
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT DESIGN REPORT PACKAGE I PART I, HIGHWAY

OCTOBER 2000

NIPPON KOEI CO., LTD.

1161232 [2]

FINAL REPORT

ON

THE DETAILED DESIGN OF THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

DESIGN REPORT PACKAGE-I PART I, HIGHWAY

Table of Contents

CHAPTER 1	ALIGNMENT DESIGN	(I-1)
CHAPTER 2	NUMBER OF LANES OF INTERCHANGE	(I-2)
CHAPTER 3	SERVICE AREA	(I-3)
CHAPTER 4	EMBANKMENT AND SOFT GROUND TREATMENT	(I-4)
CHAPTER 5	FLEXIBLE PAVEMENT	· (I-5)
CHAPTER 6	LIGHTING SYSTEM	(I-6)

Chapter 1

ALIGNMENT DESIGN

	CONTENTS				I-1-1
1-1	GENERAL				I-1-2
1-2	PRINCIPALS ALIGNMENT	ТО	DETERMINE	THE	I-1-4
1-3	GEOMETRIC D	ESIGN	STANDARD		I-1-5
1-4	ALIGNMENT C	F CEN	TERLINE		I-1-7
1-5	COORDINATE	LIST			I-1-10

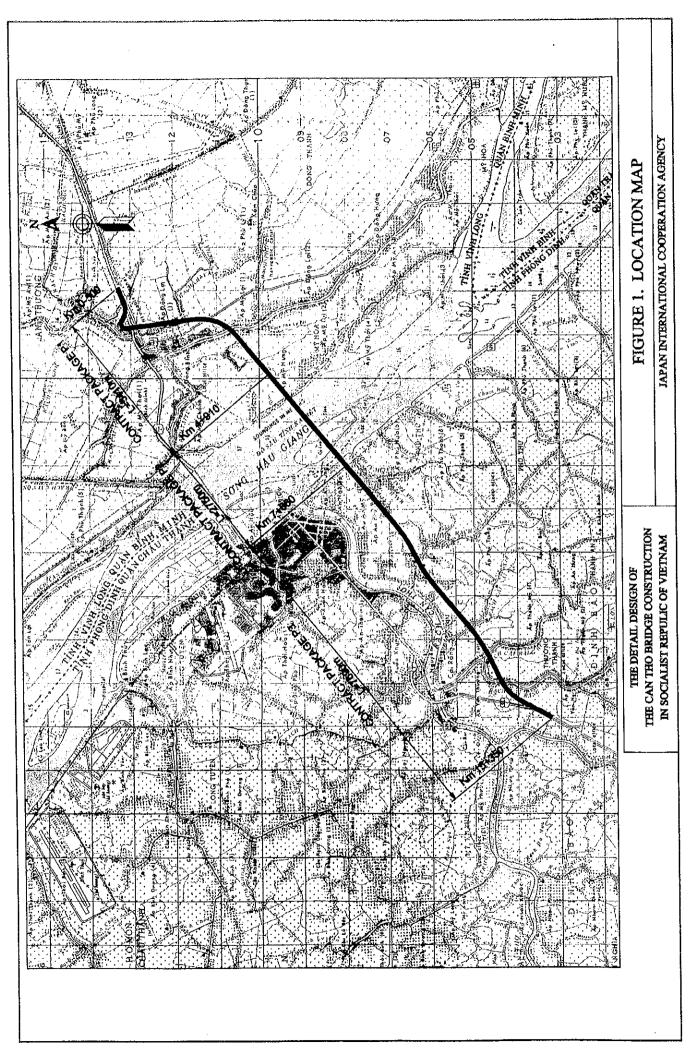
CHARTER 1 ALIGNMENT DESIGN

CONTENTS

1-1. GENERAL	2
1-2. PRINCIPALS TO DETERMINE THE ALIGNMENT	4
1-3. GEOMETRIC DESIGN STANDARD	5
1-4. ALIGNMENT OF CENTERLINE	7
1-5. COORDINATE LIST	10
1.5.1. COORDINATE LIST OF THROUGHWAY	10
1.5.2. COORDINATE LIST OF INTERCHANGE No1	13
1.5.3. COORDINATE LIST OF INTERCHANGE No2	16

1-1. GENERAL

The project route was planned to connect two sides of Hau River at downstream distance of about 3.2km from the existing ferry.


The starting point is at Km2061 on National highway No.1A of Binh Minh District in Vinh Long Province. The end is at Km2077 on National highway No.1A of Chau Thanh District, Can Tho Province.

The overall length of the project is 15 850m, including:

Total length of the approach road	:	13 100 m
Vinh Long side	:	5 410 m
Can Tho side	;	7 690 m
Length of the Can Tho bridge	:	2 750 m

Moreover, the project route is divided to 3 packages as below.

Package 1	Km 0-500	to	Km 4+910	5 410 m
Package 2	Km 4+910	to	Km 7+660	2 750 m
Package 3	Km 7+660	to	Km15+350	7 690 m

1-2. PRINCIPALS TO DETERMINE THE ALIGNMENT

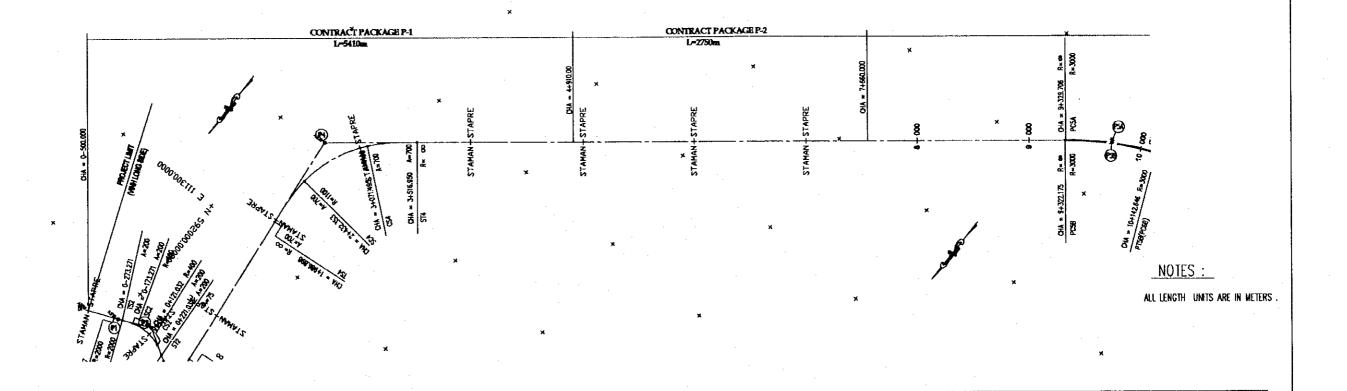
In the Feasibility Study, the centerline of the project route was determined at the 2.9km downstream from the existing Can Tho ferry. To determine the final centerline for the Detailed Design, the following conditions were investigated and discussed with the related officers and people.

- Connecting point with the National Highway No.1
- Area and location of temples and tombs
- Public facilities such as hospitals, schools, and disposal sites
- Density of residential areas including markets
- Consistency with the Master Plans of Industrial Zone and City Development
- Future planning of roads and interchanges
- Dockyard Facilities and fuel stations for ships
- Confluence point of the stream and/or canal
- Influence of the ecosystem

Mainly due to the locations of temples and cemeteries, the centerline was finally shifted 220m to the downstream side from the centerline of the Feasibility Study.

1-3. GEOMETRIC DESIGN STANDARD

Vietnamese standard "TCVN 4054-1998" was mainly applied to highway design for the project.


Where no provisions exist in TCVN4054, the relevant standards of AASHTO (A Policy on Geometric Design of Highways and Streets, 1994) of United States, JRSO (Japan Road Structure Ordinance, 1983) of Japan were referred.

The design standard and adopted values for the highway were summarized in Table 1.1.

Table 1.1 Geometric Design Standard and Adopted Values for Highway Design

	Table 1.1	Contine D	esign Standard and Add	T T	I				D
ļ		Items		Unit		Type/			Reference
			****	<u> </u>	STAN	DARD	DES	IGN	
		Class of Highwa	ay	-	80	60	80	60	TCVN4054
1	Basic	Terrain		-	Pla	ain	Pla	ain	TCVN4054
	conditions	Design Speed		kph	80	60	80	60	TCVN4054
		Design Vehicles			Tr	uck wi	th Trai	ler	TCVN4054
	·	Total Width		m	24	.1	24	1.1	
		Lane Number		-	4	Į.	4	1	
		I ama middle	Right side lane width	m	3.	.5	3	.5	
		Lane width	Left side lane width	m	3.	.5	3.	.5	
	Cross		Total width	m	2.	.6	2	.6	
2	Section	Median	Separator width	m	1.	.6	1	.6	
	Elements		Safety portion	m	0.	.5	0	.5	
			Total width	m	2.	75	2.	75	
		Sidewalk	Separator width	m	0.	.5	0	.5	
		Shoulder	Earthen shoulder	m	0.	.5	0	.5	
		Slop of embank	ment	-	V: H	=1:2	V: H	[=1:2	
	······································		Super-elevation=6%	m	250	125	-	-	TCVN4054
			Super-elevation=4%	m	400	250	-	_	TCVN4054
	Horizontal	Minimum Rad Slope	ius with Normal Cross	m	1000	500	1100	-	TCVN4054
.3	Alignment		Spiral type	-	Clot	hoid	Clot	hoid	TCVN4054
	, manually	Transition Curve	Minimum length o transition	m	50	40	445.5	_	AASHTO
		Curve	Minimum radius w/c transition	m	2000	1300	1100	-	AASHTO
		Maximum grad	ient	%	6	7	4.35		TCVN4054
		1 :	ius of Vertical Crest	m	4000	2500	4027		TCVN4054
		Curve	Sag	m	2000	1000	2027	<u>-</u>	TCVN4054
4	Vertical	Minimum Leng	th of Vertical Curve	m	50	40	70	70	TCVN4054
	Alignment		Less than 4.0%	m	+	limit		-	TCVN4054
		Critical length		m	900	1000	-	<u>-</u>	TCVN4054
		of grads	For 5.0%	m	700	800	285	-	TCVN4054
<u> </u>			For 6.0%	m	500	600	-	<u> </u>	TCVN4054
5	Cross slope	Normal Cross S		%		2		2	TCVN4054
<u></u>	r	Maximum Supe		%	6	6	<u> </u>	<u> </u>	TCVN4054
6	Clearance	Lateral Clearan		m		ll Pave	1		TCVN4054
		Vertical Clearai	nce	m	4	.5	4	.5	TCVN4054

Note: The section at the interchange No.1 is temporarily designed with 40 km/h speed to get a good condition for the improvement and connect to express way HO CHI MINH city - CAN THO in the future. (Regarding a letter No.61/QD-TTg)

LC.

77.915800

494.30276

323.54664

639.14260

X

1114395.90470

1114290.56622

1114164.29429

1114452.12503

1111926.66483

592300.00000

592042.92577

591766.02573

591557.33352

1114305.33946

592078.97925

	***************************************	TS.			SC			cs			ST		AZMUTH	V	SE	₩.
	χ	Y	CHA	X	Y	CHA	X	Y	CHA	х	Y	CHA	12,470	(KM/H)	(%)	(M)
B.P	-	-	-	-	-	-	-	-	-	-	-	-	247" 43" 5.50"	40		0
IP-1	-		-	-	-		_			-	-	-	245' 29' 9.85"	40		0
IP-2	1114274.39998	592007.47504	0-273.27099	1114255.45663	591627.80299	0-173.27099	1114236.76018	591914.90418	0+121.03177	1114304.78433	591540.89558	0+221.03177	301' 57' 56.B1"	40		0
P-3	1114304.78433	591540.89558	0+221.03177	1114220.09634	591330.59756	0+266.03177	1114326.24554	591501.41658	0+499.57841	1114175.19649	591332.48035	0+544.57841	174" 17" 21.87"	40	2.0	8.0
IP-4	1112740.03432	591475.99657	1+986.89854	1112295.62139	591490.31116	2+432.35308	1111713.55431	591248.78069	3+071.49568	1111409.83844	590924.02783	3+516.95023	230' 46' 58.43"	80	-	0

100.00000

45.00000

445,45455

TLI

38.96000

265.37000

278.31000

817.42621

273'55.64"

56'28'46.96"

17417'21.87

IP-4 56"29"36.56"

2000

400

200.00000

75.00000

700.00000

200.00000

75.00000

TL2

38.96000

265.37000

278.31000

817.42621

77.915800

294.30276

233.54664

1530.05170

12

100.00000

45.00000

445.45455

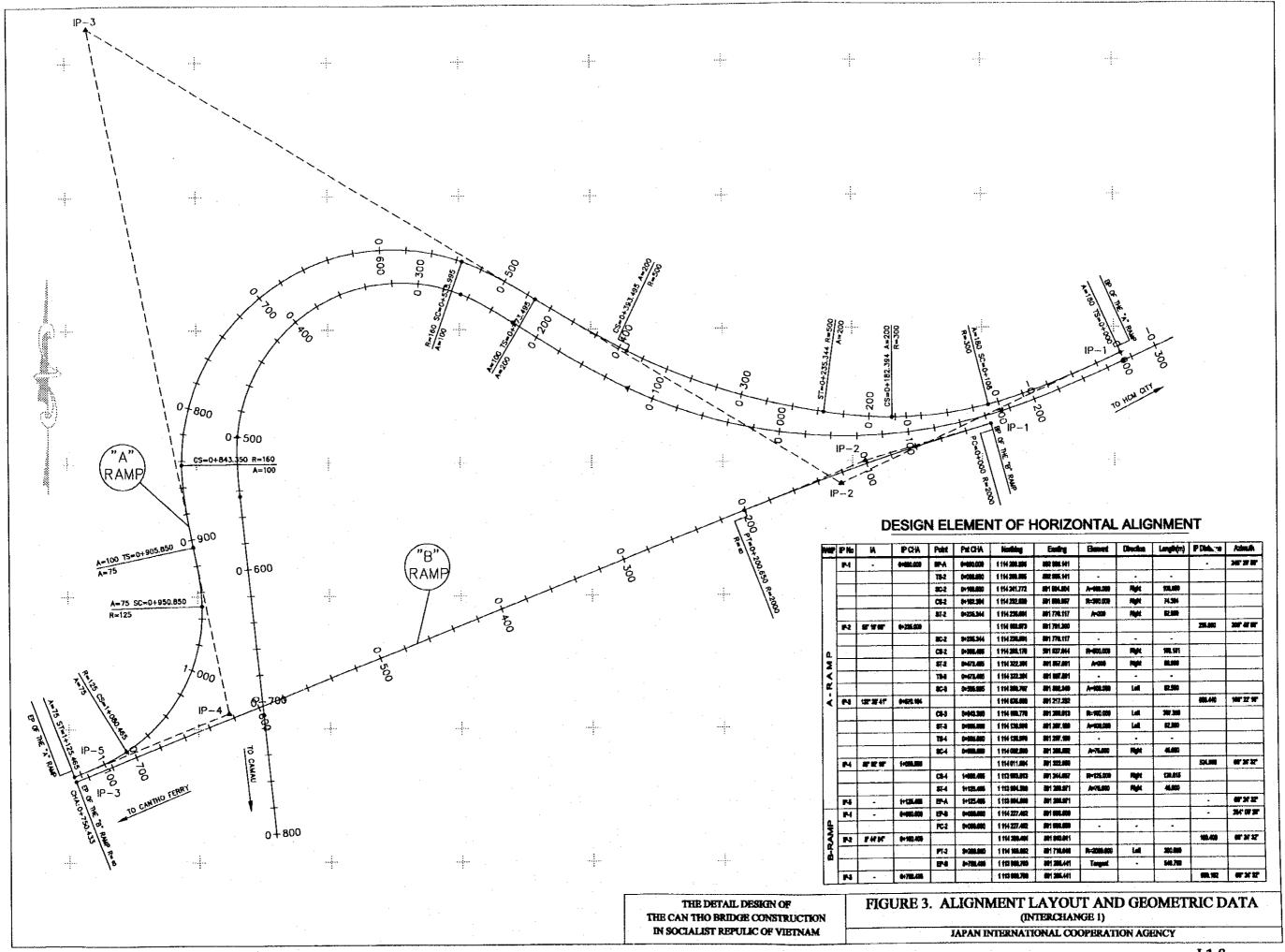
THE DETAIL DESIGN OF
THE CAN THO BRIDGE CONSTRUCTION
IN SOCIALIST REPULIC OF VIETNAM

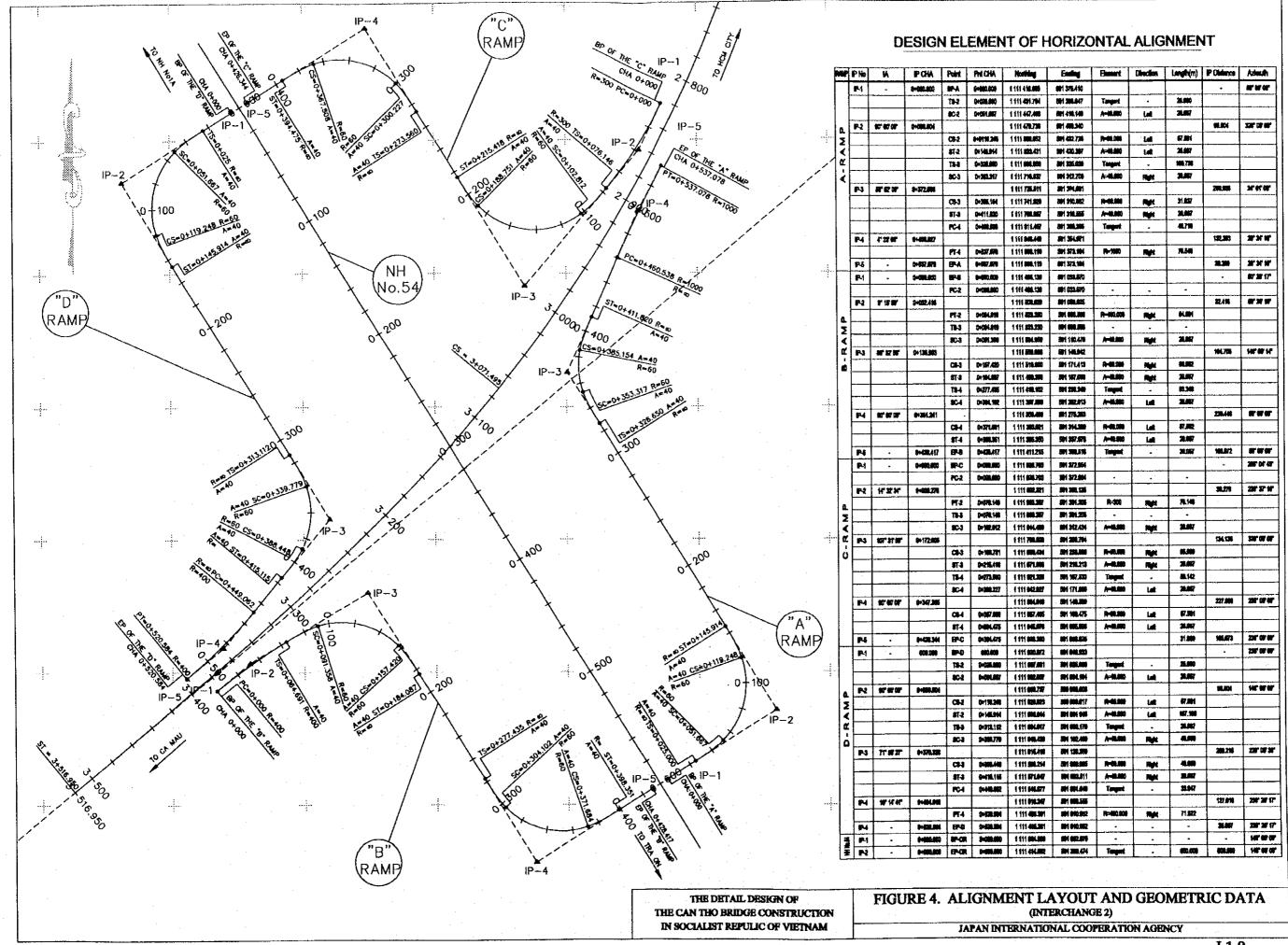
FIGURE 2. ALIGNMENT LAYOUT AND GEOMETRIC DATA (THROUTHWAY)

JAPAN INTERNATIONAL COOPERATION AGENCY

CHA

0-351.18678


X


1114274.39998

592007.47504

CHA

0-273.27099

1-5. COORDINATE LIST

1.5.1. COORDINATE LIST OF THROUGHWAY

No	Chai	inage	ļ		rdinat	e	Remarks
·				N		E	Remarks
BP1	0 K	-500	+	1114361.764	+	592216.681	
BP2	0 K	-450	+	1114342.806	+	592170.414	
BP3	0 K	-400	+	1114323.848	+	592124.148	
BP4	0 K	-350	+	1114304.889	+	592077,881	
BP5	0 K	-300	+	1114285.327	+	592031.868	
BP6	0 K	-250	+	1114264.792	+	591986.280	
BP7	0 K	-200	+	1114245.503	+	591940.159	
BP8	0 K	-150	+	1114230.470	+	591892.503	,
BP9	0 K	-100	+	1114221.417	+	591843.362	
BP10	0 K	-50	+	1114218.562	+	591793.476	
BP11	0 K	0	+	1114221.949	+	591743.624	
BP12	0 K	50	+	1114231.524	+	591694.583	
BP13	0 K	100	+	1114247,139	+	591647.118	
BP14	0 K	150	+	1114268.461	+	591601.923	
BP15	0 K	200	+	1114293.683	+	591558.759	
BP16	0 K	250	+	1114319.501	+	591515.952	
BP17	0 K	300	+	1114334.362	+	591468.540	
BP18	0 K	350	+	1114329.708	+	591419.091	
BP19	0 K	400	+	1114306.165	+	591375,358	
BP20	0 K	450	+	1114267.451	+ .	591344.245	
BP21	0 K	500	+	1114219.676	+	591330.664	
BP22	0 K	550	+	1114169.802	+	591333.020	
BP23	0 K	600	+	1114120.050	+	591337.995	
BP24	0 K	650	+	1114070.298	+	591342,970	
BP25	0 K	700	+	1114020.546	+	591347.945	
BP26	0 K	750	+	1113970.794	+	591352.921	
BP27	0 K	800	+	1113921.043	+	591357.896	***************************************
12	0 K	850	+	1113871.291	+	591362.871	
13	0 K	900	+	1113821.539	+	591367.846	
14	0 K	950	+	1113771.787	1+	591372.821	
15	1 K	0	+	1113722,035	+	591377.796	·-····································
16	1 K	50	+	1113672.283	+	591382.772	
17	1 K	100	+	1113622.531	+	591387.747	<u></u>
18	1 K	150	+	1113572.779	+	591392.722	
19	1 K	200	+	1113523,028	+	591397.697	
20	1 K	250	+	1113473.276	+	591402.672	·····
21	1 K	300	+	1113423.524	+	591407.648	
22	1 K	350	+	1113373.772	+	591412,623	
23	1 K	400	+	1113324.020	+	591417.598	
24	1 K	450	+	1113274.268	+	591422.573	
25	1 K	500	+ .	1113224.516	+	591427.548	
26	1 K	550	+	1113174.765	+	591432,524	
27	1 K	600	+	1113125.013	+	591437.499	
28	1 K	650	+	1113075.261	+	591442.474	
29	1 K	700	+	1113025,509	+	591447.449	
30	1 K	750	+	1112975.757	+	591452,424	
31	1 K	800	+	1112926.005	+	591457.399	

No	Chair	nage		Coo	Remarks		
140	Citati	e		N	Kemarks		
32	1 K	850	+	1112876,253	+	591462.375	
33	1 K	900	+	1112826.502	+	591467.350	
34	1 K	950	+	1112776.750	+	591472.325	
35	2 K	0	+	1112726.998	+	591477.299	**************************************
36	2 K	50	+	1112677.238	+	591482.190	
37	2 K	100	+	1112627,447	+	591486.761	
38	2 K	150	+	1112577.607	+	591490.756	
39	2 K	200	+	1112527.708	+	591493,922	
40	2 K	250	+	1112477.753	+	591496.001	
41	2 K	300	+	1112427.760	+	591496.739	
42	2 K	350	+	1112377.770	+	591495.880	
43	2 K	400	+	1112327.847	+	591493.169	
44	2 K	450	+	1112278.083	+	591488.359	
45	2 K	500	+	1112228.588	+	591481.305	
46	2 K	550	+	1112179.464	+	591472.008	
47	2 K	600	+	1112130.813	+	591460.489	
48	2 K	650	+	1112082.736	+	591446.771	
49	2 K	700	+	1112035.332	+	591430.883	
50	2 K	750	+	1111988.699	+	591412.857	
51	2 K	800	+	1111942,933	+	591392.731	
52	2 K	850	+	1111898.129	+	591370.546	
53	2 K	900	+	1111854.380	+	591346.349	, .
	2 K	950	+	1111811.775	+	591320.188	·
	3 K	0	+	1111770,402	+	591292,118	
	3 K	50	+	1111730.348	+	591262.198	
· · ·	3 K	100	+	1111691.690	+	591230.494	
	3 K	150	+	1111654.412	+	591197.177	
	3 K	200	+	1111618.407	+	591162.487	
	3 K	250	+	1111583.543	+	591126.650	
	3 K	300	+	1111549,666	+	591089.877	
	3 K	330	+	1111529,746	+	591067.445	
54	3 K	350	+	1111516.612	+	591052.362	
55	3 K	400	+-:	1111484.202	+	591014.290	· · · · · · · · · · · · · · · · · · ·
56	3 K	450	+	1111452.247	+	590975.833	<u> </u>
57	3 K	500	+	1111420.557	+	590937.159	
58	3 K	550	+	1111388,942	+		
59	3 K	600	+	1111357.329	+	590898,422 500850,485	
60	3 K	650	+	1111325,716	+	590859.685 590820.947	
61	3 K	700	+	1111294.103	+	590782.209	
62	3 K	750	+	1111262.490	+		
63	3 K	800	+	1111232.490	+	590743.471	
64	3 K	850	+	11111230.877	 	590704.733	
65	3 K	900	+	1111167.651		590665,996	
66	3 K	950	+		+	590627.258	
67	4 K	930		1111136.038	+	590588,520	
68	4 K	50	+	1111104.425	+	590549.782	· .
69			+	1111072.812	+	590511.044	
70	4 K	100	+	1111041.199	+	590472.307	
/υ	4 K 4 K	150	+	1111009.586	+	590433.569	

No	Chai	nage	<u></u>	Coo	rdinat	e	
		6		N		Е	Remarks
72	4 K	250	+	1110946.360	+	590356,093	
73	4 K	300	+	1110914.747	+	590317,355	†
74	4 K	350	+	1110883.134	+	590278.618	
75	4 K	400	+	1110851.521	+	590239.880	
76	4 K	450	+	1110819.908	+	590201,142	
77	4 K	500	+	1110788.295	+	590162.404	<u> </u>
78	4 K	550	+	1110756.682	+	590123.667	
79	4 K	600	+	1110725.069	+	590084,929	
80	4 K	650	+	1110693.456	+	590046.191	
81	4 K	700	+	1110661.843	+	590007.453	
82	4 K	750	+	1110630.230	+	589968.715	
83	4 K	800	+	1110598.617	+	589929.978	
84	4 K	850	+	1110567.004	+	589891.240	
85	4 K	900	+	1110535.391	+	589852.502	
86	_ 4 K	950	+	1110503.778	+	589813,764	

1.5.2. COORDINATE LIST OF INTERCHANGE No1

"A" RAMP

No	Chai	inage		Coc	e	Remarks	
are a fine and the				N		Е	Kemarks
	0 +	. 0	+	1114280.533	+	592005.138	
	0 +	20	+	1114272,276	+	591986.922	
	0 +	40	+	1114264.245	+	591968.606	
	0 +	60	+	1114256.668	+	591950.097	
	0 +	80	+	1114249.782	+	591931.322	
	1 +	100	+	1114243,832	+	591912.230	
	1 +	120	+	1114239.063	+	591892.811	
	1 +	140	+	1114235.595	+	591873.118	
	1 +	160	+	1114233.446	+	591853.237	
	1 +	180	+	1114232.627	+	591833.258	
	2 +	200	+	1114233.118	+	591813.267	
	2 +	220	+	1114234.762	+	591793.337	
A-1	0 +	240	+	1114237.356	+	591773.507	
A-2	0 +	260	+	1114240.756	+	591753.800	
A-3	0 +	280	+	1114244.942	+	591734,244	
A-4	0 +	300	+	1114249.907	+	591714.872	
A-5	0 +	320	+	1114255.644	+	591695.716	
A-6	0 +	340	+	1114262.139	+	591676.799	
A-7	0 +	360	+	1114269.388	+	591658.160	<u> </u>
A-8	0 +	380	+	1114277.375	+	591639.826	
A-9	0 +	400	+	1114286.089	+	591621.825	
A-10	0 +	420	+	1114295,449	+	591604.152	
A-11	0 +	440	+	1114305,278	+	591586.734	
A-12	0 +	460	+	1114315.398	+	591569.483	
A-13	0 +	480	+	1114325.631	+	591552.300	
A-14	0 +	500	+	1114335.612	+	591534.969	
A-15	0 +	520	+	1114344.659	+	591517.137	
A-16	0 +	540	+	1114352.009	+	591498,548	
A-17	0 +	560	+	1114357.049	+	591479.207	<u> </u>
A-18	0 +	580	+	1114359.638	+	591459.389	
A-19	() +	600	+	1114359.737	+	591439,402	
A-20	0 +	620	+	1114357.343	+	591419.559	· · · · · · · · · · · · · · · · · · ·
A-21	0 +	640	+	1114352.490	+	591400.157	
A-22	0 +	660	+	1114345.264	+		· · · · · · · · · · · · · · · · · · ·
A-23	0 +	680	+	1114335,769	+	591381.535	
A-24	0 +	700	+	1114324,154	+	591363.948	
A-25	0 +	720	+	1114310.603	+	591347.682	
A-26	0 +	740	+	1114295.325	+	591332.991	
A-27	0 +	760	+	1114278.560	+	591320.104	· .
A-28	0 +	780	+	11142/0.569		591309.222	
A-29	0 +	800	+	1114241.633	+	591300.515	
A-30	0 +	820	+	1114241.633	+	591294.119	<u> </u>
A-31	0 +	840	+		+	591290.135	
A-32	0 +	860	+	1114202,118	+	591288.622	
A-33	0 +	880	+	1114182.149	+	591289.530	
A-34	0 +	900	T	1114162,341	+	591292,262	

No	Chai	nage		Coo	rdinate		* Y
				N		E	- No
A-35 0 + 920	A-35	+	1114123,090	+	591299,960		
A-36	0 +	940	+	1114103.315	+	591302.911	······································
A-37	0 +	9 6 0	+	1114083.342	+	591303.466	
A-38	0 +	980	+	1114063.533	+	591300,870	
A-39	1 +	0	+	1114044.390	+	591295.151	
A-40	1 +	20	+	1114026.403	+	591286.455	
A-41	1 +	40	+	1114010.032	+	591275.004	
A-42	1 +	60	+	1113995,693	+	591261.092	
A-43	1 +	80	+	1113983.754	+	591245.073	
A-44	1 +	100	+	1113974.321	+	591227.452	
A-45	1 +	120	+	1113966.515	+	591209.041	

"B" RAMP

No	Chai	nage		Coo	rdinat	e	Th 1	
	Cital	inge		N		E	Remarks	
	0 +	0	+	1114227.450	+	591906.599		
	0 +	20	+	1114221.894	+	591887.386		
	0 +	40	+	1114216.146	+	591868.230		
	0 +	60	+	1114210.207	+	591849.133		
···	0 +	80	+	1114204.077	.+	591830.095		
B-1	0 +	100	+.	1114197.759	+	591811.127	 	
B-2	0 +	120	+	1114191.249	+	591792.216		
B-3	0 +	140	+	1114184.551	+	591773.371		
B-4	0 +	160	+	1114177.665	+	591754.594		
B-5	0 +	180	+	1114170.591	+	591735.887		
B-6	0 +	200	+	1114163.331	+	591717.252		
B-7	0 +	220	+	1114155.971	+	591698.655		
B-8	0 +	240	+	1114148.612	+	591680.058		
B-9	0 +	260	+	1114141.252	+	591661.462		
B-10	0 +	280	+	1114133.892	+	591642.865		
B-11	0 +	300	+	1114126.533	+	591624.268		
B-12	0 +	320	+	1114119.173	+	591605.672		
B-13	0 +	340	+	1114111.814	+	591587.075		
B-14	0 +	360	+	1114104.454	+	591568.478		
B-15	0 +	380	+	1114097.094	+	591549.882		
B-16	0 +	400	+	1114089.735	+	591531.285		
B-17	0 +	420	+	1114082,375	+	591512,688		
B-18	0 +	440	+	1114075.016	1+	591494.092		
B-19	0 +	460	+	1114067.656	+	591475.495	· · · · · · · · · · · · · · · · · · ·	
B-20	0 +	480	+	1114060.297	+	591456.898		
B-21	0 +	500	+	1114052.937	+	591438.302	-	
B-22	0 +	520	+	1114045.577	+	591419.705		
B-23	0 +	540	+	1114038.218	+	591401.108		
B-24	0 +	560	+	1114030,858	+	591382.511		
B-25	0 +	580	+	1114023.499	+	591363.915		
B-26	0 +	600	+	1114016.139	+	591345.318		
B-27	0 +	620	+	1114008.779	+	591326.721	· · · · · · · · · · · · · · · · · · ·	
B-28	0 +	640	+	1114001,420	+	591308.125		
B-29	0 +	660	+	1113994,060	+	591289.528		
B-30	0 +	680	+	1113986.701	 	591270.931		
B-31	0 +	700	+	1113979.341	+	591252.335		
B-32	0 +	720	+	1113971.982	+	591233.738		
B-33	0 +	740	+	1113964.622	+	591215.141		

1.5.3. COORDINATE LIST OF INTERCHANGE No2

"A" RAMP

No	Chai	Chainage		Coo	rdinat	e	D
				N		E	Remarks
A-1	0 +	0	+	1111418.603	+	591375.410	
A-2	0 +	20	+	1111429.156	+	591392,400	
A-3	0 +	40	+	1111440.004	+	591409.197	
A-4	0 +	60	+	1111453.710	+	591423.660	
A-5	0 +	80	+	1111471.301	+	591432,979	
A-6	0 +	100	+	1111490.973	+	591436,030	
A-7	0 +	120	+	1111510.561	+	591432,476	
A-8	0 +	140	+	1111528.396	+	591423.499	
A-9	0 +	160	+	1111545.396	+	591412.964	
A-10	0 +	180	+	1111562.385	+	591402,411	
A-11	0 +	200	+	1111579.374	+	591391.858	
A-12	0 +	220	+	1111596.364	+	591381.305	
A-13	0 +	240	+	1111613.353	+	591370.752	
A-14	0 +	260	+	1111630.342	+	591360.198	
A-15	0 +	280	+	1111647.331	+	591349.645	
A-16	0 +	300	+	1111664.320	+	591339.092	
A-17	0 +	320	+	1111681.309	+	591328,539	
A-18	0 +	340	+	1111698.425	+	591318.198	
A-19	0 +	360	+	1111716.961	+	591310.867	
A-20	0 +	380	+	1111736.837	+	591309.762	
A-21	0 +	400	+	1111756.103	+	591314.902	
A-22	0 +	420	+	1111774.439	+	591322.885	
A-23	0 +	440	+	1111792.707	+	591331.026	<u> </u>
A-24	0 +	460	+	1111810.975	+	591339.166	
A-25	0 +	480	+	1111829.165	+	591347,480	
	0 +	500	+	1111847.185	+	591356.155	
	0 +	520	+	1111865.028	+	591365.189	

"B" RAMP

No	Chain	200		Coo	rdinate	<u> </u>	Damada
110	Chan	uge		N		Е	Remarks
	0 +	0	+	1111486,139	+	591033.670	
	0 +	20	+	1111498.514	+	591049.380	
B-1	0 +	40	+	1111510.088	+	591065.688	
B-2	0 +	60	+	1111520.833	+	591082.554	
B-3	0 +	80	+	1111530,650	+	591099.973	
B-4	0 +	100	+	1111536,980	+	591118.865	
B-5	0 +	120	+	1111536.932	+	591138.772	
B-6	0 +	140	+	1111530.372	+	591157.568	
B-7	0 +	160	+	1111518.026	+	591173.185	
B-8	0 +	180	+	1111501.866	+	591184.923	
B-9	0 +	200	+	1111484.880	+	591195.482	
B-10	0 +	220	+	1111467.891	+	591206.035	
B-11	0 +	240	+	1111450.902	+	591216,588	
B-12	0 +	260	+	1111433.912	+	591227.141	
B-13	0 +	280	+	1111416.924	+	591237.695	
B-14	0 +	300	+	1111400.612	+ .	591249.231	
B-15	0 +	320	+	1111387.877	+	591264.534	
B-16	0 +	340	+	1111380.843	+	591283.157	
B-17	0 +	360	+	1111380.290	. +	591303.057	
B-18	0 +	380	+	1111386.225	+	591322.067	
B-19	0 +	400	+	1111396.221	+	591339.379	
B-20	0 +	420	+	1111406.774	+	591356.368	·

"C" RAMP

No	Chainage			Coo	rdinate		Remarks
110	Chante	<u>.</u>		N		E	Kemarks
	0 +	0	+	1111926.703	+	591372.954	
	0 +	-20	+	1111909.045	+	591363.570	
	0 +	40	+	1111892.052	+	591353.030	
	0 +	60	+	1111875.799	+	591341.382	
	0 +	80	+	1111860.345	+	591328.691	
C-1	0 +	100	+	1111846.137	+	591314.652	
C-2	0 +	120	+	1111836.251	+	591297.372	
C-3	0 +	140	+	1111832.560	+	591277.810	
C-4	0 +	160	+	1111835.474	+	591258.117	
C-5	0 +	180	+	1111844.670	+	591240.461	
C-6	0 +	200	+	1111859.048	+ .	591226.668	
C-7	0 +	220	+	1111875.828	+.	591215.795	
C-8	0 +	240	+	1111892.818	+	591205.242	
C-9	0 +	260	+	1111909.807	+	591194.688	
C-10	0 +	280	+	1111926.781	+	591184.112	
C-11	0 +	300	+	1111942.665	+	591172.019	
C-12	0 +	320	+	1111954.391	+	591155.931	
C-13	0 +	340	+	1111960.208	+	591136.892	
C-14	0 +	360	+	1111959.475	+	591116.998	
C-15	0 +	380	+	1111952.442	+	591098.353	
C-16	0 +	400	+	1111942.160	+	591081.203	
	0 +	420	+	1111931.607	+	591064.213	

"D" RAMP

No	Chair	200		Coo	rdinate	2	73	
110	Chan	inage		N		E	Remarks	
D-1	0 +	0	+	1111920.872	+	591046.933		
D-2	0 +	20	+	1111910.319	+	591029.943		
D-3	0 +	40	+	1111899.471	+	591013.146		
D-4	0 +	60	+	1111885.765	+	590998.683		
D-5	0 +	80	+	1111868.174	+	590989.364		
D-6	0 +	100	+	1111848.501	+	590986.313		
D-7	0 +	120	+	1111828.914	+	590989.867		
D-8	0 +	140	+	1111811.079	+	590998.844		
D-9	0 +	160	+	1111794.079	+	591009.379		
D-10	0 +	180	+	1111777.090	+	591019.932		
D-11	0 +	200	+	1111760.101	+	591030.485		
D-12	0 +	220	+	1111743.111	+	591041.038		
D-13	0 +	240	+	1111726.122	+	591051.591		
D-14	0 +	260	+	1111709.133	+	591062.144		
D-15	0 +	280	+	1111692.144	+	591072.698		
D-16	0 +	300	+	1111675.155	+	591083.251		
D-17	0 +	320	+	1111658.148	+	591093.775		
D-18	0 +	340	+	1111640.228	+	591102.571		
D-19	0 +	360	+	1111620.586	+	591105.807		
D-20	0 +	380	+	1111600.965	+	591102.438		
D-21	0 +	400	+	1111583.435	+	591092.966		
D-22	0 +	420	+	1111567.910	+	591080.365		
D-23	0 +	440	+	1111552.610	+	591067,484		
D-24	0 +	460	+	1111537.407	+	591054,490		
	0 +	480	+	1111522.804	+	591040.828		
	0 +	500	+	1111508.901	+	591026.453		
	0 +	520	+	1111495.735	+	591011.401		

Chapter 2

NUMBER OF LANES OF INTERCHANGE

	CONTENTS	I-2-1
2.1	FORECASTING OF TRAFFIC VOLUME IN THE INTERCHANGE	I-2-2
2.2	CAPACITY OF TRAFFIC FLOW AT EVERY LANE	I-2-2
2.2	DETERMINATION OF REQUIRED LANES	I-2-2

CHARTER 2: NUMBER OF LANES OF INTERCHANGE

CONTENTS

2.1	FORECASTING OF TRAFFIC VOLUME IN THE INTERCHANGE:	2
	CAPACITY OF TRAFFIC FLOW AT EVERY LANE:	
	DETERMINATION OF REQUIRED LANES:	

2.1 FORECASTING OF TRAFFIC VOLUME IN THE INTERCHANGE

Proposed traffic volume at each direction in the interchange is affected by follow elements:

- + Annual rate of traffic growth
- + Distribution of traffic flows due to development of transport network.
- + Types of traffic flows

The above parameters are taken from the report of Feasibility Study.

The computation is used in Japan Software and its result is shown in table 2.1.

2.2 CAPACITY OF TRAFFIC FLOW AT EVERY LANE

Capacity of traffic flow at every lane is determined as follows:

 $N_{capacity} = N_{max} \times Z$

Where:

 N_{max} : Maximum capacity of traffic flow = 1500cpu/h (regarding TCVN 4054-98)

Z: coefficient of used companied capacity = 0.7 (regarding TCVN 4054-98)

2.3 DETERMINATION OF REQUIRED LANES

Under required lanes are determined:

 $n_i = N_{peakhour} / N_{capacity}$

Where:

N_{peakhour}: Traffic volume at peak hours is of 10% average annual traffic volume.

N_{capacity}: determination in accordance with item 2.2.

The result of required lanes at every direction in the interchange is summarized in table 2.3.

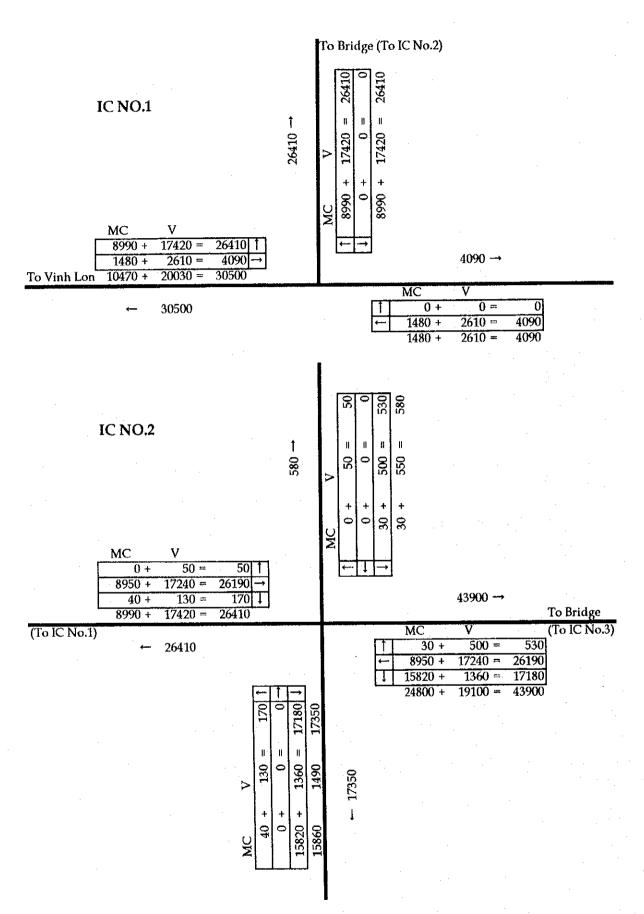


Fig. 2.1 Traffic Volume by Direction

Table. 2.1: Sectional Traffic Volume

finit Long) Section 4 (NH.54-Tra On) finit Long) 79.885 TOTAL 1,160 0.3 79.885 TOTAL 1,160 0.3 79.885 TOTAL 1,160 0.3 9.282 0.3 9.282 0.3 9.585 1.0 0.3 9.585 1.0 0.3 9.585 1.0 0.3 9.582 1.0 0.3 9.582 1.0 0.3 9.585 1.0 0.3 9.585 2.0 9.585 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 2.0 9.586 9.596 <t< th=""><th>Classification</th><th>Vehicle/day</th><th>Constitution ratio</th><th>Exchange coefficient</th><th>PCU/day</th><th>Classification</th><th>Vehicle/day</th><th>Constitution ratio</th><th>Exchange coefficient</th><th>PCU/day</th></t<>	Classification	Vehicle/day	Constitution ratio	Exchange coefficient	PCU/day	Classification	Vehicle/day	Constitution ratio	Exchange coefficient	PCU/day
59,960 Tyybb TOTAL 1,160 - 0.3 40,120 - 79,86 TOTAL 1,160 - 0.3 4,612 - - 7,982 MC 402 36,55% 1.0 4,614 11,57% 2.0 - 4,864 PC 4,664 PC 36,55% 1.0 1,266 4,864 2.5 4,814 HB 35 4,80% 2.5 2.0 1,266 4,80% 2.5 4,814 HB 33 2.0 3,144 MT 345 3.0 2.0 1,106 2,76% 3.0 3,144 MT 345 3.0 2.0 5,206 1,29% 3.0 3,144 MT 345 3.0 3.0 5,206 1,106 2,76% 3.0 1,107 1,208 2.0 3.0 4,400 - 3,31 HT 34,34 HT 32,94 3.0 1,106		Section	1 (NH.1-Vinh				Sectio	n 4 (NH.54-Tra	On)	
19,840	TOTAL	29,960			79,885	TOTAL	1,160			2,045
40,120 - 73,933 Vehicle 1,100 - 10,664 36,55% 1.0 - 14,664 36,55% 1.0 14,664 PC 402 36,55% 1.0 1,926 4,641 1.0 9,282 LB 127 1157% 2.0 1,926 1,296% 2.0 10,412 LT 143 12,98% 2.0 1,106 1,296% 2.0 10,412 LT 143 12,98% 2.0 5,206 1,296% 2.0 10,412 LT 143 12,98% 2.0 5,206 1,296% 2.0 3,414 HT 34 480% 2.5 5,400 - 0.3 3,317 HT 32,940 - 0.3 3,174 - 0.3 3,174 - 0.3 3,244 MC 34,240 - 0.3 3,244 MT 32,940 - 0.3 3,244 MC 34,240 - 1,240	MC	19,840	•	0.3	5,952	MC	09	1	0.3	18
14,664 36.55% 1.0 14,664 PC 402 36.55% 1.0 4,641 11,57% 2.0 9,282 LB 1.27 11,57% 2.0 1,105 12.96% 2.5 10,412 LT 14.3 12.96% 2.5 5,206 12.96% 2.5 31,444 MT 345 31.55% 2.5 1,106 2.76% 3.0 3.317 HT 32,40 2.76% 3.0 5,400	Vehicle	40,120	•		73,933	Vehicle	1,100	Ł		2,027
4,641 11.57% 2.0 9,282 LB 127 11.57% 2.0 5,206 4,80% 2.5 4,814 HB 53 4,80% 2.5 5,206 12,986 2.0 10,412 LT 345 31.29% 2.0 1,106 2.76% 3.0 3,317 HT 36 2.76% 3.0 5,400 - 0.3 3,317 HT 30 2.76% 3.0 5,400 - 0.3 3,317 HT 30 2.76% 3.0 1,106 2.76% 3.0 3,317 HT 30 2.76% 3.0 5,400 - 0.3 3,317 HT 30 2.76% 3.0 1,136 - 0.3 3,317 HT 30 2.76% 3.0 4,100 - 0.3 3,54 PC 439 36.55% 1.0 1,110 4,20 2.5 PB PC <td< th=""><th>PC</th><th>14,664</th><th>36.55%</th><th>1.0</th><th>14,664</th><th>PC</th><th>405</th><th>36.55%</th><th>1.0</th><th>402</th></td<>	PC	14,664	36.55%	1.0	14,664	PC	405	36.55%	1.0	402
1,926 4.80% 2.5 4,814 HB 53 4.80% 2.5 5,206 12.98% 2.0 10,412 LT 143 12.98% 2.0 1,057 21.58% 2.5 3,144 MT 30 2.76% 3.0 1,06 2.76% 3.0 3,317 HT 30 2.76% 3.0 1,06 2.76% 3.0 3,317 HT 30 2.76% 3.0 1,06 -2 0.3 5.58 MC 31.35% 1.0 1,084 -2 0.3 5.58 MC 31,740 -2 0.3 1,094 36.55% 1.0 6.524 Vehicle 1,200 -2 0.3 1,094 36.55% 1.0 6.524 Vehicle 1,200 -2 0.3 1,094 36.55% 1.0 1,294 LB 58 4.80% 2.5 1,110 31.35% 2.0 919 LT 156 12.98% 2.0 1,110 31.35% 2.0 919 LT 156 31.35% 2.0 1,096 -2 0.3 5.394 MC 49.560 -2 0.3 1,096 -2 0.3 5.394 MC 49.560 -2 0.3 1,008 2.56 1.0 13.370 PC 13.969 36.55% 1.0 1,13,370 36.55% 1.0 13.370 PC 13.969 36.55% 1.0 1,13,468 31.35% 2.5 28.669 MT 11.992 2.76% 3.0 1,1468 31.35% 2.5 28.669 MT 11.992 2.76% 3.0 1,008 2.76% 3.0 3.024 HT 1,053 2.26% 3.0 1,008 2.26 2.06% 2.06% 2.06% 2.06% 2.06% 2.06	TP	4,641	11.57%	2.0	9,282	LB	127	11.57%	2.0	255
5,206 12,98% 2.0 10,412 LT 143 12,98% 2.0 12,577 31,35% 2.5 31,444 MT 345 31,35% 2.5 Section 2 / NH.1-Can Tho Ferry) Section 3 / NH.1-Can Tho Ferry) Section 5 / NH.2-Cal Von) 1,260 - Section 5 / NH.1-Can Tho Ferry) Section 6 / NH.2-Cal Von) 1,294 - 6,524 Vehicle 1,200 - 0.3 5.540 - 0.3 5.524 Vehicle 1,200 - 0.3 Section 3 / N	HB	1,926	4.80%	2.5	4,814		53	4.80%	2.5	132
Section 2 (NH.11-Can The Ferry) 3.444 MT 345 31.35% 2.5 Section 2 (NH.11-Can The Ferry) 3.317 HT 36ction 5 (NH.54-Cal Von) 2.76% 3.0 Section 2 (NH.11-Can The Ferry) 7.082 TOTAL 3.2940 - 6.5 3.0 \$400 - 0.3 558 MC 34.940 - 0.3 5.78 \$400 - 0.3 558 MC 43.940 - 0.3 0.3 \$410 1.157% 2.0 819 LB 7.29 4.439 36.55% 1.0 - \$410 4.157% 2.0 819 LB 5.8 4.86% 2.5 \$410 4.157% 2.0 819 LT 36.55% 1.0 2.5 \$410 4.157% 2.0 819 LT 376 2.5 2.5 \$42560 - 2.5 3.0 2.5 4.421 37.5 2.5 \$4560 -	LT	5,206	12.98%	2.0	10,412		143	12.98%	2.0	285
Section 2 (NH.1-Can Tho Ferry) 3,317 HT 30 2.76% 3.0 Section 2 (NH.1-Can Tho Ferry) 7,082 TOTAL 32,940 - 3.2,940 5,400 - 0.3 558 MC 31,740 - 0.3 1,860 - 0.3 558 MC 32,940 - 0.3 1,150 - 6,524 Vehicle 1,200 - 0.3 0.3 1,190 - 6,524 Vehicle 1,200 - 0.3 0.3 410 11,57% 2.0 819 LB 1,39 1,157% 2.0 450 1,200 - 429 A65 1,10 2.5 1,00 450 1,200 - 420 1,20 1,20 2.0 1 450 1,100 - 420 1,20 1,20 2.0 1 450 1,100 - 2,20 1,20 1,20 1,20	MT	12,577		2.5	31,444	TM	345	31.35%	2.5	862
Section 2 (NH.1-Can Tho Ferry) Section 5 (NH.54-Cai Von) 5,400 0.3 558 MC 31,740 0.3 1,860 0.3 558 MC 31,740 0.3 1,860 0.3 5524 Vehicle 1,200 0.3 1,1294 1.578 2.0 815 PC 439 1.57% 2.0 410 1.157 2.0 819 LT 1.56 1.57% 2.0 459 1.298 2.0 4.0 4.80% 2.5 2.5 <th< td=""><td>H</td><td>1,106</td><td></td><td>3.0</td><td>3,317</td><td></td><td>30</td><td>2.76%</td><td>3.0</td><td>91</td></th<>	H	1,106		3.0	3,317		30	2.76%	3.0	91
5,400 0.3 7,082 TOTAL 32,940 0.3 6,524 MC 31,740 - 0.3 6,524 Wehicle 1,200 - 0.3 6,524 Wehicle 1,200 - 0.3 0.3 6,524 Wehicle 1,200 - 0.3 <th< th=""><th></th><th>Section 2</th><th>(NH.1-Can Th</th><th>o Ferry)</th><th></th><th></th><th>Section</th><th></th><th>Von)</th><th></th></th<>		Section 2	(NH.1-Can Th	o Ferry)			Section		Von)	
1,860 - 0.3 558 MC 31,740 - 0.3 3,540 - 6,524 Vehicle 1,200 - 0.3 1,294 - 6,524 Vehicle 1,200 - 0.3 1,294 36,55% 1.0 1,294 PC 439 36,55% 1.0 170 480 2.5 1.0 819 LB 38,55% 1.0 2.0 459 11.0 480% 2.5 480 1.57% 2.0 2.5 459 12.04 NT 376 31.57% 2.0 2.5 54,56 - 2.76% NT 376 3.0 2.5 54,56 - 2.2 72,803 HT 38,220 - 0.3 54,560 - 36,58 1.0 13,370 PC 13,969 36,55% 1.0 1,756 4,23 11,57 2.5 4,22 11,982 2.5	TOTAL	5,400			7,082		32,940			11,733
3540 - 6,524 Vehicle 1,204 - 6,524 Vehicle 1,204 - - 439 36.55% 1.0 - - - - 439 36.55% 1.0 - <t< td=""><td>MC</td><td>1,860</td><td></td><td>0.3</td><td>558</td><td></td><td>31,740</td><td></td><td>0.3</td><td>9,522</td></t<>	MC	1,860		0.3	558		31,740		0.3	9,522
1,294 36.55% 1.0 1,294 PC 439 36.55% 1.0 410 11,57% 2.0 819 LB 139 11,57% 2.0 459 12,98% 2.5 425 HB 58 4.80% 2.5 459 12,98% 2.0 919 LT 156 12,98% 2.0 459 12,98% 2.5 2,774 MT 376 12,98% 2.0 54,560 -	Vehicle	3,540			6,524		1,200	1		2,211
410 11.57% 2.0 819 LB 139 11.57% 2.0 459	PC	1,294		1.0	1,294		439	36.55%	1.0	439
170 4.80% 2.5 425 HB 58 4.80% 2.5 4.50 12.98% 2.0 919 LT 156 12.98% 2.0 1.110 31.35% 2.5 2.774 MT 376 31.35% 2.5 54.56 2.6 3.0 2.93 HT 33 2.76% 3.0 54.56 2.6 3.0 2.93 HT 33 2.76% 3.0 54.56 2.76% 3.0 2.93 HT 87.780 2.76% 3.0 17.980 -	LB	410	-	2.0	819		139	11.57%	2.0	278
459 12.98% 2.0 919 LT 156 12.98% 2.0 J.110 31.35% 2.5 2.774 MT 376 31.35% 2.5 Section 3 2.76% 3.0 293 HT 376 2.76 3.0 Section 3 Throughway-IC1-IC2) Throughway-IC2-IC3 Throughway-IC2-IC3 3.0	HB	170		2.5	425	HB	58	4.80%	2.5	144
Section 3 (Throughway-IC1-IC2) 2.774 MT 376 31.35% 2.5 2.5 Section 3 (Throughway-IC1-IC2) 3.0 2.93 HT 33 2.76% 3.0 54,560 - 0.3 72,803 TOTAL 87,780 - 0.3 36,580 - 0.3 5,394 MC 49,560 - 0.3 0.3 36,580 - 67,409 Vehicle 38,220 - 0.3 0.3 4,232 11.57% 2.0 8,463 LB 4,421 11.57% 2.0 4,747 12,98% 2.0 9,493 HB 1,835 4,80% 2.5 4,747 12,98% 2.0 9,493 HB 1,835 2.0 2.5 4,747 12,98% 2.0 9,493 HT 4,960 12,98% 2.0 1,008 2.5 2.8,669 MT 11,982 31.35% 2.5 3.0 1,008 2.76% <th< td=""><td>LT</td><td>459</td><td></td><td>2.0</td><td>919</td><td></td><td>156</td><td>12.98%</td><td>2.0</td><td>311</td></th<>	LT	459		2.0	919		156	12.98%	2.0	311
Section 3 (Throughway-IC1-IC2) 3.0 HT 33 2.76% 3.0 54,560 - 0.3 5,394 MC 49,560 - 0.3 36,580 - 0.3 5,394 MC 49,560 - 0.3 13,370 36,55% 1.0 13,370 PC 13,969 36,55% 1.0 4,232 11,57% 2.0 8,463 LB 4,421 11,57% 2.0 4,747 12,98% 2.0 9,493 LT 4,960 12,98% 2.0 4,747 11,468 31,35% 2.5 28,669 MT 11,982 31,35% 2.5 1,008 2.76% 3.0 HT 1,053 2.76% 3.0	M	1,110		2.5	2,774		376	31.35%	2.5	940
Section 3 (Throughway-IC1-IC2) 54,560 - 72,803 TOTAL 87,780 - 0.3 17,980 - 67,409 Vehicle 38,220 - 0.3 36,580 - 67,409 Vehicle 38,220 - 0.3 13,370 36,55% 1.0 13,370 PC 13,969 - 0.3 4,232 11.57% 2.0 8,463 LB 4,421 11.57% 2.0 4,747 1,756 2.5 4,390 HB 1,835 4.80% 2.5 4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 HT 1,053 2.76% 3.0	H	86		3.0	293		33	2.76%	3.0	66
54,560 - 0.3 72,803 TOTAL 87,780 - 0.3 5,394 MC 49,560 - 0.3 0.3 5,394 MC 49,560 - 0.3 0.3 36,580 - 67,409 Vehicle 38,220 - 0.3 1.0 13,370 36,55% 1.0 13,370 PC 13,969 36,55% 1.0 1.0 4,232 41,80% 2.5 4,390 HB 4,421 11,57% 2.0 2.5 4,747 12,98% 2.0 9,493 LT 4,960 12,98% 2.0 11,468 31,35% 2.5 28,669 MT 11,982 31,35% 2.5 1,008 2.76% 3.0 4T HT 1,053 2.76% 3.0		Section 3	(Throughway-	[C1-IC2)			Section 6	(Throughway-l	(C2-IC3)	
36,580 - 0.3 MC 49,560 - 0.3 36,580 - 67,409 Vehicle 38,220 - 0.3 4,232 11.57% 2.0 8,463 LB 4,421 11.57% 2.0 4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 HT 1,053 2.76% 3.0	TOTAL	54,560	and the state of t	a contract of the contract of	72,803		87,780			85,299
36,580 - 67,409 Vehicle 38,220 - 67,409 Vehicle 36,55% 1.0 13,370 PC 13,969 36,55% 1.0 1.0 4,232 11,57% 2.0 8,463 LB 4,421 11,57% 2.0 2.0 4,747 12,98% 2.5 4,390 HB 1,835 4,80% 2.5 2.5 11,468 31,35% 2.5 28,669 MT 11,982 31,35% 2.5 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	MC	17,980		0.3	5,394		49,560	-	0.3	14,868
13,370 36.55% 1.0 13,370 PC 13,969 36.55% 1.0 4,232 11.57% 2.0 8,463 LB 4,421 11.57% 2.0 1,756 4.80% 2.5 4,390 HB 1,835 4.80% 2.5 4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	Vehicle	36,580	1		67,409		38,220	1		70,431
4,232 11.57% 2.0 8,463 LB 4,421 11.57% 2.0 1,756 4.80% 2.5 4,390 HB 1,835 4.80% 2.5 4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	PC	13,370		1.0	13,370		13,969	36.55%	1.0	13,969
1,756 4.80% 2.5 4,390 HB 1,835 4.80% 2.5 4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	LB	4,232		2.0	8,463		4,421	11.57%	2.0	8,843
4,747 12.98% 2.0 9,493 LT 4,960 12.98% 2.0 11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	HB	1,756			4,390		1,835		2.5	4,586
11,468 31.35% 2.5 28,669 MT 11,982 31.35% 2.5 1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	LT	4,747			9,493		4,960		2.0	9,919
1,008 2.76% 3.0 3,024 HT 1,053 2.76% 3.0	MT	11,468		2.5	28,669	j	11,982	(1)	2.5	29,954
	HT	1,008			3,024		1,053	2.76%	3.0	3,160

Table 2.2:Traffic Volume by Direction (1/2)

Classii	fication	Vehicle/da y	Constitutio n ratio	Exchange coefficient	PCU/ day	Classii	ication	Vehicle/ day	Constitutio n ratio	Exchange coefficient	PCU/ day
	Ir		NH.1-Can Tl	10)				Interchang	e2 (NH.54)		
	TOTAL	27,280			36,403		TOTAL	150			184
	MC	8,990	-	0.3	2,697		MC	60	•	0.3	18
	Vehicle	18,290		-	33,706		Vehicle	90	-	-	166
	PC	6,685	36.55%	1.0	6,685		PC	33	36.55%	1.0	33
Vinh Long	LB	2,116	11.57%	2.0	4,232	Vinh Long	LB	10	11.57%	2.0	21
to Bridge	НВ	878	4.80%	2.5	2,195	to Cai Von	НВ	4	4.80%	2.5	11
	LT	2,373	12.98%	2.0	4,747	·	LT	12	12.98%	2.0	23
	MT	5,734	31.35%	2.5	14,335		MT	28	31.35%	2.5	71
	HT	504	2.76%	3.0	1,512		HT	2	2.76%	3.0	7
·	TOTAL	2,700	211 0 10		3,540		TOTAL	27,070	211 070	0.0	36,093
	MC	930	-	0.3	279		MC	8,940		0.3	2,682
	Vehicle	1,770	<u>.</u>	-	3,261		Vehicle	18,130		-	33,411
	PC	647	36.55%	1.0	647		PC	6,627	36.55%	1.0	6,627
Vinh Long				2.0		Vinh Long					
to Ferry	LB HB	205	11.57% 4.80%	2.5	410	to Bridge	LB	2,097 870	11.57%	2.0	4,195
		85			212		НВ		4.80%		2,176
	LT	230	12.98%	2.0	459		LT	2,353	12.98%	2.0	4,705
	MT	555	31.35%	2.5	1,387		MT	5,684	31.35%	2.5	14,209
	HT	49	2.76%	3,0	146		HT	500	2.76%	3.0	1,499
	TOTAL	2,700			3,540		TOTAL	80			149
	MC	930	<u> </u>	0.3	279		MC	0		0.3	0
	Vehicle	1,770	-	-	3,261		Vehicle	80		-	149
Ferry to	PC .	647	36.55%	1.0	647	Vinh Long	PC	29	36.55%	1.0	29
Vinh Long	LB	205	11.57%	2.0	410	to Tra On	LB	9	11.57%	2.0	19
, 2.2. 0.1.6	HB	85	4.80%	2.5	212		HB	4	4.80%	98% 2.0	10
	LT	230	12.98%	2.0	459		LT	10	12.98%		21
	MT ·	555	31.35%	2.5	1,387	ŀ	MT	25	31.35%	2.5	63
	HT	49	2.76%	3.0	146		HT	. 2	2.76%	3.0	7
	TOTAL	27,280		<u> </u>	36,403		TOTAL	150			184
	MC	8,990	-	0.3	2,697		MC	60	- '	0.3	18
	Vehicle	18,290	-	-	33,706		Vehicle	90	-		166
	PC	6,685	36,55%	1.0	6,685		PC	33	36.55%	1.0	33
Bridge to	LB	2,116	11.57%	2.0	4,232	Cai Von to	LB	10	11.57%	2.0	21
Vinh Long	НВ	878	4.80%	2.5	2,195	Vinh Long	НВ	4	4.80%	2.5	11
	LT	2,373	12.98%	2.0	4,747	·	LT	12	12.98%	2.0	23
	MT	5,734	31.35%	2.5	14,335		MT	28	31.35%	2.5	71
	HT	504	2.76%	3.0	1,512		HT	2	2.76%	3.0	. 7
							TOTAL	0			0
	l			·			MC	0		0.3	0
		- · · · · · · · · · · · · · · · · · · ·					Vehicle	0		-	
	· · · · ·						PC	0	36.55%	1.0	0
	···	 				Cai Von to	LB	0	11.57%	2.0	0
				ļ		Tra On	HB	0	4.80%	2.5	. 0
		 					LT	0	12.98%	2.0	0
	 	 						<u> </u>			
		 		<u> </u>			MT	0	31,35%	2.5	0
	ļ				 	 	HT	0	2.76%	3.0	- 0
					ļ		TOTAL	16,320			5,682
	ļ	 	···	ļ	<u> </u>		MC .	15,810		0.3	4,743
	ļ	 	 		<u> </u>	1	Vehicle	510		*	939
	<u> </u>			<u> </u>		Cai Von to	PC	186	36.55%	1.0	186
	ļ	ļ				Bridge	LB	59	11.57%	2.0	118
	ļ		ļ				HB	24	4.80%	2.5	61
		. :		ļ. <u></u>	ļ		LT	66	12.98%	2.0	132
	<u> </u>						MT	160	31.35%	2.5	400
									2.76%	3.0	42

Table 2.2 :Traffic Volume by Direction (2/2)

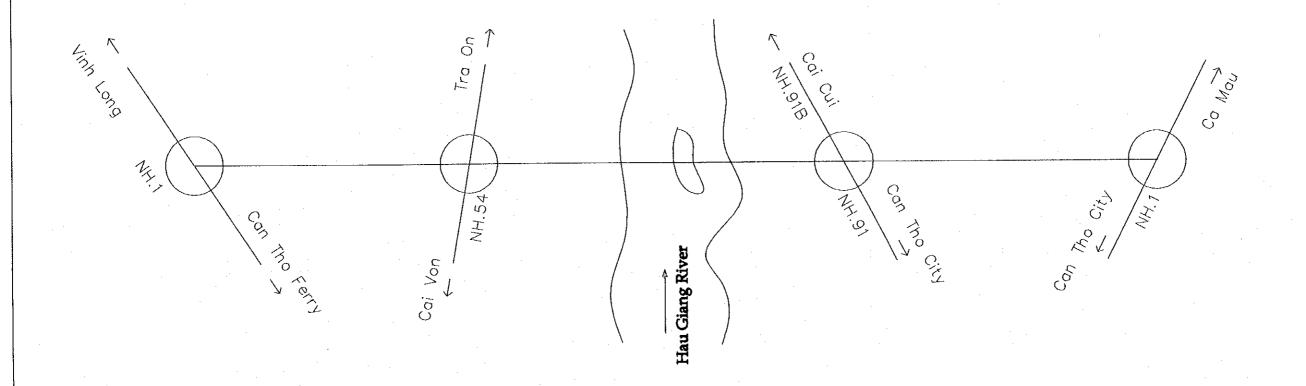

Classif	ication	Vehicle/ day	Constitutio n ratio	Exchange coefficient	PCU/ day	Classif	ication	Vehicle/ day	Constitutio n ratio	Exchange coefficient	PCU/ day
		السيدية السيسي			Interchang	e2 (NH.54)					
	TOTAL	16,320			5,682		TOTAL	500			875
	MC	15,810	-	0.3	4,743		MC	30	-	0.3	9
-	Vehicle	510		-	939		Vehicle	470	-	-	866
	PC	186	36.55%	1.0	186		PC	172	36,55%	1.0	172
Bridge to	LB	59	11.57%	2.0	118	Tra On to	LB	54	11.57%	2.0	109
Cai Von	HB	24	4.80%	2.5	61	Bridge	НВ	23	4.80%	2.5	56
	LT	66	12.98%	2.0	132		LT	61	12.98%	2.0	122
	MT	160	31.35%	2.5	400		MT	147	31.35%	2.5	368
	HT	14	2.76%	3.0	42		HT	13	2.76%	3.0	39
	TOTAL	27,070			36,093		TOTAL.	0			0
	MC	8,940		0.3	2,682		MC	0		0.3	0
	Vehicle	18,130	-	-	33,411		Vehicle	0			0
	PC	6,627	36.55%	1,0	6,627		PC	0	36.55%	1.0	0
Bridgeto	LB	2,097	11.57%	2.0	4,195	Tra On to	LB	0	11.57%	2.0	0
Ving Long		870	4.80%	2.5	2,176	Cai Von	НВ	0		2.5	0
	HB	2,353	12.98%	2.0	4,705		LT	0		2.0	0
	LT	2,353 5,684	31.35%	2.5	14,209		MT	0			0
	MT	500	 	3.0	1,499		HT	0	2.76%		0
	HT		 	3.0	875		TOTAL	80			149
	TOTAL	500	ļ	0.2	9		MC	0	<u> </u>	0,3	0
	MC	30	· · - · - · · ·	0.3		ll .	Vehicle	80		-	149
	Vehicle	470	 		866		PC	29	36.55%		29
Bridge to	PC	172		1.0	172	Tra On to	LB	9			19
Tra On	LB	54	ļ	2.0	109	Ving Long	НВ	4	4.80%	·	10
	НВ	23		2.5	56		LT	10	ļ		21
İ	LT	61	·	2.0	122		L	25	 		63
1	MT	147		2.5	368	41	MT HT	2	 		7
<u> </u>	HT	13	2.76%	3.0	39	 	nı		2.70%	3.0	<u> </u>
			ļ	ļ <u></u> -	<u> </u>			 		ļ	
			<u> </u>		ļ <u></u>	1	ļ				
				<u> </u>						ļ	
			ļ	ļ	ļ	1				ļ <u>.</u>	
								ļ			
									<u> </u>	 	
ŀ			ļ <u> </u>		ļ				 		
								ļ <u>.</u>	<u> </u>		
				<u> </u>		<u> </u>				ļ <u>-</u>	
									ļ	ļ	ļ
[<u> </u>			.					ļ
1]	<u> </u>				ļ		
									ļ		
1								·	<u> </u>		
											ļ
								<u> </u>			
,					1						
		1									
		1.				1 .					
· ·		1			<u> </u>	1					
		 	·		1	1		1			
			- 	1	 	1			1		
		-	 	1		1					
		 	 	 	 	1	 	1	 	<u> </u>	1
			1			1		 		1	
	J		L			ш			<u>. </u>		,

Table 2.3: Lane Number of Rampway

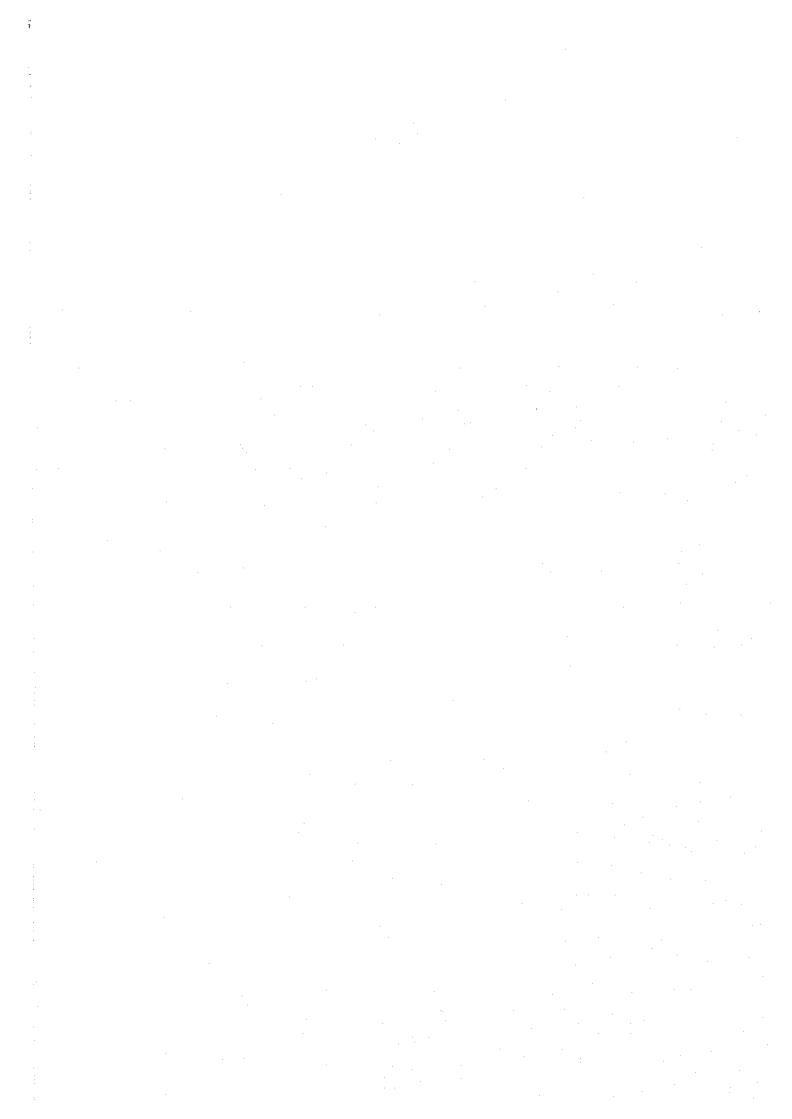
Name of Interchange	Direction	PCU/day	N _{peakhour}	N _{capacity}	Z	ni	Remarks
IC 1	Vinh Long to Ferry	3,540	354	1,500	0.70	0.4> 1.0	
(NH.1 Vinh Long)	Ferry to Vinh Long	3,540	354	1,500	0.70	0.4> 1.0	
					•		
IC 2	Vinh Long to NH.54	333	33	1,500	0.70	0.1> 1.0	
(NH.54)	NH.54 to Vinh Long	184	18	1,500	0.70	0.1> 1.0	
	Bridge to NH.54	6,557	656	1,500	0.70	0.7> 1.0	
	NH.54 to Bridge	5,682	568	1,500	0.70	0.6> 1.0	

Fig. I-2-2: TRAFFIC VOLUME BY DIRECTION (Year:2020)

(PCU/day/Direction)

Interchange(NH.1-Vinh Long)	Interchange(NH.54)
7. 1. HN 043, 5. 1. HN 043, 5. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	$ \begin{array}{c c} & & & & & & & & & & & & \\ \hline & & & & & & & & & \\ & & & & & & & \\ & & & &$

Chapter 3


SERVICE AREA

	CONTENTS	I-3-1
3.1	ARRANGEMENT AND LAYOUT OF SERVICE	
	AREA	I-3-3
3.2	NUMBER OF PARKING LOT	I-3-4
3.3	DESIGN OF THE STORM DRAINAGE &	
	SEWAGE SYSTEMS	I-3-7

CHARTER 3 SERVICE AREA.

CONTENTS

3.1 ARRANGEMENT AND LAYOUT OF SERVICE AREA	. :
3.1.1 ARRANGEMENT OF SERVICE AREA	3
3.1.2 STYLE AND LAYOUT	. 3
3.2 NUMBER OF PARKING LOT	4
3.2.1 DIMENSION OF PARKING SPACE FOR VEHICLE	. 4
3.2.2 NUMBER OF PARKING LOT	. 5
3.3. DESIGN OF THE STORM DRAINAGE & SEWAGE SYSTEMS	7
3.3.1. THE BASIC DATA	. 7
3.3.2. THE PRINCIPLES TO ARRANGE THE DRAINAGE SYSTEMS	. 7
3.3.3 CALCULATING THE HYDROLOGIC AND THE HYDRAULIC CONDITIONS	. 8

3.1 ARRANGEMENT AND LAYOUT OF SERVICE AREA

3.1.1 ARRANGEMENT OF SERVICE AREA

The service area was planned to both sides of the HAU River in consideration of the move of the store, which is doing business with the ferry platform periphery of established.

The execution position of the service area was selected in consideration of the following items.

- · Security of sufficient distance with the interchange.
- Selection of the section of a fine horizontal and vertical alignment of throughway.
- Avoid the Area and location of temples and tombs, Public facilities such as hospital, school and disposal sites and density of residential areas including markets
- · Consistency with the master plans for Industrial Zones and City Development
- · Confluence point of the stream and/or canal
- · Influence to ecosystem

3.1.2 STYLE AND LAYOUT

The service area is composed of the parking lot, throughway, ramp-way, and institutions for the user, garden ground and control institutions.

As for the institutions for the user, there is petrol station, stands, resting-places, restaurant, toilets, information office etc; and the size and fundamental arrangement of these outlines were planned with the design in this time.

Table 3.1.1 Standard scale of an architecture institution (sq.m)

Public toilet	Restaurant	Free resting- place	Stands	Petrol station	Subsidiary equipment
180	500	170	170	550	2070

Ramp-ways of service area conforms as ramp-way of the interchange and were designed.

3.2 NUMBER OF PARKING LOT

3.2.1 DIMENSION OF PARKING SPACE FOR VEHICLE

Dimension of the parking space of each vehicle shows below was adopted.

Table 3.2.1 Traffic Volume for Design

Type of Vehicle	Length (m)	Width (m)
Heavy bus and Truck	13.0	3.5
Medium bus and Truck	8.0	3.5
Light bus and Truck	5.5	2.7
Passenger car	5.5	2.7
Motor Cycle	2.0	1.25
Long Vehicle	17.0	3.5

3.2.2 NUMBER OF PARKING LOT

Number of parking lot is determined based on standard of Japanese road design.

Table 3.2.2 Traffic Volume for Design

Type of a car	Prediction number of units (2020)	Exchange rate	Conversion number of units	Total
Motor Cycle	49,612	0.30	14,884	14,884
Passenger Car	13,965	1.00	13,965	
Light Bus	4,420	2.00	8,840	
Light Truck	4,958	2.00	9,916	32,721
Medium Truck	11,978	1.00	11,978	11,978
Heavy Bus	1,834	1.00	1,834	
Heavy Truck	1,053	1.00	1,053	2,887
Total	87,820			62,470

Table 3.2.3 Calculation Table of Parking Lot Number

Item	Symbol	Motorcycle	Passenger Car	Medium Truck	Heavy Bus Heavy Truck
Traffic volume (2020)	Q	14,884	32,721	11,978	2,887
Holiday service coefficient	s		1.	15	
Design traffic volume	q=Q*s/2	8,558	18,815	6,887	1,660
Application ratio	v	0.500	0.100	0.100	0.250
Peak rate	r	0.100	0.100	0.100	0.100
Circulation ratio	С	4.000	4.000	4.000	3.000
Number of parking lot (calculate)	n=q*v*r/c	107	47	17	14
Number of parking lot (design)		196	48	10	15

Note

Holiday service coefficient :

Increasing coefficient that makes 90% or more of application

passable efficiency of the service area.

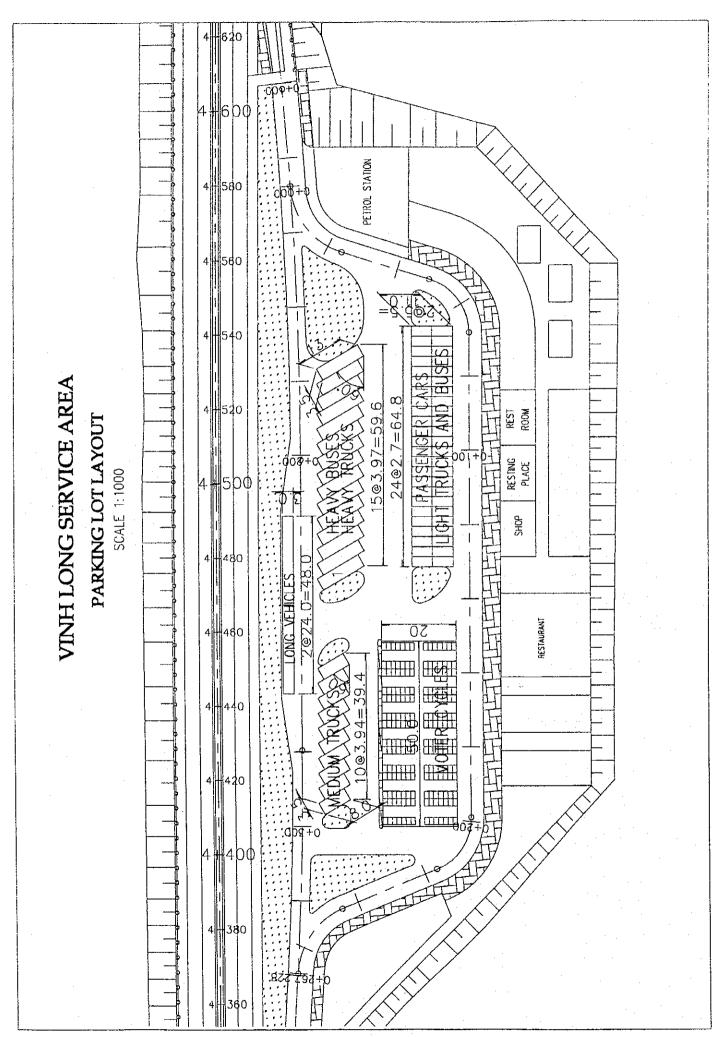
Application rate:

The ratio of the traffic density that flows in the service area in

throughway traffic density.

Peak rate:

The ratio of the traffic density that uses the service area at the


time of traffic congestion

Circulation rate:

The application number of parking space of in one hour.

(These coefficients were calculated from the traffic actual condition survey result in 4 main expressways of Japan except

for motorcycle.)

3.3. DESIGN OF THE STORM DRAINAGE & SEWAGE SYSTEMS

3.3.1. THE BASIC DATA

- 1) The general plan layout of Can Tho service area. (See Drawings)
- 2) The general arrangement of structural objects in service area.
- 3) The record of rainfall intensity of the Can Tho region.

3.3.2. THE PRINCIPLES TO ARRANGE THE DRAINAGE SYSTEMS

- 1) The drainage system will be designed gravity flow.
- 2) The drainage systems are to be installed under ground of sidewalk and clearance is 2-3m far from foundation of buildings; 1- 2m far from street lighting pole foundation.
- 3) The gradient of drainage structures might be followed to the gradient of road.
- 4) Dividing the flowing areas based on the general plan layout and the general arrangement of structural objects in studying area.

3.3.3 CALCULATING THE HYDROLOGIC AND THE HYDRAULIC CONDITIONS.

The peak runoff discharge of storm water is determined by following equation

Based on Viet Nam Standard "Design of standard drainage out side system and works" 20 TCN-51-84.

$$Q1 = C \times q1 \times A \quad (1/sec)$$

where:

A: Area of watershed = AI + A2 (ha)

A1: Sidewalk (concrete), AC pavement & House: (ha)

A2: Grass area (ha)

C: Runoff coefficient = (C1xA1 + C2xA2)/(A1 + A2)

C1: Runoff coefficient of House, Sidewalk or Ac pavement.

C2: Runoff coefficient of grass

C: Average Runoff Coefficient. It reflects the portion under the total water discharge flowing into the drainage system. It is depended on characteristics of surface area, for example:

- If surface area is concrete, asphalt: C = 0.90
- If surface area is aggregate, stone: C = 0.40-0.60
- If surface area is natural ground: C = 0.15

$$q_1 = 166.7 \times q (l/sec/ha)$$

q: Rainfall intensity is determined by statistic data of rainfall in every region and design frequency.

Where:

10-year frequency return period for pipes.

2-year frequency return period for ditches.

Table 3.3.1 Rainfall Intensity in Can Tho region

Duration		(a) Intensi	ties, I (mm/	h) Average	Recurrence	Interval	
(min)	1	2	5	10	20	50	100
5	105	140	175	200	215	240	250
6	102	136	171	194	209	234	245
7	99	132	167	188	203	228	240
8	96	128	163	182	197	222	235
9	- 93	124	159	176	191	216	230
10	90	120	155	170	185	210	225
15	85	108	135	150	162	172	185
20	76	95	122	133	143	158	165
30	58	76	100	110	120	137	145
60	42	54	72	81	90	110	105

The discharge of sewage:

 $Q2 = (Number of house in watershed area) \times 0.001 \text{ m}3/\text{sec/house}$

Total discharge:

$$Q = Q1 + Q2 (m3/sec)$$

Hydraulic Computation

 $Q_{\text{max}} = A \cdot V$

 $V = 1/n \times R0.67 \times 10.5$

Where:

A = the sectional area of pipe or ditch (m2)V = Mean velocity (m/sec)

R = Hydraulic radius (m)

I = Hydraulic gradient or slope of pipe (%)

n = roughness coefficient

Table 3.3.2 Rough coefficient for material of drainage system

Surface	Rough coefficient			
Surrace	Min	Normal	Max	
1. Pipes	:			
- Steel	ļ			
Welding joints	0.010	0.012	0.014	
Mechanical joints	0.013	0.016	0.017	
- Cast iron				
With the bitumen surface	0.010	0.013	0.014	
Without the bitumen surface	0.011	0.015	0.016	
Concrete Pipe	0.012	0.014	0.016	
2. Ditch			·	
- Earth, straight and uniform	0.016	0.018	0.020	
- Rock cut, smooth and uniform	0.025	0.030	0.033	
- Ground with dense grass	0.030	0.035	0.040	
- Cement-lined channels	0.012	0.014	0.016	
- Ground with gravel	0.022	0.027	0.033	
- Steel with paint surface	0.012	0.013	0.017	
- Steel with non-paint surface	0.011	0.012	0.014	
- Concrete with flat surface	0.017	0.020	-	
- Concrete with non-flat surface	0.022	0.027	-	

COMPUTING HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA

1. DRAINPIPE

HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:	•		D (mm)
1. Area of ditch $A = (p \times D^2)/4$	0.1257	m^2	,
2. Perimeter of ditch $X = p \times D$	1.2566	m	
3. Hydraulic radius $R = A/X$	0.1000	m	
4. Roughness factor n	0.0140		
5. Hydraulic gradient i	0.0045		
6. Velocity of flow in ditch $V=(1/n) \times R^{2/3} \times i^{1/2}$	1.0323	m/s	-
7. Discharge Max Q = A x V	0.1297	m ³ /s	
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm)
1. Area of ditch A = $(p \times D^2)/4$	0.1257	m²	100
2. Perimeter of ditch $X = p \times D$	1.2566		
3. Hydraulic radius R = A/X	0.1000		
4. Roughness factor n	0.0140		
5. Hydraulic gradient i	0.0058		
6. Velocity of flow in ditch $V=(1/n) \times R^{2/3} \times i^{-1/2}$	1.1720	m/s	
7. Discharge Max $Q = A \times V$	0.1473	-	
		•	
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm)
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm) 500
	0.1963	m^2	•
1. Area of ditch A = $(p \times D^2)/4$	0.1963 1.5708	A Company of the	•
		m	•
1. Area of ditch $A = (p \times D^2)/4$ 2. Perimeter of ditch $X = p \times D$	1.5708	m	•
1. Area of ditch $A = (p \times D^2)/4$ 2. Perimeter of ditch $X = p \times D$ 3. Hydraulic radius $R = A/X$	1.5708 0.1250	m	•
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i 	1.5708 0.1250 0.0140	m m	•
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n 	1.5708 0.1250 0.0140 0.0045	m m	•
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352	m m	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352	m m/s m ³ /s	500
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963	m m/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963 1.5708	m m/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i ¹/² Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963 1.5708 0.1250	m m/s m³/s	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963 1.5708 0.1250 0.0140	m/s m/s m³/s m³ m	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i ¹/² Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963 1.5708 0.1250 0.0140 0.0088	m/s m/s m³/s m² m	500 D (mm)
 Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n Hydraulic gradient i Velocity of flow in ditch V=(1/n) x R²/3 x i 1/2 Discharge Max Q = A x V HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA: Area of ditch A = (p x D²)/4 Perimeter of ditch X = p x D Hydraulic radius R = A/X Roughness factor n 	1.5708 0.1250 0.0140 0.0045 1.1979 0.2352 0.1963 1.5708 0.1250 0.0140	m m/s m/s m³/s m² m m	500 D (mm)

HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:			D (mm) 500
1. Area of ditch $A = (p \times D^2)/4$	0.1963	m^2	
2. Perimeter of ditch $X = p \times D$	1.5708	m	
3. Hydraulic radius R = A/X	0.1250	m	
4. Roughness factor n	0.0140		
5. Hydraulic gradient i	0.0160		
6. Velocity of flow in ditch V= $(1/n) \times R^{2/3} \times i^{1/2}$	2.2588	m/s	
7. Discharge Max Q = A x V	0.4435	m^3/s	
HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA:		·	D (mm) 500
1. Area of ditch $A = (p \times D^2)/4$	0.1963	m^2	
2. Perimeter of ditch $X = p \times D$	1.5708	m	
3. Hydraulic radius $R = A/X$	0.1250	m	
4. Roughness factor n	0.0140		
5. Hydraulic gradient i	0.0261		
6. Velocity of flow in ditch $V=(1/n) \times R^{2/3} \times i^{1/2}$	2.8849	m/s	
7. Discharge Max Q = A x V	0.5665	m^3/s	

COMPUTING HYDRAULIC CHARACTERISTICS OF THE SECTONAL AREA

1. DITCH

HYDRAULIC CHARACTERISTICS OF THE SECTONAL ARE W (mm) H (mm)

500 x 550

1. Area of ditch $A = W \times H$	0.2750	m^2
2. Perimeter of ditch $X = W + 2 \times H$	1.6000	m
3. Hydraulic radius $R = A/X$	0.1719	m
4. Roughness factor n :	0.0140	
5. Hydrawlic gradient i :	0.0020	
6. Velocity of flow in ditch V=(1/n) x $R^{2/3}$ x i 1	0.9875	m/s
7. Discharge Max $O = A \times V$	0.2716	m^3/s

COMPUTING HYDROLOGY & HYDRAULIC OF DRAINAGE SYTEM

					Compu	Computing hydrology	ology				Con	hputing 1	Computing hydraulic	
				Slori	Slorm water				Sewage	Discharge	, s	Sectional of ditch	f ditch	
Check q	5	q (50%)	A	A1	A2	IJ	ย	Ø	Ö	0	(W × H)	<u></u>	0	>
Point (pu	na)	(num/min)	m²	m²	m ²			m³/s	m³/s	m³/s	mm	0/0	s/ _s m	m/s
3		ம	&	7	œ	6	10	11	12	13	14	15	16	17
B1		2.0	526.00	756.13	148.69	06:0	0.15	0.023		0.023	400	0.45	0.130	1.032
B2		2.0	2172.48	1804.61	367.87	0.90	0.15	0.056		0.056	400	0.45	0.130	1.032
B3 2	.2	2.0	3434.02	2807.98	626.04	06:0	0.15	0.087		0.087	400	0.45	0.130	1.032
B4 2.0	2.0		4684.57	3848.92	835.65	06:0	0.15	0.120		0.120	500	0.45	0.235	1.198
B5 2.0	2.0		6093.98	5050.84	1043.14	0.90	0.15	0.157		0.157	500	0.45	0.235	1.198
B6 2.0	2.0		7193.70	5941.91	1251.79	0.90	0.15	0.185		0.185	200	0.45	0.235	1.198
B7 2	2	2.0	8139.32	6662.88	1476.44	0.90	0.15	0.207		0.207	500	0.88	0.329	1.675
B8 2	.7	2.0	8836.16	7167.57	1668.59	0.90	0.15	0.223		0.223	500	2.61	0.566	2.885
				-										

Start End Symbol 1 2 (Computed areas) Start A1 A1+A2 Start A3 A1+A2+A3 Start A4 A1+A2+A3+A4 Start A5 A1+A2+A3+A4+A5 Start A6 A1+A2+A3+A4+A5 Start A6 A1+A2+A3+A4+A5+A6					1	compuing nyarology	Sickly Sickly				Com	Computing hydraulic	ydraulic	
End 2 2 2 2 2 2 4 4 4 4 4 5 2 4 4 4 4 4 4 4				Stori	Storm water				Sewage	Discharge	Sec	Sectional of ditch	f ditch	
F	Check	(%05) p	A	A1	A2	IJ	C3	Ø	ő	٥	(W×H)	ш	Ø	۸
F	Point	(ւուու/աա)	m²	m ²	æ			m³/s	m³/s	s/ _s m	mm	0/0	m³/s	s/w
13 23<	3	വ	8	7	&≎	6	10	11	12	13	14	15	16	17
F F F F F F F F F F	A1	2.0	1277.72	1277.72		0.90	·	0.038	0.005	0.0433	400	0.45	0.130	1.032
A4 A3	A2	2.0	2572.07	2572.07		0.90		0.077	0.005	0.0822	400	0.45	0.130	1.032
A6 A5	A3	2.0	3866.50	3866.50		0.90		0.116	0.003	0.1190	400	0.45	0.130	1.032
A6 A5	A4	2.0	5160.88	5160.88		0.90		0.155	0.003	0.1578	500	0.45	0.235	1.198
¥6	A5	2.0	6315.62	6315.62		0.90		0.189	0.003	0.1925	200	0.45	0.235	1.198
	<u>6</u> A6	2.0	7552.57	7552.57		0.90		0.227	0.003	0.2296	200	1.60	0.444	2.259
							-							
		·		:										
					·									
		·												
Start C1 A1+A2+A3+A4+A5+A6	<u>6</u> C1	2.0	7553	7553		0.90		0.227	0.003	0.2296	500X550	0.20	0.272	0.987
											,			

TO CAN THO 變 PLAN LAYOUT OF DRAINAGE SYSTEM B3-1003.37u2 1-2 am -0 43 A2=1294.35m2 Rest 192 VINH LONG SERVICE AREA 84±1040 94m2 Resting Ploce A3=1294.43n2 Sign SCALE 1:1500 25.04 mg 25.15 A4-1294.38m2 *** 25.00 me 25.00 Par. 1. 25.00 P A5=1154.74m2 B7'=224.65m2 . BB=192.15m2. BB=504.69m2 TO VINH LONG I-3-14

Chapter 4

EMBANKMENT AND SOFT GROUND TREATMENT

	CONTENTS	I-4-1
4-1.	DESIGN CONCEPTS	I-4-3
4-2.	DESIGN CONDITION	I-4-4
4-3.	LIMIT HEIGHT OF EMBANKMENT	I-4-12
4-4.	MAXIMUM EMBANKMENT HEIGHT	I- 4 -13
4-5.	FORM OF COUNTER BERM	I-4-14
4-6.	DESIGN OF CONSTRUCTION METHOD FOR SETTLEMENT PROMOTION	I-4-15
4-7.	ARRANGEMENT DESIGN OF PVD	I-4-16
4-8.	STUDY OF SLOPE STABILITY	I-4-17
4-9.	CALCULATION OF SETTLEMENT	I-4-19
4-10.	STUDY OF THICKNESS OF SAND BLANKET	<i>I-4-</i> 21
4-11.	STUDY OF LATERAL MOVEMENT OF ABUTMENT	I-4-22
4-12.	THE PLAN OF MOVEMENT OBSERVATION AND EXECUTION MANAGEMENT	I-4-24
APPENDI	X-1 CHARACTERISTIC VALUE OF SUBSOIL LAYER	I-4-29
APPENDI	X-2 COST COMPARISON OF EMBANKMENT HEIGHT	I-4-37
APPENDI	X-3 STUDY OF COUNTER BERM FORM	I-4-40
APPENDI	X-4 STUDY OF PVD ARRANGEMENT	I-4-46
APPEND	X-5 STUDY OF SLOPE STABILITY	I-4-66
APPEND	IX-6 CALCULATION OF SETTLEMENT	I-4-78

CHAPTER 4 EMBANKMENT AND SOFT GROUND TREATMENT

CONTENTS

4-1. Design Concepts	3
4-2. Design Condition	4
4.2.1 Design Section	
4.2.2 Design Formula	6
4.2.3 Characteristic Value of Subsoil	8
4.2.4 Characteristic value of embankment material used for study	9
4.2.5 Minimum Safety Factor of Sliding "K"	9
4.2.6 Embankment Speed	9
4.2.7 Thickness of Surcharge	9
4.2.8 Typical Cross Section for Study	9
4-3. Limit Height of Embankment	
4.3.1 Description	12
4.3.2 Design Formula	12
4.3.3 The Calculation Result and Conclusion	
4-4. Maximum Embankment Height	13
4-5. Form of Counter Berm	14
4.5.1 Description	14
4.5.2 Design formula	14
4.5.3 Conclusion	14
4-6. Design of Construction Method for Settlement Promotion	
4.6.1 Description	15
4.6.2 Selection of the material for settlement promotion	
4.6.3 Conclusion	15
4-7. Arrangement Design of PVD	16
4.7.1 Description	16
4.7.2 PVD arrangement study result of the main body of embankment	16
4.7.3 PVD arrangement of the counter berm	16
4-8. Study of Slope Stability	17
4.8.1 Description	17
4.8.2 Slope Stability Calculation Result of General Section	17
4.8.3 Slope Stability Calculation Result of Special Section	
4-9. Calculation of Settlement	19
4.9.1 Description	
4 9.2 Calculation Result of Settlement	20

4-10. Study of Thickness of Sand Blanket	21
4.10.1 Description	21
4.10.2 Design formula	
4.10 3 Determination of sand blanket thickness	21
4-11. Study of Lateral Movement of Abutment	22
4.11.1 Description	
4.11.2 Determination of lateral movement	22
4-12. The Plan of Movement Observation and Execution Management	
4.12.1 Description	24
4.12.2 Item of movement observation	24
4.12.3 Arrangement of devices for movement observation	
4.12.4 Frequency of observation	27
4.12.5 Application to execution management of the observation result	27
4.12.5 Application to execution management of the observation result	
APPENDICES	
Appendix-1: Characteristic Value of Subsoil Layer	49 or
Appendix-2: Cost Comparison of Embankment Height	
Appendix-3: Study of Counter Berm Form	
Appendix-4: Study of PVD Arrangement	46
Appendix-5: Study of Slope Stability	66
Appendix-6: Calculation of Settlement	78

4-1. Design Concepts

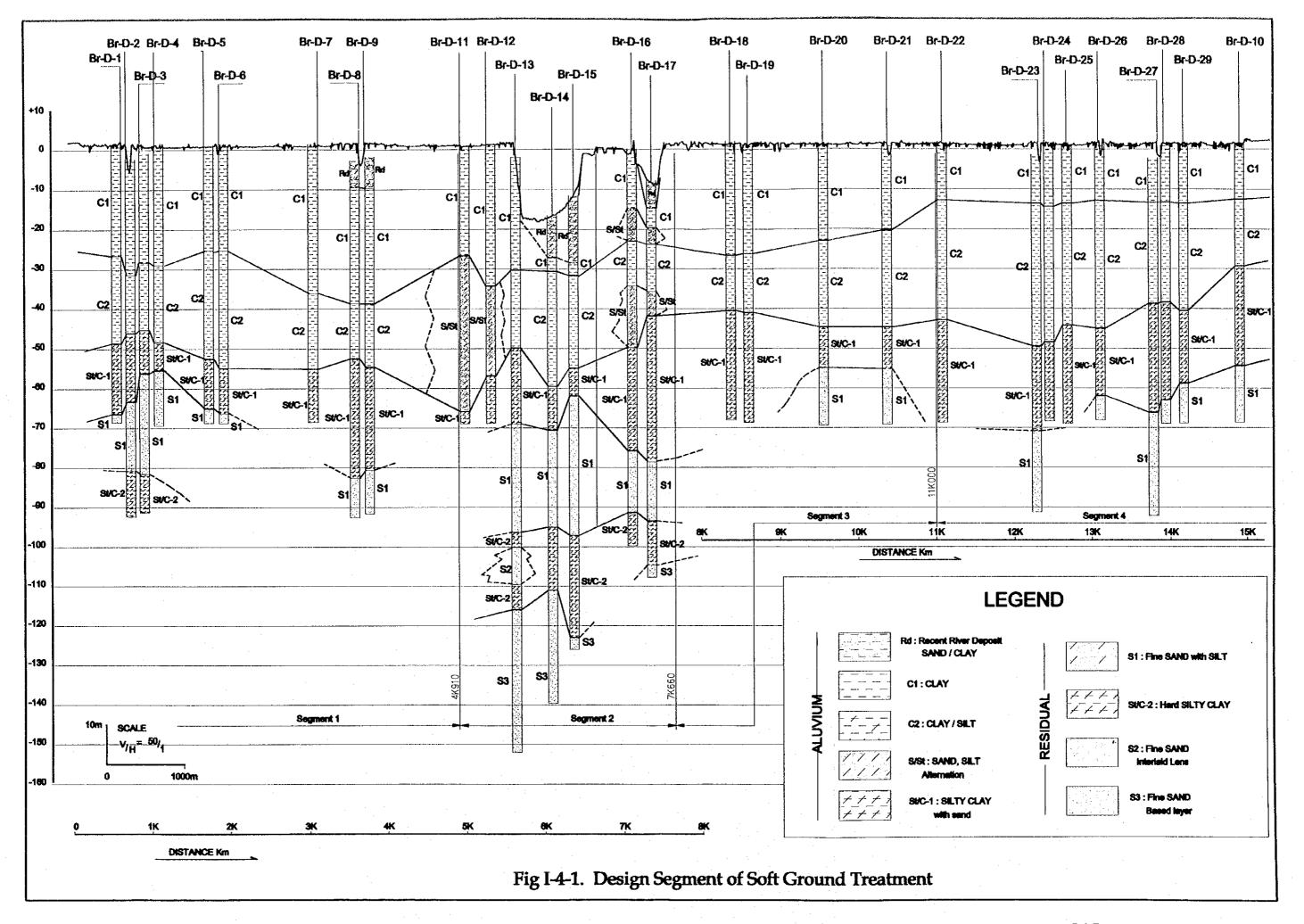
- For embankment stability measure shall adopt the methods of Surcharge and Slow Banking and Settlement Promotion method (PVD) for increase the strength of subsoil.
- Sand Compaction Pile Method (SCP) shall adopt in the case that is not able to secure stability with the above method.
- Execution of embankment makes the information processing construction method by movement observation a principle.
- The degree of consolidation makes 90% or more or the remaining settlement quantity 10 or less cm a target at the time of the surcharge removing.
- Furthermore, the settlement quantity per the year after the road opening was prescribed to 2 or less cm.
- The surcharge method shall be adopted in general section in order that reduces remaining settlement. Also Pre-loading method should be adopted in structural section in order that reduces remaining settlement.
- Detainment period of surcharge and pre-load shall be secured at least 6 months
 without being related to the calculation result in consideration of the reduction of the
 settlement by secondary consolidation.
- The factor of safety to the slide of embankment shall be secured 1.10 or more at the time of surcharge/pre-load completion.

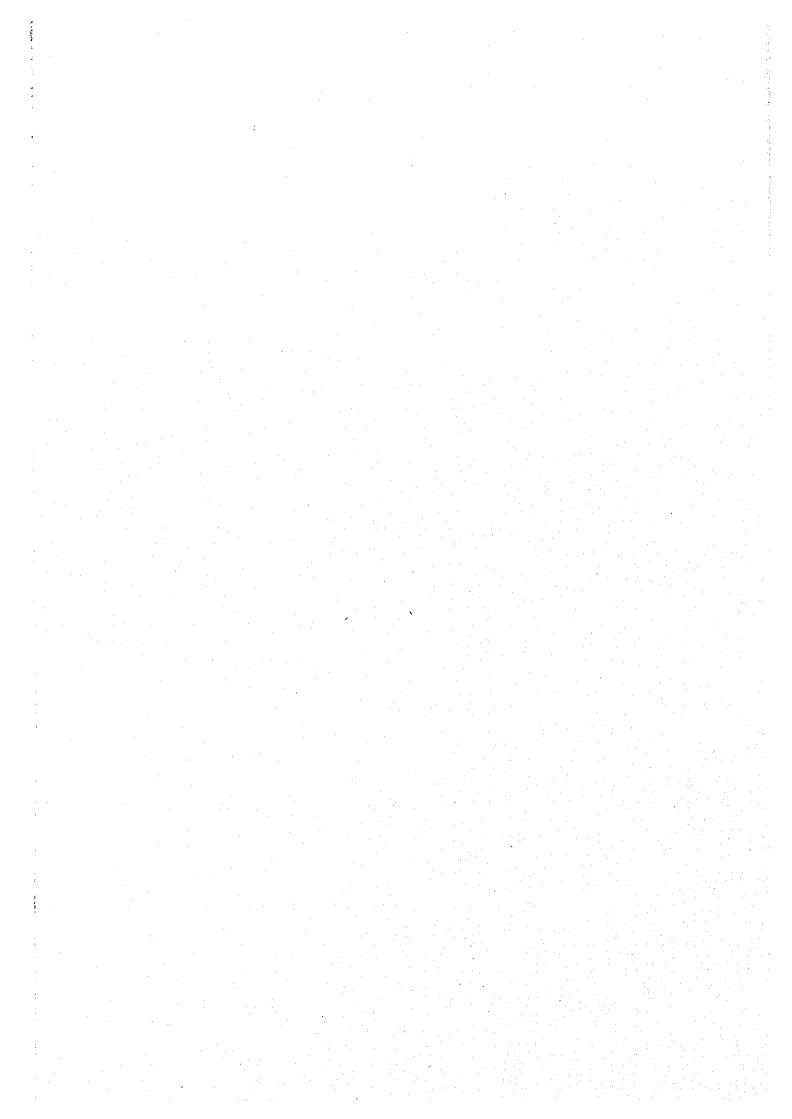
4-2. Design Condition

4.2.1 Design Section

The design section of the soft ground treatment was divided to 4 segments by mainly subsoil condition as below.

```
Segment 1; Km -0+500 - Km 4+910 (Package 1)


Segment 2; Km 4+910 - Km 7+660 (Main bridge section) (Package 2)


Segment 3; Km 7+600 - Km 11+000 (Package 3)

Segment 4; Km 11+000 - Km 15+350 (Package 3)
```

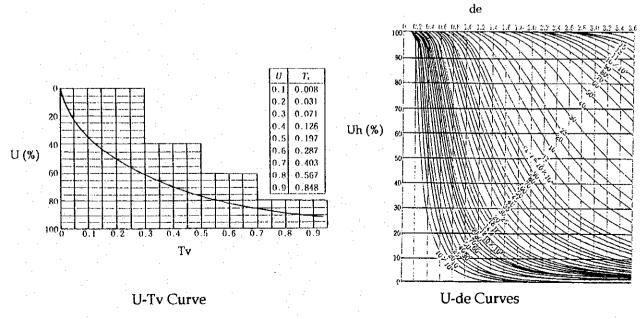
Segment 1,3 and 4 will be concerned for soft ground treatment.

4.2.2 Design Formula

(1) Settlement

$$S = Sc + Sl$$

$$Sc = \frac{e0-e1}{1+e0} \cdot Hi$$


$$U = Si / Sc$$

$$t = \frac{(H_0/2)^2}{Cv_0} \cdot Tv$$

$$t = \frac{Th}{Ch} \cdot de^2 \quad This formula applies to SD and PVD.$$

Where	S	:	Total quantity of settlement	cm
	Sc	:	Settlement quantity due to consolidation	cm
	Sl	:	Settlement quantity in the long term	cm
	Si	:	Settlement of consolidation quantity in optional time	cm
	· U	:	Degree of consolidation	
	e0	:	Initial void ratio of a consolidation layer	
	e1	:	Void ratio after the consolidation of a consolidation lay	er
	Hi	:	Thickness of a consolidation layer	cm
	t	:	Time for consolidation	
	H_0	:	Thickness of conversion consolidation layer	cm
	Cv_0	: .	Vertical consolidation coefficient	cm ² /s
	Tv		Coefficient of consolidation time	
	Th	:	Coefficient of horizontal consolidation time	cm
	Ch	:	Horizontal consolidation coefficient	cm ² /s
	de		Effective diameter of vertical discharge material	cm

Settlement quantity in the long term (SI) is the value that is calculated by movement observation with construction stage and 20 cm are applied in the design stage.

(2) Slope Stability

Stability of embankment and cohesive of subsoil are calculated with formula as below.

$$K = \frac{\sum (Cu \cdot l + W \cdot \cos \alpha \cdot \tan \phi u)}{\sum W \cdot \sin \alpha}$$

$$Cu = Cu_0 + m \cdot (P_0 - P_c + \Delta P) \cdot U$$

Where	K	:	Safety factor of slope stability	
	Cu	:	Cohesion of subsoil after consolidation	kN/m ²
	1	:	Length of a sliding surface of the small piece of a circular slip	m
	W	:	Weight of the small piece of a circular slip	kN/m³
	α	:	Average angle of slope of the small piece of a circular slip	kN/m²
	φu	:	Undercharge angle of shearing resistance that does not consider consolidation	Degree
	Cu_0	:	Cohesion of subsoil before consolidation	kN/m ²
	m	:	Ratio of strength increase of subsoil	
	P_0	• :	Overburden pressure before banking	kN/m ²
	Pc	:	Consolidation yield stress (= P ₀ /m)	kN/m ²
	⊿P U	:	Increase stress by a banking load Degree of consolidation	kN/m²

Also, the average shear strength of the ground that established SCP in the special section was calculated with the following formula.

$$\tau_1 = 1 \cdot [a_s \{ \gamma_s Z \cdot \frac{\sigma}{1 + (n-1) \cdot a_s} \} \cos^2 \alpha \cdot \tan \phi_s + (1-a_s) \cdot \{ Cu_0 + m (P_0 - P_C + \frac{\sigma}{1 + (n-1) \cdot a_s} \} \cos^2 \alpha \cdot \tan \phi_u]$$

τ l	:	Average shearing strength of the ground the established SCP	hat kN/m²
$\mathbf{a_s}$:	Replacement rate of SCP $(=0.907(ds/d)^2)$	
ds	:	Diameter of SCP	m
d	:	Spacing of SCP	m
σ	:	Average increase load by embankment	
γ'	:	Unit weight of subsoil	kN/m³
γs	• :	Unit weight of SCP	kN/m³
Z	. :	Depth of the small piece of a circular slip	m
n	. :	Stress share ratio (SCP/Subsoil)	
φs	:	Internal friction angle of SCP	Degree
	a _s ds d σ γ' γs Z n	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	established SCP as: Replacement rate of SCP (=0.907(ds/d)²) ds: Diameter of SCP d: Spacing of SCP o : Average increase load by embankment y': Unit weight of subsoil ys: Unit weight of SCP Z: Depth of the small piece of a circular slip n: Stress share ratio (SCP/Subsoil)

4.2.3 Characteristic Value of Subsoil

(1) Layer Constitution and C, ϕ , γ

The constitution of subsoil and characteristic value of the layer of each segment was summarized as the table shown below from the geographic survey and lab-test result.

C2 layer of segment 3 and 4 shall not include to this study by result of confirming of characteristic value.

Segment	Subso	il Layer	Cohesion	Internal Friction Angle	Unit Weight	Ratio of Strength Increase
	Layer	Thickness	С	φ	γ	m
	Name	m	kN/m²	Degree	kN/m³	
	C1-U	17.1	7.0	4.0	15.9	0.35
1 1	C1-L	15.8	8.0	6.0	16.7	0.35
	C2	21.8	10.0	14.0	17.3	0.35
3	C1-U	16.3	9.0	4.0	15.6	0.35
	C1-L	8.1	14.0	3.0	16.8	0.35
4	C1	14.3	8.0	4.0	15.6	0.35

Note C1-U; Layer C1-Upper, C1-L; Layer C1-Lower

(2) e-Log-P curves and Log P-Log Cv curves

e-Log P curves

P	(kPa)	0	10	- 20	50	100	200	400	800
		C1-U	1.625	1.583	1.552	1.477	1.379	1.245	1.082	-
	1	C1-L	1.306	1.278	1.255	1.201	1.131	1.013	0.847	-
		C2	1.132	1.092	1.076	1.046	0.999	0.932	0.841	0.761
e	3	C1-U	1.740	1.707	1.677	1.590	1.451	1.252	1.032	
	3	C1-L	1.295	1.265	1.242	1.189	1.123	1.038	0.933	
	4	C1	1.624	1.579	1.548	1.469	1.350	1.187	1.009	

Log P-Log Cv curves

Avera	ge P	(kPa)	5	15	35	<i>7</i> 5	150	300	600
		C1-U	1.172	1.053	1.016	0.864	0.799	0.730	
	1	C1-L	1.085	0.901	0.869	0.774	0.640	0.605	
Log Cv		C2	1.386	1.393	1.486	1.434	1.439	1.422	
cm^2/s	3	C1-U	0.963	0.771	0.685	0.488	0.435	0.406	
	3	C1-L	0.830	0.834	0.820	0.775	0.712	0.645	
٠.	4	C1	1.058	0.948	0.905	0.751	0.681	0.659	

Note P; Pressure, e; Void ratio, Cv; Consolidation coefficient

4.2.4 Characteristic value of embankment material used for study

Material	Location of dredging	Lab No.	C kN/m²	φ Degree	γ kN/m³
Embankment	1 Km downstream of proposed bridge	912	20	30	18.6
Embankmem	5 Km downstream of proposed bridge	913	14	30	18.3
Sand Blanket	Dai Ngai sand	46	20	30	18.6

Characteristic value of embankment material use for study ware applied Lab No. 913 due to safety design.

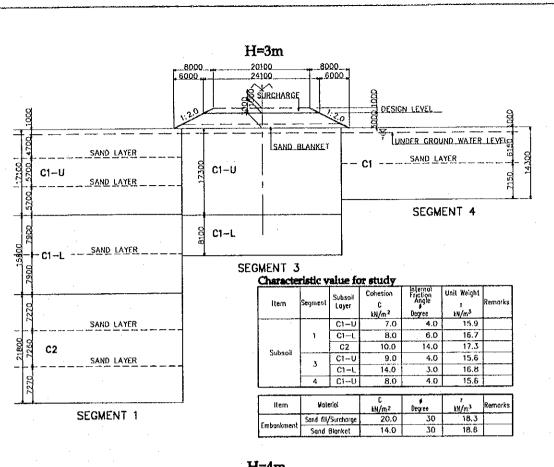
4.2.5 Minimum Safety Factor of Sliding "K"

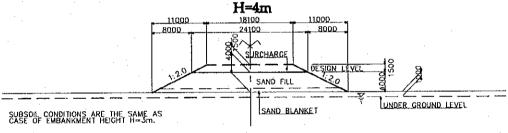
At the time of surcharge completion.

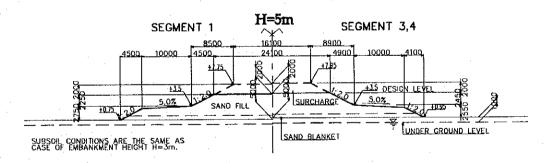
1.10

4.2.6 Embankment Speed

Embankment speed shall be applied less than 5 cm/day in average.


4.2.7 Thickness of Surcharge


Thickness of surcharge shall be applied 0.3 H basically. (H; Height of Embankment). Actual thickness of surcharge adopted the following table.


Height of Embankment; m	<3.0	<u>3.0</u> -4.0	<u>4.0</u> -5.0	<u>5.0</u> <
Height of Surcharge; m	0	1.0	1.5	2.0

4.2.8 Typical Cross Section for Study

Typical cross sections for soft ground analysis are shown in next pages.

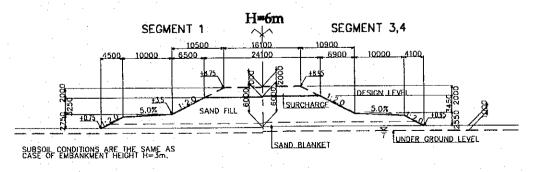
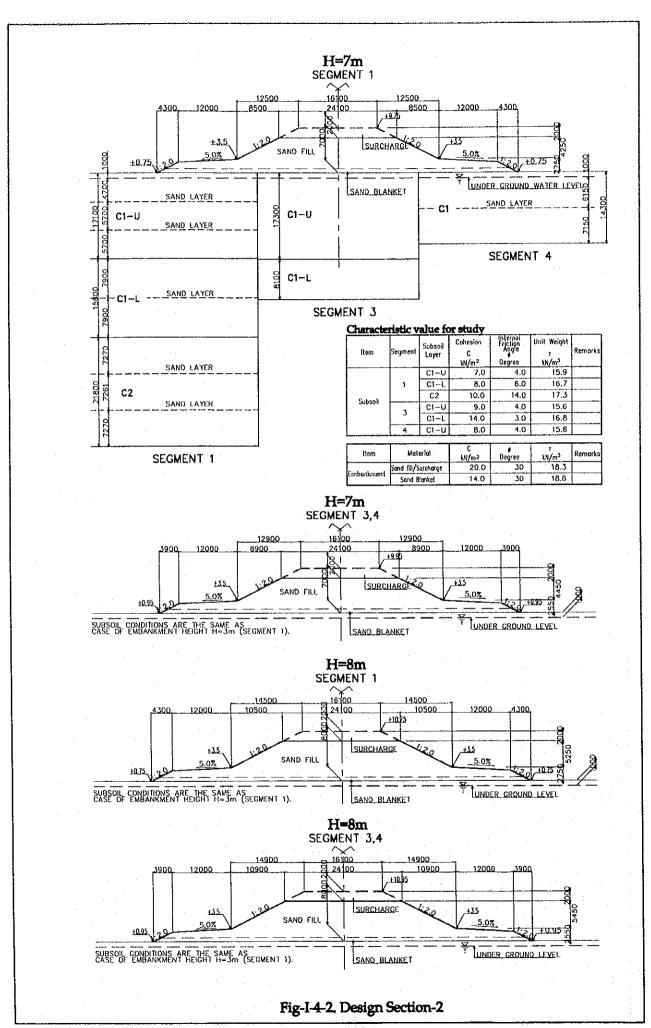



Fig-I-4-2. Design Section-1

I-4-11

4-3. Limit Height of Embankment

4.3.1 Description

Limit embankment height is maximum height in the case that it does not consider strength increase of the subsoil by the embankment load. This value is applied to the rough estimate of counter berm style and the study of stage construction.

4.3.2 Design Formula

Limit embankment height is calculated by the formula as below.

$$H_{EC} = qd / \gamma_E$$

Where, H_{EC}; Limit embankment height (m)

qd; Limit bearing capacity of subsoil (kN/m²)

qd = 5.1 x Cu Cu; Cohe

Cu; Cohesion in undrained condition test (kN/m²)

 γ_E ; Unit Weight of Embankment (kN/m³)

4.3.3 The Calculation Result and Conclusion

Segment Cu kN/r	Cu	qd .	qd y _E		D 1
	kN/m²	kN/m²	kN/m³	m	Remarks
1	7.0	35.7	18.3	2.0	
2	9.0	45.9	18.3	2.5	
3	8.0	40.8	18.3	2.2	

Limit embankment height adopts 2.0 m to all segments due considering the safety design.

4-4. Maximum Embankment Height

The maximum height of the road embankment greatly influences the bridge length and the degree of soft-ground treatment, included in the construction costs of the approach roads. The limitation height can be concluded from the result of optimization study based on the sub soils survey including the laboratory testing results. As illustrated in the following diagrams, the limiting embankment height was 7.0m from existing ground level, after consideration of embankment stability and minimizing cost of construction.

OPTIMUM EMBANKMENT HEIGHT

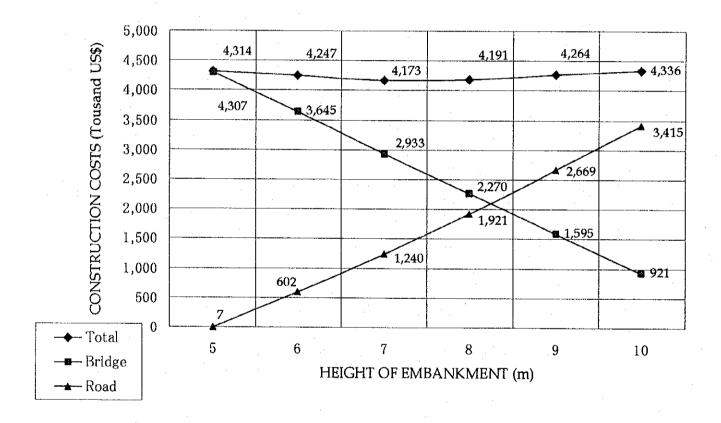


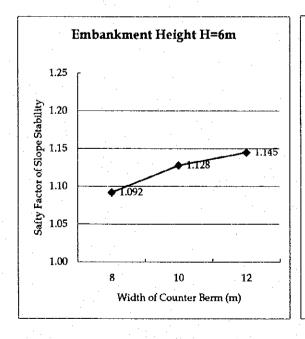
Figure I-4- 4 Cost Comparisons by Embankment Height

4-5, Form of Counter Berm

4.5.1 Description

The Counter Berm is one of the soft ground treatment methods that placing the embankment as weight to foot of slope to improve the stability of embankment. This method is an effective method in the case that security of land acquisition and embankment material is easy.

The form of the counter berm was decided with the following manner.


- The height of counter berm is applied the limit banking height that expressed in Chapter 4.3.
- The width of counter berm is decided with the calculation result of slope stability.

4.5.2 Design formula

The design formula of the slope stability is explained on Chapter 4.2.2.

4.5.3 Conclusion

The study of the form of the counter berm was carried out with 6 m embankment height and also 8 m. The result of the stability calculation is shown to the graph as below. The width of counter berm adopts 10 m in the case of 6 m or less embankment height and adopts 12 m in the case of 8 m or less embankment height.

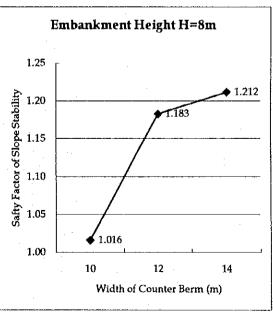


Figure I-4-5. Study Result of Counter Berm Width

4-6. Design of Construction Method for Settlement Promotion

4.6.1 Description

The consolidation of subsoil is promoted by discharge of underground water. Accordingly the selection of the high discharge method of efficiency will be contributed to the strength increase of subsoil, and the shortening of the construction period.

Sand drain method (SD) and pre-fabricated vertical drain method (PVD) are acknowledged the effective discharge method as soft ground treatment method generally, and the selection of the method suitable for the Project is carried out in this chapter.

4.6.2 Selection of the material for settlement promotion

Adaptability to the Projects of both methods SD and PVD are summarized as below.

SD	 This method is effective in the thick homogeneous clay stratum. As for SD the discharge ability is high because the diameter is big. There is the fear that the semantic differentials easy to disturb the subsoil and decrease the strength of subsoil and increase deformation. The drainage ability of SD relies on the material of sand. Accordingly the acquisition of the fine material is the condition that selects this method.
PVD	 This method is cheaper in comparison with SD and the execution of work is early and also there is little fear that disturbs the subsoil.

And comparison table of construction costs of both methods SD and PVD are shown as below.

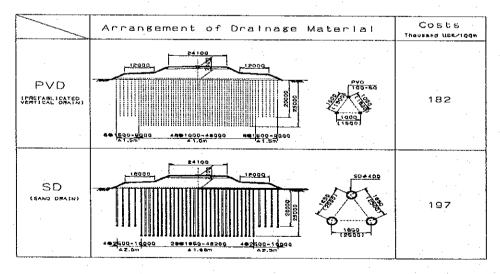


Figure I-4-6. Cost Comparison of SD and PVD

4.6.3 Conclusion

PVD should be applied to the Project as for the settlement promotion method of subsoil by the above study result.

4-7. Arrangement Design of PVD

4.7.1 Description

As expressed with the design concept, PVD should arranged to secure the degree of consolidation at the time of removing surcharge becomes 90% or more.

Also, PVD should place from ground surface to the bottom of high compressible C1 layer by the result of settlement analysis.

4.7.2 PVD arrangement study result of the main body of embankment

The arrangement study of PVD was carried out embankment height 4 m and 7 m as the representative case, and result of comparative study was summarized in the table as below.

	Embankment Height 4m			Embankment Height 7m				
Segment 1	Spacing	0.8 m	1.0 m	1.2 m	Spacing	0.8 m	1.0 m	1.2 m
	Sf (cm)	159.5			Sf (cm)	243.7		
	Sr (cm)	147.0	145.7	140.4	Sr (cm)	221.9	220.4	213.9
	U (%)	92.2	91.3	88.0	U (%)	91.1	90.4	87.8
	Spacing	0.9 m	1.1 m	1.3 m	Spacing	0.9 m	1.1 m	1.3 m
Segment 3	Sf (cm)	156.6			Sf (cm)	228.6		
	Sr (cm)	152.9	141.3	123.8	Sr (cm)	225.2	212.0	189.8
	U (%)	97.6	90.2	79.1	U (%)	98.5	92.7	83.7
	Spacing	1.1 m	1.3 m	1.5 m	Spacing	1.1 m	1.3 m	1.5 m
Segment 4	Sf (cm)	110.4			Sf (cm)	155.8		
	Sr (cm)	107.4	100.6	90.7	Sr (cm)	152.9	145.2	132.9
	U (%)	97.3	91.1	82.2	U (%)	98.1	93.2	85,3

Note Sf: Final Settlement Sr: Settlement at the time of removing surcharge U; Degree of Consolidation (=Sr/Sf x 100%)

4.7.3 PVD arrangement of the counter berm

The spacing of PVD of counter berm makes about 1.5 times of the spacing of the main body for economize.

4-8. Study of Slope Stability

4.8.1 Description

Stability calculation was carried out separately general section and special section.

(1) General Section

Slope stability of embankment was confirmed every 2 m from 4 m to 8 m of design embankment height of each design segment.

(2) Special Section

The establishment position of the abutment was considering even the execution of the pre-load for the abutment and was selected. As a result, most of the abutments were secured the stability with only Slow banking method. However, Sand Compaction Pile (SCP) was necessary for the pre-load of only Small Tra Va Bridge and Cai Nai Bridge.

(3) Design formula and software used for study

The factor of stability was calculated by both formula of Fillenius and Bishop's. And Japanese software COSTANA and Australian software PCSTABL5M was used for the calculation.

4.8.2 Slope Stability Calculation Result of General Section

Embankment Height		4m	6m	8m
Safety Factor of sliding K	Segment 1	1.16	1.13	1.18
	Segment 3	1.11	1.13	1.20
	Segment 4	1.22	1.13	1.23

Note K: Safety Factor of sliding (>=1.10)

4.8.3 Slope Stability Calculation Result of Special Section

Bridge Name	Small Tra Va Bridge		Cai Nai Bridge
Safety Factor of sliding K	1.193	: : :	1.105

Note: Gravel should use to SCP for pre-load of Cai Nai bridge abutment. And Dai Ngai sand should use to embankment for Cai Nai Bridge.

4-9. Calculation of Settlement

4.9.1 Description

Settlement quantity was calculated every 1 m from 1 m to 8 m of design embankment height of each design segment. And settlement quantity of 5 points was calculated to every 1 section as also, shown in the rough sketch.

Japanese software DECALTO was used for calculation of settlement and Vietnamese software was used for checking. Both soft wear was calculated by using same formula shown in Chapter 4.2.2.

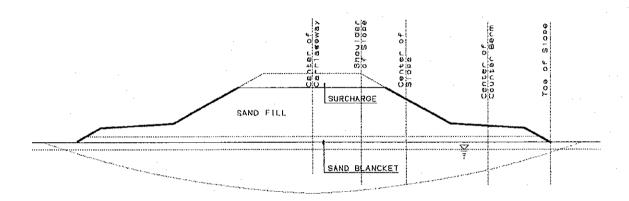


Figure I-4-7. Section of Settlement Calculation

4.9.2 Calculation Result of Settlement

Item/ Segment	Height of Embankment	Toe of Slope	Center of Counter Berm	Center of Slope	Shoulder of Slope	Center of Carriage way
	m	m	m	m	m	m
	1.0	0.19	-	0.27	0.27	0.38
	2.0	0.38	-	0.66	0.76	0.92
	3.0	0.54	-	1.04	1.27	1.44
Segment 1	4.0	0.64	-	1.31	1.64	1.80
Degment 1	5.0	0.58	1.36	1.88	2.06	2.18
	6.0	0.61	1.41	2.05	2.30	2.43
	7.0	0.62	1.41	2.21	2.53	2.64
	8.0	0.63	1.45	2.37	2.76	2.87
	1.0	0.20	-	0.24	0.27	0.41
	2.0	0.35	-	0.61	0.74	0.95
	3.0	0.46	_	0.97	1.23	1.44
Cogmont 2	4.0	0.53	-	1.22	1.59	1.77
Segment 3	5.0	0.43	1.20	1.76	1.96	2.09
	6.0	0.43	1.23	1.90	2.17	2.30
	7.0	0.42	1.23	2.05	2.37	2.49
	8.0	0.43	1.22	2.16	2.56	2.67
	1.0	0.12	-	0.18	0.21	0.31
	2.0	0.19	-	0.45	0.57	0.70
	3.0	0.24	-	0.71	0.93	1.06
C	4.0	0.27	-	0.89	1.19	1.30
Segment 4	5.0	0.22	0.85	1.27	1.43	1,51
	6.0	0.22	0.86	1.37	1.56	1.64
	7.0	0.21	0.84	1.45	1.69	1.76
	8.0	0.21	0.84	1.52	1.79	1.86

Note: Displayed settlement quantity was added 20 cm as settlement quantity for long-term settlement quantity. (Toe of Slope was not added 20cm.)

The settlement area was calculated on the basis of the assumption that settlement converges with the point of 5 m from toe of slope.

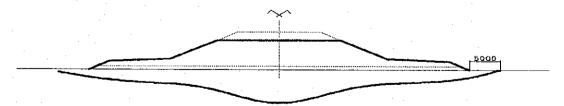


Figure I-4-8. Cross-Section of Settlement

Settlement of embankment height 1 m and 2 m was calculated with the proportional distribution method as below.

$$S_n = (S_{n+1}/S_{n+2})^2 \times S_{n+1}$$