
APPENDIX C.4.4-6 Dimensions and Structural Design of Blow Off

(1) Diameter of drain pipe and discharge time

Discharge of drain pipe will be estimated by the following equation;

$$q = a \cdot v = a \cdot \sqrt{\frac{2g \cdot H}{1 + f_1 + \sum f_1 + f_2}}$$

where

q : Discharge of drain pipe (m³/s)

a : Flow area of drain pipe (m²)

v : Velocity of drain pipe (m/s)

H : Water pressure of drain pipe (t/m)

f₁: Head loss coefficient of inflow of drain pipe

 $\Sigma\,f_n~:~$ Head loss coefficient of bend, valve and others of drain pipe

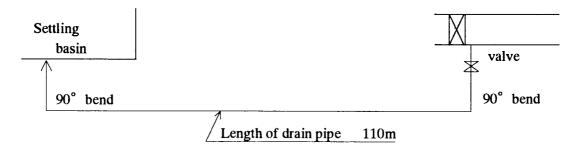
f : Head loss coefficient of friction of drain pipe

L : Length of drain pipe (m)

Beginning of pipeline L=110m (Assume)

No.1 \sim No.3 of blow off L=30m (Assume)

R : Hydraulic radius of drain pipe (m)


g : Acceleration of gravity (m/s^2) 9.8 m/s^2

Formula will be transformed by the practical figures

(a) Beginning of pipeline (No.1)

Diameter of blow off pipe will be specified 0.40m by Japanese Industrial Standard, and discharge time of main pipe will be calculated as follows.

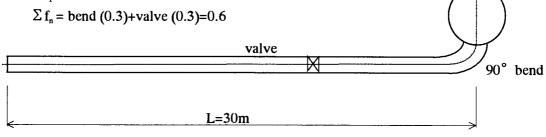
a =
$$0.126\text{m}^2$$

 $f_1 = 0.5$
 $\sum f_n = \text{bends } (0.3 \times 2) + \text{valve } (0.3 \times 1) + \text{others } (0.3) = 1.2$

$$f = \frac{2g}{C^2} = \frac{2 \times 9.8}{54.2^2} = 0.00714$$

$$C = \frac{1}{n} \cdot R^{1/6} = \frac{1}{0.013} \cdot (0.1)^{1/6} = 54.2$$

 $n: manning \ "n" \\$


0.013 for steel pipe

$$R = \frac{D}{4} = \frac{0.4}{4} = 0.1$$

$$\therefore q = 0.126 \times \sqrt{\frac{2 \times 9.8 \times H}{1 + 0.5 + 1.2 + 0.0714 + \frac{110}{4 \times 0.1}}} = 0.126 \times 2.05 \sqrt{H}$$
$$= 0.258 \sqrt{H}$$

$$a = 0.126m^2$$

$$f_1 = 0.5$$

f=0.00714 (same as beginning of pipeline No.1)

$$q = 0.126 \times \sqrt{\frac{2 \times 9.8 \times H}{1 + 0.5 + 0.6 + 0.00714 \times \frac{30}{4 \times 0.1}}} = 0.126 \times 2.73\sqrt{H}$$
$$= 0.343 \cdot \sqrt{H}$$

(c) Discharge Time (T) hours

$$T = \frac{V}{3600 \cdot q}$$

V: Water amount of main pipe to be drained

The following table is shown discharge time of each blow off and it's procedure, and the time will be estimated approx. 7 hours to empty main pipe.

The 7 hours is reasonable working time a day to consist with.

Discharge Time

		Par	t 1			Pa	rt 2			Pa	n3			Pa	rt4		ΣT(hr)
No.	H ₁	q,	\mathbf{V}_{1}	T ₁	H ₂	q_2	V ₂	T ₂	H ₃	q _s	V ₃	Т3	Ĥ,	Q,	V.	T ₄	
Beginning of pipeline (KM108.93850)	69.0	2.14	5,700	0.74	50.0 (q = 0.2	1	1,810	0.28	42.8	1.69	6,310	1.04	21.4	1.19	6,320	1.47	3.53
Blow off No.1 (KM 112.500)	11.3	1.15	2,870	0.69		0.790	1,808	0.64	2.1	0.497	1,808	1.01	-	-	-	•	2.34
Blow off No.2 (KM 113.800)	8.8	1.02	1,808		4.6 (q = 0.3		1,130	0.43	2.2	0.509	2,034	1.11	-	-	(-	2.03
Blow off No.3 (KM115.200)	8.8	1.02	7,320		4.6 (q = 0.3		2,170	0.82	2.2	0.509	1,360	0.74	-	-	-	-	3.55
	·				Total I	ischarge	Time (max)			55 (No. Io.2~No.		hr				

(2) Pipe wall thickness of drain pipe

(a) Design condition (summarized)

Steel pipe dimension

Diameter

D = 400 mm, Dc = 406.4 mm, t = 6 mm

Design Inner pressure

 $P = 12 \text{ kgf/cm}^2$

Earth cover from the top of pipe to the surface of backfill or embankment H = 7.5 m

Vertical load (Truck load)

T - 70

Unit weight of wet soil

 $\gamma = 1.8 \text{ tf/m}^3$

Angle of shear resistance

 $\phi = 30^{\circ}$

Design support angle

 $\theta = 90^{\circ}$

Reaction modulus of foundation material

 $E' = 48 \text{ kgf/cm}^2$

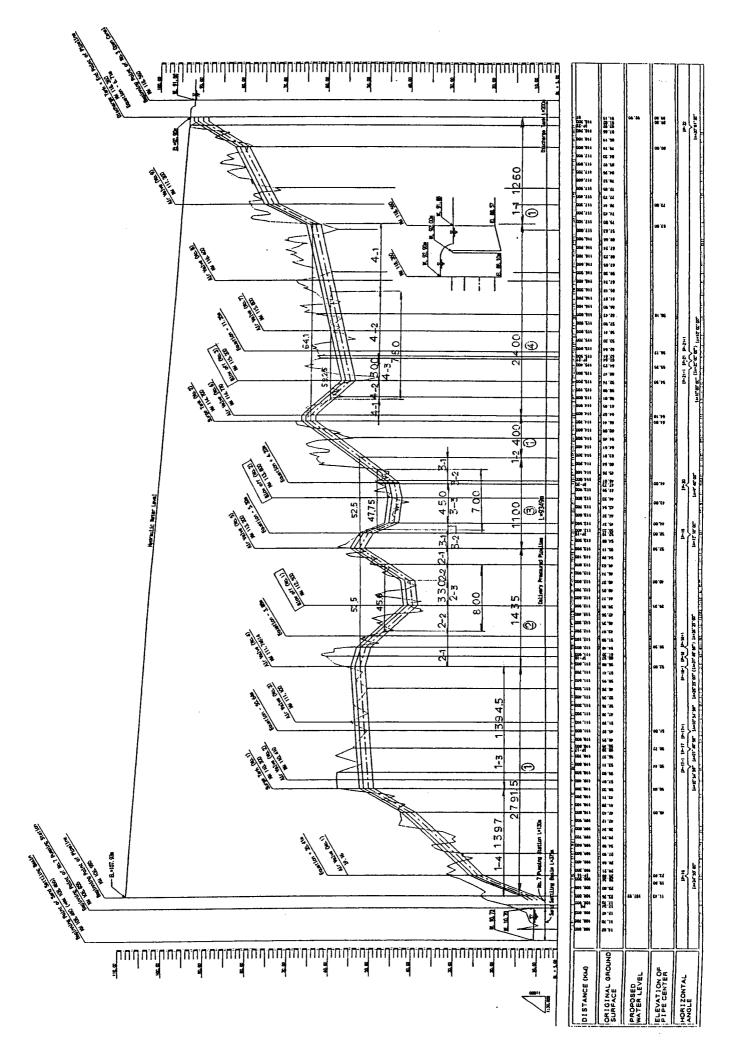
Excavation method

Non sheet pile method

Excavation width

B = 23.6/3 = 7.87 m

Material of steel pipe


STPY400

Allowable stress

 $\sigma a = 1400 \text{ kgf/cm}^2$

Design deflection ratio (%)

3%

(b) Tensile stress by Inner pressure of pipe

$$\sigma t = PD/2t$$

D = Dc-2t= 40.64 - 2 x 0.6 = 39.4 cm
 $\therefore \sigma t = 12 \times 39.4 / (2 \times 0.6) = 394 \text{ kgf/cm}^2 < \sigma a = 1400 \text{ kgf/cm}^2 \text{ O.K.}$

(c) Vertical earth pressure

Vertical earth pressure shall be calculated by following equation;

$$H > 2.0m$$
 $Wv = Cd \cdot \gamma \cdot B$
 $Cd = (1 - e - 2K \cdot \mu' \cdot H/B) / 2K \mu'$

H (m) K μ' B(cm) $-2K \cdot μ \cdot H/B$ $e^{-2K \cdot μ \cdot H/B}$ Cd γ Wv(kgf/cm²)
7.5 0.33 0.58 787 -0.3633 0.695 0.799 0.0018 1.132

(d) Wheel Load

$$Wv = \frac{P \cdot \beta}{W} = \frac{P \cdot \beta}{155 + 2H}$$

$$P = \frac{2 \times ([FrontWheelLoad] + [BackWheelLoad])}{[VehicleOccupationWidth]} \times (1 + i)$$

Vertical Pressure by Wheel Load

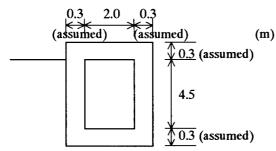
H(m)	Back Wheel Loads (kgf)	Vehicle Occupation width (cm)	i	P (kgf/cm)	β	Wt (kgf/cm ²)
7.5	11700	350	0.2	160	0.9	0.087

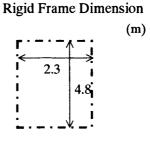
(e) Calculation of Deflection

$$\Delta X = \frac{2Kx \cdot (Wv + Wt) \cdot R^4}{EI + 0.061E^{t}R^3}$$

H(m)	Wv	Wt	ΔΧ	Design Deflection Ratio $\Delta X/D \times 100$ (%)	Judge
7.5	1.132	0.087	0.613	1.5% < 3%	O.K.

(f) Flexural Stress

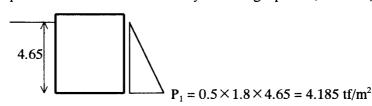

$$\sigma_b = \frac{2(Wv + Wt)}{f \cdot Z} \times \frac{Kb \cdot R^2 \cdot EI + (0.061Kb - 0.083Kx) \cdot E' \cdot R^5}{EI + 0.061E' \cdot R^3}$$


Calculation of Flexural Stress

H(m)	Wv	Wt	$\sigma_{\scriptscriptstyle b}$		σ_{a}	Judge
7.5	1.132	0.087	1168	<	1400	O.K.

(3) Structural calculation of Blow Off

(a) Sectional Dimension for Calculation


9.937 tf (=0.30 *2.6*5.2* 2.45)

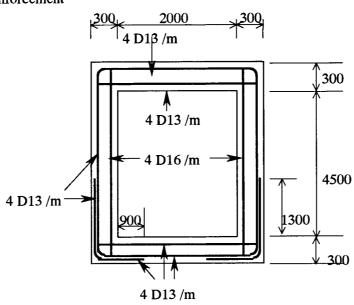
- (b) Calculation of Load
- (i) Own Weight and Earth Weight Applied for Top Slab (W₁) Concrete Weight of Top Slab 0.735 tf/m^2 (= 0.30 * 2.45)
- (ii) Reaction Force of Bottom Slab (W_2) Concrete Weight of Top Slab Concrete Weight of Side Slab 47.628 tf (= (2.6 * 5.2 - 2.0 * 4.6) * 4.5 * 2.45)

Pipe Weight (Inside Chamber) 0.355 tf (= (2.6 - 0.6) * 3 * 0.0592 tf/m) $0.980 \text{ tf } (= 2.6 \text{m} * \pi * 0.4^2 / 4 * 3 * 1.0)$ Water Weight (Inside Pipe)

- Valve Weight 2.490 tf (= 0.83 * 3) $61.390 \text{ tf} / (2.3*4.9) = 5.561 \text{ tf/m}^2$
- (iii) Side Earth Pressure (P₁)

Side earth pressure should be calculated by following equation; $P = K_0 \times \gamma_t \times H$

(iv) Load Distribution


Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.

Element Number, Contact Number and Coordinates Load Distribution 4 (0.0,4.8) 0.735 tf/m^2 5 (2.3,4.8) 3 6 (2.3,4.65) 3 (0.0, 4.65) 4 2 (0.0,0.0) 1(2.3,0.0)4.185 tt/m 4.185 tf/m² 5.561 tf/m²

(c) Result of Calculation

Part	Top Slab Outside	Side Slab Outside	Side Slab Inside	Bottom Slab Outside	Bottom Slab Inside
Bending Moment (kgf·cm)	21.090	40.490	28.040	40.490	3.710
Axial Force (kgf)	2.742	0.844	0.844	6.993	6.993
Shearing Force (kgf)	0.846	6.993	0.000	6.396	0.000

(d) Design of Reinforcement

(e) Stress Analysis
Stress analysis will be shown at next page.

Stress Analysis of North Sinai Blow Off

			Top Slab Outside	Side Slab Outside	Side Slab Inside	Bottom Slab Outside
Bending Mor	ment	M (kgf·cm)	210,900	404,900	280,400	404,900
Axial Ford	ce	N(kgf)	2,742	844	844	6,993
Shearing Fo	orce	S(kgf)	846	6,993	•	6,396
Width		b (cm)	1,040	1,040	1,040	1,040
Thicknes	s	h (cm)	30.0	30.0	30.0	30.0
Effective De	epth	d(cm)	23.0	23.0	23.0	23.0
Cover (Compre	Cover (Compressive)		7.0	7.0	7.0	7.0
Cover (Tens	Cover (Tensile)		7.0	7.0	7.0	7.0
Required Effective	ve Depth	<i>d</i> ₀ (cm)	3.8	5.1	4.3	5.4
Judge	Axial Direction	r Force	Compressive	Compressive	Compressive	Compressive
			Case2-A	Case2-A	Case2-A	Case2-A
	Tensile Steel		Required	Required	Required	Required
	Compressive S	teel	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stress	σc1		-	-	-	-
Min. Compressive Stress	σ c2		-	-	-	-
Area of Tensile Reinforc	ement As		5.00	11.07	7.58	9.03
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		-	-	-	•	
Min. Area of Rein	Min. Area of Reinforcement (cm ²)		0.85	0.85	0.85	0.85
Required Area of Re	inforcement	As (cm ²)	5.00	11.07	7.58	9.03
Required Peri	meter	$U(\mathrm{cm}^2)$	2.67	22.04	-	20.16

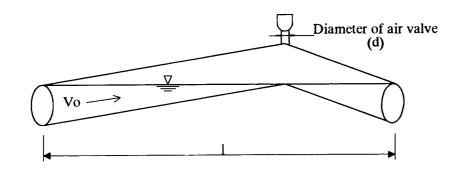
Design of Reinforcement

Main Reinforcement	Diameter	$D_{I}(\mathbb{R})$	13	13	16	13
1	Pitch	c.to.c (MM)	250	250	250	250
	Area	$As_{1}(cm^{2})$	5.32	5.32	8.04	5.32
	Perimeter	$U_1(cm)$	16.00	16.00	20.00	16.00
Main Reinforcement	Diameter	$D_2(nn)$	-	13	-	10
2	Pitch	c.to.c (III)	-	250	-	250
	Area	$As_2(cm^2)$	-	5.32	•	3.14
	Perimeter	U_2 (cm)	-	16.00	•	12.00
Area of Reinforcement A	s(cm2)		5.32	10.64	8.04	8.46
Perimeter of Reinforceme	ent U(cm2)		16.00	32.00	20.00	28.00

Stress Check

Distance for	m Neutral axis to (Compressive Edge x	2.086	2.563	2.268	2.728
	j=1-x/(3	d)	0.970	0.963	0.967	0.960
Reinforcement	Tensile	σs	1,444	1,675	1,508	1,639
	Stress	Judge(σ_{sa} =1,800kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
Concrete	Compressive	σ _c	9.6	14.0	11.0	14.7
	Stress	Judge(σ_{α} =85kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
	Shear Stress	τ	-	0.3	-	0.3
		Judge($\tau_a = 8.0 \text{kgf/cm}^2$)	O.K.	O.K.		O.K.

APPENDIX C.4.4-7 Dimensions and Structural Design of Air Valve


(1) Diameter of air valve

(a) Purpose and nominal diameter of air valve

The purpose of air valve is to exhaust air from pipeline, to keep flow capacity and to prevent air hammer phenomena. Another purpose is to breathe air when the pipeline will be drained water for maintenance works..

The diameter of air valve is determined to exhaust air as correspond to discharge when the pipeline is filled by water at beginning of pump operation.

Diameter will be determined 0.20m by the following conditions;

$$d = D \cdot \sqrt{\frac{V_0}{Ca \cdot Va}} = 2.40 \times \sqrt{\frac{0.24}{0.9 \times 45}} \stackrel{.}{\rightleftharpoons} 0.20 \text{m}$$

Where,

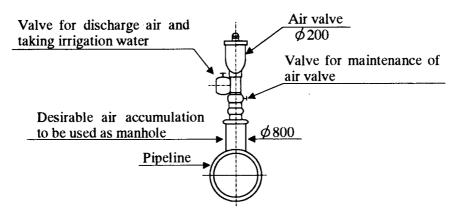
d: Diameter of air valve (m)

D: Diameter of main pipe (m)

V_o: Velocity of main pipe before main pump operation

 $V_0 = 0.1 \text{ Um} = 0.1 \times 2.4 = 0.24 \text{ m/s}$

V_a: Velocity of air discharge from air valve


 $V_a \leq 45 \text{m/s}$

C_a: Constant number 0.9

Further more, a certain suction volume of air valve is also requested at drain water of pipeline for maintenance.

Performance curve of air valve by a Japanese manufacture is shown in the Figure 3 and suction volume is about 80% of exhaust volume of $150\text{m}^3/\text{min}$ in case $\phi 200$ of air valve.

Then suction volume of $150 \times 0.8/60 = 2.0 \text{m}^3/\text{s}$ may be satisfied discharge q shown in the Table "Discharge Time", which is $1.82 \text{m}^3/\text{s}$ q₂ of No.1 Blow off and in case q₁ (2.14 m³/s) of part 1 No1 is supplied air through the end of pipeline.

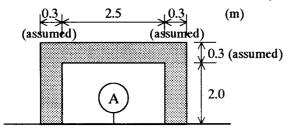
Composition of Air Valve

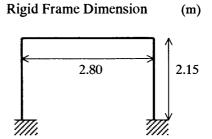
Relationship between main pipe diameter and air valve diameter

Pipe Diameter	Selectio	range of air valve size		Pipe Diameter
(mm)	High Speed	Double	Single	(mm)
1000				1000
1100	75		No,	1100
1200		150	application	1200
1350	100			1350
1500				1500
1650				1650
1800				1800
2000		90		2000
2100				2100
2200				2200
2400				2400
2600				2600

Source MOAFFJ's standard (Pipeline)

Figure 3 Performance Curve of an Air Valve

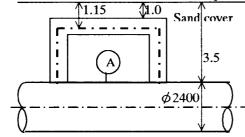

(b) Interval and location of air valve

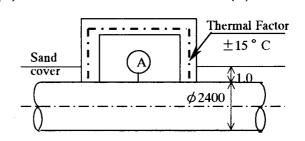

The location of air valve shall be determined at adequate places which air will be left without transport such as place immediate downstream of an up-slope and place immediate upstream of a down-slope of pipeline. Even places at flat slope of pipeline, it is requested to provide air valve at each 600 to 700m intervals that will be recommended 1.5 times of standard distance (400m in general) because of both economical and adequate operation stated at 2.6.7 Study on beginning and end of pump operation.

(2) Structural calculation of Air Valve Chamber

(a) Sectional Dimension for Calculation

Air Valve Chamber should be calculated by Gate Shaped Rigid Frame.

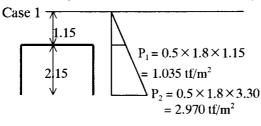


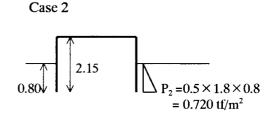

(b) Calculation of Load

(i) Case of Calculation

Considering condition, following cases should be calculated.

Casel 1.0m sand covered on the top slab (m) Case2 Consider Thermal Factor (m)



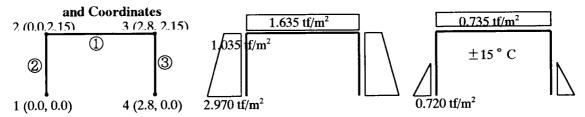

(ii) Own Weight and Earth Weight Applied for Top Slab (W₁)

- Vertical Earth Pressure Case 1 0.900 tf/m² (= 0.5 * 1.8 * 1.0) Case 2 0.000 tf/m²
- Concrete Weight of Top Slab $0.735 \text{ tf/m}^2 \quad (=0.30 * 2.45)$
- Total Load Case 1 1.635 tf/m^2 (= 0.900 + 0.735) Case 2 0.735 tf/m^2

(iii) Side Earth Pressure $(P_1 \sim P_2)$

Side earth pressure should be calculated by following equation; $P = K_0 \times \gamma_t \times H$

(iv) Load Distribution

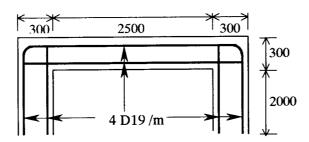

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.

Element Number, Contact Number

Case1 Load Distribution

Case2 Load

Distribution


(c) Result of Calculation

	Top	Slab	Side Slab		
	Outside	Inside	Outside	Inside	
	1	1	2,3	2,3	
Case 1	0.958	0.644	0.958	0.333	
	2.289	0.000	1.913	0.000	
	1)	1	2,3	2,3	
Case 2	4.940	4.241	4.940	4.241	
	2.773	0.715	1.746	1.242	

Upper: Element Number Middle: Bending Moment Lower: Shearing Force

(d) Design of Reinforcement

By using result of calculation reinforcement should be designed as following figure.

(e) Stress Analysis

Stress analysis will be shown at next page.

(f) Calculation of Soil Reaction of Air Valve Chamber

Load	Vertical Force (tf)
·Concrete Weight	265.0
•Air Valve $\phi 200 \times 3$	0.5
•Pipe Weight ϕ 2400	12.5
•Water Weight ϕ 2400	43.0
·Soil Weight	70.0
·Total	391.0

Total of Vertical Force = 391.0 (tf)
Total of Horizontal Force = 0.0 (tf)

Width = 12.4 (m)

Length = 3.1 (m)

Soil Reaction = $391 / (12.4 \times 3.1) = 10.50$ (tf/m²)

Stress Analysis of North Sinai Air Valve

			Top Slab Outside	Top Slab Inside	Side Slab Outside	Side Slab Inside
Bending Mo	ment	M (kgf·cm)	494,000	424,100	494,000	424,100
Axial Fore	ce	N(kgf)	1,746	1,242	2,773	715
Shearing Fo	orce	S (kgf)	2,773	715	1,746	1,242
Width		b (cm)	100	100	100	100
Thicknes	is	h (cm)	30.0	30.0	30.0	30.0
Effective De	epth	d (cm)	23.0	23.0	23.0	23.0
Cover (Compre	Cover (Compressive)		7.0	7.0	7.0	7.0
Cover (Tens	Cover (Tensile)		7.0	7.0	7.0	7.0
Required Effecti	ve Depth	$d_{\theta}(cm)$	17.0	15.7	17.2	15.7
Judge	Axial Direction	Force	Compressive	Compressive	Compressive	Compressive
			Case2-A	Case2-A	Case2-A	Case2-A
	Tensile Steel		Required	Required	Required	Required
	Compressive S	teel	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stress	s σc1		-	-	-	-
Min. Compressive Stress	σ c2		-	-	<u> </u>	-
Area of Tensile Reinforc	ement As		11.53	9.98	11.24	10.13
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		•	-	-	•	
Min. Area of Rein	forcement	(cm ²)	0.85	0.85	0.85	0.85
Required Area of Re	einforcement	As (cm ²)	11.53	9.98	11.24	10.13
Required Peri	imeter	$U(\mathrm{cm}^2)$	7.60	1.96	4.79	3.40

Design of Reinforcement

Main Reinforcement	Diameter	$D_{I}(mm)$	19	19	19	19
1	Pitch	c.to.c (III)	250	250	250	250
	Area	$As_1(\text{cm}^2)$	11.34	11.34	11.34	11.34
	Perimeter	<i>U</i> ₁ (cm)	24.00	24.00	24.00	24.00
Main Reinforcement	Diameter		-	-	-	-
2	Pitch	c.to.c (III)	-	-	-	-
	Area	$As_2(cm^2)$	-	-	-	-
	Perimeter	U ₂ (cm)	-	-	-	•
Area of Reinforcement A	As(cm2)		11.34	11.34	11.34	11.34
Perimeter of Reinforceme	ent U(cm2)		24.00	24.00	24.00	24.00

Stress Check

Distance for	Distance form Neutral axis to Compressive Edge x			7.488	7.657	7.410
	j=1-x/(3	d)	0.891	0.891	0.889	0.893
Reinforcement Tensile Stress	Tensile	σ_{s}	2,036	1,753	1,984	1,786
	Stress	Judge (σ_{sa} =2,070kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
Concrete Com	Compressive	σ _c	66.0	56.4	66.0	56.6
	Stress	Judge (σ_{ca} =98kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
	Shear Stress	τ	1.2	0.3	0.8	0.5
		Judge ($\tau_a=9.2 \text{kgf/cm}^2$)	O.K.	O.K.	O.K.	O.K.

(3) Calculation of thrust block at Air valve chamber

Air valve chamber could be used as not only air valve chamber but also thrust block for bending point. At Air valve No.2, the thrust force should become the strictest. Then, the calculation should be done about Air valve No.2.

Whether pipeline moves or not by thrust force should be judged by following investigation;

```
R_h \geq S \cdot P_h
where, S: Safety ratio (S=1.5)
            P<sub>b</sub>: Thrust force
                        P_h = 2H \cdot a_c \cdot \sin(\theta/2)
                         where, H: Inner water pressure (80 tf/m<sup>2</sup>)
                                    a<sub>a</sub>: Sectional area inner water pressure act (4.524 m<sup>2</sup>)
                                     \theta: Bending angle (11.5°)
                        P_h = 74.858 \text{ tf} / 1 \text{ lane}
            R<sub>h</sub>: Horizontal reaction force (tf)
                        R_h = R_{h1} + R_{h2}
                          where, R<sub>h1</sub>: Frictional reaction force for thrust block (tf)
                                    R_{h1} = \mu \cdot W_s
                                     μ: Coefficient of friction between concrete and soil (0.6)
                                    W_s = W_1 + W_2 + W_3
                                     W_1: Vertical soil pressure on the thrust block (tf)
                                    W<sub>2</sub>: Bending pipe weight and inner pipe water weight (tf)
                                     W<sub>3</sub>: Own weight of thrust block (tf)
                                      \{(2.3+3.1) \times 3.1 \times 12.4-2.0 \times 2.5 \times 11.8\} \times 2.45 =
                                    364.011
                                         (-)2.4^2 \times \pi/4 \times 3 \times 3.1 \times 2.45 = (-)103.077
                                        364.011 - 103.077 = 260.934
                                     W_s = 0.0 + 0.330 + 12.192 + 42.072 + 260.934 = 315.528 \text{ tf}
                                     R_{h1} = 0.6 \times 315.528 = 189.317 \text{ tf}
                                  R<sub>h2</sub>: Passive soil pressure of thrust block (tf)
                                     R_{h2} = (1/2) \cdot w \cdot Bs \cdot (H_2^2 - H_1^2) \cdot tan^2 (45^\circ + \phi/2)
                                    w: Unit weight of soil (1.8 tf/m<sup>3</sup>)
                                     B<sub>s</sub>: Backside width of thrust block (3.1 m)
                                     H<sub>2</sub>: Depth from surface to bottom of thrust block (3.9 m)
                                     H<sub>1</sub>: Depth from surface to top of thrust block
                                     \tan^2(45^\circ + \phi/2): Coefficient of passive soil pressure
                                     \phi: Internal angle of soil (30°)
                                     \therefore R_{h2} = 1/2 \times 1.8 \times 3.1 \times (3.9^2 - 0.0^2) \times 3.0 = 70.727 \text{ tf}
                        R_h = 189.317 + 70.727 = 260.044 \text{ tf}
            R_h = 260.044 \text{ tf}
            S \cdot P' = 1.5 \times 74.858 \times 2 = 224.574 \text{ tf}
             R_h = 260.044 \ge S \cdot P' = 224.574
```

Then, air valve chamber should be enough heavy to resist thrust force.

APPENDIX C.4.5-1 Structural Computation of Spillway Structures

(1) Sections for Computation

Type of Structures	Section for Computation
Retaining Wall	Sections A, B, C, D and G
Abutment	Section E
Pier	Section F

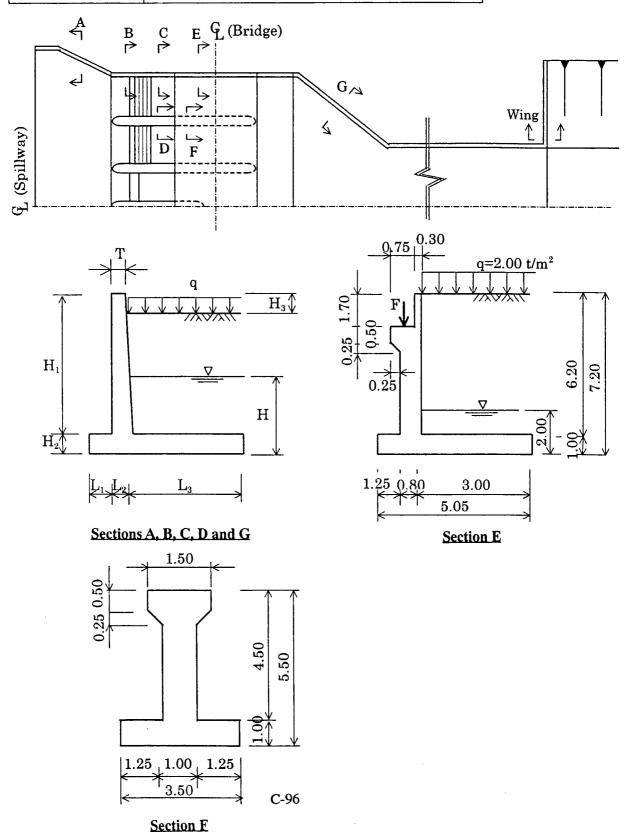


Table 1 Dimensions of Retaining Wall

Section	A	В	С	D	G
T(m)	0.60	0.80	0.80	1.00	0.30
$H_1(m)$	4.50	5.40	6.20	4.50	4.00
$H_2(m)$	0.80	1.00	1.00	1.00	0.60
H ₃ (m)	0.00	0.90	0.00	0.00	0.00
H(m)	0.00	0.00	2.00	0.00	0.00
L ₁ (m)	1.25	1.25	1.25	1.25	0.70
$L_2(m)$	0.60	0.80	0.80	1.00	0.50
L ₃ (m)	1.60	3.00	3.00	1.25	1.60

- (b) Coefficient of Earth Pressure; Ka=0.333
- (c) Live Load; q=1.00 tf/m² (Section A B, C, F, G)

 $q=2.00 \text{ tf/m}^2$

(Section E)

Load of bridge for the Section E

 $f_1 = 16.777 \text{ tf (Dead Load Only)}^*$

 $f_2 = 12.242$ tf (Live Load Only) *

Case A; $F = f_1 + f_2 = 29.019 \text{ tf}$

Case B; $F = f_1 = 16.777 \text{ tf}$

Load of bridge for the Section F

 $F = (f_1 + f_2) \times 2 = 58.038 \text{ tf}$

Calculation of load of bridge

Dead Load; $f_1 = 29.08 \times 6 / 10.4 = 16.777 \text{ tf}$

Live Load; $f_2 = 21.22 \times 6 / 10.4 = 12.242 \text{ tf}$

(d) Cases of Stability analysis

Case 1: After Construction

Case 2: Under Construction

(2) Result of Calculation

The result of computations are shown in the following tables.

Section for	tion for Computation Stability Analysis		Structural Analysis
	A Table 2		Table 3
	В	Table 4	Table 5
	C	Table 6 Table 7	
	D	-	Table 8
Е	Case A	Table 9	Table 10
	Case B	Table 11	Table 12
	F	•	Table 13
	G	Table 14	Table 15

 Table 2
 Stability Analysis of Retaining Wall (Section A)

Load	Vertica l Force (tf)	Arm Length (m)	Stabilizing Moment (tf•m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf•m)
Wall	13.377	1.638	21.912			
Weight of Earth	14.400	2.650	38.160			
Earth Pressure				-1.765	2.650	-4.677
Earth Pressure				-9.354	1.767	-16.529
Total	27.777		60.072	-11.119		-21.206
Total of Moment	$\Sigma M =$	38.866	(tf·m)			
Total of Vertical Force	$\Sigma V =$	27.777	(tf)			
Total of Horizontal Force	$\Sigma H =$	-11.119	(tf)			
Stability Against Overturning at Case-1: After Construction $\chi = (\sum M/\sum V) =$ Width of Invert $L =$ Eccentric Length $e =$ Soil Reaction $Q_1 =$ $Q_2 =$ Case-2: Under Construction $\chi' = M/V =$ Eccentric Length $e' =$	1.399 3.45 0.326 12.613 3.489 1.638 0.087	(m) (m) (m) (tf/m²) (tf/m²)		L/6= L/6=		(m) (m)
Soil Reaction $Q_1' = Q_2' =$	4.464 3.291					
Factor of Safety Against Slidin Coefficient of friction Cohesion Total of Vertical Force Width of Invert Total of Horizontal Force	g f= C= ΣV= L= ΣH=	0.600 0.000 27.777 3.450 11.119	(tf) (m)			
Factor of Safety	$F_S =$	1.50	=	1.50	ОК	

Table 3 Structural Analysis of Retaining Wall (Section A)

 Calculation 	n of stem	Effective Depth = $0.53(m)$			
Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	
0.50	0.055	0.250	0.038	0.000	
1.00	0.277	0.666	0.064	0.000	
1.50	0.749	1.249	0.091	0.303	
2.00	1.554	1.998	0.121	1.079	
2.50	2.775	2.914	0.155	2.362	
3.00	4.495	3.996	0.191	4.252	
3.50	6.799	5.245	0.230	6.851	
4.00	9.768	6.660	0.271	10.259	
4.50	13.486	8.242	0.315	14.580	
2. Calculation	n of Toe		Effective Depth = 0	.73(m)	
Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	
•	Moment	_		Tension	
(m)	Moment (tf·m)	(tf)	Depth (m)	Tension Reinforcement (cm²)	
(m) 	Moment (tf • m) 1.250	(tf) 4.907	Depth (m)	Tension Reinforcement (cm²) 1.104	
(m) 	Moment (tf·m) 1.250 4.815 7.379	(tf) 4.907 9.261	Depth (m) 0.091 0.178	Tension Reinforcement (cm²) 1.104 4.252 6.517	
(m) 	Moment (tf·m) 1.250 4.815 7.379	(tf) 4.907 9.261	Depth (m) 0.091 0.178 0.221	Tension Reinforcement (cm²) 1.104 4.252 6.517	
(m) 0.50 1.00 1.25 3. Calculation Length	Moment (tf·m) 1.250 4.815 7.379 n of Heel Bending Moment	(tf) 4.907 9.261 11.232 Shearing Force	Depth (m) 0.091 0.178 0.221 Effective Depth = 0 Required Effective	Tension Reinforcement (cm²) 1.104 4.252 6.517 73(m) Required Area of Tension	
(m) 0.50 1.00 1.25 3. Calculation Length (m)	Moment (tf·m) 1.250 4.815 7.379 n of Heel Bending Moment (tf·m)	(tf) 4.907 9.261 11.232 Shearing Force (tf)	Depth (m) 0.091 0.178 0.221 Effective Depth = 0 Required Effective Depth (m)	Tension Reinforcement (cm²) 1.104 4.252 6.517 73(m) Required Area of Tension Reinforcement (cm²) 0.760	
(m) 0.50 1.00 1.25 3. Calculation Length (m) 0.50	Moment (tf·m) 1.250 4.815 7.379 n of Heel Bending Moment (tf·m) 0.861	(tf) 4.907 9.261 11.232 Shearing Force (tf) -3.352	Depth (m) 0.091 0.178 0.221 Effective Depth = 0 Required Effective Depth (m) 0.075	Tension Reinforcement (cm²) 1.104 4.252 6.517 73(m) Required Area of Tension Reinforcement (cm²) 0.760 2.879 6.111	
(m) 0.50 1.00 1.25 3. Calculation Length (m) 0.50 1.00	Moment (tf·m) 1.250 4.815 7.379 n of Heel Bending Moment (tf·m) 0.861 3.260	(tf) 4.907 9.261 11.232 Shearing Force (tf) -3.352 -6.151	Depth (m) 0.091 0.178 0.221 Effective Depth = 0 Required Effective Depth (m) 0.075 0.147	Tension Reinforcement (cm²) 1.104 4.252 6.517 73(m) Required Area of Tension Reinforcement (cm²) 0.760 2.879 6.111	

Table 4 Stability Analysis of Retaining Wall (Section B)

Load		Vertical Force (tf)	Arm Length (m)	Stabilizing Moment (tf • m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf·m)
Wall		22.956	2.122	48.713	~~~~~~		
Weight of Earth		27.000	3.550	95.850			
Earth Pressure					-1.831	2.750	-5.035
Earth Pressure					-10.073	1.833	-18.464
Total		49.956		144.563	-11.904		-23.499
Total of Moment		$\Sigma M =$	121.064	(tf·m)			
Total of Vertical F	orce	$\Sigma V =$	49.956	(tf)			
Total of Horizonta	l Force	$\Sigma H =$	-11.904	(tf)			
Stability Against C Case-1: After Cor		_	il Reaction				
$\chi = (\sum M / \sum V)$	=	2.423	(m)				
Width of Invert	L =	5.05	(m)				
Eccentric Length	e =	0.102	(m)	<	L/6=	0.842	(m)
Soil Reaction	$Q_1 =$	11.086	(tf/m^2)				
	$Q_2 =$	8.698	(tf/m^2)				
Case-2: Under Co	nstructio	n					
$\chi' = M /$	v =	2.122					
Eccentric Length	e' =	0.403		<	L/6=	0.842	(m)
Soil Reaction	$Q_{1'} =$	6.722	(tf/m^2)				
	$Q_2' =$	2.369	(tf/m^2)				
Factor of Safety A Coefficient of frict Cohesion Total of Vertical F Width of Invert Total of Horizonta	orce	f = C = Σ V = L = Σ H =	0.600 0.000 49.956 5.050 11.904	(m)			
Factor of Safety		Fs=	2.52	>	1.50	OK	

Table 5 Structural Analysis of Retaining Wall (Section B)

 Calculation 	of stem	Effective Depth = $0.73(m)$			
Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	
0.50	0.000	0.000	0.046	0.000	
1.00	0.002	0.037	0.065	- 0.000	
1.50	0.084	0.320	0.083	0.000	
2.00	0.349	0.769	0.104	0.000	
2.50	0.881	1.385	0.128	0.000	
3.00	1.762	2.168	0.156	0.003	
3.50	3.076	3.117	0.188	0.905	
4.00	4.907	4.232	0.222	2.262	
4.50	7.337	5.514	0.260	4.149	
5.00	10.449	6.963	0.301	6.639	
5.40	13.486	8.242	0.335	9.114	
2. Calculation	of Toe		Effective Depth = 0	.93(m)	
	Bending			Required Area of	
Length (m)	Moment	Shearing Force (tf)	Required Effective Depth (m)	Tension Reinforcement (cm ²)	
(m)	Moment (tf·m)	(tf)	Depth (m)	Tension Reinforcement (cm ²)	
(m) 0.50	Moment (tf·m) 1.060	(tf) 4.232	Depth (m)	Tension	
(m) 0.50 1.00	Moment (tf·m) 1.060 4.224	(tf) 4.232 8.417	Depth (m)	Tension Reinforcement (cm²) 0.735	
(m) 0.50	Moment (tf·m) 1.060 4.224 6.588	(tf) 4.232	Depth (m) 0.084 0.167	Tension Reinforcement (cm²) 0.735 4.928 4.566	
(m) 0.50 1.00 1.25	Moment (tf·m) 1.060 4.224 6.588	(tf) 4.232 8.417	Depth (m) 0.084 0.167 0.209	Tension Reinforcement (cm²) 0.735 4.928 4.566	
(m) 0.50 1.00 1.25 3. Calculation Length	Moment (tf·m) 1.060 4.224 6.588 n of Heel Bending Moment	(tf) 4.232 8.417 10.492 Shearing Force	Depth (m) 0.084 0.167 0.209 Effective Depth = 0 Required Effective	Tension Reinforcement (cm²) 0.735 4.928 4.566 93(m) Required Area of Tension	
(m) 0.50 1.00 1.25 3. Calculation Length (m)	Moment (tf·m) 1.060 4.224 6.588 n of Heel Bending Moment (tf·m)	(tf) 4.232 8.417 10.492 Shearing Force (tf)	Depth (m) 0.084 0.167 0.209 Effective Depth = 0 Required Effective Depth (m)	Tension Reinforcement (cm²) 0.735 4.928 4.566 93(m) Required Area of Tension Reinforcement (cm²)	
(m) 0.50 1.00 1.25 3. Calculation Length (m) 0.50	Moment (tf·m) 1.060 4.224 6.588 n of Heel Bending Moment (tf·m) 0.301	(tf) 4.232 8.417 10.492 Shearing Force (tf) -1.195	Depth (m) 0.084 0.167 0.209 Effective Depth = 0 Required Effective Depth (m) 0.045	Tension Reinforcement (cm²) 0.735 4.928 4.566 .93(m) Required Area of Tension Reinforcement (cm²) 0.209 0.823	
(m) 0.50 1.00 1.25 3. Calculation Length (m) 0.50 1.00	Moment (tf·m) 1.060 4.224 6.588 n of Heel Bending Moment (tf·m) 0.301 1.188	(tf) 4.232 8.417 10.492 Shearing Force (tf) -1.195 -2.344	Depth (m) 0.084 0.167 0.209 Effective Depth = 0 Required Effective Depth (m) 0.045 0.089 0.132	Tension Reinforcement (cm²) 0.735 4.928 4.566 93(m) Required Area of Tension Reinforcement (cm²) 0.209 0.823 1.828 3.206	
(m) 0.50 1.00 1.25 3. Calculation Length (m) 0.50 1.00 1.50	Moment (tf·m) 1.060 4.224 6.588 n of Heel Bending Moment (tf·m) 0.301 1.188 2.637	(tf) 4.232 8.417 10.492 Shearing Force (tf) -1.195 -2.344 -3.445	Depth (m) 0.084 0.167 0.209 Effective Depth = 0 Required Effective Depth (m) 0.045 0.089 0.132	Tension Reinforcement (cm²) 0.735 4.928 4.566 .93(m) Required Area of Tension Reinforcement (cm²) 0.209 0.823 1.828 3.206	

Table 6 Stability Analysis of Retaining Wall (Section C)

Load	Vertica I Force (tf)	Arm Length (m)	Stabilizing Moment (tf•m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf • m)
Wall	24.524	2.091	51.280			
Weight of Wet Earth	28.080	3.550	99.684			
Weight of Saturated Earth	6.000	3.550	21.300			
Up Lift	-10.100	2.525	-25.503			
Water Pressure				-2.000	0.667	-1.334
Earth Pressure				-2.398	3.600	-8.633
Earth Pressure				-8.104	3.733	-30.252
Earth Pressure				-6.234	1.000	-6.234
Earth Pressure				-0.666	0.667	-0.444
Total	48.504	*	146.761	-19.402		-46.897
Total of Moment	$\Sigma M =$	99.864	(+6)			
Total of Vertical Force	$\Sigma V =$	48.504	•			
Total of Horizontal Force			/			
Total of Horizontal Poice	$\Sigma H =$	-19.402	(tr)			
Stability Against Overturnin Case-1: After Construction $\chi = (\sum M/\sum V) =$ Width of Invert $L =$	_	(m)				
Eccentric Length e =	0.466	(m)	<	L/6=	0.842	(m)
Soil Reaction $Q_1 =$	14.924	(tf/m^2)				
$Q_2 =$	4.286	(tf/m^2)				
Case-2: Under Construction		` ,				
$\chi' = M / V =$	2.091					
Eccentric Length e' =	0.434		<	L/6=	0.842	(m)
Soil Reaction $Q_1' =$		(tf/m²)		L/0	0.012	(III)
-1		-				
$Q_2' =$	2.334	(11/111)				
Factor of Safety Against Sli	ding					
Coefficient of friction	f=	0.600				
Cohesion	c=	0.000	(tf/m²)			
Total of Vertical Force	$\Sigma V =$	48.504				
Width of Invert	L=	5.050				
Total of Horizontal Force	$\Sigma H =$	19.402	` ,			
Factor of Safety				1.50	ΟV	
1 actor of Salety	$F_s =$	1.50	=	1.50	OK	

Table 7 Structural Analysis of Retaining Wall (Section C)

1. Calculation	of stem		Effective Depth = 0.	73(m)
Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.054	0.241	0.050	0.000
0.50 1.00	0.034	0.633	0.030	0.000
1.50	0.712	1.174	0.105	0.000
2.00	1.465	1.865	0.135	0.258
2.50	2.602	2.706	0.167	1.003
3.00	4.196	3.696	0.201	2.152
3.50	6.323	4.837	0.238	
4.00	9.058	6.127	0.277	5.928
4.50	12.475	7.567	0.319	8.687
5.00	16.650	9.157	0.362	
5.50	21.661	10.930	0.408	
6.00	27.635	13.022	0.456	
6.20	30.331	13.952	0.476	
0.20				
2. Calculation	of Toe		Effective Depth = 0 .	93(m)
Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
			0.100	
0.50	1.755	6.944	0.108 0.213	
1.00	6.868	13.433 16.506	0.213	
1.25	10.613	10.500	0.203	7.550
3. Calculation	of Heel		Effective Depth = 0 .	93(m)
Length (m)	Bending Moment	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
	(tf • m)			
0.50	0.863	-3.375	0.075	
1.00	3.299	-6.295	0.148	
1.50	7.082	-8.760	0.216	
2.00	11.983	-10.770	0.281	
2.50	17.776	-12.326	0.343	
3.00	24.233	-13.427	0.400	16.798

Table 8 Structural Analysis of Retaining Wall (Section D)

1. Calculation	of stem		Effective Depth = 0.9	93(m)
Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.000	0.000	0.059	0.000
1.00	0.000	0.000	0.083	0.000
1.50	0.000	0.000	0.102	0.000
2.00	0.000	0.000	0.118	0.000
2.50	0.000	0.000	0.132	0.000
3.00	0.000	0.000	0.144	0.000
3.50	0.000	0.000	0.156	0.000
4.00	0.000	0.000	0.167	0.000
4.50	0.000	0.000	0.177	0.000
2. Calculation	of Toe	***************************************	Effective Depth = 0.9	93(m)
Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.394	1.575	0.051	0.273
1.00	1.575	3.150	0.102	1.092
1.25	2.461	3.937	0.127	1.706
3. Calculation	of Heel		Effective Depth = 0.	93(m)
Length (m)	Bending Moment (tf•m)	Shearing Force (tf)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.394	1.575	0.051	0.273
1.00	1.575	3.150	0.102	1.092
1.25	2.461	3.937	0.127	1.706

Table 9 Stability Analysis of Abutment (Section E : Case A)

Load	Vertical Force (tf)	Arm Length (m)	Stabilizing Moment (tf•m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf·m)
Wall	22.825	2.129	48.594			
Weight of Wet Earth	28.080	3.550	99.684			
Weight of Saturated Earth	6.000	3.550	21.300			
Up Lift	-10.100	2.525	-25.503			
Water Pressure				-2.000		-1.334
Earth Pressure				-4.795		-17.262
Earth Pressure				-8.104		-30.252
Earth Pressure				-6.234		-6.234
Earth Pressure				-0.666	0.667	-0.444
Bridge	29.019	1.350	39.176			
Total	75.824		183.252	-21.799		-55.526
Total of Moment	$\Sigma M =$	127.725	(tf•m)			
Total of Vertical Force		75.824				
Total of Horizontal Force		-21.799				
	211		(/			
Stability Against Over Reaction Case-1: After Construction		and Soil				
$\chi = (\sum M / \sum V) =$	1.684	(m)				
Width of Invert $L =$	5.05	(m)				
Eccentric Length e =	0.841	(m)	<	L/6=	0.842	(m)
Soil Reaction $Q_1 =$	30.009	(tf/m²)				
$Q_2 =$	0.021	(tf/m^2)				
Case-2: Under Constructi	on					
$\chi' = M/V =$	2.129					
Eccentric Length e' =	0.396		<	L/6=	0.842	(m)
-						
Soil Reaction $Q_1' =$	6.646	(tf/m²)				
$Q_2' =$	2.393	(tf/m²)				
-						
Factor of Safety Against S	Sliding					
Coefficient of friction	f =	0.600	_			
Cohesion	c =	0.000	(tf/m^2)			
Total of Vertical Force	$\sum V =$	75.824	(tf)			
Width of Invert	L=	5.050	(m)			
Total of Horizontal Force	$\Sigma H =$	21.799	• •			
Factor of Safety	$F_{S}=$	2.09		1.50	OK	
	- 0		•			

Table 10 Structural Analysis of Abutment (Section E : Case A)

1. Calculation of stem

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
1.00	0.433	0.966	0.230	0.136	0.000
1.70	1.453	1.998	0.230	0.160	0.000
2.00	2.131	2.531	0.980	0.328	0.000
3.00	5.694	4.695	0.730	0.332	0.000
4.00	11.722	7.459	0.730	0.392	1.064
5.00	20.812	10.822	0.730	0.467	8.575
6.00	33.629	15.020	0.730	0.554	19.375
6.20	36.732	16.016	0.730	0.573	22.012

2. Calculation of Toe

Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	3.551	13.979	0.930	0.153	2.461
1.00	13.755	26.616	0.930	0.301	9.535
1.25	17.940	24.776	0.930	0.344	12.433

3. Calculation of Heel

Length (m)	Bending Moment (tf•m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	1.282	-4.906	0.930	0.092	0.889
1.00	4.682	-8.471	0.930	0.176	3.246
1.50	9.529	-10.694	0.930	0.251	6.606
2.00	15.153	-11.577	0.930	0.316	10.504
2.50	20.883	-11.118	0.930	0.371	14.475
3.00	26.047	-9.318	0.930	0.415	18.055

Table 11 Stability Analysis of Abutment (Section E : Case B)

Load	Vertical Force (tf)	Arm Length (m)	Stabilizing Moment (tf·m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf·m)
Wall	22.825	2.129	48.594			
Weight of Wet Earth	28.080	3.550	99.684			
Weight of Saturated Earth	6.000	3.550	21.300			
Up Lift	-10.100	2.525	-25.503			
Water Pressure				-2.000	0.667	-1.334
Earth Pressure				-4.795	3.600	-17.262
Earth Pressure				-8.104	3.733	-30.252
Earth Pressure				-6.234	1.000	-6.234
Earth Pressure				-0.666	0.667	-0.444
Bridge	16.777	1.350	22.649			
Total	63.582		166.725	-21.799		-55.526
Total of Moment	$\Sigma M =$	111.198	(tf·m)			
Total of Vertical Force	$\Sigma V =$	63.582	(tf)			
Total of Horizontal Force	$\Sigma H =$	-21.799	(tf)			
Stability Against Overturni Case-1: After Construction $\chi = (\sum M/\sum V) =$ Width of Invert $L =$ Eccentric Length $e =$ Soil Reaction $Q_1 =$ $Q_2 =$	1.749 5.05 0.776 24.200	(m) (m) (m)	<	L/6=	0.842	(m)
Case-2: Under Construction	on					
$\chi' = M / V =$	2.129					
Eccentric Length e	0.396		<	L/6=	0.842	(m)
Soil Reaction $Q_1' =$	6.646	(tf/m^2)				
$Q_2' =$	2.393	(tf/m^2)				
Factor of Safety Against SI Coefficient of friction Cohesion Total of Vertical Force Width of Invert	$\Gamma = \Gamma = \Gamma = \Gamma$	63.582 5.050	(m)			
Total of Horizontal Force	$\Sigma H =$	21.799		1.50	OK	
Factor of Safety	$F_S =$	1.75	>	1.50	UK	

Table 12 Structural Analysis of Abutment (Section E : Case B)

	1.	Calcu	lation	of	stem
--	----	-------	--------	----	------

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm2)
1.00	0.433	0.966	0.230	0.110	0.000
1.70	1.453	1.998	0.230	0.138	0.000
2.00	2.131	2.531	0.980	0.266	0.000
3.00	5.694	4.695	0.730	0.289	0.000
4.00	11.722	7.459	0.730	0.357	4.298
5.00	20.812	10.822	0.730	0.438	11.808
6.00	33.629	15.020	0.730	0.530	22.609
6.20	36.732	16.016	0.730	0.550	25.245

2. Calculation of Toe									
Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)				
0.50	2.852	11.242	0.930	0.137	1.977				
1.00	11.074	21.478	0.930	0.270	7.676				
1.25	13.839	18.562	0.930	0.302	1.643				

3. Calculation	on of Heel				
Length (m)	Bending Moment (tf•m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	1.190	-4.593	0.930	0.089	0.825
1.00	4.426	-8.181	0.930	0.171	3.068
1.50	9.203	-10.762	0.930	0.247	6.380
2.00	15.020	-12.337	0.930	0.315	10.412
2.50	21.373	-12.906	0.930	0.376	14.815
3.00	27.758	-12.469	0.930	0.428	19.242

Table 13 Structural Analysis of Pier (Section F)

1. Calculation of Toe

Soil Reaction Q = $[(58.038 + \{(0.5+0.75) \times 0.25 + 1.0 \times 4.5\} \times 2.45] / 3.50 = 19.951 \text{ tf/m}^2$ Up Lift = 2.00 tf/m^2

Maximum moment

$$M_{\text{max}} = \frac{1}{2} \times (19.951 + 2.00) \times 1.25^2 = 17.149 \text{ tf} \cdot \text{m}$$

Required area of tension reinforcement

As =
$$\frac{17.149 \times 10^5}{1,800 \times 0.862 \times 93}$$
 = 11.884 cm²

Required effective depth
$$D = 0.275 \sqrt{\frac{17.149 \times 10^5}{100}} = 33.7 \text{ cm}$$

 Table 14
 Stability Analysis of Retaining Wall (Section G)

Load	Virtical Force (tf)	Arm Length (m)	Stabilizing Moment (tf•m)	Horizontal Force (tf)	Arm Length (m)	Overturning Moment (tf·m)
Wall	7.901	1.540	12.168			
Weight of Earth	11.520	2.449	28.212			
Earth Pressure				-1.498	2.250	-3.371
Earth Pressure				-6.069	1.500	-9.104
Total	19.421		40.380	-7.567		-12.474
Total of Moment	$\Sigma M =$	27.906	(tf·m)			
Total of Virtical Force	$\Sigma V =$	19.421	(tf)			
Total of Horizontal For	ce $\Sigma H =$	-7.567	(tf)			
Stability Against Overto Case-1: After Construc	•					
$\chi = (\sum M / \sum V) =$	1.437	(m)				
Width of Invert L	= 3.25	(m)				
Eccentric Length e		• •	<	L/6=	0.542	(m)
Soil Reaction Q ₁	= 8.051	(tf/m^2)				
Q_2	= 3.901	(tf/m^2)				
Case-2: Under Constru	ction					
$\chi' = M/V =$	= 1.540					
Eccentric Length e' =	= 0.085		<	L/6=	0.542	(m)
Soil Reaction Q ₁ '	= 2.813	(tf/m^2)				
Q_2	= 2.050	(tf/m^2)				
Factor of Safety Agains Coefficient of friction	f =	0.600				
Cohesion	C=	0.000	(tf/m^2)			
Total of Vertical Force	$\Sigma V =$	19.421	(tf)			
Width of Invert	L=	3.250	(m)			
Total of Horizontal For	ce $\Sigma H =$	7.567	(tf)			
Factor of Safety	Fs=	1.54	>	1.50	ок	

Table 15 Structural Analysis of Retaining Wall (Section G)

1. Calculation of stem

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.054	0.241	0.255	0.024	0.014
1.00	0.266	0.633	0.280	0.048	0.363
1.50	0.712	1.174	0.305	0.075	1.123
2.00	1.465	1.865	0.330	0.106	2.345
2.50	2.602	2.706	0.355	0.139	4.065
3.00	4.196	3.696	0.380	0.175	6.312
3.50	6.323	4.837	0.405	0.213	9.104
4.00	9.058	6.127	0.430	0.254	12.459

2. Calculation	on of Toe				
Length (m)	Bending Moment (tf•m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.801	3.169	0.430	0.073	1.200
1.00	3.134	6.133	0.430	0.144	4.699
1.25	4.844	7.538	0.430	0.179	7.263

3. Calculation of Heel

Length (m)	Bending Moment (tf•m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.523	-2.056	0.430	0.059	0.783
1.00	2.022	-3.908	0.430	0.116	3.032
1.50	4.396	-5.555	0.430	0.170	6.591

APPENDIX C.4.5-2 Structural Computation of Spillway Outlet Channel Structure

APPENDIX C.4.5-2 (1) Flume

(1) Design Criteria

(a) Sectional Dimension for Analysis

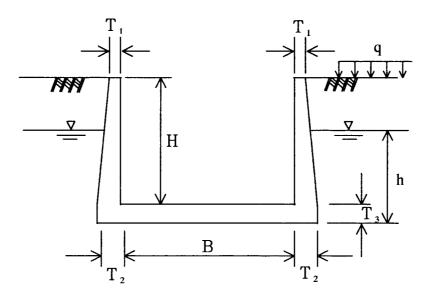


Table 1 Dimensions of flume

	D	ischarge Can	Stilling	g Basin	
Section	Type - 1	Type - 2	Type - 3	Type - 1	Type - 2
$T_1(m)$	0.30	0.30	0.30	0.30	0.30
$T_2(m)$	0.50	0.50	0.50	0.50	0.50
T ₃ (m)	0.50	0.50	0.50	0.50	0.50
H (m)	3.30	3.00	2.70	4.70	4.00
h(m)	0.00	0.00	0.00	1.60	0.90
B(m)	10.00	10.00	10.00	10.00	10.00

(b) Coefficient of Earth Pressure; Ka=0.333

(c) Live Load; $q=1.00 \text{ tf/m}^2$

(d) Up Lift; Stilling Basin Type $-1 = 1.60 \text{ tf/m}^2$ Stilling Basin Type $-2 = 0.90 \text{ tf/m}^2$

(2) Result of Analysis

Result of calculation of flume been made to show the results in Table 2 to 6.

Table 2 Structural Analysis of Flume (Discharge Canal Type-1)

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.054	0.241	0.260	0.024	0.011
1.00	0.266	0.633	0.291	0.048	0.339
1.50	0.712	1.174	0.321	0.076	1.045
2.00	1.465	1.865	0.351	0.106	2.164
2.50	2.602	2.706	0.382	0.140	3.723
3.00	4.196	3.696	0.412	0.176	5.741
3.30	5.403	4.363	0.430	0.199	7.177

2.	2. Calculation of Invert							
	Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)		
	0.00	-5.403	3.234	0.430	0.202	6.854		
	0.50	-3.863	2.926	0.430	0.175	4.545		
	1.00	-2.477	2.618	0.430	0.147	2.468		
	1.50	-1.245	2.310	0.430	0.116	0.621		
	2.00	-0.167	2.002	0.430	0.079	0.000		
	2.50	0.757	1.694	0.430	0.101	0.000		
	3.00	1.527	1.386	0.430	0.124	1.042		
	3.50	2.143	1.078	0.430	0.139	1.966		
	4.00	2.605	0.770	0.430	0.150	2.659		
	4.50	2.913	0.462	0.430	0.156	3.120		
	5.00	3.067	0.154	0.430	0.160	3.351		
	5.25	3.086	0.000	0.430	0.160	3.380		

 Table 3
 Structural Analysis of Flume (Discharge Canal Type-2)

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.054	0.241	0.263	0.025	0.009
1.00	0.266	0.633	0.297	0.049	0.326
1.50	0.712	1.174	0.330	0.076	1.003
2.00	1.465	1.865	0.363	0.107	2.069
2.50	2.602	2.706	0.397	0.140	3.547
3.00	4.196	3.696	0.430	0.177	5.450

2. Calculation	of Invert				
Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.00	-4.196	2.940	0.430	0.179	5.234
0.50	-2.796	2.660	0.430	0.151	3.135
1.00	-1.536	2.380	0.430	0.121	1.246
1.50	-0.416	2.100	0.430	0.085	0.000
2.00	0.564	1.820	0.430	0.090	0.000
2.50	1.404	1.540	0.430	0.117	1.049
3.00	2.104	1.260	0.430	0.135	2.099
3.50	2.664	0.980	0.430	0.148	2.938
4.00	3.084	0.700	0.430	0.157	3.568
4.50	3.364	0.420	0.430	0.163	3.988
5.00	3.504	0.140	0.430	0.166	4.197
5.25	3.522	0.000	0.430	0.166	4.224

Table 4 Structural Analysis of Flume (Discharge Canal Type-3)

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.054	0.241	0.267	0.025	0.007
1.00	0.266	0.633	0.304	0.049	0.311
1.50	0.712	1.174	0.341	0.077	0.954
2.00	1.465	1.865	0.378	0.107	1.961
2.50	2.602	2.706	0.415	0.141	3.348
2.70	3.180	3.084	0.430	0.155	4.012

2. Calculation of Invert

Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.00	-3.180	2.646	0.430	0.157	3.887
0.50	-1.920	2.394	0.430	0.128	1.998
1.00	-0.786	2.142	0.430	0.094	0.297
1.50	0.222	1.890	0.430	0.072	0.000
2.00	1.104	1.638	0.430	0.105	0.774
2.50	1.860	1.386	0.430	0.126	1.907
3.00	2.490	1.134	0.430	0.142	2.852
3.50	2.994	0.882	0.430	0.153	3.607
4.00	3.372	0.630	0.430	0.161	4.174
4.50	3.624	0.378	0.430	0.166	4.552
5.00	3.750	0.126	0.430	0.169	4.741
5.25	3.766	0.000	0.430	0.169	4.764

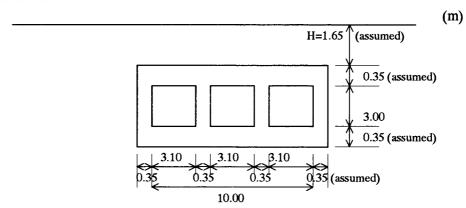
Table 5 Structural Analysis of Flume (Stilling Basin Type-1)

Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.054	0.241	0.262	0.025	0.010
1.00	0.266	0.633	0.294	0.049	0.332
1.50	0.712	1.174	0.326	0.076	1.022
2.00	1.465	1.865	0.358	0.107	2.113
2.50	2.602	2.706	0.390	0.140	3.628
3.00	4.196	3.696	0.421	0.176	5.583
3.50	6.323	4.837	0.453	0.215	7.991
4.00	9.061	6.160	0.485	0.256	10.863
4.50	12.538	7.802	0.517	0.300	14.272
4.70	14.172	8.552	0.530	0.319	15.809

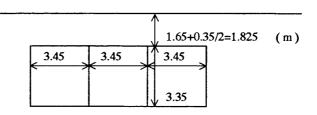
2. C	2. Calculation of Invert							
L	ength (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)		
	0.00	-14.172	13.662	0.530	0.326	14.879		
	0.50	-7.663	12.373	0.530	0.252	6.962		
	1.00	-1.799	11.084	0.530	0.158	0.000		
	1.50	3.421	9.795	0.530	0.189	1.802		
	2.00	7.996	8.506	0.530	0.257	7.367		
	2.50	11.927	7.218	0.530	0.303	12.149		
	3.00	15.214	5.929	0.530	0.337	16.146		
	3.50	17.856	4.640	0.530	0.362	19.360		
	4.00	19.853	3.351	0.530	0.380	21.790		
	4.50	21.207	2.062	0.530	0.391	23.436		
	5.00	21.916	0.773	0.530	0.397	24.298		
	5.30	22.032	0.000	0.530	0.398	24.439		

Table 6 Structural Analysis of Flume (Stilling Basin Type-2)

1. Calculation of wall


Height (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.50	0.054	0.241	0.267	0.025	0.006
1.00	0.266	0.633	0.305	0.049	0.309
1.50	0.712	1.174	0.342	0.077	0.948
2.00	1.465	1.865	0.380	0.108	1.948
2.50	2.602	2.706	0.418	0.141	3.324
3.00	4.196	3.696	0.455	0.178	5.087
3.50	6.323	4.837	0.492	0.217	7.244
4.00	9.061	6.160	0.530	0.258	9.805

2. Calculation of Invert


Length (m)	Bending Moment (tf·m)	Shearing Force (tf)	Effective Depth (m)	Required Effective Depth (m)	Required Area of Tension Reinforcement (cm²)
0.00	-9.061	9.180	0.530	0.263	9.322
0.50	-4.688	8.314	0.530	0.201	4.003
1.00	-0.747	7.448	0.530	0.120	0.000
1.50	2.760	6.582	0.530	0.166	
2.00	5.835	5.716	0.530	0.219	5.398
2.50	8.476	4.850	0.530	0.256	
3.00	10.685	3.984	0.530	0.283	11.297
3.50	12.460	3.118	0.530	0.303	13.457
4.00	13.802	2.252	0.530	0.317	15.089
4.50	14.712	1.386	0.530	0.326	16.195
5.00	15.188	0.520	0.530	0.331	16.775
5.30	15.266	0.000	0.530	0.332	16.870

APPENDIX C.4.5-2 (2) 3- Cell Box Culvert

(1) Sectional Dimension for Calculation

Rigid Frame Dimension

(2) Calculation of Load

(a) Case of Calculation

Considering condition, next cases should be calculated.

Case 1 Maximum wheel load works at middle of the middle box.

Case 1-1 Empty

Case 1-2 Full water (All Box)

Case 2 Maximum wheel load works middle of the side box.

Case 2-1 Empty

Case 2-2 Full water (All Box)

(b) Own Weight and Earth Weight Applied for Top Slab (W₁)

· Vertical Earth Pressure

 $1.643 \text{ tf/m}^2 \quad (= 0.5 * 1.8 * 1.825)$

· Concrete Weight of Top Slab

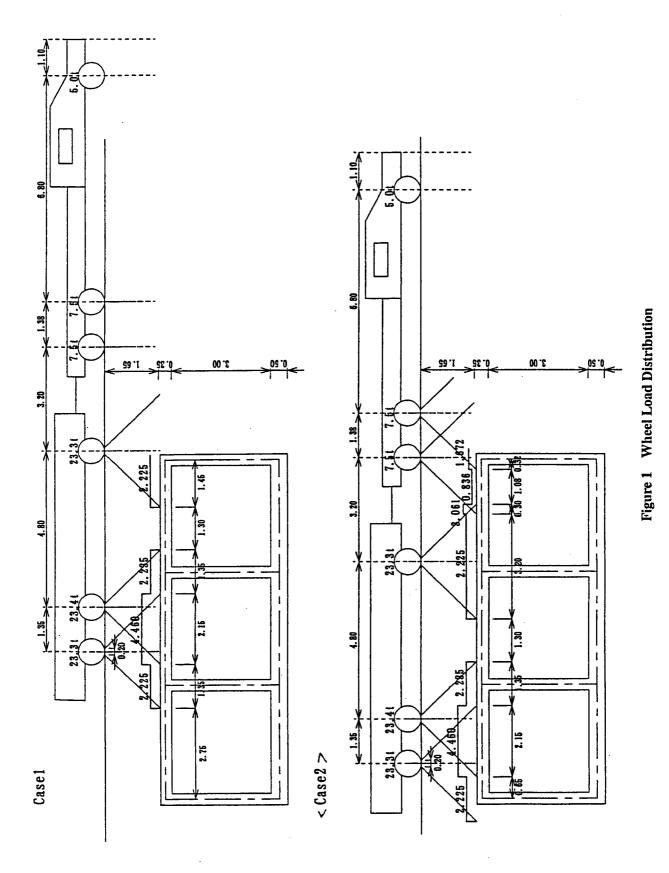
 $0.858 \text{ tf/m}^2 \quad (=0.35 * 2.45)$

· Wheel Load (T-70)

at H = 1.65 m

,	23.3t	23.4t	7.5t	5.0t
$q (tf/m^2)$	2.225	2.235	0.836	0.478

(c) Reaction Force of Bottom Slab (W₂)

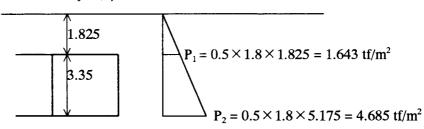

Reaction Force of Bottom Slab is calculated by round moment as follows;

Case 1

 $5.796 \sim 7.303 \text{ tf/m}^2$

Case 2

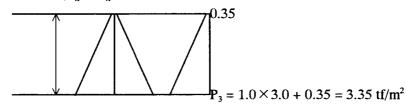
 $8.139 \sim 5.837 \text{ tf/m}^2$



C-119

(d) Side Earth Pressure $(P_1 \sim P_2)$

Side earth pressure should be calculated by following equation;


$$P = K_0 \times \gamma_t \times H$$

(e) Inner Water Pressure (P₃)

Inner water pressure should be calculated by following equation;

$$P = \gamma_w \times H_w$$

(f) Load Distribution

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as Figure 2 and Figure 5.

(g) Result of calculation

Upper: Element Number

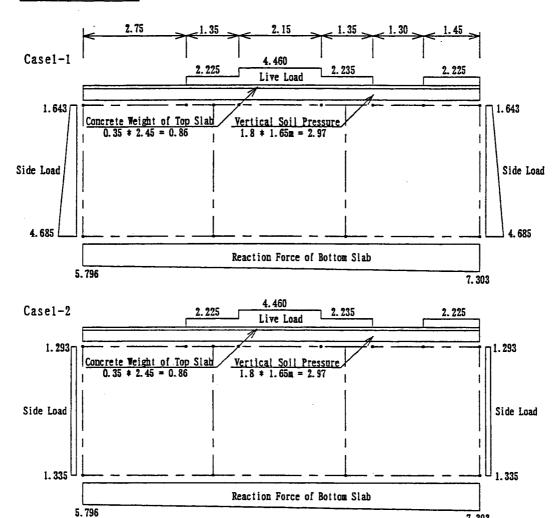
Middle: Required Reinforcement

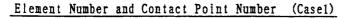
Lower: Required Perimeter

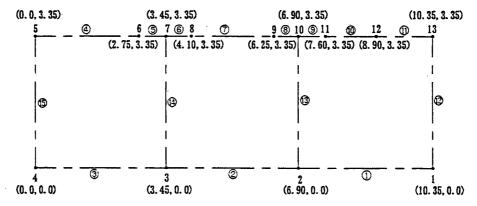
	Тор	Slab	Side Slab	Bottom Slab	
	Outside	Inside	Outside	Outside	Inside
	8	7	1 2	1)	1
Case 1-1	15.726	9.267	8.627	17.513	9.406
	33.598	0.000	17.233	33.282	0.000
	8	7	12)	0	1
Case 1-2	16.728	9.608	5.947	18.353	10.549
	33.598	0.000	6.913	34.465	0.000
	6	5	17	3	3
Case 2-1	16.192	11.521	7.569	16.856	9.833
	35.316	0.000	11.539	36.548	0.000
	(6)	(5)	17)	2	(3)
Case 2-2	17.455	13.095	5.495	17.942	12.233
	36.218	0.000	5.924	32.702	0.000

Stress Analysis of North Sinai Box Culvert (3 Cell)

			····				
			Top Slab Outside	Top Slab Inside	Side Slab Outside	Bottom Slab Outside	Bottom Slab Inside
Bending Mo	oment	M (kgf·cm)	789, 300	599, 900	489, 000	811, 500	560, 100
Axial Fo	rce	N(kgf)	2, 287	2, 287	8, 385	617	2, 115
Shearing F	force	S(kgf)	13, 983	-	6, 653	13, 306	-
Width		b (cm)	100	100	100	100	100
Thickne	ss	h (cm)	35. 0	35. 0	35. 0	35. 0	3 5. 0
Effective D	Depth	d (cm)	28. 0	28. 0	28. 0	28. 0	28. 0
Cover (Comp	ressive)	d ₁ (cm)	7. 0	7. 0	7. 0	7. 0	7. 0
Cover (Ter	nsile)	d ₂ (cm)	7. 0	7. 0	7. 0	7. 0	7. 0
Required Effect	ive Depth	<i>d</i> ₀ (cm)	23. 1	20. 3	19. 5	23. 2	19. 6
Judge	Axial Direction	Force	Compressive	Compressive	Compressive	Compressive	Compressive
			Case2-2	Case2-2	Case1-1	Case1-2	Case2-2
	Tensile Steel		Required	Required	Required	Required	Required
	Compressive S	teel	Not Required	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stre	ss σcl		-	-	-	-	-
Min. Compressive Stres	ss σc2		_	-	_	_	-
Area of Tensile Reinfor	cement As		17. 45	13.09	8. 62	18. 49	12. 23
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		_		_	-	-	
Min. Area of Rei		(cm ²)	0. 85	0. 85	0. 85	0. 85	0. 85
Required Area of R	Reinforcement	As (cm ²)	17. 45	13.09	8. 62	18. 49	12. 23
Required Per	rimeter	U(cm²)	36. 21		17. 23	34. 46	

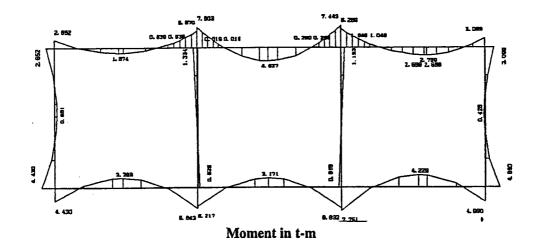

Design of Reinforcement

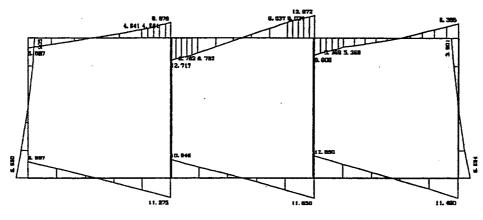

Main Reinforcement	Diameter	$D_I(\mathbf{n})$	19	22	19	19	22
1	Pitch	c.to.c (111)	250	250	250	250	250
	Area	As (cm²)	11. 34	15. 20	11. 34	11. 34	15. 20
	Perimeter	U_1 (cm)	24. 00	28. 00	24. 00	24. 00	28. 00
Main Reinforcement	Diameter	$D_2(\mathbf{n}\mathbf{n})$	16	-	-	16	_
2	Pitch	c.to.c (1111)	250	-	-	250	_
	Area	$As_2(cm^2)$	8. 04	- 1	-	8. 04	_
	Perimeter	$U_2(cm)$	20. 00	-	-	20. 00	-
Area of Reinforcement A	As(cm2)		19. 38	15. 20	11. 34	19. 38	15. 20
Perimeter of Reinforceme			44. 00	28. 00	24. 00	44. 00	28. 00


Stress Check

Distance form	n Neutral axis to C	Compressive Edge x	10. 464 9. 606 9. 824 10. 253 0. 875 0. 886 0. 883 0. 878		9. 602		
	j = 1 - x / (3	d)			0. 883	0. 878	0. 886
Reinforcement Tensile	σ,	1, 596	1, 502	1, 318	1, 690	1, 405	
	Stress	Judge(σ_{sa} =1,800kgf/cm ²)	0. K.	0. K.	0. K.	0. K.	0. K.
Concrete	Compressive	σ,	63. 5	52. 3	47. 5	65. 1	48. 9
	Stress	Judge(σ_{ca} =85kgf/cm ²)	0. K.	0. K.	0. K.	0. K.	0. K.
Shear Stress	Shear Stress	τ	5. 0	- 1	2. 4	4. 8	-
		Judge(τ =8.0kgf/cm ²)	0. K.		0. K.	0. K.	

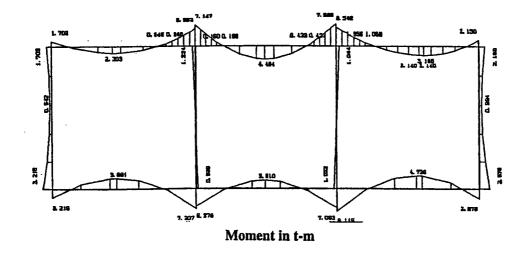
Load Distribution

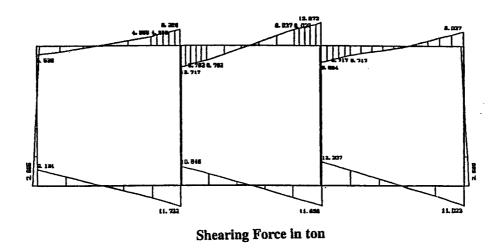


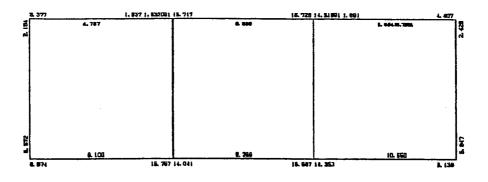


7. 303

Figure 2 Load Distribution and Numbers of Elements and Contact Points (Case 1)

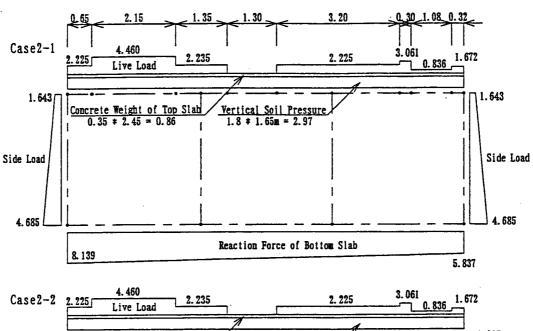


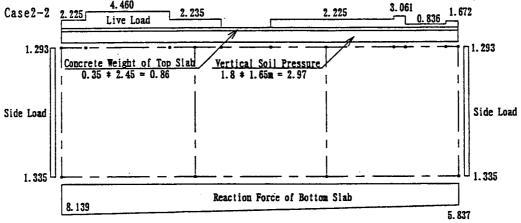

Shearing Force in ton



Necessary Reinforcement in cm²

Figure 3 Results of Structural Computation (Case 1-1)





Necessary Reinforcement in cm²

Figure 4 Results of Structural Computation (Case 1-2)

Load Distribution

Element Number and Contact Point Number (Case2)

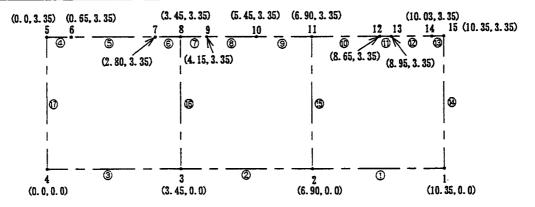
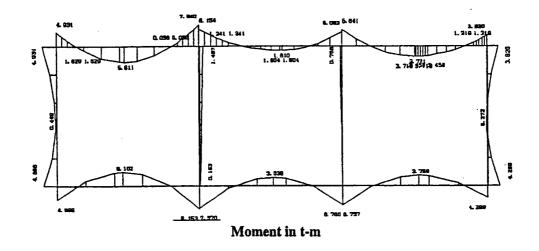
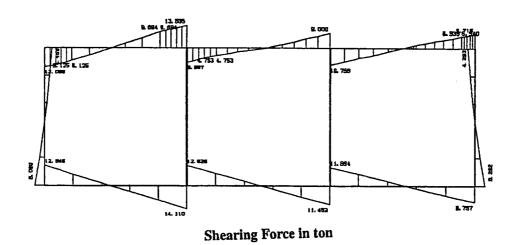
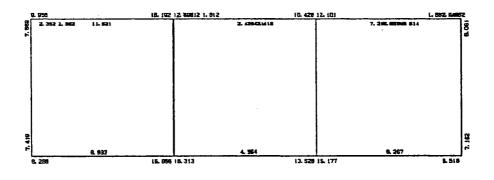
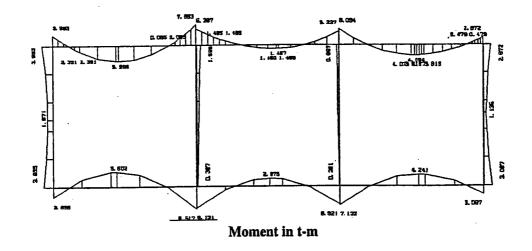
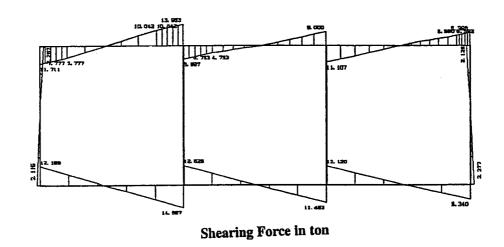
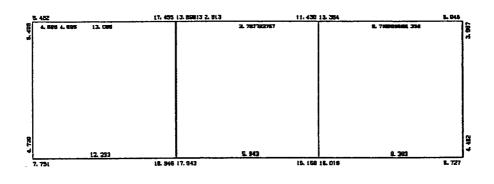





Figure 5 Load Distribution and Numbers of Elements and Contact Points (Case 2)
C-125

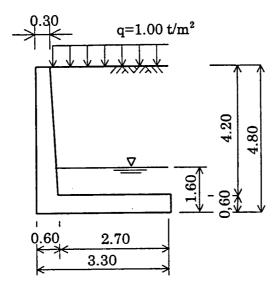






Necessary Reinforcement in cm²

Figure 6 Results of Structural Computation (Case 2-1)



Necessary Reinforcement in cm²

APPENDIX C.4.5-2 (3) Retaining Wall (Wing Wall at BP+1,161m)

(1) Section for Computation

(2) Results of Computation

The results of computation are shown in Tables 1 and 2.

Table 1 Stability Analysis of Retaining Wall (Wing Wall at BP+1,161m)

Load	Vertica 1 Force (tf)	Arm Length (m)	Stabilizing Moment (tf·m)		Arm Length (m)	Overturning Moment (tf•m)
Wall	8.820	1.012	8.926			
Weight of Wet Earth	13.532	1.854	25.088			
Weight of Saturated Earth	5.483		10.577			
Up Lift	-5.280	1.650	-8.712			
Water Pressure				-1.280	0.533	
Earth Pressure				-1.399		
Earth Pressure				-2.026		
Earth Pressure				-2.494		
Earth Pressure				-0.426		-0.236
Total	22.555		35.879	-7.625		-10.849
Total of Moment	$\Sigma M =$	25.030	(tf·m)			
Total of Vertical Force	$\Sigma V =$	22.555	(tf)			
Total of Horizontal Force	$\Sigma H =$	-7.625	(tf)			
Stability Against Overturning Case-1: After Construction $\chi = (\sum M/\sum V) = 0$ Width of Invert $L = 0$ Eccentric Length $e = 0$ Soil Reaction $Q_1 = 0$ $Q_2 = 0$	1.110 3.30 0.540 13.549 = 0.121	(m) (m)	<	L/6=	0.550	(m)
Case-2: Under Construction $ \chi' = M / V = Construction $ Eccentric Length $e' = Construction$ Eccentric Length $Q_1' = Construction$ Eccentric Length $Q_2' = Construction$ E	1.012 0.638 5.773		>	L/6=	0.550	(m)
Factor of Safety Against SI Coefficient of friction Cohesion Total of Vertical Force Width of Invert Total of Horizontal Force Factor of Safety	iding f = C = Σ V = L = Σ H = Fs =	0.000 22.555 3.300 7.625	(tf/m²) (tf) (m) (tf)	1.50	OK	

Table 2 Structural Analysis of Retaining Wall (Wing Wall at BP+1,161m)

1. Calculation of stem

Height (m)	(tf·m) Force (tf) Depth (m)			Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)
0.50	0.054	0.241	0.272	0.025	0.004
1.00	0.266	0.633	0.313	0.049	0.293
1.50	0.712	1.174	0.355	0.077	0.897
2.00	1.465	1.865	0.397	0.108	1.836
2.50	2.602	2.706	0.438	0.142	3.121
3.00	4.204	3.755	0.480	0.179	4.770
3.50	6.412	5.134	0.522	0.219	6.867
3.60	6.941	5.450	0.530	0.228	7.348

2. Calculation of Heel

Length (m)	Bending Moment (tf·m)	ent Snearing Effective		Required Effective Depth (m)	Required Area of Tension Reinforcement (cm ²)	
0.50	0.702	-2.644	0.530	0.068	0.854	
1.00	2.481	-4.309	0.530	0.128	3.018	
1.50	4.848	-4.995	0.530	0.179	5.896	
2.00	7.313	-4.702	0.530	0.220	8.895	
2.50	9.387	-3.431	0.530	0.249	11.418	
2.70	9.998	-2.648	0.530	0.257	12.160	