
JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

JAPAN INTERNATIONAL COOPERATION AGENCY (JICA)
MINISTRY OF TRANSPORT
SOCIALIST REPUBLIC OF VIET NAM

THE DETAILED DESIGN ON THE CAN THO BRIDGE CONSTRUCTION IN SOCIALIST REPUBLIC OF VIET NAM

FINAL REPORT

DRAWINGS - Package II - Part III

OCTOBER 2000

NIPPON KOEI CO., LTD.

THE DETAILED DESIGN OF THE CAN THO BRIDGE CONSTRUCTION PROJECT IN SOCIALIST REPUBLIC OF VIET NAM

CAN THO BRIDGE CONSTRUCTION PROJECT

PACKAGE2

SUPERTRUCTURE OF PC-I GIRDER

OCTOBER - 2000

NIPPON KOEI Co., Ltd.

in association with

TRANSPORT ENGINEERING DESIGN INC. SOUTH

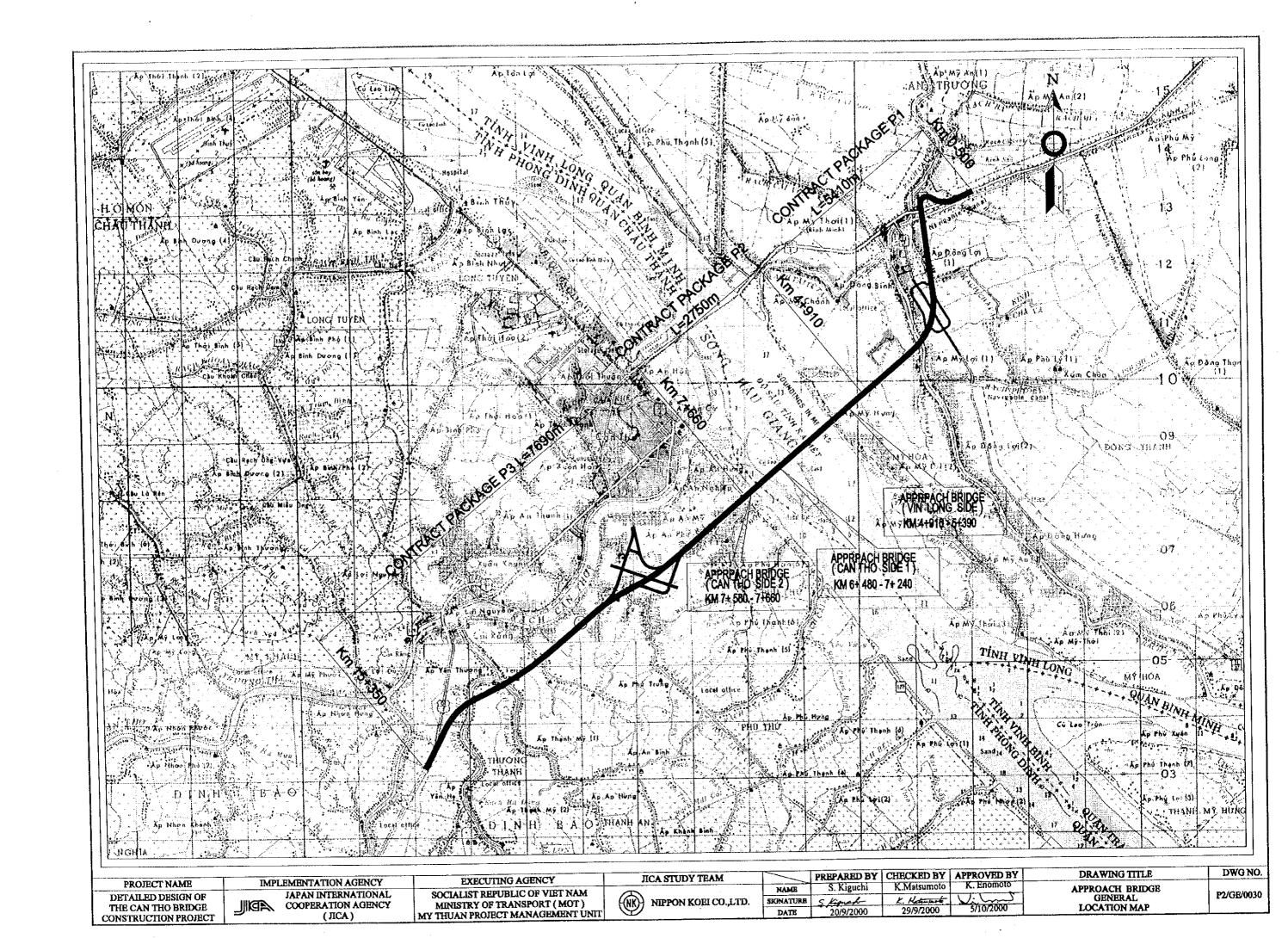
DRAWING LIST(1)

RAWING No.	DRAWING TITLE					
	GENERAL					
P2/GE/0010	DRAWING LIST(1)					
P2/GE/0020	DRAWING LIST(2)					
P2/GE/0030	LOCATION MAP					
P2/GE/0040	STRUCTURAL NOTE					
P2/GE/0050	GENERAL VIEW (1)					
P2/GE/0060	GENERAL VIEW (2)					
P2/GE/0070	GENERAL COORDINATE OF BRIDGE (1)					
P2/GE/0080	GENERAL COORDINATE OF BRIDGE (2)					
P2/GE/0090	GENERAL COORDINATE OF BRIDGE (3)					
	SUPERSTRUCTURE					
APPRO	OACH BRIDGE (VINH LONG SIDE)					
	TMENT1~PIER12(PC I GIRDER)					
P2/AI/0010	GENERAL ARRANGEMENT OF GIRDER (1)					
P2/AI/0020	GENERAL ARRANGEMENT OF GIRDER (2)					
P2/AI/0030	GENERAL ARRANGEMENT OF GIRDER (3)					
P2/A1/0040	GENERAL ARRANGEMENT OF GIRDER (4)					
P2/AI/0050	PC TENDON ARRANGEMENT OF GIRDER (1)					
P2/A1/0060	PC TENDON ARRANGEMENT OF GIRDER (2)					
P2/A1/0070	PC TENDON ARRANGEMENT OF GIRDER (3)					
P2/AI/0080	PC TENDON ARRANGEMENT OF DIAPHRAGM					
P2/A1/0090	BAR ARRANGEMENT OF GIRDER (1)					
P2/AI/0100	BAR ARRANGEMENT OF GIRDER (2)					
P2/A1/0110	BAR ARRANGEMENT OF DIAPHRAGM (1)					
P2/AI/0120	BAR ARRANGEMENT OF DIAPHRAGM (2)					
P2/AI/0130	BAR ARRANGEMENT OF DECK SLAB (1)					
P2/AI/0140	BAR ARRANGEMENT OF DECK SLAB (2)					
P2/A1/0150	BAR ARRANGEMENT OF DECK SLAB (3)					
APPR	OACH BRIDGE (CAN THO SIDE 1)					
]	PIER17~PIER36(PC I GIRDER)					
P2/A1/0160	GENERAL ARRANGEMENT OF GIRDER (1)					
P2/AI/0170	GENERAL ARRANGEMENT OF GIRDER (2)					
P2/AI/0180	GENERAL ARRANGEMENT OF GIRDER (3)					
P2/A1/0190	GENERAL ARRANGEMENT OF GIRDER (4)					
P2/A1/0200	GENERAL ARRANGEMENT OF GIRDER (5)					
P2/AI/0210	GENERAL ARRANGEMENT OF GIRDER (6)					
P2/A1/0220	GENERAL ARRANGEMENT OF GIRDER (7)					
P2/A1/0230	GENERAL ARRANGEMENT OF GIRDER (8)					

DRAWING No.	DRAWING SCHEDULE				
P2/A1/0240	PC TENDON ARRANGEMENT OF GIRDER (1)				
P2/AI/0250	PC TENDON ARRANGEMENT OF GIRDER (2)				
P2/A1/0260	PC TENDON ARRANGEMENT OF GIRDER (3)				
P2/A1/0270	PC TENDON ARRANGEMENT OF GIRDER (4)				
P2/AI/0280	PC TENDON ARRANGEMENT OF GIRDER (5)				
P2/A1/0290	PC TENDON ARRANGEMENT OF GIRDER (6)				
P2/AI/0300	PC TENDON ARRANGEMENT OF GIRDER (7)				
P2/AI/0310	PC TENDON ARRANGEMENT OF GIRDER (8)				
P2/A1/0320	PC TENDON ARRANGEMENT OF DIAPHRAGM				
P2/AI/0330	BAR ARRANGEMENT OF GIRDER (1)				
P2/A1/0340	BAR ARRANGEMENT OF GIRDER (2)				
P2/AI/0350	BAR ARRANGEMENT OF GIRDER (3)				
P2/A1/0360	BAR ARRANGEMENT OF GIRDER (4)				
P2/AI/0370	BAR ARRANGEMENT OF DIAPHRAGM (1)				
P2/A1/0380	BAR ARRANGEMENT OF DIAPHRAGM (2)				
P2/A1/0390	BAR ARRANGEMENT OF DECK SLAB (1)				
P2/AI/0400	BAR ARRANGEMENT OF DECK SLAB (2)				
P2/A1/0410	BAR ARRANGEMENT OF DECK SLAB (3)				
P2/AI/0420	BAR ARRANGEMENT OF DECK SLAB (4)				
P2/A1/0430	BAR ARRANGEMENT OF DECK SLAB (5)				
P2/AI/0440	BAR ARRANGEMENT OF DECK SLAB (6)				
					
APPF	OACH BRIDGE (CAN THO SIDE 2)				
PIE	R41~ABUTMENT2(PC I GIRDER)				
P2/AI/0450	GENERAL ARRANGEMENT OF GIRDER (1)				
P2/A1/0460	GENERAL ARRANGEMENT OF GIRDER (2)				
P2/AI/0470	PC TENDON ARRANGEMENT OF GIRDER (1)				
P2/A1/0480	PC TENDON ARRANGEMENT OF GIRDER (2)				
P2/AI/0490	PC TENDON ARRANGEMENT OF DIAPHRAGM				
P2/A1/0500	BAR ARRANGEMENT OF GIRDER (1)				
P2/AI/0510	BAR ARRANGEMENT OF GIRDER (2)				
P2/A1/0520	BAR ARRANGEMENT OF DIAPHRAGM (1)				
P2/AI/0530	BAR ARRANGEMENT OF DIAPHRAGM (2)				
P2/AI/0540	BAR ARRANGEMENT OF DECK SLAB (1)				
P2/A1/0550	BAR ARRANGEMENT OF DECK SLAB (2)				
P2/AI/0560	BAR ARRANGEMENT OF DECK SLAB (3)				

DRAWING No. DRAWING TITLE						
SUBSTRUCTURE						
	ABUTMENT A1 (A2)					
P2/AC/0570	GENERAL VIEW OF ABUTMENT					
P2/AC/0580	ABUTMENT A2 REINFORCEMENT ARRANGESHEET 2					
P2/AC/0590	ABUTMENT A2 REINFORCEMENT ARRANGESHEET 1					
P2/AC/0600	ABUTMENT A2 DETAILD REINFORCEMENT BARS					
P2/AC/0610	ABUTMENT A1 EARTHWORKS SLOPE PROTECTION					
P2/AC/0620	ABUTMENT A2 EARTHWORKS SLOPE PROTECTION					
P2/AC/0630	DETAILS OF APPROACH SLAB					
	PIER No.1 (29,31,34,42)					
P2/AC/0640	GENERAL VIEW OF PIER No.1 (29,31,34,42)					
P2/AC/0650	REINFORCEMENT ARRANGEMENT OF PIER No.1					
P2/AC/0660	DETAILS REINFORCEMENT BARS OF PIER No.1					
-	PIER No.2 (3,27,28,30,32,33)					
P2/AC/0670	GENERAL VIEW OF PIER No.2 (3,27,28,30,32,33)					
P2/AC/0680	REINFORCEMENT ARRANGEMENT OF PIER No.2					
P2/AC/0690	DETAILED REINFORCEMENT BARS OF PIER No.2					
	PIER No.5 (6,9,21,24,25,35)					
P2/AC/0700	GENERAL VIEW OF PIER No.5 (6,9,21,24,25,35)					
P2/AC/0710	REINFORCEMENT ARRANGEMENT OF PIER No.5					
P2/AC/0720	DETAILS REINFORCEMENT BARS OF PIER No.5					
	PIER No.7 (8,22,23)					
P2/AC/0730	GENERAL VIEW OF PIER No.7 (8,22,23)					
P2/AC/0740	REINFORCEMENT ARRANGEMENT OF PIER No.7					
P2/AC/0750	DETAILS REINFORCEMENT BARS OF PIER No.7					
	PIER No.10 (11,19,20)					
P2/AC/0760	GENERAL VIEW OF PIER No.10 (11,19,20)					
P2/AC/0770	REINFORCEMENT ARRANGEMENT OF PIER No.10 - 1					
P2/AC/0780	REINFORCEMENT ARRANGEMENT OF PIER No. 10 - 2					
P2/AC/0790	DETAILS REINFORCEMENT BARS OF PIER No.10					
	PIER No.18					
P2/AC/0800	GENERAL VIEW OF PIER No.18					
P2/AC/0810	REINFORCEMENT ARRANGEMENT OF PIER No.18 - 1					
P2/AC/0820	REINFORCEMENT ARRANGEMENT OF PIER No.18 - 2					
P2/AC/0830	DETAILS REINFORCEMENT BARS OF PIER No.18					
	PIER No.26 (4)					
P2/AC/0840	GENERAL VIEW OF PIER No.26 (4)					
P2/AC/0850	REINFORCEMENT ARRANGEMENT OF PIER No.26					
P2/AC/0860	DETAILS REINFORCEMENT BARS OF PIER No.26					

PROJECT NAME
DETAILED DESIGN OF
THE CAN THO BRIDGE
CONSTRUCTION PROJECT


DRAWING LIST(2)

DRAWING No.	DRAWING TITLE
	PILE
P2/AI/0870	A - 1 BORED CAST-IN-SITU PILE
P2/A1/0880	A - 2 BORED CAST-IN-SITU PILE \$ 1500mm-L=52m
P2/A1/0890	P - 1 (10,11)BORED CAST-IN-SITU PILE φ 1500mm-L=57m
P2/AI/0900	P - 2 (3,7,8)BORED CAST-IN-SITU PILE φ 1500mm-L=57m
P2/AI/0910	P - 4 BORED CAST-IN-SITU PILE
P2/AI/0920	P - 5 (6,9)BORED CAST-IN-SITU PILE \$1500mm-L=57m
P2/AI/0930	P - 18 BORED CAST-IN-SITU PILE
P2/AI/0940	P - 19 BORED CAST-IN-SITU PILE
P2/AI/0950	P - 20 BORED CAST-IN-SITU PILE \$ 1500mm-L=64m
P2/AI/0960	P - 21 BORED CAST-IN-SITU PILE \$ 1500mm-L=64m
P2/AI/0970	P - 22 BORED CAST-IN-SITU PILE
P2/A1/0980	P - 23 BORED CAST-IN-SITU PILE \$ 1500mm-L=68m
P2/AI/0990	P - 24 BORED CAST-IN-SITU PILE \$ 1500:nm-L=69m
P2/AI/1000	P - 25 BORED CAST-IN-SITU PILE
P2/AI/1010	P - 26 BORED CAST-IN-SITU PILE \$ 1500mm-L=68m
P2/AI/1020	P - 27 (28) BORED CAST-IN-SITU PILE & 1500mm-L=71m
P2/AI/1030	P - 29 BORED CAST-IN-SITU PILE
P2/AI/1040	P - 30 (32) BORED CAST-IN-SITU PILE
P2/A1/1050	P - 31 BORED CAST-IN-SITU PILE
P2/AI/1060	P - 33 BORED CAST-IN-SITU PILE
P2/A1/1070	P - 34 BORED CAST-IN-SITU PILE φ 1500mm-L=75m
P2/A1/1080	P - 35 BORED CAST-IN-SITU PILE \$ 1500mm-L=75m
P2/AI/1090	P - 42 BORED CAST-IN-SITU PILE ¢ 1500mm-L=61m
L	<u></u>

DRAWING No.	DRAWING SCHEDULE
	MISCELLANEOUS
P2/MC/0010	DETAILS OF BEARING (1)
P2/MC/0020	DETAILS OF BEARING (2)
P2/MC/0030	DETAILS OF BEARING (3)
P2/MC/0040	DETAILS OF BEARING (4)
P2/MC/0050	DETAILS OF BEARING (5)
P2/MC/0060	DETAILS OF BEARING (6)
P2/MC/0070	DETAILS OF BEARING (7)
P2/MC/0080	DETAIL OF EXPANSION JOINT
P2/MC/0090	BAR ARRANGEMENT OF BARRIER (1)
P2/MC/0100	BAR ARRANGEMENT OF BARRIER (2)
P2/MC/0110	BAR ARRANGEMENT OF BARRIER (3)
P2/MC/0120	BAR ARRANGEMENT OF BARRIER (4)
P2/MC/0130	BAR ARRANGEMENT OF CENTRAL REVERSE
P2/MC/0140	TEMPORARY NAVIGATION MARKER BUOYS SYSTEM
P2/MC/0150	PERMANENT NAVIGATIONAL BRIDGE LIGHT AND
	MARKER BUOYS SYSTEM
P2/MC/0160	ROAD LIGHTING
P2/MC/0170	ROAD LIGHTING LAYOUT (1)
P2/MC/0180	ROAD LIGHTING LAYOUT (2)
P2/MC/0190	ROAD LIGHTING LAYOUT (3)
P2/MC/0200	ROAD LIGHTING LAYOUT (4)
P2/MC/0210	POWER RECEIVING SYSTEM
P2/MC/0220	DETAIL OF POWER RECEIVING SYSTEM
P2/MC/0230	LAYOUT OF DRAINAGE (1)
P2/MC/0240	LAYOUT OF DRAINAGE (2)
P2/MC/0250	LAYOUT OF DRAINAGE (3)
P2/MC/0260	LAYOUT OF DRAINAGE (4)
P2/MC/0270	DETAIL OF DRAINAGE FACILITY

PROJECT NAME	
DETAILED DESIGN OF	
THE CAN THO BRIDGE	l
CONSTRUCTION PROJECT	ı

I.GENERAL

STRUCTURAL NOTES

1. GENERAL

- 1.1. UNLESS OTHERWISE NOTED THESE NOTES ARE APPLIED TO ALL DRAWINGS.
- 1.2. THE SCALE INDICATED IN DRAWINGS IS FOR 'A3' SIZE.
- 1.3. ALL CHAINAGES, COORDIANATES, ELEVATIONS ARE IN METRES.
 ALL DIMENSIONS ARE IN MILLIMETRES UNLESS OTHERWISE INDICATED.
- 1.4. The elevation system is refered to the mean sea datum elevation at hondau do son. Coordinate refer to the national crid system.

2. DESIGN CRITERIA & LOADS

2.1. DESIGN STANDARDS:

AASHTO 1998 — LRFD BRIDGE DESIGN SPECIFICATIONS
 AASHTO GUIDE SPECIFICATIONS FOR DESIGN AND CONSTRUCTION

OF SEGMENTAL CONCRETE BRIDGES

- JAPANESE HICHWAY AND BRIDGE STANDARDS 1996

VIETNAMESE HIGHWAY BRIDGES STANDARDS 1979

2.2. DESIGN LOADS:

- B_LOADING IN ACCORDANCE WITH JAPANESE CODE

-- BASIC WIND VELOCITY : 160 KM/H -- AASHTO LRFD 98 -- LATERAL SEISMIC RESPONSE COEFFICIENT : 0.12

: ±15°C - UNIFORM TEMPERATURE - TEMPERATURE DIFFERENTIAL

3, CONCRETE

3.1. UNLESS OTHERWISE INDECATED CONCRETE SHALL BE OF THE FOLLOWING GRADES BASED ON

CONCRETE CLASS	STRENGTH fc MPa	kind of structure in use
В	40	PC BOX GRDER, 1-GRDER
¢	35	DIAPHRACM FOR PC-I GIRDER
Ð	30	IN-SITU DECK SLAB, BORED PILE
E	24	PIER, ABUTMENT, PILE CAP, RETAINING WALL, PARAPET, BARRIER, KERB
G	15	LEAN CONCRETE

- 3.2. WHEREVER FORMS ARE NOT USED REINFORCED CONCRETE SHALL BE PLACED AGAINST 100mm MINIMUM THICKNESS LEAN CONCRETE.
- 3.3. ALL EXPOSED EDGES OF CONCRETE SHALL BE CHAMFERED 20x20mm UNLESS OTHERWISE NOTED.
- 3.4, ALL CONSTRUCTION JOINTS ARE TO BE LOCATED AS SHOWN ON THE DRAWINGS OR AS ENGINEER'S

4. REINFORCEMENT

- 4.1. REINFORCEMENT SHALL BE DEFORMED, EXCEPT THAT PLAIN BARS OR PLAIN WIRE MAY BE USED FOR SPIRALS, HOOPS, AND WIRE FABRIC.
- 4.2. REINFORCEMENT SHALL BE SD390 OR EQUIVALENT. PLAIN ROUND BAR WITH $f_X(min)$ 250 MPa and high yield deformed bars with yield strength not less than $f_X(min)$ 390 MPa shall be used.
- 4.3. REINFORCEMENT IS NOTED ON THE DRAWINGS AS FOLLOWS:

•	(0)	D25 -	25146			
NAME OF BAR	\equiv	J_		LENGTH	0F	BAF

4.4. ALL REINFORCEMENTS ARE SHOWN AS

4.5. SPLICES IN ADJACENT BARS SHALL BE STAGGERED EXCEPT WHERE NOTED ON THE DRAWNGS. SPLICES OTHER THAN THOSE SHOWN ON THE DRAWNGS MAY ONLY BE MADE WITH THE ENGINEER'S

4. REINFORCEMENT (CONTINUED)

- 4.6. REINFORCEMENTS INDECATED AS RANDOM LENGTH MAY BE LAP SPLICED AS NECESSARY SUBJECT TO THE FOLLOWING CONDITIONS:

 - A) LAP SPLICES IN ADJACENT BARS SHALL BE STAGGERED

 B) MINIMUM LAP LENGTHS SHALL BE IN ACCORDANCE WITH AASHTO LRFD 1998, EXCEPT

 BORED PILE SHALL BE 40 BAR DIAMETERS

 C) NOT MORE THAN ONE BAR PER LINE IS TO BE SHORTER THAN 12 METRES FOR ANY DIAMETER
- 4.7. UNLESS OTHERWISE INDECATED ON THE DRAWINGS, THE MINIMUM COVER TO ANY REINFORCEMENT SHALL BE AS FOLLOWS:

75mm Bored Pile, retaining wall & abutment 50mm Pile cap, deck slab, pier & abutment, parapet, kerb, approach slab, etc... Tolerance on cover is $\pm/-5$ mm

5. PRESTRESSING

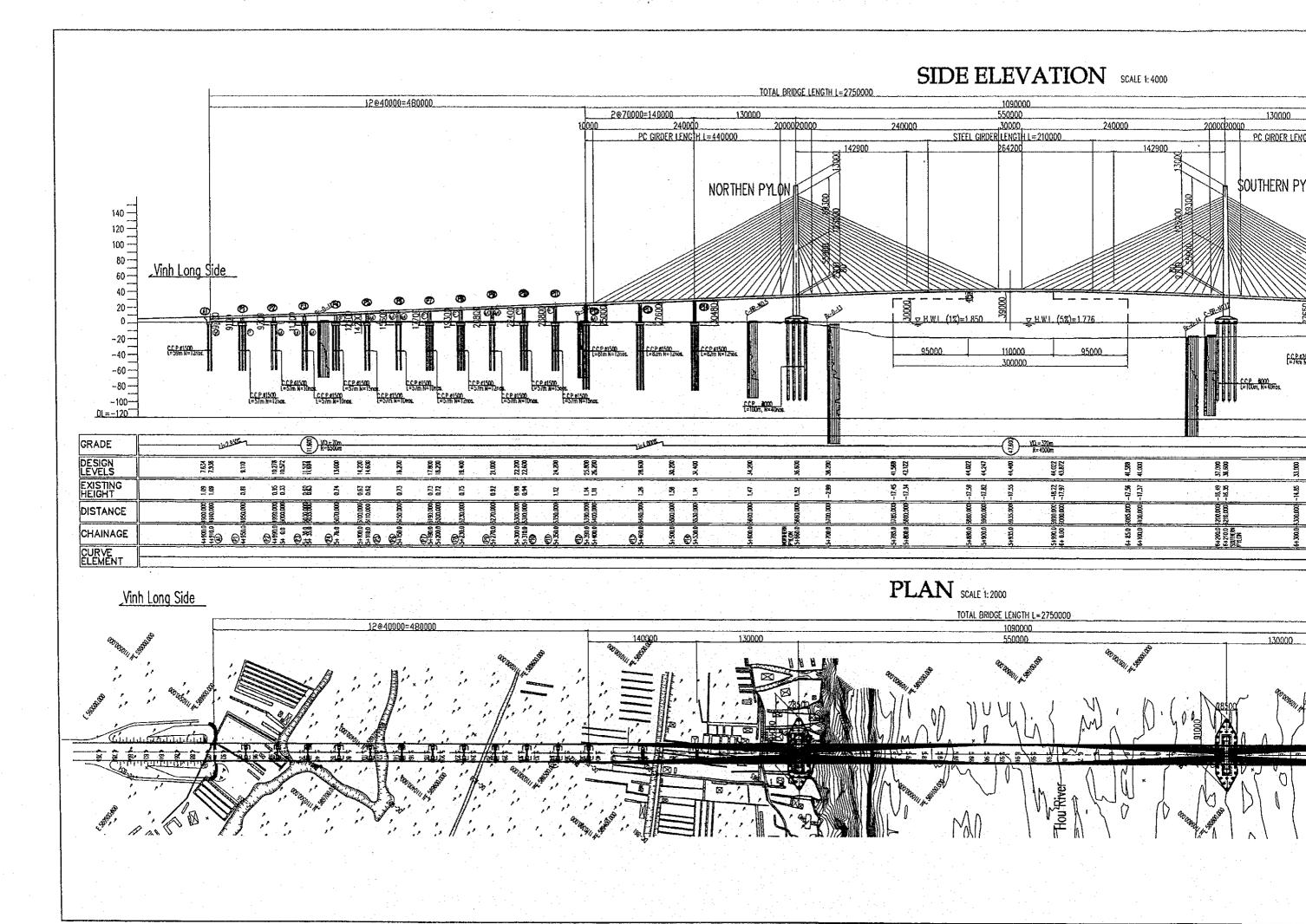
5.1. NOMINAL DIAMETER, YIELD AND TENSILE STRENGTH OF PRESTRESSED TENDON ARE SPECIFIED AS FOLLOWS:

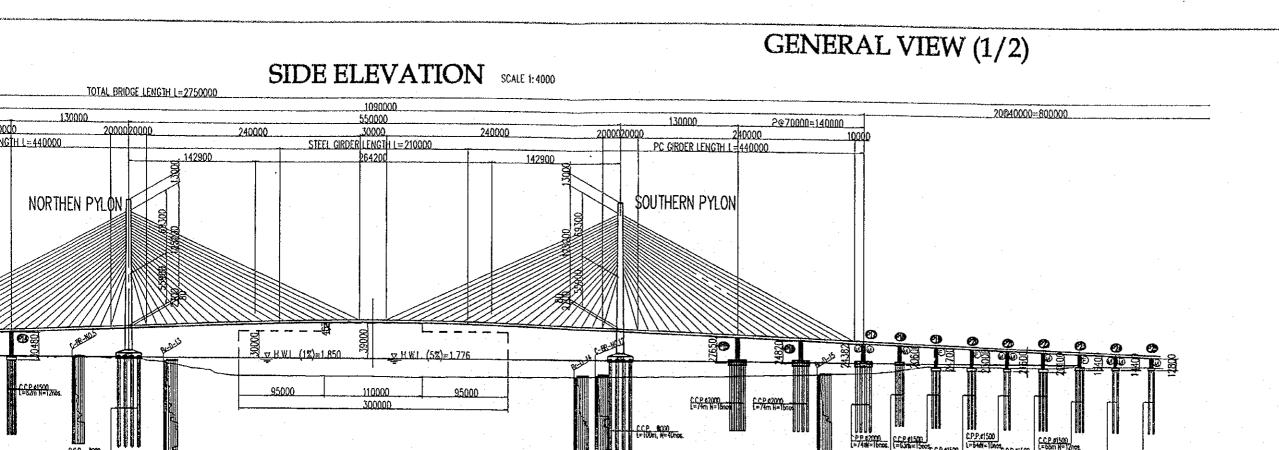
UTILIZATION	HOMINAL DIAMETER (inm)	TENSILE Strength (MPQ)	YIELD Strength (MPa)	JACKING Force (kn)
INTERNAL CABLE	12\$12.7	1860	1570	1650
transverse cable	4\$12.7	1810	1570	550

- 5.2. PRESTRESSED TENDONS SHALL BE FORMED FROM THE STRANDS OF 12.7mm DIAMETER MADE BY 7 LOW RELAXATION WIRES GRADE 270 CORRESPONDING WITH ASTM A416M. THE ACTUAL TENDON SIZES AND INITIAL PRESTRESSED FORCE ARE GIVEN ON THE DETAIL DRAWINGS.
- 5.3. PRESTRESSED SYSTEMS TO BE ADOPTED SHALL BE IN ACCORDANCE WITH THE ENGINEER'S APPROVAL
- 5.4. DUCTS FOR INTERNAL TENDONS SHALL BE SEMI-RIGID GALVANISED SHEATHING UNLESS OTHERWSE NOTED AND SHALL BE RIGIDLY SUPPORTED AT NOT MORE THAN 750mm FROM CENTRES.
- 5.5. THE METHOD TO FIX THE DUCTS AND THE METHOD OF JOINTING AND SEALING OF DUCTS AT CONSTRUCTION
- 5.6. TENDON PROFILES ARE SPECIFIED TO THE CENTER OF SHEATHING. THE TENDON ARE TO BE PLACED TO SMOOTH PROFILES PASSING THROUGH THE SPECIFIED POINTS.
- 5.7. EACH TENDON SHALL BE KEPT STRAIGHT FOR A MINIMUM LENGTH OF 1000mm FROM ANCHORAGE FACES.
- 5.8. GROUTING POINTS SHALL BE PROVIDED AT ALL CROWN POINTS, SAG POINTS, ANCHORAGES AND DEVIATORS.

6. WATERPROOF

- 6.1. ALL REINFORCED CONCRETE SURFACES IN CONTACT WITH BACKFILL SHALL BE COATED WITH TWO COATS OF BITUMINOUS MEMBRANE.
- 6.2. THE BRIDGE DECK SHALL BE WATERPROOFED WITH APPROVED PROPRIETARY WATERPROOFING SYSTEM IN ACCORDANCE WITH MANUFACTURER RECOMMENDATIONS.


7. SUPERSTRUCTURE


- 7.1. SUPERSTRUCTURE IS DESIGNED ON THE BASIS OF CONSTRUCTION SEQUENCE DETAILED ON THE DRAWINGS. ANY CHANGES TO THE CONSTRUCTION SEQUENCE WILL REQUIRE A RE-DESIGN OF THE BRIDGE.
- 7.2. THE SUPERSTRUCTURE DESIGN IS BASED ON THE USE OF INTERNAL PRESTRESSING WITH THE FOLLOWING PARAMETERS:

COEFFICIENT OF FRICTION - 1/RAD	0.25
WOBBLE FACTOR K - 1/m (FOR INTERNAL ONLY)	0.004
PULL-IN	5 mm
RELATIVE HUMIDITY	85%

7.3. ANCHOR BAR SHALL BE CONFORMING TO THE REQUIREMENTS OF \$\$400 OF JIS G3101.

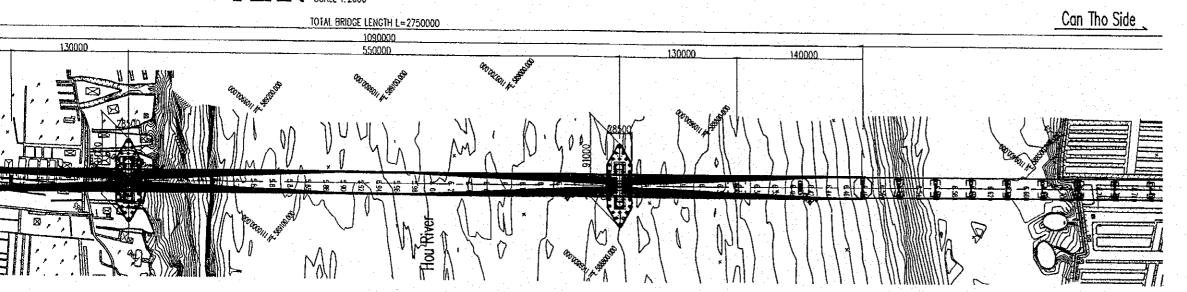
Г	PROJECT NAME	IMPLEMENTATION AGENCY	EXECUTING AGENCY	JICA STUDY TEAM		PREPARED BY	CHECKED BY	APPROVED BY	DRAWING TITLE	DWG NO.
上	DETAILED DESIGN OF	JAPAN INTERNATIONAL	SOCIALIST REPUBLIC OF VIET NAM	A	NAME	S. Kiguchi	K.Matsumoto	K. Enomoto	APPROACH BRIDGE	
1	THE CAN THO BRIDGE	COOPERATION AGENCY	MINISTRY OF TRANSPORT (MOT)	(NK) NIPPON KOEI CO.,LTD.	SIGNATURE	5 Kimah	K. Hatunst	Ulling	GENERAL	P2/GE/0040
1	CONSTRUCTION PROJECT	(JICA)	MY THUAN PROJECT MANAGEMENT UNIT	9)	DATE	20/9/2000	29/9/2000	5/10/2000	STRUCTURAL NOTES	

-9.55 -7.39 -5.80

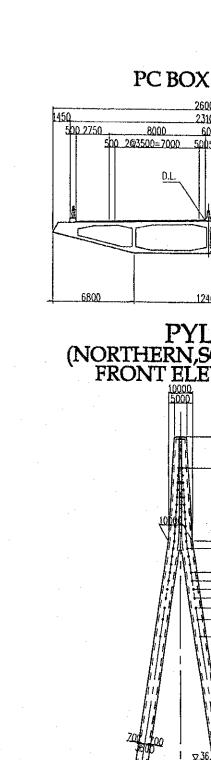
PLAN SCALE 1: 2000

[4]

32


5

44,022


VO. = 120m R= 4000m

1,588

1000

5+200.0 5+210.0 00.016.80

PROJECT NAME
DETAILED DESIGN OF
THE CAN THO BRIDGE
CONSTRUCTION PROJECT

IMPLEMENTATION AGENCY

JAPAN INTERNATIONAL

COOPERATION AGENCY

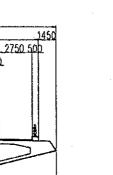
(JICA)

된 보 1.776

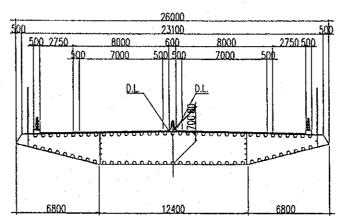
SUPERSTRUCTURE SCALE 1: 300

MAIN BRIDGE

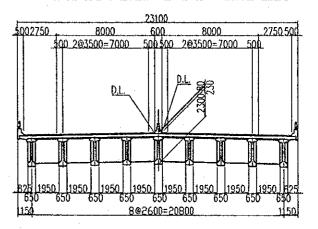
PC BOX GIRDER

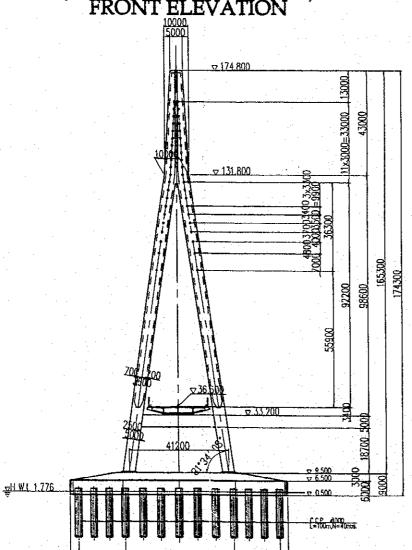

23100

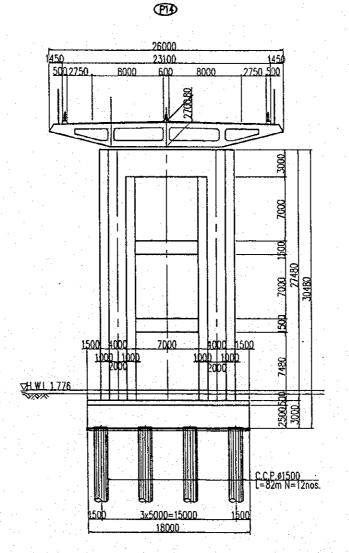
600 8000 500500 293500=7000 500

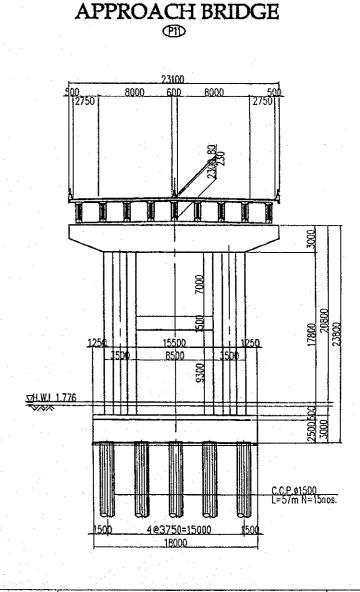

8000

500 2@3500=7000


500.2750


STEEL BOX GIRDER


APPROACH BRIDGE CONNECTED PC I GIRDER


PYLON SCALE 1:1500 (NORTHERN, SOUTHERN) FRONT ELEVATION

MAIN BRIDGE

SUBSTRUCTURE SCALE 1:400

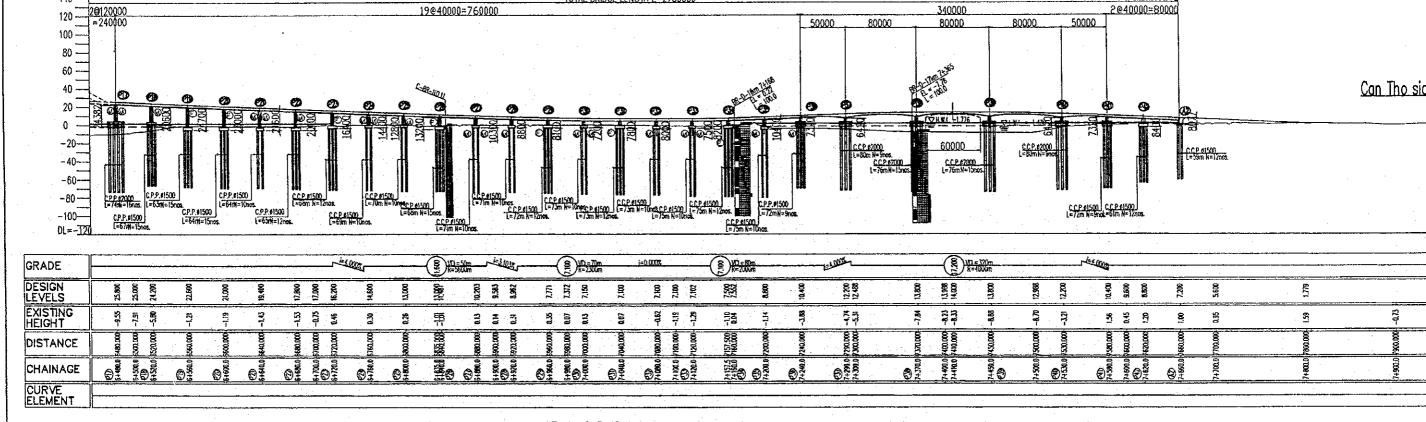
PROJECT NAME
DETAILED DESIGN OF
THE CAN THO BRIDGE
CONSTRUCTION PROJECT

92

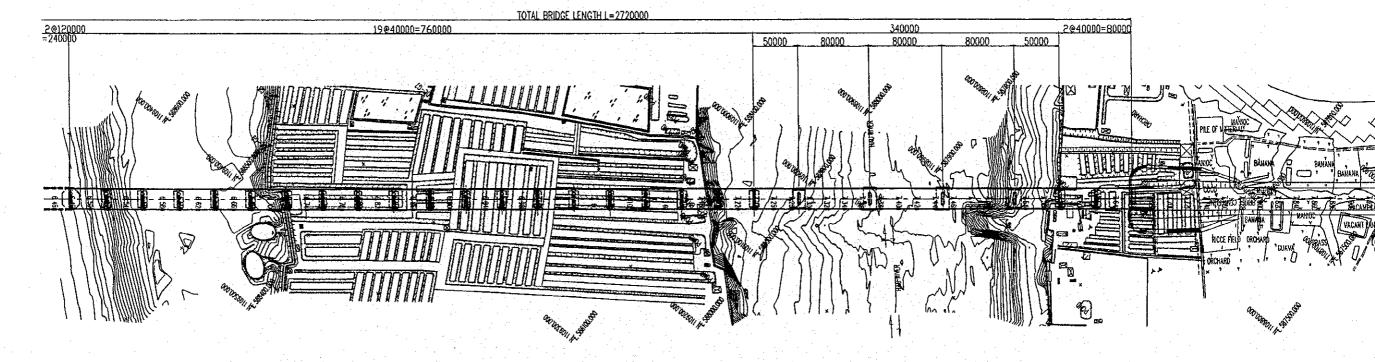
Can Tho Side

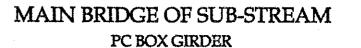
IMP	EMENTATION AGENCY
	JAPAN INTERNATIONAL COOPERATION AGENCY
J	(JICA)

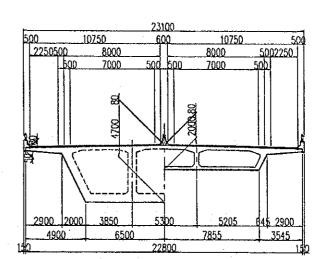
EXECUTING AGENCY
SOCIALIST REPUBLIC OF VIET NAM
MINISTRY OF TRANSPORT (MOT)
MY THUAN PROJECT MANAGEMENT UNIT

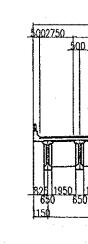

. P				
NIP	PON	KOE	CO.L	T
			- 4	

JICA STUDY TEAM

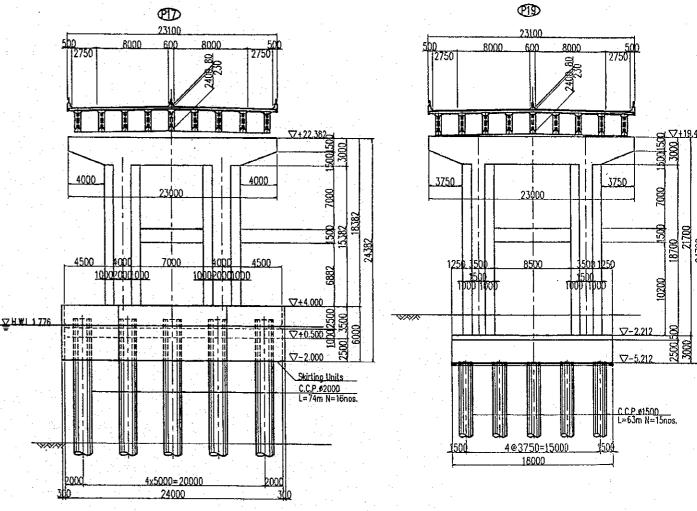

	FREFARED DI	CURCKED DI	APPROVED 51
NAME	S. Kiguchi	K.Matsumoto	K. Enemote
NATURE	5. Kinah	K. Hetrumoto	1.
DATE	20/9/2000	29/9/2000	5/10/2000


SIDE ELEVATION SCALE 1:4000


TOTAL BRIDGE LENGTH L=2750000

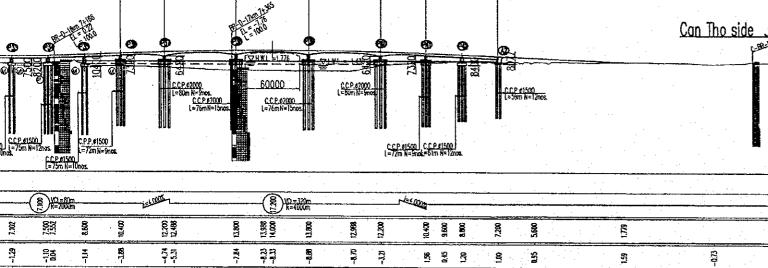


PLAN SCALE 1: 2000

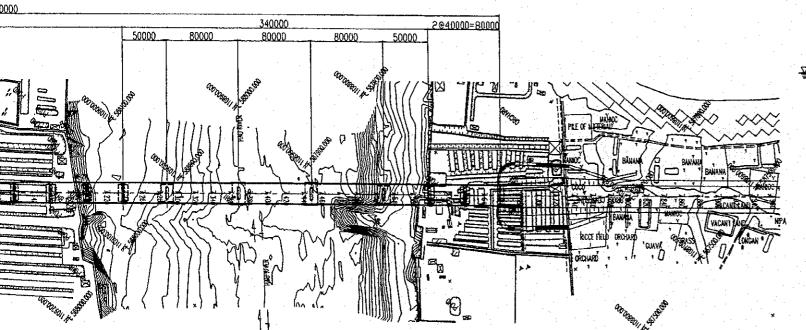


SUBSTRUCT

	PROJECT NAME
	DETAILED DESIGN OF
	THE CAN THO BRIDGE
-	CONSTRUCTION PROJECT

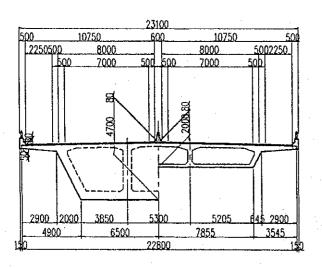

IMPLEMENTATION AGENCY
JAPAN INTERNATIONAL
COOPERATION AGENCY

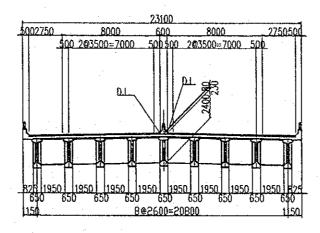
EXECUTING AGENCY SOCIALIST REPUBLIC OF VIET NAM MINISTRY OF TRANSPORT (MOT) MY THUAN PROJECT MANAGEMENT UNIT


50000

80000

1:4000

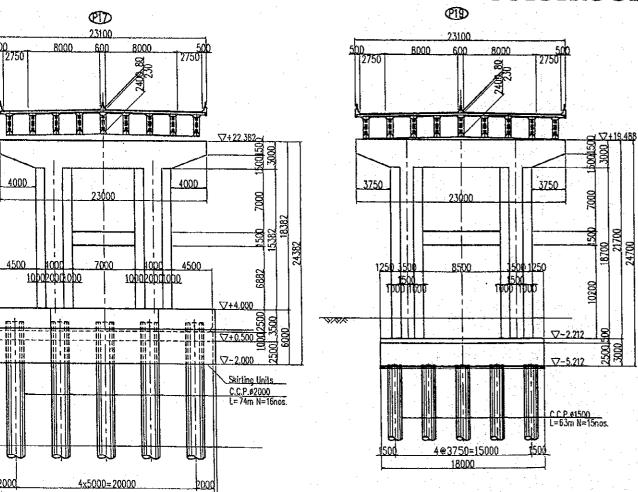

50000

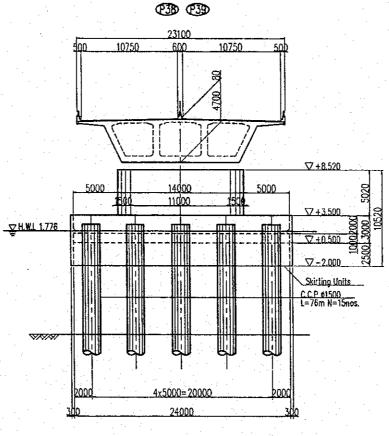

AL VIEW (2/2)

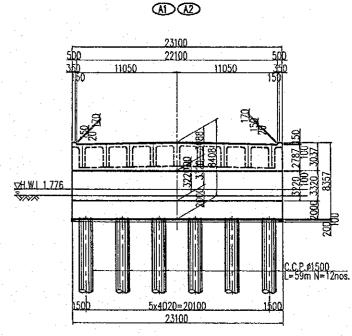
SUPERSTRUCTURE SCALE 1: 300

MAIN BRIDGE OF SUB-STREAM PC BOX GIRDER

APPROACH BRIDGE PC BOX GIRDER


DESIGN CRITERIA


HYBRID CABLE STAYED BRIDGE
L≈1090.000m
2070m+130m+550m+130m+2@70m
CARRIAGE WAY WDTH=21.5m (10.75m+10.75m)
B-LIVE LOAD
i=20/(L+50)
Kh=0.12
90' 00'00'
R=∞
4.0% V.C.L.=320m


MATERIALS

	TATU		ريد
		GIRDER	øck=50MPa
		PYLON	ock=40MPa
į	CONCRETE	PILECAP OF PYLON	ock=30MPa
		SUBSTRUCTURE	øck=25MPa
ĺ			ock=30MPa
	PC STEEL	GRDER	12S15.2B(SWPR7B),PC Bar Dia.32mm
	ru Siere	STAY CABLE	15.2B (SWPR7B)
	STEEL	GRDER	SS400,SMA400,SMA490

SUBSTRUCTURE SCALE 1:400

PROJECT NAME	IMPI.	EMEN
DETAILED DESIGN OF THE CAN THO BRIDGE CONSTRUCTION PROJECT		JAPAN COOP

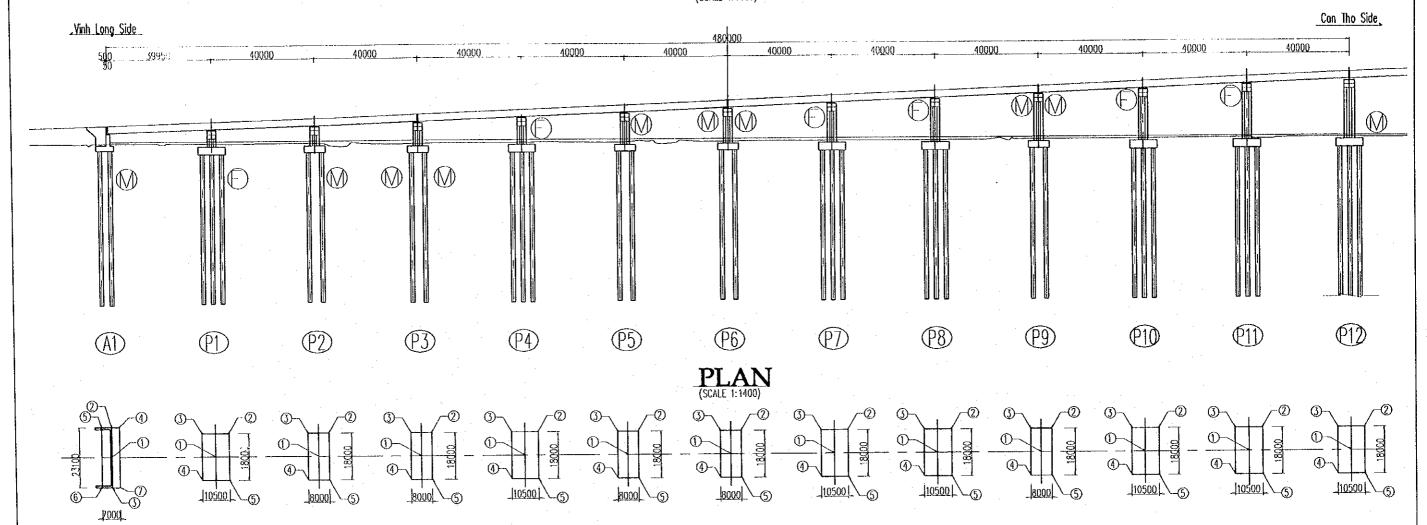
IMPLEMENTATION AGENCY

JAPAN INTERNATIONAL

COOPERATION AGENCY

(JICA)

EXECUTING AGENCY
SOCIALIST REPUBLIC OF VIET NAM
MINISTRY OF TRANSPORT (MOT)
MY THUAN PROJECT MANAGEMENT UNIT


JICA STUDY TEAM

NIPPON KOEI CO.,LTD.

DRAWING TITLE DWG NO.

CABLE STAYED BRIDGE
GENERAL P2/GE/000
GENERAL VIEW (2)

SIDE ELEVATION (SCALE 1:1400)

COORDINATES TABLE

F	T	·····	. 0		Г	2	. ρ	3	1 P	4	Р	5	P	6	ρ	7	P	8'
	NI NI	F	NI NI	F .	N	F	N N	Ĭ F	N	E	N ·	£	N	Ę	N	£	N_	E
1	1110529 068	589844.755	1110503.777	589813.764	1110478.487	589782.774	1110453.197	589751.784	1110427.906	589720.794	1110402.616	589689.803	1110377.325	589658.813	1110352.035	589627.823	1110326.745	589596.833
7	1110520.119	589852.057	1110493.485	589815.387	1110468.985	589785.365	1110443.695	589754.375	1110417.614	589722.417	1110393.114	589692,395	1110367.824	589661.405	1110341.743	589629.446	1110316.452	589598.456
3	1110538.016	589837.452	1110500.124	589823.522	1110474.043	589791.564	1110448.753	589760.573	1110424.253	589730.551	1110398.172	589698,593	1110372.882	589667.603	1110348.382	589637,581	1110323,091	589606.591
1	1110518.223	589849.733	1110514.070	589812.141	1110487,989	589780.183	1110462.698	589749.193	1110438.198	589719.171	1110412.118	589687.212	1110386.827	589656.222	1110362.327	589626.200	1110337.037	589595.210
5	1110522.649	589855.156	1110507.431	589804.007	1110482.931	589773.985	1110457.640	589742.995	1110431.560	589711.036	1110407.050	589681.014	1110381,769	589650.024	1110355.688	589618,065	1110330.398	589587.075
6	1110540.545	589840.551									·			·				
7	1110536.120	589835.128							<u> </u>			ļ	<u> </u>				ļ	<u></u>

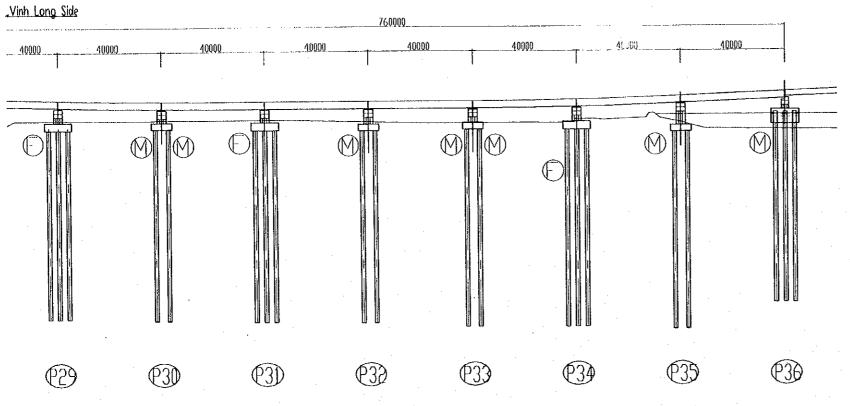
	Р	P10		0	P1	1 .	P12		
	N	E	N	E	N	Ε	N	E	
1	1110301.454	589565,843	1110276.164	589534.852	1110250.873	589503.862	1110225.583	589472.872	
2	1110291.952	589568,434	1110265.871	589536.475	1110240.581	589505.485	1110215.291	589474.495	
3	1110297.010	589574.632	1110272.510	589544.610	1110247.220	589513.620	1110221.929	589482.630	
4	1110310.956	589563.251	1110286.456	589533.229	1110261.165	589502.239	1110235.875	589471.249	
5	1110305.898	589557.053	1110279.817	589525.094	1110254.527	589494.104	1110229,236	589463.114	

PROTECT NAME	IMPLEMENTATION AGENCY	EXECUTING AGENCY	JICA STUDY TEAM		PREPARED BY	CHECKED BY APPROVED BY	DRAWING TITLE	DWG NO.
DETAILED DESIGN OF	IAPAN INTERNATIONAL	SOCIALIST REPUBLIC OF VIET NAM	A	NAME	S. Kiguchi	K.Matsumoto K. Enomoto	APPROACH BRIDGE	
THE CAN THO BRIDGE	COOPERATION AGENCY	MINISTRY OF TRANSPORT (MOT)	(NK) NIPPON KOEI CO.,LTD.	SKINATURE	5 Kienah	K. Hateret V. Lond	GENERAL COORDINATE OF BRIDGE(1)	P2/GE/0070
CONSTRUCTION PROJECT	(JICA)	MY THUAN PROJECT MANAGEMENT UNIT	9	DATE	20/9/2000	29/9/2000 5/10/2000		<u></u>

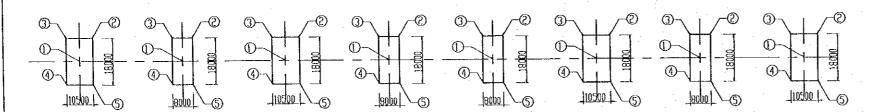
Can Tho Side Vinh Long Side MM \bigcirc (P29 **P18** (PI) PLAN (SCALE 14400) 10500 110500 [_(5) 8000 8000 110500 L/S) 10500 **COORDINATES TABLE** | No.
 588442.447
 1109359.386
 588411.456
 1109334.095
 588380.466

 588444.070
 1109349.884
 588414.048
 1109324.594
 588383.057

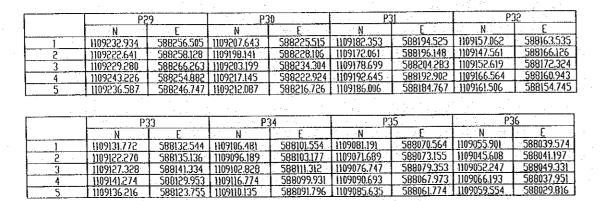
 588452.204
 1109354.942
 588420.246
 1109329.652
 588389.256

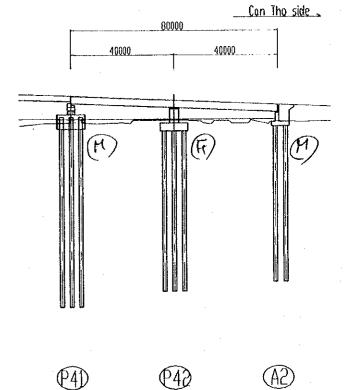

 588408.824
 1109368.888
 588408.865
 1109343.597
 588377.875

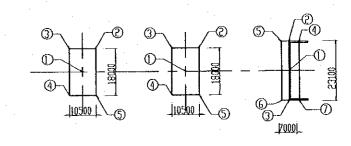
 588363.034
 588363.037
 588377.875
 588377.875
 588377.875
 1109536.419 588628.388 1109511.128 1109525.764 588624.821 1109500.836 1109524.909 588633.264 1109507.475 1109529.335 | 588638.687 1109521.420


PROTECT NAME	IMPLEMENTATION AGENCY	EXECUTING AGENCY	JICA STUDY TRAM		PREPARED BY	CHECKED BY A	PPROVED BY	DRAWING TITLE	DWG NO.	1
DETAILED DESIGN OF	IAPAN INTERNATIONAL	SOCIALIST REPUBLIC OF VIET NAM	<u> </u>	NAME	S. Kiguchi	K.Matsumoto	K. Enomoto	APPROACH BRIDGE	1	
THE CAN THO BRIDGE	JICE COOPERATION AGENCY		(NK)) NIPPON KOEI CO.,LTD.	SICNATURE	S. Kienal	K. Hoterart	لسار	GENERAL COORDINATE OF BRIDGE(2)	P2/GE/0080	
CONSTRUCTION PROTECT	(JICA)	MY THUAN PROJECT MANAGEMENT UNIT		DATE	20/9/2000	29/9/2000	5/10/2000		J	1

SIDE ELEVATION




PLAN (SCALE 1:1400)



COORDINATES TABLE

P41-A2

	P41		P	12	SA		
	N	Ę	· N	£	N	Ε	
1	1108840.932	587776.157	1108815.642	587745.166	1108790.351	587714.176	
. 5	1108830.640	587777.780	1108805.349	587746.789	1108781.403	587721.479	
3	1108837,279	587785.915	1108811.980	587754.924	1108799,300	587706.874	
4	1108851.224	587774.534	1108825.934	587743.544	110877B.B74	587718.380	
5	1108844.585	587766.399	1108819.295	587735.409	1108783.300	587723.803	
6					1108801.196	587709.198	
7					1108796.771	587703.775	

١	PROJECT NAME	IMPL	EMENTATION AGENCY	EXECUTING AGENCY	JICA STUDY TRAM		PREPARED BY	CHECKED BY	APPROVED BY	DRAWING TITLE	DWG NO.
Ì	DETAILED DESIGN OF		IAPAN INTERNATIONAL	SOCIALIST REPUBLIC OF VIET NAM	A	NAME	S. Kiguchi	K.Matsumoto	K. Enomoto	APPROACH BRIDGE	
	THE CAN THO BRIDGE		COOPERATION AGENCY	MINISTRY OF TRANSPORT (MOT)	(NK) NIPPON KOEI CO,LITO.	SICNATURE	5 Kipuah	K. Hatumot	Vilmes	GENERAL COORDINATE OF BRIDGE(3)	P2/GE/0090
1	CONSTRUCTION PROJECT		(JICA)	MY THUAN PROJECT MANAGEMENT UNIT		DATE	20/9/2000	29/9/2000	5/10/2000	<u> </u>	