
APPENDIX C.4.7-4 Structural Calculation of Valve Chamber

(1) Sectional Dimension for Calculation

Valve Chamber should be calculated by Gate Shaped Rigid Frame.

(2) Calculation of Load

(a) Case of Calculation

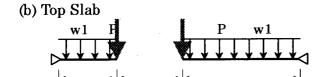
Case1 Upstream

; full (Max. W.L.130m)

Downstream

; empty

4.10m


Case2

; empty

Downstream

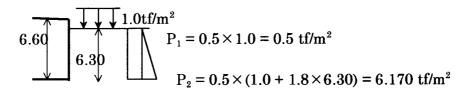
Upstream

; full (Max. W.L.93.0m)

1.85m

w1: Own Weight of Top Slab w1= $0.30 + 0.40 \times 2.45 = 1.280 \text{ tf/m}^2$

P: Own Weight of Cover


 $P=(0.25\times2.60\times2.45+0.30\times2.60)/2$

∴P = 1.186 tf/m

(c) Side Earth Pressure (P₁)

 1.3m^{-1}

Side earth pressure should be calculated by following equation; $P = K_a \times \gamma_t \times H$

(d) Thrust Force

Case 1

$$S = \pi/4 \times 2.4^2 \times (130.0 - 9.9) \times 3 = 1,630 \text{ tf/m}^2$$

 S_v ; Thrust Force against valve chamber wall $S_v = 1/2 \times S = 815 \text{ tf}$

This force should be distributed into valve depth and pipe width;

$$P_s = S_v / 19.60 \times 2.40 = 815 / 19.60 \times 2.40 = 17.326 \text{ tf/m}^2$$

Case 2

$$S = \pi/4 \times 2.4^2 \times (93.0 - 9.9) \times 3 = 1,128 \text{ tf/m}^2$$

 S_v ; Thrust Force against valve chamber wall $S_v = 1/2 \times S = 564$ tf This force should be distributed into valve depth and pipe width; $P_s = S_v / 19.60 \times 2.40 = 564 / 19.60 \times 2.40 = 11.990$ tf/m²

(e) Soil Pressure acting Wall

Case 1

[Soil Pressure acting on Wall]

= [Static Soil Pressure]+{[Thrust Force]-[Slip Reaction Force of Bottom Slab]}
*Consider only Concrete Weight.

$$V = \{8.00 \times 7.20 \times 19.60 - 6.50 \times 6.00 \times 18.20 + 0.80 \times (3.60 \times 4.20 \times 3 + 1.40 \times 1.80 \times 3) - \pi/4 \times 2.40^2 \times (1.60 + 0.70) \times 3 + 2.80 \times 0.95 \times 0.50 \times 3\} \times 2.45$$

 $= 455.09 \times 2.45 = 1,115 \text{ tf}$

 $R_{\mbox{\tiny H}}$; Slip Reaction Force of Bottom Slab

 $R_H = \mu V / F = 0.50 \times 1,115 / 1.5 = 372 \text{ tf}$

 $\Delta R = Sv - R_H = 815.0 - 372 = 443 \text{ tf}$

 $\Delta R = 443 \text{ tf}$ $\Delta R = 7.175 \text{ at } t = 2$

Soil Pressure Distribution should be considered as a triangle;

$$\Delta P = 2 \times \Delta R / (19.60 \times 6.30) = 2 \times 443 / (19.60 \times 6.30) = 7.175 \text{ tf/m}^2$$

Case 2 Not Considered (Only Static Soil Pressure)

(f) Reaction Force of Bottom Slab	(W_2)	(tf)
Concrete Weight	1,063.9	
Valve $\phi 2400$	63.4	
Pipe Weight ϕ 2400	252.3	
Crowd Load for Top Slab	47.0	
+) Soil Weight	143.1	
Total	1569.7	

Reaction Force of Bottom $w_2 = 1569.7 / (8.0 \times 19.6) = 10.011 \text{ tf/m}^2$ Slab

(3) Result of Analysis

Load and sectional force are showed Figure 1 and Figure 2, and results of analysis are showed Table 1. And design of reinforcement is decided by using biggest required area of tension reinforcement.

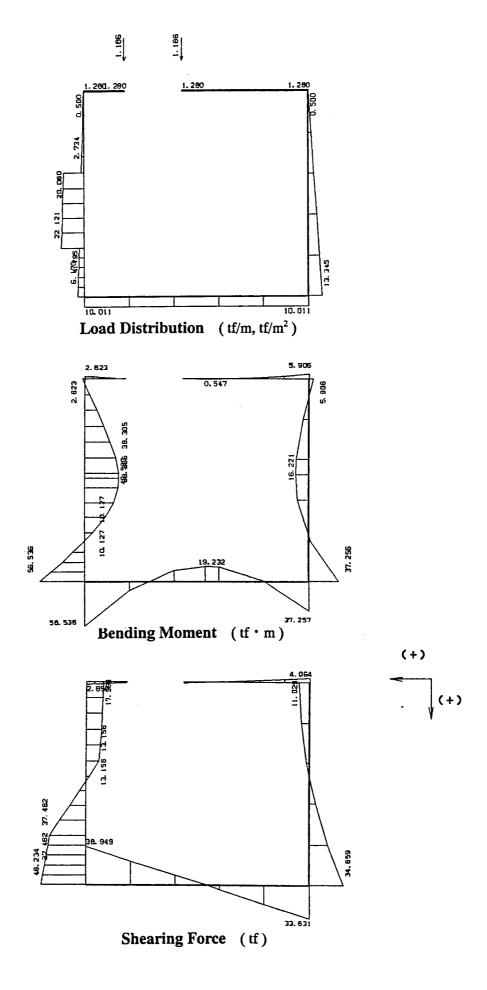


Figure 1 Load and Sectional Force of Case 1 (Upstream; Full)
C-179

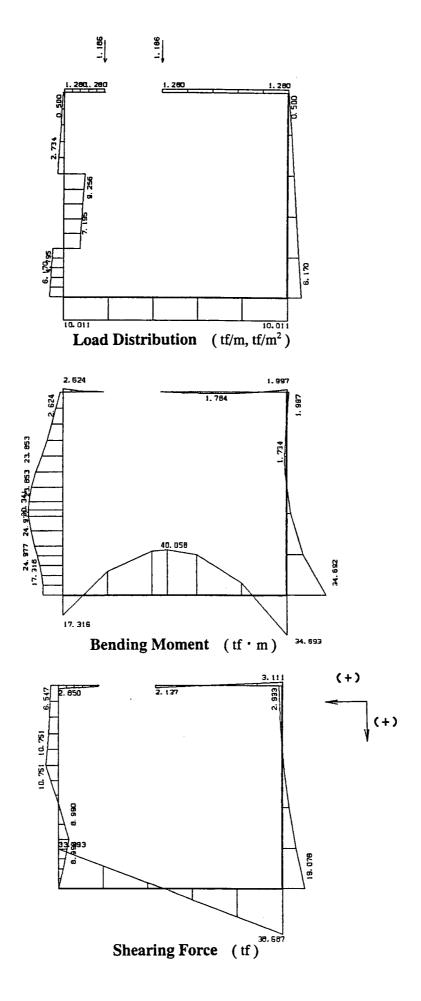


Figure 2 Load and Sectional Force of Case 2 (Downstream; Full)

C-180

Table 1 Calculation of Section Force and Reinforcement (1/3)

c1 = 0.257	Shear Stress TA	(kgf/cm ²)	.75	2.700	.60	.46	.29	60.	60	.54	1.033	.64	. 28	.95	00.	.95	.20	6.471	.74	.04	.34	Č	, (0.710	.41
c1 =	Shearing Force S	(ff) (kg	7.36	-16.984	16.37	15.53	4.46	3.15	1.5	3.42	6.498	6.62	96.9	.46	00.0	7.46	9.04	40.707	2.46	4.30	6.23	a) (2.018	. 18
j = 0.862	ed ensil ment	(cm^2)	.56	-4.825	12.49	9.82	26.72	33.07	3.07	36.59	-35.952	31.05	21.83	8.19	6.84	8.19	.11	12.377	4.12	.38	9.17		•	0.0	•
j	Effective / Depth F	(m)	.73	0.730	.73	.73	.73	.73	.73	.73	0.730	.73	.73	.73	.73	.73	.73	0.730	.73	.73	.73	*	! (0.330	.33
k = 0.415	Required Effective Depth D	(m)	.15	0.219	.32	.40	.45	- 50	50	.53	0.529	.49	.41	.27	.53	.27	.14	0.323	.43	.53	.61	,	, ,	0.147	.12
K	M+N * C MS	(frm)	.56	7.257	5.94	.24	2.05	9.24	9.24	3.23	42.505	6.96	6.51	1.06	.52	90.	3.05	15.809	9.11	2.99	7.47	0	9 6	3.298	.25
(kgf/cm ²)	92	(ff)	.85	2.850	.85	.85	.85	.85	85	85	2.850	.85	.85	.85	. 85	.85	85	2.850	.85	.85	.85	7	00.1	17.360	7.36
$\sigma_{ca} = 85$ (kg	Bending Moment M	(tf · m)	.62	-6.316	4.99	.30	1.11	8.30	30	42.29	-41.564	6.02	5.57	0.12	2.57	12	2.11	4	8.17	.05	6.53	,	70.		•
	Location	(m)	,	0.520		.56	.08	.60	,	7.8		77.	92	40	9	•	32	0.640	96	28	.60		·	•	30
kgf/cm ²)	Cover	(m)	0.7	0.000	.07	.07	.07	.07	7	0.7	.07	0.7	0.7	0.7	0	.07	0.7		.07	07	07	1	`·		
$\sigma = 1800 \text{ (kgf/cm}^2$	Thickness T	(m)	000	•					0	•					MAX	0.800)		-i			•	0.400		
	Element Number	No.	-	4					C-1							۲	1						4		

Table 1 Calculation of Section Force and Reinforcement (2/3)

c1 = 0.257	Shear Stress TA	(kgf/cm^2)	.41	0.047	.32	.69	.06	.42	00.	.03	.89	.59	1.146	.53	.22	.14	.22	.45	.84	.38	00.
c1	Shearing Force S	(ff) (k	.18	0.134	.91	96.	.01	.06	0	1.02	.27	8.67	6.224	.92	1.21	.21	2.05	8.73	6.27	4.65	00.
j = 0.862	ensil ment	(cm^2)	0	1.055	.42	.87	.86	1.53	• 06	76.	.10	. 55	11.630	4.76	.39	2.93	.814	1.348	6.501	.029	5.50
	Effective Depth T - TT	(m)	.33	0.330	.33	.33	.33	.33	.33	.63	.63	.63	0.630	.63	.63	.63	.63	.63	.63	.63	0.630
k = 0.415	Required Effective Depth D	(m)	00.	090.0	.03	.08	.14	.19	• 00	.21	.12	.23	0.299	.33	.33	.31	.24	.15	.34	. 50	M
k	M+N*C MS	(tf·m)	00.	0.540	.22	96.	00.	.90	.54	.04	.31	.61	13.573	6.63	.25	4.84	86	.52	8.33	.39	7.35
f/cm ²)	Axial Force N	(ff)	•	0.0	•	•	•	•	•	.06	.06	•06	790.7	.06	.06	•06	• 06	-06	-06	.06	4.064
$\sigma_{ca} = 85 \text{ (kgf/cm}^2)$	Bending Moment M	(frm)	00.	0.540	.22	96.	00.	.90	.54	.90	.17	.47	۲,	5.50	.11	3.70	.72	.38	7.19	.25	6.22
	Location	(m)	•	0.820	-64	•	. 28	.10	.92	•	9	M.	1.980	۰,	₩.	٥.	9.		٥.	9.	۲.
(kgf/cm ²)	Cover	(m)	-07	0.070	.07	.07	.07	.07	.07	.07	.07	.07	0.000	.07	.07	.07	-07	.07	-07	.07	.07
$\sigma = 1800 \text{ (kgf/cm}^2)$	Thickness T	(m)	0.400						ΜΑΧ	0.700											MAX
	Element	No.	5				C-	182	2	9											

Table 1 Calculation of Section Force and Reinforcement (3/3)

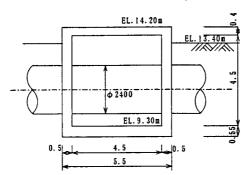
c1 = 0.257	Shear Stress TA	(kgf/cm ²)	6.19	91 5.037	3 3.88	75 2.73	17 1.57	59 0.42	99 0.73	57 1.88	15 3.03	73 4.19	1 5.34	00.0
	Shearing Force S	(#)	-38.9	1.6	7.7	7.1	6.6-	2.6	4.5	1.8	19.1	6.3	3.6	0.0-
j = 0.862	Required Area of Tensil Reinforcement AS	(cm^2)	37.714	15.101	0.0	0.0	-0.434	-4.460	-3.839	0.0	0.0	1.481	20.689	-4.771
	Effective Depth T - TT	(m)	0.730	0.730	73	73	73	73	73	73	0.730	73	73	0.730
k = 0.415	Required Effective Depth D	(m)	0.688	.55	.41	.36	77.	.47	.46	.42	.32	.45	0.588	0.477
	M+N * C MS	(tf·m)	71.793	46.186	25.841	19.756	29.577	34.136	33.433	27.468	16.241	30.763	52.514	34.489
gf/cm ²)	Axial Force N	(tt)	46.234	9	2	6.2	6.2	6.2	6.2	6.2	6.2	6.2	46.234	6.23
$\sigma_{\rm ca} = 85 ({\rm kgf/cm}^2)$	Bending Moment M	(fr.m)	2	30.929	ທ	-4.499	-14.320	-18.879	۲.	2	0	15.506	37.257	-19.232
	Location	(m)	0.0	0.725	1.450	2.175	2.900	3.625	4.350	5.075	5.800	6.525	7.250	3.891
(kgf/cm ²)	Cover	(m)	0.070	0.000	020-0	0.070	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.070
$\sigma = 1800 \text{ (kgf/cm}^2)$	Thickness	(m)	008 0	•										M A X
	Element	No.		-			C 1	187						

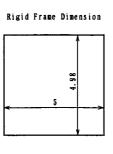
Table 2 Calculation of Section Force and Reinforcement (1/3)

soo (kgf/cm²) ess Cover Loo		Locatic	g	σ _α = 85 (kg Bending Moment M	g Axial Force		k = 0.415 Required Effective Depth D	Effective Depth T - TT	j = 0.862 Required Area of Tensil Reinforcement AS	gi ii	Ct = 0.257 Shear Stress TA
(m) (m) (tt·m)	(ш) ()	(tt·m)	-	(ff)	(ff.m)	(m)	(m)	(cm ₂)	(#)	(kgf/cm ²)
.070 0.0 2.62	.070 0.0 2.62	.0 2.62	.62		.85	.56	.15	.73	.56	.54	.04
.070 0.520 6.11	.070 0.520 6.11	.520 6.11	.11		.85	7.05	.21	.73	.64	.92	.10
0.070 1.040 9.864	.070 1.040 9.86	.040 9.86	.86		2.850	10.804	0.267	0.730	7.958	7.532	1.197
.070 1.560 13.98	.070 1.560 13.98	.560 13.98	.98		.85	.92	.31	.73	.60	.37	.33
.070 2.080 18.61	.070 2.080 18.61	.080 18.61	.61		- 85	9.55	.35	.73	5.68	77-6	.50
.070 2.600 23.85	.070 2.600 23.85	.600 23.85	.85		.85	4.79	.40	.73	0.31	.75	.70
.070 0.0 23.85	.070 0.0 23.85	.0 23.85	3.85		.85	4.79	.40	.73	0.31	S	.70
.070 0.480 27.96	.070 0.480 27.96	.480 27.96	7.96		85	8.90	.43	.73	3.94	.40	.01
0.070 0.960 30.035	.070 0.960 30.03	.960 30.03	0.03		2.850	30.976	0.452	0.730	25.771	2.261	0.359
.070 1.440 30.16	.070 1.440 30.16	.440 30.16	0.16		.85	1.10	. 45	.73	5.88	1.68	.26
.070 1.920 28.44	.070 1.920 28.44	.920 28.44	8.44		. 85	9.38	77.	.73	4.36	.43	.86
0.070 2.400 24.97	.070 2.400 24.97	.400 24.97	4.97		.85	5.91	.41	.73	1.30	8.99	.42
.070 1.232 30.34	.070 1.232 30.34	.232 30.34	0.34		. 85	1.28	. 45	.73	9.04	00.	00.
.070 0.0 24.97	.070 0.0 24.97	.0 24.97	4.97		.85	5.91	.41	.73	1.30	66.	.42
.070 0.320 22.35	.070 0.320 22.35	.320 22.35	2.35		.85	3.29	.39	.73	8.98	.41	.17
.070 0.640 20.24	.070 0.640 20.24	.640 20.24	0.24		.85	1.18	.37	.73	7.12	5.74	.91
0.070 0.960 18.682	.070 0.960 18.68	.960 18.68	8.68		2.850	19.623	0.359	0.730	15.745	-3.991	0.634
.070 1.280 17.69	.070 1.280 17.69	.280 17.69	7.69		.85	8.63	.35	.73	4.87	.14	.34
.070 1.600 17.31	.070 1.600 17.31	.600 17.31	7.31		œ	8.25	.34	.73	4.53	0.21	.03
.070 0.0 -2.62	.070 0.0 -2.62	.0 -2.62	2.62		.54	•	•	.33	.10	.85	00.
0.070 0.650 -1.041	.070 0.650 -1.04	.650 -1.04	1.04		-6.547			0.330	600.4-	2.018	0.710
.070 1.300 0.00	.070 1.300 0.00	.300 0.00	00.		.54		٠	.33	.63	.18	.41

Table 2 Calculation of Section Force and Reinforcement (2/3)

c1 = 0.257	Shear Stress TA.	(kgf/cm^2)	0.75	7 0.382	0.01	0.35	0.72	1.09	00-0	3 0.54	0 9	5 0.28	90.0	1 0.25	5 0.62	3 1.06	5 1.57	2 2.15	3 2.79	8 3.51	00.00
	Shearing Force S	(ff)	۲.	1.08	0.	0	2.0	۲.	•	0	2.41	5	۶.	1.3	'n	5.7	8.5	1.6	5.1	0.6	0
j = 0.862	Required Area of Tensil Reinforcement AS	(cm^2)	00.	2.582	. 48	.70	.24	.90	. 48	•	0	.29	•	.56	0	.43	7.24	.05	23.11	4.	.93
	Effective Depth T - TT	(m)	.33	0.330	.33	.33	.33	.33	.33	.63	0.630	.63	.63	.63	.63	.63	.63	.63	.63	.63	.63
k = 0.415	Required Effective Depth D	(m)	00.	0.093	.10	•00	.02	.11	.10	.13		.11	.13	.12	.08	.16	.24	.31	.40	.48	.13
	M+N * C MS	(ff.m)	00.	1.322	.78	.38	.12	66.	.78	86	1.082	.98	.59	.24	.05	.06	.77	5.42	4.27	.56	.60
85 (kgf/cm ²)	Axial Force N	(tf)	•	0.0	•		•	•	•	11	3.111	.11	.11	.11	.11	.11	.11	.11	.11	.11	.11
σ _{ca} = 85 (kg	Bending Moment M	(ff·m)		1.322						-1.997	-0.211	11	1.719	.37	-0.186	-3.193	.90	-14.555	3.40	-34.692	1.734
	Location	(m)	0.0	φ.	9	2.460	7	1.	1.669	C	•	•	•	•	3.300	•		•	•	6.600	2.095
$= 1800 \text{ (kgf/cm}^2)$	Cover	(m)	0.070	•	•	0.070	•	•	•	0.70	. ~	•	•	•	•	•	•	•	•	•	0.070
$\sigma = 1800$ (Thickness T	(m)	007.0						ΜΑΧ	002) } •										MAX
	Element Number	No.	5	1						*)										

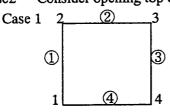

Table 2 Calculation of Section Force and Reinforcement (3/3)


	$\sigma = 1800 \text{ (kgf/cm}^2$	(kgf/cm ²)		$\sigma_{ca} = 85 \text{ (k)}$	85 (kgf/cm ²)		k = 0.415		j = 0.862)	c1 = 0.257
Element	Thickness T	Cover	Location	Bending Moment M	Axial Force N	M+N*C MS	Required Effective Depth D	Effective Depth T - TT	Required Area of Tensil Reinforcement	Shearing Force S	Shear Stress TA
No.	(m)	(m)	(m)	(ff·m)	(ff)	(ff.m)	(m)	(m)	(cm ²)	(tf)	(kgf/cm ²)
_	0.800		0.0	17.316	7	17-244	۲,	0.730	072 51	α	200
		0.070	•	-4.625	-0.218	. 4	0.173	7.3	4.14	26.	4.03
			1.450	-21.305	↤	.2	.37	٧.	ω,	19.3	3.080
			.17	•	-0.218	9	.46	.73	8.95	2.1	1.92
			٥.	œ.	↤	38.805	.50	М	.39	∞.	0.77
		•	9.	•	.21	9	.51	.73	5.17	M	0.38
		•	4.350	'n	-0.218	Ψ,	.48	.73	1.32	9.655	1.53
			0	•	-	9	.41	.73	2.81	٥.	2.68
			ω.	•	\leftarrow	ω.	.26	.73	9.66	۲.	3.84
		•	6.525	9.276	-0.218	9.204	.24	.73	.24	4.	66.7
			٧.	34.693	-0.218	34.620	.47	M	30.694	9	6.14
	MΑΧ	0.070	3.386	-40.058	-0.218	39.986	0.513	0.730	5.43	-0.000	000.0

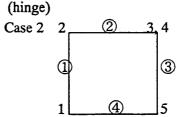
APPENDIX C.4.7-5 Structural Calculation of Flow Meter Chamber

(1) Sectional Dimension for Calculation

Valve Chamber should be calculated by Gate Shaped Rigid Frame.



(2) Calculation of Load


(a) Case of Calculation

Case1 not consider opening top cover (fixed)

Case2 Consider opening top cover

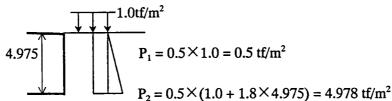
X-restrict; 4 Y-restrict; 1,4

X-restrict; 3,4,5 Y-restrict; 1,3,5

(b) Top Slab

w₁: Own Weight of Top Slab

$$w_1 = 0.40 \times 2.45 = 0.980$$


w₂: Crowd Load of Top Slab


$$w_2 = 0.30$$

$$w = 1.280 \text{ tf/m}^2$$

(c) Side Earth Pressure (P₁)

Side earth pressure should be calculated by following equation; $P = K_a \times \gamma_t \times H$ Earth cover elevation should be considered as around road elevation, E.L.14.00(\pm).

Reaction Force of Bottom Slab $w_2 = 615.2 / (5.5 \times 16.0) = 6.990 \text{ tf/m}^2$

(3) Result of Analysis

Load and sectional force are showed Figure 1 and Figure 2, and results of analysis are showed Table 1 and Table 2. And design of reinforcement is decided by using biggest required area of tension reinforcement.

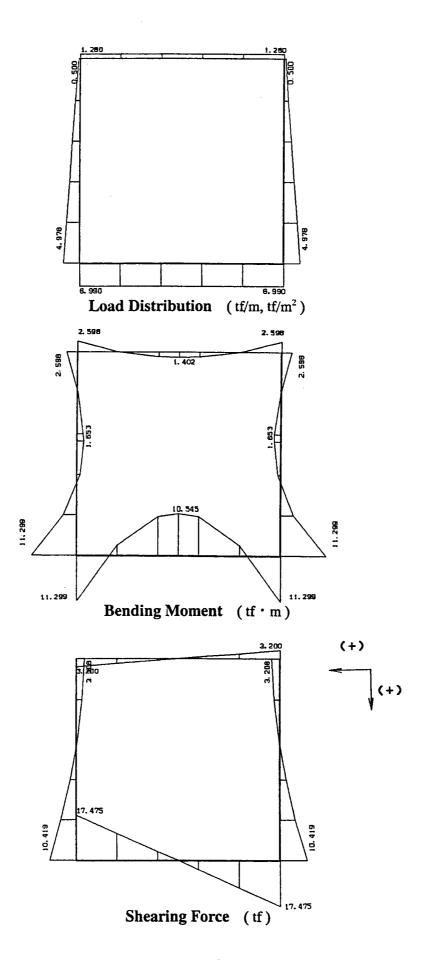


Figure 1 Load and Sectional Force of Case 1

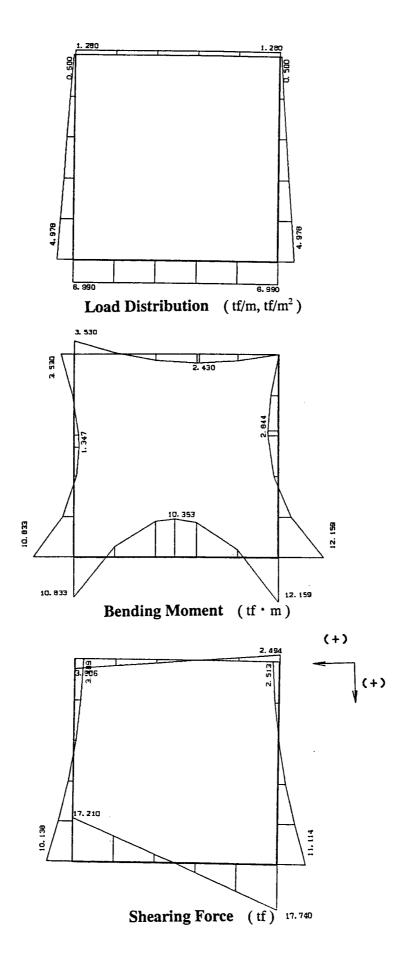


Figure 2 Load and Sectional Force of Case 2

Table 1 Calculation of Section Force and Reinforcement (1/2)

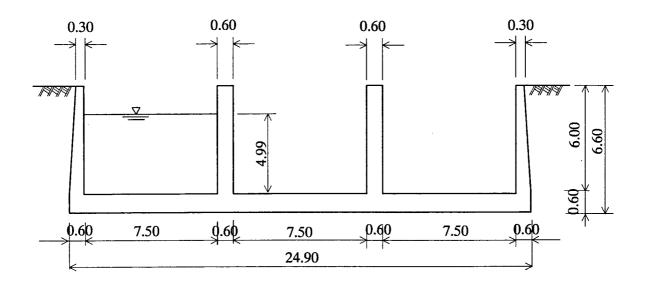
c1 = 0.257	ing Shear ce Stress TA) (kgf/cm ²)	208 0 86	.265 0.61		.295 0.61	.911 1.59	.419 2.81	00.0 000.		.200 1.12	.920 0.67	.640 0.22	.640 0.22	.920 0.67	.200 1.125	000 000	.208 0.86	.265 0.61	.431 0.11	.295 0.61	.911 1.59	1.419 2.812	0000 000
= 0.862	Required Shearing Area of Tensil Force Reinforcement S	(cm^2) (tf)	, 186	-	504	.225	.956	.025 1	1.563 -	•	.108	o.	.458	- 458 -	0.	-4.108 -3	.771	.981	0	.504	.225 -	3.956 -	-16.025 -10	1.563
	Effective Depth T-TT	(m)	٤7	43	0.430	.43	.43	.43	. 43	1	.33	.33	.33	.33	.33	0.330	.33	.43	.43	.43	.43	.43	0.430	.43
k = 0.415	Required Effective Depth D	(m)	17	0.7	0.120	60.	.15	.28	.12		17	.05	.10	.10	.05	0.141	.10	.14	.07	.12	.09	.15	0.280	.12
	M + N * C MS	(ff ·m)	17	77	2,189	.33	.82	.87	2.22		.01	.45	.65	.65	. 45	3.015	.81	.17	.77	.18	.33	.82	11.875	2.22
(kgf/cm ²)	Axial Force N	(ff)	,		3.200	20	.20	.20	.20		.20	.20	.20	.20	.20	3.208	.20	.20	.20	.20	.20	.20	3,200	20
$\sigma_{ca} = 85 \text{ (kg)}$	Bending Moment M	(tf·m)	, n	, 5	-1.613	0.76	24	. 29	1.65		.59	.03	.24	24	0.3	59	•	59	19	-61	.76	24	-11.299	1.65
	Location	(m)	1	. 0	•	86	80	26	17	,	•	00.	00	00	00	00	2.500		66	66	86	86	4.975	17
(kgf/cm ²)	Cover	(m)	,			0.7	07	0.7	0.070		.07	.07	0.7	0.7	0	0.7	0.070	0.7	0.7	0.7	0.7		0	0.070
$\sigma = 1800 \text{ (kgf/cm}^2)$	Thickness	(田)	Č,	000.0					MAX		0.400						MAX	0	0					×
	Element	No.	•	⊣					6	4.0	^	1						h	1					

Table 1 Calculation of Section Force and Reinforcement (2/2)

Ω:	= 1800 ($\sigma = 1800 \text{ (kgf/cm}^2)$		$\sigma_{ca} = 85 \text{ (kgf/cm}^2)$	gf/cm²)		k = 0.415		j = 0.862		c1 = 0.257
£	Thickness T	Cover	Location	Bending Moment M	Axial Force N	M+N*C MS	Required Effective Depth D	Effective Depth T-TT	Required Area of Tensil Reinforcement AS	Shearing Force	Shear Stress TA
	(m)	(m)	(m)	(tt·m)	(ff)	(ff·m)	(m)	(m)	(cm^2)	(#)	(kgf/cm ²)
0	0.550	0.070	0.0	11.299	10.419	13.435	0.297	0.480	12.255	-17.475	
		0.070	1.000	-2.681	10.419	4.817	0.178	0.480	-0.681		2.535
		0.070	2.000	-9.671	10.419	11.807	0.279	0.480	-10.069	-3.495	
		0.070	3.000	-9.671	10.419	11.807	0.279	0.480	-10.069		
		0.070	000-7	-2.681	10.419	4.817	0.178	0.480	-0.681	↔	
		0.070	5.000	11.299	10.419	13.435	0.297	0.480	12.255	17.475	4.225
_	MAX	0.070	2.500	-10.545	10.419	12.681	0.289	0.480	-11.243	000-0-	

Table 2 Calculation of Section Force and Reinforcement (1/2)

57	·	n ²)	. 6	t (φ	19	54	519	73	00		37	92	47	.023	42	87	0))			07	80	78	0	\ \ (0
c1 = 0.257	Shear Stress TA	(kgf/cm ²)		•			•	નં	2						•					Ö							
[2	Shearing Force S	(ff) (9 1	. 54	0.71	.01	5.630	.13	0.00		06.	.62	.34	0.066	.21	2.49	C	•	٠.	1.570	0.26	66.	6.60		77 - 77	00.
j = 0.862	ı nsil nent	(cm ²)	*	- -	•		0	3.475	5.12	06.		•	•	.31	3.691	. 56	0)	•			•	.21	4.41	17 51	10.7	. 55
	Effective Depth T - TT	(m)	,		.43	.43	- 43	0.430	.43	.43		.33	.33	.33	0.330	33	33	4	•	.43	0.430	.43	. 43	27) N	1	. 43
k = 0.415	Required Effective Depth D	(m)		01.	0.08	.11	60.	0.157	.27	.11		.16	.06	.12	0.138	12	, C	, ,	. 1	.05	0.130	.14	10	1,4	• 0	27.	.14
	M+N * C MS	(ff.m)	;	. 23	.15	.94	.37	3.765	.53	2.05		98	.71	.17	2.881	3 6	7	0	0	77.	2.554	.27	73	× ×	•	9.	. 29
(kgf/cm ²)	Axial Force N	(#)		.90	06.	.90	.90	0.	.90	0		.48	48	7	3,489	α .	α • •) (•	67.	767-2	67	0 7		\ t ·	.49	.49
$\sigma_{ca} = 85$ (kg	Bending Moment M	(ff.m)		M	Ы	4	V	VO	M	-1.347		.53	26	7.2	2 628	י ני	3 6		.40	Ó	2,105	^	1 00		4.0	2	4
	Location	(m)	l1	•	66	99	96	86	26	2.284		•		•	900	•	•	•	•		00	•	. 0		, ,	.97	1.872
(kgf/cm ²)	Cover	(m)		.07	.07	0.7	0.7	0.7	0.7	0.070		0.7	. 6		0.00	5.0	2.0	` ·	.01	0			- 1		<u>.</u>	.07	0.070
$\sigma = 1800 \text{ (kgf/cm}^2$	Thickness	(田)		0.500						MAX		004.0	•						X A M	2							ΜΑΧ
	Element	N.		ᆏ	I					•	. 4.	^	J							۲	ר						


Table 2 Calculation of Section Force and Reinforcement (2/2)

ı	ŀ	II	.=			_	_	_	_
c1 = 0.257	Shear Stress TA	(kgf/cm^2)	4.160	2.471				4.289	000.0
[2]	Shearing Force S	(ff) (-17.210	-10.220	-3.230	3.760	10.750	17.740	000.0-
j = 0.862	Required Area of Tensil Reinforcement AS	(cm^2)	11.708 -17.210	-1.029	-10.061	-9.705	0.0	13.489	-11.063
	Effective Depth T-TT	(m)	0.480	0.480	0.480	0.480	0.480	0.480	0.480
k = 0.415	Required Effective Depth D	(m)	0.292	0.181	0.277	0.274	0.166	0.306	0.286
ĸ	M + N * C MS	(#·m)	12.911	4.960	11.685	11.420	4.165	14.237	12.431
$({ m kgf/cm}^2)$	Axial Force M + N * C N MS	(ff)	10.138	10.138	10.138	10.138	10.138	10.138	10.138
$\sigma_{ca} = 85$ (kg	Bending Moment M	(ff.m)	10.833	-2.882	-9.607	-9.341	-2.086	12.159	-10.353
	Location	(m)	0.0	1.000	2.000	3.000	4.000	2.000	2.462
kgf/cm ²)	Cover	(m)	0.070	0.000	0.000	0.000	0.000	0.000	0.000
$\sigma = 1800 \text{ (kgf/cm}^2)$	Thickness T	(m)	0.550						MAX
	Element Number	No.	4						

APPENDIX C.4.8-1 Structural Analysis for Discharge Tank

(1) Design Criteria

(a) Sectional Dimension for Analysis

Discharge Tank

(b) Case of analysis

Considering condition, next cases should be analyzed.

Case 1; Empty

Case 2; 1 Cells are filled by water (Depth=4.99m)

Case 3; 2 Cell is filled by water (Depth=4.99m)

(c) Active Load

Live Load ; $Q = 2.00 \text{ tf/m}^2$

(d) Earth Pressure

Coefficient of Earth Pressure; Ka=0.333

Earth Weight ; $\gamma_t = 1.8 \text{ tf/m}^3$

(e) Calculation of Soil Reaction

Case 1 (Empty)

Item	Vertical Load (tf)
Weight of Top Slab & Wall	30.87

Bottom Slab Length = 24.3 (m) (Rigid Frame Dimension) Soil Reaction = 1.270 (tf/m²)

Case 2 (1cell filled by water)

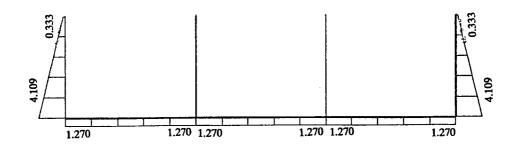
Item	Vertical Load (tf)	χ (m)	Moment (tf·m)
Own Weight	67.47	12.15	819.80
Water Weight	37.43	4.05	151.57
Total	104.90		971.37

 $\chi = (\sum M / \sum V) = 9.260 \text{ (m)}$ Bottom Slab Length = 24.3 (m) (Rigid Frame Dimension) Eccentric Length e = 2.890 (m) Soil Reaction $Q_1 = 7.397 \text{ (tf/m}^2)$ $Q_2 = 1.236 \text{ (tf/m}^2)$

Case 3 (2cells filled by water)

Item	Vertical Load (tf)	χ (m)	Moment (tf·m)
Own Weight	67.47	12.15	819.80
Water Weight (Left)	37.43	4.05	151.57
Water Weight (Center)	37.43	12.15	454.71
Total	142.33		1,426.08

 $\chi = (\sum M / \sum V) = 10.020 \text{ (m)}$ Bottom Slab Length = 24.3 (m) (Rigid Frame Dimension) Eccentric Length e = 2.130 (m) Soil Reaction $Q_1 = 8.937 \text{ (tf/m}^2)$ $Q_2 = 2.777 \text{ (tf/m}^2)$


(f) Design of Reinforcement

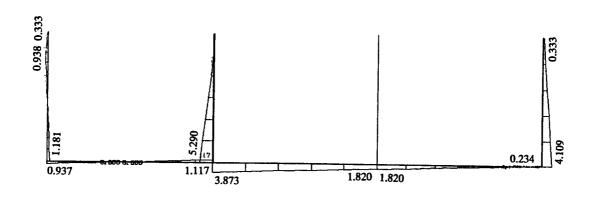
Design of reinforcement is decided by using biggest required area of tension reinforcement.

(2) Result of Structural Analysis

Load and sectional force are showed Figure $1 \sim 3$, and results of analysis are showed Table $1 \sim 3$.

Loads Diagram

Bending Moment Diagram (tf·m)



Shearing Force Diagram (tf)

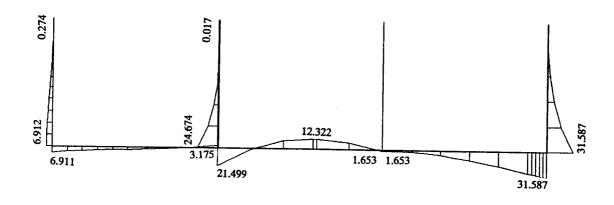


Figure 1 Load and Sectional Force of Case 1 (Empty)

Loads Diagram

Bending Moment Diagram (tf·m)

Shearing Force Diagram (tf)

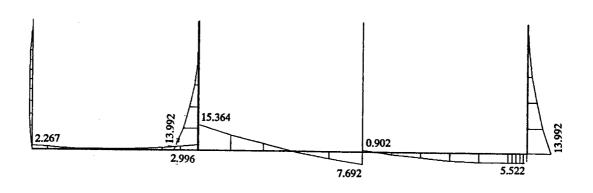
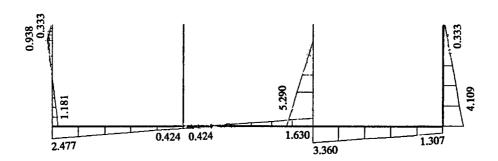
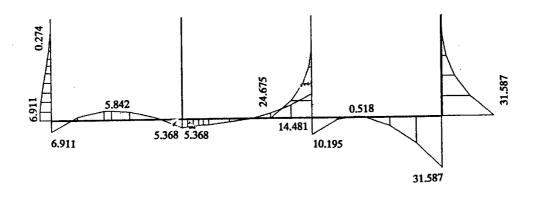




Figure 2 Load and Sectional Force of Case 2 (1 cell filled by water)

Loads Diagram

Bending Moment Diagram (tf·m)

Shearing Force Diagram (tf)

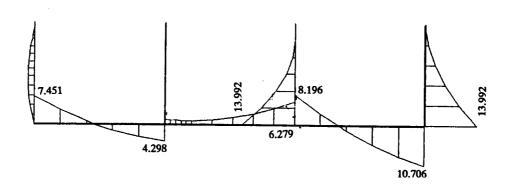


Figure 3 Load and Sectional Force of Case 3 (2 cell filled by water)

Table 1. Structural Analysis of Discharge Tank Case 1 (Empty)

Item		Moment (tf·m)	Shearing Force (tf)	Axial Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Tension Reinforcement (cm²)	Reinforcing Bar Schedule (cm²)
I I	Upper End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16=10.05
<u>3</u>	Lower End	31.587	13.992	0.000	0.530	0.456	38.420	5-D19+5-D25=38.73
'n	Upper End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16=10.05
2	Lower End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16+5-D25=34.60
Separate Wall Up	Upper End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16=10.05
2	Lower End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16+5-D25=34.60
Ď	Upper End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16=10.05
	Lower End	31.587	13.992	0.000	0.530	0.456	38.420	5-D19+5-D25=38.73
	Left End	31.587	8.794	13.992	0.530	0.479	34.561	5-D19+5-D25=38.73
	Center	1.138	0.000	13.992	0.530	0.169	0.000	5-D16+5-D19=24.23
8	Right End	2.015	1.493	13.992	0.530	0.186	0.000	5-D16+5-D19=24.23
-	Left End	2.015	5.144	13.992	0.530	0.186	0.000	5-D16+5-D19=24.23
	Center	8.401	0.000	13.992	0.530	0.277	6.359	5-D19=14.18
₩.	Right End	2.015	5.143	13.992	0.530	0.186	0.000	5-D16+5-D19=24.23
1	Left End	2.015	1.493	13.992	0.530	0.186	0.000	5-D16+5-D19=24.23
	Center	1.138	0.000	13.992	0.530	0.169	0.000	5-D16+5-D19=24.23
<u>8</u>	Right End	31.587	8.794	13.992	0.530	0.479	34.561	5-D19+5-D25=38.73

Table 2. Structural Analysis of Discharge Tank Case 2 (1 Cell filled by water)

Item	u	Bending Moment (tf·m)	Shearing Force (tf)	Axial Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)	Reinforcing Bar Schedule (cm²)
Side Wall	Upper End	0.005	0.009	0.000	0.530	0.005	0.000	5-D16=10.05
(Left)	Lower End	6.912	0.000	0.000	0.530	0.213	8.407	5-D19+5-D25=38.73
Separate	Upper End	0.017	0.034	0.000	0.530	0.011	0.021	5-D16=10.05
Wall(Left)	Lower End	24.674	13.992	0.000	0.530	0.403	30.011	5-D16+5-D25=34.60
Separate Wall	Upper End	0.001	0.000	0.000	0.530	0.003	0.002	5-D16=10.05
(Right)	Lower End	0.001	0.000	0.000	0.530	0.003	0.001	5-D16+5-D25=34.60
Side Wall	Upper End	0.000	0.000	0.000	0.530	0.000	0.000	5-D16=10.05
(Right)	Lower End	31.587	13.992	0.000	0.530	0.456	38.420	5-D19+5-D25=38.73
Bottom	Left End	6.911	2.267	0.000	0.530	0.213	8.406	5-D19+5-D25=38.73
Plate	Center	2.799	0.536	0.000	0.530	0.136	3.404	5-D16+5-D19=24.23
(Left)	Right End	3.175	2.996	0.000	0.530	0.145	3.862	5-D16+5-D19=24.23
Bottom	Left End	21.499	15.364	13.992	0.530	0.403	22.291	5-D16+5-D19=24.23
Plate	Center	12.322	0.000	13.992	0.530	0.320	11.128	5-D19=14.18
(Center)	Right End	1.653	7.692	13.992	0.530	0.179	0.000	5-D16+5-D19=24.23
Bottom	Left End	1.653	0.902	13.992	0.530	0.179	0.000	5-D16+5-D19=24.23
Plate	Center	9.842	4.338	13.992	0.530	0.293	8.112	5-D16+5-D19=24.23
(Kignt)	Right End	31.587	5.522	13.992	0.530	0.479	34.562	5-D19+5-D25=38.73

2 Cells filled by water Table 3. Structural Analysis of Discharge Tank Case 3

Side Wall Upper End 0.003 0.006 0.000 (Left) Lower End 6.911 0.000 0.000 Separate Wall Upper End 0.000 0.000 0.000 Separate Wall Upper End 0.002 0.004 0.000 (Right) Lower End 24.675 13.992 0.000 Side Wall Upper End 0.000 0.000 0.000 (Right) Lower End 31.587 13.992 0.000 Bottom Left End 6.911 7.451 0.001 Plate Center 5.842 0.000 0.001 Bottom Left End 5.368 4.298 0.001 Plate Center 0.786 1.622 0.001 Rottom Left End 14.480 6.279 0.001 Rottom Left End 10.195 8.196 13.992	Item		Bending Moment (tf·m)	Shearing Force (tf)	Axial Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)	Reinforcing Bar Schedule (cm²)
6.911 0.000 0.000 0.000 0.000 0.000 0.002 0.004 0.000 0.000 0.000 0.000 13.587 13.992 6.911 7.451 5.842 0.000 5.368 4.298 5.368 1.395 0.786 1.622 14.480 6.279 10.195 8.196 0.517 0.000		er End	0.003	0.006	0.000	0.530	0.005	0.004	5-D16=10.05
0.000 0.000 0.000 0.000 0.000 0.000 1 24.675 13.992 0.000 0.000 0.000 0.000 2.842 0.000 5.842 0.000 5.842 0.000 5.368 4.298 5.368 1.395 0.786 1.622 14.480 6.279 10.195 8.196		er End	6.911	0.000	0.000	0.530	0.213	8.406	5-D19+5-D25=38.73
0.000 0.000 0.002 0.004 24.675 13.992 0.000 0.000 31.587 13.992 6.911 7.451 5.842 0.000 5.368 4.298 5.368 1.395 0.786 1.622 14.480 6.279 10.195 8.196 0.517 0.000	rrate Wall Upp	er End	0.000	0.000	0.000	0.530	0.001	0.000	5-D16=10.05
0.002 0.004 24.675 13.992 0.000 0.000 31.587 13.992 6.911 7.451 5.842 0.000 5.368 4.298 5.368 1.395 0.786 1.622 14.480 6.279 10.195 8.196 0.517 0.000		er End	0.000	0.000	0.000	0.530	0.001	0.000	5-D16+5-D25=34.60
Lower End 24.675 13.992 Upper End 0.000 0.000 Lower End 31.587 13.992 Left End 6.911 7.451 Center 5.842 0.000 Right End 5.368 4.298 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000	rrate Wall Upp	er End	0.002	0.004	0.000	0.530	0.004	0.003	5-D16=10.05
Upper End 0.000 0.000 Lower End 31.587 13.992 Left End 6.911 7.451 Center 5.842 0.000 Right End 5.368 4.298 Center 0.786 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000		er End	24.675	13.992	0.000	0.530	0.403	30.013	5-D16+5-D25=34.60
Lower End 31.587 13.992 Left End 6.911 7.451 Center 5.842 0.000 Right End 5.368 4.298 Center 0.786 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000	Ī	er End	0.000	0.000	0.000	0.530	0.001	0.000	5-D16=10.05
Left End 6.911 7.451 Center 5.842 0.000 Right End 5.368 4.298 Left End 5.368 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000	*****	er End	31.587	13.992	0.000	0.530	0.456	38.420	5-D19+5-D25=38.73
Center 5.842 0.000 Right End 5.368 4.298 Left End 5.368 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000	 -	End	6.911	7.451	0.001	0.530	0.213	8.406	5-D19+5-D25=38.73
Right End 5.368 4.298 Left End 5.368 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000		ter	5.842	0.000	0.001	0.530	0.196	7.106	5-D16+5-D19=24.23
Left End 5.368 1.395 Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000	i-	it End	5.368	4.298	0.001	0.530	0.188	6.529	5-D16+5-D19=24.23
Center 0.786 1.622 Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000		End	5.368	1.395	0.001	0.530	0.188	6.529	5-D16+5-D19=24.23
Right End 14.480 6.279 Left End 10.195 8.196 Center 0.517 0.000		ter	0.786	1.622	0.001	0.530	0.072	0.957	5-D19=14.18
Left End 10.195 8.196 Center 0.517 0.000		it End	14.480	6.279	0.001	0.530	0.309	17.613	5-D16+5-D19=24.23
Center 0.517 0.000		End	10.195	8.196	13.992	0.530	0.297	8.542	5-D16+5-D19=24.23
		ter	0.517	0.000	13.992	0.530	0.157	0.000	5-D16+5-D19=24.23
Right End 31.587		nt End	31.587	10.706	13.992	0.530	0.479	34.561	5-D19+5-D25=38.73

APPENDIX C.4.9-1 Structural Calculation of Pump Huose

(1) FRAME MODEL

(a) JOINT NUMBER

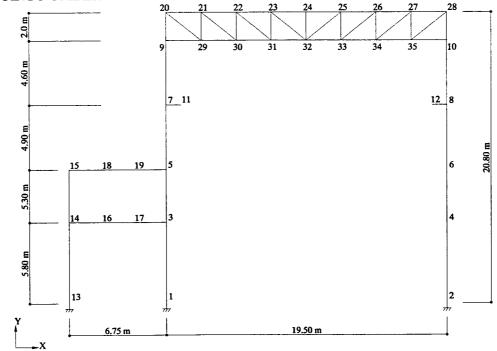


Figure 1

(b) MEMBER NUMBER

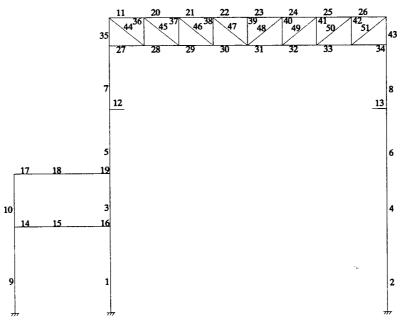


Figure 2

(2) LOADING DIAGRAM

(a) LOADING 1 DEAD LOAD (D.L)

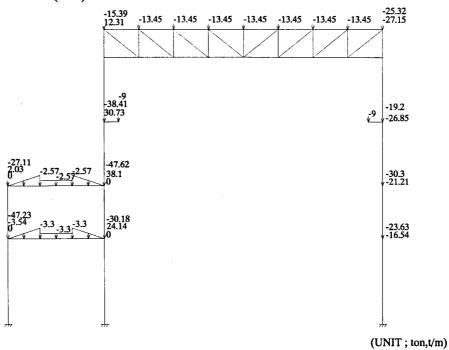


Figure 3

(b) LOADING 2 LIVE LOAD (L.L)

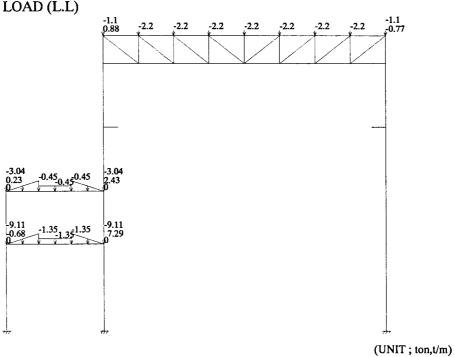


Figure 4

(c) LOADING 3 CRANE LOAD (C.L)

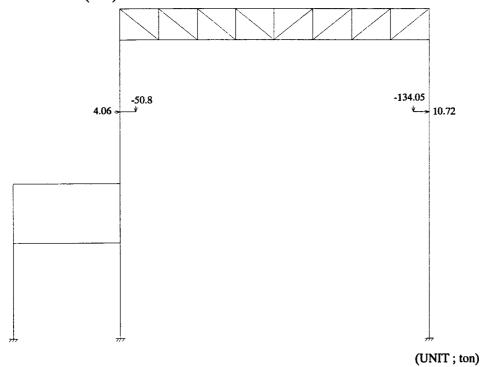


Figure 5

(3) RESULTS OF ANALYSIS

(a) BENDING MOMENT MZ

LOAD CASE 1.4D.L + 1.6 l.L + 1.6C.L

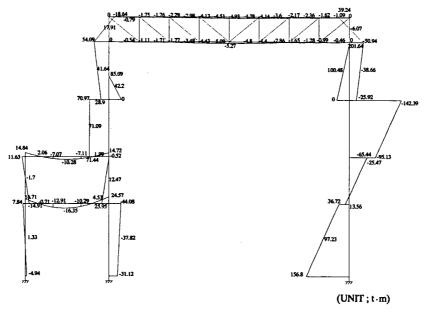


Figure 6

(b) SHARE FORCE

LOAD CASE 1.4D.L + 1.6L.L + 1.6C.L

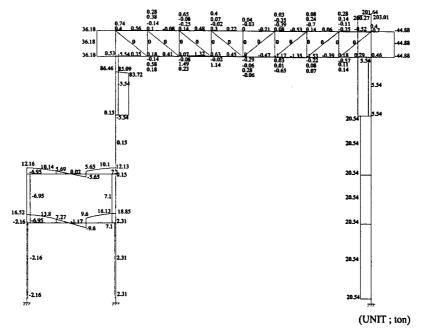


Figure 7

APPENDIX C 4.10-1 Structural Calculation of Stop Logs for Pumping Station

(1) Design data

Elevation of max. water surface EL. 11.94 m

Elevation of the gate sill EL. 4.40 m

Design head 7.54 m

Clear span of the water canal 5.50 m

Total height of the stop log 7.75 m

Number of the stop log leaf 5 sets

Height of the stop log leaf 1.55 m

(2) Calculation

(a) Hydrostatic load calculation

Water pressure at intended point can be calculated using the following equation:

 $P_i = W_o \cdot H_i$

Where:

P_i: Water pressure at intended point (t/m²)

W_o: Specific weight of water 1.0 (t/m³⁾

H_i: tended water depth from the highest water level (m)

(b) Strength of skin plate

Max. bending stress of the skin plate can be calculated from the equation:

 $\sigma = 1/100 \cdot \text{K} \cdot \text{a}^2 \cdot \text{P} / \text{t}_s^2$

Where:

 σ : Max. bending stress of the skin plate (kgf/cm²)

K: Coefficient of b / a (refer to Table 1)

a: Short side length of the skin plate (cm)

b: Long side length of the skin plate (cm)

 P_{U} : Upper side water pressure at intended point (t/m^2)

P_L: Lower side water pressure at intended point (t/m²)

P: Mean water pressure = $(P_U + P_L) / 20 \text{ (kgf/cm}^2)$

 t_s : Effective thickness of the skin plate = t - 2C (cm)

t: thickness of the skin plate (cm)

C: corrosion allowance 0.05 (cm)

Table 1 K values

b/a	1.00	1.25	1.50	1.75	2.00	2.50	3.0	∞	
K	30.9	40.3	45.5	48.4	49.9	50.0	50.0	50.0	

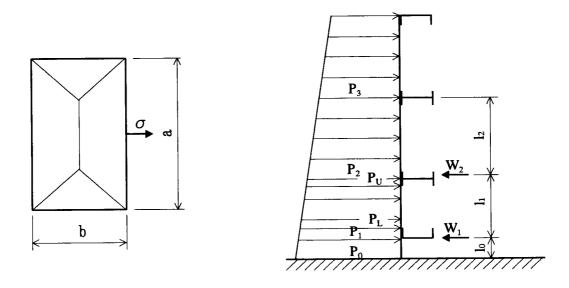


Figure 1 Loading condition of the stop log

(c) Strength of the main beam

Max. stress of the main beam can be calculated using the following equations:

Bending moment

 $M = W/8 \cdot B$

Where:

M: Bending moment acting on the main beam (kgf-cm)

W: Water load (kgf)

B: Span of the supports which bears water load (cm)

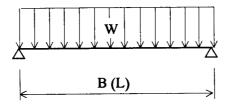


Figure 2 Loading condition of the beam

Sectional property of beam

$$I_x = 1/12 \cdot (B_f \cdot H_b^3 - B_w \cdot H_w^3)$$

Where

- I_x Moment of inertia of the gate beam (cm ⁴)
- H_b Height of the beam (cm)
- H_w Height of the web deduct 2 t_f (cm)
- B_f Width of the flange (cm)
- B_w Width of the flange deduct t_w (cm)
- t_f Thickness of the flange (cm)
- t_w Thickness of the web (cm)

$$Z_x = 2 I / H_b$$

Where:

Z_x: Section modulus of the gate beam (cm³)

$$A_{web} = Hw tw$$

Where:

A_{web} :Sectional area of the beam web at the support (cm²)

Bending stress

$$\sigma = M/Z \text{ (kgf/cm}^2)$$

Shear force

$$F = W/2$$
 (kgf)

Shear stress

$$\tau = F / A_{web} (kgf / cm^2)$$

Deflection

Deflection at center of the beam can be calculated by using equation:

$$\delta = 5/384 \cdot l^3 W/EI \quad (cm)$$

Where:

E: Young's modulus of material of the gate beam 2.1 x 10⁶ (kgf/cm²)

Allowable stress

$$\sigma_{\rm al} = 0.5 \ \sigma_{\rm y} \ (\rm kgf/cm^2)$$

$$\tau_{al} = 0.3 \ \sigma_{y} \ (kgf/cm^2)$$

Where:

 σ_y : Yield strength of material of SS400 (JIS) = 2,400 (kgf/cm²)

Allowable deflection

$$\delta_{\text{max}} / B < 1 / 800$$

(3) Examination

(a) Strength of the skin plate

$P_{\rm U} = 7.135$	(t/m^2)
$P_L = 7.360$	(t/m^2)
P = (7.135 + 7.360) / 20 = 0.725	(kgf/cm ²)
a = 22.5	(cm)
b = 67	(cm)
K = 50	
$t_s = 0.8$	(cm)
$\sigma = 0.01 \times 50 \times 22.5^2 \times 0.725 / 0.8^2 = 287 < 1,200$	(kgf/cm ²)

(b) Strength of the main beam

1) Strength of the main beam 1 (lowest beam)

$P_0 = 7.54$	(t/m^2)
$P_1 = 7.46$	(t/m^2)
$P_2 = 7.09$	(t/m^2)
l ₀ = 8	(cm)
$l_1 = 37$	(cm)
B = 550	(cm)
$W_1 = [\{(P_2+2P_1)/60\} l_1 + \{(P_1+P_0)/20\} l_0] B$	
$= [\{(7.09+2 \times 7.46) / 60\} \times 37 + \{(7.46+7.54)\}$	/20 } x 8] x 550
= 10,765	(kgf)
$M_1 = 10,765 \times 550 / 8 = 740,094$	(kgf-cm)
$I_1 = 1 / 12 \times (9.9 \times 37.95^3 - 8.7 \times 34.1^3) = 16,343$	(cm ⁴) for [380 x 100 x 13/20)
$Z_i = 2 \times 16,343 / 37.95 = 861$	(cm³)
$\sigma_1 = 740 \times 10^3 / 861 = 859 < 1,200$	(kgf/cm ²)
$F_1 = 10,765/2 = 5,383$	(kgf)
$A_{1 \text{ web}} = 26.1 \text{ x } 1.2 = 31.3$	(cm ²) for [300 x 100 x 13/20
$\tau_1 = 5,383 / 31.3 = 172 < 720$	(kgf/cm ²)
$\delta_{1 \text{ max}} = 5 / 384 \text{ x} \{ (550^3 \text{ x} 10,765) / (2.1 \text{ x} 10^6 \text{ x} 16^6) \}$	(5,343) = 0.68 (cm)
$\delta_{1 \text{ max}} / B = 0.68 / 550 = 1 / 809 < 1 / 800$	

2) Strength of the main beam 2 (next to lowest beam)

$$P_3 = 6.52$$
 (t/m²)

$$l_2 = 57 (cm)$$

$$W_2 = [\{ (P_3+2P_2) l_2 + (2P_2+P_1) l_1 \} / 60] B$$

= [\{ (6.52+2 x 7.09) x 57 + (2 x 7.09 +7.46) x 37\} / 60] x 550
= 18,155 (kgf)

$$M_2 = 18,155 \times 550 / 8 = 1,248 \times 10^3$$
 (kgf-cm)

$$I_2 = 1/12 \times (14.9 \times 39.95^3 - 13.75 \times 35.1^3) = 29,619 \text{ (cm}^4) \text{ for I } 400 \times 150 \times 12.5/25$$

$$Z_2 = 2 \times 29,619/39.95 = 1,483$$
 (cm³)

$$\sigma_2 = 1,248 \times 10^3 / 1,483 = 842 < 1,200$$
 (kgf/cm²)

$$F_2 = 18,155 / 2 = 9,078$$
 (kgf)

$$A_{2 \text{ web}} = 25.1 \text{ x } 1.15 = 28.9$$
 (cm²) for I 300 x 150 x 12.5 / 25

$$\tau_2 = 9{,}078 / 28.9 = 314 < 720$$
 (kgf/cm²)

$$\delta_{2 \text{ max}} = 5 / 384 \text{ x} \{ (550^3 \text{ x} 18,155) / (2.1 \text{ x} 10^6 \text{ x} 29,619) \} = 0.63 \text{ (cm)}$$

$$\delta_{2 \text{ max}} / B = 0.63 / 550 = 1 / 873 < 1 / 800$$

APPENDIX C 4.10-2 Structural Calculation of Stop Log for Spillway

(1) Design data

Design head	3.35 m
Clear span of the water canal	4.00 m
Total height of the stop log	3.60 m
Number of the stop log leaf	3 sets
Height of the stop log leaf	1.20 m

(2) Examination

(a) Strength of the skin plate

$\mathbf{P_{U}}$	= 2.24	(t/m²)
P_L	= 3.18	(t/m^2)
P	= (2.24 + 3.18) / 20 = 0.271	(kgf/cm ²)
a	= 80	(cm)
b	= 94	(cm)
K	= 38.4	
t_s	= 0.8	(cm)
σ	$= 0.01 \times 38.4 \times 80^2 \times 0.271 / 0.8^2 = 1.041 < 1.200$	(kgf/cm ²)

(b) Strength of the main beam

 $P_0 = 3.35$

1) Strength of Main beam 1 (lowest beam)

```
(t/m^2)
P_1 = 3.27
                                                                       (t/m^2)
P_2 = 2.15
                                                                       (t/m^2)
l_0 = 8
                                                                       (cm)
l_1 = 112
                                                                       (cm)
B = 400
                                                                       (cm)
W_1 = [\{ (P_2 + 2P_1)/60 \} l_1 + \{ (P_1 + P_0)/20 \} l_0] B
      = [{(2.15+2x3.27)/60} x 112 + {(3.27+3.35)/20} x 8] x 400
     =7,548
                                                                       (kgf)
M_1 = 7,548 \times 400 / 8 = 377.4 \times 10^3
                                                                       (kgf-cm)
I_1 = 1/12 \times (8.9 \times 29.95^3 - 8.0 \times 27.0^3) = 6,803
                                                                   (cm^4) for [ 300 x 90 x 10 / 15.5
Z_1 = 2 \times 6,803 / 29.95 = 454
                                                                       (cm^3)
\sigma_1 = 377.4 \times 10^3 / 454 = 831 < 1,200
                                                                       (kgf/cm<sup>2</sup>)
F_1 = 7,548 / 2 = 3,774
                                                                       (kgf)
A_{1 \text{ web}} = 27.0 \text{ x } 0.9 = 24.3
                                                                       (cm^2)
\tau_1 = 3,774 / 24.3 = 155 < 720
                                                                       (kgf/cm^2)
I_1 = 6.803
                                                                       (cm<sup>4</sup>)
\delta_{1 \text{ max}} = 5 / 384 \text{ x } \{ (400^3 \text{ x } 7.548) / (2.1 \text{ x } 10^6 \text{ x } 6.803) \} = 0.44
                                                                                     (cm)
\delta_{1 \text{ max}} / B = 0.44 / 400 = 1 / 909 < 1 / 800
```

2) Strength of the main beam 2

$$W_2 = \{ (2P_2+P_1)/60 \} l_1 B$$

$$= \{ (2x2.15+3.27)/60 \} x 112 x 400$$

$$= 5,652$$
 (kgf)
$$M_2 = (5,652 x 400)/8 = 282,600$$
 (kgf-cm)
$$l_2 = 1/12 x (8.9 x 29.95^3 - 8.0 x 27.0^3) = 6,803$$
 (cm⁴) for [300 x 90 x 10 / 15.5
$$Z_2 = 2 x 6,803/29.95 = 454$$
 (cm³)
$$\sigma_2 = 282,600/454 = 622 < 1,200$$
 (kgf/cm²)
$$F_2 = 5,652/2 = 2,826$$
 (kgf)
$$A_{2 \text{ web}} = 27.0 x 0.9 = 24.3$$
 (cm²)
$$\tau_2 = 2,826/24.3 = 116$$
 < 720 (kgf/cm²)

 $\delta_{2 \text{ max}} = 5 / 384 \text{ x} \{ (400^3 \text{ x} 5,652) / (2.1 \text{ x} 10^6 \text{ x} 6,803) \} = 0.33 \text{ (cm)}$

 $\delta_{2 \text{ max}} / B = 0.33 / 400 = 1 / 1,212 < 1 / 800$

APPENDIX C 4.10-3 Structural Calculation of Stop Log for Box Culvert

(1) Design data

Design head	3.35 m
Clear span of the water canal	3.70 m
Total height of the stop log	3.60 m
Number of the stop log	3 sets
Height of the stop log leaf	1.20 m

(2) Examination

(a) Strength of the skin plate

$P_{\mathbf{U}}$	= 2.24	(t/m^2)
P_L	= 3.18	(t/m^2)
P	= (2.24+3.18)/2=2.71	(t/m^2)
a	= 72	(cm)
b	= 94	(cm)
K	= 41.9	(cm)
σ	$= 0.01 \times 41.9 \times 72.0^{2} \times 0.271 / 0.8^{2} = 920 < 1,200$	(kgf/cm ²)

(b) Strength of the main beam

1) Strength of the main beam 1 (lowest beam)

```
(t/m^2)
       P_0 = 3.35
       P_1 = 3.27
                                                                             (t/m^2)
       P_2 = 2.15
                                                                             (t/m^2)
       l_0 = 8
                                                                             (cm)
       l_1 = 112
                                                                             (cm)
       B = 370
                                                                             (cm)
       W_1 = [\{(P_2+2P_1)/60\} l_1 + \{(P_1+P_0)/20\} l_0] B
            = [{(2.15+2x3.27)/60} x 112 + {(3.27+3.35)/20} x8] x 370
            = 6,982
                                                                             (kgf)
       M_1 = 6,982 \times 370 / 8 = 322,918
                                                                             (kgf-cm)
       I_1 = 1/12 \times (8.9 \times 29.95^3 - 8.1 \times 27.5^3) = 5,887 (cm<sup>4</sup>) for [ 300 x 90 x 9/13
       Z_1 = 2 \times 5,887 / 29.95 = 393
                                                                             (cm^3)
       \sigma_1 = 322,918/393 = 822 < 1,200
                                                                             (kgf/cm<sup>2</sup>)
       F_1 = 6,982 / 2 = 3,491
                                                                             (kgf)
                                                                             (cm^2)
       A_{1 \text{ web}} = 27.5 \times 0.8 = 22.0
       \tau_1 = 3,491 / 22.0 = 159 < 720
                                                                             (kgf/cm<sup>2</sup>)
       I_1 = 5,887
                                                                             (cm<sup>4</sup>)
       \delta_{1 \text{ max}} = 5 / 384 \text{ x} (370^3 \text{ x} 6,982) / (2.1 \text{ x} 10^6 \text{ x} 5,887) = 0.37 \text{ (cm)}
\delta_{1 \text{ max}} / B = 0.37 / 370 = 1 / 1,000 < 1 / 800
```

2) Strength of the main beam 2

APPENDIX C 4.10-4 Structural Calculation of Bulkhead Gate for Pumping Station

(1) Design data

Elevation of max. water surface	EL.11.94 m
Elevation of the gate sill	EL.4.40 m
Design head	7.40 m
Clear span of the water canal	5.50 m
Distance of the rubber seals	5.71 m
Distance of the main roller	5.91 m
Total height of the bulkhead gate	7.75 m
Height of the bulkhead gate leaf	1.55 m

(2) Calculation

(a) Hydrostatic load calculation

Water pressure at any point can be calculated using the equation;

 $P_i = W_o \cdot H_i$ Where: P = Water pressure at intended point $W_o = \text{Specific weight of water} \quad 1.0$ $H_i = \text{Intended water depth from the highest water level}$ (t/m^2)

(b) Strength of skin plate

Max. bending stress of the skin plate can be calculated by the equation:

 $\sigma = 1/100 \cdot \text{K} \cdot \text{a}^2 \cdot \text{P} / \text{t}_s^2$ Where: σ = Max. bending stress of the skin plate (kgf/cm²) K = Coefficient of b / a (refer to Table 1) = Short side length of the skin plate (cm) = Long side length of the skin plate (cm) P_U = Upper side water pressure at intended point (t/m^2) P_L =Lower side water pressure at intended point (t/m^2) = Mean water pressure = $(P_U + P_L) / 20$ (kgf/cm²) t_s = Effective thickness of the skin plate = t - 2C(cm) = thickness of the skin plate (cm) C = corrosion allowance (cm)

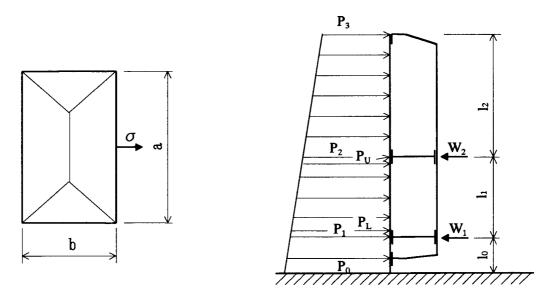


Figure 1 Loading condition of the gate

(c) Strength of the main beam

Max. stress of the main beam can be calculated using the following equation:

M = W / 8 • (2L- B_s)

Where:

M: Bending moment acting on the main beam
W: Hydraulic load
(kgf)
L: Span of main roller
(cm)

B_s: Span of supports bearing hydraulic load(cm)

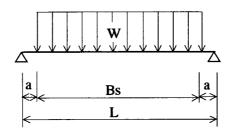


Figure 2 Loading condition of the beam

Sectional property of beam

 $I_x = 1/12 \cdot (B_f \cdot H_b^3 - B_w \cdot H_w^3)$ Where: I_x : Moment of inertia of the gate beam (cm⁴) H_b : Height of beam (cm) H_w : Height of web deduct 2 t (cm) B_f : Width of flange (cm)

 B_w : Width of flange deduct t_w (cm)

 t_f Thickness of flange (cm)

t_w: Thickness of web (cm)

 $Z_x := 2 I / H_b$

Where:

Z_x: Section modulus of the gate beam (cm³)

A web: Hw tw

Where:

 A_{web} : Sectional area of beam web at the support (cm²)

Bending stress

 $\sigma = M/Z (kgf/cm^2)$

Shear force

F = W/2 (kgf)

Shear stress

 $\tau = F / A_{\text{web}}$ (kgf/cm²)

Deflection

Deflection at center of the beam can be calculated by using following equation:

 $\delta = \{ w/48 E I \} \bullet \{ L^3 - (L B^2 / 2) + (B^3 / 8) \}$ (cm)

Where:

E = Young's modulus of material of the gate beam 2.1 x 10 6 (kgf / cm²)

Allowable stress

 $\sigma_{\rm al} = 0.5 \ \sigma_{\rm y}$

 $\tau_{\rm al} = 0.3 \ \sigma_{\rm y}$

Where:

 $\sigma_{\rm v}$ = Yield strength of material of SS400 (JIS) = 2,400 (kgf/cm²)

Allowable deflection

 $\delta_{\text{max}}/B \leq 1/800$

(3) Examination

(a) Strength of the skin plate

 $P_U = 1.0 \text{ x } 7.285 = 7.285$ (t/m²)

 $P_L = 1.0 \times 7.060 = 7.060$ (t/m²)

P = (7.285 + 7.060) / 20 = 0.717 (kgf/m²)

a = 22.5 (cm)

$$b = 53$$
 (cm)
 $K = 50$
 $t = 0.8$ (cm)
 $\sigma = 0.01 \times 50 \times 22.5^2 \times 0.717 / 0.8^2 = 284 < 1,200$ (kgf/cm²)

(b) Strength of the main beam

1) Strength of the main beam 1 (lowest beam)

$\mathbf{P_0}$	=7.54	(t/m^2)
$\mathbf{P_1}$	= 7.30	(t/m^2)
\mathbf{P}_{2}	= 6.91	(t/m²)
l_o	= 25	(cm)
l_1	= 39	(cm)
B_s	= 571	(cm)
\mathbf{W}_{1}	= $[\{(P_2+2P_1)/60\} l_1+\{(P_1+P_0)/20\} l_0] B_s$	
	= $[{(6.91+2 \times 7.30)/60} \times 39+ {(7.30+7.54)/20}]$	} x 25] x 571
	= 18,575	(kgf)
M_1	= $(18,575 / 8) \times (2 \times 591-571) = 1,419 \times 10^3$	(kgf-cm)
$\mathbf{I_1}$	= $1/12 \times (17.4 \times 44.95^3 - 16.4 \times 41.1^3) = 36,808$	(cm^4) for I 450 x 175 x 11/20
\mathbf{Z}_{1}	$= 2 \times 36,808 / 44.95 = 1,638$	(cm³)
$\sigma_{\scriptscriptstyle 1}$	$=1,419 \times 10^3 / 1,638 = 866 < 1,200$	(kgf/cm ²)
_	10.555.400000	4. 6
-	= 18,575 / 2 =9,288	(kgf)
\mathbf{A}_{1}	$_{\text{veb}} = 36.1 \text{x} \ 1.0 = 36.1$	(cm^2) for I 400 x 175 x 11/20
$\tau_{\scriptscriptstyle 1}$	=9,288 / 36.1 = 257 < 720	(kgf/cm ²)
δ_1	$_{\text{max}} = \{18,575/(48 \times 2.1 \times 10^{6} \times 36,808)\} \times \{591^{3} - (60 \times 10^{6} \times 36,808)\} \times \{60 \times 10^{6} \times 36,808\} \times \{60 \times 10^{6}$	$591x571^2/2$) +($571^3/8$)}
	= 0.67	(cm)

2) Strength of the main beam 2 (next to lowest beam)

 $\delta_{1 \text{ max}} / B = 0.67 / 571 = 1 / 853 < 1 / 800$

$$\begin{array}{lll} P_3 &= 6.46 & (t/m^2) \\ L_2 &= 45 & (cm) \\ W_2 &= \left[\left\{ (P_3 + 2P_2) \, l_2 + (2p_2 + P_1) \, l_1 \right\} \, / \, 60 \, \right] \, B \\ &= \left[\left\{ (6.46 + 2 \, x \, 6.91) \, x \, 45 + (\, 2 \, x \, 6.91 \, + 7.30) \, x \, 39 \, \right\} \, / \, 60 \, \right] \, x \, 571 \\ &= 16,524 & (kgf) \\ M_2 &= (16,524 \, / \, 8 \,) \, x \, (2 \, x \, 591 - 571 \,) = 1,262 \, x \, 10^3 & (kgf - cm) \\ I_2 &= 1 \, / \, 12 \, x \, (\, 17.4 \, x \, 44.95 \, ^3 - 16.4 \, x \, 41.1^3 \,) = 36,808 & (cm^4) \, \text{for I } 450 \, x \, 175 \, x \, 11/20 \\ Z_2 &= 2 \, x \, 36,808 \, / \, 44.95 \, = 1,638 & (cm^3) \\ \mathcal{O}_2 &= 1,262 \, x \, 10^{\, 3} \, / \, 1,638 \, = 770 & < 1,200 & (kgf/cm^2) \\ F_2 &= 16,524 \, / \, 2 \, = 8,262 & (kgf) \\ A_2 \, _{web} &= 36.1 \, x \, 1.0 \, = 36.1 & (cm^2) \, \text{ for [} 400 \, x \, 175 \, x \, 11/20 \\ \end{array}$$

```
\tau_2 = 8,262 / 36.1 = 229 < 720 (kgf/cm²)

\delta_{2 \text{ max}} = \{16,524 / (48 \text{ x } 2.1 \text{ x } 10^6 \text{ x } 36,808)\} \text{ x } \{591^3 - (591 \text{ x} 571^2 / 2) + (571^3 / 8)\} 
= 0.59 (cm)

\delta_{2 \text{ max}} / B = 0.59 / 571 = 1 / 968 < 1 / 800
```

APPENDIX C 4.10-5 Structural Calculation of Roller Gate for Sand Settling Basin

(1) Design data

Elevation of max. water surface	EL. 10.90 m
Elevation of the gate sill	EL. 7.40 m
Design head	3.50 m
Clear span of the water canal	10.00 m
Distance of the rubber seals	10.00 m
Distance of the main roller	10.50 m
Height of the roller gate leaf	3.50 m

(2) Calculation

(a) Hydrostatic load calculation

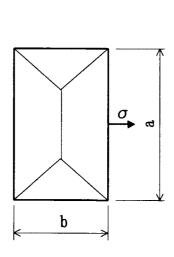
Water pressure at any point can be calculated by the following equation;

 $P_i = W_o \cdot H_i$

Where:

 P_i : hydrostatic pressure at intended point (t/m²) W_o : Specific weight of water 1.0 (tons/m³)

H_i: Water depth at intended point from the highest water level (m)


(b) Strength of skin plate

Max. bending stress of the skin plate can be calculated by the follows:

 $\sigma = 1/100 \bullet K \bullet a^2 \bullet P / t^2$

Where:

σ :	Max. bending stress of the skin plate	(kgf/cm ²)
K:	Coefficient of b / a (refer to Table 1)	
a:	Short side length of the skin plate	(cm)
b:	Long side length of the skin plate	(cm)
P_{U} :	Upper side water pressure at any point	(t/m^2)
P _L :	Lower side water pressure at any point	(t/m^2)
P:	Mean water pressure = $(P_U + P_L)/20$	(kgf/m^2)
t s:	Effective thickness of the skin plate = $t - 2C$	(cm)
t:	Thickness of the skin plate	(cm)
C:	Corrosion allowance 0.05	(cm)

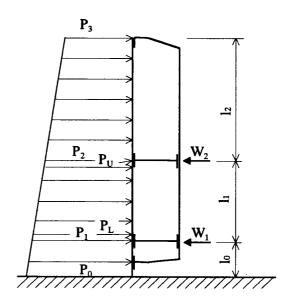


Figure 1 Loading condition of the gate

(c) Strength of the main beam

Max. stress of the main beam can be calculated by the following equation:

 $M = W / 8 \cdot (2L - B_s)$

Where:

M:	Bending moment acting on the main beam	(kgf-cm)
W:	Hydraulic load	(kgf)
L:	Span of main roller	(cm)
B _s :	Span of supports bearing hydraulic load	(cm)

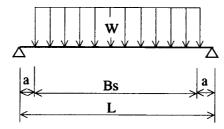


Figure 2 Loading condition of the gate

Sectional property of beam

 $I_x = 1/12 \cdot (B_f \cdot H_b^3 - B_w \cdot H_w^3)$ Where: I_x : Moment of inertia of the gate beam (cm⁴) H_b : Height of beam (cm) H_w : Height of web deduct 2 x Bf (cm)

$$B_f$$
: Width of flange (cm)

$$t_f$$
: Thickness of flange (cm)

$$Z_x = 2 I x / H_b$$

Where:

 Z_x : Section modulus of the gate beam (cm³)

 $A_{w} = H_{w} t_{w}$

Where:

 A_{web} : Sectional area of beam web at the support (cm²)

Bending stress

$$\sigma = M/Z (kgf/cm^2)$$

Shear force

$$F = W/2 (kgf)$$

Shear stress

$$\tau = F / A_{web}$$
 (kgf/cm²)

Deflection

Deflection at center of the beam is calculated by using following formula:

$$\delta = w/48 EI \cdot \{L^3 - (LB^2/2) + (B^3/8)\}$$
 (cm)

Where:

E: Young's modulus of material of the gate beam 2.1×10^3 (t/cm²)

Allowable stress

$$\sigma_{\rm al} = 0.5 \ \sigma_{\rm al}$$
 (kgf/cm²)

$$\tau_{\rm al} = 0.3 \ \sigma_{\rm al}$$
 (kgf/cm²)

Where:

 σ_{ai} : Yield strength of material of SS400 (JIS) = 2,400 (kgf/cm²)

Allowable deflection

$$\delta_{\text{max}}/B \leq 1/800$$

(3) Examination

(a) Strength of the skin plate

$$P_{\rm U} = 1.65$$
 (t/m²)

$$P_L = 2.75$$
 (t/m²)

$$P = (1.65+2.75) / 20 = 0.220$$
 (kgf/cm²)

$$b = 110$$
 (cm)

K = 47.6

$$t = 0.8 (cm)$$

$$\sigma = 0.01 \text{ x } 47.6 \text{ x } 66.0^2 \text{ x } 0.22 / 0.8^2 = 713 < 1,200 \quad \text{(kgf/cm}^2\text{)}$$

(b) Strength of the main beam

1) Strength of the main beam 1 (lowest beam)

$$P_0 = 3.50$$
 (t/m²)
 $P_1 = 2.90$ (t/m²)
 $P_2 = 1.50$ (t/m²)
 $l_0 = 6$ (cm)
 $l_1 = 14$ (cm)
 $P_1 = 14$ (cm)

$$W_1 = [\{(P_2+2P_1)/60\} l_1 + \{(P_1+P_0)/20\} l_0] B_s$$

$$= [\{(1.50+2 \times 2.90)/60\} \times 14.0 + \{(2.90+3.50)/20\} \times 6.0] \times 1,000$$

$$= 3,623$$
(kgf)

$$M_1 = (3.623 / 8) \times (2 \times 1.050 - 1.000) = 498.2 \times 10^3$$
 (kgf-cm)

$$I_1 = 1/12 \text{ x} (29.9 \text{ x} 79.95^3 - 28.4 \text{ x} 75.1^3) = 270,906 \text{ (cm}^4) \text{ for I } 800 \text{ x } 300 \text{ x } 16/25$$

$$Z_1 = 2 \times 270,906 / 79.95 = 6,777$$
 (cm³)
 $\sigma_1 = 498.2 \times 10^3 / 6,777 = 74 < 1,200$ (kgf/cm²)

$$F_{1} = 3,623 / 2 = 1,812$$
 (kgf)

$$A_{\text{web}} = 75.1 \text{ x } 1.5 = 113$$
 (cm²)

$$\tau_{1} = 1,812 / 113 = 16 < 720$$
 (kgf/cm²)

$$\delta_{1 \text{ max}} = (3,623/48 \text{ x } 2.1 \text{ x } 10^{6} \text{ x } 270,906) \text{ x } \{1,050^{3} - (1,000 \text{ x } 1,000^{2} / 2) + (1,000^{3} / 8)\}$$

$$= 0.104$$
 (cm)

$$\delta_{1 \text{ max}} / B = 0.104 / 1050 = 1 / 10,101 < 1 / 800$$

2) Strength of the main beam 2 (next to lowest beam)

$$\begin{array}{ll} P_3 &= 0.0 & (t/m^2) \\ l_2 &= 150 & (cm) \\ W_2 &= \left[\left\{ (P_3 + 2P_2) \ l_2 + (2P_2 + P_1) \ l_1 \right\} \ / \ 6 \ \right] \ B \\ &= \left[\left\{ (0 + 2 \ x \ 1.50) \ x \ 150 + (2 \ x \ 1.50 + 2.90 \) \ x \ 14 \right\} \ / \ 60 \ \right] \ x \ 1,000 \\ &= 8,877 & (kgf) \\ M_2 &= (8,887 \ / \ 8 \) \cdot (2 \ x \ 1,050 - 1,000 \) = 1,221 \ x \ 10^{\ 3} & (kgf-cm) \end{array}$$

$$I_2 = 270,906$$
 (cm⁴)
 $Z_2 = 6,777$ (cm³)
 $\sigma_2 = 1,221 \text{ 4x } 10^3 / 6,777 = 180 < 1,200$ (kgf/cm²)

$$F_{2} = 8,877 / 2 = 4,439$$
 (kgf)

$$A_{\text{web}} = 113$$
 (cm²)

$$\mathcal{T}_{2} = 4,439 / 113 = 39 < 720$$
 (kgf/cm²)

$$\delta_{2 \text{ max}} = (8,877 / 48 \text{ x } 2.1 \text{ x } 10^{6} \text{ x } 270,906) \text{ x } \{1,050^{3} - (1,000 \text{ x} 1,000^{2} / 2) + (1,000^{3} / 8)\}$$

$$= 0.25$$
 (cm)

$$\delta_{2 \text{ max}} / B = 0.25 / 1,050 = 1 / 4,200 < 1 / 800$$

APPENDIX C 4.10-6 Structural Calculation of Roller Gate for Spillway

(1) Design data

Elevation of max. water surface	EL.11.94 m
Elevation of the gate sill	EL. 7.60 m
Design head	4.34 m
Clear span of the water canal	4.00 m
Total height of the radial gate	4.50 m

(2) Calculation

(a) Hydrostatic load calculation

Water pressure at the gate leaf can be calculated by the equation:

 $P_i = W_o \cdot H_i$ Where: P_i : Water pressure at intended point of the gate leaf (t/m²) W_o : Specific weight of water 1.0 (tons/ m³) H_i : Water depth at intended point from the highest water level (m)

(b) Strength of faceplate

 $M = w_L l_s^2 / 12$

Max. bending stress of the faceplate can be calculated by the equations:

$\sigma = 6$	$6 M/t_s^2$	
When	re:	
M:	Max. bending moment of the faceplate	(kgf-cm)
σ	Max. bending stress of the faceplate	(kgf/cm ²)
l _s :	Width of the faceplate between vertical beams	(cm)
\mathbf{w}_{L} :	Water pressure at the gate sill	(kgf/cm ²)
t s:	Effective thickness of the faceplate = $t - 2C$	(cm)
t:	Thickness of the faceplate	(cm)
C:	Corrosion allowance 0.05	(cm)

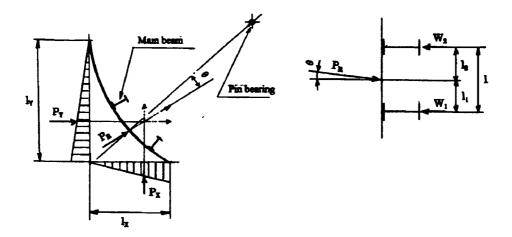


Figure 1 Loading Condition of the Radial Gate

(c) Strength of the main beam

Max. stress of the main beam can be calculated by the equations:

Water load

$P_{X} = w_{L} 1_{X}/2$	(kgf/cm)
$P_{Y} = w_{L} 1_{Y}/2$	(kgf/cm)
$P_R = (P_X^2 + P_Y^2)^{0.5}$	(kgf/cm)
$W_1 = \cos\theta P_R l_2 / l$	(kgf/cm)
$W_2 = \cos\theta P_R I_1 / I$	(kgf/cm)

Bending moment

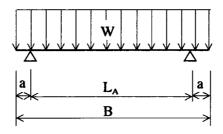


Figure 2 Loading Condition of the Beam

Sectional property of beam

$$I_X = 1/12 \cdot (B_f \cdot H_b^3 - B_w \cdot H_w^3)$$

Where:

 I_X = Moment of inertia of the gate beam (cm⁴)

 $H_b = \text{Height of beam}$ (cm)

 H_w = Height of web deduct 2 x Bf (cm)

 B_f = Width of flange (cm)

 B_w = Width of flange deduct (cm)

 t_f = Thickness of flange (cm)

 $t_w = Thickness of web$ (cm)

$$Z_x = 2 I x / H_b$$

Where:

 $Z_x = Section modulus of the gate beam (cm³)$

 $A_{web} = H_w t_w$

Where:

 A_{web} : Sectional area of beam web at the support (cm²)

Bending stress

$$\sigma = M/Z \qquad (kgf/cm^2)$$

Shear force

$$F = W L_A / 2 (kgf)$$

Shear stress

$$\tau = F / A_{web}$$
 (kgf/cm²)

Deflection

Deflection at center of the beam is calculated by using equation:

$$\delta = \{ w L_A^2 / 384 EI \} \bullet (5 L_A^2 - 24 a^2)$$
 (cm)

Where:

E: Young's modulus of material of the gate beam 2.1 x 10⁶ (kgf/cm²)

Allowable stress

$$\sigma_{\rm al} = 0.5 \ \sigma_{\rm al}$$
 (kgf/cm²)
 $\tau_{\rm al} = 0.3 \ \sigma_{\rm al}$ (kgf/cm²)
Where:

 $\sigma_{\rm al}$: Yield strength of material of SS400 (JIS) = 2,400 (kgf/cm^2)

Allowable deflection

$$\delta_{\text{max}}/B \leq 1/800$$

(3) Examination

(a) Strength of the faceplate

$P_{L} = 4.34$	(t/m^2)
$W_L = P_L / 10 = 0.434$	(kgf/cm ²)
$1_{s} = 40$	(cm)
$t_s = 0.8$	(cm)
$M = 0.434 \times 40^{2} / 12 = 57.87$	(kgf-cm)
$\sigma = 6 \times 57.87 / 0.8^2 = 543 < 1,200$	(kgf/cm ²)

(b) Strength of the main beam

Water load

$1_{x} = 280$	(cm)
1 _Y = 434	(cm)
$\theta = 9$	(degree)
$1_1 = 1_2 = 0.51$	(cm)
$1 = 1_1 + 1_2$	(cm)
$P_{\rm X} = 0.434 \times 280 / 2 = 60.76$	(kgf/cm)
$P_Y = 0.434 \times 434 / 2 = 94.18$	(kgf/cm)
$P_R = (60.76^2 + 94.18^2)^{0.5} = 112$	(kgf/cm)
$W_1 = \cos 9 \times 112 \times 0.5 = 55.31$	(kgf/cm)
$W_2 = W_1$	(kgf/cm)
$L_A = 250$	(cm)

Strength of the main beam

$$B = 400$$
 (cm)
 $A = 75$ (cm)
 $L_A = 250$ (cm)

$$M = \{55.31 \times 400^{2} / 2\} \times \{0.25 - (75 / 400)\} = 276.6 \times 10^{3} \text{ (kgf-cm)}$$

```
I = 1 / 12 \times (19.9 \times 39.95^{3} - 19.2 \times 37.5^{3}) = 21,361 (cm<sup>4</sup>) for [ 400 x 200 x 8/ 13
Z = 2 \times 21,361 / 39.95 = 1,069
                                                                            (cm<sup>3</sup>)
\sigma = 276.6 \times 10^3 / 1,069 = 259 < 1,200
                                                                            (kgf/cm<sup>2</sup>)
F = 55.31 \times 250 / 2 = 6,914
                                                                            (kgf)
A_{web} = 37.5 \times 0.7 = 26.25
                                                                            (cm<sup>2</sup>)
\tau = 6,914 / 26.25 = 263 < 72
                                                                            (kgf/cm<sup>2</sup>)
\delta = \{55.31 \times 250^{2} / (384 \times 2.1 \times 10^{6} \times 21,361)\} \times (5 \times 250^{2} - 24 \times 75^{2})
    = 0.04
                                                                            (cm)
\delta_{1 \text{ max}} / B = 0.04 / 250 = 1 / 6,250 <
                                                       1/800
```

APPENDIX C.6.4-1 Structural Calculation of Main Substation

(1) FRAME MODEL

(a) JOINT NUMBER

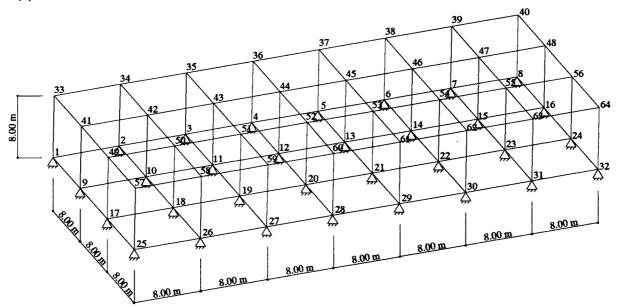


Figure 1

(b) MEMBER NUMBER

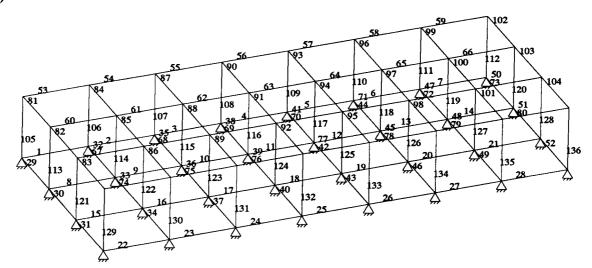


Figure 2

(c) MEMBER PROPERTIES

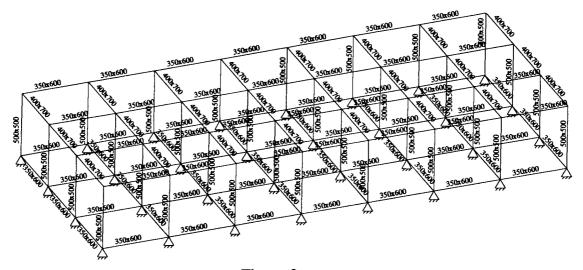


Figure 3

(2) LOADING DIAGRAM

(a) LOADING 1 DEAD LOAD (D.L)

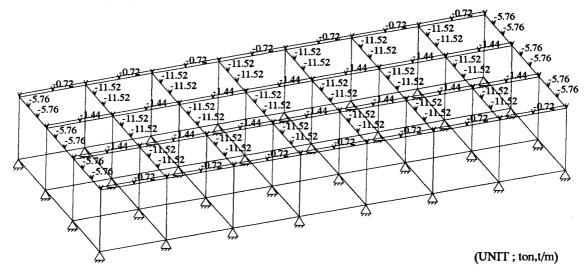


Figure 4

(b) LOADING 2 LIVE LOAD (L.L)

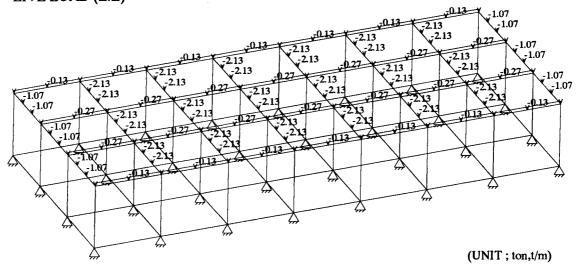


Figure 5

(3) RESULTS OF ANALYSIS

(a) BENDING MOMENT MZ

LOAD CASE 1.4D.L + 1.6L.L

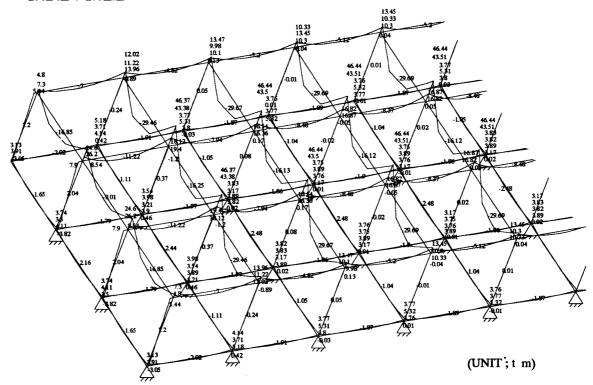


Figure 6

(b) BENDING MOMENT MY

LOAD CASE 1.4D.L + 1.6L.L

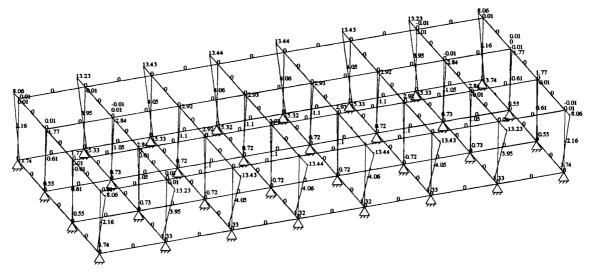


Figure 7

(UNIT; t·m)

APPENDIX C.6.4-2 Structural Calculation of Administration Building

(1) FRAME MODEL

(a) JOINT NUMBER

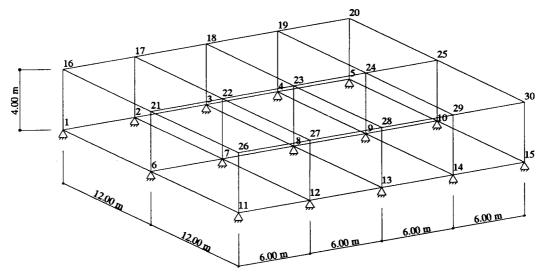


Figure 1

(b) MEMBER NUMBER

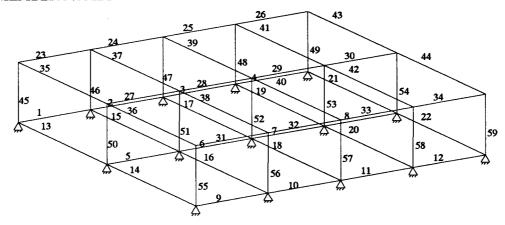


Figure 2

(c) MEMBER PROPERTIES

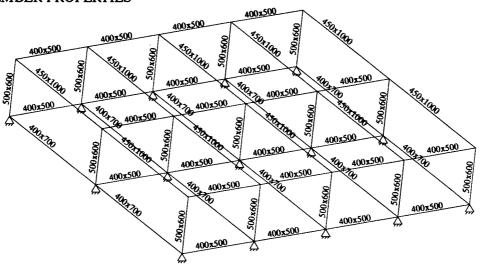


Figure 3

(2) LOADING DIAGRAM

(a) LOADING 1 DEAD LOAD (D.L)

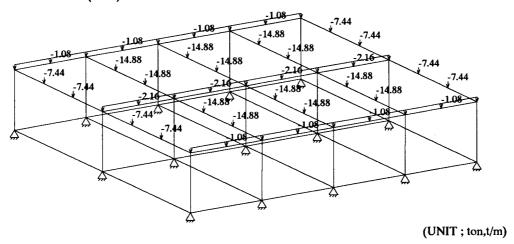


Figure 4

(b) LOADING 2 LIVE LOAD (L.L)

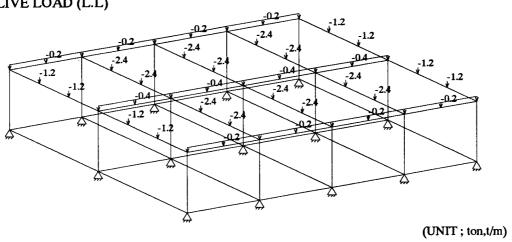


Figure 5

(c) LOADING 3 SEISMIC LOAD X-DIR. (S1)

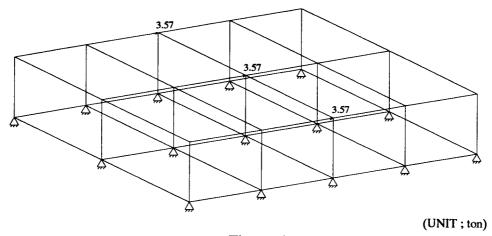


Figure 6

(d) LOADING 4 SEISMIC LOAD Z-DIR. (S2)

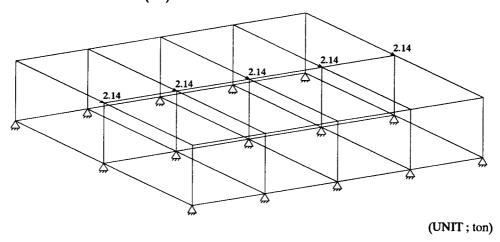
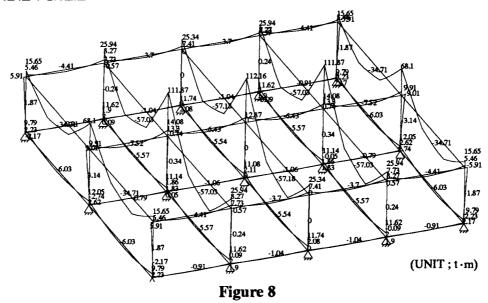



Figure 7

(3) RESULTS OF ANALYSIS

(a) BENDING MOMENT MZ

LOAD CASE 1.4D.L + 1.6L.L

(b) BENDING MOMENT MU

LOAD CASE 1.4D.L + 1.6L.L

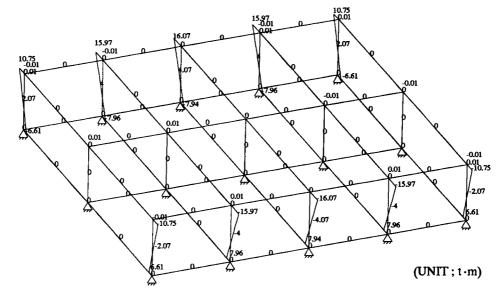


Figure 9