CHAPTER 3

PRESENT SITUATION OF ELECTRIC POWER SECTOR

Chapter 3 PRESENT SITUATION OF ELECTRIC POWER SECTOR

3.1 General

Azenerji, a joint stock company with its shares 100 % owned by the Azerbaijan Government, is the monopolistic power supply operator in the country covering power generation, transmission and distribution. Azenerji also supplies steam and heat produced in the Combined Heat and Power plant (CHP) to factories and local heat supply organizations. Azenerji takes the following activities:

- (a) Preparation of development plans for a power generation, transmission and distribution
- (b) Development, operation and maintenance of power facilities
- (c) Promotion of efficient use of energy by commercial, industrial, transportation, agriculture and residential consumers

In the three Cities of Baku, Sumgait, and Ganja, the Cities purchase the energy from Azenerji and distribute it to consumers. A dual energy distribution system functions in these three cities, under which the energy is directly distributed by Azenerji to bulk consumers, especially large factories, whereas the rest is distributed by the municipal governments¹.

Figure I.3.1-1 shows the organizational structure of Azenerji. For the operation and maintenance of energy supply system, and sales of energy, the entire country is divided into 6 blocks, and into 56 operating and marketing area with establishing the branch called Power and Heat Network Enterprise. Each branch is in charge of operating and maintaining the transmission, substation and distribution facilities, metering, and billing and collecting within its jurisdiction. The maintenance work, which each branch is responsible for, includes monitoring, detection of the accidents, inspection, and repairing. The planning, design, and construction of energy supply facilities are under the jurisdiction of the head office.

3.2 Power Supply Facilities

3.2.1 Power Generation Facilities

The power generation capacity in Azerbaijan is 5,071 MW, comprising 4,224 MW by thermal power

¹ As explained in Section 1.5, As a result of Presidential Decree issued on June 14 2000, all distribution facilities with less than 35 kV in Baku City, which had been possessed by Azenerji has been transferred to JSC BEN, and the said dual energy distribution is dissolved.

generation and 847 MW by hydropower generation. There are three types of power generation plants: thermal power plants and CHP with natural gas and heavy oil as fuel, and hydropower stations. The thermal power plants include the Az-Gres, Ali-Bayramli and Severnaya thermal plants. There are 4 CHPs: Baku-1, Baku-2, Sumgait-1 and Sumgait-2. The major hydropower stations are Shamkhir, Mingechaur, Varvara (utilized for counter-adjustment against Mingechaur hydropower station) and Tar-tar along the country's largest Kura River and Araz hydropower station on the Araz River (refer to Appendix I.3.2-2). There are several hydropower plants installed on the waterway for irrigation purpose in various places. The Tar-tar hydropower station, however, is at present controlled by Armenia. The CHP with 71 MW capacity in Ganja, not listed in Appendix I.3.2-1, was sold to a British company in 1995 together with the country's largest aluminum plant and has not been providing electricity to the national grid since 1996.

Table 1.3.2-1 Power generation facilities in Azerbaijan

Туре	Numbers	Total installed capacity	Effective capacity
Thermal power	3	3,650 MW	3,010 MW
CHP	4	574 MW	256 MW
(Subtotal)	(7)	(4,224 MW)	(3,266 MW)
Hydropower	11	847 MW	509 MW
Total	18	5,071 MW	3,775 MW

(Source: Azenerji)

The problem of Azerbaijan's power generation facilities lies in the use of the facilities for a long period far beyond the technical life-span of the facilities, except the Az-Gres thermal power plant with the largest power generation capacity in Azerbaijan. This problem is especially serious for thermal power plants, which are always exposed to heavy heat stress. The lifetime of the outdated facilities is even shortened by improper and inadequate operation and maintenance work due to lack of funds and spare parts. This has resulted in a drop in heat efficiency. The outdated power plants consume about two times as much fuel (0.4 kg of fuel per kWh in 1998) compared to the plants with the latest technology. They are not equipped with discharge smoke/SO² eliminating device, causing environmental concern.

The hydropower stations are not as much exposed to heat stress as thermal power plants and are durable for a longer time. Hydropower generation still plays an important role in Azerbaijan's power generation. The Yenikand hydropower station is currently under construction with the financial assistance of EBRD (to be completed within the year 2000). The oldest Mingechaur hydropower station with 360 MW capacity is presently under rehabilitation with the financial assistance by the World Bank and EBRD, replacing the obsolete water turbine and generators to increase the capacity.

In addition, at the Severnaya power plant (the operation started in 1954, and only unit 7th are currently working), combined cycle power plant (400 MW) is being developed with the financial assistance by the Japanese Government.

3.2.2 Power Transmission Facilities

The Azerbaijan's energy transmission system was developed as a part of the Trans-Caucasian Integrated System constituting the USSR's European System. The system is connected with the Russian System with 500 kV and 330 kV lines and integrally operated except in Armenia. Figure I.3.2-1 shows the overview of Trans-Caucasian Integrated System including Azerbaijan, Georgia, and Armenia. As seen in Figure I.3.2-1, the Absheron Peninsula, the central demand area of Azerbaijan, is situated at the end of the Trans-Caucasian Integrated System. The network system in Azerbaijan is not formulated around the Absheron Peninsula including Baku.

The existing transmission system is composed of 500 kV, the main trunk line of the Trans-Caucasian Integrated System, 330 kV, 220 kV, and 110 kV lines. While the transmission capacity is maintained so as to meet demand, its transmission loss rate is high. High loss rate is deemed to be resulting from a long distance between the large power generation facilities and demand areas. Table I.3.2-2 shows the transmission line lengths by voltage. Appendix I.3.2-3 shows the detail.

Table I.3.2-2 Transmission line lengths by voltage

Voltage	Length (circuit km)
500 kV	694
330 kV	1,025
220 kV	1,210
110 kV	4,770

(Source: Azenerji)

The substations include 1 of 500 kV substation, 5 of 330 kV substations, 8 of 220 kV substations, and 175 of 110 kV substations. Energy supply to consumers is made through 110 kV, 35 kV, 20 kV, 10 kV, and 6 kV substations. There are no consumers supplied by 110 kV lines or higher. The transformer capacities are 800 MVA for 500/220 kV, 1,915 MVA for 330/220-110 kV, and 3,001 MVA for 220/110 kV.

3.2.3 Power Distribution Facilities

The high voltage distribution network is composed of 35 kV, 20 kV, 10 kV and 6 kV lines. The low voltage distribution networks is composed of 380/220 V lines. Table 1.3.2-3 shows line lengths by voltage. The substations include 620 of 35 kV and 17,500 of 6 - 20 kV. The values below do not include the distribution lines owned by the three cities of Baku, Sumgait and Ganja.

Table 1.3.2-3 Distribution line lengths by voltage

Voltage	Length (km)			
35 kV	6,300			
6 - 20 kV	38,100			
Low voltage	58,600			

(Source: Azenerji and TACIS's Report)

3.2.4 System Control Facilities

Azenerji divides the whole electric power supply institution of Azerbaijan into 6 blocks and divide into 56 branch offices, and is selling the electrical energy and carrying out the operation and maintenance of electric facilities by each component. The load dispatching centers are established in accordance with the blocks and branches. The National Load Dispatching Center (NLDC) is at the head office building of Azenerji. NLDC is mainly controlling the 500 kV, 330 kV, and 220 kV systems and also carrying out the functions such as preparation and order of the generation plans, coordination of the interconnection with the neighboring countries, controlling the system frequency, and observation and controlling the main transmission system. The United Dispatching Service Centers (UDSC) are established in each of the 6 blocks and the Regional Dispatching Services (RDS) are also established in each branch offices. They are mainly managing the 110 kV or below system of each supply area. In the Baku area, Central Power and Heat Network Enterprise (CPHNE) and Absheron Power and Heat Network Enterprise (APHNE) are supplying energy, and controlling their system by each RDS.

The equipment of NLDC is composed of the graphic panel, dispatching table and communication equipment. The main power stations of the whole country and also 500 kV, 330 kV and 220 kV (part of 110 kV) transmission system are displayed and classified by color on the mosaic blocks of the graphic panel. The switch indicators of the circuit breakers are also displayed on the panel. The wiring of them, however, is not sufficient and some of them are dropping out from the lack of the spare parts, the function is not working at all. The indications of open/close position of the circuit breakers are switched manually by the load dispatchers through the telephone or radio communication with each power stations and substations. Though a desk top type computer is installed on the dispatching desk, it is only used for preserving the operation record not for the controlling the system.

3.3 Power Balance

3.3.1 Power Supply

(1) Peak load and load curve

The peak load in Azerbaijan was recorded at 19:00 on December 18, 1998 at 3,452 MW, 3.0 % higher than the peak load in 1997 at 3,350 MW (Peak load in 1999 was 3,536 MW, and increased by 2.4 %). The peak demand was supplied by thermal power plants for 2,660 MW, CHP for 185 MW, and hydropower plants for 185 MW (total 3,115 MW) with a shortage of 337 MW imported from neighboring countries. Power imports at the maximum peak demand time from Turkey, Iran, and Dagestan are 37 MW, 40 MW, and 260 MW respectively. No energy was imported from Georgia on that day. The energy generated by the Araz hydropower plant and is imported from Turkey and Iran was supplied to the Nakhichevan Autonomous

Republic, which is presently disintegrated from Azerbaijan due to the Armenian occupation. Excluding this portion, the peak load of the Azenerji network system in 1998 was 3,352 MW.

10000

As explained in Section 3.2.1, the installed power generation capacity is 5,071 MW. Considering the installed capacity only, the reserve capacity is 46.9% against the above mentioned peak load. The power generation capacity, however, is declining due to aging of the facilities and inadequate maintenance. In addition, the peak demand in Azerbaijan takes place in winter when hydropower generation capacity declines because the water level lowers and water inflow into reservoirs decreases. The effective power generation capacity in winter is 3,700 MW. A resultant reserve capacity at 7.2 %, without considering overhaul and accidental standstill, is extensively low level. Under this condition, it is difficult to maintain a stable operation of the system without depending on external power source.

Energy supply and demand in Azerbaijan is adjusted by importing energy from the neighboring countries at the evening peak time and exporting energy to them during lower load time. By this adjustment, the total energy generation in winter is maintained at lower than 3,200 MW, coping with a sudden increase of load, and accidental troubles in power generation facilities and tie lines. The daily load curve and the daily load duration curve on the day of maximum peak load, which presents the energy supply condition including energy interchange with neighboring countries, are shown in Figure I.3.3-1. As shown in this Figure, the thermal power plants including CHP are operated at flat level, and hydropower plants are regulated in accordance with the fluctuation of load within the available amounts of water. Then, the excess generation compared with the actual demand is exported to Dagestan, and the shortage is imported.

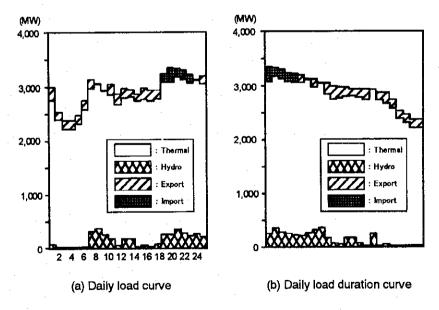


Figure I.3.3-1 Daily load curves on the day of maximum peak demand (Dec. 18, 1998)

The daily load factor in the integrated system at the date when the peak load was recorded at 81.6 %, however, the load factor of generation plants in Azerbaijan was at high value 87.9 % due to energy

accommodation with Dagestan.

(2) Power generation amounts and power interchange with neighboring countries

To explain the situation where the thermal power output has declined, Table I.3.3-1 presents the transition of energy generation amounts by thermal power plants. As seen in this table, total energy generation amount in 1998 was dropped to 72% of 1990's level. In particular, the decline in CHP was remarkable. The figures in the bracket are of utilization factors based against the rated (left) and effective (right) output of power plant. These low utilization factors can be explained by the decline due to aging and deteriorated facilities, and extensively decreased demands in summer compared with those in winter. As for CHP, the utilization factor has lowered as the steam demands for industrial use has extremely declined due to economic stagnation, with having heating supply in winter as the main source of demands.

Table I.3.3-1 Power generation amounts by thermal power plants (unit: GWh)

Power Plants	1989	1990	1997		1998
Az-GRES	9,562	10,613	8,110	10,090	(48% / 58%)
Ali Bayramli	6,870	6,446	5,636	4,732	(49% / 60%)
Severnaya	1,154	985	393	304	(23% / 32%)
Sumgait-1	1,213	1,250	417	440	(22% / 50%)
Sumgait-2	1,333	1,245	285	292	(15% / 33%)
Baku-1	433	427	131	7 9	(9% / 18%)
Baku-2	64	74	20	. 6	(3% / 11%)
Total	21,176	21,397	14,992	15,943	(42% / 54%)

(Source: Azenerji)

The total energy generation amount in 1998 was 17,894 GWh including 15,943 GWh by thermal power and 1,951 GWh by hydropower. Trade balance in 1998 was an excess import of 255 GWh with 903 GWh import and 648 GWh export. Most of this excess portion is from Turkey and Iran to Nakhichevan, and a trade balance with Dagestan is to be offset on an annual basis. Table I.3.3-2 shows the energy generation amount and energy amount imported in 1990, 1994, and 1998. Appendix I.3.3-1 shows the details. As seen in this table, the load factor is estimated to be 60%.

Table I.3.3-2 Change in energy generation, import and peak power

	1990	1994	1998	1999
Energy generation (GWh)				
Thermal	21,397	15,654	15,943	16,558
Hydro	1,658	1,829	1,951	1,505
Total	23,055	17,483	17,894	18,064
Energy accommodation (GWh)	-1,604	276	255	752
Total input to Azerbaijan (GWh)	21,451	17,759	18,149	18,816
Peak Load (MW)	3,673	3,213	3,452	3,536

(Source: Azenerji)

Energy supply to Nakhichevan is in severe condition. According to Azenerji, while total demand in the area is about 180 MW or 1,000 GWh, only available power generation facility is Araz hydropower station (22 MW or about 80 GWh/year). The energy shortage is compensated by import from Turkey and Iran. The amount of energy import, however, does not satisfied sufficiently due to the shortage of transmission capacity and economical reason.

(3) Seasonal fluctuation in power supply amounts and peak load

Table I.3.3-3 presents the ratios of monthly energy supply amount and peak load in 1998 against those values on December (setting the value on December at 100%). The details are also presented in Appendix I.3.3-2. As seen in this table, the value on December is the biggest in both energy supply amount and peak load. The smallest energy supply amount is recorded on June with 62% of the maximum value on December and peak load on July with 71%.

Table I.3.3-3 Seasonal change in power supply amount and peak load (1998)

	Jan.	Feb	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
Power supply amount (%)	99.5	87.6	94.3	74.4	70.1	62.4	65.2	66.7	66.0	77.6	86.8	100.0
Peak load (%)	98.5	99.2	97.2	93.8	81.8	71.3	70.9	72.6	76.9	83.7	92.4	100.0

(Source: Azenerji)

3.3.2 Demand

(1) Energy sales by tariff categories

The total energy sale was 15,003 GWh in 1999. The energy wholesale to the three cities amounted to 4,506 GWh or 30 % of the total. Table I.3.3-4 below shows the energy sale by Azenerji during the past six years.

Table I.3.3-4 Energy sale by Azenerji by consumer category (unit: GWh)

Item	1994	1995	1996	1997	1998	1999	Rate of increase
1. Wholesale	3,109	3,136	3,669	4,058	4,603	4,506	7.7%
2. Industrial	4,252	3,326	3,989	2,887	2,360	1,980	-14.2%
3. Residential	2,648	3,054	3,724	3,182	4,488	6,186	18.5%
4. Agriculture	2,473	2,445	1,975	1,884	1,639	533	-26.4%
5. Non-industrial	786	683	568	546	541	841	1.4%
6. Others	377	331	341	412	588	957	20.5%
7. Total	13,644	12,975	13,276	12,969	14,262	15,003	1.9%
8. Wholesale + residential	5,757	6,190	7,393	7,240	9,091	10,692	13.2%
9. Other Demand	7,887	6,785	5,883	5,729	5,171	4,311	-11.4%

(Source: Azenerji)

Industrial energy consumption has been declining, reflecting recent economic stagnation. The total energy consumption, however, turned into rising conditions recently, as a result of an increase in residential energy

use. In 1996, the sum of "wholesale" and "residential energy use" surpassed the sum of all other categories, then the difference between them has been expanding so far. The annual average growth rate for each sector (13.2 % and -11.4 % respectively) clearly indicates this contrast.

(2) Wholesale energy to three cities

The amount of wholesale energy to Baku, Ganja, and Sumgait is shown in Table I.3.3-5 below. The wholesale amount to those three cities had yearly increased, but declined in 1999 due to a big fall in sales to Ganja City.

Table I.3.3-5 Amount of energy wholesale to three cities (unit: GWh)

	1994	1995	1996	1997	1998	1999	Rate of increase
1. Baku	2,349	2,298	2,654	2,950	3,367	3,619	9.0%
2. Ganja	458	564	690	757	865	367	-4.3%
3. Sumgait	303	274	325	351	371	366	3.9%
Total	3,109	3,136	3,669	4,058	4,603	4,352	6.7%

(Source: Azenerji and Azenerji's Annual Report)

(3) Number of customer by tariff category

Table I.3.3-6 shows the number of Azenerji's consumers by tariff category. The number of residential consumers covered by Azenerji accounted for about 38% of the national population (assuming herein 4 persons per one family). An overall electrification ratio in Azerbaijan is difficult to estimate since the number of residential consumer other than those directly covered by Azenerji and BEN in Baku. In addition, the situation where each refugee camp is treated as one customer without reflecting actual number of family has further made it difficult to estimate the electrification ratio.

Table I.3.3-6 Number of consumers by tariff category

Tariff Category	1997	1998	
1. Wholesales	5	5	
3. Residential	673,765	753,250	
2. Industrial	1,795	1,783	
4. Agriculture	2,580	2,883	
5. Non-industrial	4,800	4,567	
6. Others	15,895	16,961	
Total	698,885	779,449	

(Source: Azenerji)

3.3.3 Losses

Energy loss is defined as the difference between the amount of energy inputted into the system and the amount reaching the consumers. In calculating the energy loss ratio in Azerbaijan, the amount of energy provided into the system needs to be estimated taking into consideration the amount accommodated with

neighboring countries as well as amount generated.

(1) Energy for station use

Thermal power plants consume a certain volume of energy, normally 3~5% of the generated amount, to supply fuel, steam or cooling water required for power generation. Hydropower stations, on the contrary, consume only negligible amount of energy needed for operating auxiliary equipment. Table I.3.3-7 shows the own consumption of thermal power plants by year. Appendix I.3.3-3 also shows the value by power station. The average rate of energy amount for station use against the generated amount has ranged between 6.0 and 7.4% in the past 5 years. This figure is higher than that of normal thermal plants, and can be explained by the decline in efficiency as already mentioned in Section 3.3.1.

Table I.3.3-7 Own consumption of thermal power plants (unit: GWh)

Item	1994	1995	1996	1997	1998	1999
Own energy generation	15,654	15,401	16,148	14,992	15,943	16,558
Station use	1,166	1,098	1,036	1,011	970	1,027
	(7.4%)	(7.1%)	(6.4%)	(6.7%)	(6.0%)	(6.2%)

(Source: Azenerji)

(2) Transmission and distribution loss

Technical loss is defined as the loss of energy caused by resistance against the current in the transmission and distribution lines between power plants and consumers. Non-technical loss refers to meter errors, mistake in meter reading, wrong invoicing, tampered meters and theft. While technical loss can be theoretically measured by simulating the amount of current within a certain time frame using computers, this work requires a large volume of computation with little fruit. Then, the difference between input amount and output amount of energy is usually calculated and regarded as the loss. Thus, the loss of Azenerji facilities is estimated in Table I.3.3-8. This loss include the portion explained by non-technical loss, however, the complete separation between technical and non-technical is extremely difficult.

Table 1.3.3-8 Loss of Azerenerji's facilities (unit : GWh)

Item	1994	1995	1996	1997	1998	1999
Energy at sending end	16,311	15,853	16,642	15,687	16,918	17,037
Imported energy	276	477	461	739	255	752
Total input energy	16,587	16,330	17,103	16,426	17,173	17,789
Sold energy	13,644	12,975	13,276	12,969	14,262	15,003
T/L & D/L losses	2,943	3,355	3,827	3,457	2,911	2,786
	(17.7%)	(20.5%)	(22.4%)	(21.0%)	(17.0%)	(15.7%)

(Source: Azenerji)

In Azerbaijan, a long distance between the power plants and Baku, the major demand area in Azerbaijan, is generally considered a major factor to explain high loss rates. Transmission loss, however, is not judged to

be at a problematically high level, considering the peak load in Baku at around 1,000 MW and the transmission network configuration. Distribution loss would also be low, since 380/220 V is applied to the distribution network. On these bases, a large part of the losses mentioned above is judged as caused by non-technical factors.

As each loss rate shown in Tables I.3.3-7 and I.3.3-8 are estimated with different input energy amounts, the loss rate based on the total of generated and imported amount is shown below.

Item 1994 1995 1996 1997 1998 1999 5.4 Station use 6.6 6.3 5.7 5.8 5.4 T/L & D/L losses 16.6 19.2 21.1 19.8 16.0 14.8 20.2 System losses 23.2 25.5 26.8 25.6 21.4

Table I.3.3-9 Trend in system loss (%)

(3) Loss rate including the three cities

The loss rate shown in Table I.3.3-9 is that of Azenerji's transmission and distribution network facilities, not representing the rate of the entire country, considering the three energy distribution operators. According to Azenerji's Annual Report in 1998, the amount lost in three cities' energy distributing operations is 803 GWh, and the loss rate of the entire country including those lost amounts is 21.6% (3,714 GWh). This figure is very high, and the amount lost in the three cities represent 5.6% of the total supply amount or 22% of the total transmission and distribution loss.

3.4 Power Tariff

3.4.1 Power Tariff System

The power tariff regime effective from January 1, 1999 was revised again on July 1, 2000. The former tariff regime and the latest one are shown in Table I.3.4-1. The tariff regime shown below is applied throughout the country, including the three cities, which supply energy to respective customers through their own distribution networks. All customer groups need to pay VAT (20% of the corresponding tariff) in addition to the tariff specified below. The tariff regime is to be set so as to ensure that a certain ratio of operating profit against Azenerji's total operation cost (comprising of fuel cost and other costs appropriated by the government) shall be secured. According to TACIS study report as of June 1999, the ratio is set as 20 %.

The tariff regime in Azerbaijan is a simple one, applying single rate for each customer group, and not reflecting actual generation costs depending on demand restrictions and differences of seasonal and hourly load changes and facility utilization factor. In particular, the total energy supply and monthly peak load in winter (December) have been 1.5 and 1.4 times respectively as large as those in summer (July), resulting in the decline of yearly utilization factor of the generation facilities and rise in the generation costs. It is

understood, therefore, that application of seasonal tariff system is of great importance to facilitate demand suppression and sound management and operation of the electric utility.

It is also observed that the tariff for the city and countryside population (residential) has been set at the lowest level in spite of the highest energy supply cost, resulting in a substantial cross-subsidization among the consumer groups. At the tariff revision dated on July 1, 2000, the uniform tariff (AZM 130/kWh) common to every sector except for the residential and wholesale was adopted, and is lower than before in all categories in order to simplify the revenue calculation and activate the industrial sectors.

Some residential customer groups are exempted and partly exempted from a payment. Those privileged groups are limited to refugee, veteran and person who need considerable social allowances.

Table I.3.4-1 Power tariff (AZM/kWh)

Tariff Categories	Tariff from July 1 2000	Tariff from Jan. 1 1999
Industry and construction	130	160
Electric railway company	130	198
City transport and water company	130	132
Budget organization	130	160
Non-industry	130	265
Commercial	130	340
Agriculture	130	140
Wholesaie	72	72
City and country-side population (residential)	80	96

(Source: Azenerji)

The historical change in energy tariff by tariff category from March 1 1994 to the latest revision is indicated in Appendix I.3.4-1. Parentheses in the table are expressed in USC/kWh converted from the exchange rates prevailing at respective time.

3.4.2 Energy Sales Revenue, Billing and Collection

The data on energy sales revenue and charge collection performance by Azenerji at national level in 1999 is presented in Table I.3.4-2. According to this table, energy charge collection rate at national level has been extensively poorer than that (50.1%: explained in Section 4.4) in Baku area by Azenerji's branch (Central Electric Network and Absheron Electric Network).

As shown in the table below, the low collection rate has been caused by remarkably poor payment performance by the residential and energy retailer including BEN.

Table 1,3,4-2 Energy sales revenue and collection performance at national level in1999

	Sales	Revenue	Collect	ion (billion	AZM)	_Collection rate
	(GWh)	(billion AZM)	Barter	Cash	Total	(%)
Azenerji's customer	10,496.7	1,227.8	314.3	159.6	473.8	38.6
Industry	1,980.4	369.3	187.5	52.4	239.9	65.0
Residential	6,186.4	404.5	15.6	30.7	46.3	11.4
Agriculture	532.7	89.5	0.0	0.7	0.7	0.8
Non-industry	840.7	178.3	3.0	56.8	59.7	33.5
Commerce	53.2	21.7	0.4	18.9	19.3	89.1
Water company	546.4	86.6	27.6	0.1	27.7	32.0
Transportation	356.9	78.0	80.2	0.0	80.2	102.9
Retail seller	4,506.2	389.3	8.4	41.7	50.1	12.9
BEN	3,618.7	312.7	5.6	36.0	41.6	13.3
Others	887.6	76.7	2.7	5.7	8.4	11.0
Total	15,003.0	1,617.2	322.7	201.3	523.9	32.4

(Source: Azenerji)

The energy charge collection rate by Azenerji is as low as 32.4 %. The worst performance is recorded by the agricultural sector, where the energy charge has been rarely collected. Then, charged residential and the retail seller (the three cities) including BEN follow. The retail sellers and charged residential that account for some 49 % of total revenue actually pay only 12.1 % of the their bill. Furthermore, the energy sales amount for the residential sector includes some free-supply amounts (around 30 % of total residential demand) to the privileged (charge-exempted) group including veterans, therefore, actual collection rate would be much worse if this is taken into account.

The high collection rate, on the other hand, is recorded by industrial, commercial and transportation sectors, that can afford to settle relatively larger portion of their energy payment by barter.

3.5 Financial Performance of AZERENERJI

With the advice of EBRD, Azenerji started to adopt the international standard accounting system since 1994. In Azerbaijan, the fiscal year is from January 1 to December 31. The notable point in its financial performance is that while Azenerji has brought about net profit (after tax) during last three years in the profit and loss statements, both account receivable and payable have been accumulated in its balance sheet. While having seemingly secured the profit on the profit-loss calculation, Azenerji has poorly performed for the accumulation and appropriation of funds from own revenue, and faced difficulties in cash-flow management. Yearly accumulated account receivable has been caused by poor performance of energy charge collection as explained above. Macro-economic factors including the hovering in economic activity and wage level and unstable employment have been seen behind the poor performance of collection. Currently Azenerji saves around 4.4% of gross receivable as a reserve for doubtful debt in view of providing for expected losses.

As for accounts payable, fuel payments for oil and gas companies command a majority. An accumulation

in accounts payable have been brought about, as the actual amount of energy charge collection from the customers is so insufficient that payment to the creditors needs to be put off. Such cash-flow performance has presumably made Azenerji seek for continuous budget support from foreign/international financial institutions for financing its investment activity, and prevented it from operating with financial independence. Financial performance of Azenerji from 1995 to June 1999 is summarized as follows:

Table I.3.5-1 Balance sheet and profit and loss statement of Azenerji (in billion AZM)

BALANCE SHEET	1995	1996	1997	1998	1999/6
Total Assets	1,504.6	4,606.2	5,732.7	7,446.4	7,972.5
- Current Assets	1,329.9	2,372.5	3,501.7	5,201.7	5,715.5
(Net receivables in the above)	(1,154.7)	(2,067.3)	(3,104.0)	(4,474.7)	(4,853.9)
- Fixed Assets	174.7	2,233.7	2,231.0	2,244.7	2,257.0
Total Liabilities	1,100.9	2,151.9	3,291.4	4,655.1	5,297.2
- Current Liabilities	1,095.2	2,093.3	3,151.5	4,447.9	5,015.6
(Net payables in the above)	(1,094.9)	(1,930.5)	(3,142.2)	(4,429.8)	(4,996.5)
- Long-tern Borrowings	5.7	58.7	139.9	207.2	281.6
Equity/Capitalization	403.7	2,454.3	2,441.3	2,791.3	2,675.3
(Retained earnings in the above)	(403.7)	(326.0)	(313.0)	(663.0)	(547.0)
PROFIT AND LOSS	1995	1996	1997	1998	1999/6
Total Operating Revenue	1,499.8	1,628.8	1,650.8	1,648.5	821.2
- Operating Revenue	1,476.2	1,548.7	1,604.5	1,611.3	806.4
- Other Operating Revenue	23.6	80.1	46.3	37.2	14.8
- Less: Operating Expenses	1,154.5	1,568.1	1,551.0	1,503.8	755.2
Net Profit (before financing expenses/tax)	345.3	60.7	99.9	144.7	66.0
- Less: Financing Expenses	49.2	42.8	49.3	64.7	23.6
Net Profit (before tax)	296.1	17.9	50.5	80.0	42.4
- Less: Income Tax	44.5	42.9	20.6	20.3	9.5
Net Profit (after tax)	251.6	-25.0	29.9	59.7	32.9

(Source: Azenerji)

2

3.6 Existing Electricity Demand Forecast for Azerbaijan

Two existing energy demand forecasts for Azerbaijan shown in Table I.3.6-1 are considered relevant. The demand forecast by Azenerji is detailed in Appendix I.3.6-1.

No data were available concerning the assumptions underlying these forecasts. The Azenerji's forecast was prepared in 1995, followed by a forecast until 2020 in 1997. The Azenerji's power system development plan presented in Section 3.7 was prepared based on the above demand forecast. The Azenerji's 1998 figure is a forecast and lower than the actual demand in 1998 as shown by the TACIS forecast. The Azenerji's forecast is characterized by a high growth rate of the industrial sector and, in contrast, a low growth rate for residential use. Growth of construction, transportation, and agriculture demand is set at intermediate levels. The growth rates of industrial, construction and transportation demand are somewhat close to the recent long-term economic growth prospect by international aid organizations.

The TACIS forecast is the most recent power demand forecast for Azerbaijan. It presents the total power demand forecast with no sector-wise forecast. The growth rates in the two scenarios are set lower than the Azenerji's forecast.

Table I.3.6-1 Existing energy demand forecast for Azerbaijan (Unit:GWh)

		,		
Organization		1998	2010	1998-2010 Growth (%/year)
Azenerji (1997)	Industry	2,340	6,690	9.1
,	Construction	360	780	6.7
	Transportation	320	700	6.7
	Agriculture	1,630	2,950	5.1
	Residential	9,070	9,500	0.4
	Commercial	0	0	
	Other	419	83	-12.6
	Total net demand	14,139	20,703	3,2
TACIS (1999)	High growth scenario	17,829	25,160	2.9
	Low growth scenario	17,829	23,892	2.5

3.7 Azenerji's Development Plan

"Middle-term Investment Plan" was prepared in 1995 for Azenerji by ENERGYGROUP under TACIS program. The plan covers a period of three years from 1997 to 1999. Development of power facilities during this period has been implemented based on this plan, according to the Azenerji' annual report 1998 ("AAR 1998" hereafter).

AAR 1998 gives an overview of the ongoing, committed and planned power development projects in Azerbaijan. The following is a summary;

(1) Ongoing Project

- (a) Yenikand Hydropower Station
 - Planned year of completion: 1999
 - Production of power energy: 547 GWh/year
 - Amount of fuel oil to be saved: 140,000 ton/year
 - Finance: EBRD Credit: US\$ 53.24 million
 - Azenerji: US\$ 19.00 million

(b) Mingechaur Energy Project

- Planned year of completion: 2000
- Reconstruction of Mingechaur Hydropower with upgraded capacity of 60 MW and production power energy of 80 GWh/year
- Construction of Imishli 330/110 kV substation and 110 kV transmission lines

- Construction of Az-Gres power station and 330 kV transmission lines to Imishli 330/110 kV substation
- Finance:

EBRD:

US\$ 24.54 million

World Bank:

US\$ 13.71 million

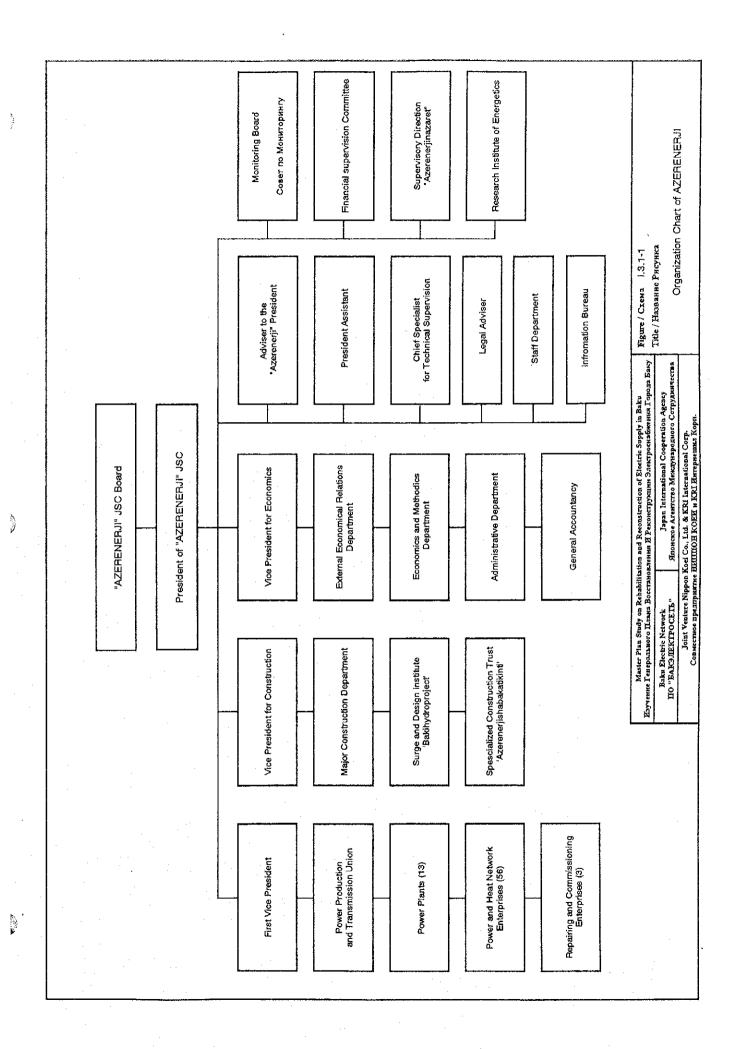
- (c) Construction of Severnaya Combined Thermal Power Station
 - Planned year of completion: 2003
 - Construction of steam-gas power unit in the existing facility with a capacity of 400 MW
 - Finance: US\$ 240 million (partly financed by the Japan Bank for International Cooperation: JBIC)
- (d) Rehabilitation of 220-110 kV Substations in Absheron Peninsula
 - Planned year of completion: 2000
 - Finance: US\$ 20 million (partly financed by German KfW)

(2) Committed Project

- (a) Baku Thermal Power Central-1 (TPC)
 - Planned year of completion: 2000
 - Rehabilitation of facilities with installment of two gas-turbines (2 x 25 MW)
 - Finance: US\$ 80 million (partly financed by Baurishe Landene Bank (FRG))
- (b) Rehabilitation of Sumgait Thermal Power Central-1 (TPC)
 - Planned year of completion: 2004
 - Installment of two gas-turbines (2 x 200 MW)
 - Finance: US\$ 250 million (to be assigned)

(3) Proposed Project

- (a) Installment of Power Unit No.9 in Az-Gres Thermal Power Station
 - Increase of power energy production by 1,800 GWh/year
 - Finance: US\$ 32 million
- (b) Installment of Power Unit No.2 in Severnaya Combined Thermal Power Station
 - Finance: US\$ 250 million
 - A preliminary analysis finished by TACIS
- (c) Rehabilitation of Small Hydro Power Stations
 - Finance: US\$ 10 million
- (d) Construction of Khachmaz 330/110 kV Substation
 - Construction of substation with connecting to the existing 330 / 110 kV transmission lines
 - Finance: US\$ 20 million


- (e) Construction of Wind Power Stations in the Absheron Peninsula
 - Capacity: 30 MW
 - Production Power Energy: 100 GWh/year
- (f) Construction of Hydro Power Stations in the Nakhichevan Autonomous Republic
 - Eight small hydro-electric stations with a total capacity of 32 MW
 - Vaikhir hydro-electric station with a capacity of 4.7 MW
 - Arpachay hydro-electric station with a capacity of 12 MW

Appendix I.3.7-1 lists the projects planned by Azenerji with annual total capacity, forecasts peak load and reserve until the year 2010. The projects mentioned above are included into this plan. The following Table I.3.7-1 summarizes the entire plan.

Table I.3.7-1 Azenerji's development plan until 2010

Year	Total Capacity (MW)	Forecast Peak Load (MW)	Reserve (%)
1999	4,431	3,625	22.2
2000	4,901	3,815	28.4
2005	5,547	4,580	21.1
2010	6,190	5,140	20.4

(Source: Azenerji' annual report, 1998)

Appendix I.3.2-1 Thermal Power Plants

Service A

No.	Name of	Coms.	Unit	Rated	Effect.	Heat	Coms.	Kind	Present
	Power Station	Year	No.	Capacity	Output	Product.	Year	of Fuel	Conditions
		(Plant)		(MW)	(MW)	(MWh)	(Unit)		
1	Az-Grez	1981	#1	300	250		1981	NG/HFO	Operation
	(Minegechaur city,		#2	300	250	<u> </u>	1982	NG/HFO	Operation
	350km northwest		#3	300	250		1983	NG/HFO	Operation
	of Baku)		#4	300	250		1984	NG/HFO	Operation
			#5	300	250		1985	NG/HFO	Operation
			#6	300	250		1986	NG/HFO	Operation
			#7	300	250		1988	NG/HFO	Operation
			#8	300	250		1990	NG/HFO	Operation
	Subtotal		8	2,400	2,000				
2	Ali Bayramli	1962	#1	155	120		1962	NG	Operation
			#2	155	120		1962	NG	Operation
			#3	155	120		1963	NG	Operation
			#4	155	120	İ	1963	NG	Operation
			#5	160	140		1966	HFO	Operation
			#6	160	140		1967	HFO	Operation
			#7	160	140		1968	HFO	Operation
	Subtotal		7	1,100	900				
3	Severnaya	1950	#7	150	110			NG/HFO	Operation
4	Baku 1 CHP	1902	#6	50	25		1973	NG/HFO	Operation
			#7	50	25		1974	NG/HFO	Operation
	Subtotal		2	100	50	694			
5	Baku 2 CHP	1953	#1	6			1953	NG/HFO	Operation
1			#2	6			1953	NG/HFO	Operation
			#4	6			1964	NG/HFO	Operation
			#5	6			1964	NG/HFO	Operation
<u> </u>	Subtotal		4	24	6	383			
6	Sumgait 1 CHP	1952	#8	60	25		1959	NG/HFO	Operation
			#9	60	, 25		1960	NG/HFO	Operation
			#10	60	25		1961	NG/HFO	Operation
ļ		<u> </u>	#11	50	25		1962	NG/HFO	Operation
<u> </u>	Subtotal		4	230	100	760			
7	Sumgait 2 CHP	1966	#1	60	25		1966	NG/HFO	Operation
			#2	50	25		1967	NG/HFO	Operation
			#3	60	25		1971	NG/HFO	Operation
		ļ	#4	50	25		1972	NG/HFO	Operation
<u> </u>	Subtotal		4	220	100	990			
Tota	al	<u> </u>	L	4,224	3,266	2,827			

Source: AZERENERJI (TA-SIC's Report, Part VII)

Remarks:

a) NG = Natural gas (34.42\$/1000m3 at 1994)

b) HFO = Heavy fueloil (calorific value: 9500 - 9800Kcal/kg, density: 0.92 - 0.93gr/cm3, 23.38\$/t at 1994)

c) Ganja CHP has been privatirized by the firm of England since 1995.

Appendix I.3.2-2 Hydropower Plants

Š	Name	River	Purpose	Ins	Installed Capacity	acity	Effect	Annual	Turbine		Dam		Rese	Reservoir	Mean	Effect	Comis.	Remarks
·				Š	Unit	Total	Output	Energy	Type	Туре	Length	Height	Total	Effect		Head	Year	
					(MW)	(MM)	(MM)	(GWh)			(m)	(m)	(mil. m³)	(mil. m³)	(s/ _c m)	(m)		
Н	Shamkhir	Kura	Multi	2	190.0	380.0	340.0	830.0	Kaplan	Rock-fill 1,700.0		70.0	2,770.0	1,420.0	315.0	47.5	1982	
63	Minegechaur	r Kura	Multi	9	0.09	360.0	160.0	1,050.0	Kaplan	Earth-ill	1,550.0	80.0	15,700.0	0.008,6	396.0	52.5	1955	
ε	Varvara	Kura	Multi	3	5.5	16.5		0.06	Francis				60.0	14.0		5.5	1958	Re-regulation
4	Araz	Araz	Multi	2	11.0	22.0	0.0	86.0	Kaplan	Kaplan Earth-fill	0.006	40.0	1,350.0	1,150.0		20.0	1971	not connected to central network
w .	Tar-tar	Tar-tar	Multi	2	25.0	50.0	0.0	120.0	Francis				560.0	520.0	to make music make us to have i	87.5	1976	under Armenian control
9	Kusari	Canal	Power			1.2	0.6	6.3								7.0	1956	
	(Sai	(Samur-Absneronsky)	ISKy)]		Smg	Small hydro total	otal										-
7	Kuba	Kudiakchay	Power			1.2		1.5								44.0	1936	1936 Outage
∞	Mugan	Canal	Power			3.6		14.4			L					7.8	1962	
		(Mugan)																
6	Shelki	Kishchay	Multi			1.7		6.3								165.0	1936	1936 Outage
유	10 Zurnabad	Gangahay	Multi			2.8		12.8								875.0	1928	1928 Outage
11	11 Zeykhur	Canal	Multi			8.0		35.2								107.5	1973	
		Top-Zeykhur	7															
		Totai				847.0	509.0	2,252.5										
,	A GUANG GUA	**																

Sourse: AZERENERJI

Appendix I.3.2-3 Transmission Lines of 220 kV and above

No.	Voltage	Name	e of Station	Line	CCT	CCT•km		uctor	Commis
	(kV)	From	To	Length (km)			Kind	Size (sq.mm)	Year
500 I									
1	500	Az-Gres P/S	Absheron	250.4	1	250.4	ASO	3x300	1989
2	500	Az-Gres P/S	Mukhravinis Veli	197.0	1	197.0	ASO	3x300	1986
	(Total)		(Georgia)			447.4			
330 1									
1	330	Az-Gres P/S	Absheron	243.0	1	243.0	ASO	3x300	1986
2	330	Mingechaur P/S	Az-Gres	4.8	1	4.8	ASO	1x480	1958
3	330	Az-Gres P/S	Ganja	88.7	1	88.7	ASO	1x480	1958
4	330	Az-Gres P/S	Agdam	100.0	1	100.0	ASO	2x300	1983
5	330	Agdam	Imishli	114.3	1	114.3	ASO	2x300	
6	330	Agdam	Ganja	107.3	1	107.3	ASO	2x300	
7	330	Ali Bayramli P/S	Imishli	85.1	1	85.1	ASO	2x300	1967
8	330	Ali Bayramli P/S	Yashma	117.3	1	117.3	ASO	2x300	1979
9	330	Yashma	Delbent (Russia)	166.4	1	166.4	ASO	2x300	1974
10	330	Agstafa	Gardabani (Georgia)	63.8	1	63.8	ASO	1x480	1958
11	330	Shamkir	Agstafa	87.5	1	87.5	ASO	2x300	1968
12	330	Ganja	Agstafa	94.5	1	94.5	ASO	2x300	1958
13	330	Ganja	Shamkir	42.5	1	42.5	ASO	2x300	1958
	(Total)					1,315.2			
220									
1	220	Ali Bayramli P/S	Masalli	114.0	1	114.0	ASO	1x240	1976
2	220	Mingechaur P/S	Akhsu	123.0	1	123.0	ASO	1x340	1949
3	220	Mingechaur P/S	Gabala	96.0	1	96.0	ASO	1x300	1978
4	220	Akhsu	Absheron	108.0	1	108.0	ASO	1x340	1949
5	220	Gabala	Absheron	225.0	1	225.0	ASO	1x300	1954
6	220	Ali Bayramli P/S	Mushfig	110.0	1	110.0	ASO	2x300	1962
7	220	Ali Bayramli P/S	Sangachaur	71.2	1	71.2	ASO	2x300	1962
8	220	Sangachaul	Khirdalan	45.1	1	45.1	ASO	2x300	1962
9	220	Mushfig	Khirdalan	15.0	1	15.0	ASO	2x300	1988
10	220	Absheron	Govsany	82.6	1	82.6	ASO	1x500	1976
11	220	Khirdalan	Govsany	41.0	1	41.0	ASO	1x500	1976
12	220	Absheron	Khirdalan	24.0	1	24.0	ASO	1x300	1949
13	220	Absheron	Khirdalan	24.0	1	24.0	ASO	1x300	1954
14	220	Absheron	Yashma	35.0	1	35.0	ASO	1x500	1979
15	220	Absheron	Khirdalan	25.0	1	25.0	ASO	1x500	1995
	(Total)				1	1,138.9			

(Source : Azenerji)

Appendix I.3.3-1 Annual Energy Generation by Power Stations and System Peak

S.	Power Station				Annus	al Energy Pro	Annual Energy Production in GWh	wh			
}		1990	1991	1992	1993	1994	1995	1996	1997	1998	1999
_	Azerbaijan GRES	10,613	11,833	089'6	8,650	8,650	8,384	9,760	8,110	10,090	10,157
2	Ali Bayramli GRES	6,446	6,300	5,523	5,260	4,723	4,830	5,103	5,636	4,732	5,348
3 8	Severnaya GRES	585	794	498	899	591	599	300	393	304	324
4	Sumgait TETS No.1	1,250	1,046	1,024	752	705	831	478	417	440	371
5 8	Sumgait TETS No.2	1,245	1,073	849	802	654	477	324	285	292	288
9	Baku TETS No.1	427	346	243	298	236	194	147	131	79	63
7 E	Baku TETS No.2	74	19	53	48	40	32	36	20	9	7
∞	Ganja TETS	156	127	55	58	55	54	0	0	0	0
9 1	Krasin GRES	201	18	0	0	0	0	0	0	0	0
	(Thermal Total)	21,397	21,598	17,925	16,536	15,654	15,401	16,148	14,992	15,943	16,558
	Mingechaur GES	698	887	745	1,227	1,126	767	737	739	1,104	807
2 S	Shamkir GES	593	723	849	1,011	548	638	869	875	772	642
3	Araz GES	66	6	141	156	145	111	96	93	73	55
4 T	TerTer GES	82	4	3	22	0	0	0	0	0	0
5 S	Small Hydro	15	12	11	10	10	10	7	5	2	2
)	(Total Hydro)	1,658	1,718	1,749	2,426	1,829	1,556	1,538	1,712	1,951	1,506
ا ع	(Generation Total)	23,055	23,316	19,674	18,962	17,483	16,957	17,686	16,704	17,894	18,064
(Impot)	(Impot) - (Export)	-1,604	-1,703	-631	47	276	477	461	739	255	752
-	Import in GWh	0	0	0	464	540	988	801	1,288	903	1,172
Щ	Export in GWh	1,604	1,703	631	447	264	409	340	549	648	420
Total Er	Total Energy Input to Azeri	21,451	21,613	19,043	19,009	17,759	17,434	18,147	17,443	18,149	18,816
Maximu	Maximum output of own generation	4,080	3,923	3,571	3,334	3,173	3,118	2,963	3,025	3,215	3,188
System	System Peak in MW	3,676	3,921	3,513	3,365	3,213	3,098	3,195	3,350	3,452	3,536
,											

(Sourse : Azenerji) Remarks

(a) Energy generated by Varvara hydro power station is included in the energy generated by Mingechaur P/S.

Appendix I.3.3-2 Monthly Energy Production by Plant (1998)

No.	Power Station	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Ther	mal Power Plant													
1	Az-Gres	1,022	918	978	792	650	549	637	792	837	908	993	1014	10,090
2	Ali Bayramli	538	453	519	353	310	207	331	324	294	383	449	572	4,733
3	Severnaya	53	50	54	22	0	0	0	0	0	39	49	38	305
4	Sumgait-1	66	46	43	2 9	26	18	20	23	23	37	43	67	441
5	Sumgait-2	24	25	26	22	23	19	15	20	19	25	29	46	293
6	Baku-1	15	18	10	3	0	0	0	1	3	4	11	14	79
7	Baku-2	1	1	1	1	0	0	0	0	0	0	0	1	5
	Thermal Total	1,719	1,511	1,631	1,222	1,009	793	1,003	1,160	1,176	1,396	1,574	1,752	15,946
Hydı	ppower Plant								;					
8	Mingechaur	126	126	130	80	72	75	95	92	64	71	78	95	1,104
9	Shamkir	63	42	50	49	107	135	47	44	54	70	38	71	770
10	Araz	11	10	8	3	6	5	7	6	3	4	4	8	75
	Hydro Total	200	178	188	132	185	215	149	142	121	145	120	174	1,949
Tota	l Generation	1,919	1,689	1,819	1,354	1,194	1,008	1,152	1,302	1,297	1,541	1,694	1,926	17,895
Pow	er Exchange													-
:	Import	58	52	58	67	145	184	93	43	44	44	57	57	902
	Export	77	68	77		0	0	0	72	82	103	94	74	647
	Total	-19	-16	-19	67	145	184	93	- 2 9	-38	-59	-37	-17	255
														(Max)
Net	Energy Input to Azeri	1,900	1,673	1,800	1,421	1,339	1,192	1,245	1,273	1,259	1,482	1,657	1,909	1,909
	% against Max	99.5	87.6	94.3	74.4	70.1	62.4	65.2	66.7	66,0	77.6	86.8	100.0	
Peal	Power (MW)			[(Max)
'	Max. Generated Power	3,100	3,115	3,075	2,895	2,487	2,087	2,033	2,223	2,353	2,733	2,908	3215	3,215
	% against Max	96.4	96.9	95.6	90.0	77.4	64.9	63.2	69.1	73.2	85.0	90.5	100.0	
	System Peak	3,401	3,426	3,354	3,237	2,824	2,463	2,449	2,506	2,654	2,890	3,190	3452	3,452
	% against Max	98.5	99.2	97.2	93.8	81.8	71.3	70.9	72.6	76.9	83.7	92.4	100.0	

Sourse: Azenerji

Ď

Appendix I.3.3-3 Annual Energy Used for Generation by Power Stations

No. Power Station			Anr	ual Energ	gy Used f	or Produc	tion in G	Wh		
	1989	1990	1991	1992	1993	1994	1995	1996	1997	1998
1 Azerbaijan GRES	371	400	446	385	361	377	359	412	380	433
2 Ali Bairamli GRES	455	433	429	402	377	370	370	380	411	352
3 Severnaya GRES	81	74	62	38	52	55	53	34	42	34
4 Sumgait TETS No.1	200	205	187	136	123	127	119	77	62	61
5 Sumgait TETS No.2	161	156	153	143	134	112	88	52	44	49
6 Gaku TETS No.1	86	86	93	83	85	80	70	67	62	36
7 Baku TETS No.2	18	20	19	22	20	19	15	14	10	
8 Krain GRES	26	18	3							
9 Ganja TETS	68	62	67	44	45	26	24			
10 Mingechaur										
11 Shamkir	8	7	6	6	6	6	6	6	6	6
12 Araz										
13 Tartar										
Total	1,474	1,461	1,465	1,259	1,203	1,172	1,104	1,042	1,017	971

Source : Azenerji Remarks :

1) GRES means Condenser Thermal Power Plant.

3) GES meansHydro Power Plant

4) Mingechaur includes Varvara GES as Hydro Power Plants cascade.

²⁾ TETS means Co-generate Thermal Power Plant.

Appendix I.3.4-1 Historical change in electricity tariff by tariff category in Azerbaijan

														ŕ	
Effective on	11/23/93	3/1/94	6/12/94	10/25/94	11/22/94	2/1/95	4/21/95	7/15/96	9/22/6	11/21/96	4/1/97	10/10/97	7/1/98	1/1/99	00/1/2
	AZM/KWh														
Category	(USC/kWh)	•										A Contract of the Contract of			
	2.6	4.3	10.9	38.1	51.4	141.5	184.0	184.0	184.0	184.0	184.0	183.0	150.0	160.0	130.0
Industry 50kVA</td <td>(2.18)</td> <td>(0.25)</td> <td>(1.11)</td> <td>(1.92)</td> <td>(1.79)</td> <td>(3.26)</td> <td>(4.19)</td> <td>(4.29)</td> <td>(4.35)</td> <td>(4.39)</td> <td>(4.57)</td> <td>(4.66)</td> <td>(4.14)</td> <td>(4.11)</td> <td>(2.92)</td>	(2.18)	(0.25)	(1.11)	(1.92)	(1.79)	(3.26)	(4.19)	(4.29)	(4.35)	(4.39)	(4.57)	(4.66)	(4.14)	(4.11)	(2.92)
	2.6	4.2	10.6	37.2	50.2	138.1	184.0	184.0	198.0	198.0	198.0	198.0	198.0	198.0	130.0
Electric railway	(2.18)	(0.24)	(1.08)	(1.87)	(1.75)	(3.18)	(4.19)	(4.29)	(4.68)	(4.77)	(4.91)	(5.05)	(5.13)	(5.08)	(2.92)
	1.9	3.0	7.6	26.6	35.9	98.7	128.0	128.0	140.0	140.0	140.0	140.0	132.0	132.0	130.0
City fransport & water company	(1.60)	(1.72)	(77.0)	(1.34)	(1.25)	(2.28)	(2.91)	(2.98)	(3.31)	(3.37)	(3.48)	(3.57)	(3.42)	(3.39)	(2.92)
			1	;	1	;	ı	1	ì	;	;	ı	ŀ	160.0	130.0
Budget organization	***************************************			4.4	1	•	1	ł	1	1	:	ŀ	;	(4.11)	(2.92)
	3.6	5.8	14.8	51.7	8.69	6'161	250.0	250.0	264.0	264.0	264.0	265.0	265.0	265.0	130.0
Non-industry	(3.02)	(3.35)	(1.51)	(2.60)	(2.44)	(4.43)	(5.69)	(5.82)	(6.25)	(6.36)	(6.55)	(6.76)	(6.86)	(6.80)	(2.92)
***************************************	4.6	7.6	19.2	67.3	6'06	250.0	325.0	325.0	338.0	338.0	338.0	340.0	340.0	340.0	130.0
Commerce, trade and service	(3.86)	(4.36)	(1.96)	(3.39)	(3.17)	(5.77)	(7.39)	(7.57)	(7.90)	(8.15)	(68.39)	(8.67)	(8.81)	(8.72)	(2.92)
	1.4	2.4	5.9	20.8	28.1	77.5	100.0	120.0	138.0	138.0	138.0	150.0	140.0	140.0	130.0
Agriculture	(3.18)	(1.35)	(0.61)	(1.05)	(86.0)	(1.79)	(2.27)	(2.80)	(3.26)	(3.33)	(3.43)	(3.82)	(3.63)	(3.59)	(2.92)
Wholesale	-1	1.9	3.5	8.1	11.0	32.5	42.5	0.09	64.0	67.0	74.3	82.0	80.0	72.0	72.0
Î roxana en razee	1	(1.07)	(0.36)	(0.41)	(0.38)	(0.75)	(76:0)	(1.40)	(1.51)	(1.62)	(1.84)	(2.09)	(2.07)	(1.85)	(1.62)
(0.3	0.4	1.0	2.0	2.7	10.0	18.0	36.0	40.0	50.0	75.0	96.0	0.96	0.96	96.0
Residential (VAL) Inchesive)	(0.25)	(0.23)	(0.10)	(0.10)	(60:0)	(0.23)	(0.41)	(0.84)	(0.95)	(1.21)	(1.86)	(2.45)	(2.49)	(2.46)	(2.15)
Exchange rate AZM/US\$	119.1	174.2	980.0	1,987.5	2,866.0	4,336.0	4,396.0	4,292.3	4,227.0	4,184.3	4,028.0	3,923.0	3,861.0	3,896.9	4,456.0

Source: Azenerji, BEN and JICA study team calculation

Appendix I.3.6-1 Power Demand Forecast by Azerenerji

(Unit : GWh)

Item	1998	1999	2000	2005	2010	2020
Power Generation	17,895	18,430	19,000	21,940	25,259	30,350
Import	1,313	1,300	1,300	1,500	1,500	2,040
Export	1,063	1,050	1,050	1,500	1,500	2,250
Import - export	250	250	250	0	0	-210
Total demand	18,145	18,680	19,250	21,940	25,259	30,140
Losses (%)	16.7	16.0	16.0	14.0	13.0	13.0
Needs in the system	976	975	970	1,107	1,272	1,520
Net demand	14,139	14,716	15,200	17,761	20,703	24,702
Industry	2,340	2,600	2,800	4,700	6,690	9,500
Construction	360	400	550	680	780	790
Transportation	320	360	500	640	700	760
Agriculture	1,630	1,700	1,900	2,160	2,950	4,040
Residential	9,070	9,240	9,300	9,450	9,500	9,612
Commercial	0	0	0	. 0	0	. 0
Other	419	416	150	131	83	-

Source : Azenerji

Appendix 1.3.7-1 Azerenerji's Development Plan of Power Generation facilities

		Cange in	Total	Forecast	Capacity			
Year	Projects	total	Effective	Peak	Reserve			
100.	110,000	capacity	Capacity	Load	1,030,10			
		(MW)	(MW)	(MW)	(MW)			
1995	Removal of the Ganja PS from the operation		4,161	_				
1995	Reduction of the Baku TPP capacities		4,111	2,969	38.4			
1996	Reduction of Sumgait TPP-1 capacities (phase 1).	-50 -100	4,001	3,151	27.0			
1997	Rehabilitation of Azerbaijan HPS capacity (phase 1)	100	4,101	-	-			
1997	Reduction the Sumgait TPP-2 capacities	-50	4,051	3,320	22.0			
1998	Rehabilitation of the rated capacity of Azerbaijan HPS (phase 2)							
		100	4,151	3,452	20.2			
1999	Rehabilitation of the rated capacity of Azerbaijan HPS (phase 3)	112.5	4,261	<u>.</u>	-			
1999	Completion of the Yenikend HPS construction	100	4,361	-	-			
1999	Reconstruction of Mingechaur HPS (phase 1)	70	4,431	3,625	22.2			
2000	Rehabilitation of the rated capacity of Azerbaijan HPS (phase 4)	300	4,731	-	~			
2000	Operatrion Start of Power Unut (No 9) of Azerbaijan HPS	100	4,831	-	-			
2000	Reconstruction of Mingechaur HPS (phase 2)	70	4,901	3,815	28.4			
2001	Removal of Baku TPP-2 from opertion	-24	4,877	· -	_			
2001	Reduction of Sumgait TPP-1 capacity (phase 2)	-100	4,777	3,985	20.0			
2002	Operatrion start of new steam-and-gas unit with 400 MW capacity							
	at Severnaya HPS	400	5,177	~	-			
2002	Operatoin start of new wind PS with capacity of 30 MW	30	5,207	4,155	25.3			
2003	Operation start of two new gas-turbine units of 50MW capacity	100	5,307	_				
	each at Baku TPP							
2003	Removal of the old equepment from Baku TPP (phase 2)	-50	5,257	4,300	22.2			
2004	Operation start of new steam-and-gas unit in capacity of 400 MW at Sumgait TPP	400	5,657	-	-			
2004	Removal of of the old power unit in capacity of 150 MW at Severnaya HPS	-130	5,527	-	-			
2004	Removal of the old equepment from Sumgait TPP-2	-150	5,377	4,440	21.1			
2005	Operation start of new steam-and-gas unit (No 2) in capacity of 400 MW at Severnaya HPS	400	5,777	-				
2005	Removal of the old equipment from the Ali-Bayramly HPS 2x150 MW (phase 1)	-230	5,547	4,580	21.1			
2006	Operatoin start of the Ordubad HPS in capacity of 3 x 10 MW	30	5,577	-	-			
2006	Operatoin start of the Sheki HPS in capacity of 3 x 1.2 MW	3	5,580	4,680	19.2			
2007	Operation start of the new steam-and-gas unit in capacity of 400 MW (for area south from Absheron peninsula)	400	5,980	-	-			
2007	Removal of the old equipment from the Ali-Bayramly HPS 2x150 MW (phase 2)	-230	5,750	4,780	20.2			
2008	Operator start of the Toyuz HPS 3 x 126 MWt	380	6,130	_	· -			
2008	Removal of the old equipment from the Ali-Bayramly HPS 1x150 MW (phase 3)	-110	6,020	4,900	22.8			
2009	in thime of	0	6,020	5,020	22.3			
2010	Opperation start of new steam-and-gas unit (No 2) in capacity of			2,020	22.3			
2010	400 MW	400	6,420	-				
2010	Removal of the old equipment from the Ali-Bayramly IIPS 2x150 MW (phase 4)	-230	6,190	5,140	20.4			
C	Source : Azenerji							

Source : Azenerji

CHAPTER 4

AZENERJI'S POWER SUPPLY TO BAKU CITY

1

CHAPTER 4 AZENERJI'S POWER SUPPLY TO BAKU CITY

4.1 General

Each of the three cities of Baku, Sumgait and Ganja has a dual electric power supply system, by which power is supplied by city organizations as well as directly by Azenerji for the non-residential consumers. In Baku, some non-residential consumers are served directly by Azenerji with power through 35 kV, 20 kV, 10 kV and 6 kV medium voltage distribution lines. Azenerji wholesales in bulk the power stepped down to 10 kV and 6 kV at the 110 kV and 35 kV substations to BEN. BEN distributes the purchased power through its own 10 kV and 6 kV distribution system, and sells the power to consumers through 0.4 kV low voltage distribution network.

There are two types of borderlines between BEN's and the Azenerji's jurisdiction. One borderline is at the secondary side of the transformers of the 110 kV and 35 kV substations. The other is at the sending ends of 10 kV and 6 kV feeder exit of the substations. The former case is often seen in relatively older substations in the central part of Baku, while the latter case is found at relatively newer substations established by Azenerji. In the former case, the 10 kV or 6 kV switchgears in the substations are owned, operated and managed by BEN. Such dual system is considered to be initiated at the time of BEN's separation from Azenerji 40 years ago. The substations, which were constructed after the separation, are mostly owned and operated by Azenerji.

4.2 Organization of Azenerji

The area under the control of Azenerji is the Absheron peninsular except the city of Sumgait, covering a population of 1.8 million and an area of 2,140 km². To this area, the two regional offices of Azenerji, Central Power and Heat Network Enterprise (CPHNE) and Absheron Power and Heat Network Enterprise (APHNE), are managing the electricity supply. The area managed by APHNE is the tip of the Absheron peninsular, including almost the total of Sabunnchi, Surakane, Azizbayov administrative areas and the parts of Nizami and Khatai areas. CPHNE is handling the bottom of the Peninsular including the central part of Baku. These regional offices are conducting operation and maintenance work of transmission, substation and distribution facilities in respective regions and load dispatching and sales activities of below 110 kV system and the wholesale of electricity to BEN.

The headquarters of Azenerji manages the planning, design and construction of the electric power facilities.

The activities of the regional offices are limited to small-scale repair and maintenance work. The organization chart of APHNE is shown in Figure 1.4.2-1. The staffing of the two regional offices (as of end 1998) are given in Table 1.4.2-1.

Table I.4.2-1 Staffing of Azenerii

Type of staff	CPHNE	APHNE	Total
Administrative & Specialist	251	177	428
- Leaders	70	60	130
- Specialist	181	117	298
Workers	345	242	487
Others	3	4	7
Total	599 (150)	423 (85)	1,022 (235)

(Source: Azenerji, CPHNE and APHNE) Notes: The numbers in parentheses indicate female staff.

4.3 Power Supply System of Azenerji

Severnaya thermal plant, and Baku-1 and Baku-2 CHP supply electric power, heated water, and steam (particularly to surrounding factories) to Baku City. The operation and maintenance work for these plants are undertaken by other organizations for power generation. In this section, the condition of power transporting system including transmission lines, substations and distribution network is explained.

4.3.1 Transmission System

Table I.4.3-1 shows the total length of transmission lines by voltage in each branch. Appendix I.4.3-1 also shows the details. The 500 kV transmission line is a part of the lines between the nations largest Az-Gres thermal power station and Absheron substation. The 330 kV transmission line is also a part of the lines both between the Az-Gres thermal power station and Absheron substation, and between the Ali Bayramli thermal power station and Yashma substation. The 330 kV line between the Az-Gres thermal power station and Absheron substation is designed on 500 kV basis. The network system is outlined in Figure I.4.3-1.

Table I.4.3-1 Line length of CPHNE and APHNE (unit: circuit-km)

Voltage	CPHNE	APHNE	Total
500 kV	57	· -	57
330 kV	109		109
220 kV	414	71	485
110 kV	421	332	753
Total	1,001	403	1,404

(Source: Azenerji, CPHNE and APHNE)

All the 220 kV transmission lines are overhead lines. Substations are linked with single circuit line, except between the Absheron 500 kV substation and Khirdalan 220 kV substation (though this section is linked with quartet circuit line, one circuit line is not linked with the Khirdalan substation). The 220 kV transmission

system, however, does not seem to be reliable, because the use of circuit breakers is minimized with a number of Pi-form branches installed in the line. All the 110 kV transmission lines are also overhead lines and used as power distribution transmission lines. The major substations are linked with double circuit each other. Substations in the middle of the major substations are connected by double circuit with T-form branch.

The supporting structures of transmission lines are, in many cases, steel tower. Concrete poles or even wooden poles are used in some parts. Steel materials in most towers are not galvanized and rusted except the newly constructed towers.

4.3.2 Substation

1

Table I.4.3-2 and Appendix I.4.3-2 presents an outline of the substations in Baku City.

Table I.4.3-2 Transformer capacities by network and voltage

Item	Voltage	CPHNE	APHNE	Total
Number of	500/330 kV	1	•	1
Substation	220 kV	3	2	5
	110 kV	18	17	35
	Total	22	19	41
Transformer	500 kV	534 MVA	-	534 MVA
Capacity	300 kV	266 MVA	-	266 MVA
(primary voltage)	220 kV	1,196 MVA	550 MVA	1,746 MVA
	110 kV	1,320 MVA	1,237 MVA	2,557 MVA
	Total	3,316 MVA	1,787 MVA	5,103 MVA

(Source: Azenerji, CPHNE and APHNE)

Concrete poles are used as the cable supporting structure in the substations except the newly constructed substations. It is often seen that equipment in the substations is supported by concrete structures. Many cases where equipment is installed in an unsatisfactory manner are observed. The grounding of the neutral points of the transformers are attached directly to the ground.

4.3.3 Distribution System

The medium voltage distribution system of Azenerji is composed of 35 kV, 20 kV, 10 kV and 6 kV facilities. An outline of the medium voltage distribution facilities by regional branch is shown in Table I.4.3-3. In Appendix I.4.3-3, the substation facilities, which serve to supply energy to BEN in the Study area, are presented and the detail of distribution lines connected to those substations is provided in Appendix I.4.3-4, with their location shown in Figure I.4.3-2.

The 35 kV lines in the suburbs are more often overhead, while those in downtown are rather underground.

Table I.4.3-3 Medium voltage distribution facilities by regional branch

Item	Voltage	CPHNE	APHNE	Total
Line length	35 kV (O/H)	368.0 km	396.4 km	764.4 km
	35 kV (U/G)	92.5 km	9,2 km	101.7 km
•	20 kV (O/H)	29.0 km	47.6 km	76.6 km
	20 kV (U/G)	5.4km	15.0 km	20.4 km
	10 kV (O/H)	-	13.6 km	13.6 km
	10 kV (U/G)	5.1 km	1.0 km	6.1 km
	6 kV (O/H)	•	85.4 km	85.4 km
	6 kV (U/G)		6.5 km	6.5 km
	Total	500.0 km	574.7 km	1,747 km
Transformer	35 kV	888.2 MVA	728.7 MVA	1,616.9 MVA
capacity	20 kV	106.7 MVA	114.2 MVA	220.9 MVA
- •	10 kV	2.0 MVA	37.6 MVA	37.8 MVA
	6 kV	0.8 MVA	(included 10 kV)	(included 10 kV)
	Total	997.7 MVA	880.5 MVA	1,878.2 MVA

(Source: Azenerji CPHNE and APHNE)

4.3.4 Network System Control

The Regional Dispatching Services (RDS), managing the 110 kV and below system of Azenerji, are established by each branch office. Those of CPHNE and APHNE are in the Khirdalan 110 kV substation and the Surakane 220 kV substation respectively. This is because the RDS of APHNE is very old and deteriorated and it is hardly working now, the new RDS is now under construction in the yard of APHNE office. At present the interior construction work is nearly completed and a part of the graphic panel is already carried in. The completion time is, however, not clear because of the shortage of the budget.

The RDS is composed of the graphic panel, dispatching table and communication equipment similar to the NLDC as mentioned in Section 3.2.4. The RDS of CPHNE is doubling as the control room of the substation and two load-dispatchers are working for 24 hours on a four-shift a day basis. Besides, two operation and maintenance staffs of the substation are working.

The graphic panel of the RDS of CPHNE has a size of 3x18 m and the transmission lines and substations of 500 kV, 330 kV, 220 kV, 110 kV, and 35 kV in the supply area are displayed and classified by color on the mosaic panel. Although the facilities of the RDS of CPHNE are newer than that of the NLDC, it is incomplete and the switch indicators such as circuit breakers are equipped on the panel but the back wiring of them are not connected. The pushbutton switch disk for the operation is installed on the panel, it is, however, incomplete and not functioning at all. There are no measuring instruments at all such as voltmeter and watt-meter except for the frequency-meter on the panel and they are not planning to install. The automatic record equipment for the operation data is also not installed. There are communication instruments such as telephone and radio equipment in the RDS and the load-dispatchers confirm the situation of each substation and issue the operation command through them. The indications of open/close position

of the switchgears are switched manually by the load-dispatchers. The accident record, recovery records and system operation commands are recorded to the notebook each time.

The facilities of the RDS of APHNE are very old in comparison with that of CPHNE. Just the main transmission network is displayed on the graphic panel and there is no equipment for indicating the system condition. The operation of the system is drawn on the past experience and storage of the load-dispatchers and the elderly load-dispatchers confirm the situation of each substation and issue the operation command through the telephone and radio equipment.

4.4 Power Supply and Demand

In Baku City, Azenerji is in charge of energy supply to large customer including factories except residential customers (however, wholesale to a part of the apartments is undertaken) as well as wholesale supply to BEN. Power supply and demand condition in Baku, therefore, needs to be analyzed, considering the condition in Azenerji's part as well.

4.4.1 Power Supply by Azenerji

(1) Load curve

Most of the energy consumption in Baku is generated by the Az-Gres and Ali Bayramli Thermal Power Plants and a group of hydropower stations of the Kura River System and supplied through the transmission system described in Section 4.3.1 to Baku. The Severnaya Thermal Power Plant and co-generation plants supplement the energy supply to Baku.

Daily load curve, an indicator of the energy balance situation in Baku, can be drawn based on the power supply to Baku through 220 kV transmission lines, and power sent to Sumgait City through 110 kV transmission lines and power output by the power plants located in Baku.

Figure I.4.4-1 presents the daily load curve and a daily load duration curve on December 16, 1998 in Baku area, when hourly measurement and recording were carried out on a nationwide. Usually measurement is carried out by a four to five hour interval. According to this, the peak load on that day was 990 MW, equivalent to around 30 % of the peak load (3,353 MW) of Azerbaijan's network system excluding Nakhichevan region. The daily load factor on that day is 80 %.

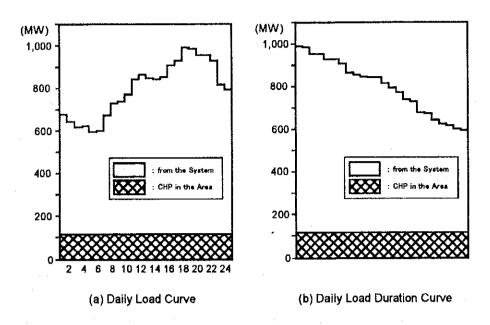


Figure 1.4.4-1 Daily Load Curve in Baku City (Dec. 16 1998)

(2) Energy supply amount

Annual energy generation amount by the power plants consolidated for identifying the daily load curve explained above and annual energy supply amount through transmission lines are shown in Table I.4.4-1.

Items19981999(1)Energy generation by the power plants in Baku City389.0394.0(2)Energy supply through transmission lines5,525.95,182.6(3)Energy sent out by transmission lines445.3370.6(4) Total energy supply to Baku City5,469.65,206.0

Table I.4.4-1 Energy supply amount to Baku City (GWh)

From the above explanation, the annual load factor in 1998 is estimated as 63.1 %.

(3) Annual load factor

The above mentioned annual load factor is derived by combining Azenerji's own demand mainly comprising of industrial demand (around 70%) and transportation demand (around 14%), and BEN's demand represented by residential demand (accounting for 80% in 1998). The load curve for the former is characterized with high load factor and its peak during daytime, and the latter is with a low factor and its peak during night. Furthermore, the former is less influenced by a seasonal fluctuation of demand, but the latter is strongly influenced due to a heating demand during winter season. These situations have made the difference of the annual load factors for each much wider. Considering these factors, annual load factor for Azenerji's own demand is assumed as 80 % and for BEN's demand as 55 % in this Study. Then, the peak load for each is

derived as 235 MW and 755 MW respectively.

4.4.2 Energy Consumption by Azenerji's Customers

(1) Energy sales amounts

Energy sales amount in Baku in 1998 was 4,953.4 GWh, comprising 34.7% of total sales amount of Azerbaijan. Excluding the wholesale amount to BEN, the figure amounts to 1,634.8 GWh (33% of total demand in Baku). Of the figure, 877.6 GWh was consumed by the central part in Baku. Table I.4.4-2 presents the energy sales amount during 1997-1999, and the detail is shown in Appendix I.4.4-1. Although the average annual growth rate of wholesale amount to BEN represents very high figure, the retail sales amount of Azenerji regional branch which has little residential customer has been grown less due to the lowering in industrial activity.

Table I.4.4-2 Energy sales amount of Azenerji's regional branch in Baku City (unit: GWh)

_	1997	1	998	1999	
Category	Energy sales	Energy Sales	Energy Sales Growth rate (%)		Growth rate (%)
Wholesale	2,934.4	3,318.6	13.1	3,610.2	8.8
Industry	1,236.0	1,150.1	-7.0	949.7	-17.4
Non-industry	70.4	60.2	-14.5	33.8	-43 .9
Commercial	9.2	17.5	90.0	22.8	30.2
Transportation	138.9	223.5	61.0	265.4	18.7
Others	206.2	183.5	-10.8	214.1	16.7
Total	4,595.1	4,953.4	7.8	5,095.9	2.9
Exc. wholesale	1,660.7	1,634.8	-1.6	1,485.7	- 9.1

(Source: Azenerji, CPHNE and APHNE)

(2) Losses

The transmission and distribution loss by Azenerji in Baku City is thus estimated as 516 GWh in 1998, equivalent to 9.4 % of total energy supply to Baku, and 3.0 % of total supply to Azerbaijan. This value also accounts for 17.7 % of total transmission and distribution loss by Azenerji (2,911 GWh). The loss value 9.4 % is considered as very high, taking into account that BEN's (bulk energy buyer at 10 and 6 kV) consumption accounts for 67 % (in 1998) of total consumption in the area.

(3) Energy wholesales to Baku City (BEN)

Energy wholesales to BEN from Azenerji is made through more than 80 feeders of 10 and 6 kV. The record of power purchases on BEN side is kept by every administrative district (Sabail, Yasamal, Nasimi, Narimanov, and Binagady) and the rest of network branches. Among the Study area, the power supply condition in the 4 administrative districts is not clear enough. To understand the power supply amounts to every 6 administrative districts in the Study area, the wholesale amounts to each of those districts which was

recorded by each Azenerji's substations is shown in Table 1.4.4-3. The figures in the table, however, are only for reference use to estimate energy use condition. The figure was derived by taking into account in which district the concerned substations are located. In other words, as there are some substations which supplies to more than one administrative districts, the figure does not necessarily represent accurate power supply situation of each district.

Table I.4.4-3 Energy wholesales amount to each district (1998)

Sabail Yasamal Nasimi Narimanov Nizami Khatai	Energy amount (GWh)
Study Area	
Sabail	275.3
Yasamal	310.5
Nasimi	455.6
Narimanov	98.3
Nizami	162,3
Khatai	459.5
Other districts	1,557.1
Total	3,318.6

(4) The number of customer

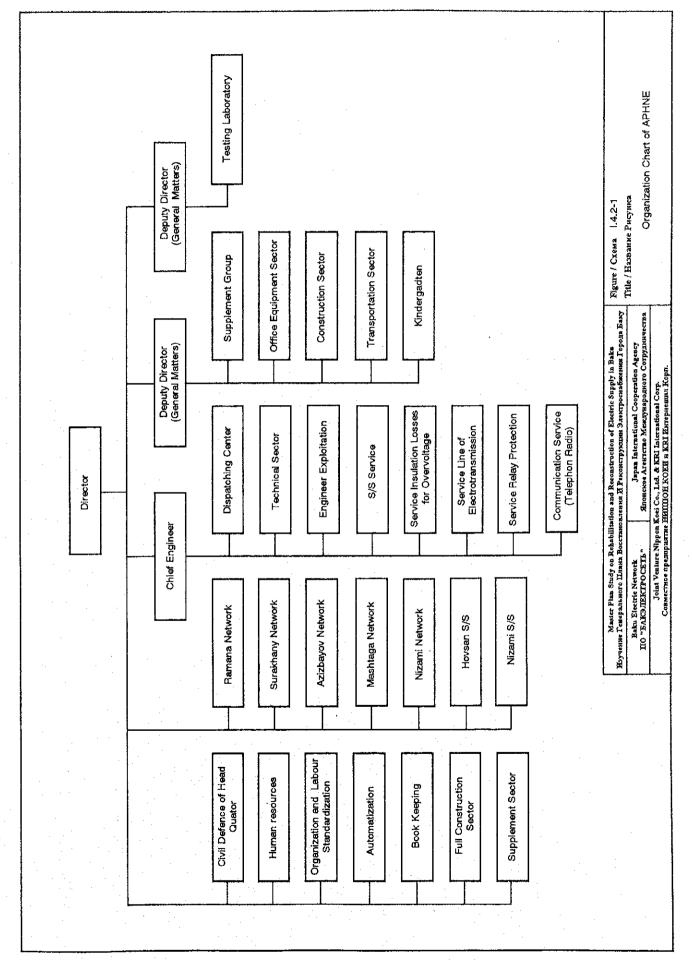
Table I.4.4-4 shows the number of customer in Azenerji. Non-industry in the table comprises public facility including schools, hospitals, athletic facility, and governmental and local governmental. It should be noted, however, that BEN covers public facilities for general resident. While, the facilities in Azenerji's "non-industry" category are mainly schools and hospitals for military personnel. "Residential" category in Azenerji mainly comprises the wholesale to apartments and settlements.

Table I.4.4-4 The number of customer in Azenerji (1998)

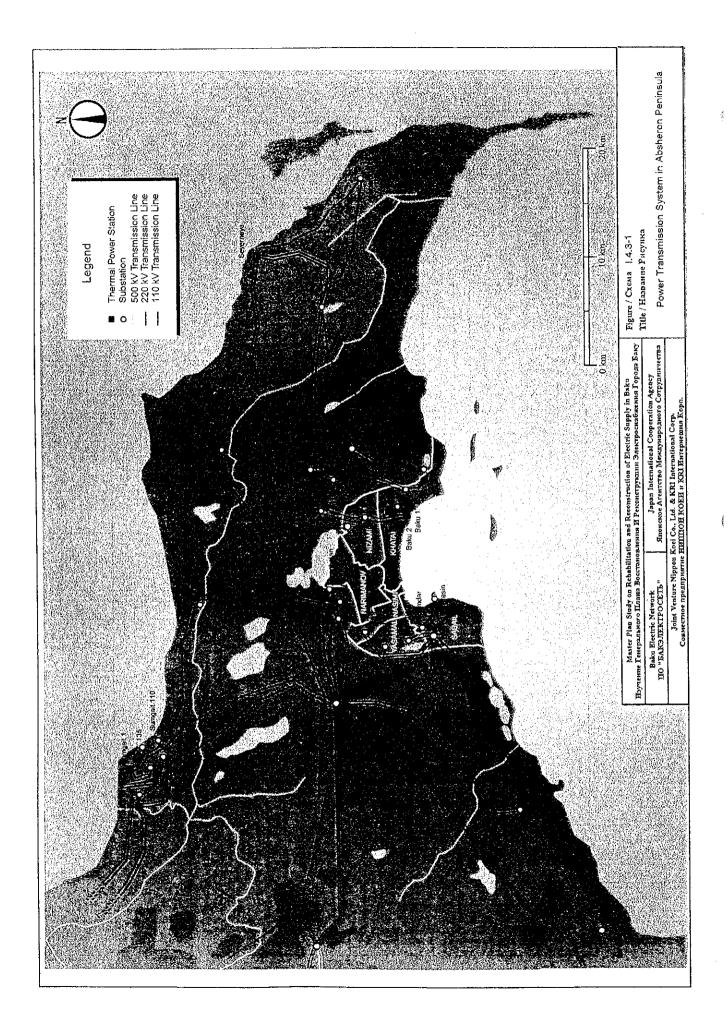
Tariff category	CPHNE	APHNE	Total
Wholesale (BEN)	1	1	2
Residential (inc. apartment)	6	11	17
Industry	187	187	374
Non-industry	54	14	68
Commerce	32	31	63
Transport	4 .	4	8
Agriculture	3	29	32
Others	2	30	32
Total	289	307	596

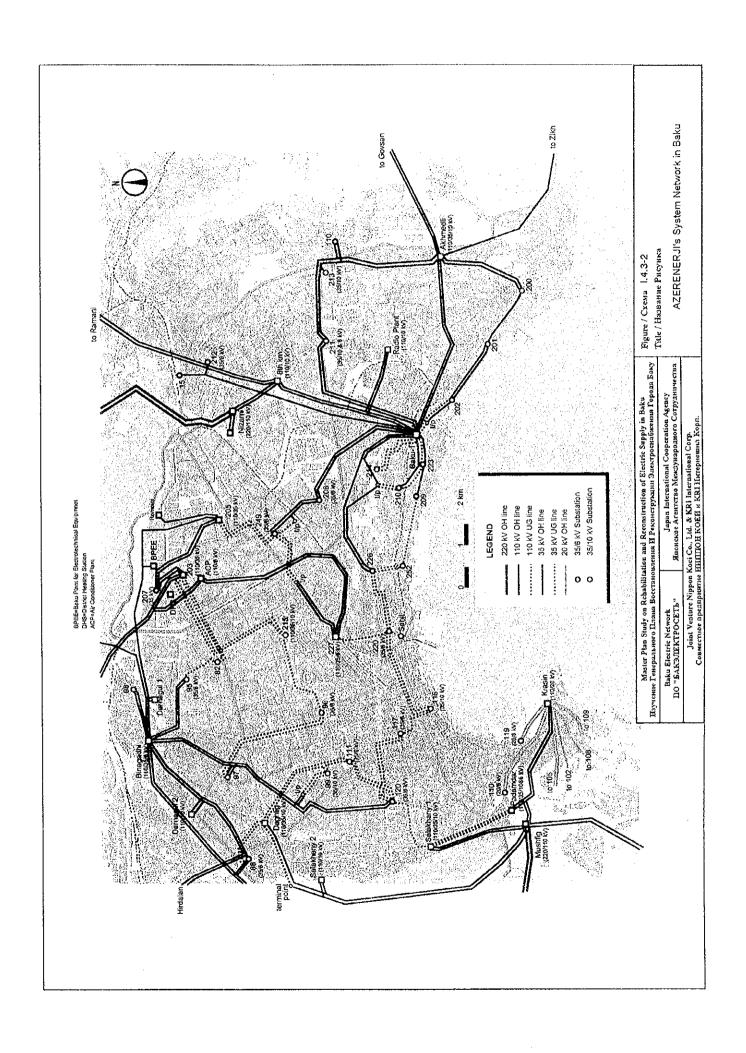
(Source: Azenerji, CPHNE and APHNE)

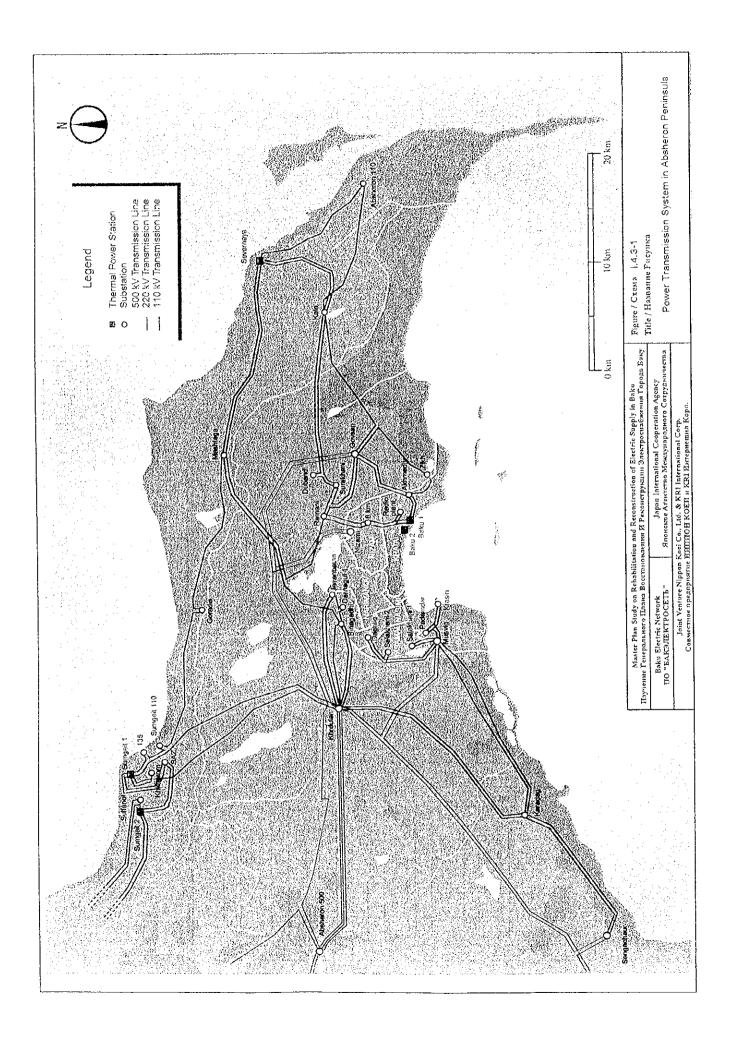
(5) Energy sales revenue and charge collection

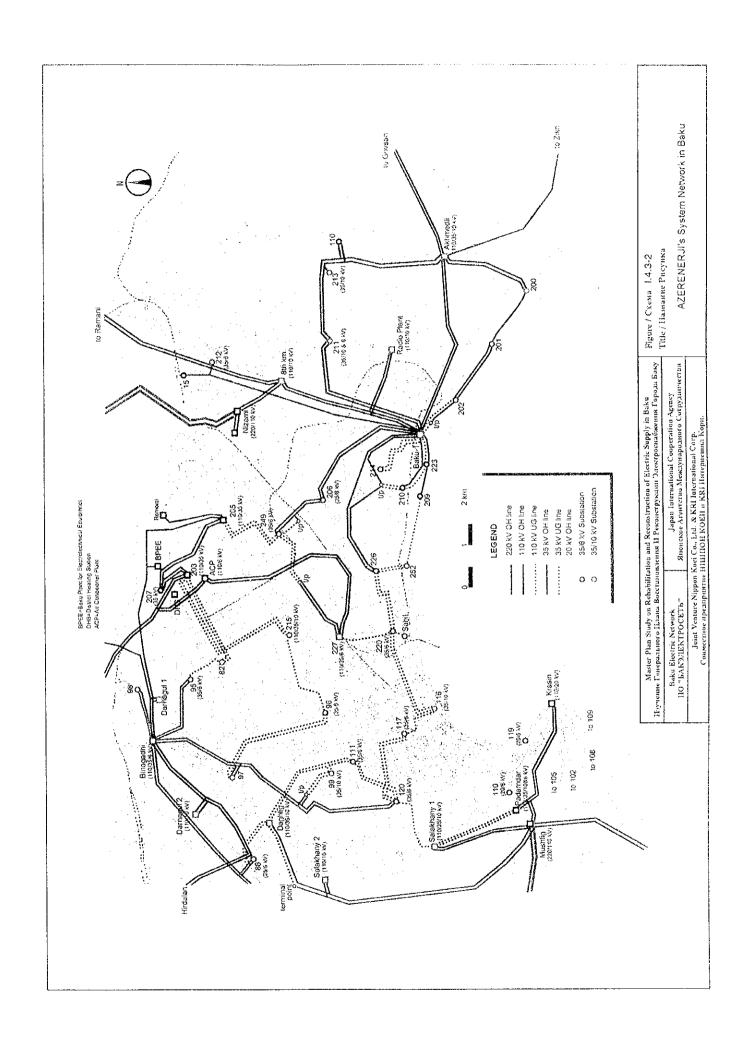

The data on energy sales revenue and charge collection performance in Baku City by Azenerji (each branch: CPHNE and APHNE) during 1998-1999 are shown in Table I.4.4-5. The breakdown by tariff category is provided in Appendix I.4.4-2. Compared with the collection rate (49.5 %) in 1998, notable improvement during 1999 (50.1 %) has not been observed. As shown in the Table below, the sales revenue from industry

and other account for around 50 % of the total in Baku City. In spite of a heavily stagnated economy, those sectors show a good rate of payment as much as 73 %. However, the same rate by BEN, which is largely responsible for the residential customer, goes no further than recording around 20%, thus worsening the entire collection performance.


Table I.4.4-5 Energy sales revenue and charge collection performance in Baku City (1998-1999)


			1998			1999	
		Billing	Collection	Rate	Billing	Collection	Rate
		(AZM mil.)	(AZM mil.)	(%)	(AZM mil.)	(AZM mil.)	(%)
CPHNE	Wholesale to Baku	173,320	38,987	22.5	163,829	44,876	27.4
	Industrial sector	117,619	99,772	84.8	79,939	64,048	80.1
	Others	52,287	45,754	87.5	64,407	51,113	79.4
	Total	344,226	184,516	53.6	308,175	160,037	51.9
APHNE	Wholesale to Baku	153,734	24,149	15.7	148,089	17,398	11.7
	Industrial sector	128,218	102,602	80.0	102,701	100,068	97.4
	Others	29,927	13,197	44.1	27,052	16,313	60.3
	Total	311,879	139,948	44.9	277,842	133,779	50.1
Total	Wholesale to Baku	327,054	63,136	19.3	311,918	62,272	20.0
	Industrial sector	245,837	202,374	82.3	182,640	164,116	89.9
	Others	83,214	58,954	70.8	91,459	67,428	73.7
	Total	656,105	324,464	49.5	586,017	293,816	50.1


(Source: Azenerji, CPHNE and APHNE)



A. 187

No	Voltage	Cula	tations	Cct	Cct·km	Con	ductor	Commis.	
No.	voltage	From	To	Line Length	Ca	CCI KIII	Kind	Size	Year
	(kV)	170111	10	(km)			Killu	(sq.mm)	, cai
220 1								(adamin)	
	HNE)								
1	220	Alibayramli	Mushfig	36.50	1	36.5	AC	2 x 300	1961
2	220	Alibayramli	Sangachal	25.90	1	25.9	AC	2 x 300	1962
<u> </u>		of above 2 lines : partial)	Gangachar	23.90		23.9	AC	2 X 300	1902
3		Absheron	Khirdalan	22.20		22.2	MAI	240	1949
	220	Absheron	Khirdalan	23.20	1 1	23.2	MN	240	1949
4	220			23.70	1	23.7	M	240	
5	220	Absheron	Khirdalan	24.80	1	24.8	AC	600	1995
<u> </u>					1	0.0	AC	500	1995
	240	Y24 * 4 *	12.4.1.6		1	0.0	AC	300	1995
6	220	Khirdalan	Mushfig	14.70	1	14.7	AC	300	1988
7	220	Khirdalan	Sangachal	44.80	1	44.8	ACO	2 x 300	1962
8	220	Khirdalan	Hovsan (T)	16.65	1	16.7	ACC	500	1975
9	220	Khirdalan	Aghsu	39.70	1	39.7	MN	240	1949
						0.0	AC	300	1949
10	220	Absheron	Hovsan (T)	38.70	1	38.7	ACO	500	1975
11	220	Absheron	Gabala	38.80	1	38.8	MN	240	1954
	(Partial)				1	0.0	AC	300	1954
	Total					327.5			
(API	HNE)								
1	220	T-branch point	Hovsan	24.40	2	48.80	ACO	500	
2	220	T-branch point	Nizam	11.20	2	22.40	AC	2x300	
	(Total)					71.20			
1101	ķV								
(CP)	HNE)								
1	110	Khirdalan	CHP	13.90	1	13.9	M	95	1958
2	110	Khirdalan	CHP	16.80	1	16.8	M	95	1955
3	110	Khirdalan	MKZ(ZBK)	16.10	1	16.1	ACK	300	1967
4	110	Binagadi	Khirdalan	12.10	1	12.1	M	120	1954
5	110	Binagadi	Khirdalan	12.20	1	12.2	M	120	1949
6	110	Binagadi	205	7.70	1	7.7	M	120	1963
7	110	Binagadi	Khirdalan	12.70	1	12.7	ACK	185	1970
8	110	Khirdalan	MKZ(ZBK)	19.10	2	38.2	ACK	185	1967
F-	110	I SIM GATAIT	MICE (CADIC)	19.10	2	0.0	ACK	300	1967
9	110	Khirdalan	83	12.50	2	25.0	M	95	1982
	110	Kimidalan	103	12.50	2	0.0			
10	110	Surahany	83	22.40	2	46.8	ACK	185 95	1982
10	. 110	Suranany	0.3	23.40	2		M		1940
11	110	Duta	Khirdalan	20.20		0.0	ACK	185	1940
11	110	Buta		20.20	1	20.2	M	120	1954
12	110	Buta	Khirdalan	20.30	1	20.3	AC	185	1956
13	110	Darnagul	Binagadi	5.87	1	5.9	M	120	
		D :	N. 1.C	40.00	1	0.0	AC	185	4055
14	110	Buta	Mushfig	10.40	1	10.4	AC	185	1989
15	110	Buta	Mushfig	10.60	1	10.6	AC	185	1989
16	110	Sangachal	Buta	22.90	1	22.9	AC	95	1951
	·				1	0.0	AC	150	1951
17	110	Sangachal	Buta	23.80	1	23.8	M	70	1951
18	110	Sangachal	Sangachal	2.80	1	2.8	AC	70	1951
19	110	Sangachal	Sangachal	2.80	1	2.8	AC	70	1951
20	110	Sangachal	Sangachal	2.80	1	2.8	AC	120	1982
21	110	Sangachal	Sangachal	2.80	1	2.8	AC	120	1982
22	110	Alat	Sangachal	31,40	1	31.4	AC	150	1934
23	110	Alat	Sangachal	31.80	1	31.8	M	70	1957
24	110	DOZ	Buta	2.40	1	2.4	AC	120	1982
25	110	DOZ	Buta	2.40	1	2.4	AC	120	1982

No.	Voltage	Subt	ations	Line	Cct	Cct·km	Con	ductor	Commis.
	-	From	То	Length			Kind	Size	Year
	(kV)			(km)				(sq.mm)	
26	110	Buta	Mushfig	4.00	1	4.0	ACK	185/29	1988
27	110	Buta	Mushfig	3.80	1	3.8	ACK	185/29	1988
28	110	Surakhany	Mushfig	3.80	1	3.8	ACK	120/19	1988
29	110	Surakhany	Mushfig	2.40	1	2.4	ACK	185/129	1988
30	110	Daghlig	Mushtig	6.60	1	6.6	AC	185	1988
31	110	Daghlig	Mushfig	6.60	1	6.6	AC	185	1988
32	110	MKZ(ZKB)	227	4.70	1	4.7	ACK	185	1967
33	110	MKZ(ZKB)	227	4.70	1	4.7	ACK	185	1967
				 	ļ	431.4			
	INE)	YT	n 1 (11	7.40		~ 40	1 40	200	
1	110	Hovsan	Bakikhanov	7.40	1	7.40	AC	300	
2	110	Hovsan	Bakikhanov	7.43	1	7.43	AC	300	
3	110	Gunashly incoming		0.10	2	0.20	AC	300	
4	110	Bakikhanov	Ramany	3.00	1	3.00	AC	185	
5	110	Bakikhanov	Surakhany	3.02	1	3.02	AC	120	
				3.92	1	3.92	AC	185	
	440	<u> </u>	0 11	7.66	1	7.66	AC	300	
6	110	Ramany	Surakhany	2.99	1	2.99	M	70	
_	4.4	<u> </u>	0.1.1	0.22	1	0.22	M	95	
7	110	Ramany	8th km	4.70	2	9.40	M	120	
				0.30	2	0.60	AC	0.5	
8	110	8th km	Baku I CHP	n/a	2		n.a	n.a	
9	9 110 Surakhany	Surakhany	Gala	0.50	1	0.50	M	95	
				12.20	1_1_	12.20	M	70	
				1.20	1 1	1.20	AC	150	
10	110	Airport incoming		0.50	2	1.00	<u>M</u> .	70	<u> </u>
11	110	Surakhany	Gala	0,50	1	0.50	M	95	
				12.50	1	12.50	M	7 0	
				1.40	1	1.40	AC	150	
12	110	Hovsan	Sewage Plant	9.00	1	9.00	AC	120	
13	110	Hovsan	Zikh	3.00	1	3.00	M	95	
		ţ		2.10	1	2.10	AC	120	
14	110	Zikh	Akhmedly	2.60	1	2.60	AC	150	
				0.50	1	0.50	M	120	
				5.00	1	5,00	M	95	
15	110	Hovsan	Akhmedly	6.40	2	12.80	AC	185	
16	110	Hovsan	Gala	10.64	1	10.64	M	95	
				1.86	1	1.86	AC	150	
17	110	Gala	Severnaya	13.90	1	13.90	M	150	
		Gala	Severnaya	14.30	1	14.30	M	120/150	
18	110	Gala	Dubandy	17.90	1	17.90	М	95	
19	110	Severnaya	Dubandy	17.00	1	17.00	M	120/150	
20	110	Severnaya	Mashtaga	7.60	2	15.20	ACO	480	
				8.00	2	16.00	AC	500	
				6.00	2	12.00	AC	300	
				4.30	2	8.60	AC	240	
				0.20	2	0.40	AC	150	
21	110	Mashtaga	Vishnevka	2.70	2	5.40	AC	150	
22	110	Mashtaga	Zarbat	0.15	1	0.15	ACK	150	
				8.83	1	8.83	M	95	
23	110	Ramany	Mashtaga	11.00	1	11.00	М	95	:
				10.00	1	10.00	М	120	
				4.80	1	4.80	AC	120	
						278.12			
	1						Ī	1	

(Source : Azenerji, CPHNE and APHNE)

No.	Substation	Unit	Vo	oltage (k	<u>V)</u>	Capacity	Commis.	Remarks
		No.	lst	2nd	3rd	Primary	year of unit	
PHI	NE							
	500 kV							
1	Absheron	1	500	220		267.0		
		2	500	220		267.0		
	Total of 500 kV	2				534.0		
	330 kV							
1	Absheron	1	330	220		133.0		
1	Australia	2	330	220		133.0		· · · · · · · · · · · · · · · · · · ·
	Total of 330 kV	2	-350	ZZU		266.0	<u></u>	<u> </u>
	220 kV	1 2				200.0	 	
		+-,-	220	110	10	240.0		
1	Khyrdalan	1	220		10	· · · · · · · · · · · · · · · · · · ·		
		2	220	110		240.0		
		3	220	110		190.0		
2	Mushfig	1	220	110	10	200.0	ļ	
		2	220	110		200.0		
3	Sangachaur	1	220	110		63.0		
		2	220	110		63.0		
	Total of 220 kV	7				1,196.0		
	110 kV							
1	Heating Plant	1	110		-	40.0		
		2	110			31.5	<u> </u>	_
2	Ulduz	1	110	10	ļ	16.0		
	<u> </u>	2	110	10	<u></u>	16.0		
3	Badamdar	1 2	110 110			40.0		
4	Salakhany-I	$\frac{1}{1}$	110	35	10	31.5		
	Dalakilariy-1	2	110	35	10	40.0		
5	Salakhany-II	1	110	35	10	25.0		
		2	110	35	10	25.0		
6	Bayil	l	110	20		40.0		
		2	110	20		40.0		
	•	3	110	20		40.0		
7	Davis	4	110 110	35	6	20.0 40.0		
7	Puta	1 2	110	35	6	31.5		
-8	Garadagh	$-\frac{2}{1}$	110	35	6	40.0		
	- Caranga	2	110	35	6	40.0		
9	Sangachaur-I	1	110	35	6	16.0		
		2	110	35	6	16.0		
10	Sangachaur-II	1	110	35	6	25.0		
1.	D'	2	110	35	6	25.0		
11	Binagadi	1 2	110 110	35 35	6	40.0		
	·	3	110	35	6	40.0	ļ	
	<u> </u>	4	110	35	6	40.0	 	
12	Darnagul-I	1	110	T		25.0		
	<u> </u>	2	110			25.0		
13		1	110	35	6	10.0		
	(Building Const4)	2	110	35	6	25.0		
14	Darnagul-II	1	110	35	6	25.0	<u> </u>	
	15 11'	2	110	35	6	40.0		
15	Daghlig	1	110		 	40.0		
16	205	2	110	35	6	25.0	ļ	
10	403	2	110	35	6	25.0		
		3	110	35	6	40.0	 	
		4	110	35	6	31.5		

No.	Substation	Unit	V	oltage (k	V)	Capacity	Commis,	Remarks
		No.	1st	2nd	3rd	Primary	year of unit	
17	Air Conditioner Plant	l	110	35	6	40.0		·
		2	110	35	6	40.0		
18	Oil Equipment Plant	1	110	35	6	25.0		
		2	110	35	6	25.0		
	Total of 110 kV	42				1,320.0		
TATE	<u> </u>	ļ			ļ			
PHI	NE 220 kV						··· ·· · · · · · · · · · · · · · · · ·	
1	Hovsan	1	220	110		200.0		
	Hovsan	2	220	110		200.0		
2	Nizami	1	220	110		125.0		
	141241111	2	220	110		125.0		
	Total of 220 kV	4	220	110	<u></u>	650.0		
	110 kV					030.0		
1	Ramany	1	110	20		40,5		
		2	110	20	_	40.0		
		3	110	20	-	30.0		
2	Bakikhanov	1	110	10		25.0		
		2	110	35	10	25.0		
3	Gunashly	1	110	10		40.0		
	-	2	110	10		20.0		
4	Surakhany	1	110	20	6	31.5		
	· · · · · · · · · · · · · · · · · · ·	2	110	20	6	40.0		
5	Airport Bina	1	110	n.a	п.а	25.0		
		2	110	n.a	n.a	25.0		
6	8th km	1	110	10	35	31.5		
		2	110	10	35	31.5		
		3	110	6	6	40.0		
		4	110	6		20.0		
		5	110	6		20.0		
7	Ahmedly	1	110	35	10	63.0		
		2	110	35	10	63.0		
8	Zikh	1	110	35	6	25.0		
		2	110	35	6	25.0		
		3	110	35	6	25.0		
9	Sewage Plant	1	110	6		16.0		
		2	110	6		16.0		
10	Radio	1	110	10		40.0		
		2	110	10		25.0		
11	Zabrat	1	110	35	10	40.0		
	1	2	110	35	10	40.0		
12	Mashtaga	1	110	35	6	31.5		
12		2	110	35	6	40.0		
13	Factory	1	110	6	 	10.0		
1.4	Golo	2	110	6		10.0		
14	Gala	1 2	110	35	6	40.0		
15	Dubandy	1	110	35 35	6	40.0 31.5		
13	Duomay	2	110 110	35	6	31.5		
16	Azeroil Fuel-1	1	110		· · · ·	20.0		
10	AZCION FUCI-1	2	110	6	<u> </u>			
		$\frac{2}{3}$		6	ļ	20.0		
17	Azeroil Fuel-2	1	110 110	6	ļ	20.0		
1 /	AZCION PUCI-Z	$\frac{1}{2}$	110	6	 	40.0		
		+	110	0	 	40.0		
	Total of 110 kV	40	 	ļ	<u> </u>	1,237.5		
			L	l .	1	1,431.3	1	

Appendix I.4.3-3 35 kV and 20 kV substations in Baku

No.	Substation		Transforme	er .	Vol	tage	Year	Remarks
1		Nos.	Unit	Total	1st	2nd	of	
		of Unit	Capacity	Capacity			Installation	
			(kVA)	(kVA)	(kV)	(kV)		
EN	: 35kV Substations							
1	82	2	10,000	20,000	35	10		
2	88	2	16,000	32,000	35	6		
3	95	2	16,000	32,000	35	6		
4	96	2	10,000	20,000	35	6		
5	97	2	16,000	32,000	35	10		
6	98	2	6,300	12,600	35	6		
7	111	2	10,000	20,000	35	6		
8	116	1	10,000	10,000	35	10	· · · · · · · · · · · · · · · · · · ·	
		1	16,000	16,000	35	10		
9	117	1	10,000	10,000	35	10	,	
		1	16,000	16,000	35	10		
10	120	2	10,000	20,000	35	6		
		2	7,500	15,000	35	6		
11	206	2	10,000	20,000	35	6		
		1	5,600	5,600	35	6		<u> </u>
12	207	2	10,000	20,000	35	6		
13	209	1	5,600	5,600	35	6	_, <u></u>	
		1	7,500	7,500	35	6		
14	210	2	5,600	11,200	35	6	·	
15	215	1	16,000	16,000	35	6	<u></u>	
16	220	3	16,000	48,000	35	6		
17	226	3	5,600	16,800	35	6		
18	249			0	35		•	·
19	252	1	7,500	7,500	35	6		
		1	6,300	6,300	35	6		
	Subtotal	(40)		(420,100)				
	: 35kV Substation							
1	200	1	6,300	6,300	35	6	1994	2(20):BEN
		1	5,600	5,600	35	6	1983	
2	201	3	10,000	30,000	35	6	1977	1(25):BEN
3	202H	1	5,600	5,600	35	6	1969	1(1):BEN
	***	1	6,740	6,740	35	6	1940	44/4/22 ******
4	211	2	10,000	20,000	35	10	1967	11(17):BEN
		1	10,000	10,000	35	6	1992	
٠٠.	***	2	6,300	12,600	35	6	1984	AHC. 1 PER
5	212	1	10,000	10,000	35	10	1995	All feeders:BEN
6	213	1	10,000	10,000	35	10	1996	All feeders:BEN
7	214	2	25,000	50,000	35	6	1973	1(22):BEN
7775	Subtotal	(16)		(166,840)			·	-
	: 20kV Substations	 	6.000	11 200	25	 		
1	110	2	5,600	11,200	35	6		
2	119	1	10,000	10,000	35	10		1
		1	16,000	16,000	35	10		
	01	1 (5)	6,300	6,300	35	10		
	Subtotal	(5)		(43,500)	<u> </u>			
	Total	(61)		630,440	L			.1

Appendix I.4.3-4 35 kV and 20 kV lines in the study area

No.	Туре	ype Substations		Length	Cct	Cct·km	Соп	Commis.	
							Kind	Size	Year
		From	То	(km)				(sq.mm)	
	NE (35k								
1	OH	Binagadi	95	1.90	2	3.80	M,AC	70,120,95	1963
2	OH	Binagadi	98	1.80	2	3.60	AC,M	70,120	1953
3	ОН	Binagadi	97-120	8.30	2	16.60	M,AC	95,150	1954
4	ОН	210	226	4.10	1	4.10	M	120	1947
5	ОН	223	209	1.90	1	1.90	M	120	1965
6	OH	Binagadi	87-88-TB	12.30	2	24.60	M	95	
7	ОН	СНР	206	2.80	2	5.60	M	120	1952
8	OH	СНР	210	2.20	1	2.20	M	95	
9	OH	СНР	226	5.40	1	5.40	M	95	1932
10	OH	206	249	1.90	2	3.80	M	120	1952
11 12	OH OH	249	227	1.50	2	3.00	M	120	1952
		BETK verhead Line Total)	207	4.50	2	9.00	AC	95	1951
13	UG UG	205	249	(48.60)		(83.60)	4000	2 450	4055
14	UG	BETK	215	1.86	2	3.72	AOCB	3 x 150	1955
15	UG			4.85	2	9.70	AOCB	3 x 150	1967
16	UG	116 117	220 120	2.25	2	4.50	AOCB	3 x 150	1971
17	UG	96	97	2.90 3.56	2	5.79	AOCB	3 x 150	1967
18	UG					7.12	OCB	3 x 120	1966
19	UG	Daghlig Daghlig	111 111	3.40	1	3.40	AOCB	3 x 150	1974
19 20	UG		120	3.30 1.80	1	3.30	AOCB	3 x 125	1985
9	UG	Salakhany 209	252	1.80	2	3.60	OCB OCB	3 x 120	1967
10	UG	226	252	0.86	2	1.93 1.73	OCB	3 x 150 3 x 120	1936 1936
11	UG	220	227	1.70	1	1.73	AOCB	3 x 120	
12	UG	220	226	1.47	1	1.47	OCB	3 x 130	1970 1946
13	UG	220	226	1.64	1	1.64	OCB	3 x 120	1946
14	UG	220	227	1.56	1	1.56	OCB	3 x 120	1951
15	UG	220	227	1.56	1	1.56	OCB	3 x 150	1954
16	UG	220	227	1.70	1	1.70	AOCB	3 x 150	1970
17	UG	Daghlig	88	3.00	2	6.00	AOCB	3 x 150	1973
18	UG	BETC	82	3.40	2	6.80	OCB	3 x 150	1978
19	UG	Hotel Europe Incoming	02	0.81	2	1.62	OCB	3 x 150	1998
20	UG	116	117	1.20	1	1.20	AOCB	3 x 150	1981
21	UG	96	215	2.85	1	2.85	AOCB	3 x 150	1976
				(47.60)		(72.88)	AOOD	3 X 130	1770
APH	NE (35k	V)		(17.00)		(12.00)		·	
1	OH	Akhmedli	200	3.50	2	7.00	AC	95, 150	1955
2	ОН	Akhmedli	211	5.80	1	5.80	AC	150	1955
3	OH	Akhmedli	211	5.80	1	5.80	M	95	1955
4	ОН	213:T-branch from Akhr	nedli-211 line	0.13	1	0.13	AC	95	1996
5	OH	CHP "Bayramzade"	211 (No. 8)	3.80	1	3.80	AC,M	120, 95	1955
6	OH	CHP "Bayramzade"	211 (Na. 9)	3.90	1	3.90	M	95	1955
7	OH	CHP "Bayramzade"	212	7.20	1	7.20	M,AC	70, 150	1951
8	ОН	200	201	1.90	1	1.90	M	70, 95	1931
9	ОН	201	202H	1.20	1	1.20	M	70	1931
10	OH	201	202H	1.20	1	1.20	M	120	1931
11	OH	202	CHP "Bayramzade"	0.90	1	0.90	M	70	1953
		werhead Line Total)		(35.33)		(38.83)			
12	UG	CHP "Bayramzade"	214						
CPII	NE (20k								
1	OH	Bayil	110-119	3.20	1	3.20	M,AC	70,95	1928
2	OH	Bayil	110	2.70	1	2.70	M,AC	70,95	1931
3	OH	Bayil	102	2.40	1	2.40	M	95	1915
4	OH	Bayi	105	2.10	2	4.20	M	95	1931
5	OH	Bayil	109	1.00	2	2.00	M	120	1930
6	OH	Bayil	118	2.00	1	2.00	M	120	1935
	(Overhea	ad Line Total)		13.40		16.50			
			1	1	1 4	1.00	000	0 100	1000
7	UG	Bayil	119	1.38	1	1.38	OCB	3 x 120	1959
7		Bayil Bayil	119	1.38	1	1.38	OCB	3 x 120 3 x 120	1959

(Source: Azenerji, CPHNE and APHNE)

Appendix I.4.4-1 Energy sales record in Baku

		1997	19	98	199)9		
	Tariff Category	Energy	Energy	Growth	Energy	Growth		
l		(GWh)	(GWh)	(%)	(GWh)	(%)		
A :	Central Power and Hea	t Network Ente	erprise (CPHN	E)				
1	Wholesales	1,580.6	1,779.7	12.6	1,896.2	6.5		
2	Industry	594.6	535.9	-9.9	416.5	-22.3		
3	Non-industry	23.3	25.0	7.3	10.9	-56.4		
4	Commercial	9.1	13.2	45.1	17.9	35.6		
5	Transportation	93.8	173.7	85.2	239.9	38.1		
6	Others	181.6	129.7	-28.6	112.6	-13.2		
7	Total	2,483.0	2,657.2	7.0	2,694.0	1.4		
B: Absheron Power and Heat Network Enterprise (APHNE)								
1	Wholesales	1,353.8	1,538.9	13.7	1,714.0	11.4		
2	Industry	642.0	614.2	-4.3	533.2	-13.2		
3	Non-industry	47.1	35.2	-25.3	22.9	-35.0		
4	Commercial	0.1	4.3	-	4.9	13.7		
5	Transportation	45.1	49.8	10.6	25.5	-48.8		
6	Others	24.1	53.8	122.9	101.5	88.8		
7	Total	2,112.1	2,296.2	8.7	2,401.9	4.6		
C:	Total							
1	Wholesales	2,934.4	3,318.6	13.1	3,610.2	8.8		
2	Industry	1,236.6	1,150.1	-7.0	949.7	-17.4		
3	Non-industry	70.4	60.2	-14.5	33.8	-43.9		
4	Commercial	9.2	17.5	90.0	22.8	30.2		
5	Transportation	138.9	223,5	61.0	265.4	18.7		
6	Others	205.7	183.5	-10.8	214.1	16.7		
7	Total	4,595.1	4,953.4	7.8	5,095.9	2.9		

Appendix I.4.4-2 Energy sales revenue and charge collection by tariff category (1999)

	Sold	Claimed	Paid	Deficit	Ratio	Unit
Tariff	Energy	Amount	Amount		of	Price
Category	(GWh)	(Mil. AZM)	(Mil. AZM)	(Mit. AZM)	(%)	(AZM
						/kWh)
Central Network					····	
1 Industrial and construction	416.5	79,938.8	64,048.1	15,890.7	80.1	191.9
2 Special expenditure (Azeneji's staff)	1.0	194.5	194.5	0.0	100.0	194.5
3 Wholesales	1,896.2	163,829.2	44,875.6	118,953.6	27.4	86.4
4 Agriculture	1.7	285.9	145.9	140.0	51.0	168.2
5 Railway	44.4	10,548.4	5,381.8	5,166.6	51.0	237.6
6 Urban transportation	195.5	30,988.8	27,247.4	3,741.4	87.9	158.5
7 Non-industry	10.9	3,466.7	1,485.4	1,981.3	42.8	318.0
8 Commercial and services	17.9	7,309.0	6,220.8	1,088.2	85.1	408.3
9 Populated Area (Settlement)	103.9	11,427.1	10,261.0	1,166.1	89.8	109.9
10 Residential (50% conpensation)	0.2	13.4	13.4	0.0	100.0	67.0
11 Free of charge (100% conpensation)	4.7	0,0	0.0	0.0		
12 Foreign country's customers	1.1	173.0	163.4	9.6	94.5	157.3
Subtotal	2,694.0	308,174.8	160,037.3	148,137.5	51.9	114.4
Absheron Network	-					
1 Industrial and construction	532.9	102,700.8	100,068.1	2,632.7	97.4	192.7
2 Special expenditure (Azenerji's staff)	0.9	163.2	163.2	0.0	100.0	192.0
3 Wholesales	1,714.0	148,088.7	17,397.9	130,690.8	11.7	86.4
4 Agriculture	5.5	920.6	291.8	628.8	31.7	168.0
5 Railway	10.1	2,409.3	2,033.7	375.6	84.4	237.6
6 Urban transportation	15.4	2,431.4		2,431.4	0.0	158.4
7 Absheron water company	43.7	6,925.2	3,210.1	3,715.2	46.4	158.4
8 Non-industry	22.9	7,269.5	5,494.0	1,775.5	75.6	318.0
9 Commercial and services	4.9	1,995.1	2,150.0	-154.9	107.8	408.0
10 Populated Area (Settlement)	0.7	29.3	13.7	15.6	46.9	40.7
11 Residential	50.7	4,870.1	2,888.4	1,981.7	59.3	96.0
12 Chemical enterprise	0.3	38.9	68.2	-29.3	175.4	144.1
Subtotal	2,401.9	277,842.1	133,779.1	144,063.0	48.1	115.7
Total	5,095.9	586,016.9	293,816.4	292,200.5	50.1	115.0