
APPENDIX C.4.3-1 Structural Computation of 4-Cell Box Culvert

(1) Sectional Dimension for Calculation

(2) Calculation of Load

(a) Own Weight and Earth Weight Applied for Top Slab (W_1)

The earth cover is from 1.0m to 5.0m. At 1.0m, box culvert is affected by mostly wheel load, and the loads distribute as Figure 1. On the other hand, at 5.0m box culvert is affected by the earth pressure more than wheel loads because unit wheel load scattered widely and becomes smaller (Figure 2). So, two cases, the case at H = 1.0m and at H = 5.0m, shall be calculated and compared, then at the strictest condition calculation should be done.

Vertical load applied for top slab shall be calculated by following equation;

W1 = [Own Weight of Top Slab] + [Vertical Earth Pressure] + [Wheel Load]

• Own Weight of Top Slab

Concrete Weight of Top Slab $0.5 \times 2.45 = 1.225 \text{ tf/m}^2$

· Vertical Earth Pressure

Vertical earth pressure shall be calculated by following equations; $Wv = \gamma \cdot H$

H=1.0m
$$Wv = 1.8 \times 1.0m = 1.8 \text{ tf/m}^2$$

H=5.0m $Wv = 1.8 \times 5.0m = 9.0 \text{ tf/m}^2$

• Wheel Load

$$q = \frac{P \cdot \beta}{W} = \frac{P \cdot \beta}{2H + 0.2} \qquad P = \frac{[Wheel Load]}{[Vehicle Occupation Width]} \times (1 + i)$$

where, q: Vertical load by wheel load (tf/m²)

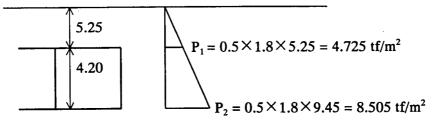
- P : Back wheel load per unit width
- β : Decreasing Coefficient of sectional force $\beta = 0.9$

- W : Distribute width(m)
- H : Earth Cover from the top of the box culvert to the surface of backfill earth

$H \ge 4.0m : i = 0.0$							
Wheel load	q (tf/m ²)						
wheel load	H = 1.0m	H = 5.0m					
23.3t	3.540	0.587					
23.4t	3.556	0.590					
7.5t	1.140	0.189					
5.0t	0.760	0.126					

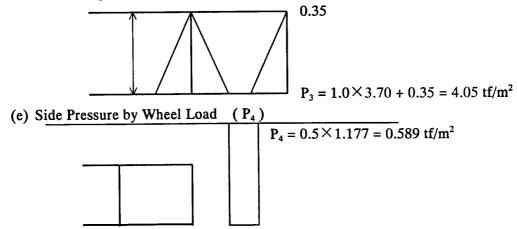
i : Impact Coefficient $H \le 4.0m$; i = 0.3

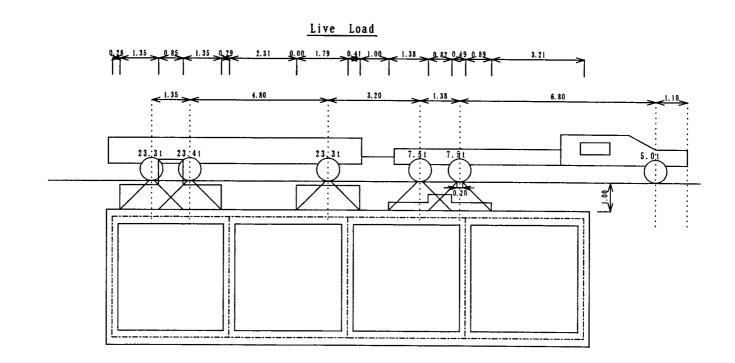
Comparing Figure of Load Distribution at H = 1.0m and H = 5.0m, obviously the latter (H = 5.0m) is larger. So the strictest condition is H = 5.0m, then the Earth Cover should be calculated as H = 5.0m.


(b) Reaction Force of Bottom Slab (W_2)

At H =5.0m, vertical load shall be assumed as uniform distributed load.

Concrete Weig	ght of Top Slab	1.225	
Vertical Soil I	Pressure	9.000	
Max. Live Lo	ad	1.953	
+) Concrete We	ght of Side Slab	1.255	$(=4.2\times0.4\times2.45\times5/(4.1\times4))$
Total	W ₂ =	13.433	tf/m ²


(c) Side Earth Pressure $(P_1 \sim P_2)$


Side earth pressure should be calculated by following equation ; $P = K_0 \times \gamma_t \times H$

(d) Inner Water Pressure (P_3)

Inner water pressure should be calculated by following equation ; $P = \gamma_w \times H_w$

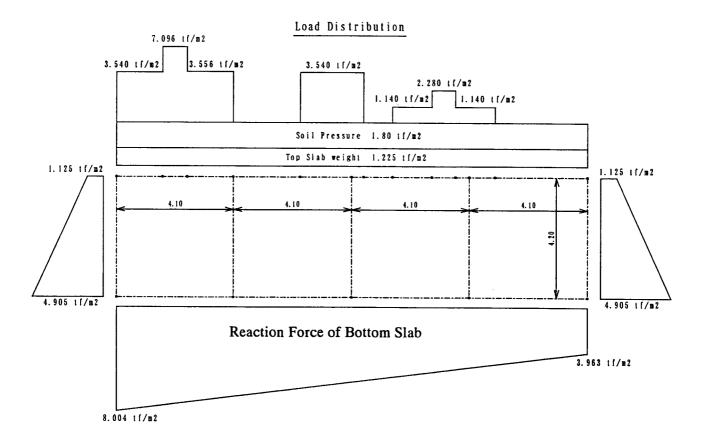
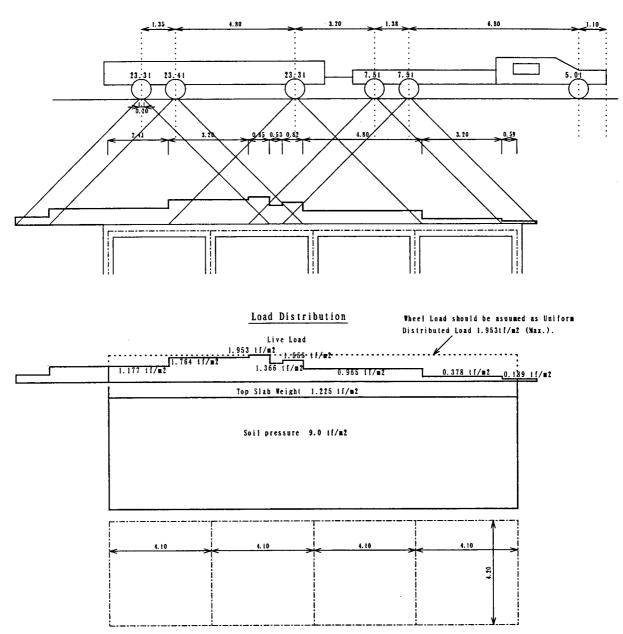
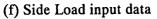
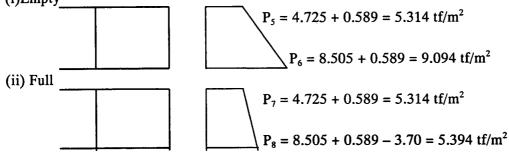




Figure 1 Live load and Load Distribution for Top Slab at H = 1.0m



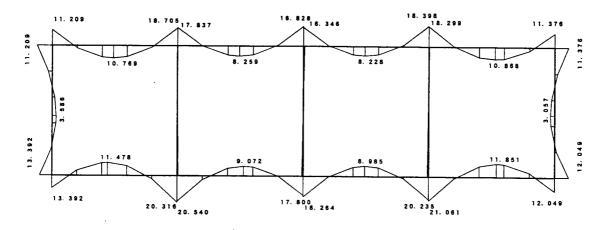
(i)Empty_

(g) Result of calculation

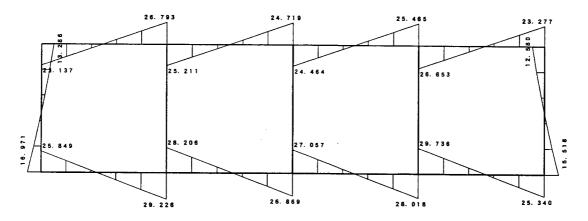
Upper : Element Number Middle: Required Reinforcement Lower : Required Perimeter

		Тор	Slab	Side Slab	Bottom Slab		
		Outside	Inside	Outside	Outside	Inside	
		5	8	13	1	1	
Case 1	Empty	24.246	12.700	19.183	31.447	17.640	
		45.189	0.000	37.297	50.152	0.000	
		5	8	13	1	1	
Case 3	4cell Full	26.059	14.925	13.752	32.891	19.425	
		46.325	0.000	23.915	51.720	0.000	
	3cell Full	5	5	9	1	1	
Case 2-1		25.943	14.663	17.578	32.338	17.412	
		46.302	0.000	34.528	54.747	0.000	
	3cell Full	5	8	13	2	1	
Case 2-2		26.246	15.211	12.913	32.614	18.053	
		46.330	0.000	23.618	54.461	0.000	
Man		26.246	15.211	19.183	32.891	19.425	
Max.		46.330	0.000	37.297	54.747	0.000	

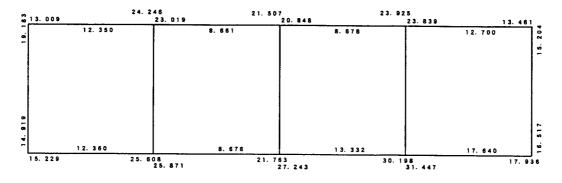
	_						
			Top Slab Outside	Top Slab Inside	Side Slab Outside	Bottomu Slab Outside	Bottom Slab Inside
Bending Mo	oment	M(kgf·cm)	1,946,400	1,201,200	1,339,200	2,198,900	1,301,400
Axial For	rce	N(kgf)	10,270	9,789	23,137	260	260
Shearing F	orce	S(kgf)	27,470	-	16,971	30,666	-
Width		<i>b</i> (cm)	100	100	100	100	100
Thickne	ss	<i>h</i> (cm)	50.0	50.0	50.0	50.0	50.0
Effective D	Pepth	<i>d</i> (cm)	43.0	43.0	43.0	43.0	43.0
Cover (Comp	ressive)	$d_1(\text{cm})$	7.0	7.0	7.0	7.0	7.0
Cover (Ter		$d_2(\text{cm})$	7.0	7.0	7.0	7.0	7.0
Required Effect		$d_{q}(\mathrm{cm})$	37.4	30.1	34.0	38.1	29.3
Judge	Axial Direction	Force	Compressive	Compressive	Compressive	Compressive	Compressive
	Tensile Steel		Required	Required	Required	Required	Required
	Compressive S	Compressive Steel		Not Required	Not Required	Not Required	Not Required
Max. Compressive Stre	ss σ_{cl}		-	-	-	-	-
Min. Compressive Street	s σ_{c2}		-	-	-	-	-
Area of Tensile Reinfor	cement As		26.24	15.21	19.18	32.88	19.43
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)			-	-	-	-	-
Min. Area of Reinforcement (cm ²)			0.85	0.85	0.85	0.85	0.85
Required Area of R	einforcement	$As(\text{cm}^2)$	26.24	15.21	19.18	32.88	19.43
Required Per	rimeter	<i>U</i> (cm ²)	46.32	-	37.30	51.71	-


Stress Analysis of North Sinai Box Culvert (4 cell)

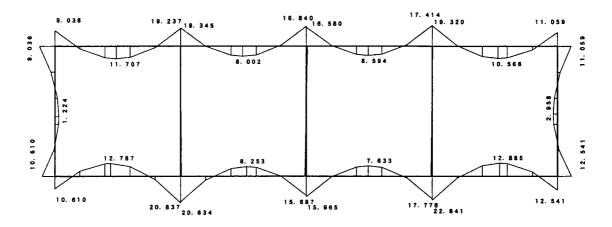
Design of Reinforcement


Main Reinforcement	Diameter	$D_1(\mathbf{m})$	22	22	25	25	25
1	Pitch	c.to.c (■■)	250	250	250	250	250
-	Area	$As_1(\text{cm}^2)$	15.20	15.20	19.64	19.64	19.64
	Perimeter	$U_1(\text{cm})$	28.00	28.00	32.00	32.00	32.00
Main Reinforcement	Diameter	D ₂ (mm)	19	-	22	22	-
2	Pitch	c.to.c (111)	250	-	250	250	-
r	Area	$As_2(\text{cm}^2)$	11.34	-	15.20	15.20	-
	Perimeter	$U_2(\text{cm})$	24.00	-	28.00	28.00	-
Area of Reinforcement As(cm2)		26.54	15.20	34.84	34.84	19.64	
Perimeter of Reinforcement U(cm2)		52.00	28.00	60.00	60.00	32.00	

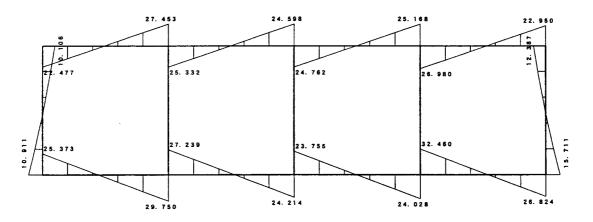
Stress Check


Distance form Neutral axis to Compressive Edge x			16.157	13.587	20.947	16.637	13.283
i = 1 - x / (3 d)		0.875	0.895	0.838	0.871	0.897	
Reinforcement Tensile Stress	σ	1,747	1,711	734	1,654	1,722	
	Stress	Judge (σ_{sa} =1,800kgf/cm ²)	O.K.	0.K.	O.K.	O.K.	0.K.
Concrete	Compressive	σ	70.1	52.7	46.5	69.6	51.3
	Stress	Judge (σ_{ca} =85kgf/cm ²)	0.K.	0.K.	O.K.	O.K.	0.K.
	Shear Stress	τ	6.4	-	3.9	7.1	-
		Judge ($\tau_a=8.0$ kgf/cm ²)	0.K.		0.K.	O.K.	

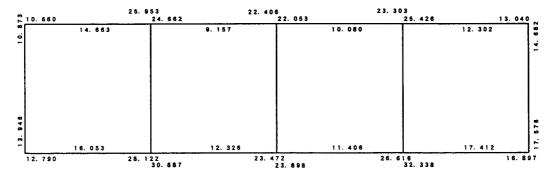
Moment in t-m



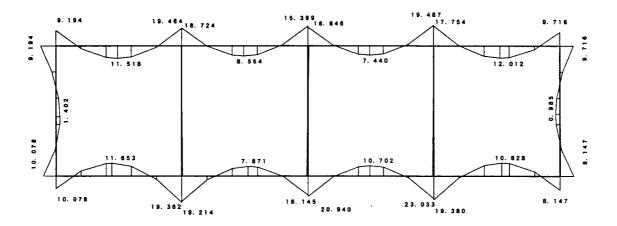
Shearing Force in ton



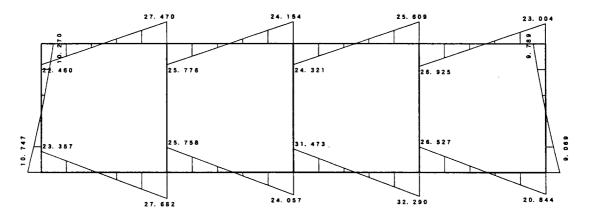
Necessary Reinforcement in cm2


Result of Structural Computation (Case1)

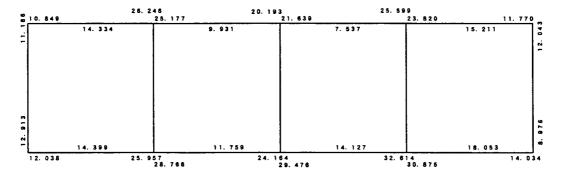
Moment in t-m



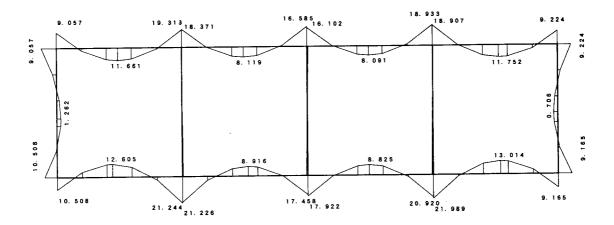
Shearing Force in ton



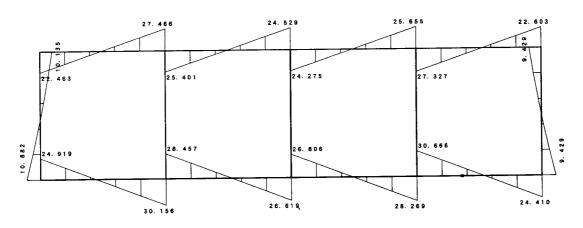
Necessary Reinforcement in cm2



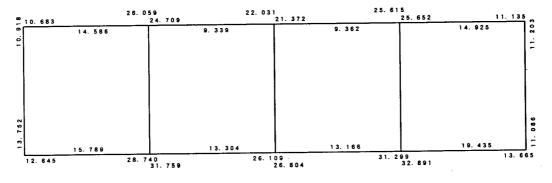
Moment in t-m

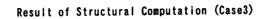


Shearing Force in ton

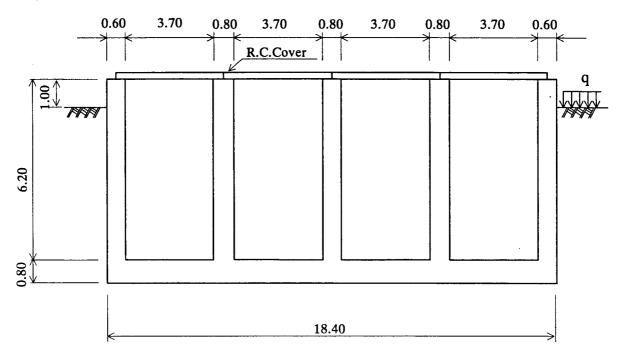


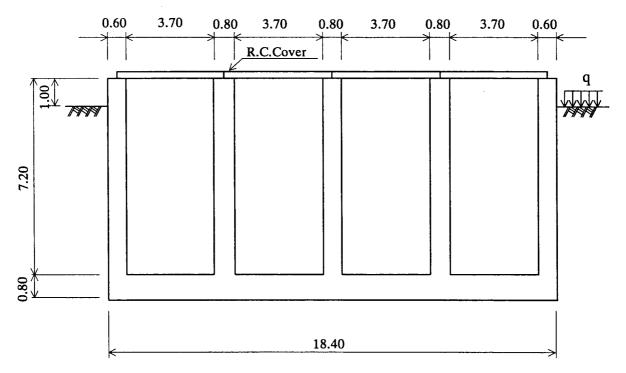
Necessary Reinforcement in cm2

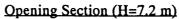

Result of Structural Computation (Case2-2)


Moment in t-m

Shearing Force in ton

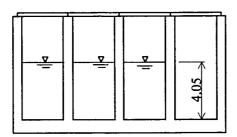

Necessary Reinforcement in cm2

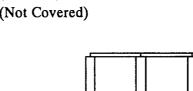

APPENDIX C4.3-2 Structural Computation of Openings

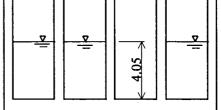

(1) Design Criteria

(a) Sectional Dimension for Analysis

Opening Section (H=6.2 m)




(b) Case of Analysis


Considering condition, next cases should be analyzed each section.

Case 1-1	Empty	(Covered)	
Case 1-2	Empty	(Not Covered)	
Case 2-1	3 cells f	illed by Water	(Covered)
Case 2-2	3 cells f	illed by Water	(Not Covered)
Case 3-1	3 cells f	illed by Water	(Covered)
Case 3-2	3 cells f	illed by Water	(Not Covered)

Case 3

- (c) Active Load
 Live Load ; Q=2.00 tf/m²
- (d) Earth Pressure Coefficient of Earth Pressure ; Ka=0.333 Earth Weight ; γ_1 =1.8 tf/m³
- (e) Design of Reinforcement

Design of reinforcement is decided by using the biggest required area of tension reinforcement

(2) Result of Structural Analysis

Load and sectional force are showed Figure $1 \sim 12$, and results of analysis are showed Table 1 and 2.

			•	· · · · · · · · · · · · · · · · · · ·	· · ·	Unit; cm ²			
		Side Wall	Separate	·	Bottom Plate				
	Case	(Outside)	Wall	End (Outside)	Center (Inside)	Center (Outside)			
Case 1-1	Covered	24.023	0.000	17.130	4.320	11.533			
Case 1-2	Not Covered	27.692	0.000	17.130	0.881	3.885			
Case 2-1	Covered	24.023	6.093	17.130	8.507	14.033			
Case 2-2	Not Covered	27.692	12.970	17.130	6.463	4.287			
Case 3-1	Covered	6.155	6.242	6.772	7.495	17.008			
Case 3-2	Not Covered	9.823	12.970	6.772	3.488	8.665			
	MAX	27.692	12.970	17.130	8.507	17.008			

Table 1Structural Analysis of Opening (H=6.2 m)

 Table 2
 Structural Analysis of Opening (H=7.2 m)

Unit ; cm²

		Side Wall	Separate	Bottom Plate			
	Case	(Outside) Wall		End (Outside)	Center (Inside)	Center (Outside)	
Case 1-1	Covered	40.089	0.000	27.741	4.585	12.762	
Case 1-2	Not Covered	43.758	0.000	27.741	1.591	5.130	
Case 2-1	Covered	40.089	16.949	27.741	11.462	15.818	
Case 2-2	Not Covered	43.758	23.826	27.741	14.735	6.813	
Case 3-1	Covered	7.263	17.098	7.831	10.431	21.049	
Case 3-2	Not Covered	10.932	23.826	7.831	9.504	12.729	
	MAX		23.826	27.741	14.735	21.049	

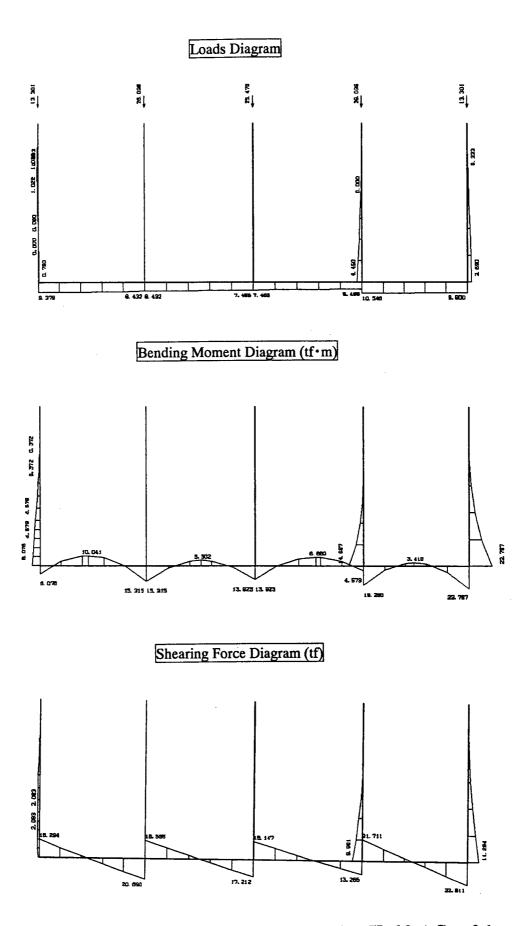
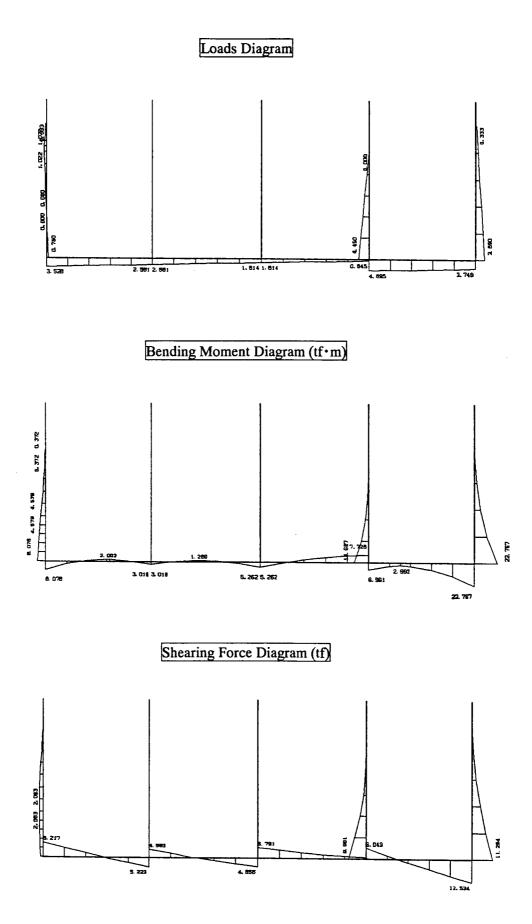
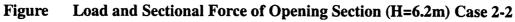
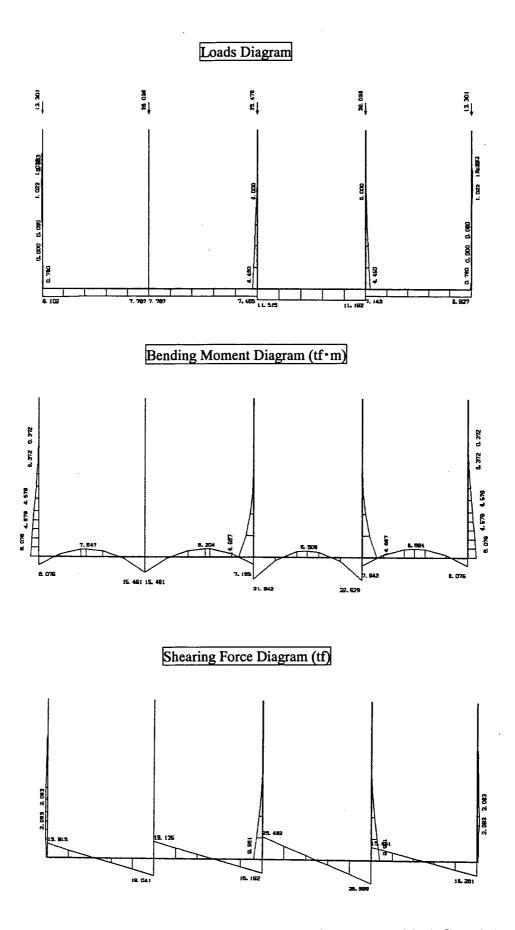
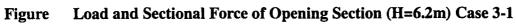






Figure Load and Sectional Force of Opening Section (H=6.2m) Case 2-1

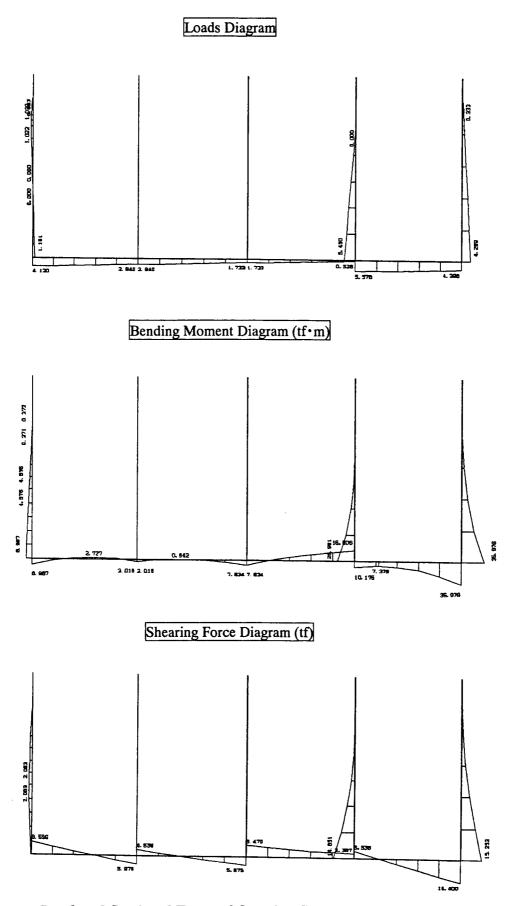
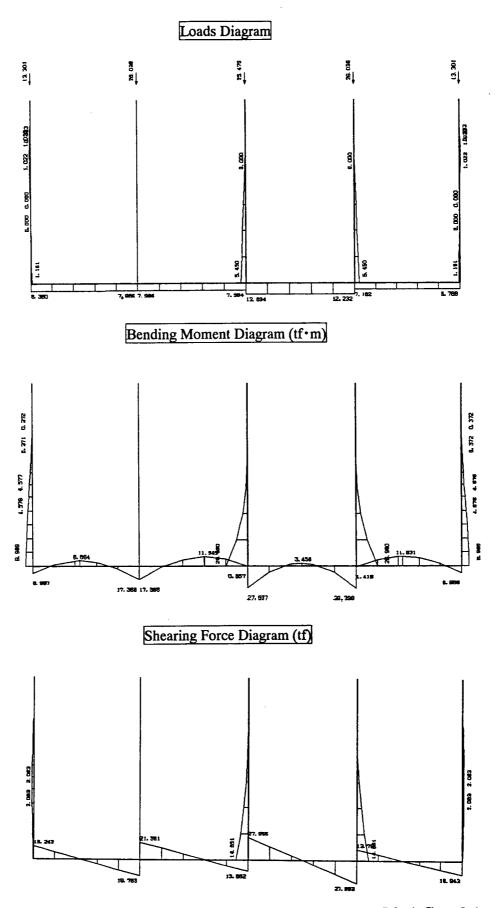
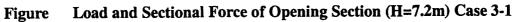




Figure Load and Sectional Force of Opening Section (H=7.2m) Case 2-2

APPENDIX C.4.4-1 Calculation or Detail Procedure of Steel Pipe Wall Thickness

(1) Design condition (summarized)

Steel pipe dimension	Diameter	D = 2400 mm, Dc = 2438.4 mm
		t = 22 mm
Design Inner pressure		$P = 12 \text{ kgf/cm}^2$
Earth cover from the top of pipe	to the surface	of backfill or embankment
		$H = 1.0 \sim 5.0 m$
Vertical load (Truck load)		T - 70
Unit weight of wet soil		$\gamma = 1.8 \text{ tf/m}^3$
Angle of shear resistance		$\phi = 30^{\circ}$
Design support angle		$\theta = 90^{\circ}$
Reaction modulus of foundation	material	$E' = 48 \text{ kgf/cm}^2$
Excavation method		Non sheet pile method
Excavation width		B = 23.6/3 = 7.87 m
Material of steel pipe		STPY400
Allowable stress		$\sigma a = 1400 \text{ kgf/cm}^2$
Design deflection ratio (%)		3%

(2) Tensile stress by Inner pressure of pipe

$\sigma t = PD/2t$	where, σt : Tensile stress by Inner pressure of pipe (kgf/cm ²)
	P : Inner pressure (12 kgf/cm^2)
	D : Inner diameter of pipe (Dc-2t = $243.8 - 2 \times 2.2 = 239.4 \text{ cm}$)
	t : Pipe thickness $(t = 2.2 \text{ cm})$
	$\sigma t = 12 \times 239.4 / (2 \times 2.2) = 653 \text{ kgf/cm}^2 < \sigma a = 1400 \text{ kgf/cm}^2 \text{ O.K.}$

(3) Vertical earth pressure

Vertical earth pressure shall be calculated by following equations;

	$\int H$	' ≦ 2.0	0 m	$Wv = \gamma \cdot H$	(Vertica	l Earth H	Press.F.)	
) H	r > 2.0)m	$Wv = \gamma \cdot H$ $Wv = Cd \cdot \gamma \cdot H$	B (Marsto	n's F.)		
	•							
$H \leq$	2.0 m	Wv = 2	∕ •H					
	Н	= 1.0 n	n	Wv =	: 0.18 (kgf/ci	m²)		
	Н	= 2.0 n	n	Wv =	: 0.36 (kgf/ci	m^2)		
Н>	2.0m	Wv = C	$Cd \cdot \gamma \cdot B$,		
		Cd =	= (1 - e	- 2K • µ' • H / E	$(2K\mu')$			
			•	$in \phi) / (1 + sin)$,	n30°)/	(1 + sin3)	0°)
			$\cdot K = 0$		// (,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(~)
		đ		on Angle (gen	erally $\phi =$	ძ ე .:	. d' = 30°	
				on coefficient	-	,		
H (m)	K	μ'	B(cm)	-2K•μ•H/B	$e^{-2\mathbf{K}\cdot\boldsymbol{\mu}\cdot\mathbf{H}/\mathbf{B}}$	Cd		W -(1 - C (- - 2)
<u> </u>	Λ	μ	D(CIII)	$-2K^{*}\mu^{*}\Pi/D$	e	Cu	γ	Wv(kgf/cm ²)
3.0				-0.1453	0.865	0.355		0.503
4.0	0.33	0.58	787	-0.1938	0.824	0.462	0.0018	0.655
5.0				-0.2422	0.785	0.564		0.799

(4) Wheel Load

$$Wv = \frac{P \cdot \beta}{W} = \frac{P \cdot \beta}{155 + 2H}$$
$$P = \frac{2 \times ([FrontWheelLoad] + [BackWheelLoad])}{[VehicleOccupationWidth]} \times (1+i)$$

where, Ww : Vertical load by wheel load (kgf/cm^2)

- P : Back wheel load per unit length (kgf/cm)
- β : Decreasing coefficient of sectional force $\beta = 0.9$
- W : Distribute width (cm)
- H : Earth cover from the top of the pipe to the surface of backfill earth (cm)
- i : Impact coefficient

Wheel Load and Vehicle occupation Width

Load	Weight (tf)	Front wheel load (kgf)	Back Wheel load (kgf)	Vehicle Occupation Width(cm)
T-70	70	11650	11700	350

Standard Value of *i*

Road Condition	H < 1.5m	1.5m≦H<2.5m	2.5 m ≦ H
Non-Pavement	0.4	0.3	0.2

Vertical Pressure by Wheel Load

H(m)	Back Wheel Loads (kgf)	Vehicle Occupation width (cm)	i	P (kgf/cm)	β	Wt (kgf/cm ²)
1.0			0.4	187		0.474
2.0			0.3	173		0.281
3.0	11700	350	0.2	160	0.9	0.191
4.0			0.2	160		0.151
5.0			0.2	160		0.125

(5) Calculation of Deflection

$$\Delta X = \frac{2Kx \cdot (Wv + Wt) \cdot R^4}{EI + 0.061E^{t}R^3}$$

Coefficient by Support Angle of Foundation

Support Angle	Kb	Kx	0.061Kb - 0.083Kx
90°	0.157	0.096	0.00171

R : Mean radius of the pipe R = (243.8 - 2.2) / 2 = 120.8 cm

E : Modulus of elasticity of the pipe $E = 2100000 \text{ kgf/cm}^2$

I: Moment of inertia per unit length of cross-section of the pipe wall

$$I = t^3 / 12 = 2.2^3 / 12 = 0.887 \text{ cm}^4$$

E': Modulus of Soil Reaction $E' = 48 \text{kgf/cm}^2$

H(m)	Wv	Wt	Δx	Design Deflection $\Delta X/D \times 100$ (Ratio %)	Judge
1.0	0.180	0.474	3.804	1.6% <	3%	O.K.
2.0	0.360	0.281	3.732	1.5% <	3%	O.K.
3.0	0.503	0.191	4.036	1.7% <	3%	O.K.
4.0	0.655	0.151	4.688	1.9% <	3%	O.K.
5.0	0.799	0.125	5.378	2.2% <	3%	0.K.

Calculation of Deflection

(6) Flexural Stress

$$\sigma_{b} = \frac{2(Wv + Wt)}{f \cdot Z} \times \frac{Kb \cdot R^{2} \cdot EI + (0.061Kb - 0.083Kx) \cdot E' \cdot R^{5}}{EI + 0.061E' \cdot R^{3}}$$

 σ_b : Bending stress at the bottom of pipe

Z: Section modulus
$$Z = t^2 / 6 = 2.2^2 / 6 = 0.81$$
 (cm³/cm)

Kb : Coefficient for bending moment at the bottom of pipe Kb = 0.157

		Juiculation	и пелата о	UI 000		
H(m)	Wv	Wt	$\sigma_{\mathfrak{b}}$		σ_{a}	Judge
1.0	0.180	0.474	977	<	1400	O.K.
2.0	0.360	0.281	959	<	1400	O.K.
3.0	0.503	0.191	1037	<	1400	O.K.
4.0	0.655	0.151	1204	<	1400	O.K.
5.0	0.799	0.125	1382	<	1400	O.K.

Calculation of Flexural Stress

Following table shows in case 1m to 5m earth cover and 15 mm to 22 mm pipe wall thickness based on 70 ton truck load as an example.

D=2400m Dc=2438r		Upper : Deflection ratio (%) Lower : Bending stress (kgf/cm ²)				
t H(m)	15	16	19	22		
1.0	1.9%	1.9%	1.7%	1.6%		
	1386 O.K.	1297 O.K.	1111 O.K.	977 O.K.		
2.0	1.9%	1.8%	1.7%	1.5%		
	1360 O.K.	1273 O.K.	1090 O.K.	958 O.K.		
3.0	2.0%	2.8%	1.8%	1.7%		
	1470 OUT!	1377.O.K.	1179 O.K.	1037 O.K.		
4.0	2.4	2.3%	2.1%	1.9%		
	1708 OUT!	1599 OUT!	1369 O.K.	1204 O.K.		
5.0	2.7%	2.7%	2.5%	2.2%		
	1959 OUT!	1835 OUT!	1571 OUT!	1382 O.K.		

Notes : Hatched thickness is minimum required thickness for each earth cover.

APPENDIX C.4.4-2 Required Length for Thrust Load and Restriction Force

The horizontal force P_1 and axial force P_2 for discharged pipes will act at the bending part of the pipes and deflection δ_1 by P_1 and expansion δ_2 by P_2 will be occurred at the bending part of the pipes. The relationship between balance of forces and deflection by P_1 and P_2 can be respectively developed as follows :

$$\mathbf{P}_1 \cos \theta + \mathbf{P}_2 \sin \theta = \mathbf{P}/2,$$

$$\delta = \frac{\delta_1}{\cos\theta} = \frac{\delta_2}{\sin\theta} \quad \text{and} \quad \delta_1 = \frac{P_1 \cdot \beta}{D_c \cdot K} , \quad \delta_2 = \frac{P_2^2}{2\alpha D_c}$$

From the above equation, P_1 , P_2 and l_1 , l_2 can be developed as follows :

Effective required length for the bending force and axial force shall be longer than l_1 and l_2 which can be calculated by the following equations:

$$l_1 = \pi/\beta$$

$$l_2 = P_2 /\mu \cdot w \cdot H_c \cdot \pi \cdot D_c$$

Then, $P_1 = \frac{P_h}{2 \cdot \cos \theta} - P_2 \cdot \tan \theta$ $P_2 = -\frac{\alpha \cdot \beta}{K} \cdot \tan^2 \theta + \sqrt{\left(\frac{\alpha \cdot \beta}{K} \cdot \tan^2 \theta\right)^2 + \frac{\alpha \cdot \beta \cdot P_h \cdot \tan \theta}{K \cdot \cos \theta}}$ $\alpha = A_s \cdot E \cdot \mu \cdot w \cdot H_c \cdot \pi$ $\beta = \sqrt[4]{\frac{K \cdot D_c}{4E \cdot I}}$

Where, l_1 : Required effective length of straight pipeline against bending force (kgf)

- l_2 : Required effective length of straight pipeline against axial force (kgf)
- P_{h} : Thrust force (kgf)
- P₁: Right angle force to axial of pipeline (kgf)
- P₂: Axial force at A point (kgf)

A_s: Real sectional area of pipe (cm²) A_s = $\frac{v}{4}$ (244² - 240²) = 1520 cm²

- E : Young's modulus $E = 2.1 \times 10^6 (\text{kg/cm}^3)$
- I : Geometrical moment of inertia (cm⁴)

$$I = \frac{\pi}{64} \left(D_c^4 - D^4 \right) = \frac{3.14}{64} \left(244^4 - 240^4 \right) = 1.11 \times 10^7 \, \text{cm}^4$$

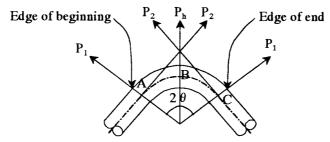
D_c: Outside diameter of pipe (cm)

 2θ : Intersection angle (°)

K : Soil repulsive modulus at horizontal direction.(kgf/cm³)

 $K = 0.691 \cdot N^{0.406}$ (kgf/cm³) by Hukuoka, and Udo

$$\mu$$
: Friction factor μ = tan ϕ ϕ : Angle of shearing resistance. (°)


w : Unite weight of soil. (kgf/cm³)

- H_c: Height of ground surface above top of pipe. (cm)
- t : Pipe wall thickness. (cm)

Location	Intersection angle $\theta(°)$	Inner Pressure H (tf/m²)	Vertical thrust force Ph (kg)	Axial force at A P2(kg)	Effective length L1 (cm)	Effective length L2 (cm)	Applied effective length (cm)
IP.16	34.83	120	335432	258155	2124	1407	2124
IP.17'-1	10.92	80	71094	107537	2124	586	2124
IP.17	21.83	80	141479	152744	2124	832	2124
IP.18'-1	26.42	80	170744	163833	2124	893	2124
IP.19'	12.17	80	79203	114794	2124	626	2124
IP.20'	9.67	80	62976	99514	2124	542	2124
IP.21'-1	10.00	60	48840	83209	2124	454	2124
IP.22'	30.02	20	48377	46666	2124	255	2124

Result of Required length calculation

Soil repulsive modulus at horizontal direction : $K = 0.691 \cdot N^{0.406} = 1.76 \text{kgf/cm}^3$ (N : Assumed N value : 10)

Diagram of thrust force

As shown above calculation, if there is structurally continuous length more than 21.3m of steel pipeline without any joint in case 1m earth cover, no thrust block is requested. it is generally accepted in the steel pipeline without provision of any thrust block as a common knowledge.

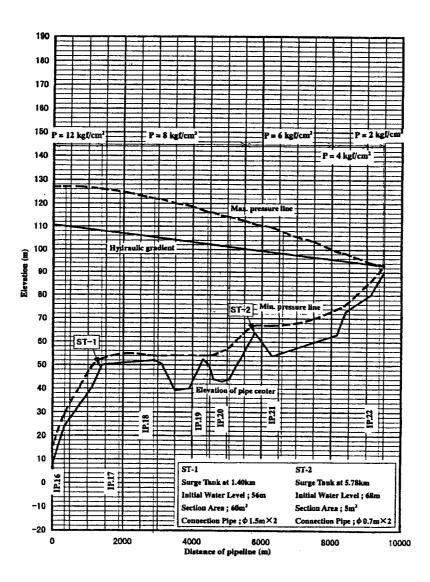


Figure 1 Proposed Design Pressure by Each Block

APPENDIX C.4.4-3 Necessary and Unnecessary of Flexible Pipe Joint

Flexible pipe joint may not be necessary in the steel pipeline and following estimations of pipe settlement and stress are also shown unnecessary of flexible pipe joint.

(1) Assume unequal settlement (Type A)

Immediate settlement at high embankment, at highly sand deposition or at truck load will be anticipated unequal settlement, but consolidation settlement due to poor ground will not be anticipated in these site. It will be estimated at those occasions that longitudinal stress in pipe may be caused.

Immediate settlement at certain condition may be estimated by the following equation.

 $S=(1-v^2) \times q \times H \times B \times I/Es$

where, S:Immediate settlement after load increase

H :Height of embankment =5m (assumed)

q : Unit weight of soil = 1.8 t/m^3

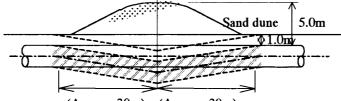
v: Poisson ratio = 0.3

B :Width of structure = 12m

Es: Young's modulus of soil $28N \doteq 28 \times 5 = 140 \text{ kg/cm}^2 = 1400 \text{ t/m}^2$

Assumed N value; 5

I : Coefficient of settlement =1.05


 $S = (1 - 0.3^2) \times 1.8 \times 5 \times 12 \times 1.05 \times 1/1400 = 0.07m$

Then in case Type A (refer to attached Figure 1), longitudinal stress of pipe may be estimated approx. $500 \text{kg/cm}^2 < 1,400 \text{kg/cm}^2$ (allowable stress of pipe) OK

(2) Assume unequal settlement (Type B)

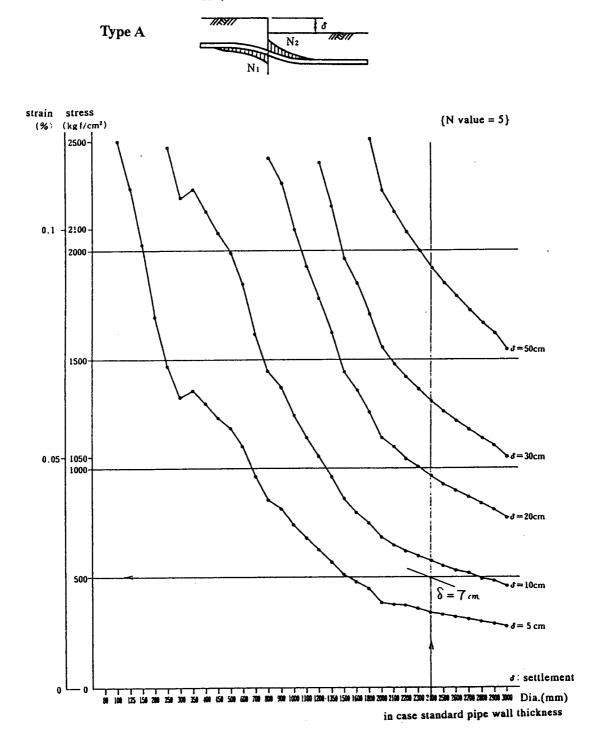
Continuous unequal settlement may also be anticipated at highly sand deposition, or at truck load passing.

Condition of estimation; sand dune deposition is as following figure.

(Assume 30m) (Assume 30m)

 $H = 1 m \text{ to } H = 5.0 m \bigtriangleup H = 4 m$

Then, $S = (1 - 0.3^2) \times 1.8 \times 4 \times 12 \times 1.05 \times 1/1400 = 0.06m$


a = -0.06m/30m = -0.002, b = 0.06m/30m = 0.002 b - a = 0.004

Then in case Type B (refer to attached Figure 2) longitudinal stress of pipe may be estimated approx.525 kg/cm²----- O.K

(3) Places need flexible pipe joint

The following places need flexible pipe joint:

Both front and back sides of valve chamber, air valve chamber and other same structural places as shown above reasons.

Unequal settlement of difference in level

Figure 1 Relation Between Unequal Settlement (Type A) and Stress

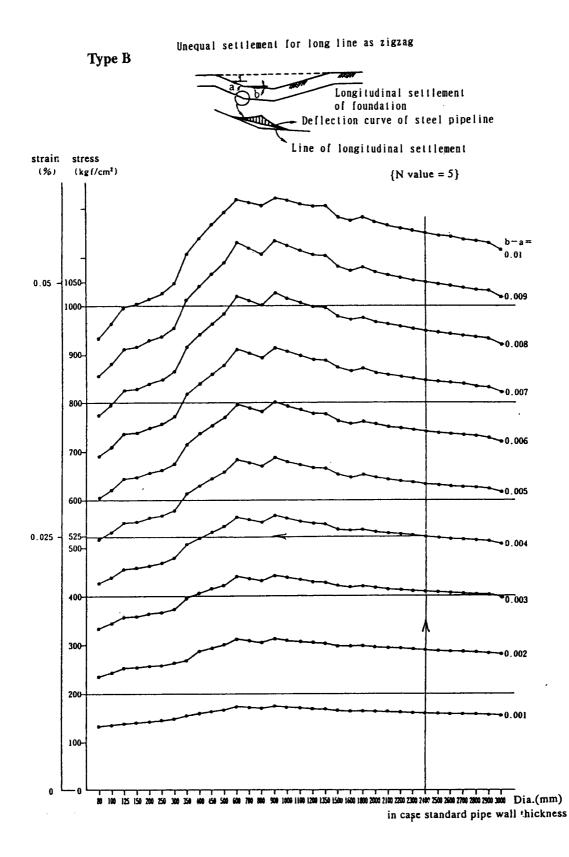


Figure 2 Relation Between Unequal Settlement (Type B) and Stress

APPENDIX C.4.4-4 Design of Cathodic Protection System

(1) General

This specification covers the design of the cathodic protection system for the underground pipelines in Egypt.

(2) Codes and Standards

The following standards and codes shall be used as guidance for design and materials for the cathodic protection system:

• BS7361 Cathodic Protection Part 1 Code of practice for land and marine applications (formerly CP 1021)

• NACE RP0169-96 "Control of External Corrosion on Underground or Submerged Metallic Piping system"

• International Electro Technical Commission (IEC)

· Japanese Industrial Standard (JIS)

(3) Basic Requirement

(a) Protection Method

The impressed current system shall be employed considering pipeline diameter and soil resistively.

(b) Electrical Insulation

To prevent electrical connection with any foreign metallic structure, (such as concrete reinforcing steel bar, earthing, casing, cable rack, other underground piping, heat exchangers and existing pipeline) insulating flanges shall be installed at the underground protected pipelines. Also electrical insulation should be taken for instrument cable conduit, if required.

(4) Structures to be Protected

	Chaelground	Tiping Descript	ion	
	Pipe	Pipe	Pipe	Protected
Classification	Nominal Size	Outer Diameter	Length	Area
	(mm)	(m)	(m)	(m ²)
Water supply pipe	2400	_	9400	70838

Underground Piping Description

quantity of line 3 lines

Pipe Service Condition

Material	Fluid	Operation temp	Coating
	Fresh water mixed with seawater	40°C	Asphalt vinilon cloth

(5) Design Conditions

• Soil Resistively of Anode Ground bed Design 4000 ohm-cm(Assumed)

Criteria of Cathodic Protection

The pipe-to-soil potential should be more negative than -0.85 volt with respect to a copper/copper sulfate reference electrode at all test stations when the protective current is applied.

• Protective Current Density 1.0mA/m2

• Design Life of Anode

20 years

(6) Design Calculation

impressed current system for underground piping				
Service	Water			
Protective Current Requirement	213A			
Transformer-rectifier 50V×50A	6unit			
Quantity of High Silicon Iron Anode	96pcs			
Width of Ground bed	70m/groundbed			
Diameter of anode	0.16m			
Depth of bore hole	Approx. 6.0m			

Impressed current system for underground piping

• Design calculation of impressed Current System For Underground Piping (Phase1) Protective current requirement are calculated by the following formula;

 $Ip=S \times i$

where,

Ip	:	protective current requirement	(mA)
S	:	Protective area	(m2)
Ι	:	Current density	(mA/ m2)
thus; I	[p='	70838(m2)×1.0(mA/ m2)×3line	≔213A

• Ground bed Conditions

Approx. 6m deep ground bed will be applied to this design.

• Earthing Resistance of Ground bed

Earthing resistance of ground bed (Ra) is calculated by the following formula ;

$$Ra = \frac{\rho}{2\pi Lnp} \left\{ \log_{e} \left(\frac{4L}{a} \right) - 1 + \frac{2L}{I_{a}} \log_{e} \left(0.656 \times np \right) \right\}$$

where,

Ra	:	Earthing resistance of ground bed	(ohm)
ρ	:	Soil resistively at ground bed	(ohm-m)
L	:	Length of ground bed	(m)
a	:	Radius of ground bed	(m)
Ia	:	Space of anode to anode	(m)
np	:	Quantity of anode in ground bed	(pcs)
when,	ρ=	40 ohm-m , L=2.0m ,a=0.08m ,np=8p	cs ,Ia=10m.

then, Ra=1.73 ohm/ground bed

2 ground bed are required.

· DC Output Voltage Required

DC output voltage requirement (E) is calculated by the following formula,

E = Io (Ra + Rc + Rw) + Ew

where,

Ε	:	Output voltage required	(V)
ю	:	Design output current of transformer-rectifier	(A)
Ra	:	Earthing resistance of groundbed	(ohm)
Rc	:	Earthing resistance of protective structures	Negligible (ohm)
Rw	:	Resistance of wiring	Max. 0.2 (ohm)
Ew	:	Back Voltage	2.0 (V)
when, I	[o =	= 35.5A, Ra = 1.73 ohm/groundbed 0.87	
Rw :	= 0	.2 ohm	
Ew =	= 2	.0 V	
then, E	= 4	40V (≦50V)	

Thus, output rating of 50 volts is sufficient to current required.

• Design Life of Anode

The design life of Anode is calculated by the following formula;

$$T = \frac{W}{C \times Ia} \times 0.6$$
Where, T : Design life of anode (Year)
W : Net weight of anode 22.7 (kg)
C : Consumption rate of anode 0.25 (kg/A · year)
Ia : Maximum output current of anode 2.3 (A)
0.6 : Utilization factor

Thus,

$$T = \frac{22.7}{0.25 \times 2.3} \times 0.6 = 24 \text{ years}(> 20 \text{ years})$$

(7) Required capacity of transformer rectifier

Capacity of transformer rectifier will be calculated by the following formula; P=f · A · E where, P : Required capacity of the electricity (kw) A : 213A \div 6units = 35.5A E : 40V f : Coefficient 1/0.7 Thus; P = (1/0.7) × 35.5 × 40 \rightleftharpoons 2.1 kw Then; Capacity of the transformer recitifier = 2.1/0.75 \doteqdot 3 KVA

(8) Comparison study on power source for substation or solar generation system

There is no power source entirely along the pipeline. There are two alternatives of power source, one is to get from substation of No.7 pumping station and the other is to get from solar and battery generation system. The comparison of these two alternatives is tabulated he following table and proposed source of electricity for the cathodic protection system shall obviously be from the substation of No.7 pumping station.

Items	s Substation supply Solar cell generation			on	
	Cost for cat Steel tape a		Cost for solar battery solar cell	generation and 300,000LE	
		66-V 70mm ²)	Controller	100,000 100,000	
Construction cost	9,400mm>	×10LE=950,000LE	Battery 200,000 × 10 = 2,000,000		
Construction cost	Labor instal	llation	(300AH × 4sets 3y	ear life cycle	
	500m×2	00LE = 100,000LE	Then 10 times ren	ewal for 30 year)	
			Sub-total	2,400,000/unit	
	Total	1,050,000 LE	Total for 6 units	14,400,000LE	
Conclusion		0			

Comparison study on power source from substation or solar generation

APPENDIX C.4.4-5 Structural Design of Surge Tank

(1) Pipe wall thickness of surge tank

Diameter	D = 1500 mm, Dc = 1524 mm
	t = 12 mm
	$P = 12 \text{ kgf/cm}^2$
to the surface	of backfill or embankment
	H = 4.0 m
	T - 70
	$\gamma = 1.8 \text{ tf/m}^3$
	$\phi = 30^{\circ}$
	$\theta = 90^{\circ}$
material	$E' = 48 \text{ kgf/cm}^2$
	Non sheet pile method
	B = 23.6/3 = 7.87 m
	STPY400
	$\sigma a = 1400 \text{ kgf/cm}^2$
	3%
	to the surface

(ii) Tensile stress by Inner pressure of pipe

$$\sigma t = PD/2t$$
 D: Inner diameter of pipe (Dc - 2t = 152.4 - 2 x 1.3 = 150 cm)
 $\therefore \sigma t = 12 x 150 / (2 x 1.3) = 691 \text{ kgf/cm}^2 < \sigma a = 1400 \text{ kgf/cm}^2$ O.K.

(iii) Vertical earth pressure

Vertical earth pressure shall be calculated by following equation;

 $H \ge 2.0m$ $Wv = Cd \cdot \gamma \cdot B$

$Cd = (1 - e - 2K \cdot \mu' \cdot H/B) / 2K\mu'$											
H (m)	K	μ'	B(cm)	-2K• µ•H/B	e ^{-2K· μ· H/B}	Cd	γ	Wv(kgf/cm ²)			
4.0	0.33	0.58	787	-0.1938	0.824	0.462	0.0018	0.655			

(iv) Wheel Load

$$Wv = \frac{P \cdot \beta}{W} = \frac{P \cdot \beta}{155 + 2H}$$

$$P = \frac{2 \times ([FrontWheelLoad] + [BackWheelLoad])}{[VehicleOccupationWidth]} \times (1+i)$$

H(m)	Back Wheel Loads (kgf)	Vehicle Occupation width (cm)	i	P (kgf/cm)	β	Wt (kgf/cm ²)
4.0	11700	350	0.2	160	0.9	0.151

(v) Calculation of Deflection

	ΔX =	$\frac{\mathbf{(Wv + Wt)}}{\mathbf{+} 0.061E'}$	<u> </u>		
H(m)	Wv	Wt	Δx	Design Deflection Ratio $\Delta X/D \times 100$ (%)	Judge
4.0	0.655	0.151	3.223	2.1% < 3%	O.K.

(vi) Flexural Stress

$\sigma = \frac{2(W)}{2}$	$\sigma = \frac{2(Wv + Wt)}{Kb \cdot R^2 \cdot EI + (0.061Kb - 0.083Kx) \cdot E' \cdot R^5}$										
$\sigma_b = -$	$f \cdot Z$	1	EI + 0.061E'	R ³							
H(m)	Wv	Wt	$\sigma_{\mathfrak{b}}$	σ		Judge					
4.0	0.655	0.151	1353	<	1400	O.K.					

(b) ϕ 700 (Surge tank No.2)

(i)

Design conditio	n (summarized)		
Steel pipe dim	iension	Diameter	D = 700 mm, Dc = 711.2 mm
			t = 6 mm
Design Inner J	pressure		$P = 12 \text{ kgf/cm}^2$
Earth cover fr	om the top of pipe t	to the surface	of backfill or embankment
			H = 4.0 m
Vertical load	(Truck load)		T - 70

(ii) Tensile stress by Inner pressure of pipe

$$\sigma t = PD/2t \qquad D: \text{ Inner diameter of pipe (Dc - 2t = 71.2 - 2 x 0.6 = 69.9 cm)} \\ \therefore \sigma t = 12 x 69.9 / (2 x 0.6) = 699 \text{ kgf/cm}^2 < \sigma a = 1400 \text{ kgf/cm}^2 \text{ O.K.}$$

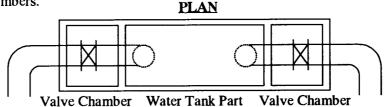
(iii) Vertical earth pressure

H (m)	K	μ'	B(cm)	$-2K \cdot \mu \cdot H/B$	$e^{-2K \cdot \mu \cdot H/B}$	Cd	γ	Wv(kgf/cm ²)
4.0	0.33	0.58	787	-0.1938	0.824	0.462	0.0018	0.655

(iv) Wheel Load

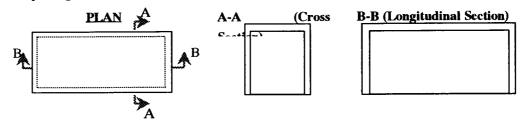
H(m)	Back Wheel Loads (kgf)	Vehicle Occupation width (cm)	i	P (kgf/cm)	β	Wt (kgf/cm ²)
4.0	11700	350	0.2	160	0.9	0.151

(v) Calculation of Deflection

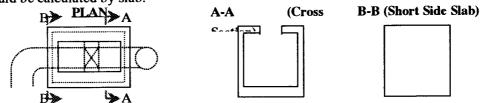

H(m)	Wv	Wt	ΔX	Design Deflection Ratio $\Delta X/D \times 100$ (%)	Judge
4.0	0.655	0.151	1.439	2.0% < 3%	O.K.

(vi) Flexural Stress

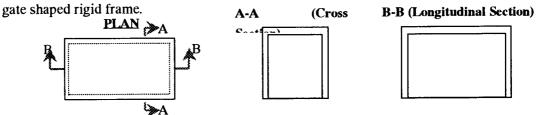
H(m)	Wv	Wt	$\sigma_{\mathfrak{b}}$		σ_{a}	Judge
4.0	0.655	0.151	1277	<	1400	O.K.


(2) Structural calculation of Surge Tank

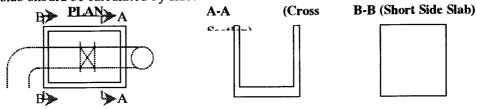
There are two surge tanks, No.1 and No.2, and each of them consist of water tank part and two valve chambers.


Surge tank No.1 water tank

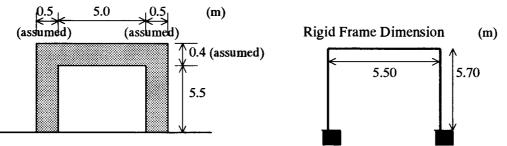
Two section, cross section (A-A) and longitudinal section (B-B) should be calculated by gate shaped rigid frame.


Surge tank No.1 valve chamber

Long side slabs and bottom slab should be calculated by rigid frame. And short side slab should be calculated by slab.

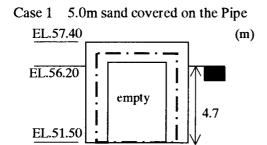

Surge tank No.2 water tank

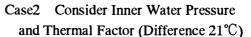
Two section, cross section (A-A) and longitudinal section (B-B) should be calculated by

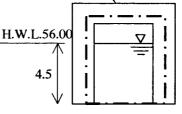

Surge tank No.2 valve chamber

Long side slabs and bottom slab should be calculated by flume (rigid frame). And short side slab should be calculated by slab.

Surge Tank No.1 (Water Tank Part)

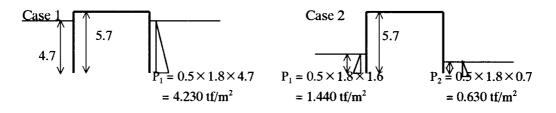

- (a) Sectional Dimension for Calculation
 - Surge tank (water tank) should be calculated by Gate Shaped Rigid Frame.




(b) Calculation of Load

(i)Case of Calculation

Considering condition, following cases should be calculated.



(ii) Own Weight and Earth Weight Applied for Top Slab (W_1) Concrete Weight of Top Slab 0.980 tf/m^2 (= 0.40 * 2.45)

(iii) Side Earth Pressure (P_1)

Side earth pressure should be calculated by following equation; $P = K_0 \times \gamma_t \times H$

(iv) Inner Water Pressure (P₃)

4.5
$$P_3 = 1.0 \times 4.5 = 4.5 \text{ tf/m}^2$$

(v) Load Distribution

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.

Top Slab Outside Inside Outside 1 1

3 (5.50, 5.70)

4 (5.50, 0.0)

3

Element Number, Contact Number

and Coordinates

1

Distribution

2 (0.0.5.70)

2

1 (0.0, 0.0)

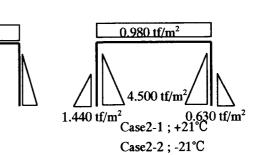
(c) Result of Calculation

2,3 2,3 2.497 Case 1 2.627 10.790 6.231 2.625 0.000 2.695 0.000 2,3 1 1 2,3 Case 2-1 11.349 14.397 4.352 13.955 0.000 7.327 0.634 6.024 2,3 1 2.3 **(1)** 19.947 Case 2-2 16.590 1.781 16.590 6.035 0.645 0.630 9.603

Upper : Element Number Middle: Bending Moment (tf • m) Lower : Shearing Force (tf)

400

(d) Design of Reinforcement


By using result of calculation reinforcement should be designed as following figure.

<Longitudinal Section> <Cross Section> 15000 5000 500 500 500 500 8 D19/m 4 D25 /m+ 4 D22 /m 400 8 D16/m 4 D22 /m+ 4 D19 /m 5500 5500 4 D25 /m + 4 D22 /m 8 D22 /m 4 D25 /m + 4 D22 /m 8 D19/m A 4 D13 /m 4 D13 /m

(e) Stress Analysis

4 D22 /m

Stress analysis will be shown at next page.

0.980 tf/m²

Side Slab

Inside

8 D22 /m 4 D19 /m

 0.0 tf/m^2

 4.230 tf/m^2

		······································				
			Top Slab	Top Slab	Side Slab	Side Slab
			Outside	Inside	Outside	Inside
Bending Mo	ment	M(kgf · cm)	1,659,000	1, 395, 500	1,659,000	1,994,700
Axial For	ce	N(kgf)	630	2, 578	6,035	645
Shearing Fo	orce	S (kgf)	6,035	634	630	9, 603
Width		<i>b</i> (cm)	100	100	100	100
Thicknes	ss	<i>h</i> (cm)	40.0	40.0	50.0	50.0
Effective D	epth	<i>d</i> (cm)	33.0	33.0	43.0	43.0
Cover (Compressive)		<i>d</i> ₁ (cm)	7.0	7.0	7.0	7.0
Cover (Ten	Cover (Tensile)		7.0	7.0	7.0	7.0
Required Effecti	Required Effective Depth d_0		30.1	27.8	31.0	33.0
Judge	Axial Direction	1 Force	Compressive	Compressive	Compressive	Compressive
			Case2-A	Case2-A	Case2-A	Case2-A
	Tensile Steel		Required	Required	Required	Required
	Compressive S	teel	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stres	s σc1		-	-	-	-
Min. Compressive Stress	s σ c2		-	-	_	-
Area of Tensile Reinford			31.88	26.22	22.94	29.41
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		-	-	-	-	
Min. Area of Rein		(cm ²)	5.00	5,00	5.00	5.00
Required Area of R		As (cm ²)	31.88	26.22	22.94	29.41
Required Per		$U(\text{cm}^2)$	11.67	1.23	0.93	14.25

Stress Analysis of North Sinai Surge Tank No.1 (Water Tank)

Design of Reinforcement

Main Reinforcement	Diameter D),(m)	25	22	25	22
1	Pitch c.	.to.c (M)	250	250	250	250
	Area A	$s_1(\text{cm}^2)$	19.64	15.20	19.64	15.20
	Perimeter U	/ ₁ (cm)	32.00	28.00	32.00	28.00
Main Reinforcement	Diameter D) ₂ (m)	22	19	22	22
2	Pitch c.	.to.c (III)	· 250	250	250	250
	Area A	$ls_2(cm^2)$	15.20	11.34	15.20	15.20
	Perimeter L	/ ₂ (cm)	28.00	24.00	28.00	28.00
Area of Reinforcement A	ls(cm2)		34.84	26.54	34.84	30.40
Perimeter of Reinforceme	ent U(cm2)		60.00	52.00	60.00	56.00

Stress Check

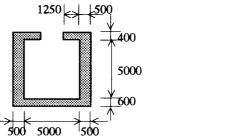
Distance for	n Neutral axis to C	Compressive Edge x	14.122	12.969	17.479	15.836
	j = 1 - x / (3)	d)	0.857	0.869	0.865	0.877
Reinforcement 7	Tensile	σ	1,684	1,779	1,191	1,726
	Stress	Judge (σ_{sa} =1,840kgf/cm ²)	0. K.	0. K.	0. K.	0. K.
Concrete	Compressive	σ	84.0	76.8	54.4	67.
	Stress	Judge (σ_{ca} =98kgf/cm ²)	0. K.	0. K.	0. K.	0. K.
	Shear Stress	t	1.8	0.2	0.1	2.
		Judge ($\tau_a = 9.2 \text{kgf/cm}^2$)	0. K.	0. K.	0. K.	0. K.

			Top Slab Outside	Top Slab Inside	Side Slab Outside	Side Slab Inside
Bending Mo	ment	M (kgf · cm)	783,800	837,200	1,434,500	2,154,800
Axial For	се	N(kgf)	2,436	353	-	-
Shearing Fo	orce	S(kgf)	-	-	1	9,772
Width		b (cm)	100	100	100	100
Thicknes	is	<i>h</i> (cm)	40.0	40.0	50.0	50.0
Effective D	epth	d (cm)	33.0	33.0	43.0	43.0
Cover (Compressive)		$d_1(\mathrm{cm})$	7.0	7.0	7.0	7.0
Cover (Ten	Cover (Tensile)		7.0	7.0	7.0	7.0
Required Effecti	Required Effective Depth		21.0	21.4	27.9	34.2
Judge	Axial Direction	Force	Compressive	Compressive	-	<u> </u>
			Case2-A	Case2-A		_
	Tensile Steel		Required	Required	Required	Required
	Compressive S	teel	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stress	sσc1		-	-	-	-
Min. Compressive Stress	σ c2		-	-	-	-
Area of Tensile Reinford			14.44	16.08	21.28	31.97
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		-	-	-	-	
Min. Area of Rein	forcement	(cm ²)	5.00	5.00	5.00	5.00
Required Area of Re	einforcement	$As(\text{cm}^2)$	14.44	16.08	21.28	31.97
Required Peri	imeter	<i>U</i> (cm ²)	-	-	-	14.50

Stress Analysis of North Sinai No.1 Surge Tank (Longitudinal Section)

Design of Reinforcement

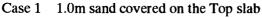
Main Reinforcement	Diameter	$D_{I}(\mathbf{n}\mathbf{n})$	19	16	19	25
1	Pitch	c.to.c (111)	125	125	125	250
	Area	$As_1(\text{cm}^2)$	22.68	16.08	22.68	19.64
-	Perimeter	$U_{I}(\mathrm{cm})$	48.00	40.00	48.00	32.00
Main Reinforcement	Diameter	$D_2(\mathbf{nn})$	-	-	-	22
2	Pitch	c.to.c (III)	-	-	-	250
	Area	$As_2(\text{cm}^2)$	-	-	•	15.20
	Perimeter	$U_2(\mathrm{cm})$	-	-	-	28.00
Area of Reinforcement A	ls(cm2)		22.68	16.08	22.68	34.84
Perimeter of Reinforceme	ent U(cm2)		48.00	40.00	48.00	60.00

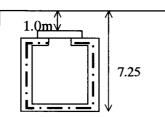

Stress Check

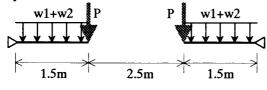
Distance for	n Neutral axis to (Compressive Edge x	12.389	10.486	14.038	16.609
	j = 1 - x / (3)	d)	0.875	0.894	0.891	0.871
Reinforcement	Tensile	σ	1,138	1,768	1,649	1,652
	Stress	Judge (σ_{sa} =1,840kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
Concrete	Compressive	σ	45.6	54.9	53.3	69.3
	Stress	Judge (σ_{ca} =98kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
	Shear Stress	τ	-	-	-	2.3
		Judge ($\tau_1 = 9.2 \text{kgf/cm}^2$)			O.K.	O.K.

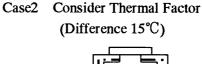
Surge Tank No.1 (Valve Camber)

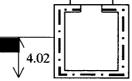
(a) Sectional Dimension for Calculation


Valve Chamber should be calculated by Gate Shaped Rigid Frame.

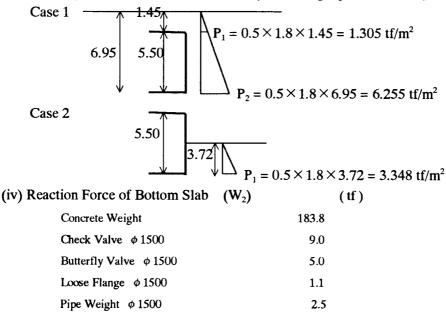



- (b) Calculation of Load
 - (i) Case of Calculation


Considering condition, following cases should be calculated.



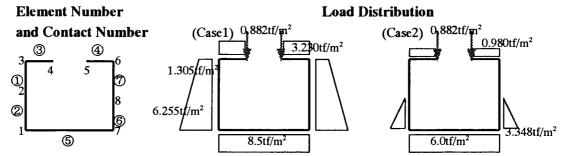
(ii) Top Slab



w1: Own Weight of Top Slab w1= $0.40 \times 2.45 = 0.980$ tf/m² P : Own Weight of Cover P= $0.25 \times 2.88 \times 2.45$ / 2=0.882 tf/m w2:Vertical Soil Pressure(Case1 only) w2 = $1.8 \times 1.25 = 2.250$ tf/m²

(iii) Side Earth Pressure (P_1)

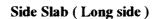
Side earth pressure should be calculated by following equation; $P = K_a \times \gamma_t \times H$

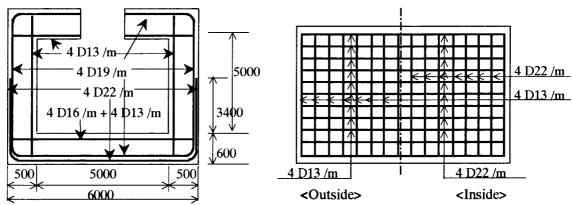

(m)

Water Weight ϕ 1500	12.0
Stop Valve $\phi 200 \times 2$	0.5
Pipe Weight ϕ 200	0.3
Water Weight ϕ 200	0.3
+) (Soil Weight	88.9 case1 only)
Total	$303.4 / (5.5 \times 6.5) = 8.5 \text{ tf/m}^2$ (Case1)
	$214.5 / (5.5 \times 6.5) = 6.0 \text{ tf/m}^2$ (Case2)

(v) Load Distribution

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.


(c) Result of Calculation


Part	Top Slab Outside	Side Slab Outside	Bottom Slab Outside	Bottom Slab Inside
Bending Moment (tf · m)	49.570	17.839	17.839	14.358
Axial Force (tf)	-	5.727	14.942	14.942
Shearing Force (tf)	5.792	14.963	23.396	-

(d) Design of Reinforcement

By using result of calculation reinforcement should be designed as following figure.

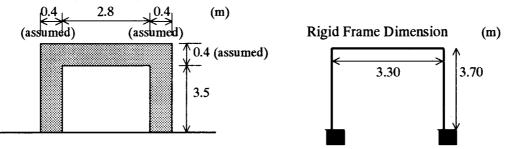
(e) Stress Analysis

Stress analysis will be shown at next page.

			Top Slab	Side Slab	Bottom Slab	Bottom Slab	side slab
			Outside	Outside	Outside	Inside	outside
							upper
Bending Mo	Bending Moment M(kgf cm)		495,700	1,783,900	1,783,900	1,435,800	495,700
Axial For	rce	N(kgf)	-	5,727	14,942	14,942	5,727
Shearing F	orce	S(kgf)	5,792	14,963	23,396	-	5,792
Width		<i>b</i> (cm)	100	100	100	100	100
Thickne	SS	<i>h</i> (cm)	40.0	50.0	60.0	60.0	50.0
Effective D	Depth	<i>d</i> (cm)	33.0	43.0	53.0	53.0	43.0
Cover (Comp	Cover (Compressive)		7.0	7.0	7.0	7.0	7.0
Cover (Ten	isile)	<i>d</i> ₂ (cm)	7.0	7.0	7.0	7.0	7.0
Required Effect	ive Depth	d_0 (cm)	18.1	35.2	37.4	34.2	19.8
Judge	Axial Direction	Force	-	Compressive	Compressive	Compressive	Compressive
			-	Case2-A	Case2-A	Case2-A	Case2-A
	Tensile Steel			Required	Required	Required	Required
	Compressive S	teel		Not Required	Not Required	Not Required	Not Required
Max. Compressive Stre	ss σcl		-	-	•	-	-
Min. Compressive Stres	ss σc2		-	-	-	-	-
Area of Tensile Reinfor			9.68	25.10	17.57	13.34	5.79
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		-	-	-	-	-	
Min. Area of Reir	oforcement	(cm ²)	5.00	5.00	5.00	5.00	5.00
Required Area of R	einforcement	As (cm ²)	9.68	25.10	17.57	13.34	5.79
Required Per	rimeter	$U(\text{cm}^2)$	12.73	25.23	32.01	-	9.77

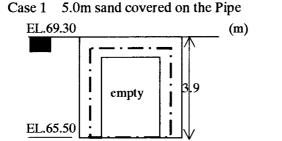
Stress Analysis of North Sinai Surge Tank No.1 (Valve Chamber)

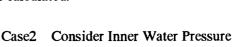
Design of Reinforcement

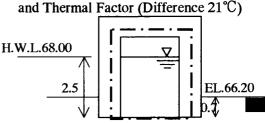

Main Reinforcement	Diameter	$D_1(\mathbf{n})$	19	19	19	16	19
1	Pitch	c.to.c (M)	250	250	250	250	250
	Area	$As_1(\text{cm}^2)$	11.34	11.34	11.34	8.04	11.34
	Perimeter	<i>U</i> ₁ (cm)	24.00	24.00	24.00	20.00	24.00
Main Reinforcement	Diameter	D ₂ (111)	-	22	22	13	-
2	Pitch	c.to.c (11)	-	250	250	250	-
	Area	$As_2(\text{cm}^2)$	-	15.20	15.20	5.32	-
	Perimeter	$U_2(cm)$	-	28.00	28.00	16.00	-
Area of Reinforcement A	As(cm2)		11.34	26.54	26.54	13.36	11.34
Perimeter of Reinforceme	ent U(cm2)		24.00	52.00	52.00	36.00	24.00

Stress Check

Distance for	n Neutral axis to (Compressive Edge x	9.030	15.676	19.801	15.780	12.780
	j = 1 - x / (3)	d)	0.909	0.878	0.875	0.901	0.901
Reinforcement	Tensile	σ	1,457	1,665	1,164	1,670	858
	Stress	Judge(σ_{sa} =1,800kgf/cm ²)	O.K.	O.K.	0.K.	0.K.	0.K.
Concrete	Compressive	σ _c	36.6	63.7	46.3	47.2	24.2
	Stress	Judge(σ_{ca} =85kgf/cm ²)	O.K.	0.K.	0.K.	O.K.	0.K.
	Shear Stress	τ	1.8	3.5	4.4		1.3
		Judge($\tau_a=8.0$ kgf/cm ²)	O.K.	O.K.	O.K.		0.K.

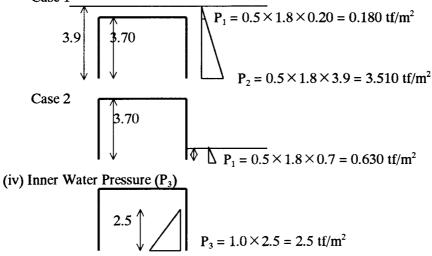

Surge Tank No.2 (Water tank part)


- (a) Sectional Dimension for Calculation
 - Surge tank (water tank) should be calculated by Gate Shaped Rigid Frame.

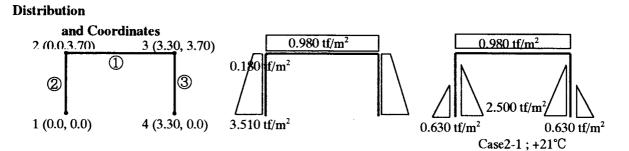


- (b) Calculation of Load
 - (j)Case of Calculation

Considering condition, following cases should be calculated.



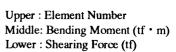
(ii) Own Weight and Earth Weight Applied for Top Slab (W_1) Concrete Weight of Top Slab $0.980 \text{ tf/m}^2 (= 0.40 * 2.45)$


Side earth pressure should be calculated by following equation; $P = K_0 \times \gamma_t \times H$ Case 1

(v) Load Distribution

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.

⁽iii) Side Earth Pressure (P_1)

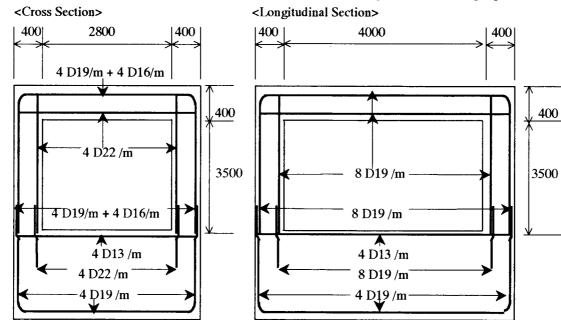


Case1 Load Distribution

(c) Result of Calculation

Element Number, Contact Number

	Тор	Slab	Side	Slab
	Outside	Inside	Outside	Inside
	1	1	2,3	2,3
Case 1	0.995	0.259	2.772	1.189
	1.568	0.000	4.867	0.001
	1	1	2,3	2,3
Case 2-1	3.666	7.770	6.166	7.770
	5.141	2.005	0.001	1.156
	1	1	Q,3	Q,3
Case 2-2	8.916	2.519	8.716	8.916
	5.141	2.005	3.903	0.998



Case2-2; -21°C

Case2 Load

(d) Design of Reinforcement

By using result of calculation reinforcement should be designed as following figure.

(e) Stress Analysis

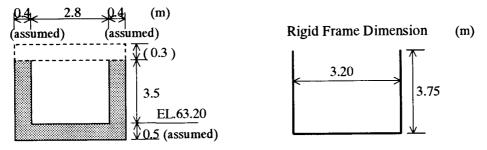
Stress analysis will be shown at next page.

Stress Analysis of North Sinai No.2 Surge Tank

		Top Slab	Top Slab	Side Slab	Side Slab	Top Slab	Top Slab	Side Slab	Side Slab
		Outside	Inside	Outside	Inside	Outside Long Side	Inside Long Side	Outside Long Side	Inside
Bending Mo	ment M(kgf·cm)	891.600	777.000	891.600	777.000	1.170.600	1,202,700	778.600	Long Side
Axial For		998	1.156	5,141	2,005	1,170,000			1,202,700
							2,589	2,925	2,925
Shearing F		5,141	2,005	998	1,156	2,925	2,925	-	2,589
Width	<i>b</i> (cm)	100	100	100	100	100	100	100	100
Thicknes	s <i>h</i> (cm)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Effective D	epth d (cm)	33.0	33.0	33.0	33.0	33.0	33.0	33.0	33.0
Cover (Compr	essive) $d_1(cm)$	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Cover (Ten	sile) $d_2(\text{cm})$	7.0	7.0	7.0	7.0	7.0	7.0	7.0	7.0
Required Effecti	ve Depth $d_{\theta}(\mathbf{cm})$	22.1	20.7	22.8	20.9	25.4	25.9	21.0	25.9
Judge	Axial Direction Force	Compressive	Compressive	Compressive	Compressive	Compressive	Compressive	Compressive	Compressive
		Case2-A	Case2-A	Case2-A	Case2-A	Case2-A	Case2-A	Case2-A	Case2-A
	Tensile Steel	Required	Required	Required	Required	Required	Required	Required	Required
	Compressive Steel	Not Required	Not Required	Not Required	Not Required				
Max. Compressive Stres	s σcl	-	-	-	-	-	-	-	-
Min. Compressive Stress	s σc2	-	-	-	-	-	-	-	-
Area of Tensile Reinforcement As		16.94	14.68	15.73	14.43	22.10	22.49	14.20	22.39
Area of Compressive Reinforcement As'(Smaller Area of Tensile				_			_	_	
Reinforcement, in case Compressive one isn't required)									
Min. Area of Reinforcement (cm ²)		5.00	5.00	5.00	5.00	5.00	5.00	5.00	5.00
Required Area of R	einforcement As (cm ²)	16.94	14.68	15.73	14.43	22.10	22.49	14.20	22.39
Required Per	imeter U(cm ²)	9.94	3.88	1.93	2.23	5.65	5,65	-	5.00

Design of Reinforcement

Main Reinforcement	Diameter	D ₁ (13)	19	22	22	22	19	19	19	19
1	Pitch	c.to.c (00)	250	250	250	250	250	250	250	250
	Агеа	$As_1(\text{cm}^2)$	11.34	15.20	15.20	15.20	11.34	11.34	11.34	11.34
	Perimeter	U ₁ (cm)	24.00	28.00	28.00	28.00	24.00	24.00	24.00	24.00
Main Reinforcement	Diameter	D ₂ (11)	16		•	-	19	19	19	19
2	Pitch	c.to.c (11)	250	-	-	-	250	250	250	250
	Area	As 2 (cm ²)	8.04	-	-	-	11.34	11.34	11.34	11.34
	Perimeter	$U_2(\text{cm})$	20.00	-		-	24.00	24.00	24.00	24.00
Area of Reinforcement A	s(cm2)		19.38	15.20	15.20	15.20	22.68	22.68	22.68	22.68
Perimeter of Reinforceme	ent U(cm2)		44.00	28.00	28.00	28.00	48.00	48.00	48.00	48.00


Stress Check

Distance form Neutral axis to Compressive Edge x		11.393	10.382	10.929	10.519	12.174	12.257	12.479	12.295	
	j = 1 - x /(3)	d)	0.885	0,895	0.890	0.894	0.877	0.876	0.874	0.876
Reinforcement Tensile		σ	1,548	1,686	1,811	1,661	1,737	1,772	1,117	1,766
	Stress	Judge ($\sigma_{m}=1,840$ kgf/cm ²)	О.К.	O.K.	0.K.	0.K.	O.K.	0.K.	0.K.	О.К.
Concrete	Compressive	σ.	54.4	51.6	59.8	51.8	67.7	69.8	45.3	69.
	Stress	Judge ($\sigma_{ca}=98 \text{kgf/cm}^2$)	О.К.	0.K.	0.K.	O.K.	O.K.	O.K.	O.K.	0.K.
	Shear Stress	τ	1.6	0.6	0.3	0.4	0.9	0.9	-	0.
	5	Judge (τ =9.2kgf/cm ²)	0.K.	O.K.	O.K.	O.K.	O.K.	O.K.		0.K.

Surge Tank No.2 (Valve Camber)

(f) Sectional Dimension for Calculation

Valve Chamber should be calculated by Gate Shaped Rigid Frame.

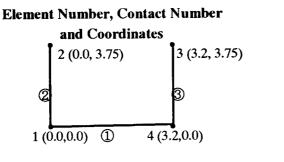
(b) Calculation of Load

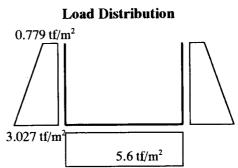
(i) Side Earth Pressure (P_1)

Side earth pressure should be calculated by following equation;

$$P = K_a \times \gamma_t \times H$$

Where, K_a : Earth Pressure Coefficient $K_a = 0.333$ ($\phi = 30^\circ$)


5.05

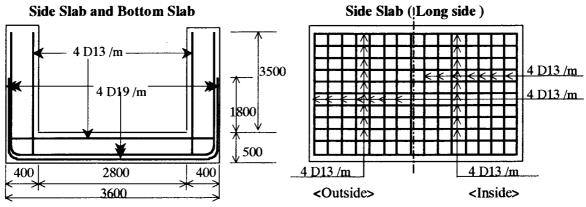

$$P_1 = 0.333 \times 1.8 \times 1.30 = 0.779 \text{ tf/m}^2$$

 $P_2 = 0.333 \times 1.8 \times 5.05 = 3.027 \text{ tf/m}^2$

(ii) Reaction Force of Bottom Slab (W_2) 34.992 tf (= 1.0m * 1.8 * 3.6 * 5.4) Earth Weight of Top Slab 14.288 tf (= 0.30 * 3.6 * 5.4 * 2.45)Concrete Weight of Top Slab 51.979 tf (= (3.6 * 5.4 - 2.8 * 5.0) * 3.9 * 2.45) Concrete Weight of Side Slab 0.285 tf (= 2.34 * 0.122 tf/m)Pipe Weight (Inside Chamber) 2.078 tf (= 5.4m * π * 0.7² / 4 * 1.0) Water Weight (Inside Pipe) 3.237 tf (= 0.870 + 0.209 + 0.258 + 1.900)Valve Weight 1.323 tf (= 0.3 * 1.0 * 0.9 * 2.45 * 2)+) Foundation Concrete (under Valve) $108.182 \text{ tf} / (3.6*5.4) \doteq 5.6 \text{ tf/m}^2$

(iii) Load Distribution

Load Distribution, Element Number, Contact Point Number and Coordinates are figured as follows.



(c) Result of Calculation

Part	Side Slab Outside	Bottom Slab Outside
Bending Moment (tf · cm)	10.746	10.746
Axial Force (tf)	0.000	7.136
Shearing Force (tf)	7.136	8.960

(d) Design of Reinforcement

By using result of calculation reinforcement should be designed as following figure.

(e) Stress Analysis

Stress analysis will be shown at next page.

			Side Slab Outside	Bottom Slab Outside	Side Slab Inside	Side Slab Inside
Bending M	oment	M (kgf · cm)	1,074,600	1,074,600	x 220,800	y 189,500
Axial Fo		N (kgf)		7,136	-	-
Shearing I	Force	S(kgf)	7,136	8,960	4,181	4,375
Width	1	b (cm)	100	100	100	100
Thickne	ess	<i>h</i> (cm)	40.0	50.0	40.0	40.0
Effective I	Depth	<i>d</i> (cm)	33.0	43.0	33.0	33.0
Cover (Compressive)		<i>d</i> ₁ (cm)	7.0	7.0	7.0	7.0
Cover (Tensile)		$d_2(\text{cm})$	7.0	7.0	7.0	7.0
Required Effect	Required Effective Depth		25.0	26.1	11.6	11.4
Judge	Axial Directio	n Force		Compressive	Compressive	Compressive
				Case2-A	Case2-A	Case2-A
	Tensile Steel		Required	Required	Required	Required
	Compressive S	Steel	Not Required	Not Required	Not Required	Not Required
Max. Compressive Stre	ss σcl		-	-	-	-
Min. Compressive Stres	ss σc2		-	-	-	-
	Area of Tensile Reinforcement As		18.51	16.57	2.20	1.84
Area of Compressive Reinforcement As'(Smaller Area of Tensile Reinforcement, in case Compressive one isn't required)		-	-	-	-	
Min. Area of Rei	Min. Area of Reinforcement (cm ²)			5.00	5.00	5.00
Required Area of R	Reinforcement	$As(cm^2)$	18.51	16.57	Min.	Min.
Required Pe	rimeter	$U(\text{cm}^2)$	14.20	22.50	-	-

Stress Analysis of North Sinai Surge Tank No.2 (Valve Chamber)

Design of Reinforcement

Main Reinforcement	Diameter	$D_{l}(\mathbf{n}\mathbf{n})$	19	19	13	13
1	Pitch	c.to.c (III)	250	250	250	250
	Area	$As_1(\text{cm}^2)$	11.34	11.34	5.32	5.32
	Perimeter	$U_{I}(\mathrm{cm})$	24.00	24.00	16.00	16.00
Main Reinforcement	Diameter	$D_2(\mathbf{n})$	19	19	-	· -
2	Pitch	c.to.c (III)	250	250	-	-
	Area	$As_2(\text{cm}^2)$	11.34	11.34	-	-
	Perimeter	$U_2(\mathrm{cm})$	24.00	24.00	-	-
Area of Reinforcement A	s(cm2)		22.68	22.68	5.32	5.32
Perimeter of Reinforceme	ent U(cm2)		48.00	48.00	16.00	16.00

Stress Check

Distance for	m Neutral axis to (Compressive Edge x	11.246	11.315	8.597	9.176
	j = 1 - x / (3)	d)	0.886	0.886	0.913	0.907
Reinforcement Tensile Stress	Tensile	σs	1,671	1,794	668	557
	Stress	Judge(σ_{sa} =1,800kgf/cm ²)	O.K.	O.K.	O.K.	O.K.
Concrete	Compressive	σ _c	57.6	62.4	15.7	14.3
	Stress	Judge(σ_{ca} =85kgf/cm ²)	O.K.	0.K.	0.K.	O.K.
	Shear Stress	τ	2.0	3.1	-	•
		Judge($\tau_a=8.0$ kgf/cm ²)	O.K.	О.К.		