28.5 40.0 - 40.50	CH : Fat CLAY CL : Lean CLAY	29.5	18.50
	C2	132	Br-D-20	849	24.0 - 24.5	CH: Fat CLAY	30.9	18.60
	C2 C2	134	Br-D-21 Br-D-21	851	41.0 - 41.5	CL : Lean CLAY	34.8	18.10
	Average						29.9	18.80
L	111-1465	1	L		[L		10.00

CAN THO BRIDGE CONSTRUCTION Unit Weght of C1, C2 Layer

CAN THO BRIDGE CONSTRUCTION Unit Weght of C1, C2 Layer

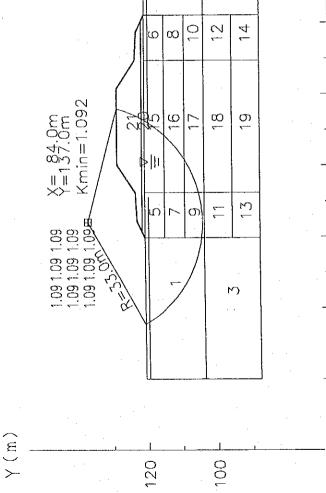

					1		Water	Unit
j – I	T		Borehole	Tabaratory	Sample depth	Soil Name	content	weight
Segment	Layer	No	symbol	No	Sumpre depen		W	g
	name		symbol	INU		(ASTM D2487-83)	%	kN/m ³
				000	m	MH :Elastic SILT	65.1	14.80
	<u>C1</u>	137	Br-D-22	372	$\frac{3.0}{8.0} - \frac{4.0}{9.0}$	CH : Fat CLAY	54.6	16.10
1	CI	138	Br-D-22 Br-D-22	373 374	12.0 - 13.0	CH: Fat CLAY	63.8	15.90
	<u>сі</u> Сі	139 145	BR-D-22 BR-D-23	26	6.0 - 7.0	CL: Sandy CLAY	42.0	15.90
	$\frac{c_1}{c_1}$	155	BR-D-24	305	4.0 - 5.0	CH : Fat CLAY	64.0	15.80
	CI	156	BR-D-24	306	11.0 - 12.0	CL: Lean CLAY	57.1	16.30
	CI	164	Br-D-25	51	4.0 - 5.0	CH : Fat CLAY	74.3	15.20
	CI	172	Br-D-26	259	3.0 - 4.0	CH : Fat CLAY	80.4	14.70
	CI	173	Br-D-26	260	7.0 - 8.0	CH : Fat CLAY	69.9	15.50
	C1	174	Br-D-26	261	11.0 - 12.0	CH : Fat CLAY	77.6	15.20
	CI	177	BR-D-27	985	4.0 - 4.5	CH : Fat CLAY	51.1	16.70
	C1	185	Br-D-28	7	3.0 - 4.0	CH : Fat CLAY	79.2 46.2	14.60
	Cl	187	Br-D-28	9	12.0 - 13.0	CL: Lean CLAY	46.2	16.70 16.30
	Cl	194	Br-D-29	354	5.0 - 6.0	CL : Lean CLAY CH : Fat CLAY	60.2	14.40
· ·	<u>C1</u>	195	Br-D-29	355	10.0 - 11.0		62.4	15.60
	Average						04,4	10.00
	<u>C2</u>	63	Br-D-13	761	29.0 - 29.5	CL : Lean CLAY	38.7	17.90
	C2 C2	64	Br-D-13 Br-D-13	761	44.5 - 45.0	CL: Lean CLAY	34.2	17.90
-	C2	47	Br-D-10	344	16.0 - 16.5	CL: Sandy CLAY	26.4	19.10
	C2	48	Br-D-10	346	33.0 - 33.5	CL: Lean CLAY	30.1	19.00
	C2	49	Br-D-10	349	47.0 - 47.5	CL : Lean CLAY	21.6	20.10
	C2	74	Br-D-14	147	16.0 - 16.5	CL: Lean CLAY	28.3	18.70
	.C2	75	Br-D-14	148	22.5 - 23.0	CL : Lean CLAY	29.2	0.00
	C2	76	Br-D-14	149	28.0 - 28.5	CL : Lean CLAY	33.0	18.50
	C2	77	Br-D-14	150	40.5 - 41.0	CL: Lean CLAY	22.2	20.30
	C2	87	Br-D-15	239	20.0 - 20.5	CL: Lean CLAY	42.6	17.50 17.70
	C2	88	Br-D-15	240	25.0 - 25.5 28.0 - 28.5	CH : Fat CLAY. CL : Lean CLAY	39.9	17.70
4	C2	89 90	Br-D-15 Br-D-15	241 242	31.5 - 32.0	CL: Lean CLAY CL: Lean CLAY	21.6	18.50
	C2 C2	90	Br-D-15 Br-D-15	242	40.0 - 40.5	CL: Lean CLAY	34.2	18.40
	C2 C2	99	Br-D-16	367	25.5 - 26.0	MH :Elastic SILT	52.3	16.40
	C2	107	Br-D-17	286	18.0 - 19.0	CL: Lean CLAY	-36.7	17.80
	C2	140	Br-D-22	375	16.0 - 16.5	CH : Fat CLAY	27.2	18.80
	C2	142	Br-D-22	377	34.0 - 34.5	ML: SILT	22.9	19.90
	C2	146	BR-D-23	27	10.0 - 11.0	CH: Fat CLAY	48.4	16.40
1	C2	147	BR-D-23	28	13.5 - 14.0	CH: Fat CLAY	25.7	19.40
	C2	148	BR-D-23	29	18.0 - 18.5	CL: Lean CLAY	23.2	19.70
1	C2	150	BR-D-23	30	27.5 - 28.0 16.0 - 16.5	CL : Lean CLAY CL : Lean CLAY	25.4 26.1	19.40 19.20
	C2	157	Br-D-24	307 308	16.0 - 16.5 23.5 - 24.0	CH: Lean CLAY CH: Fat CLAY	35.7	19.20
1	C2 C2	158 160	Br-D-24 Br-D-24	310	30.0 - 30.5	CL: Lean CLAY	26.6	19.50
	C2 C2	160	Br-D-24 Br-D-24	311	41.2 - 41.7	CL: Lean CLAY	21.9	19.40
1	C2 C2	167	Br-D-25	54	18.0 - 18.5	CL: Lean CLAY	27.4	19.20
	C2	169	Br-D-25	56	33.0 - 33.5	CL: Lean CLAY	28.6	19.30
	C2	170	Br-D-25	57	43.0 - 43.5	CL : Lean CLAY	26.8	19.20
	C2	175	Br-D-26	262	17.0 - 17.5	CH : Fat CLAY	29.3	18.50
	C2	176	Br-D-26	263	25.0 - 25.5	CL: Lean CLAY	24.4	19.30
	C2	178	Br-D-27	986	12.5 - 13.0		28.5	19.30
	<u>C2</u>	179	Br-D-27	987	15.0 - 15.5		30.2	18.30
	C2	180	Br-D-27	988	19.0 - 19.5		34.7	18.10 19.60
	C2	181	Br-D-27	989	23.5 - 24.0 28.0 - 28.5		26.3	19.80
	C2 C2	182 188	Br-D-27 Br-D-28	10	17.0 - 17.5		32.3	18.50
	C2 C2	100		356	16.0 - 16.5		26.1	19.40
	C2 C2	197		357	30.0 - 30.5		25.5	19.70
	Average	· {	1				28.2	19.00
			i			<u> </u>		

Segment	Name of Layer	Bor, No.	Depth of Sand Layer	Remarks	Average of Sand Layer
	Layer		m		Band Dayer
		Br-D-4	7.5		
		Br-D-5	4.5		
		Br-D-5	5.5		
		Br-D-5	9.5]
		Br-D-6	5.5		
		Br-D-6	10.5		2
	C1-U	Br-D-7	8.5		
		Br-D-7	10.0		
		Br-D-7	14.0		
		Br-D-8	11.0		
	[Br-D-8	14.0		
		Br-D-9	9.5		
		Br-D-9	15.0		
		Br-D-4	28.0	Bottom of Layer	
		Br-D-7	18.5		
		Br-D-7	20.0		- -
	C1-L	Br-D-8	17.5		
1	UI-L	Br-D-8	24.0		
		Br-D-8	31.0		
		Br-D-9	17.5		
		Br-D-9	33.5		
		Br-D-1	30.0		
		Br-D-1	49.0	Bottom of Layer	1
		Br-D-5	28.0		
		Br-D-5	49.0		
	ļ	Br-D-6	28.5		
		Br-D-6	31.5		
	C2	Br-D-7	38.0		1
		Br-D-7	41.4	Thickness =1.1m	2
		Br-D-8	37.0		
		Br-D-8	46.5]
		Br-D-9	37.0		
		Br-D-9	43.5		
		Br-D-9	45.0		
· · · · · · · · · · · · · · · · · · ·		Br-D-9	47.5		
3		Br-D-19	16.0		0
		Br-D-23	6.5		
		Br-D-23	9.5		
		Br-D-24	11.5		
. *		Br-D-24	13.5		
4	C1	Br-D-24	15.0	· · · · ·	1
		Br-D-25	9.5		
		Br-D-25	12.5		
		Br-D-26	13.5	· · · · · · · · · · · · · · · · · · ·	-
		Br-D-28	9.5		

Appendix-2: Cost Comparison of Embankment Height

				UNIT	Case-1	e-1	Case-2	-2	Case-3	e-3	Cas	Case-4	Cas	Case-5	ů ů	Case-6
ITEM	SPECIFICATION	ATION	UNIT	PRICE	Abutment Heisht	= 5 m	Abutment Heicht	= 6 m	Abutment Heisht	= 7 m	Abutment Height	= 8 m	Abutment Heisht	m 6 =	Abutment Height	= 10 m
			1	US\$	ATTIT AUD	TOTAL	VTITVAUQ	TOTAL	VIIIINAUQ	TOTAL	VITITNAUO	TOTAL	QUANTITY	TOTAL	QUANTITY	TOTAL
1 Foundation	CCP Dia.1.5m	L=72m	Pile	18,924	36	681,264	32	605,568	26	492,024	22	416,328		331,170	13	246,012
		H=7.5m	Each	48,941	1	48,941										
•		H=8.5m	Each	53,854	-		1	53,854								
-	Abutment	H=9.5m	Each	58,775					: 1	58,775						
		H=10.5m	Each	63,641							1	63,641				
		H=12.5m	Each	96,602											F -1	96,602
2 Substruncure		H=7.5m	Each	37,580	-	37,580										
		H=8.5m	Each	39,509			1	39,509								
	Pier	H=9.5m	Each	41,437	1	41,437			T	41,437						
		H=10.5m	Each	54,855	-		1	54,855			***	54,855				
•		H=11.5m	Each	56,666	0.5	28,333			0.5	28,333						
	Sub - Total					156,291		148,218		128,545		118,496		107,549		96,602
	PC Box	tox.	ε	22,258	150	3,338,700	125	2,782,250	100	2,225,800	75	1,669,350			25	556,450
	Pavement	sent	m2	28	3,075	86,100	2,563	71,750	2,050	57,400	1,538	43,050			513	14,350
	Road Miscellaneous	cllaneous	B	106	150	15,900	125	13,250	100	10,600	75				25	2,650
	Sub-Total					3,440,700		2,867,250		2,293,800		1,720,350		1,146,900		573,450
	QV4	۵	100m	1,223	0	0	448	548,392	929	1,136,329	1,442	1,763,825			2,565	3,137,456
	Embankment	cment	100m3	53	0	0	103	5,466	229	12,160	380	20,156			761	40,355
	Slope Protection	otection	m2	44	0	0	285	12,540	620	27,280	1,005	44,220			1,925	84,700
4 Lana Work	Pavement	sent	m2	29	0	0	578	16,762	1,155	33,495	1,733	50,257			2,888	83,752
	Road Miscellaneous	ellaneous	m	106	0	0	25	2,650	50	5,300	51	7,950			125	13,250
	Sub - Total					0	-	585,810		1,214,565		1,886,409		2,622,961		3,359,513
-									:							
5 Compensation			m2	3.8	7,548	28,682	6,290	23,902	5,032	19,122			4 A - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144 - 144	9,561		4,780
	For Highway		m2	3.8	1,887	7,171	4,240	16,112	6,693	25,433	9,246	35,135		45,406	14,652	55,678
	Sub - Total					35,853		40,014		44,555		49,476	-	54,967		60,458
						0011101		020 21 0 1				020 707 4				
	Total		. 14	400 C		4,514,106		4,240,300		4,1/3,489		4,191,039		4,200,04/		4,030,033
				1000USS/m		28.76		28.31	_	27.82		27.94		28.42		28.91

Embankment include Drainage Blanket, Surcharge and Subgrade. Road Miscellaneous include Concrete Kerb, Median, Railing and Guard Railing.



Appendix-3: Study of Counter Berm Form

CHARACTERISTIC VALUE

į

Counter Berm H=6m B=8m Segment 1	S= 1. 1000
Style of Coun	

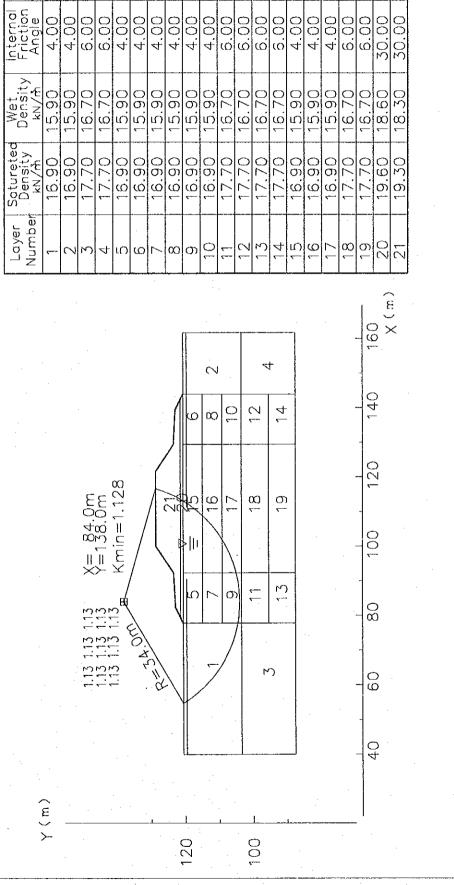
(m) X (m)

	Coheison kN/m²	7.0	7.0	8.0	8.0	15.0	15.0	15.0	15.0	14.0	14.0	14.0	14.0	14.0	14.0	39.0	35.0	32.0	28.0	25.0	20.0	14.0
	Internal Friction Angle	4.00	4.00	6.00	6.00	4 00	4.00	4.00	4.00	4.00	4.00	6.00	6.00	6.00	6.00	4.00	4.00	4.00	6.00	6.00	30.00	30.00
VALUE	Wet Density kN/m ³	15.90	15.90	16.70	16.70	15.90		15.90			15.90	16.70	16.70	16.70	16.70	15.90	15.90	15.901	16.70	16.70	18.60	18.30
CHARACTERISTIC	Satureted Density kN/m ³	16.90	16.90	17.70	17.70	16.90	16.90	16.90	16.90	16.90	16.90	17.70	17.70	17.70	17.70	16.90	16.90	16.90	17.70	17.70	19.60	19.30
CHARAC	Layer Number		2	5	4	ഹ	က	<u> </u>	ω	ი	10		12	, M	4	1 ភូ	16	17	3	0	20	21

Style of Counter Berm H=6m B=10m Segment 1

S:= 1:1000

Coheisor kN/À


CHARACTERISTIC VALUE

7.0

15.0 15.0

<u>8.00</u>

15.0 15.0 14.0

25.00 25.00 25.00 0.0

. T

14.0

14.0

Friction Angle 4.00 4.00 CHARACTERISTIC VALUE Density 15.90 16.70 Scturated Density kN/m³ 16.90 16.90 Layer Number Style of Counter Berm H=6m B=12m Segment 1 S: 1/1000

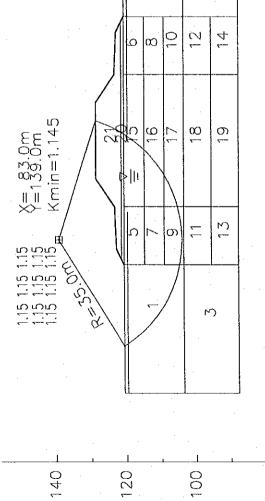
Cohesion kN/r

7.0

7,0 8. 0 0.0 8

> 6.00 6.00 4.00 4.00

17.70


(m) ∀(m)

17.70

4

15.0 15.0 15.0 15.0 0.0

> 4.00 4.00 4.00 4.00

2019 е С Ж 160 140 120

100

80

00

40

20.0

30.00

18.60

19.60

6.00

16.70

17

 \bigcirc

4

30.00

18.30

30

<u>თ</u>

28.0 26.0

6.00

33.0

36.(

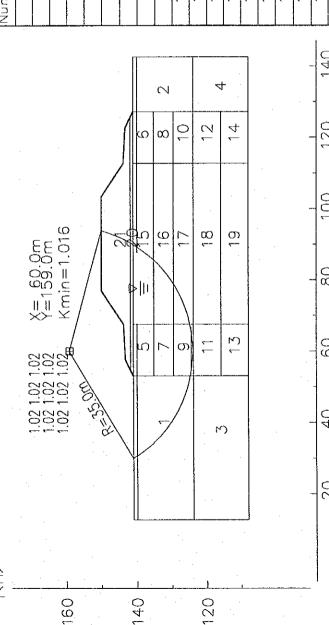
40.0

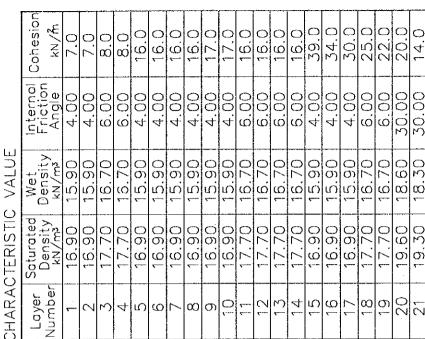
4.00 4.00 4.00

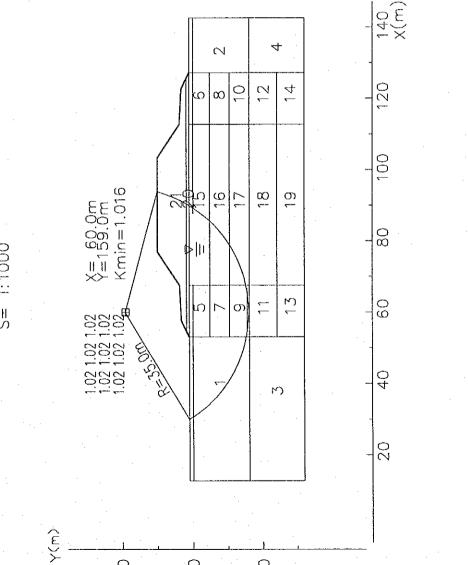
4

16.70 15.90 15.90 15.90 <u>15.90</u> 15.90 16.70 15.90 15.90 15.90 16.70 16.70 16.70 16.70 16.90 16.90 6.90 16.90 16.90 17.70 6.90 16.90 6.90 16.90 02 2 <u>_</u> 17 4 9 0 ហ ഗഗ ထတ \sim M 3

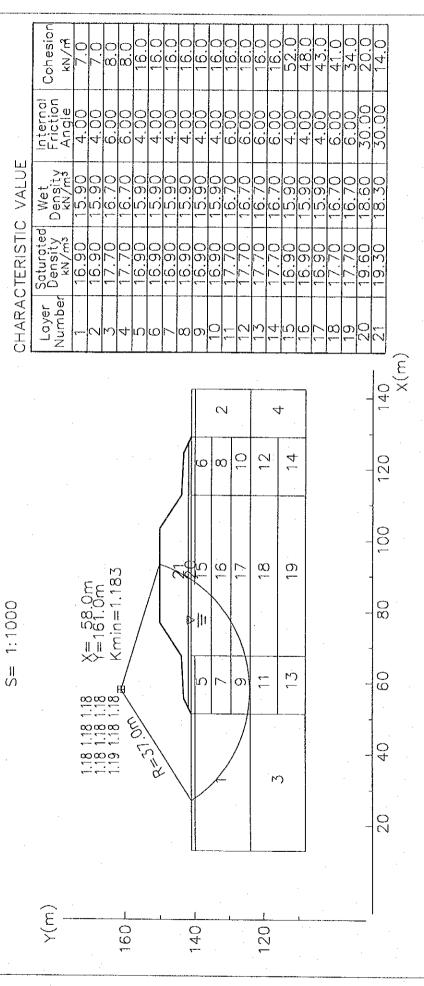
 \sim

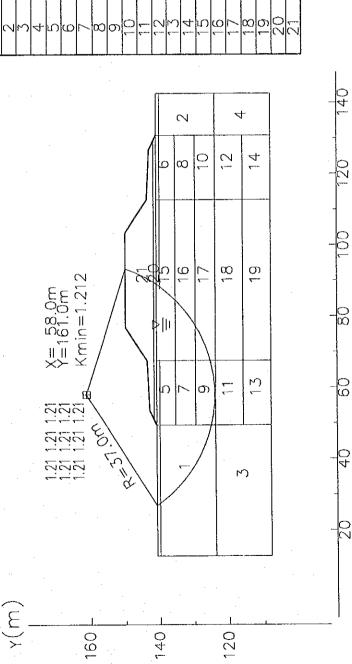

6.00 6.00 6.00


15.0


40 4.0 14.0 14.0

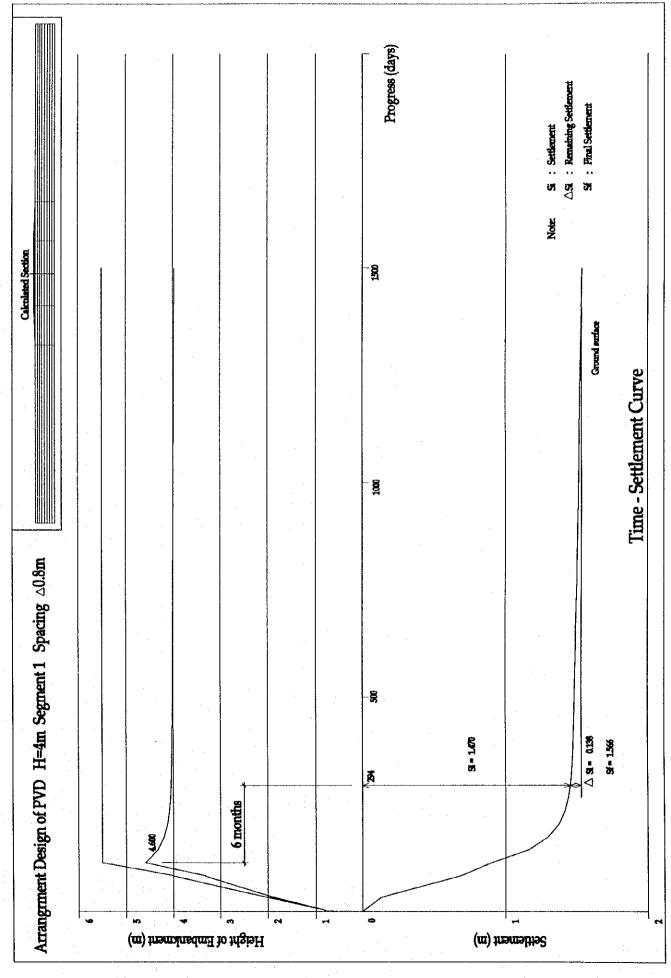
1-4-43

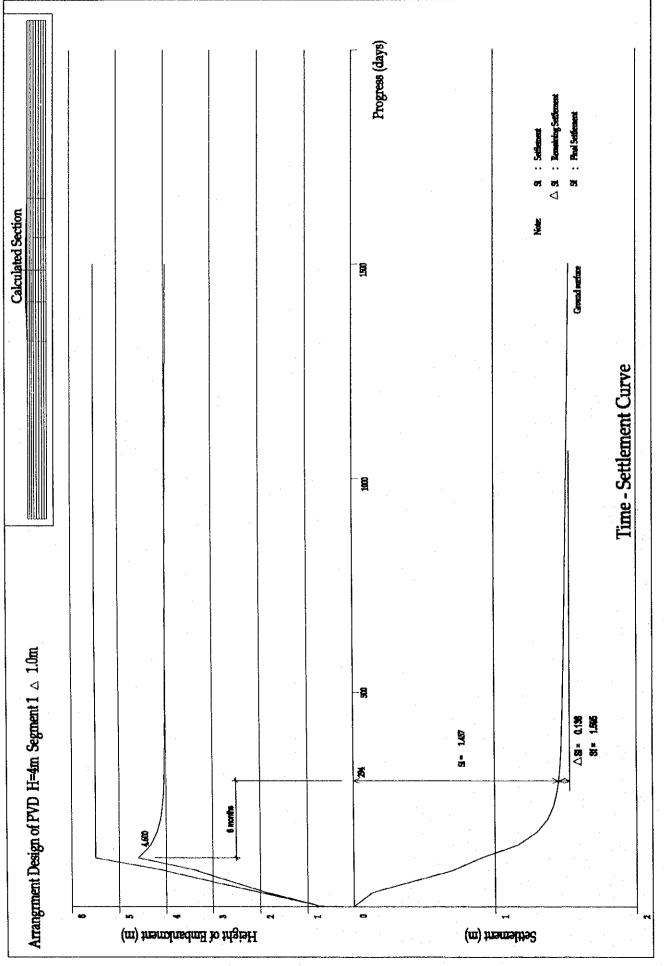

Style of Counter Berm H=8m B=10m Segment 1 S= 1:1000

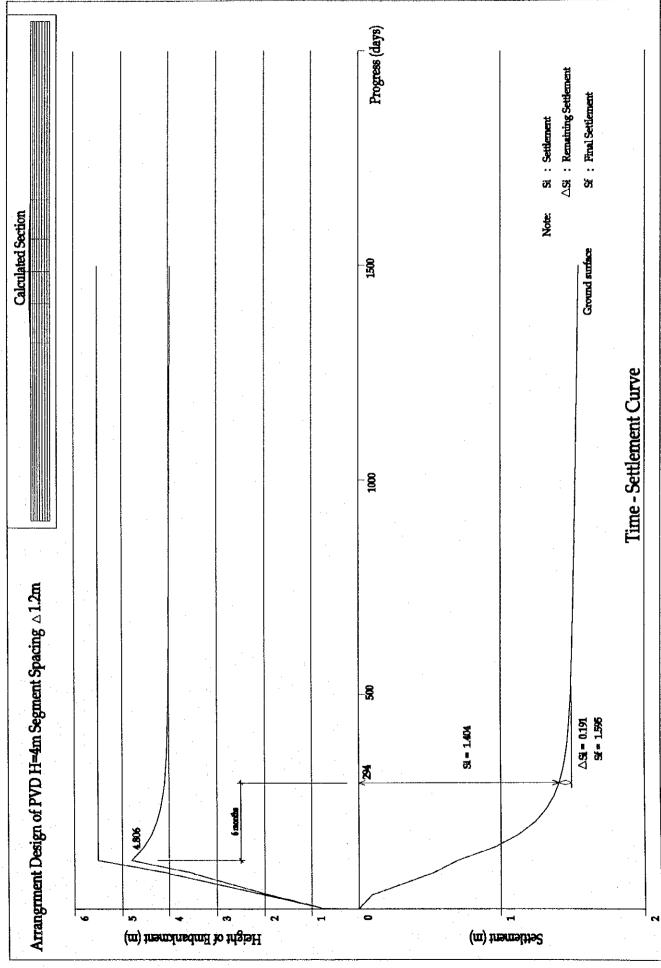


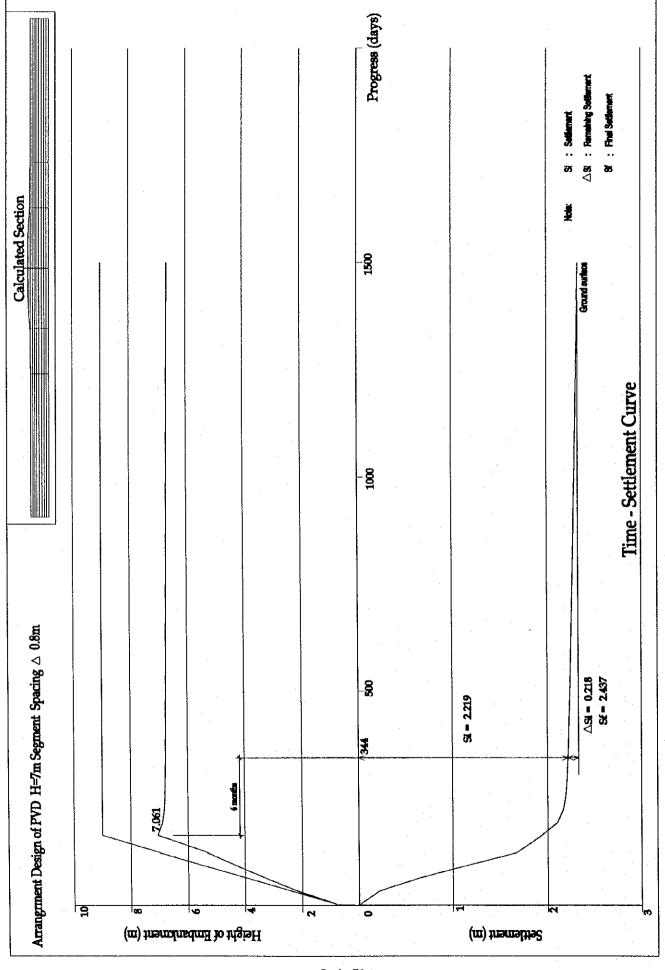
Style of Counter Berm H=8m B=12m Segment 1

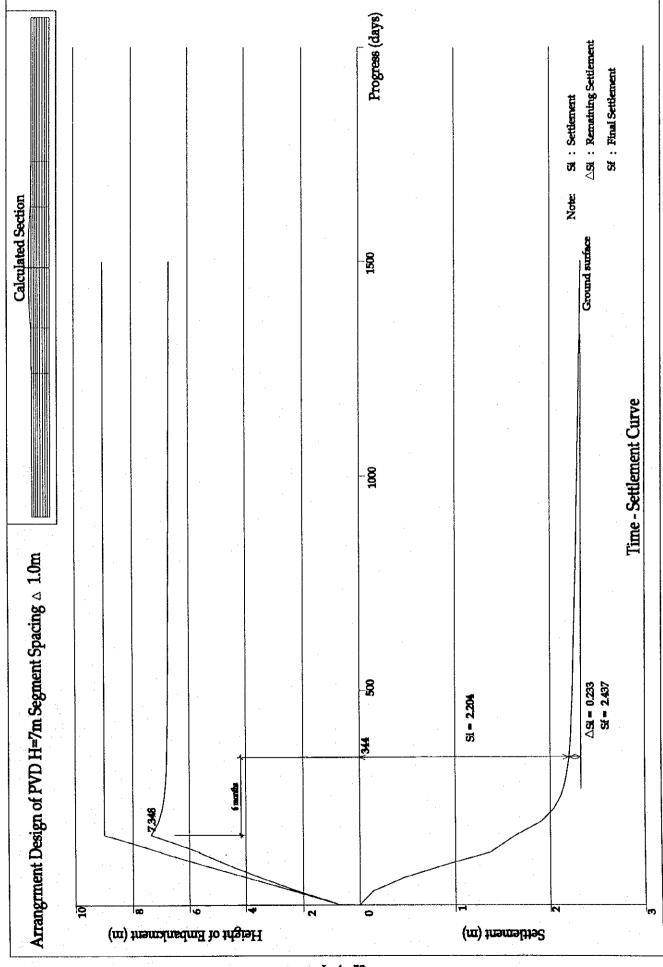
Style of Counter Berm H=8m B=14m Segment 1 S= 1:1000

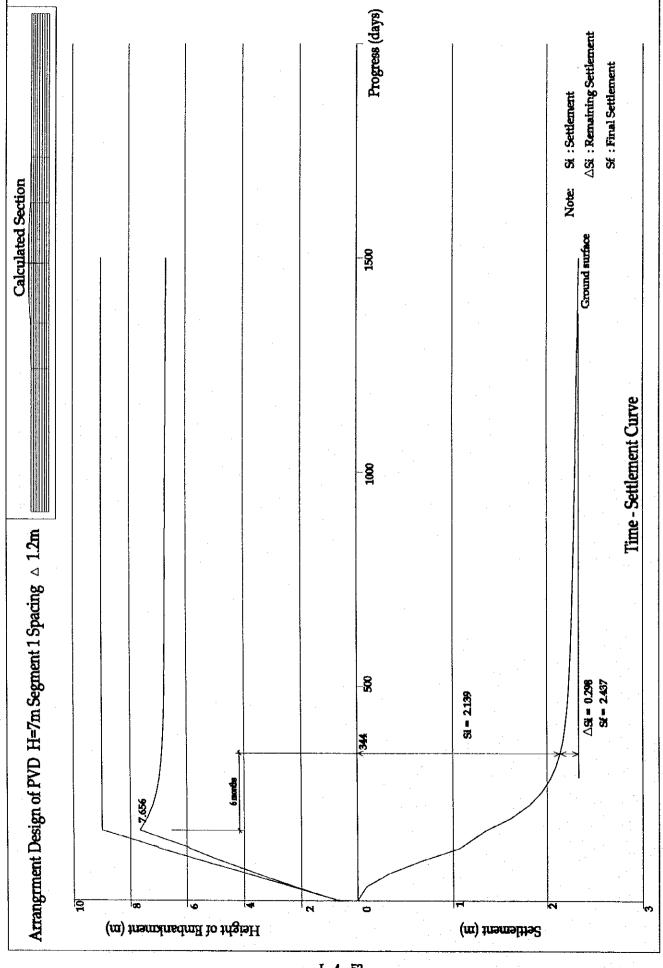


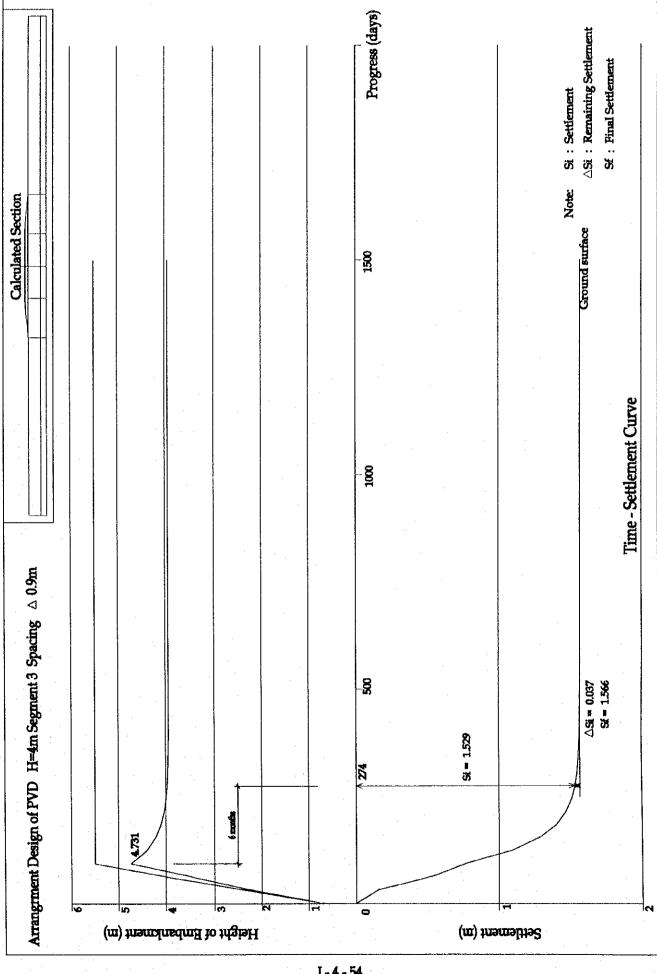


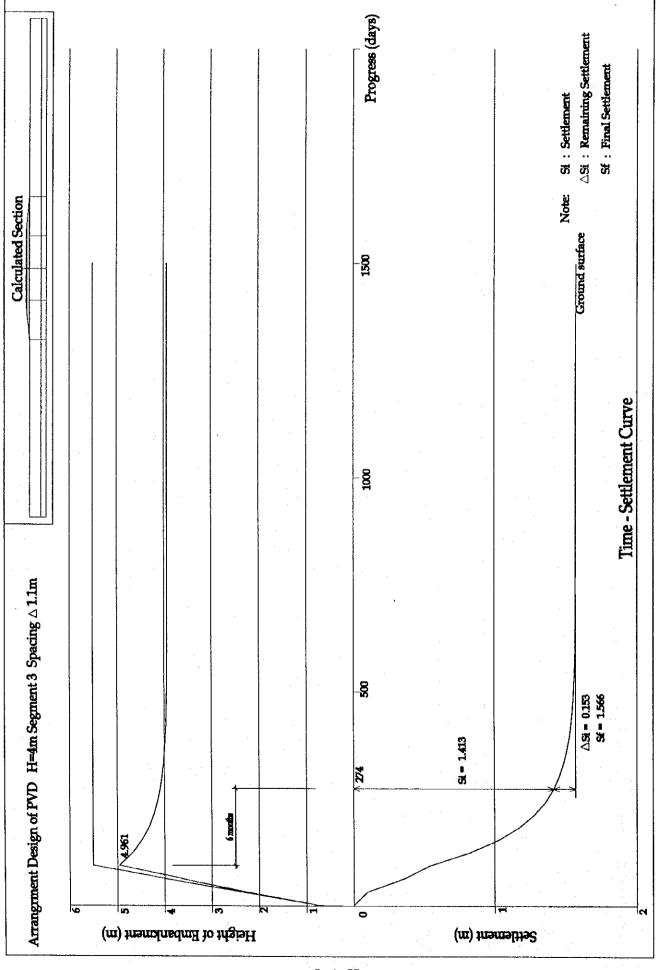

X(m)

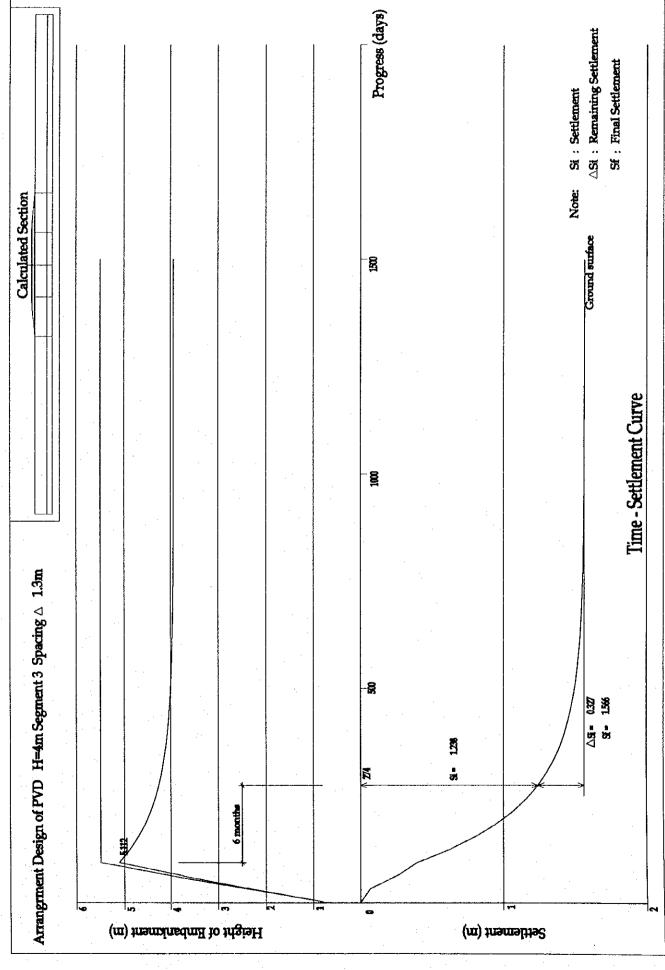

																	~~~~					
	Cohesion kN/m ²	1 .	7.0	8.0	8.0	16.0	16.0		16.0	16.0		16.0	16.0	16.0	16.0	52.0	48.0	43.0	38.0	34.0	20.0	14.0
	Internal Friction Anale	4	4.00	6.00	6.00	4.00	4.00	4.00	4.00	4.00	4.00	6.00	6.00	6.00	6.00	4.00	4.00	4.00	6.00		30.00	30.00
VALUE	Wet Density kN/m ³	15.90		16.70	16.70		15.90						16.70	16.70		15.90	•	15.90	16.70	16.70	18.60	18.30
CHARACTERISTIC VALUE	Saturated Density kN/m3		16.90	17.70	17.70	16.90	16.90	16.90		ι.		17.70	17.70	17.70	17.70	16.90	16.90	16.90	17.70	17.70	19.60	19.30
CHARAC	Layer Number		2	m	4	ۍ ا	9	2	ω	თ	10	, ,	12	13	4	15	10	17	18	91	20	21

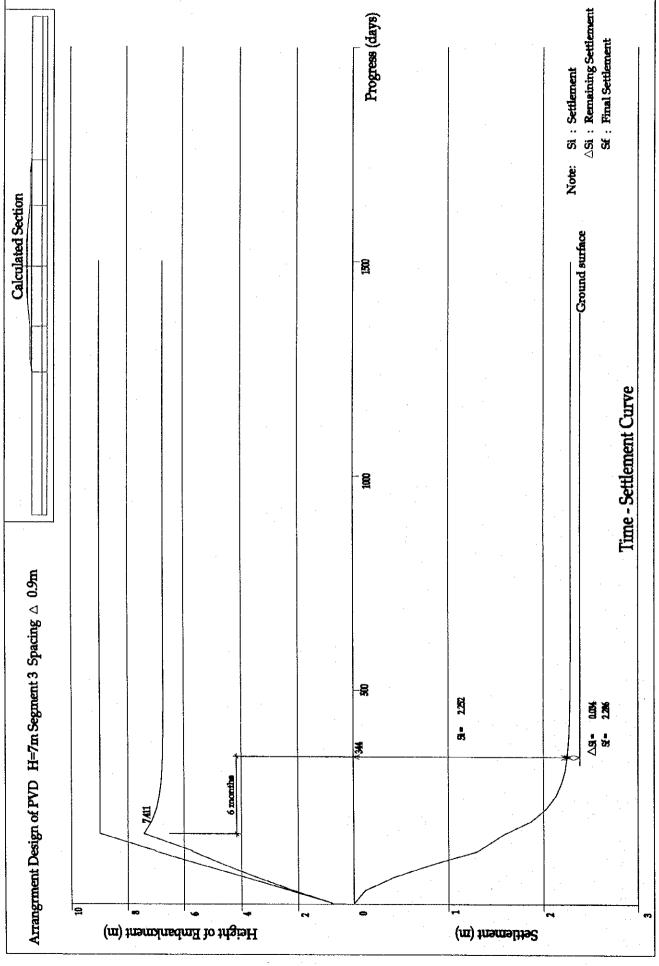

## Appendix-4: Study of PVD Arrangement



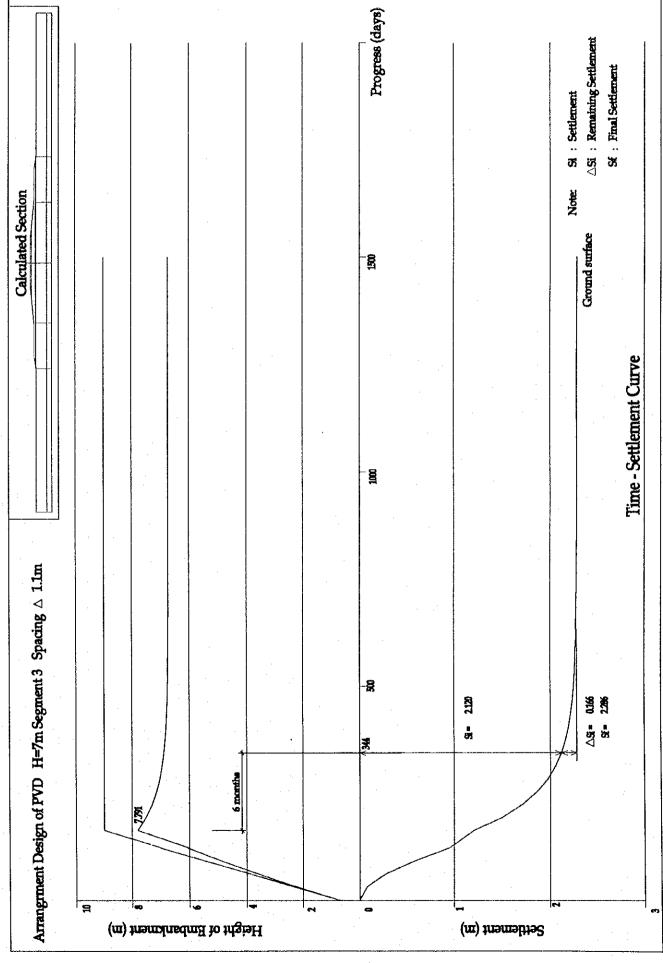



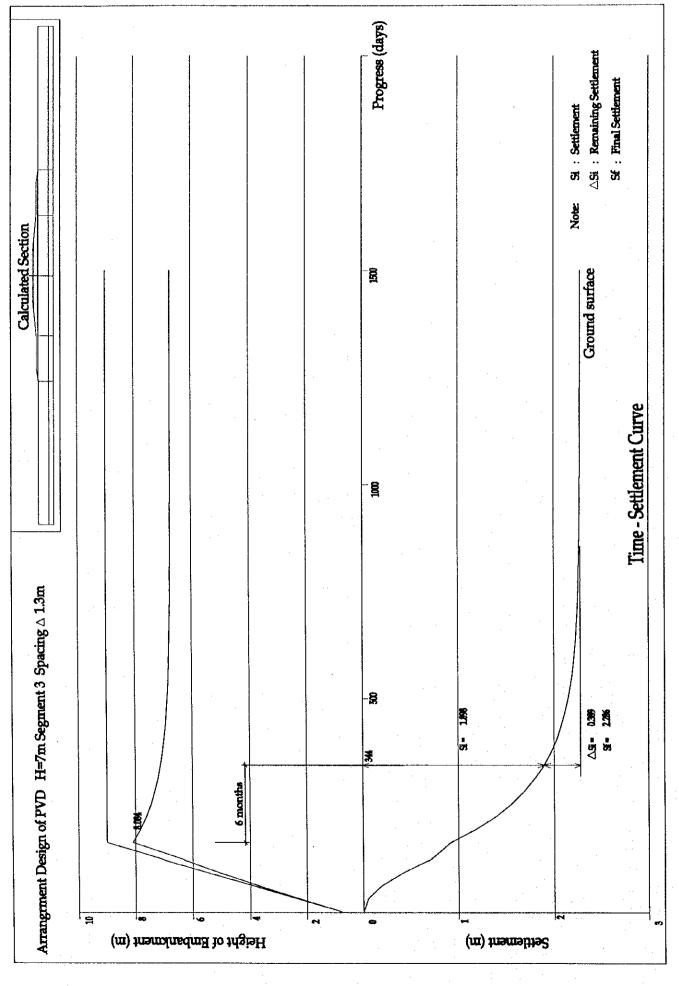






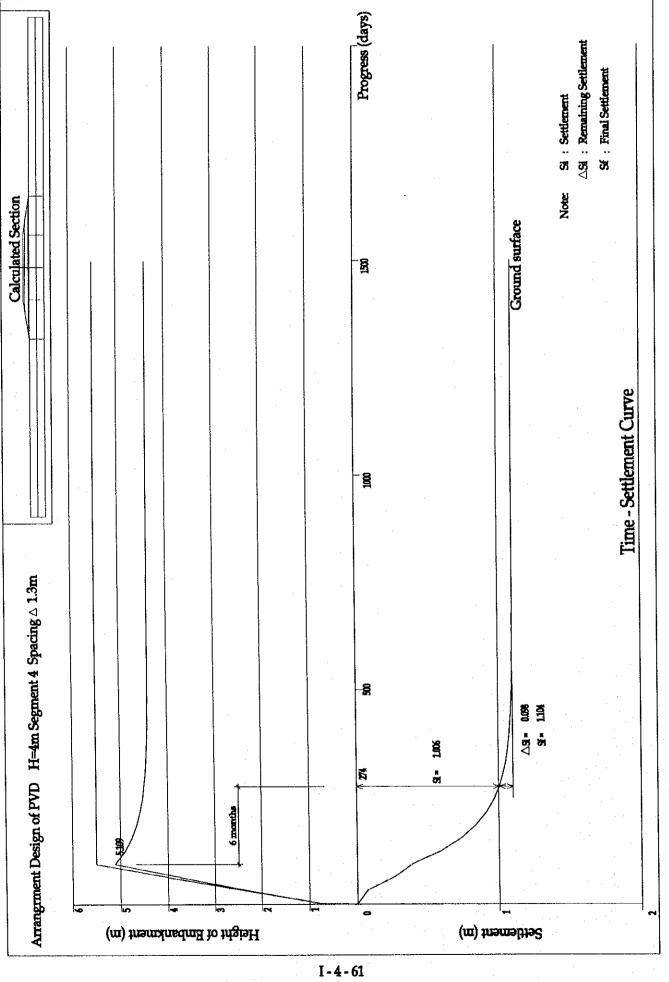



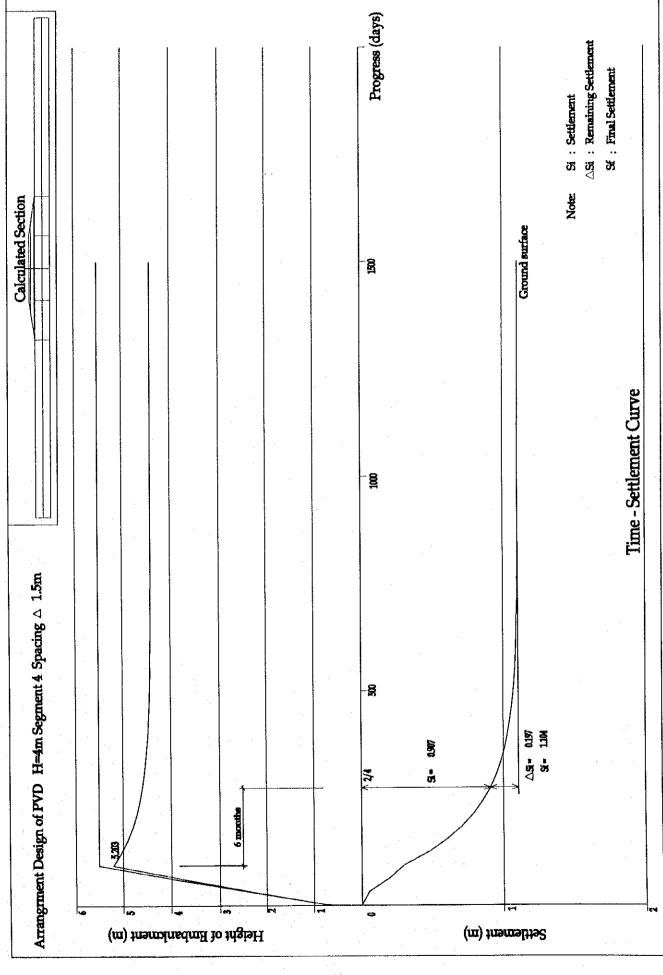




I - 4 - 57

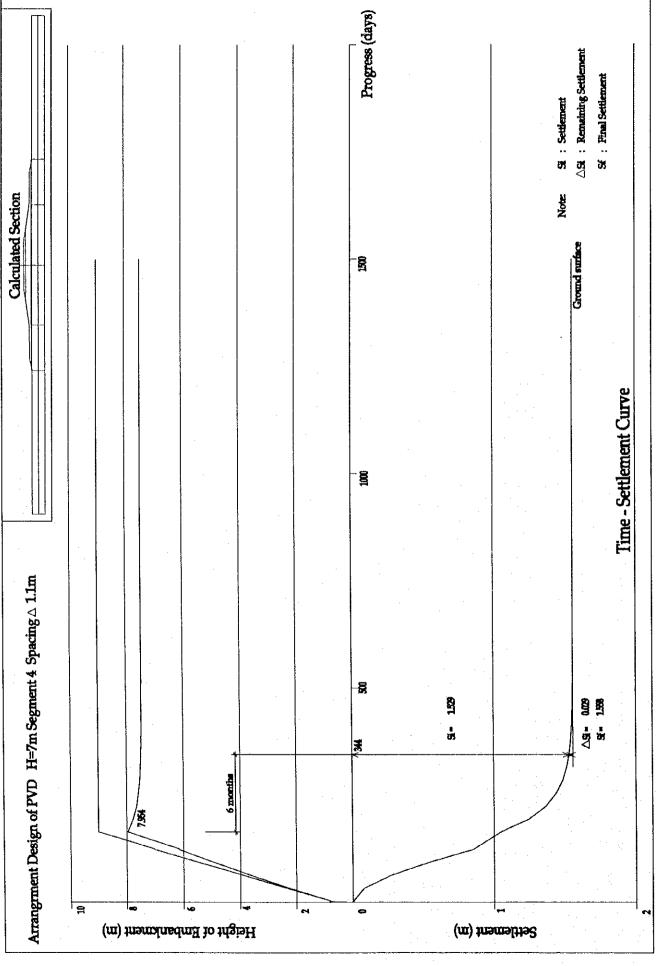

.....

;

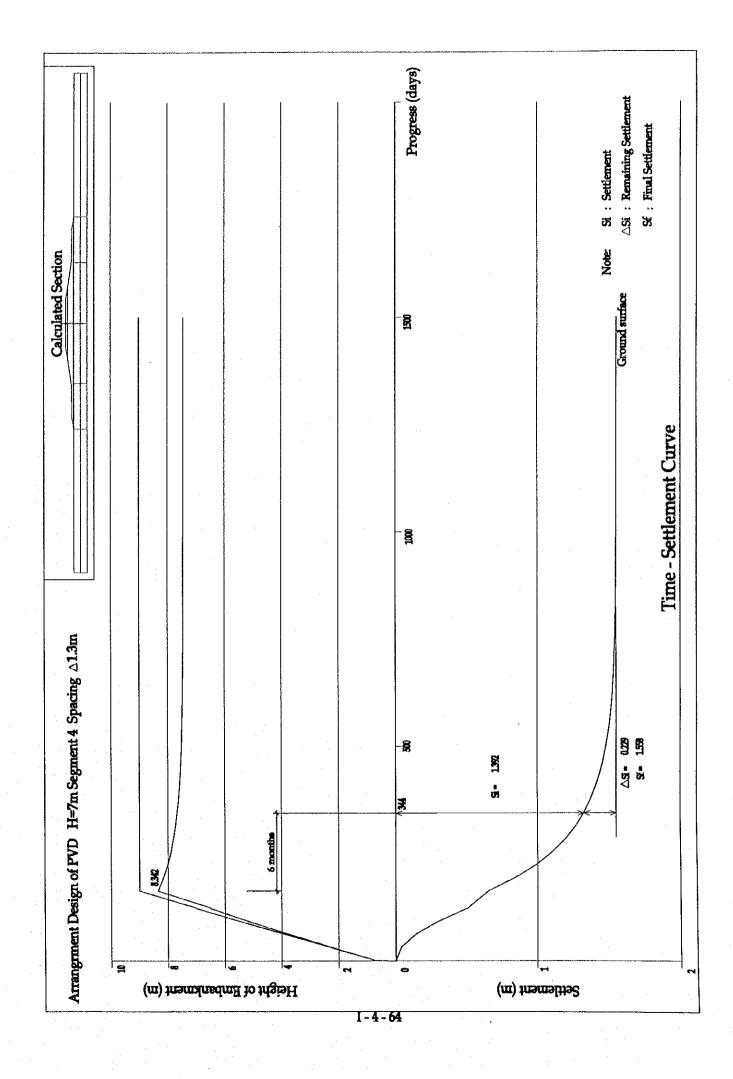


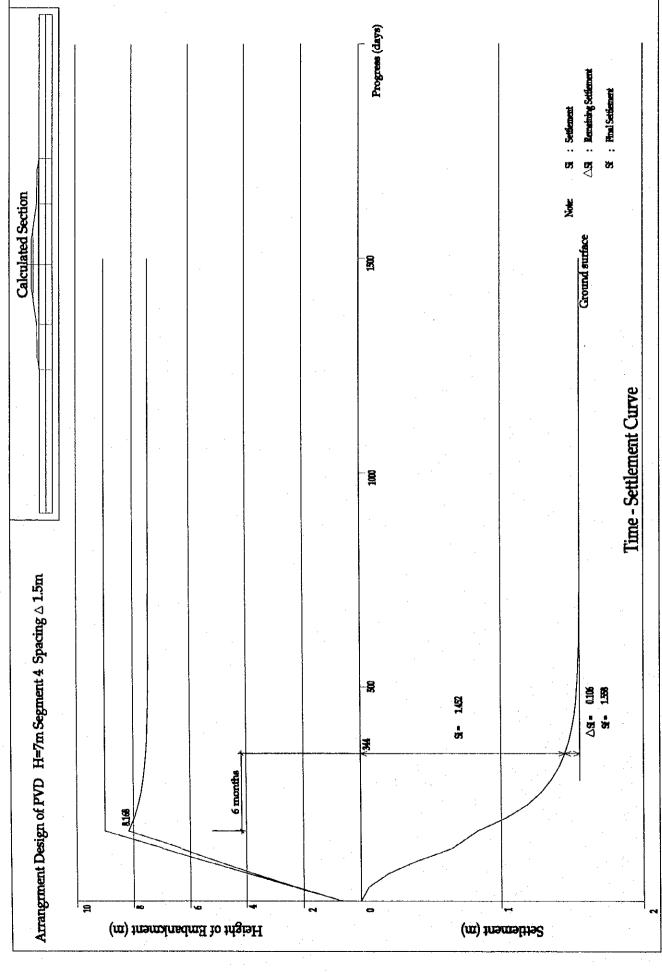


I - 4 - 58





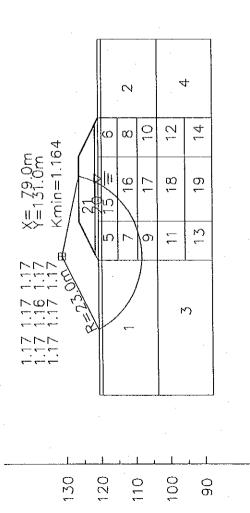

-----7

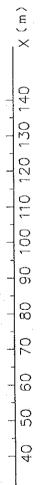



I - 4 - 62




I - 4 - 63






## Appendix-5: Study of Slope Stability

SLOPE STABILITY SEGMENT 1 H=4m S = 1:1000





CHARACTERISTIC VALUE	Cohesion kN/m z	7.0	7.0	0.0 0	0.8 0	21.0	21.0	18.0	18.0	17.0	17.0	16.0	16.0	15.0	15.0	26.0	23.0	20.0	18.0	17.0	20.0	071
	Internal Friction Angle	4.00	4.00	6.00	6.00	4,00	4.00	4.00	4.00	4.00	4.00	6.00	6.00	6.00	6.00	4.00	4.00	4.00	6.00	6.00	30.00	30.00
	Wet Density kN/m3	- 1 51	15.90	16.70	16.70	15.90	15.90	15.90	15.90	15.90	15.90	16.70	16.70	16.70	16.70	15.90	15.90	15.90	16.70	16.70	18.60	18 30
	Saturated Density kN/m3	16.90	16.90	17.70	17.70	16.90	16.90	16.90	16.90	16.90	16.90	17.70	17.70	17.70	17.70	16.90	16.90	16.90	17.70	17.70	19.60	19.30
	Layer Number		2	3	4	ເດ	ю ·	7	က	ص ۰	10	ç	12	13	14	្វុ	16	17	38	61	20	21

Cohesion kN/m² 00000 00000 14.0 4 8.0 15.0 30.00 30.00 Denset Denset KN 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 1 CHARACTERISTIC VALUE Saturated Density kN/m³ 16.90 16.90 16.90 16.90 16.90 16.90 16.90 16.90 17.70 16.90 16.90 17.70 7.70 7.70 9.60 9.30  $\square$ Layer Number ကျပ 20 യത 4 യത 0 ഗിഗ Ч SLOPE STABILITY SEGMENT 1 H=6m S = 1:1000 4  $\sim$ 0  $\sim$ 4 ഗ D) X= 84.0m Y=138.0m Kmin=1.128 2 9 17 00  $\tilde{\omega}$ ||| 5

4

4

Ĵ

×

0 100

140

120

100

80

60

40 0

~

0  $^{\circ}$ 

I-4-68

120

σ 1

M)

100

in f

H. 34.0M

<u>-----</u> <u>-----</u> WNW

140

Density kN/m³ CHARACTERISTIC VALUE

kN/m² Cohesion

Internal Friction Angle

6.00 6.00

15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 18.70 18.70 18.70 18.70 18.70 18.70

20

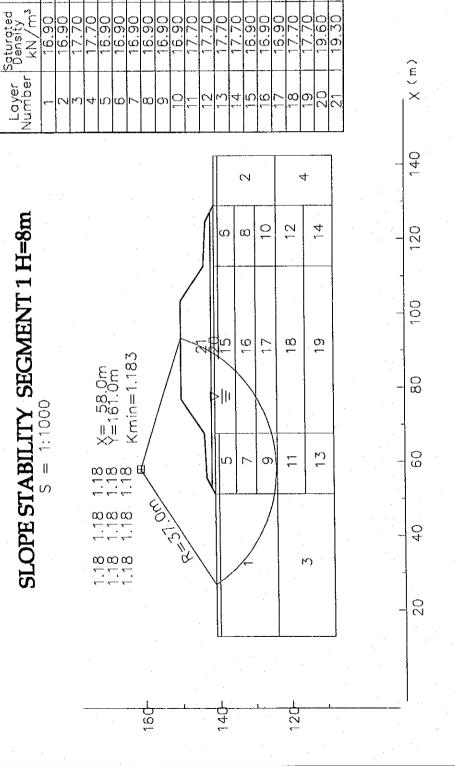
00 8 ശ് ഗ

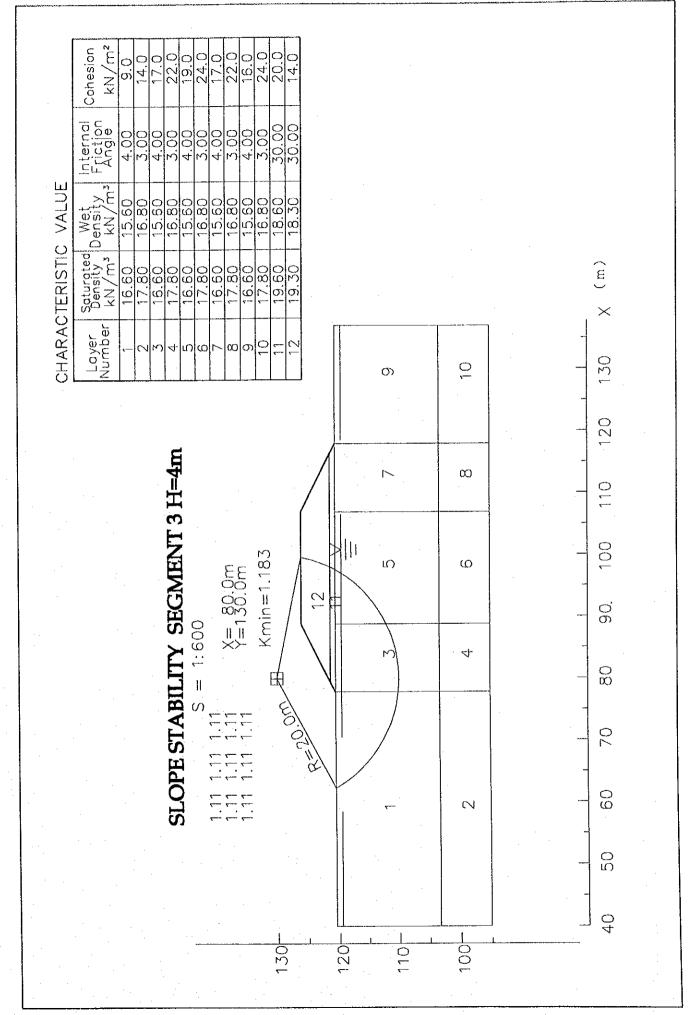
7.70

52.0 48.0

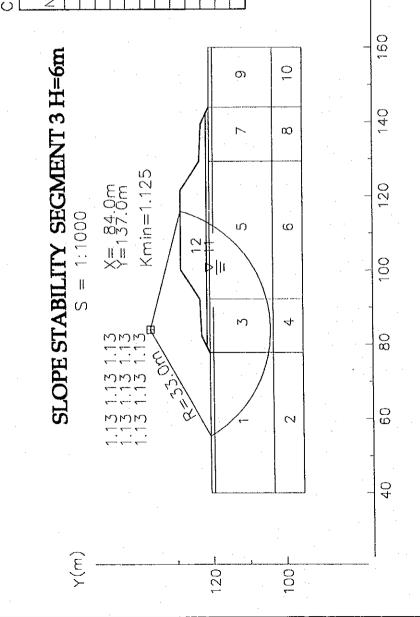
6,00 4,00 000

17.70 16.90 16.90


4.00 6.00 6.00


4

õ 4


4

30 00 റ് റ്





	Cohesion	kN/m ²	9.0	14.0	15.0	22.0	34.0	38.0	15.0	22.0	9.0	14.0	20.0	14.0
	Internal Friction	Angle	4.00	3.00	4.00	3.00	4.00	3.00	4.00	3.00	4.00	3.00	30.00	30.00
> VALUE	Wet Density	kN/m ³	15.60	16.80	15.60	16.80	15.60	16.80	15.60	16.80	15.60	16.80	18.60	18.30
HARACTERISTIC VALUE	Ň	kN/m ³	16.60	17.80	16.60	17.80	16.60	17.80	16.60	17.80	16.60	17.80	19.60	19.30
HARAC	Layer	Nurnber	<b>,</b>	2	M	4	ഹ	G	7	80	თ	10		12



(a) X

Cohesion kN/m² 48.0 16.0 9.0 24.0 46,0 9.0 16.0 20.0 4 14.( Internal Friction Angle 50.00 4.00 3.00 50.00CHARACTERISTIC VALUE Wet Density kN/m³ 15.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 115.80 18.30 Saturated Density kN/m² 
 16.60

 17.80

 17.80

 17.80

 17.80

 17.80

 17.80

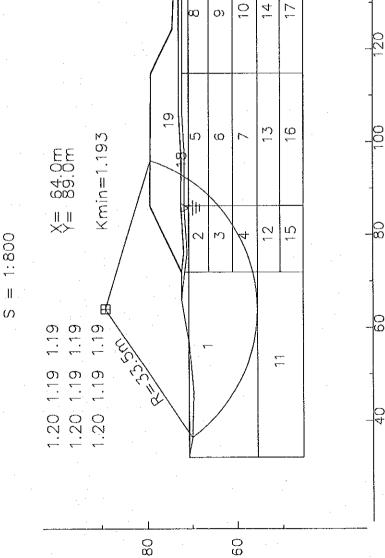
 17.80

 19.60

 19.30
 Number 0  $\sim$ ഗര യത 4 ~ ×Ê 140 0 σ SLOPE STABILITY SEGMENT 3 H=8m S = 1:1000 120 Ø  $\sim$ 100 2 Kmin=1.204 ഹ G X= 58.0m Y=160.0m 80 \$||1 60 М 4 ø 1.20 1.21 1.20 1.21 1.21 1.21 10.92 40  $\sim$ <u>9</u> 9 9 9 9 20 120 160 140

Cohesion 20.0 kN/m² 3.0 21.0 21 0.0 0 00 8.0 0.0 8.0 4 Internal Friction Angle 30.00 30.00 4.00 4.00 4.00 4.00 4.00 4,00 4.00 4.00 4.00 4.00 CHARACTERISTIC VALUE Wet Density ^{kN/m3} 15.60 115.60 115.60 115.60 115.60 115.60 18.30 18.30 Saturated Density kN/m³ 16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60 19.60 σ ( e ) × Number ഗഗ œ σ 0 đ 0 σ 120 SLOPE STABILITY SEGMENT 4 H=4m Ø  $\sim$ 110 27 100 Kmin=1.219 ഗ ഗ X= 79.0m Y=131.0m 06 = 1:600 >||| M 80 E 200 200 200 R=22.01 S 70 2222  $\sim$ 00 50 120 130 110

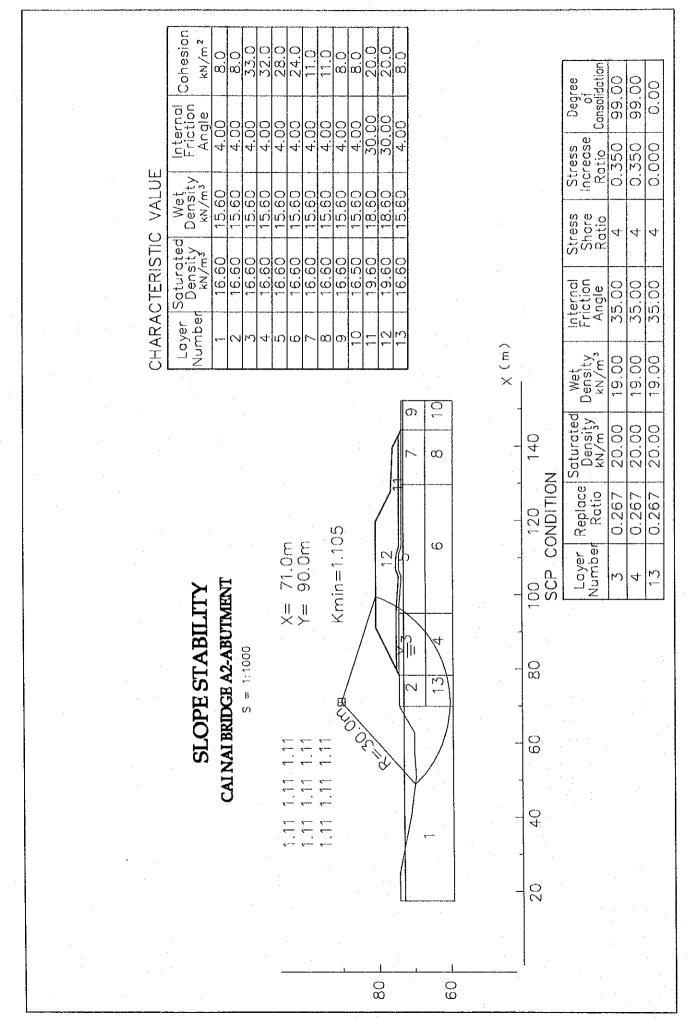
I-4-73


-----

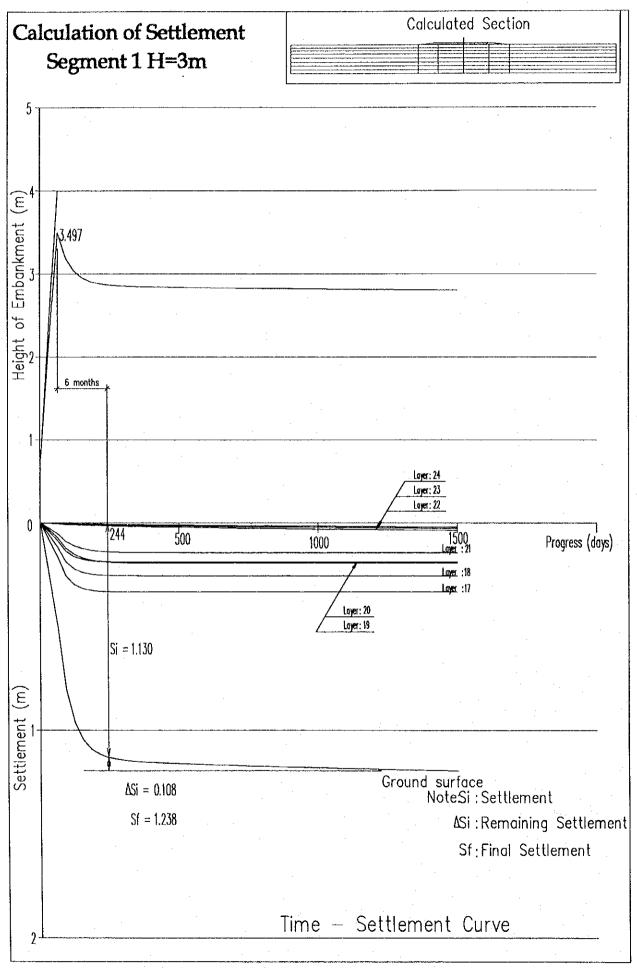
Cohesion kN∕m² 38.0 38.0 38.0 38.0 34.0 ວ.0 14.0 00 00 20.( Internal Friction Angle 4.00 4.00 4,00 4.00 4.00 4.00 4.00 4.00 4.00 30.00 CHARACTERISTIC VALUE Wet Density kN/m³ 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 œ Saturated Density kN/m³ 16.60 16.60 16.60 16.60 16.60 16.60 16.60 19.60 <u></u>, Layer Number C ഗ യത ഗ <t ( e ) × 160 0 ഗ SLOPE STABILITY SEGMENT 4 H=6m 140 ω 120 27 Kmin=1.133 X= 85.0m Y=137.0m ഗ ω S = 1:1000>||ì 100 
 1.13
 1.13
 1.13
 1.14

 1.13
 1.13
 1.14
 1.14
 М 4 1.14 10.0° 80 14 1.13  $\sim$ 09 120

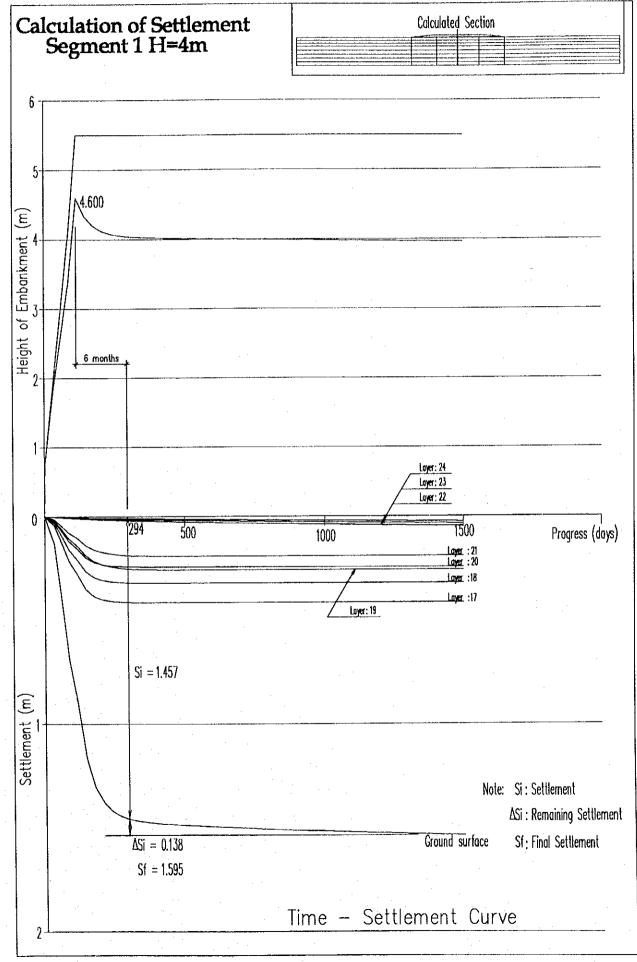
kN/m² Cohesion 8.0 16.0 16.0 51.0 46.0 000 2000 15.0 16.0 4 Internal Friction Angle 4.00 4.00 4.00 4,00 000 000 4.00 4.00 4.00 30.00 4.00 30.00 CHARACTERISTIC VALUE Wet Density kN/m³ 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 15.60 8.30 Saturated Density kN/m³ 16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60 16.60 19.30 ( ii ) × Layer Number യതി ഗ ഗ 4 140 0 თ SLOPE STABILITY SEGMENT 4 H=8m S. = 1:1000 120 œ 100 Kmin = 1.230X= 59.0m ≺=160.0m 2 ഗ ഗ 80 ||I 00 М 4 Æ NNN CHO. C.C. 1.24 -----2000 2000 4 0 ~~~~ ~~~~ ~~~~~  $\sim$ 20 160 140

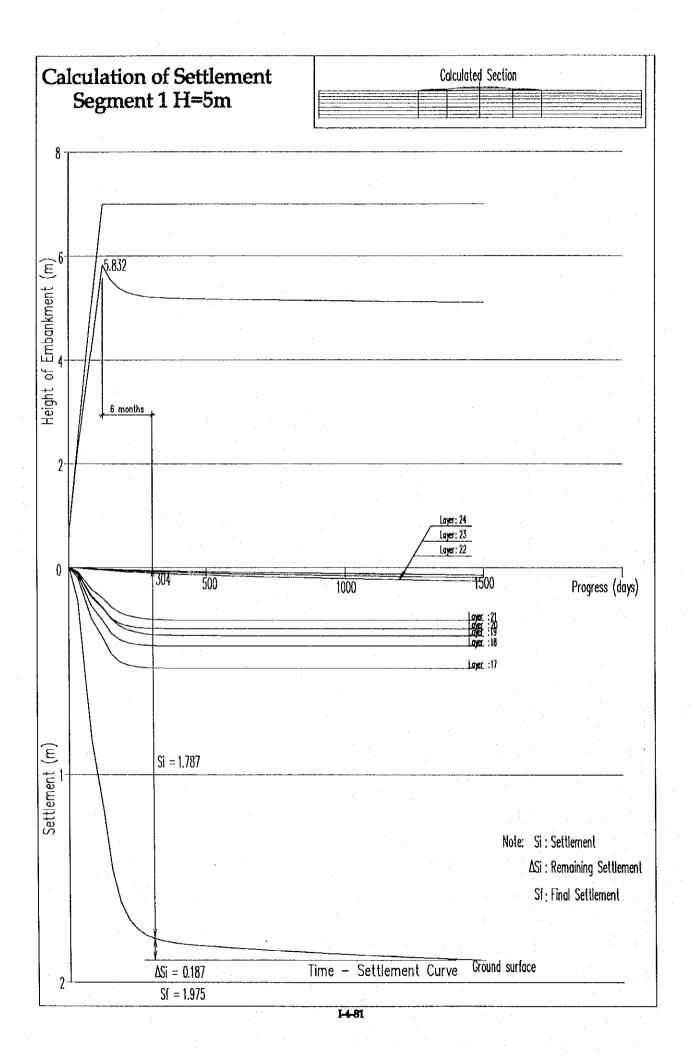

Consolidation 100.00 100.00 Cohesion kN∕m² Degree 32.0 28.0 25.0 30.0 39.0 37.0 33.0 29.0 31.0 27.0 31.0 41.0 12.0 20.0 0.2 12.0 0. 0 140 Stress Increase Ratio 0.350 0.350 Internal Friction Angle 30.00 30.00 4.00 6.00 6.00 0.00 4.00 4,00 4,00 4.00 4,00 6.00 6.00 4.00 Stress Shore Ratio Wet Density kN/m3 15.90 15.90 15.90 15.90 15.90 15.90 15.90 15.90 16.70 16.70 16.70 16.70 16.70 16.70 18.60 18.30 CHARACTERISTIC VALUE Saturated Density | | kN/m³ Internal Friction Angle 30.00 30.00 16.90 16.90 16.90 16.90 16.90 16.90 16.90 16.90 16.90 17.70 17.70 17.70 17.70 17.70 19.60 17 70 30 5 Wet Density kN/m3 Layer Number 18.60 18.60 18.60 5 4 ີ ເ  $\tilde{\omega}$  $\tilde{o}$ ω Ő 2 97 თ 4 S ശ = Saturated Density kN/m³ (ш) X 19.60 19.60 19.60 0 4 7 Replace ω O) Ratio 0.267 0.267 0.267 SCP CONDITION Numben Layer Σ δ 3 ပို 00 ហ G ~ Kmin=1.193 64.0 89.0 m  $\parallel \parallel \ 
ightarrow 
ightarrow$ 80 2, ហ្ М 4  $\sim$ 

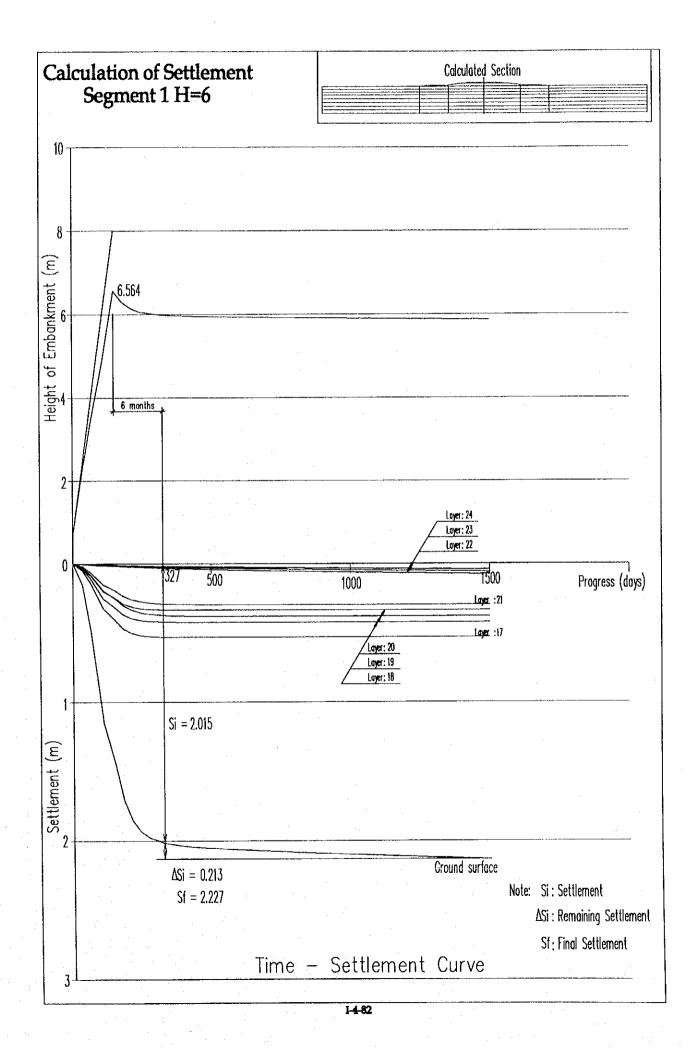




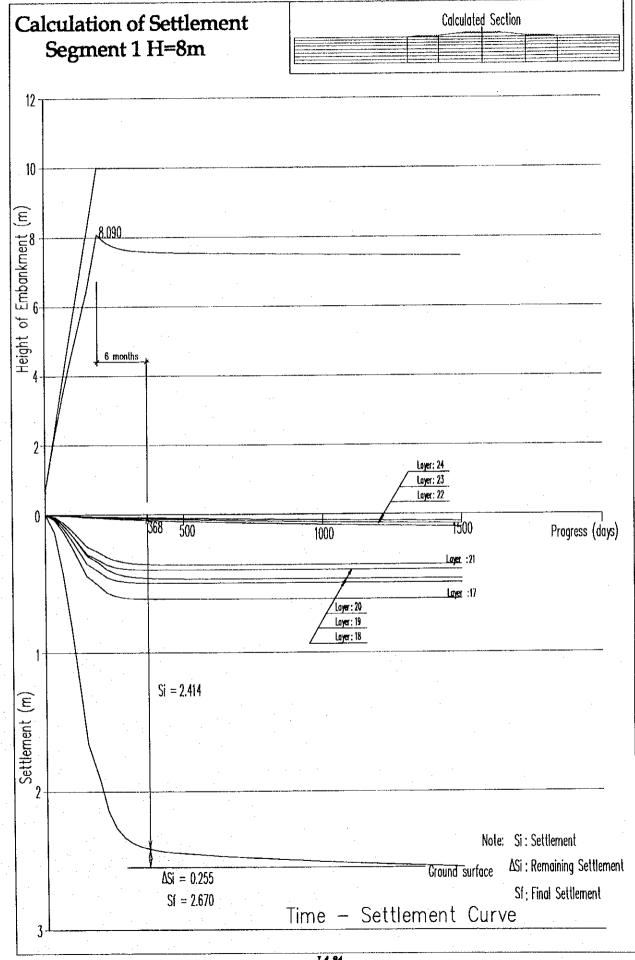




4

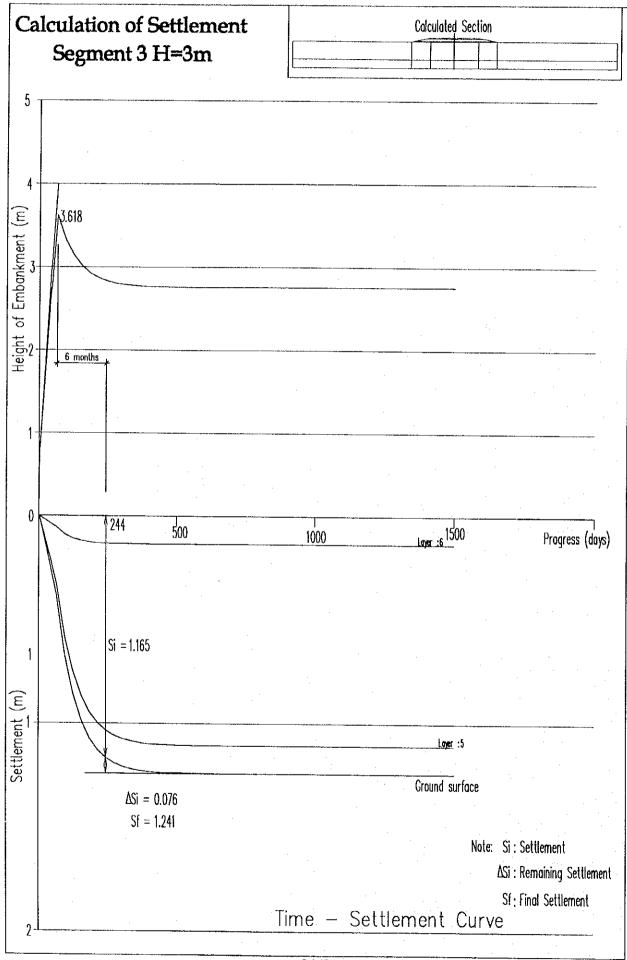


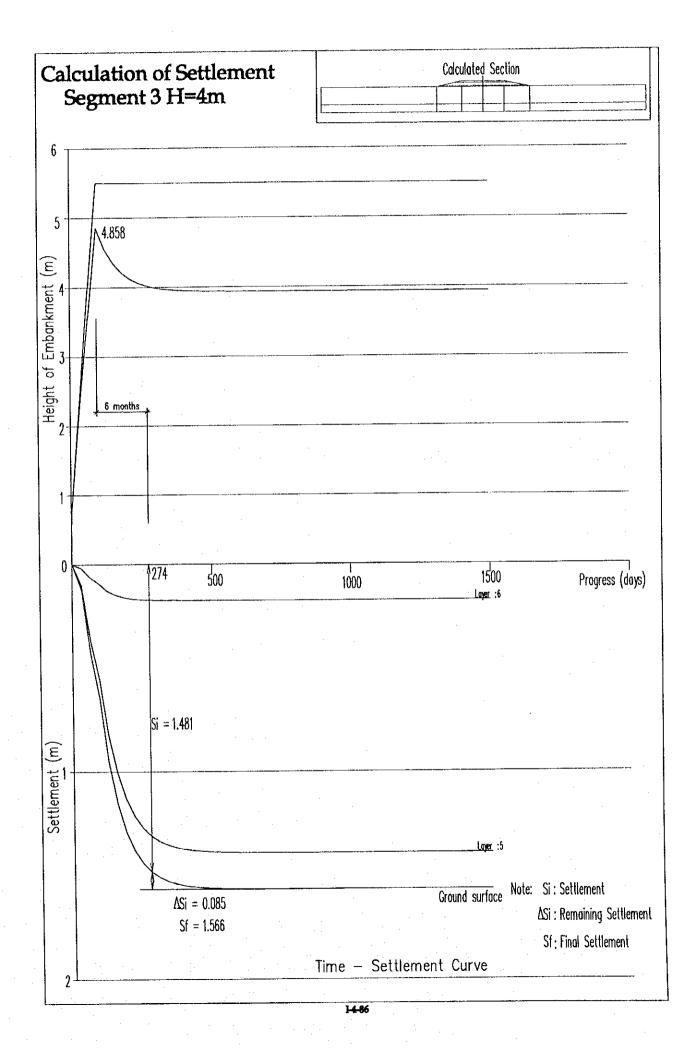


## Appendix-6: Calculation of Settlement

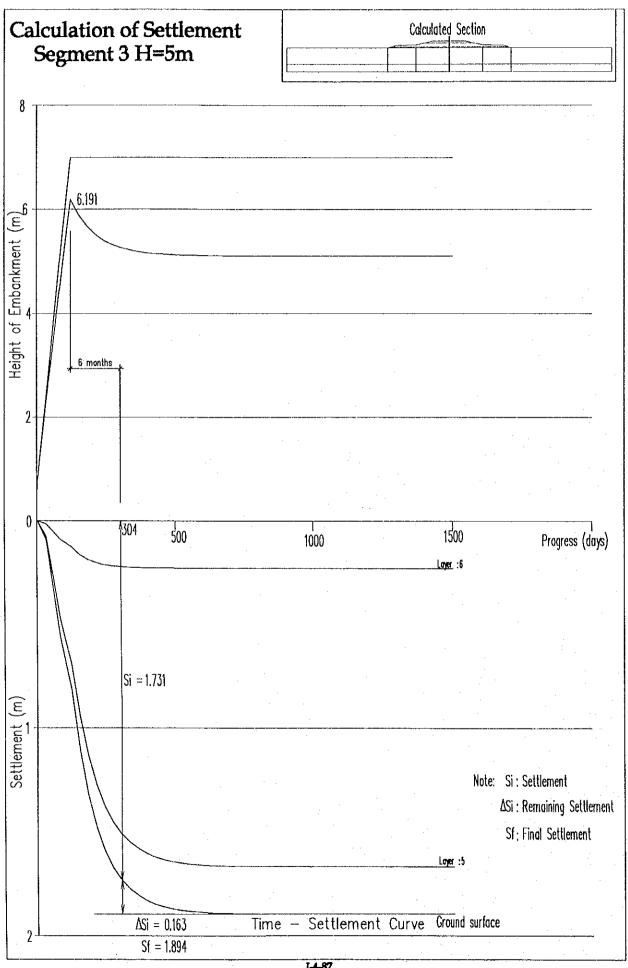


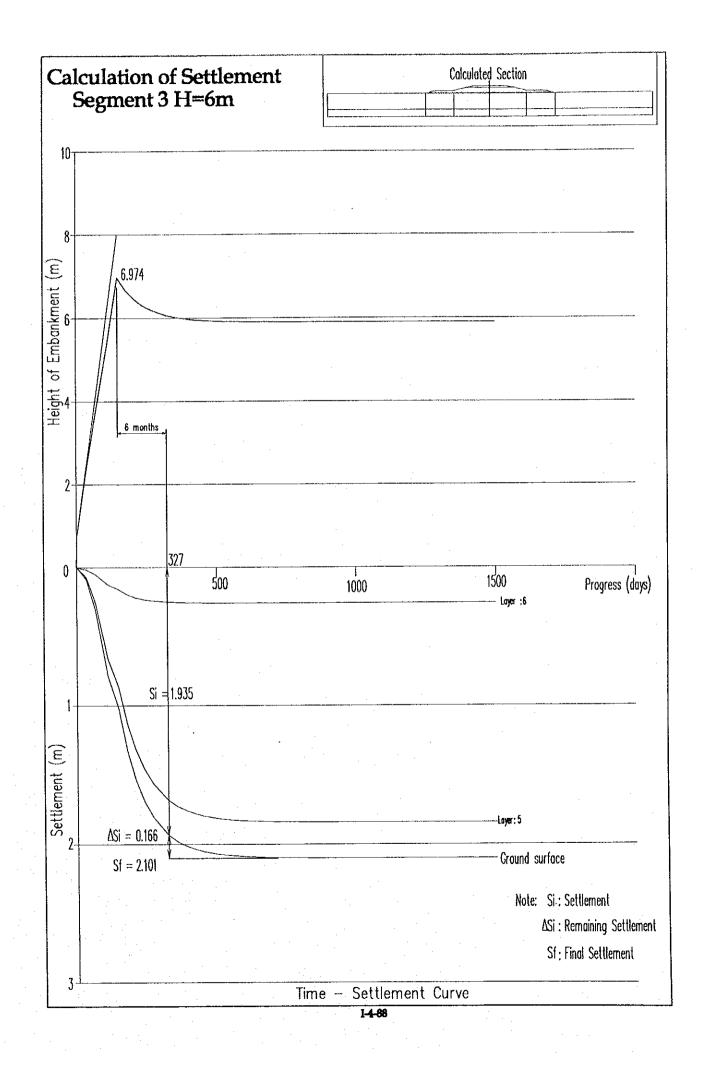

1-4-79

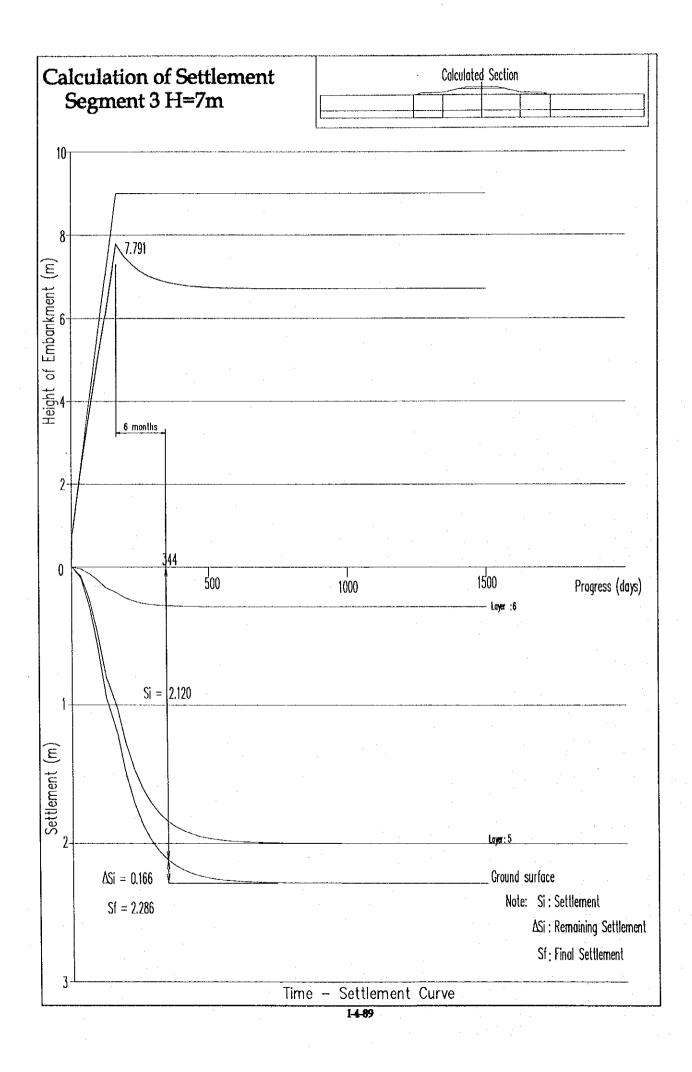


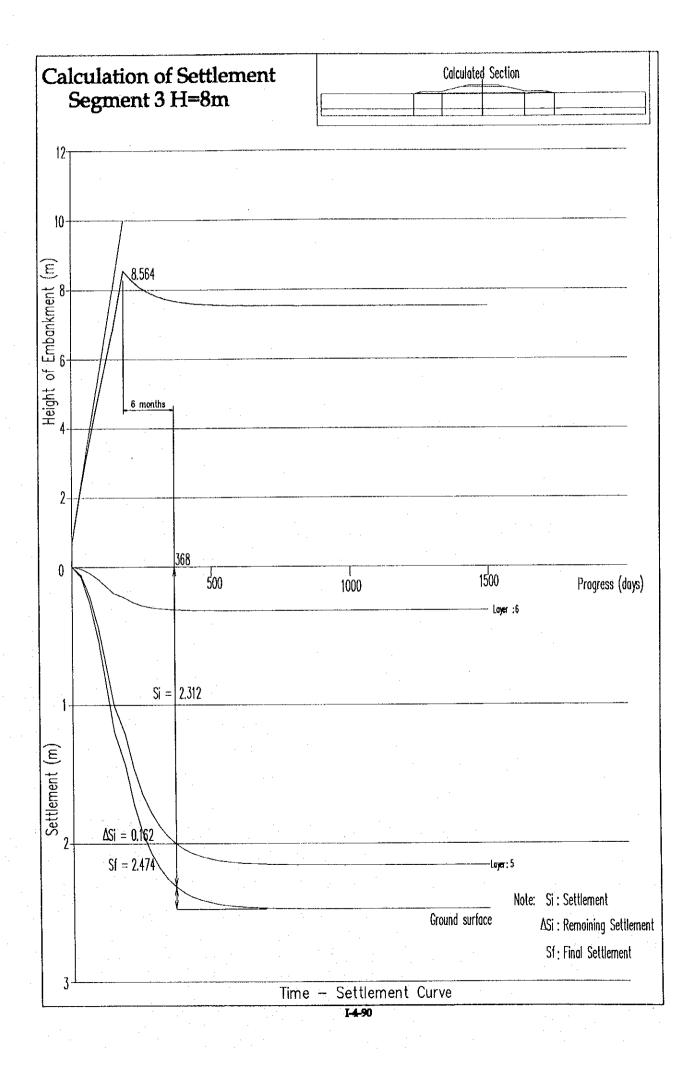


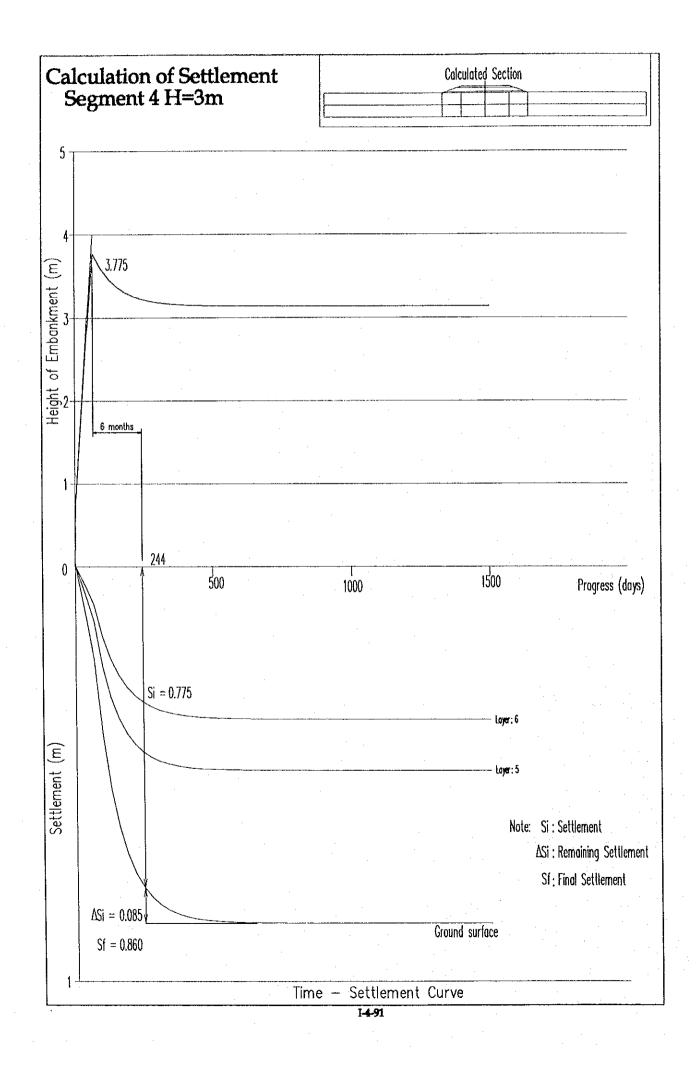



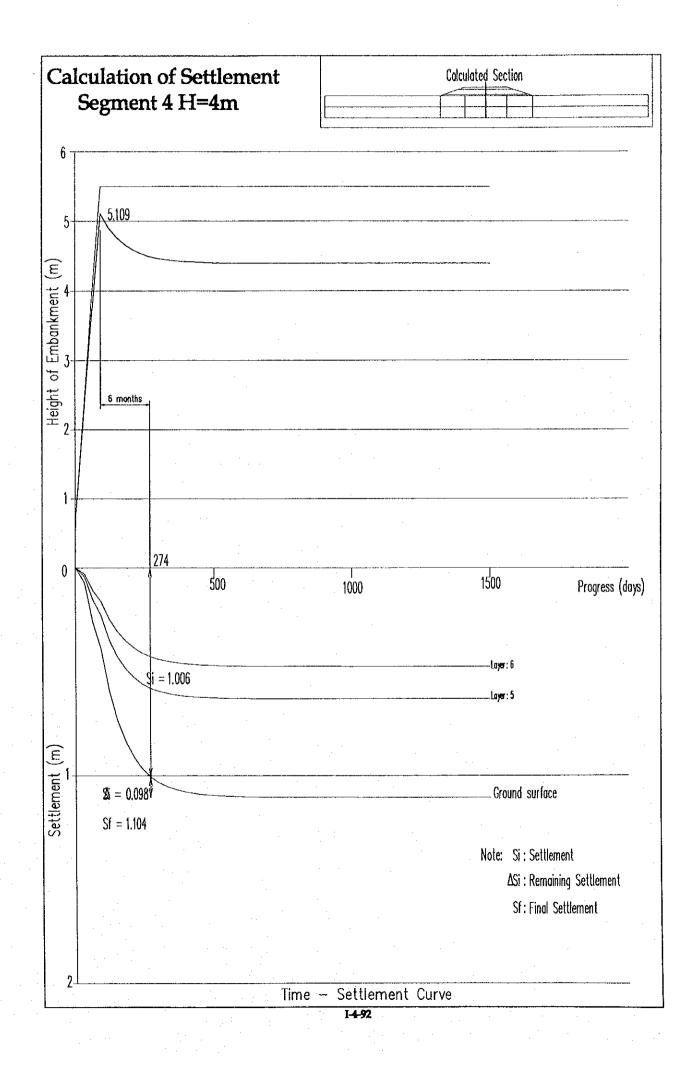



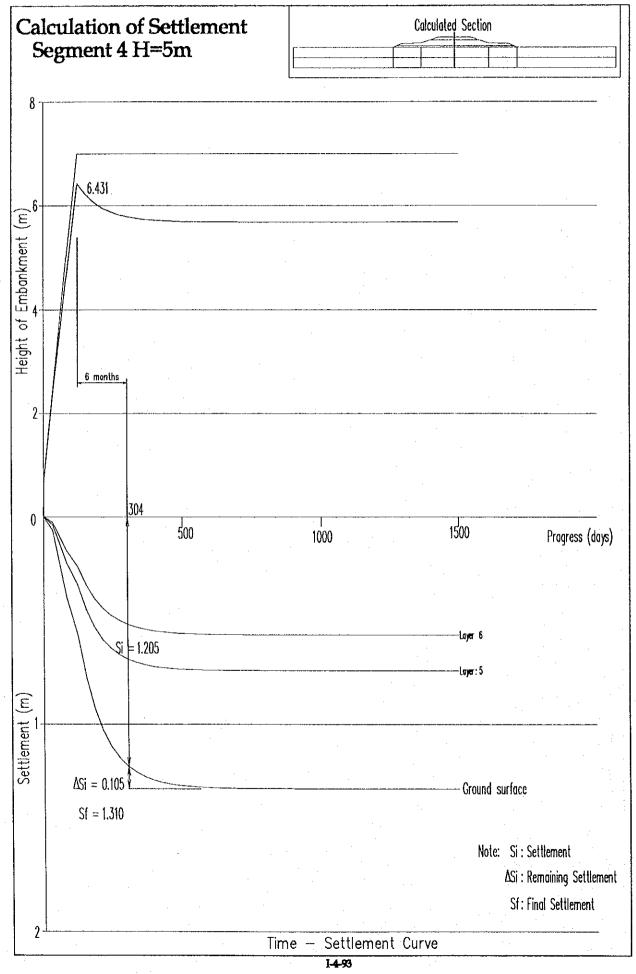



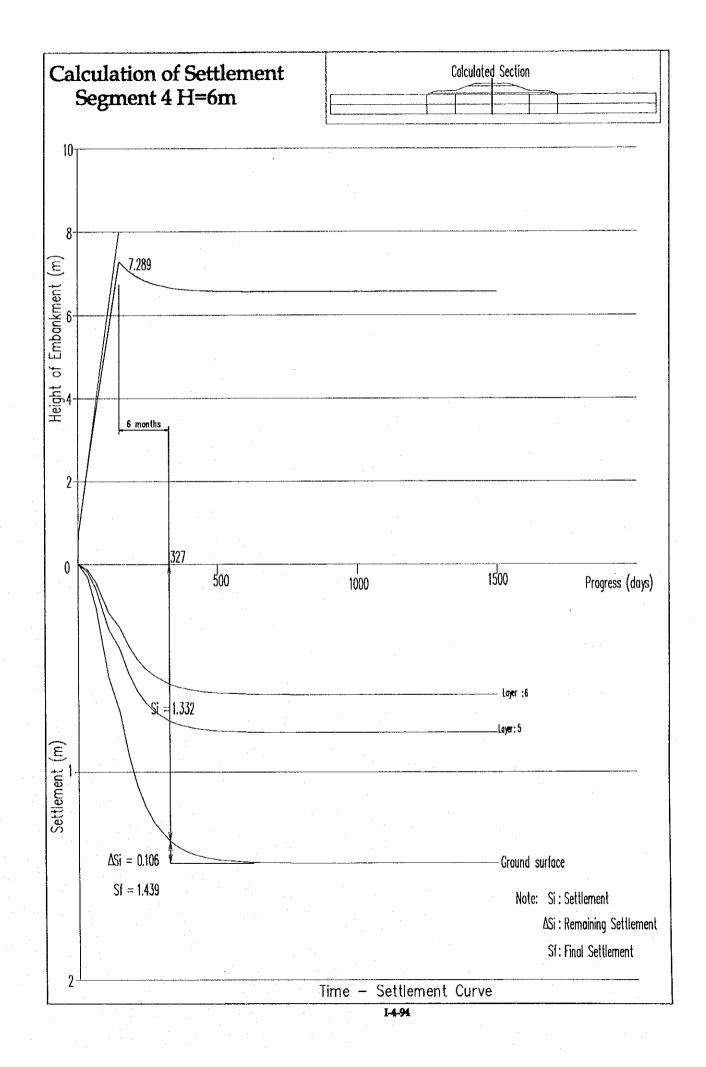


14-84

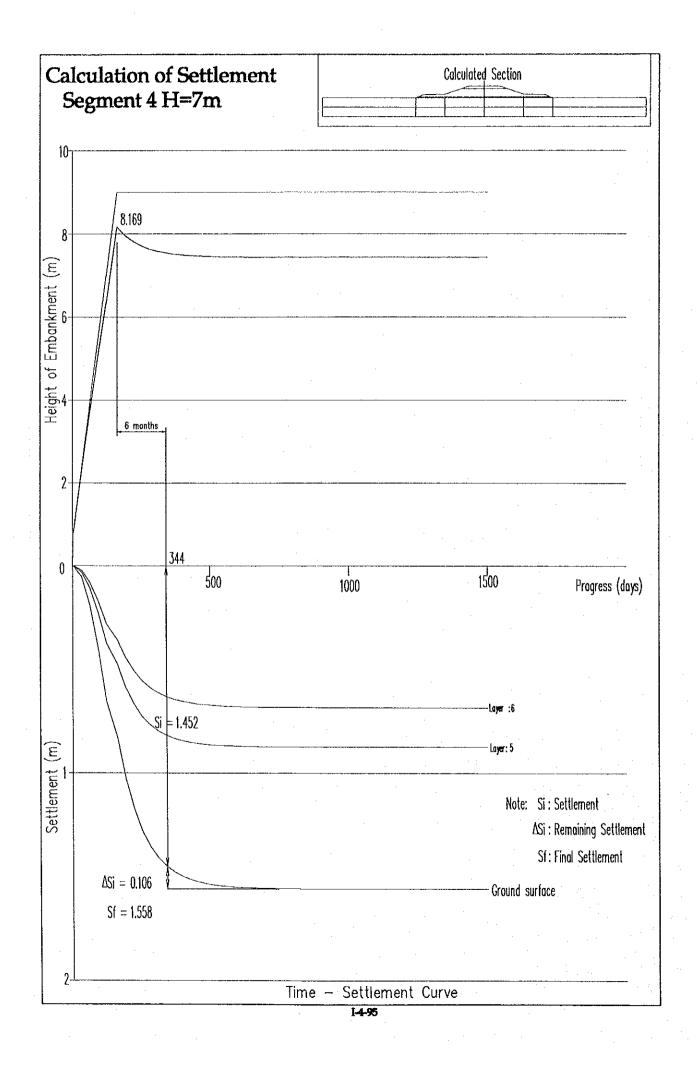


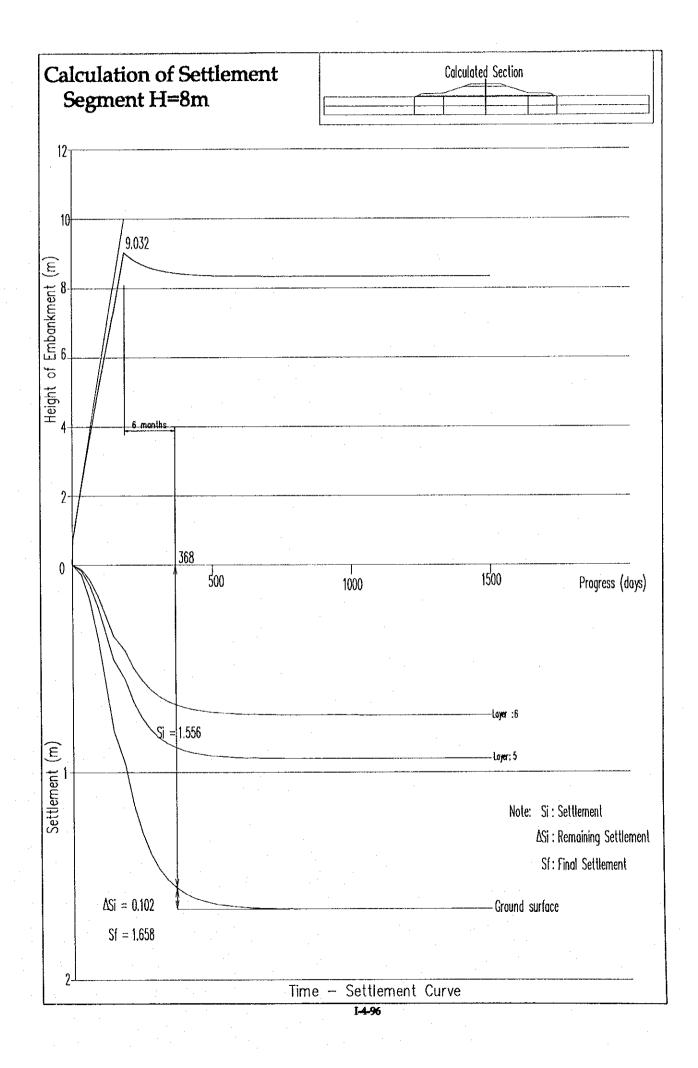














# Chapter 5

## FLEXIBLE PAVEMENT

· .	CONTENTS	I-5-1
5.1	TRAFFIC VOLUME AND EQUIVALENT	
	SINGLE AXLE LOAD (ESAL)	I-5-2
5.2	FLEXIBLE PAVEMENT DESIGN	I-5-3

## CHARTER 5 FLEXIBLE PAVEMENT

### CONTENTS

5.1.	TRAFFIC VOLUME AND EQUIVALENT SINGLE AXLE LOAD (ESAL)	2
5.2.	FLEXIBLE PAVEMENT DESIGN	3
5.2.1	L DESIGN CRITERIA	3
5.2.2	2 DESIGN DATA	3
5.2.3	3. AASHTO DESIGN CONCEPT	5
5.2.4	THICKNESS DESIGN	7

· · · · ·

### 5.1. Traffic volume and Equivalent Single Axle Load (ESAL)

- Traffic volume, types of vehicles and traffic growth factor are forecasted to be used from a report of Feasibility Study.
- Equivalent single axle load is determined in accordance with types of vehicles and weighing data is referred in Rehabilitation Project NH No.1, section Sai Gon-Can Tho.
- Design cumulative ESAL is defined by the above 2 the basic data.

	Traffic	Growth Factors	Traffic	Design Traffic	Traffic equivalency	E.S.A.L two way	Design E.S.A.L
	2006	(2006-2010)	2010	man	factor	two way	(2006- 2010)
Light Buses	1267	0.13	2051	2,984,777	0.012	35,084	
Heavy Buses	566	0.12	898	1,318,486	0.870	1,147,083	
Light truck	918	0.17	1721	2,350,924	0.012	27,634	
Medium Truck	2201	0.17	4175	5,674,988	1.529	8,677,057	
Heavy Truck	185	0.21	397	512,79 <del>9</del>	1.670	856,374	
			· · ·		-	10,743,232	4,834,454
	Traffic	Growth Factors	Traffic	Design Traffic	Traffic equivalency factor	E.S.A.L two way	Design E.S.A.L
	2010	(2010-2020)	2020				( 2010- 2020 )
Light Buses	2051	0.09	4420	11,322,610	0.012	133,090	
Heavy Buses	8 <del>9</del> 8	0.08	1834	4,806,725	0.870	4,181,851	
Light truck	1721	0.12	4958	11,280,179	0.012	132,591	
Medium Truck	4175	0.12	11978	27,296,293	1.529	41,736,032	
Heavy Truck	397	0.11	1053	2,475,955	1.670	4,134,845	
· · · · · ·						50,318,410	22,643,284
Desig	gn E.S.A	L (2006- 201	18)	·	· · · · · · · · · · · · · · · · · · ·		27,477,739

## 5.1. Traffic volume and Equivalent Single Axle Load (ESAL)

- Traffic volume, types of vehicles and traffic growth factor are forecasted to be used from a report of Feasibility Study.
- Equivalent single axle load is determined in accordance with types of vehicles and weighing data is referred in Rehabilitation Project NH No.1, section Sai Gon-Can Tho.
- Design cumulative ESAL is defined by the above 2 the basic data.

	Traffic	Growth Factors	Traffic	Design Traffic	Traffic equivalency	E.S.A.L two way	Design E.S.A.L
	2006	(2006-2010)	2010	(1411)(.	factor	two way	(2006-2010)
Light Buses	1267	0.13	2051	2,984,777	0.012	35,084	
Heavy Buses	566	0.12	898	1,318,486	0.870	1,147,083	
Light truck	918	0.17	1721	2,350,924	0.012	27,634	
Medium Truck	2201	0.17	4175	5,674,988	1.529	8,677,057	
Heavy Truck	185	0.21	397	512,799	1.670	856,374	
						10,743,232	4,834,454
	Traffic	Growth Factors	Traffic	Design Traffic	Traffic equivalency factor	E.S.A.L two way	Design E.S.A.L
	2010	(2010-2020)	2020				( 2010- 2020 )
Light Buses	2051	0.09	4420	11,322,610	0.012	133,090	
Heavy Buses	898	0.08	1834	4,806,725	0.870	4,181,851	
Light truck	1721	0.12	4958	11,280,179	0.012	132,591	
Medium Truck	4175	0.12	11978	27,296,293	1.529	41,736,032	
Heavy Truck	397	0.11	1053	2,475,955	1.670	4,134,845	
						50,318,410	22,643,284
Desig	gn E.S.A	.L (2006- 201					27,477,739

#### 5.2. Flexible Pavement Design

#### 5.2.1 Design criteria

According to comparative cost result of pavement structures designed by methods of Viet Nam, Japan, AASHTO (see appendix I-5-2), AASHTO method is selected for design.

Following design criteria has been applied.

	,	Design Input Requirements	Value	Reference
		Performance Period (years)	15	22TCN211-93
		Analysis Period (years)	15	22TCN211-93
		Traffic		
	Dosign	Equivalent Single Axle Load (ton)	8.2	AASHTO
1	Design Variables	Directional Distribution Factor, D _D	0.5	AASHTO
		Lane Distribution Factor, D _L	0.9	AASHTO
		Reliability	99	AASHTO
		Overall Standard Deviation	0.45	AASHTO
		Initial Serviceability Index, po	4.2	AASHTO
2	Performance Criteria	Terminal Serviceability Index, pt	2.5	AASHTO
		Design Serviceability Loss, ΔPSI	1.7	AASHTO
		Effective Roadbed Soil Resilient Modulus, $M_R$ (psi)	$1500 \times CBR$	Asphalt Inst.
2	3 Material Properties	Layer Coefficient for Asphalt Concrete, a1	1	AASHTO
		Layer Coefficient for Base Course, a2	-	AASHTO
		Layer Coefficient for Subbase Course, a3	. ~	AASHTO
4	Pavement Characteristics	Drainage Coefficients for Base Course and Subbase Course, m2, m3	1.25	AASHTO

#### **Table 5.2.1 Design Criteria for Pavement Design**

#### 5.2.2 Design data

The design variables, performance criteria and pavement characteristics are selected as given in the Table 5.2.1. The estimated design ESAL (equivalent single axle load) is  $27 \times 10^6$  number of applications from the traffic forecast.

#### 5.2.2.1 Material properties

1. The effective roadbed soil resilient modulus,  $M_R$  will be computed from the CBR value of the subgrade material.

Lab No	Material	Location	CBR(%)	Remarks
46	Dei Mari 0		13.2	
46-a	Dai Ngai 2 Sand	Tra Ech	10.6	
46-b	Sand		9.4	
Average			11.1	
Standard deviation	=STDEV(13.2,	10.6,9.4)	1.9	
Design CBR	`		8	11.1-1.9=9.2

Table 5.2.2 The CBR test result and the calculation result of design CBR.

Lab No	Material	Location	CBR(%)	Remarks
912		1km down	11.5	
912a	River Sand	stream of	9.6	
912b	Kiver Sand	proposed bridge	9.6	
Average			10.2	
Standard deviation	=STDEV(13.2,	,10.6,9.4)	1.1	
Design CBR			8	10.2-1.1=9.1

2. The CBR value of subbase material is taken as greater than 30%. This value of CBR shall be mentioned in the specification of subbase materials.

- 3. The CBR value of granular base material is taken as greater than 80%. This value shall be mentioned in the specification of base materials.
- 4. Design of flexible pavement by AASHTO method requires the selection of elastic modulus of Asphalt Concrete (E_{AC}). The value of E_{AC} has been taken as 400,000 psi in AASHTO. AASHTO recommends using value based on the local practice. In Vietnam, similar projects like National Highway No.5 used 400,000 in some of the sections. National Highway No.18 project used a value of 300,000 for surface course as well as binder course. In accordance with pavement Exporter, E_{AC} value of 400.000 psi is very high. Based on these facts, the design value of E_{AC} will be taken as 300,000 psi.

#### 5.2.2.2 Layer coefficients

For the material properties described in section 5.2.2.1, the layer coefficients are calculated from the chart (equation) given in AASHTO for the respective materials.

Material Type	Coefficient
Layer coefficient for asphalt concrete a1, E _{AC} =300,000psi	0.37
Layer coefficient for granular base course CBR≥80	0.132
Layer coefficient for subbase course CBR≥30	0.109

#### Table 5.2.3, Layer coefficients of pavement materials

#### 5.2.3. AASHTO design concept

For a set of design data of Reliability, Standard Deviation, ESAL applications, effective roadbed soil resilient modulus and Design Serviceability Loss, the Design Structural Number, SN is computed from the Nomograph or from the given relationship.

AASHTO states that, once the design structure number (SN) for an initial pavement structure is determined, it is necessary to identify a set of pavement layer thickness which, when combined, will provide the load-carrying capacity corresponding to the design SN. The following equation provides the basis for converting SN into actual thickness of surfacing, base and subbase:

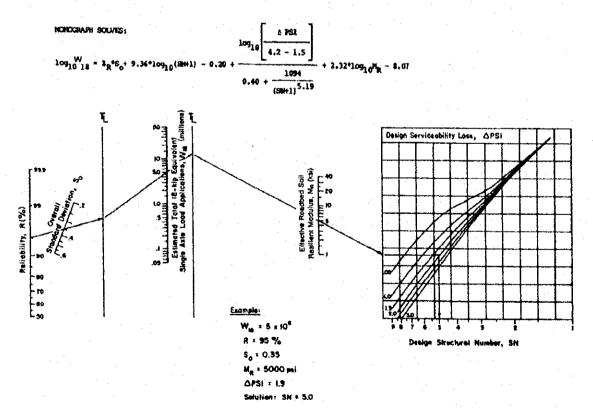



Figure 3.1. Design Chart for Flexible Pavements Based on Using Mean Values for Each Input

 $SN = a_1D_1 + a_2D_2m_2 + a_3D_3m_3$ 

Where,

 $a_1, a_2, a_3 =$  layer coefficients representative of surface, base, and subbase courses, respectively

 $D_1$ ,  $D_2$ ,  $D_3$  = actual thickness (in inches) of surface, base, and subbase courses, respectively

m₂, m₃ = drainage coefficients for base and subbase layers, respectively

AASHTO further states, it should be recognized that, for flexible pavements,

$$SN_{3} = \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{1}} + \frac{SN_{1}}{a_{2}m_{2}} + \frac{SN_{2}}{a_{3}m_{3}} + \frac{SN_{1} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{1} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{1} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{1} + SN_{2}}{SN_{1}} + \frac{SN_{2} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{2} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{2} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{2} + SN_{2}}{a_{3}m_{3}} + \frac{SN_{2} + SN_{2}}{SN_{2}} + \frac{SN_{2} + SN_{2}}{a_{3}m_{3}} +$$

1) a, D, m and SN are as defined in the text and are minimum required values.

 An asterisk with D or SN indicates that it represents the value actually used, which must be equal to or greater than the required value.

Figure 3.2. Procedure for Determining Thicknesses of Layers Using a Layered Analysis Approach

the structure is a layered system and should be designed accordingly. The structure should be designed in accordance with the principles shown in Figure 3.2. First, the structural number required over the roadbed soil should be computed. In the same way, the structural number required over the subbase layer and the base layer should also be computed, using the applicable strength values for each. By working the difference between the

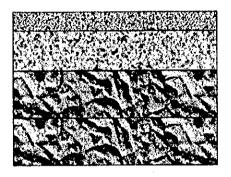
computed structural numbers required over each layer, the maximum allowable thickness of any given layer can be computed.

#### 5.2.4 Thickness design

Based on the design concept given in Figure 3.2, the calculated thickness for various layers have been summarized in Table 5.2.4 for various cases. SB, BS and AC stand for subbase course, base course, asphalt concrete course respectively.

SN3	SN2	SN1	Calcula	ted thi	ckness	Round	led thi	ickness
			SB	BS	AC	SB	BS	AC
5.701	5.3108	4.2996	6	15	30	15	15	30

Table 5.2.4, Calculated layer thickness


The thickness 15cm for subbase and base courses corresponds to the minimum practical thickness requirements in the rounded values.

Comparison of the results with design on other highway projects show that, asphalt concrete thickness of Class I,II roads is between 12cm and 15cm in a common practice in Vietnam due to economical reasons. AASHTO suggests a minimum of 4 in of asphalt concrete for traffic level more than 7 million equivalent single axle load. However, AASHTO does not provide any information on asphalt concrete thickness requirement for different types of base strength. Based on these it is concluded that 15cm of asphalt concrete with 5cm of surface course and 10cm of binder course shall be taken.

AASHTO also states that, the structural number equation does not have a single unique solution; i.e., there are many combinations of layer thickness that are satisfactory solutions. AASHTO further states, when selecting appropriate values for the layer thickness, it is necessary to consider their cost effectiveness along with the construction and maintenance constraints in order to avoid the possibility of producing an impractical design. The layer thickness are re-calculated to satisfy the structural number equation (SN =  $a_1D_1 + a_2D_2m_2 + a_3D_3m_3$ ) with 5cm of asphalt concrete surface course and 10cm of asphalt concrete binder course. The results for this alternate are given in Table 5.2.5.

## Table 5.2,5, Calculated Layer Thicknesses

SN3	(	Calculated	l thicknes	s
	SB	BS	AC	TOTAL
5.701	30	30	15	75



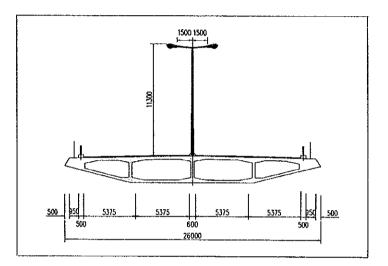
5cm asphalt concrete surface course 10cm asphalt concrete binder course 30cm aggregate base course CBR≥80 30cm aggregate subbase course CBR≥30 Traffic Input Data for Pavement Design Hightway No.1 Rehabilitation Project

N 46.40

		AADT	Percent	Distri	Distribution of I	n of Heavy Vehicles	vicles		les Averag	Average ESAL/Vehicle	/ehicle		ESALS	ILS
(	ş		Heavy	Singie-Unit			Trailer		Single-Unit	-Unit	Truck-	Truck-Trailer	(million)	ion)
WIM Site	Km Post	1996	Vehicles	2-axle 6-tire	3-axle	<=4-axle	5-axle	Direction	2-axle 6-tire	3-axle	<=4-axle	5-axle	1996	10-Yr
Contract 3:														
	1916	11400	55.40%	70.60%	18.30%	4.90%	6.20%	NB	2.40	5.99	1.93	2.35	3.49	61.20
								SN	1.24	0.88	1.16	1.58	1.37	24.10
2	1933	9200	54.50%	93.30%	4.70%	1.40%	0.60%	NB	1.09	0.98	0.30	1.31	0.98	17.20
								SB	1.05	0.96	0.44	1.18	0.95	16.70
т П	1942	8800	50.70%	91.90%	4.40%	1.60%	2.10%	NB	1.11	0.68	2.08	0.94	0.90	15.70
·								SB	0.96	0.58	1.14	0.57	0.76	13.40
ф Т	1950	7600	53.00%	91.60%	4.40%	1.70%	2.30%	NB	0.00	0.76	0.53	0.74	0.65	11.40
								SB	0.66	0.67	0.21	1.16	0.49	8.60
5 D	1969	5800	54.20%	91.10%	5.90%	1.50%	1.50%	NB	2.32	1.10	0.88	2.13	1.28	22.40
								SB	0.88	0.51	0.78	1.31	0.50	8.70
9	1993	5400	58.00%	92.40%	4.10%	1.90%	1.60%	NB	1.99	1.27	0.92	1.86	1.11	19.40
								SB	1.60	1.38	1.07	2.05	0.91	15.90
~	2009	4650	46.70%	91.80%	4.70%	2.40%	1.10%	NB	1.72	0.39	0.24	0.59	0.64	11.20
								SB	1.77	0.44	1.18	1.56	0.67	11.70
8	2025	3500	46.00%	96.10%	3.00%	0.20%	0.70%	NB	1.67	0.43	0.21	0.66	0.48	8.40
	·							SB	1.58	0.47	0.84	1.31	0.45	8.00
6	2030	2800	47.20%	92.20%	5.10%	1.60%	1.10%	NB	1.46	0.38	0.18	0.53	0.33	5.80
								SB	1.97	2.30	0.59	1.26	0.47	8.30
10	2051	2100	50.30%	96.00%	2.90%	5060	0.20%	NB	146	0.77	13	585 28	0.28	<b>8</b> .
								8	КХ КХ	116	8	4.39	052	910

4-Crushed Aggregate Subbuse Course To be recommended JAPAN INTERNATIONAL COOPERATION AGENCY Remarks Comparison of Pavement Structure 5 Pine Aggregate Base Course Costs(US\$/m 23.9 25.6 27.9 33.5 23.5 Fine Aggregate Treated 5% Cement Base Course **Comparison of Pavement Structure** 5cm Asphalt Surface Concrete 10cm Asphalt Binder Concrete 15cm Asphalt Treated Macadam Base Course 20cm Fine Aggregate Base Course 20cm Fine Aggregate Base Course 10cm Fine Aggregate Base Course 15cm Crushed Aggregate Subbase Course **30cm Fine Aggregate Base Course** 15cm Pine Aggregate Treated 5% Cerneri Base Courne 10cm Asphalt Surface Concrete 10cm Asphalt Binder Concrete 5cm Aspiralt Surface Concrete 10cm Aspiralt Binder Concrete 5cm Asphalt Surface Concrete 10cm Asphalt Binder Concrete 20cm Crushed Aggregate Subbase Course 30cm Crushed Aggregate Subbase Course 30cm Crushed Aggregate Subbase Course **Pavement Structure** Asphalt Treated Macadam Base Course Thickness; 75cm Thickness; 70cm Dhickness; 55cm Thickness; 70cm Legend; 💥 💥 Asphalt Concrete THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM ፍ ন্ধ Vietnam Design Standards 22TCN211-93 (Design Specification for Fleedbe Pavements -1993) THE DETAILED DESIGN OF **Design Standards** AASHTO (Guide for Design of Pavement structures ) Note; Sub-Grade Design CBR=8(%) (The Policy of Asphalt Pavement Design -1992) Japan Road Association Case-2 Case-3 Case-1 -+-

.


# Chapter 6

## LIGHTING SYSTEM

#### Design of Road Lighting

Street lighting luminaries is 250W High Pressure Sodium vapor type having a light distribution complying with Semi Cut-off.

And it is mounted at 11.5m from road surface, with 15deg of mounting angle, on a double armed street lighting column as below.



Lighting spacing(S) is decided by road width(W) and lighting height(H) with reference to Vietnam Standard 20TCN95-83. Road width is 10.25m(without shoulder) and lighting height is 11.5m, therefore lighting spacing(S) is sufficient with 40m to refer to the table below.

Light Sorce	Height of installing Light	Ratio: S/H
High Pressure Sodium	>0.8W	4
High Pressure Mercury	>1.0W	3.5
Low Pressure Sodium	>1.2W	3-3.5

Determination for height of ir	nstalling Light according to equal Light level
--------------------------------	------------------------------------------------

W : Road Width(Sphere for lighting of light) ;m

S : Lighting spacing(Distance between 2 light) ;m

H : Height of installing light ;m

The result of luminance calculation from the above condition was 18.5 lux in average.

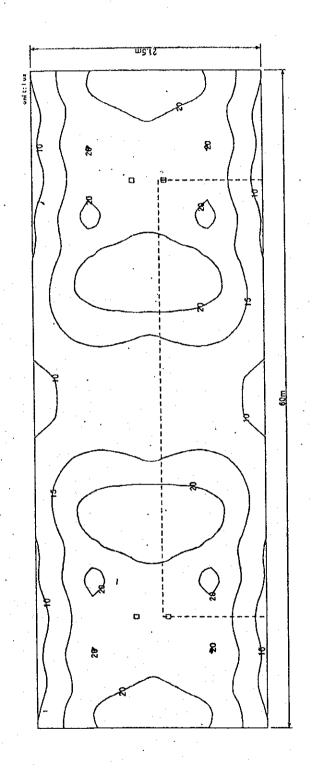
Therefore Standard luminance is 1.23 cd/m² ( =  $18.5 \div 15.0$ ), because this project line is asphalt pavement.

	ance for luminance cd/m²)
Asphalt	$15 \text{ lx/cd/m}^2$
Concrete	$10  \text{lx/cd/m}^2$

#### Luminance coefficicient

The traffic volume prediction of this project line is 30,000 units per day in 2010 and 70,000 units per day in 2020.

In the case of fragment line in a time, the traffic volume will be 625 units per day in 2010 and 1,500 units per day in 2020. Judging from the above, Lighting luminance is in need of  $1.2 \text{ cd/m}^2$  to be shown in table as below.


Therefore, this lighting plan is satisfied with Standard Luminance.

Light Catertgories	Maxium Traffic Volume	L(tb) cd/m ²
	from 3,000 cars or more	1.6
	from 1,000 to 3,000 cars	1.2
	from 500 to 1,000 cars	1.0
	less than 500 cars	0.8

Determination of Average Dazzling L(tb)

A: Freeway/ Street of Class I, I / Main Square of city/Transport Square etc.

For the reasons mentioned above, we decide that lighting spacing(S) is 40m in basically.

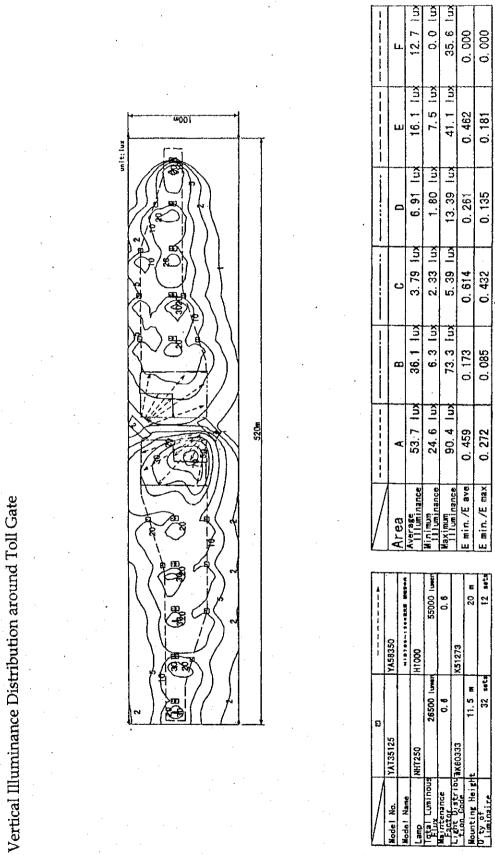


	Road Area	16.0 lux	8.1 lux	27.2 lux	0.509	0.300	
	Area	Average	Minimum	Maximum	E min./E ave.	E min./E max.	

	Model No. YAT35125	Lamp NH250	otal Luminous	aintenance actor	Light Distribur  #K60333 tion Code	Mounting Height	O'ty of Luminaire	
D	5125	. 0	26500 kmm	0.6	133	11.5 m	4 mm	

Illuminance Distribution at the Typical Portion of Throughway

I-6-3


51° 24 ð unit:fux Ð ŧ 998000 **PotoRoo** 100000 ğ 100400 ()r õ

;	ŝ	ŝ	ŝ		
	35.9	7.6	106.6	0. 213	0. 072
	8	56			
	age umi nance	mum um i hance	mum um i nance	min./Eavle.	. /Е <del>п</del>
$\left  \right $	Average 11 lumi	Minima Ullo	Maximum Illumi	Emin	E min./E max.
<u>I</u>			<b>.</b>		
· · · · · · · · · · · · · · · · · · ·					

4	YB56232	サービススチーション県住具	NH150	14500 iumen	0.6	K67154	4,5 m	6 sets	
Ð	YAT35125	-	NH1250	26500 iuman	9.0	#K80333	t 11.5 m	4 sets	
	Model No.	Model Name	Lamp	Total Luminous	Maintenance Factor	Light Distribu 3K80333	Mounting Height	0 ty of	

Illuminance Distribution at the Underpass Portion of Interchange Viaduct

I-6-4



	Đ								İ
	YAT35125	YA58350		•	"	•		•	
[			Area	A	l - B	G	U	t t	
	NH7250	· I D	Average	53.7 lux	x 36.1 lux	3.79 lux	6.91 lux	16.1 lux	~~~~
18	26500 lumer	55000 Iumen		24.6 lux	× 6.3 lux	2. 33 lux	1. 80 lux	7.5 lux	
[	0.6	0.6	Maximum		1	R 20 1.	Ì	A1 1 1.	L
Į6	ТКЕОЗЗЗ	X51273	111uminance						
i e l	t 11.5 m	20 m	E min. /E ave	0. 459	0.173	0.614	0. 261	0.462	
	32 set	ta 12 aeta	E min./E max.	0. 272	0. 085	0.432	0.135	0.181	
Í									

ng He Daire

del Na odel N

I-6-5

. . .

.

,

. .

.

