## **CONSTRUCTION PLANNING**

## **CHAPTER 1 GENERAL DESCRIPTION**

## 1.1 Scope of Works

Construction works of this study section are conveyance canal from KM 86.50 to KM 132.50 including No.7 pumping station and appurtenant structures and three routes of access roads.

## **1.2 Tender Packages**

Tender and contract for this section will be divided into four packages, consisting of three packages manage by NSDO and one package control by REA. Major facilities for each contract packages are summarized as follows;

|                 | Aubre 112 1 Maijer Auennees for Zuen Luenuges |                                                                                                                                                                                                                        |  |  |  |  |
|-----------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Package         | Beginning and End<br>Point                    | Major Facilities                                                                                                                                                                                                       |  |  |  |  |
| No.1<br>Package | KM86.50 – KM108.47                            | No.1 open canal (7.80 km), box culvert (7.50km),<br>No.2 open canal (6.67 km), spillway with spillway<br>outlet channel (2.10 km) and 2 units bridges, No.1<br>access road (1.00 km) and No.2 access road (2.80<br>km) |  |  |  |  |
| No.2<br>Package | KM108.48 (KM 108.47)<br>- KM108.86            | Sand settling basin (0.38 km), No.7 pumping station (0.13 km), delivery pressured pipeline(3 rows 9.35 km and 3 units x 2 places one-way surge tank), discharge tank (0.20 km) and No.3 access road (5.06 km)          |  |  |  |  |
| No.3<br>Package | KM108.86 – KM132.50                           | No.3 open canal (13.94 km) and 3 units bridges                                                                                                                                                                         |  |  |  |  |
| No.4<br>Package | At No.7 pumping station                       | Main substation and administration building                                                                                                                                                                            |  |  |  |  |

## **1.3 Preliminary Project Implementation Plan**

Preliminary project implementation plan can be illustrated taking into account tender procedures, actual construction periods of the canal and pump equipment in the following table.

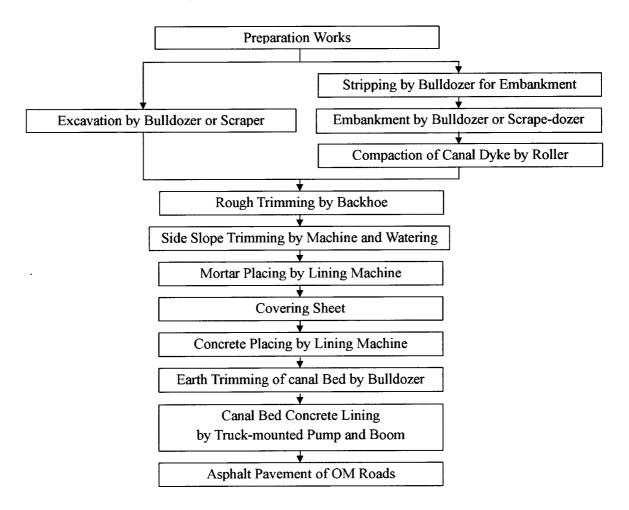
|                | (00                  | m ey unce                             | ounar og or          | • • • • • • • • • • • • • • • • • • • • |                      |                      |
|----------------|----------------------|---------------------------------------|----------------------|-----------------------------------------|----------------------|----------------------|
| Tender         | 1 <sup>st</sup> year | 2 <sup>nd</sup> year                  | 3 <sup>rd</sup> year | 4 <sup>th</sup> year                    | 5 <sup>th</sup> year | 6 <sup>th</sup> year |
| Item           | (2000)               | (2001)                                | (2002)               | (2003)                                  | (2004)               | (2005)               |
| Preparation of |                      |                                       |                      |                                         |                      |                      |
| Document       |                      |                                       |                      |                                         |                      |                      |
| Tendering      |                      |                                       |                      |                                         |                      |                      |
| Procedure      | ····                 |                                       |                      |                                         |                      |                      |
| No.1 Package   |                      |                                       |                      |                                         |                      |                      |
| No.2 Package   |                      |                                       |                      |                                         |                      |                      |
| No.3 Package   |                      | · · · · · · · · · · · · · · · · · · · |                      |                                         |                      |                      |
| No.4 Package   |                      | þ                                     |                      |                                         |                      |                      |

i.

,

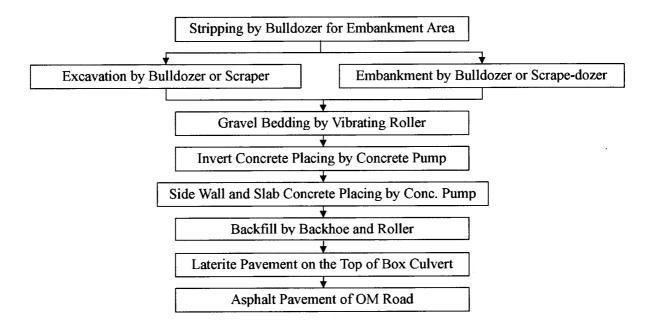
Table1.3-1Preliminary Project Implementation Plan<br/>(Conveyance Canal Systems)

## **CHAPTER 2 CONVEYANCE CANALS**


## 2.1 Earth Works of Open Canal and Box Culvert

### (1) Concepts of Construction Process of Conveyance Canal

The major points of the earth work process are summarized as follows;


- 1) In considering the earth works of the conveyance canal are large-volume with the soil moving, the excavation and embankment works will be carried out by 21 tons class bulldozer combination with 12 m<sup>3</sup> class scraper.
- 2) The rough trimming on the slope of the open canal will be carried out by 1.0 m<sup>3</sup> class backhoe after excavation and embankment works.
- 3) The trimming on the slope of the open canal will be carried out by exclusive slope finisher.
- (a) Open Canal:

The flowchart of the open canal is as follow;



## (b) Box Culvert

The flowchart of the box culvert is as follow;



### (2) Workability of Construction Equipment

The workability of construction equipment is shown as the following table.

| Construction Equipment                                 | Specification                                                                                                                   | Workability               |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| Bulldozer<br>(for excavation)                          | 21 ton class, hauling distance = ave. 50 m, cycle time =2.13 min. working eff. = $0.85$ (sand, moderate), f = $1.00$            | 480 m <sup>3</sup> /day   |
| Scraper<br>(for excavation)                            | 26 ton self-loading ( $q_0$ =12.0 m <sup>3</sup> ), hauling distance = ave.<br>200m, cycle time = 4.49 min. working eff. = 0.80 | 385 m <sup>3</sup> /day   |
| Backhoe<br>(for excavation)                            | 1.0 m <sup>3</sup> crawler type                                                                                                 | 520 m <sup>3</sup> /day   |
| Bulldozer<br>(for compaction)                          | 21 ton class, compaction thick = $0.30m$ , compaction = 5 times, working eff. = $0.85$ (sand, moderate), f = $1.00$             | 370 m <sup>3</sup> /day   |
| Vibrating Roller<br>(for compaction)                   | 5 ton class, speed = $1,000$ m/hr, width = $0.8$ m, thick = $0.3$ m, compaction = 5 times, working eff. = $0.40$                | 100 m <sup>3</sup> /day   |
| Earth trimming machine<br>(for trimming of side slope) | For one side                                                                                                                    | 350 m/day                 |
| Concrete placing machine (for mortar lining)           | For one side                                                                                                                    | 280 m/day                 |
| Concrete placing machine (for concrete lining)         | For one side                                                                                                                    | 140 m/day                 |
| Asphalt finisher<br>(for paved asphalt)                |                                                                                                                                 | 2,600 m <sup>2</sup> /day |

1

 Table 2.1-1
 Workability of Construction Equipment

## (3) Construction Period

.

The construction periods of the earth works are shown as the following table.

| Table 2.1                  | -2 Construc              | tion Period                  | oi Earth wo   | <b>Drks</b> (1/2)      |     |                           |
|----------------------------|--------------------------|------------------------------|---------------|------------------------|-----|---------------------------|
| Item                       | Quantity                 | Workability                  | Working Rate  | Total Period<br>(days) | Set | Const. Period<br>(months) |
| 1. No.1 Open Canal; 7,8001 | n and Minimum            | period of 18 m               | onths (540 da |                        |     |                           |
| Excavation (1)             | 743,000 m <sup>3</sup>   |                              |               | <b>-</b>               |     | 12                        |
| Bulldozer                  | 297,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 928                    | 3   | 11                        |
| Scraper                    | 446,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 1,738                  | 5   | 12                        |
| Excavation (2)             | 899,000 m <sup>3</sup>   |                              |               |                        |     | 12                        |
| Bulldozer                  | 539,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 1,684                  | 5   | 12                        |
| Scraper                    | $360,000 \text{ m}^3$    | 385 m <sup>3</sup> /d        | 20/30         | 1,403                  | 4   | 12                        |
| Stripping                  | $74,000 \text{ m}^3$     |                              |               |                        |     | 8                         |
| Bulldozer                  | $74,000 \text{ m}^3$     | 480 m <sup>3</sup> /d        | 20/30         | 231                    | 1   | 8                         |
| Fill (1)                   | 971,000 m <sup>3</sup>   |                              |               |                        |     | 12                        |
| Bulldozer                  | 583,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 2,364                  | 7   | 12                        |
| Scraper                    | $388,000 \text{ m}^3$    | 385 m <sup>3</sup> /d        | 20/30         | 1,512                  | 5   | 11                        |
| Vibratory roller           | $388,000 \text{ m}^3$    | 100 m <sup>3</sup> /d        | 20/30         | 5,820                  | 17  | 12                        |
| Fill (2)                   | $1,262,000 \text{ m}^3$  |                              |               | ······                 |     | 12                        |
| Bulldozer                  | 505,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 2,047                  | 6   | 12                        |
| Scraper                    | 757,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,949                  | 9   | 11                        |
| Vibratory roller           | 757,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30         | 11,355                 | 32  | 12                        |
| Trimming                   | 15,600 m                 |                              |               |                        |     | 3                         |
| Earth trimming machine     | 15,600 m                 | 350 m/d                      | 20/30         | 67                     | 1   | 3                         |
| Asphalt pavement           | $101,400 \text{ m}^2$    |                              |               |                        |     | 2                         |
| Asphalt finisher           | 101,400 m <sup>2</sup>   | $2,600 \text{ m}^2/\text{d}$ | 20/30         | 59                     | 1   | 2                         |
| 2. Box Culvert; 7,500m and | Minimum perio            | d of 18 months               | (540 days)    |                        |     |                           |
| Excavation (1)             | 1,090,000 m <sup>3</sup> |                              |               |                        |     | 12                        |
| Bulldozer                  | 436,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 1,363                  | 4   | 12                        |
| Scraper                    | 654,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,548                  | 8   | 11                        |
| Excavation (2)             | 1,370,000 m <sup>3</sup> |                              |               |                        |     | 12                        |
| Bulldozer                  | 822,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 2,569                  | 8   | 11                        |
| Scraper                    | 548,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,135                  | 6   | 12                        |
| Stripping                  | 109,000 m <sup>3</sup>   |                              |               |                        |     | 3                         |
| Bulldozer                  | 109,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 341                    | 4   | 3                         |
| Laterite Bedding           | 160,000 m <sup>3</sup>   |                              |               |                        |     | 3                         |
| Bulldozer                  | 112,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 454                    | 6   | 3                         |
| Vibratory roller           | 48,000 m <sup>3</sup>    | ·100 m <sup>3</sup> /d       | 20/30         | 720                    | 8   | 3                         |
| Fill (1)                   | 1,230,000 m <sup>3</sup> |                              |               |                        |     | 12                        |
| Bulldozer                  | 861,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 3,491                  | 10  | 12                        |
| Scraper                    | 369,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 1,438                  | 4   | 12                        |
| Vibratory roller           | 369,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30         | 5,535                  | 16  | 12                        |
| Asphalt pavement           | 97,500 m <sup>2</sup>    |                              |               |                        |     | 2                         |
| Asphalt finisher           | 97,500 m <sup>2</sup>    | 2,600 m²/d                   | 20/30         | 56                     | 1   | 2                         |

.-

 Table 2.1-2
 Construction Period of Earth Works (1/2)

| Iable 2.1                   |                          | tion Period                  |               | · ·                    |     |                           |
|-----------------------------|--------------------------|------------------------------|---------------|------------------------|-----|---------------------------|
| Item                        | Quantity                 | Workability                  | Working Rate  | Total Period<br>(days) | Set | Const. Period<br>(months) |
| 3. No.2 Open Canal ; 6,6701 | m and Minimum            | period of 18 m               | onths (540 da | ys)                    |     |                           |
| Excavation (1)              | 1,435,000 m <sup>3</sup> |                              |               |                        |     | 12                        |
| Bulldozer                   | 574,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 1,794                  | 5   | 12                        |
| Scraper                     | 861,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 3,355                  | 10  | 12                        |
| Excavation (2)              | 898,000 m <sup>3</sup>   |                              |               |                        |     | 12                        |
| Bulldozer                   | 539,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 1,684                  | 5   | 12                        |
| Scraper                     | 359,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 1,399                  | 4   | 12                        |
| Stripping                   | 144,000 m <sup>3</sup>   |                              |               |                        |     | 3                         |
| Bulldozer                   | $144,000 \text{ m}^3$    | 480 m <sup>3</sup> /d        | 20/30         | 450                    | 5   | 3                         |
| Fill (1)                    | 606,000 m <sup>3</sup>   |                              |               |                        |     | 11                        |
| Bulldozer                   | 364,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 1,476                  | 5   | 10                        |
| Scraper                     | 242,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 943                    | 3   | 11                        |
| Vibratory roller            | 242,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30         | 3,630                  | 11  | 11                        |
| Fill (2)                    | 924,000 m <sup>3</sup>   |                              |               |                        |     | 12                        |
| Bulldozer                   | 370,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 1,500                  | 5   | 10                        |
| Scraper                     | 554,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,158                  | 6   | 12                        |
| Vibratory roller            | 554,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30         | 8,310                  | 24  | 12                        |
| Trimming                    | 13,300 m                 |                              |               |                        |     | 2                         |
| Earth trimming machine      | 13,300 m                 | 350 m/d                      | 20/30         | 57                     | 1   | 2                         |
| Asphalt pavement            | 87,100 m <sup>2</sup>    |                              |               |                        |     | 2                         |
| Asphalt finisher            | 87,100 m <sup>2</sup>    | $2,600 \text{ m}^2/\text{d}$ | 20/30         | 50                     | 1   | 2                         |
| 4. No.3 Open Canal; 13,940  | Om and Minimur           | n period of 24               | months (720 d | lays)                  |     |                           |
| Excavation (1)              | 1,850,000 m <sup>3</sup> |                              |               |                        |     | 17                        |
| Bulldozer                   | 740,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 2,313                  | 5   | 16                        |
| Scraper                     | 1,110,000 m <sup>3</sup> | 385 m <sup>3</sup> /d        | 20/30         | 4,325                  | 9   | 17                        |
| Excavation (2)              | 1,660,000 m <sup>3</sup> |                              |               |                        |     | 18                        |
| Bulldozer                   | 996,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 3,113                  | 6   | 18                        |
| Scraper                     | 664,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,587                  | 5   | 18                        |
| Stripping                   | 185,000 m <sup>3</sup>   |                              |               |                        |     | 5                         |
| Bulldozer                   | 185,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30         | 578                    | 4   | 5                         |
| Fill (1)                    | 1,720,000 m <sup>3</sup> |                              |               |                        |     | 18                        |
| Bulldozer                   | 1,032,000 m <sup>3</sup> | 370 m <sup>3</sup> /d        | 20/30         | 4,184                  | 8   | 18                        |
| Scraper                     | 688,000 m <sup>3</sup>   | 385 m <sup>3</sup> /d        | 20/30         | 2,681                  | 5   | 18                        |
| Vibratory roller            | 688,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30         | 10,320                 | 20  | 18                        |
| Fill (2)                    | 2,270,000 m <sup>3</sup> |                              |               |                        |     | 18                        |
| Bulldozer                   | 908,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d        | 20/30         | 3,681                  | 7   | 18                        |
| Scraper                     | 1,362,000 m <sup>3</sup> | 385 m <sup>3</sup> /d        | 20/30         | 5,306                  | 10  | 18                        |
| Vibratory roller            | 1,362,000 m <sup>3</sup> | 100 m <sup>3</sup> /d        | 20/30         | 20,430                 | 38  | 18                        |
| Trimming                    | 27,900 m                 |                              |               | •                      |     | 4                         |
| Earth trimming machine      | 27,900 m                 | 350 m/d                      | 20/30         | 120                    | 1   | 4                         |
| Asphalt pavement            | 182,000 m <sup>2</sup>   |                              |               |                        |     | 2                         |
| Asphalt finisher            | 182,000 m <sup>2</sup>   | 2,600 m²/d                   | 20/30         | 105                    | 2   | 2                         |

 Table 2.1-2
 Construction Period of Earth Works (2/2)

### 2.2 Concrete Placing of Open Canal and Box Culvert

The major points of the concrete placing work process are summarized as follows ;

- 1) The mortar and concrete lining will be carried out by exclusive concrete placing machine for side slope of open canal.
- 2) The concrete works of the box culvert consists trimming of excavated surface, gravel bedding, plain concrete placing, reinforcement and form arrangement, reinforced concrete placing, and curing.
- 3) For the both dikes of the open canal will be used for the temporary road, the embankment and lower subgrade works will be carried out in parallel.

## (1) Workability of Concrete Placing

The workability of concrete placing is shown as the following table.

| Table 2.2-1 Workability of Concrete Flacing |                                               |                                                                    |               |  |  |  |
|---------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|---------------|--|--|--|
|                                             | Concrete Works                                | Specification                                                      | Workability   |  |  |  |
|                                             | Mortar lining<br>(side wall)                  | $L = 30 \times 2 = 60m,$<br>Workability = 280 m/day                | 0.21 day/span |  |  |  |
|                                             | Mortar lining<br>(invert)                     | L = 30m,<br>Workability = 280 m/day                                | 0.11 day/span |  |  |  |
| Open canal<br>(span length :30m)            | Concrete lining<br>(side wall)                | $L = 30 \times 2 = 60m,$<br>Workability = 140 m/day                | 0.43 day/span |  |  |  |
|                                             | Concrete lining<br>(invert)                   | $L = 30 \times 2 = 60m$ ,<br>Workability = 140 m/day               | 0.43 day/span |  |  |  |
|                                             | Total                                         |                                                                    | 1.2 day/span  |  |  |  |
|                                             | Plain concrete placing                        | 45 m <sup>3</sup> /span,<br>Workability = 200 m <sup>3</sup> /day  | 0.23 day/span |  |  |  |
|                                             | Rein. arrangement<br>(invert)                 | 6 ton/span, 10 man/set<br>Workability = 0.30 t/man • day           | 2.00 day/span |  |  |  |
| Box culvert                                 | Concrete placing<br>(invert)                  | 100 m <sup>3</sup> /span,<br>Workability = 200 m <sup>3</sup> /day | 0.50 day/span |  |  |  |
| (span length :12 m)                         | Rein. arrangement<br>(side wall and top slab) | 11 ton/span, 10 man/set<br>Workability = 0.30 t/man • day          | 3.67 day/span |  |  |  |
|                                             | Concrete placing<br>(side wall and top slab)  | 190 m <sup>3</sup> /span,<br>Workability = 200 m <sup>3</sup> /day | 0.95 day/span |  |  |  |
|                                             | Total                                         |                                                                    | 7.4 day/span  |  |  |  |

Table 2.2-1 Workability of Concrete Placing

## (2) Construction Period

The construction periods are shown as the following table.

| Item                       | Quantity                                       | Workability   | Working<br>Rate | Total Period<br>(days) | Set | Const. Period<br>(months) |  |
|----------------------------|------------------------------------------------|---------------|-----------------|------------------------|-----|---------------------------|--|
| 1. No.1 Open canal : 7,800 | . No.1 Open canal : 7,800m / 30m = 260 spans   |               |                 |                        |     |                           |  |
| Mortar lining (side)       | 260 span                                       | 0.21 day/span | 20/30           | 82                     | 1   | 3                         |  |
| Mortar lining (invert)     | 260 span                                       | 0.11 day/span | 20/30           | 43                     | 1   | 2                         |  |
| Concrete lining (side)     | 260 span                                       | 0.43 day/span | 20/30           | 168                    | 1   | 6                         |  |
| Concrete lining (invert)   | 260 span                                       | 0.43 day/span | 20/30           | 168                    | 1   | 6                         |  |
| 2. Box Culvert : 7,500m /1 | 2m = 625 span                                  | S             |                 |                        |     | 24                        |  |
| Concrete works             | 625 span                                       | 7.4 day/span  | 20/30           | 6,938                  | 10  | 24                        |  |
| 3. No.2 Open canal : 6,670 | m/30m = 223                                    | spans         |                 |                        |     | 10                        |  |
| Mortar lining (side)       | 223 span                                       | 0.21 day/span | 20/30           | 70                     | 1   | 3                         |  |
| Mortar lining (invert)     | 223 span                                       | 0.11 day/span | 20/30           | 37                     | 1   | 2                         |  |
| Concrete lining (side)     | 223 span                                       | 0.43 day/span | 20/30           | 144                    | 1   | 5                         |  |
| Concrete lining (invert)   | 223 span                                       | 0.43 day/span | 20/30           | 144                    | 1   | 5                         |  |
| 4. No.3 Open canal : 13,94 | 4. No.3 Open canal : 13,940m / 30m = 465 spans |               |                 |                        |     |                           |  |
| Mortar lining (side)       | 465 span                                       | 0.21 day/span | 20/30           | 146                    | 1   | 5                         |  |
| Mortar lining (invert)     | 465 span                                       | 0.11 day/span | 20/30           | 77                     | 1   | 3                         |  |
| Concrete lining (side)     | 465 span                                       | 0.43 day/span | 20/30           | 300                    | 1   | 10                        |  |
| Concrete lining (invert)   | 465 span                                       | 0.43 day/span | 20/30           | 300                    | 1   | 10                        |  |

 Table 2.2-2
 Construction Period of Concrete Placing

## 2.3 Construction of Spillway

## (1) Workability of Earth Works

The workability of the earth works is shown in the Table 2.1-1.

## (2) Workability of Concrete Placing

The workability of concrete placing is shown as the following table.

|                                 | Concrete Works                                | Specification                                                                | Workability   |
|---------------------------------|-----------------------------------------------|------------------------------------------------------------------------------|---------------|
| Spillway<br>(span length :12 m) | Plain concrete placing                        | $170m^{3}$ /span,<br>Workability = 200 m <sup>3</sup> /day                   | 0.85 day/span |
|                                 | Rein. arrangement<br>(invert)                 | 25 ton/span, 10 man/set<br>Workability = 0.30 t/man • day                    | 8.33 day/span |
|                                 | Concrete placing<br>(invert)                  | 430 m <sup>3</sup> /span,<br>Workability = 200 m <sup>3</sup> /day           | 2.15 day/span |
|                                 | Rein. arrangement<br>(side wall and top slab) | 6 ton/span, 10 man/set<br>Workability = 0.30 t/man • day                     | 2.00 day/span |
|                                 | Concrete placing<br>(side wall and top slab)  | $100 \text{ m}^3/\text{span},$<br>Workability = $200 \text{ m}^3/\text{day}$ | 0.50 day/span |
|                                 | Total                                         |                                                                              | 13.8 day/span |

 Table 2.3-1
 Workability of Concrete Placing (1/2)

| 140                 | ic 210 1 vv or kubinty                        | of concrete r lacing (2/2)                                            |               |
|---------------------|-----------------------------------------------|-----------------------------------------------------------------------|---------------|
|                     | Plain concrete placing                        | 15 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day     | 0.15 day/span |
|                     | Rein. arrangement<br>(invert)                 | 4 ton/span, 5 man/set<br>Workability = 0.30 t/man • day               | 2.67 day/span |
| Discharge canal     | Concrete placing<br>(invert)                  | $65 \text{ m}^3/\text{span}$ ,<br>Workability = 100 m $^3/\text{day}$ | 0.65 day/span |
| (span length :12 m) | Rein. arrangement<br>(side wall)              | 2 ton/span, 5 man/set<br>Workability = 0.30 t/man • day               | 1.33 day/span |
|                     | Concrete placing<br>(side wall)               | $35 \text{ m}^3/\text{span}$ ,<br>Workability = 100 m $^3/\text{day}$ | 0.35 day/span |
|                     | Total                                         |                                                                       | 5.2 day/span  |
|                     | Plain concrete placing                        | 15 m <sup>3</sup> /span,<br>Workability = 50 m <sup>3</sup> /day      | 0.30 day/span |
|                     | Rein. arrangement<br>(invert)                 | 3 ton/span, 5 man/set<br>Workability = 0.30 t/man • day               | 2.00 day/span |
| Box culvert         | Concrete placing<br>(invert)                  | 45 m <sup>3</sup> /span,<br>Workability = 50 m <sup>3</sup> /day      | 0.90 day/span |
| (span length :12 m) | Rein. arrangement<br>(side wall and top slab) | 6 ton/span, 5 man/set<br>Workability = 0.30 t/man • day               | 4.00 day/span |
|                     | Concrete placing<br>(side wall and top slab)  | 95 m <sup>3</sup> /span,<br>Workability = 50 m <sup>3</sup> /day      | 1.90 day/span |
|                     | Total                                         |                                                                       | 9.1 day/span  |

 Table 2.3-1
 Workability of Concrete Placing (2/2)

## (3) Construction Period

.

The construction periods are shown as the following table.

| Item                       | Quantity               | Workability           | Working Rate | Total Period<br>(days) | Set    | Const. Period<br>(months) |
|----------------------------|------------------------|-----------------------|--------------|------------------------|--------|---------------------------|
| 1. Spillway and Spillway O | utlet Channel;         | 100 + 2,100ma         | and Minimum  | period of 18           | months | (540 days)                |
| Excavation (1)             | 370,000 m <sup>3</sup> |                       |              |                        |        | 10                        |
| Bulldozer                  | 148,000 m <sup>3</sup> | 480 m <sup>3</sup> /d | 20/30        | 463                    | 2      | 8                         |
| Scraper                    | 222,000 m <sup>3</sup> | 385 m <sup>3</sup> /d | 20/30        | 865                    | 3      | 10                        |
| Excavation (2)             | 230,000 m <sup>3</sup> |                       | •            |                        |        | 12                        |
| Bulldozer                  | 138,000 m <sup>3</sup> | 480 m <sup>3</sup> /d | 20/30        | 431                    | 2      | 8                         |
| Scraper                    | 92,000 m <sup>3</sup>  | 385 m <sup>3</sup> /d | 20/30        | 358                    | 1      | 12                        |
| Stripping                  | 35,000 m <sup>3</sup>  |                       |              |                        |        | 2                         |
| Bulldozer                  | 35,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30        | 109                    | 2      | 2                         |
| Fill and Backfill          | 91,000 m <sup>3</sup>  |                       |              |                        |        | 12                        |
| Bulldozer (compaction)     | 91,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30        | 369                    | 2      | 7                         |
| Bulldozer (spread)         | 91,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30        | 284                    | 1      | 10                        |
| Vibrating Roller           | 91,000 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30        | 1,365                  | 4      | 12                        |
| Gravel Bedding             | 9,600 m <sup>3</sup>   |                       |              |                        |        | 3                         |
| Backhoe                    | 9,600 m <sup>3</sup>   | 520 m <sup>3</sup> /d | 20/30        | 28                     | 1      | 1                         |
| Vibrating Roller           | 9,600 m <sup>3</sup>   | 100 m <sup>3</sup> /d | 20/30        | 144                    | 2      | 3                         |

 Table 2.3-2
 Construction Period of Earth Works (1/2)

| Table 2.5-2 Construction Feriod of Earth works (2/2) |                        |                       |              |                        |          |                           |  |  |
|------------------------------------------------------|------------------------|-----------------------|--------------|------------------------|----------|---------------------------|--|--|
| Item                                                 | Quantity               | Workability           | Working Rate | Total Period<br>(days) | Set      | Const. Period<br>(months) |  |  |
| 2. Dike and Emergency Sp                             | illway; 1520m +        | 200m and Mir          | nimum period | of 12 months           | s (360 d | lays)                     |  |  |
| Excavation (1)                                       | 48,000 m <sup>3</sup>  |                       |              |                        |          | 5                         |  |  |
| Bulldozer                                            | 48,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30        | 150                    | 1        | 5                         |  |  |
| Stripping                                            | 4,600 m <sup>3</sup>   |                       |              |                        |          | 1                         |  |  |
| Bulldozer                                            | 4,600 m <sup>3</sup>   | 480 m <sup>3</sup> /d | 20/30        | 16                     | 1        | 1                         |  |  |
| Embankment(1)                                        | 58,000 m <sup>3</sup>  |                       |              |                        |          | 6                         |  |  |
| Bulldozer                                            | 35,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30        | 142                    | 1        | 5                         |  |  |
| Scraper                                              | 23,000 m <sup>3</sup>  | 385 m <sup>3</sup> /d | 20/30        | 90                     | 1        | 3                         |  |  |
| Vibrating Roller                                     | 23,000 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30        | 345                    | 2        | 6                         |  |  |
| Embankment(2)                                        | 150,000 m <sup>3</sup> |                       |              |                        |          | 10                        |  |  |
| Bulldozer                                            | 90,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30        | 365                    | 2        | 6                         |  |  |
| Scraper                                              | 60,000 m <sup>3</sup>  | 385 m <sup>3</sup> /d | 20/30        | 234                    | 1        | 8                         |  |  |
| Vibrating Roller                                     | 60,000 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30        | 900                    | 3        | 10                        |  |  |
| Gravel Bedding                                       | 33,000 m <sup>3</sup>  |                       |              |                        |          | 4                         |  |  |
| Backhoe                                              | 33,000 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30        | 95                     | 4        | 2                         |  |  |
| Vibrating Roller                                     | 33,000 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30        | 495                    | 5        | 4                         |  |  |

 Table 2.3-2
 Construction Period of Earth Works (2/2)

 Table 2.3-3
 Construction Period of Concrete Placing

| Item                       | Quantity     | Workability       | Working Rate | Total Period<br>(days) | Set | Const. Period<br>(months) |
|----------------------------|--------------|-------------------|--------------|------------------------|-----|---------------------------|
| 1.Spillway : 100m / 12m =  | 9 spans      | •                 | <u> </u>     |                        |     | 7                         |
| Concrete works             | 9 span       | 13.8 day/span     | 20/30        | 186                    | 1   | 7                         |
| 2. Spillway Outlet Channel | ; (1,013m -  | +48m)/12m = (85 - | + 4) spans   |                        |     | 12                        |
| Discharge canal            | 85 span      | 5.2 day/span      | 20/30        | 663                    | 2   | 12                        |
| Box culvert                | 4 span       | 9.1 day/span      | 20/30        | 55                     | 1   | 2                         |
| 3. Emergency Spillway : 22 | 2m + 13m = ( | (1+1) spans       |              |                        |     | 1                         |
| Box culvert                | 1 span       | 13.8 day/span     | 20/30        | 21                     | 1   | 1                         |
| Concrete flume             | 1 span       | 5.2 day/span      | 20/30        | 8                      | 1   | 1                         |

## 2.4 Construction of Access Road

# (1) Workability of Earth and Pavement Works

The workability of the earth works is shown in the Table 2.1-1.

## (2) Construction Period

The construction periods are shown in the Table 2.4-1.

| Item                       | Quantity               | Workability                  | Working Rate   | Total Period<br>(days)                 | Set | Const. Period<br>(months) |
|----------------------------|------------------------|------------------------------|----------------|----------------------------------------|-----|---------------------------|
| 1. No.1 Access Road ; 1,00 | 3m and Minimu          | im period of 3 i             | nonths (90 day | /s)                                    |     |                           |
| Excavation                 | 1,400 m <sup>3</sup>   |                              |                |                                        |     | 1                         |
| Bulldozer                  | 1,400 m <sup>3</sup>   | 480 m <sup>3</sup> /d        | 20/30          | 4                                      | 1   | 1                         |
| Stripping                  | 17,500 m <sup>3</sup>  |                              |                |                                        |     | 2                         |
| Bulldozer                  | 17,500 m <sup>3</sup>  | 480 m <sup>3</sup> /d        | 20/30          | 55                                     | 1   | 2                         |
| Fill                       | 60,300 m <sup>3</sup>  |                              |                |                                        |     | 2                         |
| Bulldozer (compaction)     | 36,200 m <sup>3</sup>  | 370 m <sup>3</sup> /d        | 20/30          | 147                                    | 3   | 2                         |
| Bulldozer (spread)         | 24,100 m <sup>3</sup>  | 480 m <sup>3</sup> /d        | 20/30          | 75                                     | 2   | 2                         |
| Vibrating Roller           | 24,100 m <sup>3</sup>  | 100 m <sup>3</sup> /d        | 20/30          | 362                                    | 7   | 2                         |
| Subgrade                   | 7,400 m <sup>3</sup>   |                              |                |                                        |     | 1                         |
| Bulldozer (spread)         | 7,400 m                | 480 m/d                      | 20/30          | 23                                     | 1   | 1                         |
| Vibrating Roller           | 7,400 m <sup>3</sup>   | 100 m <sup>3</sup> /d        | 20/30          | 111                                    | 4   | 1                         |
| Asphalt Pavement           | 13,000 m <sup>2</sup>  |                              |                |                                        |     | 1                         |
| Asphalt Finisher           | 13,000 m <sup>2</sup>  | 2,600 m²/d                   | 20/30          | 8                                      | 1   | 1                         |
| 2. No.2 Access Road ; 2,79 |                        | im period of 6 r             | nonths (180 da | ays)                                   |     |                           |
| Excavation                 | 159,000 m <sup>3</sup> |                              |                |                                        |     | 4                         |
| Bulldozer                  | 159,000 m <sup>3</sup> | 480 m <sup>3</sup> /d        | 20/30          | 497                                    | 5   | 4                         |
| Stripping                  | 44,000 m <sup>3</sup>  |                              |                |                                        |     | 3                         |
| Bulldozer                  | 44,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d        | 20/30          | 138                                    | 2   | 3                         |
| Fill                       | 305,000 m <sup>3</sup> |                              |                | ······································ |     | 4                         |
| Bulldozer (compaction)     | 183,000 m <sup>3</sup> | 370 m <sup>3</sup> /d        | 20/30          | 742                                    | 7   | 4                         |
| Bulldozer (spread)         | 122,000 m <sup>3</sup> | 480 m <sup>3</sup> /d        | 20/30          | 381                                    | 4   | 4                         |
| Vibrating Roller           | 122,000 m <sup>3</sup> | $100 \text{ m}^{3}/\text{d}$ | 20/30          | 1,830                                  | 16  | 4                         |
| Subgrade                   | 20,800 m <sup>3</sup>  |                              |                |                                        |     | 2                         |
| Bulldozer (spread)         | 20,800 m               | 480 m/d                      | 20/30          | 65                                     | 2   | 2                         |
| Vibrating Roller           | 20,800 m <sup>3</sup>  | $100 \text{ m}^{3}/\text{d}$ | 20/30          | 312                                    | 6   | 2                         |
| Asphalt Pavement           | 36,300 m <sup>2</sup>  |                              |                |                                        |     | 1                         |
| Asphalt Finisher           | 36,300 m <sup>2</sup>  | $2,600 \text{ m}^2/\text{d}$ | 20/30          | 21                                     | 1   | 1                         |
| 3. No.3 Access Road ; 5,06 | Om and Minimu          | im period of 6 i             | nonths (180 da | ays)                                   |     |                           |
| Excavation                 | 20,200 m <sup>3</sup>  |                              |                |                                        |     | 3                         |
| Bulldozer                  | 20,200 m <sup>3</sup>  | 480 m <sup>3</sup> /d        | 20/30          | 63                                     | 1   | 3                         |
| Stripping                  | 77,200 m <sup>3</sup>  |                              |                |                                        |     | 3                         |
| Bulldozer                  | 77,200 m <sup>3</sup>  | 480 m <sup>3</sup> /d        | 20/30          | 241                                    | 3   | 3                         |
| Fill                       | 333,400 m <sup>3</sup> |                              |                |                                        |     | 4                         |
| Bulldozer (compaction)     | 200,000 m <sup>3</sup> | 370 m <sup>3</sup> /d        | 20/30          | 811                                    | 7   | 4                         |
| Bulldozer (spread)         | 133,400 m <sup>3</sup> | 480 m <sup>3</sup> /d        | 20/30          | 417                                    | 4   | 4                         |
| Vibrating Roller           | 133,400 m <sup>3</sup> | $100 \text{ m}^{3}/\text{d}$ | 20/30          | 2,001                                  | 17  | 4                         |
| Subgrade                   | 37,600 m <sup>3</sup>  |                              |                |                                        | 1   | 2                         |
| Bulldozer (spread)         | 37,600 m               | 480 m/d                      | 20/30          | 118                                    | 2   | 2                         |
| Vibrating Roller           | 37,600 m <sup>3</sup>  | 100 m <sup>3</sup> /d        | 20/30          | 564                                    | 10  | 2                         |
| Asphalt Pavement           | 65,800 m <sup>2</sup>  |                              |                |                                        |     | <b>2</b><br>2             |
| Asphalt Finisher           | 65,800 m <sup>2</sup>  | 2,600 m²/d                   | 20/30          | 38                                     | 1   | 2                         |

 Table 2.4-1
 Construction Period of Access Road

## **2.5 Overall Construction Schedules**

•

•

The overall construction schedules of  $1^{st}$  and  $3^{rd}$  package are shown in the Figure 2.5-1 and 2.5-2.

| -                         |                 | 1 <sup>st</sup> y | 1 <sup>st</sup> year |                   |                 | 2 <sup>nd</sup> year | rear     |             |                 | 3 rd              | 3 rd year   |                   |                   | $4^{\rm th}$      | 4 <sup>th</sup> year |             | MILLE |
|---------------------------|-----------------|-------------------|----------------------|-------------------|-----------------|----------------------|----------|-------------|-----------------|-------------------|-------------|-------------------|-------------------|-------------------|----------------------|-------------|-------|
| Description               | 1 <sup>st</sup> | $2^{\rm nd}$      | $3^{rd}$             | $4^{\mathrm{th}}$ | l <sup>st</sup> | $2^{ m nd}$          | $3^{rd}$ | $4^{ m th}$ | 1 <sup>st</sup> | $2^{\mathrm{nd}}$ | $3^{ m rd}$ | $4^{\mathrm{th}}$ | $1^{\mathrm{st}}$ | $2^{\mathrm{nd}}$ | $3^{ m rd}$          | $4^{ m th}$ | INDIE |
| 1.Temporary works         |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 1.1 Office / workshop     |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 1.2 Access roads          |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 2. Access road            |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 2.1 No.1 Access road      |                 | ľ                 |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 2.2 No.2 Access road      |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 3.No.1 Open canal         |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 3.1 Earth works           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 3.2 Concrete lining       |                 |                   |                      | _                 |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 3.3 Asphalt pavement      |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 4. Box culvert            |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 4.1 Earth works           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 4.2 Concrete placing      |                 |                   |                      |                   | I               |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 4.3 Asphalt pavement      |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   | I                    | I           |       |
| 5.No.2 Open canal         |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      | -           |       |
| 5.1 Earth works           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   | -                 |                      |             |       |
| 5.2 Concrete lining       |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 5.3 Asphalt pavement      |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   | I                    |             |       |
| 6. Spillway               |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 6.1 Earth works           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 6.2 Dyke embankment       |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 6.3 Concrete placing      |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 6.4 Gate installation     |                 |                   |                      |                   |                 |                      |          | I           |                 |                   |             |                   |                   |                   |                      |             |       |
| 7. Appurtenant facilities |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
| 7.1 Bridges               |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      | 1           |       |
| 7.2 Sand settling pits    |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
|                           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |
|                           |                 |                   |                      |                   |                 |                      |          |             |                 |                   |             |                   |                   |                   |                      |             |       |

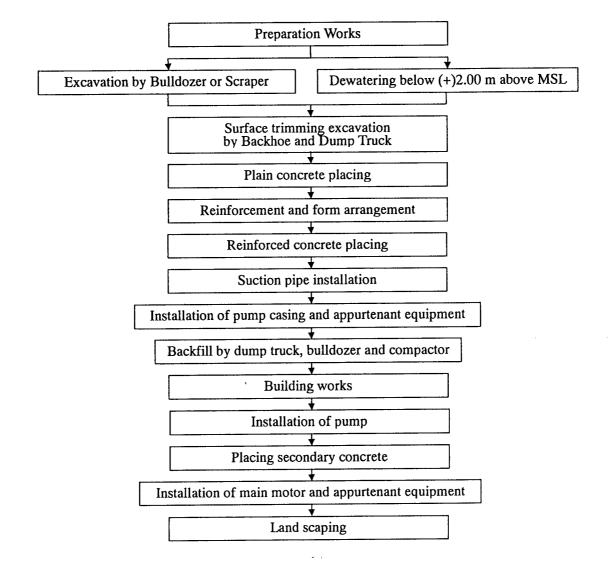
Figure 2.5-1 Construction Schedule of Package 1

| 1.Temporary works         |     | I year            | ear         |                   |                 | Z AL            | Cal      |              |                   | с<br>У            | o year      |              |                 | ť        | 4 year |              | NT-4- |  |
|---------------------------|-----|-------------------|-------------|-------------------|-----------------|-----------------|----------|--------------|-------------------|-------------------|-------------|--------------|-----------------|----------|--------|--------------|-------|--|
| vorks                     | 1st | $2^{\mathrm{nd}}$ | $3^{ m rd}$ | $4^{\mathrm{th}}$ | 1 <sup>st</sup> | 2 <sup>nd</sup> | $3^{rd}$ | $4^{\rm th}$ | $1^{\mathrm{st}}$ | $2^{\mathrm{nd}}$ | $3^{ m rd}$ | $4^{\rm th}$ | 1 <sup>st</sup> | $2^{nd}$ | 3rd    | $4^{\rm th}$ | INOLE |  |
|                           |     |                   | <u> </u>    |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 1.1 Office / workshop     |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 1.2 Access road           |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 2. No.3 open canal        |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 2.1 Earth works           |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 2.2 Concrete lining       |     | •                 |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 2.3 Asphalt pavement      |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 | l        |        |              |       |  |
| 3. Appurtenant facilities |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              | -     |  |
| 3.1 Bridges               |     |                   |             | -                 |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
| 3.2 Sand settling pits    |     |                   |             |                   |                 | <b></b>         |          |              |                   |                   |             |              |                 |          |        |              |       |  |
|                           |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |
|                           |     |                   |             |                   |                 |                 |          |              |                   |                   |             |              |                 |          |        |              |       |  |

Figure 2.5-2 Construction Schedule of Package 3

.

## CHAPTER 3 No.7 PUMPING STATION


#### 3.1 Earth Works of No.7 Pumping Station

### (1) Concepts of Construction Process of No.7 Pumping Station

The major points of the earth work process are summarized as follows;

- Elevation of ground water is at 2.3 meters in the site. Then it is necessary to keep ground water table at EL. (-) 7.9 meters during construction works below EL. 2.7 meters. After reaching level at EL. (-) 7.4 meters in excavation, gravel treatment and concrete works for lower structure and backfilling will be followed.
- 2) The excavation and embankment works will be carried out by 21 tons class bulldozer combination with 12 m<sup>3</sup> class scraper.

The flowchart of the No.7 Pumping Station is as follow;



## (2) Workability of Construction Equipment

The workability of construction equipment is shown as the following table.

| 1able 3.1-1                                            | workability of Construction Equipment                                                                                           |                         |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Construction Equipment                                 | Specification                                                                                                                   | Workability             |
| Bulldozer<br>(for excavation)                          | 21 ton class, hauling distance = ave. 50 m, cycle time<br>=2.13 min. working eff. = 0.85 (sand, moderate), f = 1.00             | 480 m <sup>3</sup> /day |
| Scraper<br>(for excavation)                            | 21 ton self-loading ( $q_0$ =12.0 m <sup>3</sup> ), hauling distance = ave.<br>300m, cycle time = 12.3 min. working eff. = 0.90 | 330 m <sup>3</sup> /day |
| Backhoe<br>(for excavation)                            | 1.0 m <sup>3</sup> crawler type                                                                                                 | 520 m <sup>3</sup> /day |
| Bulldozer<br>(for compaction)                          | 21 ton class, compaction thick = $0.30$ m, compaction = 5 times, working eff. = $0.85$ (sand, moderate), f = $1.00$             | 370 m <sup>3</sup> /day |
| Vibrating Roller<br>(for compaction)                   | 5 ton class, speed = $1,000$ m/hr, width = $0.8$ m, thick = $0.3$ m, compaction = 5 times, working eff. = $0.40$                | 100 m <sup>3</sup> /day |
| Dump truck<br>(for transportation)                     | 10 ton class, hauling distance = ave. 500 m, combination with 1.0 $m^3$ backhoe                                                 | 170 m <sup>3</sup> /day |
| Earth trimming machine<br>(for trimming of side slope) | For one side                                                                                                                    | 350 m/day               |
| Concrete placing machine<br>(for mortar lining)        | For one side                                                                                                                    | 280 m/day               |
| Concrete placing machine<br>(for concrete lining)      | For one side                                                                                                                    | 140 m/day               |
| Asphalt finisher<br>(for Paved asphalt)                |                                                                                                                                 | 2,600 m²/day            |

 Table 3.1-1
 Workability of Construction Equipment

## (3) Construction Period

The construction periods of the earth works are shown as the following table.

| Lable 5.                      |                        |                       | ou or Bui m   | (-)                    | _/  |                           |
|-------------------------------|------------------------|-----------------------|---------------|------------------------|-----|---------------------------|
| Item                          | Quantity               | Workability           | Working Rate  | Total Period<br>(days) | Set | Const. Period<br>(months) |
| 1. Sand Settling Basin ; 3751 | n and Minimun          | n period of 12        | 2 months (360 | days)                  |     | _                         |
| Excavation (1)                | 452,000 m <sup>3</sup> |                       |               |                        |     | 8                         |
| Bulldozer                     | 271,000 m <sup>3</sup> | 480 m <sup>3</sup> /d | 20/30         | 847                    | 4   | 8                         |
| Scraper                       | 181,000 m <sup>3</sup> | 330 m <sup>3</sup> /d | 20/30         | 823                    | 4   | 7                         |
| Excavation (2)                | 174,000 m <sup>3</sup> |                       |               |                        |     | 3                         |
| Bulldozer                     | 87,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30         | 272                    | 4   | 3                         |
| Scraper                       | 52,000 m <sup>3</sup>  | 330 m <sup>3</sup> /d | 20/30         | 236                    | 3   | 3                         |
| Backhoe                       | 35,000 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30         | 101                    | 2   | 2                         |
| Fill (2)                      | 109,000 m <sup>3</sup> |                       |               |                        |     | 6                         |
| Bulldozer                     | 76,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30         | 308                    | 2   | 6                         |
| Vibrating Roller              | 33,000 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30         | 495                    | 3   | 6                         |

 Table 3.1-2
 Construction Period of Earth Works (1/2)

|                             |                        |                       | ou or Earth    |                        |     |                                       |
|-----------------------------|------------------------|-----------------------|----------------|------------------------|-----|---------------------------------------|
| Item                        | Quantity               | Workability           | Working Rate   | Total Period<br>(days) | Set | Const. Period<br>(months)             |
| Backfill                    | 52,300 m <sup>3</sup>  |                       |                |                        |     | 4                                     |
| Bulldozer                   | 36,600 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30          | 148                    | 2   | 3                                     |
| Vibrating Roller            | 15,700 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30          | 236                    | 2   | 4                                     |
| Trimming                    | 750 m                  |                       |                |                        |     | 1                                     |
| Earth trimming machine      | 750 m                  | 350 m/d               | 20/30          | 3                      | 1   | 1                                     |
| Asphalt pavement            | 9,400 m <sup>2</sup>   |                       |                |                        |     | 1                                     |
| Asphalt finisher            | 9,400 m <sup>2</sup>   | 2,600 m²/d            | 20/30          | 5                      | 1   | 1                                     |
| 2. Pumping Station; 130m ar | nd Minimum pe          | riod of 21 mo         | onths (630 day | /s)                    |     | · · · · · · · · · · · · · · · · · · · |
| Excavation (1)              | 241,000 m <sup>3</sup> |                       |                |                        |     | 3                                     |
| Bulldozer                   | 145,000 m <sup>3</sup> | 480 m <sup>3</sup> /d | 20/30          | 453                    | 5   | 3                                     |
| Scraper                     | 96,000 m <sup>3</sup>  | 330 m <sup>3</sup> /d | 20/30          | 436                    | 5   | 3                                     |
| Excavation (2)              | 130,000 m <sup>3</sup> |                       |                |                        |     | 3                                     |
| Bulldozer                   | 65,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30          | 203                    | 3   | 3                                     |
| Scraper                     | 39,000 m <sup>3</sup>  | 330 m <sup>3</sup> /d | 20/30          | 177                    | 2   | 3                                     |
| Backhoe                     | 26,000 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30          | 75                     | 1   | 3                                     |
| Excavation (3)              | 27,400 m <sup>3</sup>  | ·····                 |                |                        |     | 1                                     |
| Bulldozer                   | 11,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30          | 34                     | 2   | 1                                     |
| Backhoe                     | 16,400 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30          | 47                     | 2   | 1                                     |
| Fill (2)                    | 2,100 m <sup>3</sup>   |                       |                |                        |     | 1                                     |
| Bulldozer                   | 1,500 m <sup>3</sup>   | 480 m <sup>3</sup> /d | 20/30          | 5                      | 1   | 1                                     |
| Vibrating Roller            | 600 m <sup>3</sup>     | 100 m <sup>3</sup> /d | 20/30          | 9                      | 1   | 1                                     |
| Backfill (1)                | 91,300 m <sup>3</sup>  |                       |                |                        |     | 7                                     |
| Bulldozer                   | 63,900 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30          | 200                    | 1   | 7                                     |
| Vibrating Roller            | 27,400 m <sup>3</sup>  | 100 m <sup>3</sup> /d | 20/30          | 411                    | 2   | 7                                     |
| Backfill (2)                | 7,800 m <sup>3</sup>   |                       |                |                        |     | 2                                     |
| Bulldozer                   | 5,500 m <sup>3</sup>   | 480 m <sup>3</sup> /d | 20/30          | 17                     | 1   | 1                                     |
| Vibrating Roller            | 2,300 m <sup>3</sup>   | 100 m <sup>3</sup> /d | 20/30          | 35                     | 1   | 2                                     |
| Trimming                    | 4,000 m <sup>2</sup>   |                       |                |                        |     | 1                                     |
| Backhoe                     | 4,000 m <sup>2</sup>   | 500 m²/d              | 20/30          | 12                     | 1   | 1                                     |
| Asphalt pavement            | 6,900 m <sup>2</sup>   |                       |                |                        |     | 1                                     |
| Asphalt finisher            | 6,900 m <sup>2</sup>   | 2,600 m²/d            | 20/30          | 4                      | 1   | 1                                     |

 Table 3.1-2
 Construction Period of Earth Works (2/2)

#### 3.2 Dewatering of No.7 Pumping Station

Construction works will be basically conducted according to criteria for canal construction. First step to construction is land clearing and excavation to the level at EL. 13.4 meters. Elevation of ground water table is at EL. 2.3 meters in the site. Then it is possible to proceed excavation without dewatering below to the stage at EL. 2.7 meters. Foundation of the No.7 Pumping Station with gravel treatment will be made on the layer at EL (-) 7.4 meters. Therefore, it is necessary to keep ground water table at EL. (-) 7.9 meters during construction works below EL. 2.7 meters. After reaching level at EL. (-) 7.4 meters in excavation, gravel treatment and concrete works for lower structure and backfilling will be followed.

On the other hand, elevation of settling basin foundation is EL. 1.80 meters and dry work is considered to be difficult. Then, construction works for the bottom of settling basin should be started during dewatering in the period of concrete works for lower structure. Here, it is supposed that dewatering by shallow sump will be necessary in addition. After finishing civil works of pumping station and settling basin, construction of pumping house will be started after those works.

As the method of dewatering mentioned above, deep well and well point should be recommended. However, it is unsuitable to reduce water table by well point system beyond 6.0 m in depth. If well point system is selected, it will be costly in the sake of necessity that well points should be installed in many rows by its limited capacity of suction head. In addition, it is suspected to collapse excavated slope in consideration of high excavation slope, no cohesion and high permeability of soil. Then deep well system should be selected.

At the site of No. 7 pumping station, aquifer is thick and it is difficult to penetrate bottom of well into impermeable layer. Then, to design deep well system, following formula by Dupuit will be adopted to estimate well yields and draw down depth of groundwater table. Numbers of proposed well can be estimated by  $Q_{max}$  and q.

 $Q_{max} = C_1 \cdot C_2 \cdot \pi \cdot k \cdot (H^2 - h^2) / 2.3 \cdot (\log_{10}R - \log_{10}A)$  $q = 2\pi \cdot r \cdot h_0 \cdot \sqrt{k} / 15$ Here, Q<sub>max</sub>: maximum yield of wells (m<sup>3</sup>/s) : yield of single well  $(m^3/s)$ q : height of static water table (m) Η : proposed draw down depth (m) S h : H - S(m): permeability coefficient (m/s) k : radius of influence by Sichalt formula (3000 x S x  $k^{1/2}$  m) R : radius of image well (m) Α  $C_1$ : coefficient of allowance (=1.1)  $C_2$ : coefficient of premium for not penetrating into permeable layer (=1.25)

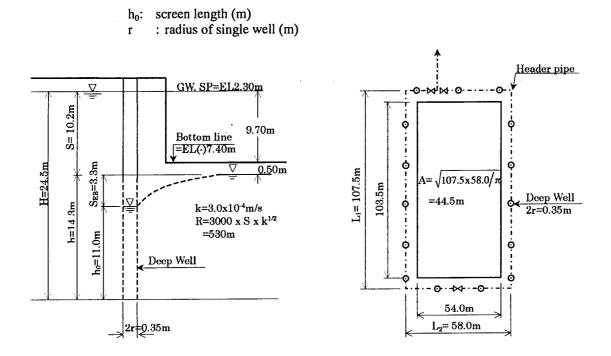



Figure 3.2-1 Dimension of Deep Well

Numbers and dimensions of wells which are necessary for construction will be estimated as follows by these formulas:

Maximum yield of wells : 0.207m<sup>3</sup>/s Diameter of wells : 350 mm Depth of wells : 28.0 m (including sand trap) Proposed yield of single well : 13.8 lit./s Number of wells : 15 nos.

Pumped water will be drained through header pipe to lower place that located at the east-northern part of pumping station. Header pipe will be steel pipe with 350 mm in diameter and total length of 670 m. It is necessary to set up submersible pumps with total head of about 55 m and capacity of 0.828 m<sup>3</sup> per minute. Submersible pump will require about power supply of 15 kwh for each well by generator.

### **3.3 Reinforced Concrete Placing**

The major points of the reinforced concrete placing work process are summarized as follows ;

- 1) The concrete batching plant will be planned the capacity of 400 m<sup>3</sup>/day around the closing point of the conveyance canal and No.3 access road.
- 2) The concrete will be carried from the concrete batching plant to the site by agitator cars of 6  $m^3$  capacity.
- 3) The concrete placing works will be carried out by concrete pump of 100 m<sup>3</sup>/hr capacity.

### (1) Workability of Concrete Placing

The workability of concrete placing is shown as the following table.

| 141                                 | ne 5.5-1 workability                          | of Concrete Placing (1/3)                                          |                |
|-------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|----------------|
|                                     | Concrete Works                                | Specification                                                      | Workability    |
|                                     | Mortar lining<br>(side wall)                  | $L = 30 \times 2 = 60m$ ,<br>Workability = 280 m/day               | 0.21 day/span  |
|                                     | Mortar lining<br>(invert)                     | L = 30m,<br>Workability = 280 m/day                                | 0.11 day/span  |
| Open canal<br>(span length :30m)    | Concrete lining<br>(side wall)                | $L = 30 \ge 2 = 60m$ ,<br>Workability = 140 m/day                  | 0.43 day/span  |
|                                     | Concrete lining<br>(invert)                   | $L = 30 \times 2 = 60m$ ,<br>Workability = 140 m/day               | 0.43 day/span  |
|                                     | Total                                         |                                                                    | 1.2 day/span   |
|                                     | Plain concrete placing                        | 70 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day  | 0.70 day/span  |
|                                     | Rein. arrangement<br>(invert)                 | 17 ton/span, 10 man/set<br>Workability = 0.30 t/man • day          | 5.67 day/span  |
| Sand Settling Basin                 | Concrete placing<br>(invert)                  | 280 m³/span,<br>Workability = 300 m³/day                           | 0.93 day/span  |
| Gate Section<br>(span length :15 m) | Rein. arrangement<br>(side wall and top slab) | 33 ton/span, 10 man/set<br>Workability = 0.30 t/man • day          | 11.00 day/span |
|                                     | Concrete placing<br>(side wall and top slab)  | 550 m <sup>3</sup> /span,<br>Workability = 300 m <sup>3</sup> /day | 1.83 day/span  |
|                                     | Total                                         |                                                                    | 20.1 day/span  |

 Table 3.3-1
 Workability of Concrete Placing (1/3)

|                                     | Concrete Works                                | Specification                                                               | Workability   |
|-------------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------|---------------|
|                                     | Plain concrete placing                        | 15 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day           | 0.15 day/span |
|                                     | Rein. arrangement<br>(invert)                 | 4 ton/span, 5 man/set<br>Workability = 0.30 t/man • day                     | 2.67 day/span |
| Sand Settling Basin                 | Concrete placing<br>(invert)                  | 60 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day           | 0.60 day/span |
| Wall Section<br>(span length :12 m) | Rein. arrangement<br>(side wall)              | 4 ton/span, 5 man/set<br>Workability = 0.30 t/man · day                     | 2.67 day/span |
|                                     | Concrete placing<br>(side wall)               | $60 \text{ m}^3/\text{span},$<br>Workability = 100 m $^3/\text{day}$        | 0.60 day/span |
|                                     | Total                                         | Workdomy = 100 m /ddy                                                       | 6.7 day/span  |
|                                     | Plain concrete placing                        | 30 m <sup>3</sup> /lot,<br>Workability = 100 m <sup>3</sup> /day            | 0.30 day/lot  |
|                                     | Rein. arrangement<br>(invert)                 | 13 ton/lot, 10 man/set<br>Workability = 0.30 t/man • day                    | 4.33 day/lot  |
| Suction Sump                        | Concrete placing<br>(invert)                  | $210 \text{ m}^3/\text{lot},$<br>Workability = $200 \text{ m}^3/\text{day}$ | 1.05 day/lot  |
| (lot length:7.1 m)                  | Rein. arrangement<br>(side wall and top slab) | 20 ton/lot, 10 man/set<br>Workability = 0.30 t/man • day                    | 6.67 day/lot  |
|                                     | Concrete placing<br>(side wall and top slab)  | $320 \text{ m}^3/\text{lot},$<br>Workability = $200 \text{ m}^3/\text{day}$ | 1.60 day/lot  |
|                                     | Total                                         |                                                                             | 14.0 day/lot  |
|                                     | Plain concrete placing                        | 40 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day           | 0.40 day/lot  |
|                                     | Rein. arrangement<br>(invert)                 | 5 ton/lot, 5 man/set<br>Workability = 0.30 t/man • day                      | 3.33 day/lot  |
| Suction Sump<br>(side wall,         | Concrete placing<br>(invert)                  | 90 m <sup>3</sup> /span,<br>Workability = 100 m <sup>3</sup> /day           | 0.90 day/lot  |
| span length : 8m)                   | Rein. arrangement<br>(wall)                   | 3 ton/span, 5 man/set<br>Workability = 0.30 t/man • day                     | 2.00 day/lot  |
|                                     | Concrete placing<br>(wall)                    | 55 m³/span,<br>Workability = 100 m³/day                                     | 0.55 day/lot  |
|                                     | Total                                         |                                                                             | 7.2 day/lot   |
| , <u></u> ,                         | Plain concrete placing                        | 90 m <sup>3</sup> /lot,<br>Workability = 100 m <sup>3</sup> /day            | 0.90 day/lot  |
|                                     | Rein. arrangement<br>(1 <sup>st</sup> lift)   | 21 ton/lot, 10 man/set<br>Workability = 0.30 t/man • day                    | 7.00 day/lot  |
| Pump room<br>(EL6.7m ~ -1.4m,       | Concrete placing<br>(1 <sup>st</sup> lift)    | $350 \text{ m}^3/\text{lot},$<br>Workability = $400 \text{ m}^3/\text{day}$ | 0.88 day/lot  |
| lot length : 10.5m)                 | Rein. arrangement<br>(2 <sup>nd</sup> lift)   | 24 ton/lot, 10 man/set<br>Workability = 0.30 t/man • day                    | 8.00 day/lot  |
|                                     | Concrete placing<br>(2 <sup>nd</sup> lift)    | $400 \text{ m}^3/\text{lot},$<br>Workability = $400 \text{ m}^3/\text{day}$ | 1.00 day/lot  |
|                                     | Total                                         |                                                                             | 17.8 day/lot  |

 Table 3.3-1
 Workability of Concrete Placing (2/3)

|                        | Concrete Works                             | Specification                                                           | Workability  |
|------------------------|--------------------------------------------|-------------------------------------------------------------------------|--------------|
|                        | Rein. arrangement                          | 18 ton/lot, 10 man/set                                                  |              |
|                        | (1 <sup>st</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | 6.00 day/lot |
|                        | Concrete placing                           | 300 m <sup>3</sup> /lot,                                                | 1.50 day/lot |
| Pump room              | (1 <sup>st</sup> lift)                     | Workability = $200 \text{ m}^3/\text{day}$                              |              |
| (EL1.4m ~ 3.15m,       | Rein. arrangement                          | 21 ton/lot, 10 man/set                                                  | 7.00 day/lot |
| lot length : 10.5m)    | (2 <sup>nd</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     |              |
|                        | Concrete placing                           | 350 m <sup>3</sup> /lot,                                                | 0.88 day/lot |
|                        | (2 <sup>nd</sup> lift)                     | Workability = $400 \text{ m}^3/\text{day}$                              |              |
|                        | Total                                      |                                                                         | 15.4 day/lot |
|                        | Rein. arrangement                          | 24 ton/lot, 10 man/set                                                  | 8.00 day/lot |
|                        | (1 <sup>st</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | -            |
|                        | Concrete placing                           | 400 m <sup>3</sup> /lot,                                                | 1.00 day/lot |
| Pump room              | (1 <sup>st</sup> lift)                     | Workability = $400 \text{ m}^3/\text{day}$                              |              |
| (EL.3.15m ~ 7.7m,      | Rein. arrangement                          | 27 ton/lot, 10 man/set                                                  | 9.00 day/lot |
| lot length : 10.5m)    | (2 <sup>nd</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | -            |
|                        | Concrete placing                           | 450 m <sup>3</sup> /lot,                                                | 1.13 day/lot |
|                        | (2 <sup>nd</sup> lift)                     | Workability = $400 \text{ m}^3/\text{day}$                              | 10.1 Jay/lat |
|                        | Total                                      | 15 tog light 10 mon/pot                                                 | 19.1 day/lot |
|                        | Rein. arrangement                          | 15 ton/lot, 10 man/set                                                  | 5.00 day/lot |
|                        | (1 <sup>st</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     |              |
| D                      | Concrete placing                           | 250 m <sup>3</sup> /lot,<br>Workability = 200 m <sup>3</sup> /day       | 1.25 day/lot |
| Pump room              | (1 <sup>st</sup> lift)                     | $\frac{15 \text{ ton/lot, 10 man/set}}{15 \text{ ton/lot, 10 man/set}}$ |              |
| $(EL.7.7m \sim 13.4m,$ | Rein. arrangement                          | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | 5.00 day/lot |
| lot length : 9.7m)     | (2 <sup>nd</sup> lift)                     | $\frac{1}{250 \text{ m}^3/\text{lot}}$                                  |              |
|                        | Concrete placing<br>(2 <sup>nd</sup> lift) | Workability = $200 \text{ m}^3/\text{day}$                              | 1.25 day/lot |
|                        | Total                                      | workaumry = 200  m/day                                                  | 12.5 day/lot |
|                        |                                            | 30 m <sup>3</sup> /lot,                                                 |              |
|                        | Plain concrete placing                     | Workability = $100 \text{ m}^3/\text{day}$                              | 0.30 day/lot |
|                        | Rein. arrangement                          | 13 ton/lot, 10 man/set                                                  |              |
|                        | (1 <sup>st</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | 4.33 day/lot |
|                        | Concrete placing                           | $\frac{220 \text{ m}^3/\text{lot}}{220 \text{ m}^3/\text{lot}}$         |              |
| Discharge pipe         | (1 <sup>st</sup> lift)                     | Workability = $200 \text{ m}^3/\text{day}$                              | 1.10 day/lot |
| (lot length : 12m)     | Rein. arrangement                          | 11 ton/lot, 10 man/set                                                  |              |
|                        | (2 <sup>nd</sup> lift)                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$                     | 3.67 day/lot |
|                        | Concrete placing                           | $180 \text{ m}^3/\text{lot},$                                           | 0.00.1.4.    |
|                        | (2 <sup>nd</sup> lift)                     | Workability = $200 \text{ m}^3/\text{day}$                              | 0.90 day/lot |
|                        | Total                                      |                                                                         | 10.3 day/lot |

 Table 3.3-1
 Workability of Concrete Placing (3/3)

,

•••

### (2) Construction Period

The construction periods are shown as the following table.

|                              |                                                  |                     |              |                        | 7   |                           |
|------------------------------|--------------------------------------------------|---------------------|--------------|------------------------|-----|---------------------------|
| Item                         | Quantity                                         | Workability         | Working Rate | Total Period<br>(days) | Set | Const. Period<br>(months) |
| 1.Sand Settling Basin: (7 -  | +2 + 57) spar                                    | IS                  |              |                        |     | 14                        |
| Open canal section           | 7 span                                           | 1.2 day/span        | 20/30        | 13                     | 1   | 1                         |
| Gate section                 | 2 span                                           | 20.1 day/span       | 20/30        | 60                     | 1   | 3                         |
| Wall section                 | 57 span                                          | 6.7 day/span        | 20/30        | 573                    | 2   | 10                        |
| 2.Suction Sump : (35.5m / 7. | .1m + 16m / 8                                    | (3m) = (5 + 2) lots |              |                        |     | 5                         |
| Suction sump                 | 5 lot                                            | 14.0 day/lot        | 20/30        | 105                    | 1   | 4                         |
| Side wall                    | 2 lot                                            | 7.2 day/lot         | 20/30        | 22                     | 1   | 1                         |
| 3. Pump room ; (52.5m / 1    | $10.5m \times 3 + 68m / 9.7m$ = (5 x 3 + 7) lots |                     |              |                        |     | 19                        |
| EL6.7m ~ -1.4m               | 5 lot                                            | 17.8 day/lot        | 20/30        | 134                    | 1   | 5                         |
| EL1.4m ~ 3.15m               | 5 lot                                            | 15.4 day/lot        | 20/30        | 116                    | 1   | 4                         |
| EL.3.15 ~ 7.7m               | 5 lot                                            | 19.1 day/lot        | 20/30        | 143                    | 1   | 5                         |
| EL.7.7m ~ 13.4m              | 7 lot                                            | 12.5 day/lot        | 20/30        | 131                    | 1   | 5                         |
| 4. Discharge pipe : 36m / 1  | 2m = 3 lots                                      |                     |              |                        |     | 2                         |
| Discharge pipe               | 3 lot                                            | 10.3 day/lot        | 20/30        | 46                     | 1   | 2                         |

Table 3.3-2 Construction Period of Concrete Placing

#### 3.4 Pump House (Building Works)

The following shall be considered for the construction planning of Pump House.

- (1) Pump House building is designed to be of reinforced concrete framing, however the roof beams are designed to be of structural steel truss construction due to the long span of 19.5 m with a view to the height of the roof beams of 18.8 m from the ground level. Also construction period by steel truss must be shorter than by reinforced concrete construction. Steel truss beams construction also takes advantage in construction sequence with mechanical installation such as pumps and overhead travelling crane inside the building because it will minimize the use of staging and scaffoldings.
- (2) Schedule of the concrete works shall be coordinated with the progress of pumping station civil works. Concrete works can be started when pumping station civil works and concrete works completed and back-filling of surrounding excavated area completed. Enough curing time of the substructure concrete shall be taken. Sufficient working space shall be provided for concrete works and necessary temporary works.
- (3) Schedule of roof truss beams construction shall be coordinated with the progress of concrete columns construction. Schedule of overhead travelling crane installation after crane girders installed shall be coordinated with roof truss beams and roof slab constructions.

- (4) Considering the location of site capacity and number of concrete plant and other equipment shall be planned, provided and maintained.
- (5) Scaffolding and other temporary works shall be adequately planned and provided for safety of construction.
- (6) Concrete and the materials shall be tested at the authorized laboratory on regular basis. Adequate number of skilled and unskilled labors shall be provided in order to avoid any delays on construction.
- (7) Sufficient capacity of batching plant and other concrete plant, such as concrete pumps and agitator cars shall be planned and provided. As to the volume of concrete, one column from GL to EL+ 18.8 and from EL+18.80 to EL+ 21.00 are estimated to be 24 m<sup>3</sup> and 5.5 m<sup>3</sup> respectively. Such figures shall be taken into the planning of numbers and capacity of concrete plants.
- (8) As for steel roof trusses erection, the weight of roof truss is estimated to be 8 ton, type and capacity of crane shall be determined considering that the trusses are assembled on the ground and to be lifted and installed at the level of EL+ 18.8 m.

#### **3.5 Installation of Mechanical and Electrical Equipment**

#### (1) General Requirement for Erection

Following general requirements shall be taken to accomplish the good erection for satisfactory operation.

- (a) Prior to erection, full knowledge of work required shall be acquired in reviewing relative drawings and readings carefully.
- (b) The erection progress plans shall be drawn up and proper arrangements of workers shall be made.
- (c) All packages shall be opened and checked the quantity with the packing list.
- (d) Prior to erection, the correctness of shape and quantity, etc of each part shall be checked and reported to the supervisor dispatched from the machine supplier.
- (e) Assembling of machine shall proceed after supervisor's confirmation.

#### (2) Installation of Main Pumps

The pump and related equipment must be correctly installed so that their required capacities can be satisfactorily utilized and operated smoothly for long periods.

Figure 3.5-1 shows installation sequence of the main pumps in a flow chart. (refer to Drawing No.PSM-101 outline of pump and intermediate shaft assembly)

| 1. Checking of pump parts.                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. Marking original points and reference lines for erection.                                                                                                                             |
| 3. Checking of the foundation for the suction elbow liner.                                                                                                                               |
|                                                                                                                                                                                          |
| 4. setting of pipe supports.                                                                                                                                                             |
| 5. Installation of the suction elbow liner.                                                                                                                                              |
| 6. Centering of the suction elbow liner.                                                                                                                                                 |
| 7.Record of centering.                                                                                                                                                                   |
| 8.Concreting upto EL 0.00 and insert anchors for pump casing                                                                                                                             |
| 9. Concrete curing.                                                                                                                                                                      |
| 10. Final checking of the suction elbow liner.                                                                                                                                           |
| 11. Checking of the foundation for the pump casing.                                                                                                                                      |
| II. Checking of the foundation for the pump casing.                                                                                                                                      |
| 12.Stting of the pedestals for pump casing.                                                                                                                                              |
| 13.Installation of the pump casing.                                                                                                                                                      |
| 14. Installation of the casing extension and hydraulic                                                                                                                                   |
| Testing gear.                                                                                                                                                                            |
| 15. Hydrostatic pressure test of the pump casing and casing extension.                                                                                                                   |
| 16. Final centering and leveling of the pump casing<br>and casing extension                                                                                                              |
| 17. Installation of the pit liner.                                                                                                                                                       |
| 18. Pouring concrete upto EL.13.40 keeping water pressure in the pump casing and casing extension.(sequence of concrete placement shall be done according to the instruction specified.) |
| 19. Concrete curing.                                                                                                                                                                     |
| 20. Disassembling of the hydraulic testing gear. And then, installation of the valves (refer to 3.5.3 installation of the valve)                                                         |
| 21.Welding between suction elbow liner and suction cover.                                                                                                                                |
| 22.Final checking of the pump casing and casing extension.                                                                                                                               |
| 23. Pre-assembling of the casing cover and guide bearing.<br>And centering of the casing cover and guide bearing.                                                                        |

,

.

| Figure 3.5-1 Flow Chart for Installation of Main Pump (1/2)

> . . -

| bearing and casing cover  25. Assembling of the impeller and pump shaft.  26. Installation of the impeller and pump shaft.  27. Installation of the casing cover and guide bearing.  27. Installation of the casing cover and guide bearing.  28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.  29. Install the platform and guide bearing housing after grout has cured.  30. Pre-assembling and centering of the guide bearing.  And then, reaming of the guide bearing.  31. Disassembling the guide bearing.  32. Installation of the intermediate shaft.  33. Installation of the guide bearing.  34. Installation of the auxiliary equipment.  35. Piping within and out the pump pit  36. Installation of the main motor.  (Refer to (3) Installation of Main Motor)  37. Cleaning and protective coating.  39. preliminary tests for the Motor, valves, and auxiliary equipment               | 24. Reaming of the taper pin of the casing cover. And disassembling of the |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| 26. Installation of the impeller and pump shaft.         27. Installation of the casing cover and guide bearing.         28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.         29. Install the platform and guide bearing housing after grout has cured.         30. Pre-assembling and centering of the guide bearing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing.         34. Installation of the guide bearing         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                | bearing and casing cover                                                   |
| 26. Installation of the impeller and pump shaft.         27. Installation of the casing cover and guide bearing.         28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.         29. Install the platform and guide bearing housing after grout has cured.         30. Pre-assembling and centering of the guide bearing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing.         34. Installation of the guide bearing         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                |                                                                            |
| <ul> <li>27. Installation of the casing cover and guide bearing.</li> <li>28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.</li> <li>29. Install the platform and guide bearing housing after grout has cured.</li> <li>30. Pre-assembling and centering of the guide bearing. And then, reaming of the guide bearing housing.</li> <li>31. Disassembling the guide bearing.</li> <li>32. Installation of the intermediate shaft.</li> <li>33. Installation of the guide bearing.</li> <li>34. Installation of the auxiliary equipment.</li> <li>35. Piping within and out the pump pit</li> <li>36. Installation of the main motor.</li> <li>(Refer to (3) Installation of Main Motor)</li> <li>37 Cleaning and protective coating.</li> <li>38. Pump preliminary tests to prepare pump units for operation.</li> <li>39. preliminary tests for the Motor, valves, and auxiliary equipment</li> </ul> | 25. Assembling of the impeller and pump shaft.                             |
| <ul> <li>27. Installation of the casing cover and guide bearing.</li> <li>28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.</li> <li>29. Install the platform and guide bearing housing after grout has cured.</li> <li>30. Pre-assembling and centering of the guide bearing. And then, reaming of the guide bearing housing.</li> <li>31. Disassembling the guide bearing.</li> <li>32. Installation of the intermediate shaft.</li> <li>33. Installation of the guide bearing.</li> <li>34. Installation of the auxiliary equipment.</li> <li>35. Piping within and out the pump pit</li> <li>36. Installation of the main motor.</li> <li>(Refer to (3) Installation of Main Motor)</li> <li>37 Cleaning and protective coating.</li> <li>38. Pump preliminary tests to prepare pump units for operation.</li> <li>39. preliminary tests for the Motor, valves, and auxiliary equipment</li> </ul> | active that is the lower line and sump shaft                               |
| <ul> <li>28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.</li> <li>29. Install the platform and guide bearing housing after grout has cured.</li> <li>30. Pre-assembling and centering of the guide bearing. And then, reaming of the guide bearing housing.</li> <li>31. Disassembling the guide bearing.</li> <li>32. Installation of the intermediate shaft.</li> <li>33. Installation of the guide bearing</li> <li>34. Installation of the auxiliary equipment.</li> <li>35. Piping within and out the pump pit</li> <li>36. Installation of the main motor. (Refer to (3) Installation of Main Motor)</li> <li>37 Cleaning and protective coating.</li> <li>38. Pump preliminary tests to prepare pump units for operation.</li> <li>39. preliminary tests for the Motor, valves, and auxiliary equipment</li> </ul>                                                                            | 26. Installation of the impeller and pump shart.                           |
| <ul> <li>28. Install the anchor for the beams of the intermediate shaft bearing platform and then grouting them.</li> <li>29. Install the platform and guide bearing housing after grout has cured.</li> <li>30. Pre-assembling and centering of the guide bearing. And then, reaming of the guide bearing housing.</li> <li>31. Disassembling the guide bearing.</li> <li>32. Installation of the intermediate shaft.</li> <li>33. Installation of the guide bearing</li> <li>34. Installation of the auxiliary equipment.</li> <li>35. Piping within and out the pump pit</li> <li>36. Installation of the main motor. (Refer to (3) Installation of Main Motor)</li> <li>37 Cleaning and protective coating.</li> <li>38. Pump preliminary tests to prepare pump units for operation.</li> <li>39. preliminary tests for the Motor, valves, and auxiliary equipment</li> </ul>                                                                            | 27 Installation of the casing cover and guide bearing.                     |
| platform and then grouting them.         29. Install the platform and guide bearing housing after grout has cured.         30. Pre-assembling and centering of the guide bearing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                          | 27. Instantion of the casing cover and gates sound g                       |
| platform and then grouting them.         29. Install the platform and guide bearing housing after grout has cured.         30. Pre-assembling and centering of the guide bearing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                          | 28. Install the anchor for the beams of the intermediate shaft bearing     |
| 29. Install the platform and guide bearing housing after grout has cured.         30. Pre-assembling and centering of the guide bearing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37. Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                  |                                                                            |
| 30. Pre-assembling and centering of the guide bearing.         And then, reaming of the guide bearing housing.         31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                            |                                                                            |
| And then, reaming of the guide bearing housing.   31. Disassembling the guide bearing.   32. Installation of the intermediate shaft.   33. Installation of the guide bearing   34. Installation of the auxiliary equipment.   35. Piping within and out the pump pit   36. Installation of the main motor.   (Refer to (3) Installation of Main Motor)   37 Cleaning and protective coating.   38. Pump preliminary tests to prepare pump units for operation.   39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                        | 29. Install the platform and guide bearing housing after grout has cured.  |
| And then, reaming of the guide bearing housing.   31. Disassembling the guide bearing.   32. Installation of the intermediate shaft.   33. Installation of the guide bearing   34. Installation of the auxiliary equipment.   35. Piping within and out the pump pit   36. Installation of the main motor.   (Refer to (3) Installation of Main Motor)   37 Cleaning and protective coating.   38. Pump preliminary tests to prepare pump units for operation.   39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
| 31. Disassembling the guide bearing.         32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                   | 30. Pre-assembling and centering of the guide bearing.                     |
| 32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                | And then, reaming of the guide bearing housing.                            |
| 32. Installation of the intermediate shaft.         33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Cat Ditlim the suide begring                                               |
| 33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 31. Disassembling the guide bearing.                                       |
| 33. Installation of the guide bearing         34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 22 Installation of the intermediate shaft.                                 |
| 34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52. Instanation of the intermediate show                                   |
| 34. Installation of the auxiliary equipment.         35. Piping within and out the pump pit         36. Installation of the main motor.         (Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 33 Installation of the guide bearing                                       |
| 35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                            |
| 35. Piping within and out the pump pit         36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 34. Installation of the auxiliary equipment.                               |
| 36. Installation of the main motor.         ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |
| ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35. Piping within and out the pump pit                                     |
| ( Refer to (3) Installation of Main Motor)         37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
| 37 Cleaning and protective coating.         38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 36. Installation of the main motor.                                        |
| 38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (Refer to (3) Installation of Main Motor)                                  |
| 38. Pump preliminary tests to prepare pump units for operation.         39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 27 Cleaning and protective coating                                         |
| 39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 37 Cleaning and protective coating.                                        |
| 39. preliminary tests for the Motor, valves, and auxiliary equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 38 Pump preliminary tests to prepare pump units for operation.             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39, preliminary tests for the Motor, valves, and auxiliary equipment       |
| the state of the second state and the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |
| 40. Cleanup. And removal of hydraulic testing gears and the remain of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40. Cleanup. And removal of hydraulic testing gears and the remain of the  |
| construction materials from the pumping station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | construction materials from the pumping station.                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                            |
| 41. Operational tests for the pump units                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41. Operational tests for the pump units                                   |

i.

Figure 3.5-1 Flow Chart for Installation of Main Pump (2/2)

## (3) Installation of Main Motors

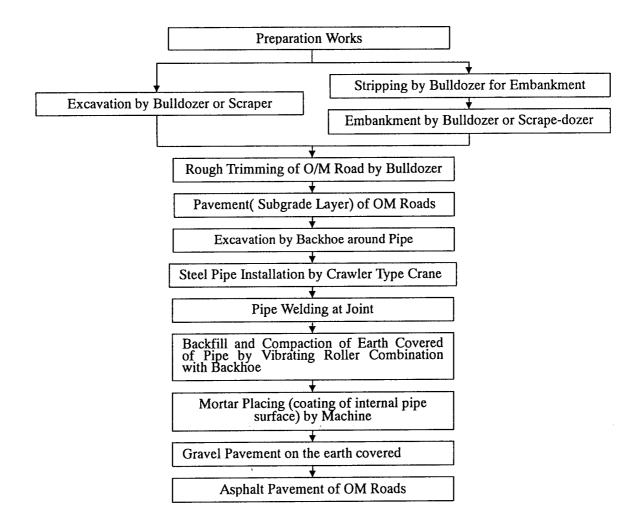
Figure 3.5-2 shows installation sequence of the main motor in a flow chart.

.

| 1.Installation of the foundation bolts.                        |
|----------------------------------------------------------------|
| 2. Grouting to the foundation bolts. And curing concrete.      |
| 3. Checking of the foundation for the sole plates.             |
| 4. Installation of the sole plates                             |
| 5. Installation of stator                                      |
| 6.Lowering the rotor into the stator.                          |
| 7. Installation of the upper bracket                           |
| 8. Assembling the thrust bearing.                              |
| 9. Assembling the upper guide bearing and bearing cover.       |
| 10. Overall runout check                                       |
| 11. Primary centering                                          |
| 12. grouting into the sole plates and curing concrete.         |
| 13. Installation of the air cooler.                            |
| 14. Piping work ( proceed to No 20)                            |
| 15.Secondary centering                                         |
| 16. Wiring work ( proceed to No 20 )                           |
| 17. Overall runout check .                                     |
| 18.Assembling the lower guide bearing.                         |
| 19. Assembling the lower oil reservoir                         |
| 20.Disengaging of direct coupling of the shaft.                |
| 21. Trial run of the main motor.                               |
| 22. Direct coupling of the motor shaft and intermediate shaft. |
| 23. Trial run of the pump and motor.                           |

Figure 3.5-2 Flow Chart for Main Motor

~ ~


### 3.6 Civil Works and Installation of Delivery Pressured Pipeline and Discharge Tank

## (1) Concepts of Construction Process of Delivery Pressured Pipeline

The major points of the earth works process are summarized as follows;

- In considering the earth works of the delivery pressured pipeline are large-volume with the soil moving, the excavation and embankment works will be carried out by 21 tons class bulldozer combination with 12 m<sup>3</sup> class scraper.
- 2) For the pipes will be protected, the backfill and embankment around the pipes will be carried out by 2.5 tons class vibrating roller combination with 1.0 m<sup>3</sup> class backhoe.

The flowchart of the delivery pressured pipeline is as follow;



## (2) Workability of Earth Works

The workability of earth works is shown as the following table.

| IUSI                                    | . 510 1 WOI MIDHIEJ OF LUI EN WOI IN                                                                                        |                         |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Construction Equipment                  | Specification                                                                                                               | Workability             |
| Bulldozer<br>(for excavation)           | 21 ton class, hauling distance = ave. 50 m, cycle time = $2.13$ min. working eff. = $0.85$ (sand, moderate), f = $1.00$     | 480 m <sup>3</sup> /day |
| Scraper<br>(for excavation)             | 21 ton self-loading ( $q_0=12.0 \text{ m}^3$ ), hauling distance = ave.<br>300m, cycle time = 12.3 min. working eff. = 0.90 | 330 m³/day              |
| Backhoe<br>(for excavation)             | 1.0 m <sup>3</sup> crawler type                                                                                             | 520 m <sup>3</sup> /day |
| Backhoe<br>(for backfill)               | 1.0 m <sup>3</sup> crawler type                                                                                             | 420 m <sup>3</sup> /day |
| Bulldozer<br>(for compaction)           | 21 ton class, compaction thick = $0.30$ m, compaction = 5 times, working eff. = $0.85$ (sand, moderate), f = $1.00$         | 370 m <sup>3</sup> /day |
| Vibrating Roller<br>(for compaction)    | 5 ton class, speed = 1,000 m/hr, width = 0.8 m, thick = 0.3m, compaction = 5 times, working eff. = 0.40                     | 100 m <sup>3</sup> /day |
| Vibrating Roller<br>(for compaction)    | 2.5 ton class, speed = 1,000 m/hr, width = 0.7 m, thick = 0.3m, compaction = 5 times, working eff. = 0.40                   | 80 m³/day               |
| Asphalt finisher<br>(for Paved asphalt) |                                                                                                                             | 2,600 m²/day            |

| Table 3.6-1 | Workability   | of Earth | Works |
|-------------|---------------|----------|-------|
|             | TTOL IMANTING |          |       |

## (3) Construction Period of Earth Works

\*

The construction periods of the earth works are shown as the following table.

| Lable 5.0                     |                          |                       |               |                        | /    |                           |
|-------------------------------|--------------------------|-----------------------|---------------|------------------------|------|---------------------------|
| Item                          | Quantity                 | Workability           | Working Rate  | Total Period<br>(days) | Set  | Const. Period<br>(months) |
| 1. Delivery Pressured Pipelin | ne; 9,400m and M         | linimum perio         | od of 36 mont | hs (1,080 da           | iys) | -                         |
| Excavation (1)                | 2,032,000 m <sup>3</sup> |                       |               |                        |      | 24                        |
| Bulldozer                     | 813,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d | 20/30         | 2,541                  | 4    | 22                        |
| Scraper                       | 1,219,000 m <sup>3</sup> | 330 m <sup>3</sup> /d | 20/30         | 5,541                  | 8    | 24                        |
| Excavation (2)                | 483,000 m <sup>3</sup>   |                       |               |                        |      | 24                        |
| Backhoe                       | 483,000 m <sup>3</sup>   | 520 m <sup>3</sup> /d | 20/30         | 1,393                  | 2    | 24                        |
| Stripping                     | 162,000 m <sup>3</sup>   |                       |               |                        |      | 17                        |
| Bulldozer                     | 162,000 m <sup>3</sup>   | 480 m <sup>3</sup> /d | 20/30         | 506                    | 1    | 17                        |
| Fill (1)                      | 850,000 m <sup>3</sup>   |                       |               |                        |      | 23                        |
| Bulldozer                     | 680,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d | 20/30         | 2,757                  | 4    | 23                        |
| Vibrating Roller              | 170,000 m <sup>3</sup>   | 100 m <sup>3</sup> /d | 20/30         | 2,550                  | 4    | 22                        |
| Fill (3)                      | 113,000 m <sup>3</sup>   |                       |               |                        |      | 24                        |
| Backhoe                       | 113,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d | 20/30         | 458                    | 1    | 16                        |
| Vibrating Roller              | 113,000 m <sup>3</sup>   | 80 m <sup>3</sup> /d  | 20/30         | 2,119                  | 3    | 24                        |
| Backfill                      | 326,000 m <sup>3</sup>   |                       |               |                        |      | 23                        |
| Backhoe                       | 326,000 m <sup>3</sup>   | 370 m <sup>3</sup> /d | 20/30         | 1,322                  | 2    | 23                        |
| Vibrating Roller              | 326,000 m <sup>3</sup>   | 80 m <sup>3</sup> /d  | 20/30         | 6,113                  | 9    | 23                        |
| Asphalt pavement              | 125,000 m <sup>2</sup>   |                       |               |                        |      | 3                         |
| Asphalt finisher              | 125,000 m <sup>2</sup>   | 2,600 m²/d            | 20/30         | 72                     | 1    | 3                         |

| <b>Table 3.6-2</b> | Construction | <b>Periods of Earth</b> | Works (1/2) |
|--------------------|--------------|-------------------------|-------------|
|--------------------|--------------|-------------------------|-------------|

|                              |                        |                       |                                       |                        |     | ,                         |
|------------------------------|------------------------|-----------------------|---------------------------------------|------------------------|-----|---------------------------|
| Item                         | Quantity               | Workability           | Working Rate                          | Total Period<br>(days) | Set | Const. Period<br>(months) |
| 2. No.1 Surge Tank and Mini  | mum period of 6        | months (180 d         | days)                                 |                        |     |                           |
| Excavation (2)               | 10,800 m <sup>3</sup>  |                       |                                       |                        |     | 2                         |
| Backhoe                      | 10,800 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30                                 | 31                     | 1   | 2                         |
| Backfill                     | 6,200 m <sup>3</sup>   |                       |                                       |                        |     | 4                         |
| Backhoe                      | 6,200 m <sup>3</sup>   | 420 m <sup>3</sup> /d | 20/30                                 | 22                     | 1   | 1                         |
| Vibrating Roller             | 6,200 m <sup>3</sup>   | 80 m <sup>3</sup> /d  | 20/30                                 | 116                    | 1   | 4                         |
| 3. No.2 Surge Tank and Mini  |                        | months (180 o         | days)                                 |                        |     |                           |
| Excavation (2)               | 6,300 m <sup>3</sup>   |                       |                                       |                        |     | 1                         |
| Backhoe                      | 6,300 m <sup>3</sup>   | 520 m <sup>3</sup> /d | 20/30                                 | 18                     | 1   | 1                         |
| Backfill                     | 4,000 m <sup>3</sup>   |                       |                                       |                        |     | 3                         |
| Backhoe                      | 4,000 m <sup>3</sup>   | 420 m <sup>3</sup> /d | 20/30                                 | 14                     | 1   | 1                         |
| Vibrating Roller             | 4,000 m <sup>3</sup>   | 80 m <sup>3</sup> /d  | 20/30                                 | 75                     | 1   | 3                         |
| 4. Discharge Tank ; 200m and | d Minimum perio        | d of 6 months         | (180 days)                            |                        |     |                           |
| Excavation (2)               | 24,000 m <sup>3</sup>  |                       |                                       |                        |     | 2                         |
| Bulldozer                    | 12,000 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30                                 | 38                     | 1   | 2                         |
| Backhoe                      | 12,000 m <sup>3</sup>  | 520 m <sup>3</sup> /d | 20/30                                 | 35                     | 1   | 2                         |
| Stripping                    | 12,500 m <sup>3</sup>  |                       |                                       |                        |     | 2                         |
| Bulldozer                    | 12,500 m <sup>3</sup>  | 480 m <sup>3</sup> /d | 20/30                                 | 39                     | 1   | 2                         |
| Fill (1)                     | 18,500 m <sup>3</sup>  |                       |                                       |                        |     | 3                         |
| Bulldozer                    | 13,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30                                 | 53                     | 1   | 2                         |
| Vibrating Roller             | 5,500 m <sup>3</sup>   | 100 m <sup>3</sup> /d | 20/30                                 | 83                     | 1   | 3                         |
| Fill (2)                     | 107,000 m <sup>3</sup> |                       | ,                                     |                        |     | 6                         |
| Bulldozer                    | 75,000 m <sup>3</sup>  | 370 m <sup>3</sup> /d | 20/30                                 | 304                    | 2   | 6                         |
| Vibrating Roller             | 32,000 m <sup>3</sup>  | 80 m <sup>3</sup> /d  | 20/30                                 | 600                    | 4   | 5                         |
| Backfill                     | 900 m <sup>3</sup>     |                       | · · · · · · · · · · · · · · · · · · · |                        |     | 1                         |
| Vibrating Roller             | 900 m <sup>3</sup>     | 80 m <sup>3</sup> /d  | 20/30                                 | 17                     | 1   | 1                         |
| Trimming                     | 400 m                  |                       |                                       |                        |     | 1                         |
| Earth trimming machine       | 400 m                  | 350 m/d               | 20/30                                 | 2                      | 1   | 1                         |
| Asphalt pavement             | 3,450 m <sup>2</sup>   |                       |                                       |                        |     | 1                         |
| Asphalt finisher             | 3,450 m <sup>2</sup>   | 2,600 m²/d            | 20/30                                 | 2                      | 1   | 1                         |

 Table 3.6-2
 Construction Periods of Earth Works (2/2)

## (4) Construction Periods of Pipe Installation and Concrete Placing

The major points of the pipe installation work process are summarized as follows;

- 1) The diameter, length and weight of a pipe are 2,400 mm, 12 meters and 15.8 tons per piece, respectively.
- 2) The pipe will be carried from pipe stockyard to installation place by truck type crane of  $50 \sim 60$  tons lifting capacity.
- 3) The pipe will be installed by crawler type crane of  $50 \sim 60$  tons lifting capacity.

(a) Workability of Pipe Installation and Concrete Placing

The workability of pipe installation and concrete placing are the following table.

|                   | Concrete Works                        | Specification                                                   | Workability                           |
|-------------------|---------------------------------------|-----------------------------------------------------------------|---------------------------------------|
|                   |                                       | $50 \sim 60$ tons crane,                                        |                                       |
| Pipe Installation | Adjusting and tap<br>welding by crane | Workability = $1.0 \text{ pcs/day}$                             | 0.083 day/m                           |
| (length :12 m)    |                                       | Workaonity – 1.0 pcs/day                                        | 0.083 day/m                           |
| /                 | Total                                 | 25                                                              | 0.005 uay/iii                         |
|                   | Plain concrete placing                | $35 \text{ m}^3/\text{lot}$ ,                                   | 0.35 day/pcs                          |
|                   |                                       | Workability = $100 \text{ m}^3/\text{day}$                      |                                       |
|                   | Rein. arrangement                     | 9 ton/lot, 10 man/set                                           | 3.00 day/pcs                          |
|                   | (invert)                              | Workability = $0.30 \text{ t/man} \cdot \text{day}$             |                                       |
|                   | Concrete placing                      | $90 \text{ m}^3/\text{lot}$ ,                                   | 0.45 day/pcs                          |
|                   | (invert)                              | Workability = $200 \text{ m}^3/\text{day}$                      |                                       |
| No.1 Surge tank   | Rein. arrangement                     | 51 ton/lot, 10 man/set                                          | 17.00 day/pcs                         |
| (29m x 6m x 9.5m) | (side wall )                          | Workability = $0.30 \text{ t/man} \cdot \text{day}$             |                                       |
| · · · ·           | Concrete placing                      | $510 \text{ m}^3/\text{lot}$ ,                                  | 2.55 day/pcs                          |
|                   | (side wall )                          | Workability = 200 m <sup>3</sup> /day<br>7 ton/lot, 10 man/set  |                                       |
|                   | Rein. arrangement                     | · · ·                                                           | 2.33 day/pcs                          |
|                   | (top slab)                            | Workability = $0.30 \text{ t/man} \cdot \text{day}$             |                                       |
|                   | Concrete placing                      | $70 \text{ m}^3/\text{lot}$ ,                                   | 0.35 day/pcs                          |
|                   | (top slab)                            | Workability = $200 \text{ m}^3/\text{day}$                      | 26.0 day/pcs                          |
|                   | Total                                 | 15 30.4                                                         | 20.0 uay/pcs                          |
|                   | Plain concrete placing                | $15 \text{ m}^3/\text{lot},$                                    | 0.15 day/pcs                          |
|                   |                                       | Workability = $100 \text{ m}^3/\text{day}$                      |                                       |
|                   | Rein. arrangement                     | 2 ton/lot, 5 man/set                                            | 1.33 day/pcs                          |
|                   | (invert)                              | Workability = $0.30 \text{ t/man} \cdot \text{day}$             |                                       |
|                   | Concrete placing                      | $30 \text{ m}^3/\text{lot},$                                    | 0.30 day/pcs                          |
|                   | (invert)                              | Workability = 100 m <sup>3</sup> /day<br>6 ton/lot, 5 man/set   |                                       |
| No.2 Surge tank   | Rein. arrangement                     | Workability = $0.30 \text{ t/man} \cdot \text{day}$             | 4.00 day/pcs                          |
| (15.6mx3.6mx6.7m) | (side wall)                           | $95 \text{ m}^3/\text{lot},$                                    |                                       |
| <b>`</b>          | Concrete placing                      | Workability = $100 \text{ m}^3/\text{day}$                      | 0.95 day/pcs                          |
|                   | (side wall)                           | 2  ton/lot,  5  man/set                                         |                                       |
|                   | Rein. arrangement<br>(top slab)       | Workability = $0.30 \text{ t/man} \cdot \text{day}$             | 1.33 day/pcs                          |
|                   |                                       | $25 \text{ m}^3/\text{lot},$                                    | · · · · · · · · · · · · · · · · · · · |
|                   | Concrete placing<br>(top slab)        | Workability = $100 \text{ m}^3/\text{day}$                      | 0.25 day/pcs                          |
|                   | Total                                 | Workdomity = 100 m /duy                                         | 8.3 day/pcs                           |
|                   | · · · · · · · · · · · · · · · · · · · | 50 m <sup>3</sup> /lot,                                         |                                       |
|                   | Plain concrete placing                | Workability = $100 \text{ m}^3/\text{day}$                      | 0.50 day/pcs                          |
|                   | Rein. arrangement                     | 18 ton/lot, 10 man/set                                          |                                       |
|                   | (invert)                              | Workability = $0.30 \text{ t/man} \cdot \text{day}$             | 6.00 day/pcs                          |
|                   | Concrete placing                      | $\frac{300 \text{ m}^3/\text{lot}}{300 \text{ m}^3/\text{lot}}$ |                                       |
| Discharge Tank    | (invert)                              | Workability = $200 \text{ m}^3/\text{day}$                      | 1.50 day/pcs                          |
| (20mx23.7mx6.6m)  | Rein. arrangement                     | 6 ton/lot, 5 man/set                                            |                                       |
|                   | (side wall )                          | Workability = $0.30 \text{ t/man} \cdot \text{day}$             | 4.00day/pcs                           |
|                   | Concrete placing                      | $\frac{450 \text{ m}^3/\text{lot}}{450 \text{ m}^3/\text{lot}}$ |                                       |
|                   | (side wall )                          | Workability = $200 \text{ m}^3/\text{day}$                      | 2.25 day/pcs                          |
|                   |                                       | Hornautry - 200 m /day                                          | 14.3 day/pcs                          |
|                   | Total                                 | l                                                               | 1710 Uaj/pco                          |

 Table 3.6-3
 Workability of Pipe Installation and Concrete Placing (1/2)

|                                  | Concrete Works                 | Specification                                   | Workability   |
|----------------------------------|--------------------------------|-------------------------------------------------|---------------|
|                                  | Mortar lining<br>(side wall)   | L = 30  x  2 = 60 m,<br>Workability = 280 m/day | 0.21 day/span |
|                                  | Mortar lining<br>(invert)      | L = 30m,<br>Workability = 280 m/day             | 0.11 day/span |
| Open canal<br>(span length :30m) | Concrete lining<br>(side wall) | L = 30 x 2 = 60m,<br>Workability = 140 m/day    | 0.43 day/span |
| (span tengui .50m)               | Concrete lining<br>(invert)    | L = 30 x 2 = 60m,<br>Workability = 140 m/day    | 0.43 day/span |
|                                  | Total                          |                                                 | 1.2 day/span  |

 Table 3.6-3
 Workability of Pipe Installation and Concrete Placing (2/2)

(b) Construction Periods of Pipe Installation and Concrete Placing

The construction periods of pipe installation and concrete placing are shown as the following table.

| <b>Table 3.6-4</b> | <b>Construction Periods of Pipe Installation and Concrete Placing</b> |
|--------------------|-----------------------------------------------------------------------|
|--------------------|-----------------------------------------------------------------------|

| Item                        | Quantity                              | Workability  | Working<br>Rate | Total Period<br>(days) | Set | Const. Period<br>(months) |
|-----------------------------|---------------------------------------|--------------|-----------------|------------------------|-----|---------------------------|
| 1.Pipe installation: 9,350  | $m \ge 3 rows = 28$                   | 3,050 m      |                 |                        |     | 24                        |
| Pipe installation           | 28,050 m                              | 0.083 m/day  | 20/30           | 3,492                  | 5   | 24                        |
| 2.Surge Tank: 2 places      | · · · · · · · · · · · · · · · · · · · |              |                 |                        |     | 3                         |
| No.1 Surge tank             | 1 pcs                                 | 26.0 day/pcs | 20/30           | 39                     | 1   | 2 '                       |
| No.2 Surge tank             | 1 pcs                                 | 8.3 day/pcs  | 20/30           | 12                     | 1   | 1                         |
| 3.Discharge tank : (1 pcs + | - 6 spans)                            |              |                 |                        |     | 2                         |
| Concrete works              | 1 pcs                                 | 14.3 day/pcs | 20/30           | 21                     | 1   | 1                         |
| Open canal section          | 6 span                                | 1.2 day/span | 20/30           | 11                     | 1   | 1                         |

7

## 3.7 Overall Construction Schedule

The overall construction schedule of  $2^{nd}$  package is shown in the Figure 3.7-1.

|                           |                 | 1 <sup>st</sup> vear | ear |                   |                 | 2nd 1    | vear         |             |                 | 3rd               | 3rd vear     |                   |                 | 4 v             | 4 vear   |              |      |
|---------------------------|-----------------|----------------------|-----|-------------------|-----------------|----------|--------------|-------------|-----------------|-------------------|--------------|-------------------|-----------------|-----------------|----------|--------------|------|
| Description               | 1 <sup>st</sup> | 2 <sup>nd</sup>      | 3rd | $4^{\mathrm{th}}$ | 1 <sup>st</sup> | $2^{nd}$ | $3^{\rm rd}$ | $4^{ m th}$ | 1 <sup>st</sup> | $2^{\mathrm{nd}}$ | $3^{\rm rd}$ | $4^{\mathrm{th}}$ | 1 <sup>st</sup> | 2 <sup>nd</sup> | $3^{rd}$ | $4^{\rm th}$ | Note |
| 1.Temporary works         |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 1.1 Office / workshop     |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 1.2 Access roads          |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 1.3 Dewatering            |                 |                      |     | 1                 |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 1.4 Power supply          |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 2.Access road             |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 2.1 No.3 Access road      |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 3.Sand settling basin     |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 3.1 Earth works           |                 |                      |     |                   | I               |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 3.2 Concrete placing      |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 3.3 Gate installation     |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              | 5    |
| 4. No. 7 pumping station  |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 4.1 Excavation            |                 | I                    |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 4.2 Backfill              |                 |                      |     |                   |                 |          |              |             |                 |                   | I            |                   |                 |                 |          |              |      |
| 4.3 Concrete placing      |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 4.4 Main pump             |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 4.5 Electric equipment    |                 |                      |     |                   |                 | -        |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 4.6 Building works        |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              | 1    |
| 4.7 Appurtenant equip.    |                 |                      |     |                   |                 |          | -            |             |                 |                   |              |                   |                 |                 |          |              |      |
| 5. Pressured pipeline     |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 5.1 Earth works           |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 5.2 Pipe supply / install |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 | _        |              |      |
| 5.3 One-way surge tank    |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 5.4 Valves / fittings     |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 6. Discharge tank         |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 6.1 Earth works           |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 6.2 Concrete placing      |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |
| 7. Land scape             |                 |                      |     |                   |                 |          |              |             |                 |                   |              |                   |                 |                 |          |              |      |

Figure 3.7-1 Construction Schedule of Package 2

## CHAPTER 4 POWER SUPPLY

#### 4.1 Installation of Equipment and Building Works

#### (1) Installation of Equipment

The following maters shall be considered to make construction schedule of the installation of the equipment for power supply.

- (a) The main substation building shall be completed before bring in the electrical equipment in the site.
- (b) The main substation shall be completed before beginning of test running the No.7 Pumping station to supply test power to the facilities.
- (c) The 66 kV transmission lines shall be completed before beginning of test running of the Main substation to supply test power.

#### (2) Building Works

The following shall be considered for the construction planning of Administration Buildings and Main Substation.

- (a) Site for Main Substation and Administration Building is located to the north area of Pumping Station. Both buildings are single storied and therefore, designed to be of reinforced concrete framing structure.
- (b) Foundations are designed to be of spread footing and the base shall be compacted sufficiently prior to start concrete works.
- (c) There would be no difficulty in construction in comparison with the Pump House in view of the buildings size and height. Construction of two building can be started as soon as site grading and temporary access completed. Building works including foundation works shall be started independently from the pump house construction.
- (d) Together with foundation works, cable trench works shall be proceeded.
- (e) The volume of concrete for two buildings is relatively smaller than those of pump house and the pumping station. However, it is proposed that the Fourth Package Contractor shall provide his own batching plant and the other concreting plant in order to avoid any interference with the other package contractors and maintain his construction schedule.
- (f) Schedule of the building and finishing works shall be coordinated with the electrical

equipment installation works. Electrical installation can start when finishing works completed, however the finished area shall be temporarily covered and cured in order to avoid damages caused from delivery and installation of the equipment, otherwise, electrical installation works shall be started prior to completion of building finishing works.

- (g) Scaffolding and other temporary works shall be adequately planned and provided for safety of construction.
- (h) Considering the location of site capacity and number of concrete plant and other equipment shall be planned, provided and maintained.
- (i) Concrete and the materials shall be tested at the authorized laboratory on regular basis.
- (j) Adequate number of skilled and unskilled labors shall be provided in order to avoid any delays on construction.

### 4.2 Overall Construction Schedule

The overall construction schedule of 4<sup>th</sup> package is shown in the Figure 4.2-1.

| ·.<br>·                 |                 | 1 <sup>st</sup> year | ear             |                 |                 | 2 <sup>nd</sup> | 2 <sup>nd</sup> year |              |                 | 3 <sup>rd</sup> ) | 3 <sup>rd</sup> year |                 | NI T |
|-------------------------|-----------------|----------------------|-----------------|-----------------|-----------------|-----------------|----------------------|--------------|-----------------|-------------------|----------------------|-----------------|------|
| Description             | 1 <sup>st</sup> | 2 <sup>nd</sup>      | 3 <sup>rd</sup> | 4 <sup>th</sup> | 1 <sup>st</sup> | 2 <sup>nd</sup> | 3 <sup>rd</sup>      | $4^{\rm th}$ | 1 <sup>st</sup> | $2^{nd}$          | 3 <sup>rd</sup>      | 4 <sup>th</sup> | Note |
| 1.Temporary works       |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 1.1 Office / workshop   |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 1.2 Access road         |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 2. Earth works          |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 2.1 Excavation          |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 2.2 Backfill            |                 | I                    |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 3. Building works       |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 3.1 Substation          |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 3.2 Administration      |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 4. Substation equipment |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 4.1 Manufacturing       |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 4.2 Transportation      |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 4.3 Installation        | •               |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 4.4 Testing /commission |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 5. Transmission line    |                 |                      |                 | _               |                 |                 |                      |              |                 |                   |                      |                 |      |
| 5.1 Equipment supply    |                 |                      |                 | tr - Burley Ale | _               |                 |                      |              |                 |                   |                      |                 |      |
| 5.2 Tower / civil works |                 | J                    |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |
| 5.3 Cable installation  |                 |                      |                 |                 |                 |                 |                      |              |                 |                   |                      |                 |      |

·

Figure 4.2-1 Construction Schedule of Package 4